1
|
Ali AH, Hachem M, Ahmmed MK. Compound-Specific Isotope Analysis as a Potential Approach for Investigation of Cerebral Accumulation of Docosahexaenoic Acid: Previous Milestones and Recent Trends. Mol Neurobiol 2025; 62:5816-5837. [PMID: 39633088 PMCID: PMC11953176 DOI: 10.1007/s12035-024-04643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), a predominant omega-3 polyunsaturated fatty acid in brain, plays a vital role in cerebral development and exhibits functions with potential therapeutic effects (synaptic function, neurogenesis, brain inflammation regulation) in neurodegenerative diseases. The most common approaches of studying the cerebral accretion and metabolism of DHA involve the use of stable or radiolabeled tracers. Although these methods approved kinetic modeling of ratios and turnovers for fatty acids, they are associated with excessive costs, restrictive studies, and singular dosing effects. Compound-specific isotope analysis (CSIA) is recognized as a cost-effective alternative approach for investigating DHA metabolism in vitro and in vivo. This method involves determining variations in 13C content to identify the sources of specific compounds. This review comprehensively discusses a summary of different methods and recent advancements in CSIA application in studying DHA turnover in brain. Following, the ability and applications of CSIA by using gas-chromatography combined with isotope ratio mass-spectrometry to differentiate between natural endogenous DHA in brain and exogenous DHA are also highlighted. In general, the efficiency of CSIA has been demonstrated in utilizing natural 13C enrichment to distinguish between the incorporation of newly synthesized or pre-existing DHA into the brain and other body tissues, eliminating the need of tracers. This review provides comprehensive knowledge, which will have potential applications in both academia and industry for advancing the understanding in neurobiology and enhancing the development of nutritional strategies and pharmaceutical interventions targeting brain health.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), P.O. Box 15551, Al Ain, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry, College of Engineering and Physical Sciences, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, 4225, Bangladesh
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
2
|
Owumi S, Chimezie J, Salami MO, Ishaya JA, Onyemuwa CV, Nnamdi M, Owoeye O. Lutein and Zeaxanthin abated neurobehavioral, neurochemical and oxido-inflammatory derangement in rats intoxicated with Aflatoxin B 1. Toxicon 2025; 258:108345. [PMID: 40194634 DOI: 10.1016/j.toxicon.2025.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
Aflatoxin B1 (AFB1), a mycotoxin commonly present in feed, has several toxic effects. AFB1 seems to have a neurotoxic effect that leads to neurobehavioral impairment. On the other hand, Lutein and Zeaxanthin (LUT/ZEA) have antioxidant and anti-inflammatory effects. Here, we aimed to compare the effects of AFB1 and the co-treatment with LUT/ZEA on neurobehavioural and biochemical changes viz-a-viz oxido-inflammatory response in male rats' hippocampal and pre-frontal cortexes. Experimental rats of the Wistar strain (n = 40) were randomly grouped into treatment cohorts: Control (corn oil 2 mL/kg), AFB1 (75 μg/kg), LUT/ZEA only (100 mg/kg), AFB1 + LUT/ZEA (75 μg/kg + 100 mg/kg), and AFB1 + LUT/ZEA (75 μg/kg + 200 mg/kg). All groups were administered their respective treatment orally for 28 days, while behavioural tests were conducted using open field tests (OFT), Y-maze, novel object tests (NORT), and forced swim tests (FST) 1 h after treatment on day 26-28. The animals were euthanized on day 29. In the hippocampal and pre-frontal cortex, antioxidant indicators (SOD, CAT, GSH, GST, GPx, TSH), inflammatory mediators (XO, NO, MPO), and acetylcholinesterase activity were measured. Our finding presents the anti-oxidant effect of lutein/Zeaxanthin in the brains of AFB1-intoxicated rats, indicating better cognitive and spatial memory capacity in Y-maze and NORT, an improvement in locomotive and explorative behaviour in OFT and reduction in anxio-depressive-like behaviour in LUT/ZEA co-treated rats. Acetylcholinesterase activity was enhanced in LUT/ZEA co-treated rats. LUT/ZEA co-treatment dampened oxido-inflammatory mediators by decreasing XO, NO, and MPO levels and increasing antioxidant activities (SOD, CAT, GSH, GST, GPx, TSH) in the prefrontal and hippocampal cortices. We surmise that mechanistically, co-treatment with LUT/ZEA effectively lessened AFB1 neurotoxicity through anti-inflammatory and antioxidant pathways and essentially improved the experimental rats' neurobehavioural outcomes.
Collapse
Affiliation(s)
- Solomon Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Joseph Chimezie
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Marvellous O Salami
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Japheth A Ishaya
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Chidindu Vine Onyemuwa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Mark Nnamdi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| | - Olatunde Owoeye
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Nigeria.
| |
Collapse
|
3
|
Yarayan YE, Batrakoulis A, Güngör NB, Kurtipek S, Keskin K, Çelik OB, Gülşen DBA, Grivas GV, Al-Mhanna SB, Alkhamees NH, Sheeha BB, Alghannam AF. The role of athletic mental energy in the occurrence of flow state in male football (soccer) players. BMC Sports Sci Med Rehabil 2025; 17:53. [PMID: 40102997 PMCID: PMC11917021 DOI: 10.1186/s13102-025-01090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND This study examines the determinant role of athletic mental energy on the flow state in professional football (soccer) players. This research fills an important gap in the sports psychology literature by focusing on the interaction between mental energy and flow, a critical component of optimal performance. METHODS Accordingly, 254 male athletes (Mean age = 23.1 ± 5.4 years) voluntarily participated in the study. This study was designed with the relational survey model, one of the quantitative research models. Athletic Mental Energy Scale and Dispositional Flow State Scale-2 were used as data collection tools. After confirming the validity and reliability of the scales, the data were analyzed. In this study, blank data were first evaluated to check the suitability of the analysis and assumptions. After the structure of the scales was verified, firstly, when the skewness kurtosis values for the normality test were examined, it was deter-mined that the data were suitable for normal distribution as the values were between - 1.5 and + 1.5 and the Q-Q graph did not show deviations from the distribution. In this context, Pearson Correlation Analysis was used to determine the relationship between athletic mental energy and flow state, and structural equation modeling (SEM) analysis was used to determine the determinant role of mental energy. Mental energy significantly predicted the flow state (β = 0.81, p < 0.05), and the SEM results indicated a good model fit (χ²/df = 2.96, RMSEA = 0.08, GFI = 0.89, CFI = 0.90). RESULTS When the findings obtained from the research were analyzed, it was determined that athletic mental energy was a determinant of flow and contributed to 66% of the variance. CONCLUSION As a result, it supports that athletes' mental energy levels play an important role in their performance and contribute to the increase of optimal performance mood. These findings suggest that coaches and sports psychologists should focus on strategies to enhance athletes' mental energy levels, such as incorporating mental skills training into their routines. The study emphasizes the importance of athletes' ability to manage their mental energy levels and the development of strategies to increase optimal performance mood. By providing evidence for the link between mental energy and flow, this study contributes to advancing the understanding of performance optimization in professional sports.
Collapse
Grants
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
- PNURSP2024R309 Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
Collapse
Affiliation(s)
- Yunus Emre Yarayan
- Department of Physical Education and Sport Science, Siirt University, Siirt, Turkey
| | - Alexios Batrakoulis
- Department of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece.
- Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece.
| | - Nuri Berk Güngör
- Department of Physical Education and Sport Science, Balıkesir University, Balıkesir, Turkey
| | - Serkan Kurtipek
- Department of Physical Education and Sport Science, Gazi University, Ankara, Turkey
| | - Kadir Keskin
- Department of Physical Education and Sport Science, Gazi University, Ankara, Turkey
| | - Okan Burçak Çelik
- Department of Physical Education and Sport Science, Gazi University, Ankara, Turkey
| | - Doğukan Batur Alp Gülşen
- Department of Physical Education and Sport Science, Aydın Adnan Menderes University, Aydın, Turkey
| | - Gerasimos V Grivas
- Physical Education and Sports, Division of Humanities and Political Sciences, Hellenic Naval Academy, Piraeus, Greece
| | - Sameer Badri Al-Mhanna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nouf H Alkhamees
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Bodor Bin Sheeha
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abdullah F Alghannam
- Lifestyle & Health Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Shanaida M, Mykhailenko O, Lysiuk R, Hudz N, Balwierz R, Shulhai A, Shapovalova N, Shanaida V, Bjørklund G. Carotenoids for Antiaging: Nutraceutical, Pharmaceutical, and Cosmeceutical Applications. Pharmaceuticals (Basel) 2025; 18:403. [PMID: 40143179 PMCID: PMC11945224 DOI: 10.3390/ph18030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Carotenoids are bioactive tetraterpenoid C40 pigments that are actively synthesized by plants, bacteria, and fungi. Compounds such as α-carotene, β-carotene, lycopene, lutein, astaxanthin, β-cryptoxanthin, fucoxanthin, and zeaxanthin have attracted increasing attention for their antiaging properties. They exhibit antioxidant, neuroprotective, and anti-inflammatory properties, contributing to the prevention and treatment of age-related diseases. Objectives: The aim of this study was to comprehensively analyze the pharmacological potential and biological mechanisms of carotenoids associated with age-related disorders and to evaluate their application in nutraceuticals, pharmaceuticals, and cosmeceuticals. Methods: A systematic review of studies published over the past two decades was conducted using the databases PubMed, Scopus, and Web of Science. The selection criteria included clinical, in silico, in vivo, and in vitro studies investigating the pharmacological and therapeutic effects of carotenoids. Results: Carotenoids demonstrate a variety of health benefits, including the prevention of age-related macular degeneration, cancer, cognitive decline, metabolic disorders, and skin aging. Their role in nutraceuticals is well supported by their ability to modulate oxidative stress and inflammatory pathways. In pharmaceuticals, carotenoids show promising results in formulations targeting neurodegenerative diseases and metabolic disorders. In cosmeceuticals, they improve skin health by protecting it against UV radiation and oxidative damage. However, bioavailability, optimal dosages, toxicity, and interactions with other bioactive compounds remain critical factors to maximize therapeutic efficacy and still require careful evaluation by scientists. Conclusions: Carotenoids are promising bioactive compounds for antiaging interventions with potential applications in a variety of fields. Further research is needed to optimize their formulas, improve bioavailability, and confirm their long-term safety and effectiveness, especially in the aging population.
Collapse
Affiliation(s)
- Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
| | - Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 61168 Kharkiv, Ukraine;
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
- CONEM Ukraine Life Science Research Group, 79010 Lviv, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Radosław Balwierz
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052 Opole, Poland;
| | - Arkadii Shulhai
- Department of Public Health and Healthcare Management, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Nataliya Shapovalova
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (R.L.); (N.S.)
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, 46001 Ternopil, Ukraine;
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, 46001 Ternopil, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
5
|
Sonnino R, Ciccarelli G, Moffa S, Soldovieri L, Di Giuseppe G, Brunetti M, Cinti F, Di Piazza E, Gasbarrini A, Nista EC, Pontecorvi A, Giaccari A, Mezza T. Exploring nutraceutical approaches linking metabolic syndrome and cognitive impairment. iScience 2025; 28:111848. [PMID: 40008362 PMCID: PMC11850164 DOI: 10.1016/j.isci.2025.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Metabolic syndrome (MetS) and mild cognitive impairment (MCI) are interconnected conditions sharing common pathological pathways, such as inflammation and oxidative stress, leading to the concept of "metabolic-cognitive syndrome." This highlights their mutual influence and potential overlapping therapeutic strategies. Although lifestyle modifications remain essential, nutraceutical supplementation has emerged as a promising adjunct for the prevention and management of these preclinical conditions. This review examines clinical and translational evidence on commonly used nutraceuticals targeting shared pathophysiological mechanisms of MetS and MCI. By addressing inflammation, oxidative stress, and metabolic dysfunction, these supplements may offer a valuable approach to mitigating the progression and consequences of both conditions. Understanding their efficacy could provide practical tools to complement lifestyle changes, offering a more comprehensive strategy for managing metabolic-cognitive syndrome.
Collapse
Affiliation(s)
- Rebecca Sonnino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gea Ciccarelli
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simona Moffa
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura Soldovieri
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianfranco Di Giuseppe
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michela Brunetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesca Cinti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eleonora Di Piazza
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Enrico C. Nista
- Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Center for Endocrine and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Teresa Mezza
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Pancreas Unit, CEMAD Digestive Diseases Center, Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
6
|
Wen B, Han X, Gong J, Wang P, Sun W, Xu C, Shan A, Wang X, Luan H, Li S, Li R, Guo J, Chen R, Li C, Sun Y, Lv S, Wei C. Nutrition: A non-negligible factor in the pathogenesis and treatment of Alzheimer's disease. Alzheimers Dement 2025; 21:e14547. [PMID: 39868840 PMCID: PMC11863745 DOI: 10.1002/alz.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is a degenerative disease characterized by progressive cognitive dysfunction. The strong link between nutrition and the occurrence and progression of AD pathology has been well documented. Poor nutritional status accelerates AD progress by potentially aggravating amyloid beta (Aβ) and tau deposition, exacerbating oxidative stress response, modulating the microbiota-gut-brain axis, and disrupting blood-brain barrier function. The advanced stage of AD tends to lead to malnutrition due to cognitive impairments, sensory dysfunctions, brain atrophy, and behavioral and psychological symptoms of dementia (BPSD). This, in turn, produces a vicious cycle between malnutrition and AD. This review discusses how nutritional factors and AD deteriorate each other from the early stage of AD to the terminal stages of AD, focusing on the potential of different levels of nutritional factors, ranging from micronutrients to diet patterns. This review provides novel insights into reducing the risk of AD, delaying its progression, and improving prognosis. HIGHLIGHTS: Two-fifths of Alzheimer's disease (AD) cases worldwide have been attributed to potentially modifiable risk factors. Up to ≈26% of community-dwelling patients with AD are malnourished, compared to 7%∼76% of institutionalized patients. Undernutrition effects the onset, progression, and prognosis of AD through multiple mechanisms. Various levels of nutritional supports were confirmed to be protective factors for AD via specific mechanisms.
Collapse
Affiliation(s)
- Boye Wen
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Xiaodong Han
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Jin Gong
- College of Integrated Traditional Chinese and Western MedicineChangchun University of Chinese MedicineJingyue National High‐tech Industrial Development ZoneChangchunChina
| | - Pin Wang
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Wenxian Sun
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Chang Xu
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Aidi Shan
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Xin Wang
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Heya Luan
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Shaoqi Li
- College of Integrated Traditional Chinese and Western MedicineChangchun University of Chinese MedicineJingyue National High‐tech Industrial Development ZoneChangchunChina
| | - Ruina Li
- School of Biological Science and Medical EngineeringBeihang UniversityHaidian DistrictBeijingChina
| | - Jinxuan Guo
- College of Integrated Traditional Chinese and Western MedicineChangchun University of Chinese MedicineJingyue National High‐tech Industrial Development ZoneChangchunChina
| | - Runqi Chen
- School of Biological Science and Medical EngineeringBeihang UniversityHaidian DistrictBeijingChina
| | - Chuqiao Li
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Yao Sun
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Sirong Lv
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of NeurologyXuanwu HospitalCapital Medical UniversityNational Clinical Research Center for Geriatric DiseasesXicheng DistrictBeijingChina
| |
Collapse
|
7
|
Martin M, Boulaire M, Lucas C, Peltier A, Pourtau L, Gaudout D, Layé S, Pallet V, Joffre C, Dinel AL. Plant Extracts and ω-3 Improve Short-Term Memory and Modulate the Microbiota-Gut-Brain Axis in D-galactose Model Mice. J Nutr 2024; 154:3704-3717. [PMID: 39332773 DOI: 10.1016/j.tjnut.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Aging, characterized by a slow and progressive alteration of cognitive functions, is associated with gut microbiota dysbiosis, low-grade chronic inflammation, as well as increased oxidative stress and neurofunctional alterations. Some nutrients, such as polyphenols, carotenoids, and omega (ω)-3 (n-3), are good candidates to prevent age-related cognitive decline, because of their immunomodulatory, antioxidant, and neuroprotective properties. OBJECTIVES The objective of this study was to demonstrate the preventive effect of a combination of plant extracts (PE) containing Memophenol™ (grapes and blueberries polyphenols) and a patented saffron extract (saffron carotenoids and safranal) and ω-3 on cognitive function in a mouse model of accelerated aging and to understand the biological mechanisms involved. METHODS We used an accelerated-aging model by injecting 3-mo-old male C57Bl6/J mice with D-galactose for 8 wk, during which they were fed with a balanced control diet and supplemented or not with PE and/or ω-3 (n = 15-16/group). Short-term memory was evaluated by Y-maze test, following analyses of hippocampal and intestinal RNA expressions, brain fatty acid and oxylipin amounts, and gut microbiota composition (16S rRNA gene sequencing). Statistical analyses were performed (t test, analysis of variance, and Pearson correlation). RESULTS Our results showed that oral administration of PE, ω-3, or both (mix) prevented hippocampus-dependent short-term memory deficits induced by D-galactose (P < 0.05). This effect was accompanied by the modulation of gut microbiota, altered by the treatment. PE and the mix increased the expression of antioxidative and neurogenesis markers, such as catalase and doublecortin, in hippocampus (P < 0.05 for both). Moreover, ω-3 and the mix showed a higher ω-3 amounts (P < 0.05) and EPA-derived 18- hydroxyeicosapentaenoic acid (P < 0.001) in prefrontal cortex. These changes may contribute to the improvement in memory. CONCLUSIONS These results suggest that the mix of PE and ω-3 could be more efficient at attenuating age-related cognitive decline than individual supplementations because it targeted, in mice, the different pathways impaired with aging.
Collapse
Affiliation(s)
- Marie Martin
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Milan Boulaire
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Céline Lucas
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Adrien Peltier
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France
| | - Line Pourtau
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - David Gaudout
- Activ'Inside, 12 route de Beroy, ZA du Grand Cazeau, Beychac-et-Caillau
| | - Sophie Layé
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Véronique Pallet
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Corinne Joffre
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France
| | - Anne-Laure Dinel
- Université Bordeaux, INRAE, Bordeaux INP, Nutrineuro, Bordeaux, France; NutriBrain Research and Technology Transfer, NutriNeuro, Bordeaux, France.
| |
Collapse
|
8
|
Sbai O, Torrisi F, Fabrizio FP, Rabbeni G, Perrone L. Effect of the Mediterranean Diet (MeDi) on the Progression of Retinal Disease: A Narrative Review. Nutrients 2024; 16:3169. [PMID: 39339769 PMCID: PMC11434766 DOI: 10.3390/nu16183169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Worldwide, the number of individuals suffering from visual impairment, as well as those affected by blindness, is about 600 million and it will further increase in the coming decades. These diseases also seriously affect the quality of life in working-age individuals. Beyond the characterization of metabolic, genetic, and environmental factors related to ocular pathologies, it is important to verify how lifestyle may participate in the induction of the molecular pathways underlying these diseases. On the other hand, scientific studies are also contributing to investigations as to whether lifestyle could intervene in modulating pathophysiological cellular responses, including the production of metabolites and neurohormonal factors, through the intake of natural compounds capable of interfering with molecular mechanisms that lead to ocular diseases. Nutraceuticals are promising in ameliorating pathophysiological complications of ocular disease such as inflammation and neurodegeneration. Moreover, it is important to characterize the nutritional patterns and/or natural compounds that may be beneficial against certain ocular diseases. The adherence to the Mediterranean diet (MeDi) is proposed as a promising intervention for the prevention and amelioration of several eye diseases. Several characteristic compounds and micronutrients of MeDi, including vitamins, carotenoids, flavonoids, and omega-3 fatty acids, are proposed as adjuvants against several ocular diseases. In this review, we focus on studies that analyze the effects of MeDi in ameliorating diabetic retinopathy, macular degeneration, and glaucoma. The analysis of knowledge in this field is requested in order to provide direction on recommendations for nutritional interventions aimed to prevent and ameliorate ocular diseases.
Collapse
Affiliation(s)
- Oualid Sbai
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT02, Institut Pasteur de Tunis, Tunis 1068, Tunisia
| | - Filippo Torrisi
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| | | | - Graziella Rabbeni
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| | - Lorena Perrone
- Faculty of Medicine and Surgery, University KORE of Enna, 94100 Enna, Italy
| |
Collapse
|
9
|
Wu J, Lu FJH, Wang Y, Kueh YC, Kuan G. Validation of the athletic mental energy scale for Chinese school-age adolescents. Sci Rep 2024; 14:18038. [PMID: 39098949 PMCID: PMC11298513 DOI: 10.1038/s41598-024-66931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Mental energy is an important factor in many domains, including athletic performance. The athletic mental energy scale (AMES) is one of the established tools available to measure athletes' perceived mental energy state. To date, there is no validated questionnaire to assess athletic mental energy for Chinese adolescents. Therefore, purpose of this study was to validate a Chinese version of AMES (C-AMES) among the Chinese adolescents in Lanzhou, Gansu Province, China. We sampled 729 adolescents aged 14 to 18 in five middle schools in Lanzhou City, Gansu Province, China to complete the revised C-AMES. Data were analyzed for factor structure validity by performing CFA. The results showed that the fit index was acceptable (RMSEA = 0.050, CFI = 0.962, TLI = 0.951), and a six-factor model containing 18 C-AMES items had good measurement properties for athletic mental energy. We suggest future study may use C-AMES to examine the relationship between athletes' mental energy and athletic performance and sporting behavior.
Collapse
Affiliation(s)
- Jiarun Wu
- School of Physical Health, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Frank J H Lu
- Department of Physical Education, Chinese Culture University, Taipei, Taiwan
| | - Yishuai Wang
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Yee Cheng Kueh
- Biostatistics and Research Methodology Unit, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Garry Kuan
- Exercise and Sports Science Programme, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
10
|
Camarena-Bernard C, Pozzobon V. Evolving perspectives on lutein production from microalgae - A focus on productivity and heterotrophic culture. Biotechnol Adv 2024; 73:108375. [PMID: 38762164 DOI: 10.1016/j.biotechadv.2024.108375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Increased consumer awareness for healthier and more sustainable products has driven the search for naturally sourced compounds as substitutes for chemically synthesized counterparts. Research on pigments of natural origin, such as carotenoids, particularly lutein, has been increasing for over three decades. Lutein is recognized for its antioxidant and photoprotective activity. Its ability to cross the blood-brain barrier allows it to act at the eye and brain level and has been linked to benefits for vision, cognitive function and other conditions. While marigold flower is positioned as the only crop from which lutein is extracted from and commercialized, microalgae are proposed as an alternative with several advantages over this terrestrial crop. The main barrier to scaling up lutein production from microalgae to the commercial level is the low productivity compared to the high costs. This review explores strategies to enhance lutein production in microalgae by emphasizing the overall productivity over lutein content alone. Evaluation of how culture parameters, such as light quality, nitrogen sufficiency, temperature and even stress factors, affect lutein content and biomass development in batch phototrophic cultures was performed. Overall, the total lutein production remains low under this metabolic regime due to the low biomass productivity of photosynthetic batch cultures. For this reason, we describe findings on microalgal cultures grown under different metabolic regimes and culture protocols (fed-batch, pulse-feed, semi-batch, semi-continuous, continuous). After a careful literature examination, two-step heterotrophic or mixotrophic cultivation strategies are suggested to surpass the lutein productivity achieved in single-step photosynthetic cultures. Furthermore, this review highlights the urgent need to develop technical feasibility studies at a pilot scale for these cultivation strategies, which will strengthen the necessary techno-economic analyses to drive their commercial production.
Collapse
Affiliation(s)
- Cristobal Camarena-Bernard
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France; Instituto de Estudios Superiores de Occidente (ITESO), 45604 Tlaquepaque, Jalisco, Mexico.
| | - Victor Pozzobon
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France
| |
Collapse
|
11
|
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol 2024; 98:1323-1367. [PMID: 38483584 PMCID: PMC11303474 DOI: 10.1007/s00204-024-03696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., β-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
12
|
Parekh R, Hammond BR, Chandradhara D. Lutein and Zeaxanthin Supplementation Improves Dynamic Visual and Cognitive Performance in Children: A Randomized, Double-Blind, Parallel, Placebo-Controlled Study. Adv Ther 2024; 41:1496-1511. [PMID: 38363462 PMCID: PMC10960892 DOI: 10.1007/s12325-024-02785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
INTRODUCTION Supplementation with dietary neuro-pigments lutein (L) and zeaxanthin (Z) has been shown to improve many aspects of visual and cognitive function in adults. In this study, we tested whether a similar intervention could improve such outcomes in preadolescent children. METHODS Sixty children (age range 5-12 years) were randomized in a 2:1 ratio in this double-blind, placebo-controlled clinical trial. Subjects were supplemented with gummies containing either a combination of 10 mg lutein and 2 mg zeaxanthin (LZ) or placebo for 180 days. Macular pigment optical density (MPOD) was the primary endpoint. The secondary endpoints included serum levels of L and Z, and brain-derived neurotrophic factor (BDNF), critical flicker fusion (CFF), eye strain and fatigue using visual analogue scales (VAS), Children's Sleep Habits Questionnaire-Abbreviated (CSHQ-A), and Creyos Health cognitive domains like attention, focus/concentration, episodic memory and learning, visuospatial working memory, and visuospatial processing speed. Safety was assessed throughout the study on the basis of physical examination, vital signs, clinical laboratory tests, and monitoring of adverse events. RESULTS The LZ group showed significant increases in MPOD at all visits post-supplementation, with significant increases as early as day 42 compared to placebo. The LZ group showed significant increases in serum lutein levels, reduced eye strain and fatigue, and improved cognitive performance (focus, episodic memory and learning, visuospatial working memory) at days 90 and 180 compared to placebo. Further, the LZ group showed significant increases in processing speed (CFF), attention, visuospatial processing, and serum Z and BDNF levels on day 180 compared to placebo. No safety concerns were observed. CONCLUSIONS Supplementing LZ resulted in increased MPOD levels, along with increased serum levels of L, Z, and BDNF. These changes were associated with improved visual and cognitive performances and reduction in eye strain and eye fatigue in the children receiving LZ gummies. The investigational product was safe and well tolerated. TRIAL REGISTRATION http://ctri.nic.in/ Identifier CTRI/2022/05/042364.
Collapse
Affiliation(s)
- Rajesh Parekh
- Sanjeevani Netralaya, Infantry Road (Bhagwan Mahaweer Road), Opp. The Hindu, Near Income Tax Office, Bengaluru, 560001, India
| | - Billy R Hammond
- Department of Psychology, UGA Psychology Department, University of Georgia, 125 Baldwin Street, Athens, GA, 30602, USA
| | - Divya Chandradhara
- Bioagile Therapeutics Pvt. Ltd., #2/5, Dahlia Building, 3rd Floor, 80 Feet Road, RMV 2nd Stage, Bengaluru, 560094, India.
| |
Collapse
|
13
|
Kadam I, Nebie C, Dalloul M, Hittelman J, Fordjour L, Hoepner L, Futterman ID, Minkoff H, Jiang X. Maternal Lutein Intake during Pregnancies with or without Gestational Diabetes Mellitus and Cognitive Development of Children at 2 Years of Age: A Prospective Observational Study. Nutrients 2024; 16:328. [PMID: 38276566 PMCID: PMC10819807 DOI: 10.3390/nu16020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Lutein and its isomer zeaxanthin serve as antioxidants and preserve cognitive function during aging. However, whether lutein/zeaxanthin (L + Z) exposure early in life improves cognitive development of children is rarely explored. It is also unknown whether gestational diabetes mellitus (GDM), characterized by heightened oxidative stress, affects lutein metabolism. This prospective longitudinal cohort study examined the differences in L + Z intake and metabolism, as well as the association between maternal L + Z intake and children's cognitive development in GDM versus non-GDM pregnancies. Seventy-six pregnant women (n = 40 with GDM) were recruited between 25 and 33 weeks of gestation and dietary intakes were recorded. At delivery, cord blood was collected, and 2 years later, the Bayley III developmental test was conducted on a subset of children (n = 38). The results suggest that GDM reduced cord blood lutein levels at birth; L + Z intake during pregnancy was associated with better cognitive (β = 0.003, p = 0.001) and language (β = 0.002, p = 0.038) scoring of children at 2 years regardless of GDM status. In conclusion, maternal L + Z intake was positively associated with children's developmental scores, regardless of GDM. More studies are needed to confirm such associations.
Collapse
Affiliation(s)
- Isma’il Kadam
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA;
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA;
| | - Chauntelle Nebie
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA;
| | - Mudar Dalloul
- Department of Obstetrics and Gynecology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.D.); (H.M.)
| | - Joan Hittelman
- Department of Psychology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Lawrence Fordjour
- Department of Pediatrics, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Lori Hoepner
- Department of Environmental and Occupational Health Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Itamar D. Futterman
- Departments of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Maimonides Medical Center, Brooklyn, NY 11219, USA;
| | - Howard Minkoff
- Department of Obstetrics and Gynecology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.D.); (H.M.)
- Departments of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Maimonides Medical Center, Brooklyn, NY 11219, USA;
| | - Xinyin Jiang
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA;
- Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA;
| |
Collapse
|
14
|
Zhang X, Yuan T, Chen X, Liu X, Hu J, Liu Z. Effects of DHA on cognitive dysfunction in aging and Alzheimer's disease: The mediating roles of ApoE. Prog Lipid Res 2024; 93:101256. [PMID: 37890592 DOI: 10.1016/j.plipres.2023.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
The prevalence of Alzheimer's disease (AD) continues to rise due to the increasing aging population. Among the various genetic factors associated with AD, apolipoprotein E (ApoE), a lipid transporter, stands out as the primary genetic risk factor. Specifically, individuals carrying the ApoE4 allele exhibit a significantly higher risk. However, emerging research indicates that dietary factors play a prominent role in modifying the risk of AD. Docosahexaenoic acid (DHA), a prominent ω-3 fatty acid, has garnered considerable attention for its potential to ameliorate cognitive function. The intricate interplay between DHA and the ApoE genotype within the brain, which may influence DHA's utilization and functionality, warrants further investigation. This review meticulously examines experimental and clinical studies exploring the effects of DHA on cognitive decline. Special emphasis is placed on elucidating the role of ApoE gene polymorphism and the underlying mechanisms are discussed. These studies suggest that early DHA supplementation may confer benefits to cognitively normal older adults carrying the ApoE4 gene. However, once AD develops, ApoE4 non-carriers may experience greater benefits compared to ApoE4 carriers, although the overall effectiveness of DHA supplementation at this stage is limited. Potential mechanisms underlying these differential effects may include accelerated DHA catabolism in ApoE4 carriers, impaired transport across the blood-brain barrier (BBB), and compromised lipidation and circulatory function in ApoE4 carriers. Thus, the supplementation of DHA may represent a potential intervention strategy aimed at compensating for these deficiencies in ApoE4 carriers prior to the onset of AD.
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; Dongguan Chuangwei Precision Nutrition and Health Innovation Center, Dongguan, Guangdong 523170, China; Shaanxi Precision Nutrition and Health Research Institute, Xi'an, Shaanxi 710300, China.
| |
Collapse
|
15
|
Tsuji K, Tsuchiya Y, Yokoi K, Yanagimoto K, Ueda H, Ochi E. Eicosapentaenoic Acid and Medium-Chain Triacylglycerol Structured Lipids Improve Endurance Performance. Nutrients 2023; 15:3692. [PMID: 37686724 PMCID: PMC10489969 DOI: 10.3390/nu15173692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE The effects of intake of STGs containing esterified eicosapentaenoic acid (EPA) and medium-chain triglycerides (MCTs) on cardiorespiratory endurance have not yet been reported. This study aimed to examine the efficacy of interesterified structured lipids EPA and MCTs on cardiorespiratory endurance. METHODS This 8-week randomized double-blind placebo-controlled parallel-group study involved 19 healthy men. The participants were randomly assigned to a group that received interesterified structured lipids EPA and MCTs (STG group, 9 participants) or a group receiving a PM of EPA and MCTs (PM group, 10 participants). The outcome measures were time to exhaustion (TTE) and time to reach the anaerobic threshold in the peak oxygen uptake (VO2peak) test, VO2peak, and anaerobic threshold. RESULTS The increase in TTE in the VO2peak test after the intervention period compared with before the intervention period was significantly greater in the STG group (53 ± 53 s) than in the PM group (-10 ± 63 s; p < 0.05). Similarly, the increase in time to reach the anaerobic threshold was significantly greater in the STG group (82 ± 55 s) than in the PM group (-26 ± 52 s; p < 0.001). CONCLUSION This study demonstrated that the consumption of interesterified structured lipids EPA and MCTs improved endurance in humans.
Collapse
Affiliation(s)
- Katsunori Tsuji
- Sports Research Center, Hosei University, Kawasaki 211-0065, Japan;
| | - Yosuke Tsuchiya
- Center for Liberal Arts, Laboratory of Health and Sports Sciences, Meiji Gakuin University, Yokohama 244-8539, Japan;
| | - Kaori Yokoi
- Food Function R&D Center, Nissui Corporation, Tokyo 105-8676, Japan; (K.Y.); (K.Y.)
| | - Kenichi Yanagimoto
- Food Function R&D Center, Nissui Corporation, Tokyo 105-8676, Japan; (K.Y.); (K.Y.)
| | - Hisashi Ueda
- Faculty of Health and Medical Science, Department of Medical Sports, Teikyo Heisei University, Ichihara 290-0193, Japan;
| | - Eisuke Ochi
- Sports Research Center, Hosei University, Kawasaki 211-0065, Japan;
- Faculty of Bioscience and Applied Chemistry, Hosei University, Tokyo 184-8584, Japan
- Graduate School of Sports and Health Studies, Hosei University, Tokyo 194-0298, Japan
| |
Collapse
|
16
|
Ford NA, Spagnuolo P, Kraft J, Bauer E. Nutritional Composition of Hass Avocado Pulp. Foods 2023; 12:2516. [PMID: 37444254 DOI: 10.3390/foods12132516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Avocados (Persea americana) are a unique fruit that can provide health benefits when included in a healthy diet. As health care moves towards precision health and targeted therapies or preventative medicine, it is critical to understand foods and their dietary components. The nutritional composition and plant physiology of the Hass avocado is strikingly different from other fruits. This paper reviews the nutrient and bioactive composition of the edible portion of the Hass avocado (pulp) reported in the literature and from commercial lab analyses of the current market supply of fresh Hass avocados. These results provide comprehensive data on what nutrients and bioactives are in avocado and the quantity of these nutrients. We discuss the reasons for nutrient composition variations and review some potential health benefits of bioactive compounds found in Hass avocados.
Collapse
Affiliation(s)
- Nikki A Ford
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA
| | - Paul Spagnuolo
- Department of Food Science, University of Guelph, 50 Stone Rd., Guelph, ON N1G2W1, Canada
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, The University of Vermont, 570 Main Street, Burlington, VT 05405, USA
| | - Ella Bauer
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA
| |
Collapse
|
17
|
Sueyasu T, Yasumoto K, Tokuda H, Kaneda Y, Obata H, Rogi T, Izumo T, Kondo S, Saito J, Tsukiura T, Nakai M. Effects of Long-Chain Polyunsaturated Fatty Acids in Combination with Lutein and Zeaxanthin on Episodic Memory in Healthy Older Adults. Nutrients 2023; 15:2825. [PMID: 37447152 DOI: 10.3390/nu15132825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Arachidonic acid (ARA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), which are long-chain polyunsaturated fatty acids (LCPUFAs), as well as lutein (L) and zeaxanthin (Z), can potentially improve brain function. However, the effect of a combination of these components (LCPUFAs + LZ) on memory function in healthy older individuals remains unclear. This study aimed to determine if LCPUFAs + LZ-supplemented food could improve memory function. Exploratory and confirmatory trials (Trials 1 and 2, respectively) were conducted in healthy older Japanese individuals with memory complaints. We conducted randomized, double-blind, placebo-controlled, parallel-group trials. Participants were randomly allocated to two groups: placebo or LCPUFAs + LZ. LCPUFAs + LZ participants were provided with supplements containing ARA, DHA, EPA, L, and Z for 24 weeks in Trial 1 and 12 weeks in Trial 2. Memory functions were evaluated using Cognitrax before and after each trial. Combined analyses were performed for subgroups of participants with cognitive decline in Trials 1 and 2. The results showed that supplementation with LCPUFAs + LZ did not significantly affect memory function in healthy, non-demented, older individuals with memory complaints whereas it improved memory function in healthy, non-demented, older individuals with cognitive decline.
Collapse
Affiliation(s)
- Toshiaki Sueyasu
- Institute for Science of Life, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Keisuke Yasumoto
- Institute for Science of Life, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hisanori Tokuda
- Institute for Science of Life, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Yoshihisa Kaneda
- Institute for Science of Life, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Hidenori Obata
- Institute for Science of Life, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Tomohiro Rogi
- Institute for Science of Life, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Takayuki Izumo
- Institute for Science of Life, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Sumio Kondo
- Fukushima Healthcare Center, Medical Corporation Kenshokai, 2-12-16, Tamagawa, Fukushima-ku, Osaka 553-0044, Japan
| | - Jiro Saito
- Medical Station Clinic, 3-12-8, Takaban, Meguro-ku, Tokyo 152-0004, Japan
| | - Takashi Tsukiura
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaaki Nakai
- Institute for Science of Life, Suntory Wellness Limited, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| |
Collapse
|
18
|
Manupa W, Wongthanyakram J, Jeencham R, Sutheerawattananonda M. Storage stability and antioxidant activities of lutein extracted from yellow silk cocoons ( Bombyx mori) in Thailand. Heliyon 2023; 9:e16805. [PMID: 37313157 PMCID: PMC10258427 DOI: 10.1016/j.heliyon.2023.e16805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
This study aimed to determine how different forms of lutein found in nature affected their thermal stability, degradation, and antioxidant activities. The findings show that commercial lutein (CL) degraded faster than silk luteins (SLs) at ≤ 4 °C. The two-stage first-order kinetics of thermal degradation showed that Ea for SLs was 4.6-9.5 times higher than CL. However, at ≥ 25 °C, both the CL and SLs degraded rapidly within one month. SLs had half-life at 4 °C from 10 to 104 wks. FTIR and HRMS analysis revealed that their oxidation products were similar (C18H26O2: 297 m/z). Based on IC50, antioxidant activities of SLs were superior to CL. The stability and antioxidant capacity of lutein may be influenced by its naturally occurring forms. The naturally occurring forms and unpurified state of lutein can affect its stability and antioxidant activity, which must be considered when storing lutein at different temperatures.
Collapse
|
19
|
Cerna J, Edwards CG, Martell S, Athari Anaraki NS, Walk ADM, Robbs CM, Adamson BC, Flemming IR, Labriola L, Motl RW, Khan NA. Neuroprotective influence of macular xanthophylls and retinal integrity on cognitive function among persons with multiple sclerosis. Int J Psychophysiol 2023; 188:24-32. [PMID: 36907558 DOI: 10.1016/j.ijpsycho.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND No studies to date have examined if macular xanthophyll accumulation and retinal integrity are independently associated with cognitive function in individuals with multiple sclerosis (MS). This study explored whether macular xanthophyll accumulation and structural morphometry in the retina were associated with behavioral performance and neuroelectric function during a computerized cognitive task among persons with MS and healthy controls (HCs). METHODS 42 HCs and 42 individuals with MS aged 18-64 years were enrolled. Macular pigment optical density (MPOD) was measured using heterochromatic flicker photometry. Optic disc retinal nerve fiber layer (odRNFL), macular retinal nerve fiber layer, and total macular volume were assessed via optical coherence tomography. Attentional inhibition was assessed using an Eriksen flanker task while underlying neuroelectric function was recorded using event-related potentials. RESULTS Persons with MS had a slower reaction time, lower accuracy, and delayed P3 peak latency time during both congruent and incongruent trials compared with HCs. Within the MS group, MPOD explained variance in incongruent P3 peak latency, and odRNFL explained variance in congruent reaction time and congruent P3 peak latency. CONCLUSIONS Persons with MS exhibited poorer attentional inhibition and slower processing speed, yet higher MPOD and odRNFL levels were independently associated with greater attentional inhibition and faster processing speed among persons with MS. Future interventions are necessary to determine if improvements in these metrics may promote cognitive function among persons with MS.
Collapse
Affiliation(s)
- Jonathan Cerna
- Neuroscience Program, University of Illinois Urbana-Champaign, United States of America
| | | | - Shelby Martell
- Neuroscience Program, University of Illinois Urbana-Champaign, United States of America
| | | | - Anne D M Walk
- Department of Psychology, Eastern Illinois University, United States of America
| | | | - Brynn C Adamson
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, United States of America; Department of Health Sciences, University of Colorado Colorado Springs, United States of America; Multiple Sclerosis Research Collaborative, University of Illinois, Urbana, IL, United States of America
| | - Isabel R Flemming
- Department of Health Sciences, Central Michigan University, United States of America
| | - Leanne Labriola
- Surgery, University of Illinois College of Medicine, United States of America
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, United States of America; Multiple Sclerosis Research Collaborative, University of Illinois, Urbana, IL, United States of America
| | - Naiman A Khan
- Neuroscience Program, University of Illinois Urbana-Champaign, United States of America; Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, United States of America; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, United States of America; Multiple Sclerosis Research Collaborative, University of Illinois, Urbana, IL, United States of America.
| |
Collapse
|
20
|
Andriambelo B, Stiffel M, Roke K, Plourde M. New perspectives on randomized controlled trials with omega-3 fatty acid supplements and cognition: A scoping review. Ageing Res Rev 2023; 85:101835. [PMID: 36603691 DOI: 10.1016/j.arr.2022.101835] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Long chain polyunsaturated omega-3 fatty acids (n-3 FA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to be important components in a healthy diet and contribute to healthy functioning of the heart and the brain, among other organs. Although there are epidemiological studies on the strong relationship between fish or n-3 FA consumption and lower risk of cognitive decline, results from randomized controlled trials (RCTs) are less consistent. Here, we performed a scoping review on RCTs with n-3 FA supplementation where cognition was evaluated. Seventy-eight RCTs published before April 2022 were included in this review. Among these RCTs, 43.6% reported a positive cognitive outcome after the consumption of n-3 FA compared to the placebo. However, there was a large diversity of populations studied (age ranges and health status), wide range of doses of EPA + DHA supplemented (79 mg/day - 5200 mg/day) and a multitude of tests evaluating cognition, mainly diagnostic tests, that were used to assess cognitive scores and overall cognitive status. RCTs were thereafter categorized into non-cognitively impaired middle-aged adults (n = 24), non-cognitively impaired older adults (n = 24), adults with subjective memory complaints (n = 14), adults with mild cognitive impairments (MCI, n = 9) and people with diagnosed dementia or other cognitive changes (n = 7). Among these categories, 66.7% of RCTs conducted with MCI adults reported a positive cognitive outcome when supplemented with n-3 FA vs. the placebo. Therefore, this scoping review provides rationale and questions to a) strengthen the design of future RCTs with n-3 FA for cognitive outcomes, and b) generate more informative data to support clinicians in their practice in assessing cognition before and after a nutritional intervention.
Collapse
Affiliation(s)
- B Andriambelo
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - M Stiffel
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - K Roke
- GOED- Global Organization for EPA and DHA Omega-3, Salt Lake City, UT, United States
| | - M Plourde
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada.
| |
Collapse
|
21
|
Shieh SF, Lu FJ, Gill DL, Yu CH, Tseng SP, Savardelavar M. Influence of mental energy on volleyball competition performance: a field test. PeerJ 2023; 11:e15109. [PMID: 36992946 PMCID: PMC10042163 DOI: 10.7717/peerj.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
Athletic mental energy is a newly emerging research topic in sport science. However, whether it can predict objective performance in competition remains unexplored. Thus, the purpose of this study was to examine the predictability of mental energy on volleyball competition performance. We recruited 81 male volleyball players (Mage = 21.11 years ± SD = 1.81) who participated in the last 16 remaining teams in a college volleyball tournament. We assessed participants' mental energy the night before the competition and collected their competition performance over the next 3 days. We used six indices of the Volleyball Information System (VIS) developed by the International Volleyball Federation (FIVB) to examine its associations with mental energy. All six factors of mental energy -motivation, tirelessness, calm, vigor, confidence, and concentration correlated with volleyball competition performance. Further, a hierarchical regression found mental energy predicted volleyball receivers' performance (R2 = .23). The findings advance our knowledge of mental energy and objective performance in competition. We suggest that future studies may examine the effects of mental energy on different sports with different performance indices.
Collapse
Affiliation(s)
- Shiow-Fang Shieh
- Graduate School of Leisure and Exercise, National Yunlin University of Science and Technology, Yunlin, Taiwan
| | - Frank J.H. Lu
- Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei, Taiwan
| | - Diane L. Gill
- Kinesiology, University of North Carolina at Greensboro, Greensboro, NC, United States of America
| | - Chih-Hsuan Yu
- Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei, Taiwan
| | - Shu-Ping Tseng
- Tainan University of Technology, Tainan University of Technology, Tainan, Taiwan
| | - Meisam Savardelavar
- Department of Sport Sciences, Zand Institute of Higher Education, Shiraz, Iran
| |
Collapse
|
22
|
Dorey CK, Gierhart D, Fitch KA, Crandell I, Craft NE. Low Xanthophylls, Retinol, Lycopene, and Tocopherols in Grey and White Matter of Brains with Alzheimer's Disease. J Alzheimers Dis 2023; 94:1-17. [PMID: 35988225 PMCID: PMC10357197 DOI: 10.3233/jad-220460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Oxidative stress contributes to pathogenesis and progression of Alzheimer's disease (AD). Higher levels of the dietary antioxidants- carotenoids and tocopherols- are associated with better cognitive functions and lower risk for AD, and lower levels of multiple carotenoids are found in serum and plasma of patients with AD. Although brains donated by individuals with mild cognitive impairment had significantly lower levels of lutein and beta-carotene, previous investigators found no significant difference in carotenoid levels of brains with AD and cognitively normal brains. OBJECTIVE This study tested the hypothesis that micronutrients are significantly lower in donor brains with AD than in healthy elderly brains. METHODS Samples of donor brains with confirmed AD or verified health were dissected into grey and white matter, extracted with organic solvents and analyzed by HPLC. RESULTS AD brains had significantly lower levels of lutein, zeaxanthin, anhydrolutein, retinol, lycopene, and alpha-tocopherol, and significantly increased levels of XMiAD, an unidentified xanthophyll metabolite. No meso-zeaxanthin was detected. The overlapping protective roles of xanthophylls, carotenes, α- and γ-tocopherol are discussed. CONCLUSION Brains with AD had substantially lower concentrations of some, but not all, xanthophylls, carotenes, and tocopherols, and several-fold higher concentrations of an unidentified xanthophyll metabolite increased in AD (XMiAD).
Collapse
Affiliation(s)
| | | | - Karlotta A. Fitch
- Alzheimer’s Disease Research Center, Massachusetts General Hospital Boston, MA, USA
| | - Ian Crandell
- Center for Biostatistics and Health Data Science, Virginia Tech, Roanoke, VA, USA
| | | |
Collapse
|
23
|
Nolan JM, Power R, Howard AN, Bergin P, Roche W, Prado-Cabrero A, Pope G, Cooke J, Power T, Mulcahy R. Supplementation With Carotenoids, Omega-3 Fatty Acids, and Vitamin E Has a Positive Effect on the Symptoms and Progression of Alzheimer’s Disease. J Alzheimers Dis 2022; 90:233-249. [DOI: 10.3233/jad-220556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Preliminary work by our center has reported behavior and functional benefits in patients with Alzheimer’s disease (AD) following targeted micronutritional supplementation. Objective: To build on the existing exploratory research and investigate the impact of these micronutrients on the natural progression of AD in a randomized controlled trial. Methods: Patients with mild-moderate AD consumed daily 1 g fish oil (of which 500 mg DHA, 150 mg EPA), 22 mg carotenoids (10 mg lutein, 10 mg meso-zeaxanthin, 2 mg zeaxanthin), and 15 mg vitamin E or placebo for 12 months in a double-blind, placebo-controlled, randomized clinical trial. Carotenoids, ω-3FAs, and vitamin E were quantified in blood. Carotenoids were also measured in skin. AD severity was measured using the mini-mental state examination and dementia severity rating scale tools. Behavior, mood, and memory were measured using an informant-based questionnaire. Results: Following 12 months of supplementation, the active group (n = 50) compared to the placebo group (n = 27), demonstrated statistically significant improvements in skin carotenoid measurements, blood carotenoids, ω-3FAs, and vitamin E concentrations (p < 0.05, for all). The active group also performed better in objective measures of AD severity (i.e., memory and mood), with a statistically significant difference reported in the clinical collateral for memory (p < 0.001). Conclusion: Exponential increases in the prevalence of AD and its relentless progressive nature is driving the need for interventions that help to ameliorate symptoms and improve quality of life in AD patients. Given the positive outcomes demonstrated in this trial, this combined micronutrient dietary supplement should be considered in the overall management of AD.
Collapse
Affiliation(s)
- John M. Nolan
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | - Rebecca Power
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | | | - Paula Bergin
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | - Warren Roche
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | - Alfonso Prado-Cabrero
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | - George Pope
- Age-Related Care Unit, Health Service Executive, University Hospital Waterford, Dunmore Road, Waterford, Ireland
| | - John Cooke
- Age-Related Care Unit, Health Service Executive, University Hospital Waterford, Dunmore Road, Waterford, Ireland
| | - Tommy Power
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
| | - Ríona Mulcahy
- Nutrition Research Centre Ireland, School of Health Sciences, South East Technological University, West Campus, Waterford, Ireland
- Age-Related Care Unit, Health Service Executive, University Hospital Waterford, Dunmore Road, Waterford, Ireland
- Royal College of Surgeons in Ireland, Saint Peter’s, Dublin, Ireland
| |
Collapse
|
24
|
Miranda-Dominguez O, Ramirez JSB, Mitchell AJ, Perrone A, Earl E, Carpenter S, Feczko E, Graham A, Jeon S, Cohen NJ, Renner L, Neuringer M, Kuchan MJ, Erdman JW, Fair D. Carotenoids improve the development of cerebral cortical networks in formula-fed infant macaques. Sci Rep 2022; 12:15220. [PMID: 36076053 PMCID: PMC9458723 DOI: 10.1038/s41598-022-19279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Nutrition during the first years of life has a significant impact on brain development. This study characterized differences in brain maturation from birth to 6 months of life in infant macaques fed formulas differing in content of lutein, β-carotene, and other carotenoids using Magnetic Resonance Imaging to measure functional connectivity. We observed differences in functional connectivity based on the interaction of diet, age and brain networks. Post hoc analysis revealed significant diet-specific differences between insular-opercular and somatomotor networks at 2 months of age, dorsal attention and somatomotor at 4 months of age, and within somatomotor and between somatomotor-visual and auditory-dorsal attention networks at 6 months of age. Overall, we found a larger divergence in connectivity from the breastfeeding group in infant macaques fed formula containing no supplemental carotenoids in comparison to those fed formula supplemented with carotenoids. These findings suggest that carotenoid formula supplementation influences functional brain development.
Collapse
Affiliation(s)
- Oscar Miranda-Dominguez
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55414, USA.
| | - Julian S B Ramirez
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - A J Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Anders Perrone
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Eric Earl
- Data Science & Sharing Team, National Institute of Mental Health, Bethesda, MD, 20892, USA
| | - Sam Carpenter
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Alice Graham
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sookyoung Jeon
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Food Science & Nutrition and the Korean Institute of Nutrition, Hallym University, Chuncheon, Gangwon-Do, Republic of Korea
| | - Neal J Cohen
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Laurie Renner
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Martha Neuringer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | | | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Damien Fair
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55414, USA
| |
Collapse
|
25
|
Mahmassani HA, Switkowski KM, Johnson EJ, Scott TM, Rifas-Shiman SL, Oken E, Jacques PF. Early Childhood Lutein and Zeaxanthin Intake Is Positively Associated with Early Childhood Receptive Vocabulary and Mid-Childhood Executive Function But No Other Cognitive or Behavioral Outcomes in Project Viva. J Nutr 2022; 152:2555-2564. [PMID: 36774121 PMCID: PMC9644167 DOI: 10.1093/jn/nxac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Lutein and zeaxanthin are carotenoids associated with better cognition in older adults. Recent evidence suggests that their dietary intake may also have cognitive implications in childhood. OBJECTIVE The aim was to examine associations of early childhood lutein and zeaxanthin (L/Z) intake with cognition in early and mid-childhood. METHODS Among 1378 children in Project Viva, a prospective cohort, mothers reported their child's dietary intake in early childhood (median: 3.2 y) using a food-frequency questionnaire. Child cognition and behavior were assessed at the same time point using the Peabody Picture Vocabulary Test (PPVT-III) and the Wide Range Assessment of Visual Motor Abilities (WRAVMA) and at mid-childhood (median: 7.7 y) using the Kaufman Brief Intelligence Test, the WRAVMA drawing subtest, the Wide Range Assessment of Memory and Learning, the Behavior Rating Inventory of Executive Function (BRIEF), and the Strengths and Difficulties Questionnaire. RESULTS Children consumed a daily mean (SD) of 1.0 (0.4) mg L/Z in early childhood. Children in the third-quartile category of L/Z intake had a mean PPVT-III score 2.40 (95% CI: 0.27, 4.53) points higher than children in the lowest quartile category in early childhood, suggesting better receptive vocabulary. Children in the highest quartile category of L/Z intake had a parent-reported mean BRIEF Global Executive Composite score 1.65 (95% CI: -3.27, -0.03) points lower than children in the lowest quartile category in mid-childhood, indicating better executive function. We did not observe associations between L/Z intake and any of the other cognitive or behavioral outcomes assessed. CONCLUSIONS The overall findings do not provide strong evidence of an association between child L/Z intake and cognition and behavior. However, the positive associations found between early childhood L/Z intake and early childhood receptive vocabulary and mid-childhood executive function, in addition to previous evidence of neurodevelopmental benefit of L/Z intake, suggest that this relation deserves further investigation.
Collapse
Affiliation(s)
- Hiya A Mahmassani
- Dorothy J and Gerald R Friedman School of Nutrition and Science Policy at Tufts University, Boston, MA, USA,Jean Mayer–USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Karen M Switkowski
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Elizabeth J Johnson
- Dorothy J and Gerald R Friedman School of Nutrition and Science Policy at Tufts University, Boston, MA, USA
| | - Tammy M Scott
- Dorothy J and Gerald R Friedman School of Nutrition and Science Policy at Tufts University, Boston, MA, USA
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Paul F Jacques
- Dorothy J and Gerald R Friedman School of Nutrition and Science Policy at Tufts University, Boston, MA, USA; Jean Mayer-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
26
|
Marino A, Battaglini M, Moles N, Ciofani G. Natural Antioxidant Compounds as Potential Pharmaceutical Tools against Neurodegenerative Diseases. ACS OMEGA 2022; 7:25974-25990. [PMID: 35936442 PMCID: PMC9352343 DOI: 10.1021/acsomega.2c03291] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 06/01/2023]
Abstract
Natural antioxidants are a very large diversified family of molecules classified by activity (enzymatic or nonenzymatic), chemical-physical properties (e.g., hydrophilic or lipophilic), and chemical structure (e.g., vitamins, polyphenols, etc.). Research on natural antioxidants in various fields, such as pharmaceutics, nutraceutics, and cosmetics, is among the biggest challenges for industry and science. From a biomedical point of view, the scavenging activity of reactive oxygen species (ROS) makes them a potential tool for the treatment of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, dementia, and amyotrophic lateral sclerosis (ALS). In addition to the purified phytochemical compounds, a variety of natural extracts characterized by a complex mixture of antioxidants and anti-inflammatory molecules have been successfully exploited to rescue preclinical models of these diseases. Extracts derived from Ginkgo biloba, grape, oregano, curcumin, tea, and ginseng show multitherapeutic effects by synergically acting on different biochemical pathways. Furthermore, the reduced toxicity associated with many of these compounds limits the occurrence of side effects. The support of nanotechnology for improving brain delivery, controlling release, and preventing rapid degradation and excretion of these compounds is of fundamental importance. This review reports on the most promising results obtained on in vitro systems, in vivo models, and in clinical trials, by exploiting natural-derived antioxidant compounds and extracts, in their free form or encapsulated in nanocarriers.
Collapse
Affiliation(s)
- Attilio Marino
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Nadia Moles
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Politecnico
di Torino, Department of Mechanical
and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianni Ciofani
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
27
|
da Cruz Alves NM, Pfrimer K, Santos PC, de Freitas EC, Neves T, Pessini RA, Junqueira-Franco MVM, Nogueira-Barbosa MH, Greig CA, Ferriolli E. Randomised Controlled Trial of Fish Oil Supplementation on Responsiveness to Resistance Exercise Training in Sarcopenic Older Women. Nutrients 2022; 14:nu14142844. [PMID: 35889801 PMCID: PMC9317261 DOI: 10.3390/nu14142844] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
This study aims to investigate the effects of fish oil supplementation on the muscle adaptive response to resistance exercise training, physical performance and serum levels of inflammatory cytokines in sarcopenic older women. A randomised, double-blind, placebo-controlled trial is performed with thirty-four sarcopenic women (2010 European Consensus of Sarcopenia), aged ≥ 65 years. The participants are allocated into the following two groups: Exercise and Fish Oil (EFO) and Exercise and Placebo (EP). Both groups undertook a resistance exercise programme over 14 weeks. All participants are instructed to ingest 4 g/day of food supplements; the EP group received sunflower oil capsules, and the EFO group, fish oil capsules. The cross-sectional area (CSA) of the quadriceps muscle is calculated using magnetic resonance imaging (MRI). The strength of the lower limbs is measured using isokinetic dynamometry. Both groups show improvements in CSA and strength after the intervention. Changes in EFO are significantly greater compared with EP for muscle strength (peak torque, 19.46 Nm and 5.74 Nm, respectively, p < 0.001). CSA increased after the intervention in both groups (EFO; 6.11% and EP; 2.91%), although there is no significant difference between the groups (p = 0.23). There are no significant intra-group, inter-group or time differences in any of the cytokines measured. The use of fish oil supplementation potentiates the neuromuscular response to the anabolic stimulus from training, increasing muscle strength and physical performance in sarcopenic older women.
Collapse
Affiliation(s)
- Natália Maira da Cruz Alves
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14049-900, SP, Brazil; (K.P.); (T.N.); (M.V.M.J.-F.); (E.F.)
- Correspondence:
| | - Karina Pfrimer
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14049-900, SP, Brazil; (K.P.); (T.N.); (M.V.M.J.-F.); (E.F.)
- Department of Nutrition, University of Ribeirão Preto, Avenue Costábile Romano 2201, Ribeirão Preto 14049-900, SP, Brazil
| | - Priscila Carvalho Santos
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara State, University of Sao Paulo, Araraquara 14801-902, SP, Brazil; (P.C.S.); (E.C.d.F.)
| | - Ellen Cristini de Freitas
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara State, University of Sao Paulo, Araraquara 14801-902, SP, Brazil; (P.C.S.); (E.C.d.F.)
- School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
- Department of Health Sciences, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Thiago Neves
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14049-900, SP, Brazil; (K.P.); (T.N.); (M.V.M.J.-F.); (E.F.)
| | - Rodrigo Antônio Pessini
- Department of Medical Images, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14049-900, SP, Brazil; (R.A.P.); (M.H.N.-B.)
| | - Márcia Varella Morandi Junqueira-Franco
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14049-900, SP, Brazil; (K.P.); (T.N.); (M.V.M.J.-F.); (E.F.)
| | - Marcello H. Nogueira-Barbosa
- Department of Medical Images, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14049-900, SP, Brazil; (R.A.P.); (M.H.N.-B.)
| | - Carolyn Anne Greig
- School of Sport, Exercise and Rehabilitation Sciences and MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham B15 2TT, UK;
| | - Eduardo Ferriolli
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto 14049-900, SP, Brazil; (K.P.); (T.N.); (M.V.M.J.-F.); (E.F.)
| |
Collapse
|
28
|
Maswanna T, Maneeruttanarungroj C. Identification of major carotenoids from green alga Tetraspora sp. CU2551: partial purification and characterization of lutein, canthaxanthin, neochrome, and β-carotene. World J Microbiol Biotechnol 2022; 38:129. [PMID: 35689122 DOI: 10.1007/s11274-022-03320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/22/2022] [Indexed: 10/18/2022]
Abstract
The green algae Tetraspora sp. CU2551 was previously identified as a strain with high potential for biohydrogen production; however, its algal biomass characteristics changed from green to reddish orange within 43 days of biohydrogen production. The crude pigments were extracted, partially purified, and characterized by chemical determination. The present study focused on elucidating the carotenoid composition of the selected green alga Tetraspora sp. CU2551. The pigment extract was partially purified and fractionated using thin layer chromatography, and yielded two major and two minor carotenoid bands. The fractions were confirmed by high-performance liquid chromatography with a diode array detector (HPLC-DAD) before being identified and confirmed using Liquid Chromatograph-Quadrupole Time of Flight-Mass Spectrometry (LC-QTOF-MS). The spectral data of these fractions revealed four sub-fractions of interest that were lutein, canthaxanthin, neochrome, and β-carotene, which had percentages in the crude extracts of 30.57%, 25.47%, 7.89%, and 0.71%, respectively. Lutein and canthaxanthin were found to be the major carotenoid pigments present. Our findings in this present study are the first reporting of Tetraspora sp. CU2551 as a potential alternate source for carotenoid pigment production.
Collapse
Affiliation(s)
- Thanaporn Maswanna
- Scientific Instruments Center, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Cherdsak Maneeruttanarungroj
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand. .,Bioenergy Research Unit and Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
29
|
Beydoun MA, Beydoun HA, Fanelli-Kuczmarski MT, Weiss J, Hossain S, Canas JA, Evans MK, Zonderman AB. Association of Serum Antioxidant Vitamins and Carotenoids With Incident Alzheimer Disease and All-Cause Dementia Among US Adults. Neurology 2022; 98:e2150-e2162. [PMID: 35508396 PMCID: PMC9169941 DOI: 10.1212/wnl.0000000000200289] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Serum antioxidant vitamins and carotenoids may protect against neurodegeneration with age. We examined associations of these nutritional biomarkers with incident all-cause and Alzheimer disease (AD) dementia among US middle-aged and older adults. METHODS Using data from the third National Health and Nutrition Examination Surveys (1988-1994), linked with Centers for Medicare & Medicaid follow-up data, we tested associations and interactions of serum vitamins A, C, and E and total and individual serum carotenoids and interactions with incident AD and all-cause dementia. Cox proportional hazards regression models were conducted. RESULTS After ≤26 years follow-up (mean 16-17 years, 7,283 participants aged 45-90 years at baseline), serum lutein+zeaxanthin was associated with reduced risk of all-cause dementia (65+ age group), even in the lifestyle-adjusted model (per SD: hazard ratio [HR] 0.93, 95% CI 0.87-0.99; p = 0.037), but attenuated in comparison with a socioeconomic status (SES)-adjusted model (HR 0.92, 95% CI 0.86-0.93; p = 0.013). An inverse relationship was detected between serum β-cryptoxanthin (per SD increase) and all-cause dementia (45+ and 65+) for age- and sex-adjusted models (HR 0.86, 95% CI 0.80-0.93; p < 0.001 for 45+; HR 0.86, 95% CI 0.80-0.93; p = 0.001 for 65+), a relationship remaining strong in SES-adjusted models (HR 0.89, 95% CI 0.82-0.96; p = 0.006 for 45+; HR 0.88, 95% CI 0.81-0.96; p = 0.007 for 65+), but attenuated in subsequent models. Antagonistic interactions indicate putative protective effects of 1 carotenoid may be observed at lower levels other carotenoids or antioxidant vitamin. DISCUSSION Incident all-cause dementia was inversely associated with serum lutein+zeaxanthin and β-cryptoxanthin levels. Further studies with time-dependent exposures and randomized trials are needed to test neuroprotective effects of supplementing the diet with select carotenoids. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that incident all-cause dementia was inversely associated with serum lutein+zeaxanthin and β-cryptoxanthin levels.
Collapse
Affiliation(s)
- May A Beydoun
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Hind A Beydoun
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Marie T Fanelli-Kuczmarski
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Jordan Weiss
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Sharmin Hossain
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Jose Atilio Canas
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Michele Kim Evans
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| | - Alan B Zonderman
- From the Laboratory of Epidemiology and Population Sciences (M.A.B., S.H., M.K.E., A.B.Z.), National Institute on Aging, Intramural Research Program, NIA/NIH/IRP, Baltimore, MD; Department of Research Programs (H.A.B.), Fort Belvoir Community Hospital, VA; Department of Behavioral Health and Nutrition (M.T.F.-K.), University of Delaware, Newark; Department of Demography (J.W.), University of California, Berkeley; and Department of Pediatrics (J.A.C.), Johns Hopkins Medical Institutions, St. Petersburgh, FL
| |
Collapse
|
30
|
Monjotin N, Amiot MJ, Fleurentin J, Morel JM, Raynal S. Clinical Evidence of the Benefits of Phytonutrients in Human Healthcare. Nutrients 2022; 14:nu14091712. [PMID: 35565680 PMCID: PMC9102588 DOI: 10.3390/nu14091712] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Phytonutrients comprise many different chemicals, including carotenoids, indoles, glucosinolates, organosulfur compounds, phytosterols, polyphenols, and saponins. This review focuses on the human healthcare benefits of seven phytochemical families and highlights the significant potential contribution of phytonutrients in the prevention and management of pathologies and symptoms in the field of family health. The structure and function of these phytochemical families and their dietary sources are presented, along with an overview of their potential activities across different health and therapeutic targets. This evaluation has enabled complementary effects of the different families of phytonutrients in the same area of health to be recognized.
Collapse
Affiliation(s)
- Nicolas Monjotin
- Institut de Recherche Pierre Fabre, Pierre Fabre Medical Care, 81100 Castres, France;
| | - Marie Josèphe Amiot
- Montpellier Interdisciplinary Center on Sustainable Agri-Food Systems, INRAE, Agro Institute, Université de Montpellier, CIHEAM-IAMM, CIRAD, IRD, 34000 Montpellier, France;
| | | | | | - Sylvie Raynal
- Direction Médicale Patients et Consommateurs, Pierre Fabre Medical Care, 81100 Castres, France
- Correspondence:
| |
Collapse
|
31
|
Wang H, Wang G, Billings R, Li D, Haase SR, Wheeler PF, Vance DE, Li W. Can Diet Supplements of Macular Pigment of Lutein, Zeaxanthin, and Meso-zeaxanthin Affect Cognition? J Alzheimers Dis 2022; 87:1079-1087. [DOI: 10.3233/jad-215736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Lutein (L), zeaxanthin (Z), and meso-zeaxanthin (MZ) are collectively called macular pigment. MZ can be converted from L in the macula. In the recent decade, many studies have been performed to investigate the effects for taking carotenoids, especially L and Z or L, Z, and MZ, as diet supplements on human health. Objective: We examined if diet supplements of L + Z or L + Z + MZ have effects on cognitive function in adults. Methods: A systemic literature search was performed in March 2021 with the following keywords: lutein, zeaxanthin, meso-zeaxanthin, cognition, cognitive, and macular pigment. The searched databases included Medline EBSCOhost, Scopus, Elsevier, Cochrane Library, ProQuest, and ClinicalTrials.gov. Findings from eight clinical trials were presented as the strongest evidence on the studied topic. Results: Most studies have found that macular pigments (L + Z) in blood or macula are positively correlated with cognitive performance. As an index of the amount of macular pigments in the brain, macular pigment optical density is related to cognitive performance in adults. In addition, there is an inverse relationship between a higher amount of macular pigment in the blood and lower risk of mild cognitive impairments or Alzheimer’s disease. Based on the findings from the clinical trials, diet supplements of L + Z or L + Z + MZ are associated with improved cognition in adults. Conclusion: The diet supplements of L + Z or L + Z+MZ are associated with better cognitive functioning, which may be via their beneficial effects on the vision.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Physiology, Henan Chinese Medicine University, Zhengzhou, China
| | - Ge Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rebecca Billings
- UAB Libraries, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Li
- University of California at Los Angeles, Los Angeles, CA, USA
| | - Shakaye R. Haase
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Pariya F. Wheeler
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David E. Vance
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Li
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
32
|
Beydoun MA, Weiss J, Beydoun HA, Fanelli‐Kuczmarski MT, Hossain S, El‐Hajj ZW, Evans MK, Zonderman AB. Pathways explaining racial/ethnic disparities in incident all-cause and Alzheimer's disease dementia among older US men and women. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12275. [PMID: 35317081 PMCID: PMC8924949 DOI: 10.1002/trc2.12275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 12/23/2021] [Accepted: 01/23/2022] [Indexed: 11/14/2022]
Abstract
Introduction Racial disparities in Alzheimer's disease (AD) and all-cause dementia (DEMENTIA) incidence may exist differentially among men and women, with unknown mechanisms. Methods A retrospective cohort study examining all-cause and AD dementia incidence was conducted linking Third National Health and Nutrition Examination Survey (NHANES III) to Centers for Medicare & Medicaid Services Medicare data over ≤26 years of follow-up (1988 to 2014). Cox regression and generalized structural equation models (GSEMs) were constructed among men and women ≥60 years of age at baseline (N = 4592). Outcomes included onset ages of all-cause and AD dementia, whereas the main exposures were race/ethnicity contrasts (RACE_ETHN). Potential mediators) included socio-economic status (SES), lifestyle factors (dietary quality [DIET] nutritional biomarkers [NUTR], physical activity [PA], social support [SS], alcohol [ALCOHOL], poor health [or HEALTH], poor cognitive performance [or COGN]. In addition to RACE_ETHN, the following were exogenous covariates in the GSEM and potential confounders in Cox models: age, sex, urban-rural, household size, and marital status. Results Non-Hispanic Black (NHB) women had a higher risk of DEMENTIA versus non-Hispanic White (NHW) women in GSEM, consistent with Cox models (age-adjusted model: hazard ratio [HR] = 1.34, 95% confidence interval [CI]: 1.10 to 1.61). The total effect of this RACE_ETHN contrast in women was explained by four main pathways: (1) RACE_ETHN→ poor cognitive performance (COGN, +) → DEMENTIA (+); (2) RACE_ETHN → SES (-) → COGN (-) → DEMENTIA (+); (3) RACE_ETHN → SES (-) → physical activity (PA, +) → COGN (-) → DEMENTIA (+); and (4) RACE_ETHN → SES (-) → DIET (+) → COGN (-) → DEMENTIA (+). A reduced AD risk in Mexican American (MA) women versus NHW women upon adjustment for SES and downstream factors (HR = 0.53, 95% CI: 0.35 to 0.80). For the non-White versus NHW contrast in incident DEMENTIA, pathways involved lower SES, directly increasing cognitive deficits (or indirectly through lifestyle factors), which then directly increases DEMENTIA . Discussion Socioeconomic and lifestyle factors explaining disparities between NHB and NHW in dementia onset among women are important to consider for future observational and intervention studies.
Collapse
Affiliation(s)
- May A. Beydoun
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Jordan Weiss
- Department of DemographyUniversity of California‐BerkeleyBerkeleyCaliforniaUSA
| | - Hind A. Beydoun
- Department of Research ProgramsFort Belvoir Community HospitalFort BelvoirVirginiaUSA
| | - Marie T. Fanelli‐Kuczmarski
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Sharmin Hossain
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | | | - Michele K. Evans
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population SciencesNational Institute on Aging, NIA/NIH/IRPBaltimoreMarylandUSA
| |
Collapse
|
33
|
Maltais M, Lorrain D, Léveillé P, Viens I, Vachon A, Houeto A, Presse N, Plourde M. Long-chain Omega-3 fatty acids supplementation and cognitive performance throughout adulthood: A 6-month randomized controlled trial. Prostaglandins Leukot Essent Fatty Acids 2022; 178:102415. [PMID: 35338847 DOI: 10.1016/j.plefa.2022.102415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate whether omega-3 polyunsaturated fatty acids (n-3 PUFA) supplementation improve cognitive performance and if apolipoprotein E (APOE) genotype or age were effect modifiers. METHODS Healthy adults of 20 to 80 years old (n = 193) were completed a 6-month double-blind randomized controlled trial with two groups: 2.5 g/day of n-3 PUFA or a placebo. Primary outcomes were visuospatial ability and working memory and secondary outcomes were episodic memory and executive function, measured at baseline and 6 months. RESULTS Cognitive performances did not significantly differ between groups on primary or secondary outcomes after 6 months of treatment. APOE carriers and age were not effect modifiers for any outcomes. Those with low episodic memory scores and taking the n-3 PUFA supplement, significantly improved their scores (p = 0.043). CONCLUSIONS A 6-month n-3 PUFA supplementation did not improve cognitive performance in cognitively healthy adults and APOE status or age were not effect modifiers.
Collapse
Affiliation(s)
- Mathieu Maltais
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Dominique Lorrain
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Département de Psychologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pauline Léveillé
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, Québec, QC, Canada
| | - Isabelle Viens
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Annick Vachon
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada
| | - Anita Houeto
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, Québec, QC, Canada
| | - Nancy Presse
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud de l'Ile-de-Montréal, Canada
| | - Mélanie Plourde
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, Québec, QC, Canada.
| |
Collapse
|
34
|
Collins AE, Saleh TM, Kalisch BE. Naturally Occurring Antioxidant Therapy in Alzheimer's Disease. Antioxidants (Basel) 2022; 11:213. [PMID: 35204096 PMCID: PMC8868221 DOI: 10.3390/antiox11020213] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
It is estimated that the prevalence rate of Alzheimer's disease (AD) will double by the year 2040. Although currently available treatments help with symptom management, they do not prevent, delay the progression of, or cure the disease. Interestingly, a shared characteristic of AD and other neurodegenerative diseases and disorders is oxidative stress. Despite profound evidence supporting the role of oxidative stress in the pathogenesis and progression of AD, none of the currently available treatment options address oxidative stress. Recently, attention has been placed on the use of antioxidants to mitigate the effects of oxidative stress in the central nervous system. In preclinical studies utilizing cellular and animal models, natural antioxidants showed therapeutic promise when administered alone or in combination with other compounds. More recently, the concept of combination antioxidant therapy has been explored as a novel approach to preventing and treating neurodegenerative conditions that present with oxidative stress as a contributing factor. In this review, the relationship between oxidative stress and AD pathology and the neuroprotective role of natural antioxidants from natural sources are discussed. Additionally, the therapeutic potential of natural antioxidants as preventatives and/or treatment for AD is examined, with special attention paid to natural antioxidant combinations and conjugates that are currently being investigated in human clinical trials.
Collapse
Affiliation(s)
| | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.E.C.); (T.M.S.)
| |
Collapse
|
35
|
Dreher ML, Cheng FW, Ford NA. A Comprehensive Review of Hass Avocado Clinical Trials, Observational Studies, and Biological Mechanisms. Nutrients 2021; 13:nu13124376. [PMID: 34959933 PMCID: PMC8705026 DOI: 10.3390/nu13124376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
This first comprehensive review of fresh Hass avocados includes 19 clinical trials, five observational studies, and biological mechanisms. We identified four primary avocado health effects: (1) reducing cardiovascular disease risk in healthy overweight or obese adults with dyslipidemia by lowering non-HDL-C profiles, triglycerides, LDL oxidation, small atherogenic LDL particles and promoting postprandial vascular endothelial health for better peripheral blood flow; (2) lowering the risk of being overweight or obese, supporting weight loss, and reducing visceral fat tissue in overweight or obese women; (3) improving cognitive function in older normal-weight adults and in young to middle age overweight or obese adults especially in frontal cortex executive function; and (4) stimulating improved colonic microbiota health in overweight or obese adults by promoting healthier microflora and fecal metabolites. We also identified a unique combination of four Hass avocado nutritional features that appear to be primarily responsible for these health effects: (1) a 6 to 1 unsaturated (rich in oleic acid) to saturated fat ratio similar to olive oil; (2) a source of multifunctional prebiotic and viscous fiber; (3) a relatively low energy density of 1.6 kcal/g (79% of edible Hass avocado weight consists of water and fiber with a creamy, smooth texture); and (4) its oleic acid and water emulsion increases carotenoid absorption from low-fat fruits and vegetables (e.g., salsa or salad) when consumed with avocados. They are also a good source of micronutrients and polyphenols, and are very low in sodium and available carbohydrates supporting secondary health and wellness benefits. Hass avocado health effects are best demonstrated when consumed in a healthy dietary plan such as the Mediterranean diet. More extensive and longer clinical trials are needed to further enhance our understanding of the Hass avocado’s health effects.
Collapse
Affiliation(s)
- Mark L. Dreher
- Nutrition Science Solutions, LLC, 900 S Rainbow Ranch Rd., Wimberley, TX 78676, USA;
| | - Feon W. Cheng
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA;
| | - Nikki A. Ford
- Avocado Nutrition Center, 25212 Marguerite Pkwy Ste. 250, Mission Viejo, CA 92692, USA;
- Correspondence: ; Tel.: +1-949-341-3250
| |
Collapse
|
36
|
Power R, Nolan JM, Prado-Cabrero A, Roche W, Coen R, Power T, Mulcahy R. Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial. Clin Nutr 2021; 41:405-414. [PMID: 34999335 DOI: 10.1016/j.clnu.2021.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/22/2021] [Accepted: 12/01/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND & AIMS Accumulating evidence suggests that omega-3 fatty acids (ω-3FAs), carotenoids and vitamin E can improve cognitive performance. However, their collective impact on cognition has not yet been investigated in healthy individuals. This study investigated the combined effect of ω-3FA, carotenoid and vitamin E supplementation on the cognitive performance of older adults. METHODS Cognitively healthy individuals aged ≥65 years consumed daily 1 g fish oil (of which 430 mg docosahexaenoic acid, 90 mg eicosapentaenoic acid), 22 mg carotenoids (10 mg lutein, 10 mg meso-zeaxanthin, 2 mg zeaxanthin) and 15 mg vitamin E or placebo for 24 months in a double-blind, placebo-controlled, randomised clinical trial. RESULTS Following 24-month supplementation, individuals in the active group (n = 30; aged 69.03 ± 4.41 years; 56.7% female) recorded significantly fewer errors in working memory tasks than individuals receiving placebo (n = 30; aged 69.77 ± 3.74 years; 70% female) (point estimate effect sizes ranged 0.090-0.105). Interestingly, as the cognitive load of the working memory tasks increased, the active group outperformed the placebo group. Statistically significant improvements in tissue carotenoid concentrations, serum xanthophyll carotenoid concentrations and plasma ω-3FA concentrations were also observed in the active group versus placebo (point estimate effect sizes ranged 0.078-0.589). Moreover, the magnitude of change of carotenoid concentrations in tissue, and ω-3FA and carotenoid concentrations in blood were related to the magnitude of change in working memory performance. CONCLUSION These results support a biologically plausible rationale whereby these nutrients work synergistically, and in a dose-dependent manner, to improve working memory in cognitively healthy older adults. Increasing nutritional intake of carotenoids and ω-3FAs may prove beneficial in reducing cognitive decline and dementia risk in later life. STUDY ID NUMBER ISRCTN10431469; https://doi.org/10.1186/ISRCTN10431469.
Collapse
Affiliation(s)
- Rebecca Power
- Nutrition Research Centre Ireland, School of Health Sciences, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, X91 K236, Ireland.
| | - John M Nolan
- Nutrition Research Centre Ireland, School of Health Sciences, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, X91 K236, Ireland.
| | - Alfonso Prado-Cabrero
- Nutrition Research Centre Ireland, School of Health Sciences, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, X91 K236, Ireland.
| | - Warren Roche
- Nutrition Research Centre Ireland, School of Health Sciences, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, X91 K236, Ireland.
| | - Robert Coen
- Mercer's Institute for Successful Ageing, St. James's Hospital, 31 St. James's Walk, Rialto, Dublin, E191, Ireland.
| | - Tommy Power
- Nutrition Research Centre Ireland, School of Health Sciences, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, X91 K236, Ireland.
| | - Ríona Mulcahy
- Age-Related Care Unit, Health Service Executive, University Hospital Waterford, Dunmore Road, Waterford, X91 ER8E, Ireland; Royal College of Surgeons Ireland, 123 Stephen's Green, Saint Peter's, Dublin, D02 YN7, Ireland.
| |
Collapse
|
37
|
Mullan B, Olivier C, Thøgersen‐Ntoumani C. Mind the gap: Habit and self-determined motivation predict health behaviours in middle-aged and older adults. Br J Health Psychol 2021; 26:1095-1113. [PMID: 33938096 PMCID: PMC8519144 DOI: 10.1111/bjhp.12522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/15/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Physical activity and fruit and vegetable consumption are two key health behaviours associated with the health and well-being of middle-aged and older adults. The present research investigated how habit and self-determined motivation interact with intention to prospectively predict physical activity and fruit and vegetable consumption in middle-aged and older adults. DESIGN A prospective correlational design (two data collection points) was used. METHODS A convenience sample of 195 adults completed online questionnaires measuring intention, habit, and self-determined motivation. One week later, 177 participants (67.2% female), aged 52-87 years (M = 61.50, SD = 5.90), completed self-report measures of physical activity and fruit and vegetable consumption over the previous week. RESULTS Separate hierarchical multiple regression analyses were conducted. For physical activity, the model explained 46% of the variance in behaviour, F(8, 168) = 17.88, p < .001 and a large effect size (ƒ2 = .85). Two-way interactions contributed an additional 3.70% of unique variance in physical activity, F(3, 165) = 4.07, p = .008, ƒ2 = .04. For fruit and vegetable consumption, the model explained 19.20% of the variance in behaviour, F(5, 171) = 8.13, p < .001 and a medium effect size (ƒ2 = .24). Two-way interactions did not significantly improve the model, F(3, 168) = 1.68, p = .174. CONCLUSIONS Habit and self-determined motivation were both important in narrowing the intention-behaviour gap for two key health behaviours, and combining these processes may better inform strategies to support people's intentions to improve these health behaviours.
Collapse
Affiliation(s)
- Barbara Mullan
- Health Psychology and Behavioural Medicine Research GroupSchool of PsychologyCurtin UniversityPerthWestern AustraliaAustralia
| | - Claudia Olivier
- Health Psychology and Behavioural Medicine Research GroupSchool of PsychologyCurtin UniversityPerthWestern AustraliaAustralia
- Physical Activity and Well‐Being Research GroupSchool of PsychologyCurtin UniversityWestern Australia
| | - Cecilie Thøgersen‐Ntoumani
- Health Psychology and Behavioural Medicine Research GroupSchool of PsychologyCurtin UniversityPerthWestern AustraliaAustralia
- Physical Activity and Well‐Being Research GroupSchool of PsychologyCurtin UniversityWestern Australia
| |
Collapse
|
38
|
Zafar J, Aqeel A, Shah FI, Ehsan N, Gohar UF, Moga MA, Festila D, Ciurea C, Irimie M, Chicea R. Biochemical and Immunological implications of Lutein and Zeaxanthin. Int J Mol Sci 2021; 22:10910. [PMID: 34681572 PMCID: PMC8535525 DOI: 10.3390/ijms222010910] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 12/21/2022] Open
Abstract
Throughout history, nature has been acknowledged for being a primordial source of various bioactive molecules in which human macular carotenoids are gaining significant attention. Among 750 natural carotenoids, lutein, zeaxanthin and their oxidative metabolites are selectively accumulated in the macular region of living beings. Due to their vast applications in food, feed, pharmaceutical and nutraceuticals industries, the global market of lutein and zeaxanthin is continuously expanding but chemical synthesis, extraction and purification of these compounds from their natural repertoire e.g., plants, is somewhat costly and technically challenging. In this regard microbial as well as microalgal carotenoids are considered as an attractive alternative to aforementioned challenges. Through the techniques of genetic engineering and gene-editing tools like CRISPR/Cas9, the overproduction of lutein and zeaxanthin in microorganisms can be achieved but the commercial scale applications of such procedures needs to be done. Moreover, these carotenoids are highly unstable and susceptible to thermal and oxidative degradation. Therefore, esterification of these xanthophylls and microencapsulation with appropriate wall materials can increase their shelf-life and enhance their application in food industry. With their potent antioxidant activities, these carotenoids are emerging as molecules of vital importance in chronic degenerative, malignancies and antiviral diseases. Therefore, more research needs to be done to further expand the applications of lutein and zeaxanthin.
Collapse
Affiliation(s)
- Javaria Zafar
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Naureen Ehsan
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore 54000, Pakistan; (J.Z.); (A.A.); (F.I.S.); (N.E.); (U.F.G.)
| | - Marius Alexandru Moga
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Dana Festila
- Radiology and Maxilo Facial Surgery Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (M.A.M.); (M.I.)
| | - Radu Chicea
- Faculty of Medicine, “Lucian Blaga” University, 550169 Sibiu, Romania;
| |
Collapse
|
39
|
Dietary Lutein and Cognitive Function in Adults: A Meta-Analysis of Randomized Controlled Trials. Molecules 2021; 26:molecules26195794. [PMID: 34641336 PMCID: PMC8510423 DOI: 10.3390/molecules26195794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Emerging literature suggests that dietary lutein may have important functions in cognitive health, but there is not enough data to substantiate its effects in human cognition. The current study was intended to determine the overall effect of lutein on the main domains of cognition in the adult population based on available placebo randomized-controlled trials. Literature searches were conducted in PubMed, AGRICOLA, Scopus, MEDLINE, and EMBASE on 14 November 2020. The effect of lutein on complex attention, executive function and memory domains of cognition were assessed by using an inverse-variance meta-analysis of standardized mean differences (SMD) (Hedge’s g method). Dietary lutein was associated with slight improvements in cognitive performance in complex attention (SMD 0.02, 95% CI −0.27 to 0.31), executive function (SMD 0.13, 95% CI −0.26 to 0.51) and memory (SMD 0.03, 95% CI −0.26 to 0.32), but its effect was not significant. Change-from-baseline analysis revealed that lutein consumption could have a role in maintaining cognitive performance in memory and executive function. Although dietary lutein did not significantly improve cognitive performance, the evidence across multiple studies suggests that lutein may nonetheless prevent cognitive decline, especially executive function. More intervention studies are needed to validate the role of lutein in preventing cognitive decline and in promoting brain health.
Collapse
|
40
|
Gazzolo D, Picone S, Gaiero A, Bellettato M, Montrone G, Riccobene F, Lista G, Pellegrini G. Early Pediatric Benefit of Lutein for Maturing Eyes and Brain-An Overview. Nutrients 2021; 13:3239. [PMID: 34579116 PMCID: PMC8468336 DOI: 10.3390/nu13093239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/15/2023] Open
Abstract
Lutein is a dietary carotenoid preferentially accumulated in the eye and the brain in early life and throughout the life span. Lutein accumulation in areas of high metabolism and oxidative stress such as the eye and the brain suggest a unique role of this ingredient during the development and maturation of these organs of common embryological origin. Lutein is naturally provided to the developing baby via the cord blood, breast milk and then infant diet. The presence of this carotenoid depends on fruit and vegetable intakes and its bioavailability is higher in breastmilk. This paper aims to review the anatomical development of the eye and the brain, explore the presence and selective deposition of lutein in these organs during pregnancy and infancy and, based on its functional characteristics, present the latest available research on the beneficial role of lutein in the pediatric population. The potential effects of lutein in ameliorating conditions associated with increase oxidative stress such as in prematurity will be also addressed. Since consumption of lutein rich foods falls short of government guidelines and in most region of the world infant formulas lack this bioactive, dietary recommendations for pregnant and breastfeeding women and their child can help to bridge the gap.
Collapse
Affiliation(s)
- Diego Gazzolo
- Neonatal Intensive Care Unit, Department of Pediatrics, University G. d’Annunzio, 65100 Chieti, Italy
- Department of Pediatrics, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Simonetta Picone
- Neonatal Intensive Care Unit, Policlinico Casilino, 00169 Rome, Italy;
| | - Alberto Gaiero
- Pediatric and Neonatology Unit, asl2 Ospedale San Paolo Savona, 17100 Savona, Italy;
| | - Massimo Bellettato
- Department of Women and Child’s Health, San Bortolo Hospital, 36100 Vicenza, Italy;
| | - Gerardo Montrone
- S.S.V.D “NIDO E STEN” Ospedali Riuniti Foggia, 71122 Foggia, Italy;
| | | | - Gianluca Lista
- Neonatal Intensive Care Unit, Department of Pediatrics, Ospedale dei Bambini V. Buzzi, ASST-FBF-Sacco, 20154 Milan, Italy;
| | - Guido Pellegrini
- Department of Pediatrics and Neonatology, Presidio Ospedaliero “Città di Sesto San Giovanni, Sesto san Giovanni, 20099 Milan, Italy;
| |
Collapse
|
41
|
Polutchko SK, Glime GNE, Demmig-Adams B. Synergistic Action of Membrane-Bound and Water-Soluble Antioxidants in Neuroprotection. Molecules 2021; 26:5385. [PMID: 34500818 PMCID: PMC8434335 DOI: 10.3390/molecules26175385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
Prevention of neurodegeneration during aging, and support of optimal brain function throughout the lifespan, requires protection of membrane structure and function. We review the synergistic action of different classes of dietary micronutrients, as well as further synergistic contributions from exercise and stress reduction, in supporting membrane structure and function. We address membrane-associated inflammation involving reactive oxygen species (ROS) that produce immune regulators from polyunsaturated fatty acids (PUFAs) of membrane phospholipids. The potential of dietary micronutrients to maintain membrane fluidity and prevent chronic inflammation is examined with a focus on synergistically acting membrane-soluble components (zeaxanthin, lutein, vitamin E, and omega-3 PUFAs) and water-soluble components (vitamin C and various phenolics). These different classes of micronutrients apparently operate in a series of intertwined oxidation-reduction cycles to protect membrane function and prevent chronic inflammation. At this time, it appears that combinations of a balanced diet with regular moderate exercise and stress-reduction practices are particularly beneficial. Effective whole-food-based diets include the Mediterranean and the MIND diet (Mediterranean-DASH Intervention for Neurodegenerative Delay diet, where DASH stands for Dietary Approaches to Stop Hypertension).
Collapse
Affiliation(s)
| | | | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (S.K.P.); (G.N.E.G.)
| |
Collapse
|
42
|
Hu Y, Zhang X, Lian F, Yang J, Xu X. Combination of Lutein and DHA Alleviate H 2O 2 Induced Cytotoxicity in PC12 Cells by Regulating the MAPK Pathway. J Nutr Sci Vitaminol (Tokyo) 2021; 67:234-242. [PMID: 34470998 DOI: 10.3177/jnsv.67.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Docosahexaenoic acid (DHA) and lutein are important nutrients for brain health. Whether there were synergistic effects of DHA and lutein on the protection against neuronal cell damage induced by oxidative stress remained unclear. The present study was designed to investigate the synergistic effects of DHA and lutein against hydrogen peroxide (H2O2)-induced oxidative challenge in PC12 cells. PC12 cells were divided into different groups and received H2O2 (80 μM), lutein (20 μM)+H2O2 (80 μM), DHA (25 μM)+H2O2 (80 μM), and lutein (20 μM)+DHA (25 μM)+H2O2 (80 μM), respectively. The results indicated that pre-treatment of cells with lutein, DHA and DHA+lutein could significantly antagonize the H2O2-mediated growth inhibition and morphological changes in PC12 cells (p<0.05). Molecularlevel studies indicated that the DHA+lutein combination can significantly inhibit the mRNA expression of AMAD10 and BAX. Furthermore, Western blot analysis demonstrated that DHA+lutein synergistically inhibits the phosphorylation of JNK1/2. The results of the present study suggest that DHA and lutein in combination may be utilized as potent antioxidative compounds, with potential preventative or palliative effects on age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Hu
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University
| | - Xu Zhang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University
| | - Fuzhi Lian
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University
| | - Jun Yang
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University
| | - Xianrong Xu
- Department of Nutrition and Toxicology, School of Public Health, Hangzhou Normal University
| |
Collapse
|
43
|
Liu X, Dhana K, Furtado JD, Agarwal P, Aggarwal NT, Tangney C, Laranjo N, Carey V, Barnes LL, Sacks FM. Higher circulating α-carotene was associated with better cognitive function: an evaluation among the MIND trial participants. J Nutr Sci 2021; 10:e64. [PMID: 34527222 PMCID: PMC8411267 DOI: 10.1017/jns.2021.56] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 01/28/2023] Open
Abstract
There is emerging evidence linking fruit and vegetable consumption and cognitive function. However, studies focusing on the nutrients underlying this relationship are lacking. We aim to examine the association between plasma nutrients and cognition in a population at risk for cognitive decline with a suboptimal diet. The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) trial is a randomized controlled intervention that examines the effects of the MIND diet to prevent cognitive decline. The primary outcome is global cognition. A multivariate linear model was used to investigate the association between blood nutrients and global and/or domain-specific cognition. The model was adjusted for age, sex, education, study site, smoking status, cognitive activities and physical activities. High plasma α-carotene was associated with better global cognition. Participants in the highest tertile of plasma α-carotene had a higher global cognition z score of 0⋅17 when compared with individuals in the lowest tertile (P 0⋅002). Circulating α-carotene levels were also associated with higher semantic memory scores (P for trend 0⋅007). Lutein and zeaxanthin (combined) was positively associated with higher semantic memory scores (P for trend 0⋅009). Our study demonstrated that higher α-carotene levels in blood were associated with higher global cognition scores in a US population at risk for cognitive decline. The higher α-carotene levels in blood reflected greater intakes of fruits, other types of vegetables and lesser intakes of butter and margarine and meat. The higher circulating levels of lutein plus zeaxanthin reflected a dietary pattern with high intakes of fruits, green leafy, other vegetables and cheese, and low consumption of fried foods. Objective nutrient markers in the blood can better characterize dietary intake, which may facilitate the implementation of a tailored dietary intervention for the prevention of cognitive decline.
Collapse
Affiliation(s)
- Xiaoran Liu
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Klodian Dhana
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Jeremy D. Furtado
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Puja Agarwal
- Rush Institute for Healthy Aging, Rush University Medical Center, Chicago, IL, USA
| | - Neelum T. Aggarwal
- Rush Alzheimer's disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurology, Rush University Medical Center, Chicago, IL, USA
| | - Christy Tangney
- Department of Preventive Medicine, Rush Medical College, Chicago, IL, USA
- Department of Clinical Nutrition, Rush College of Health Sciences, Chicago, IL, USA
| | - Nancy Laranjo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Vincent Carey
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lisa L. Barnes
- Rush Alzheimer's disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurology, Rush University Medical Center, Chicago, IL, USA
| | - Frank M. Sacks
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
44
|
Tanprasertsuk J, Scott TM, Barbey AK, Barger K, Wang XD, Johnson MA, Poon LW, Vishwanathan R, Matthan NR, Lichtenstein AH, Ferland G, Johnson EJ. Carotenoid-Rich Brain Nutrient Pattern Is Positively Correlated With Higher Cognition and Lower Depression in the Oldest Old With No Dementia. Front Nutr 2021; 8:704691. [PMID: 34268331 PMCID: PMC8275828 DOI: 10.3389/fnut.2021.704691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Healthy dietary patterns are related to better cognitive health in aging populations. While levels of individual nutrients in neural tissues are individually associated with cognitive function, the investigation of nutrient patterns in human brain tissue has not been conducted. Methods: Brain tissues were acquired from frontal and temporal cortices of 47 centenarians from the Georgia Centenarian Study. Fat-soluble nutrients (carotenoids, vitamins A, E, K, and fatty acids [FA]) were measured and averaged from the two brain regions. Nutrient patterns were constructed using principal component analysis. Cognitive composite scores were constructed from cognitive assessment from the time point closest to death. Dementia status was rated by Global Deterioration Scale (GDS). Pearson's correlation coefficients between NP scores and cognitive composite scores were calculated controlling for sex, education, hypertension, diabetes, and APOE ε4 allele. Result: Among non-demented subjects (GDS = 1-3, n = 23), a nutrient pattern higher in carotenoids was consistently associated with better performance on global cognition (r = 0.38, p = 0.070), memory (r = 0.38, p = 0.073), language (r = 0.42, p = 0.046), and lower depression (r = -0.40, p = 0.090). The findings were confirmed with univariate analysis. Conclusion: Both multivariate and univariate analyses demonstrate that brain nutrient pattern explained mainly by carotenoid concentrations is correlated with cognitive function among subjects who had no dementia. Investigation of their synergistic roles on the prevention of age-related cognitive impairment remains to be performed.
Collapse
Affiliation(s)
- Jirayu Tanprasertsuk
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Tammy M. Scott
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Aron K. Barbey
- Department of Psychology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kathryn Barger
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Xiang-Dong Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Mary Ann Johnson
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE, United States
| | - Leonard W. Poon
- Institute of Gerontology, College of Public Health, University of Georgia, Athens, GA, United States
| | - Rohini Vishwanathan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Nirupa R. Matthan
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Alice H. Lichtenstein
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Guylaine Ferland
- Département de Nutrition, Université de Montréal, Montréal, QC, Canada
| | - Elizabeth J. Johnson
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| |
Collapse
|
45
|
Association of dietary fat composition with cognitive performance and brain morphology in cognitively healthy individuals. Acta Neuropsychiatr 2021; 33:134-140. [PMID: 33478614 DOI: 10.1017/neu.2021.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Dietary lipids (omega-3 polyunsaturated fatty acids (n-3) PUFAs) and saturated fatty acids (SFA) seem to play an important role in brain health. (n-3) PUFAs have been shown to improve cerebral perfusion and to promote synaptogenesis. In this study, we investigated the relationship between dietary fat composition, cognitive performance and brain morphology in cognitively healthy individuals. METHODS A total of 101 cognitively healthy participants (age: 42.3 ± 21.3 years, 62 females) were included in this study. Verbal memory was assessed using the California Verbal Learning Test (CVLT). Intake of (n-3) PUFA and SFA was calculated from food-frequency questionnaire-derived data (EPIC-FFQ). Magnetic resonance imaging (MRI) data were obtained (Siemens Trio 3T scanner) and grey matter volumes (GMV) were assessed by voxel-based morphometry (VBM/SPM8). We examined the association of SFA/(n-3) PUFA ratio and memory performance as well as GMV using regression models adjusted for age, sex, education, body mass index, apolipoprotein E (APOE) status and alcohol consumption. For VBM data, a multiple regression analysis was performed using the same covariates as mentioned before with intracranial volume as an additional covariate. RESULTS A high SFA/(n-3) PUFA ratio was significantly (p < 0.05) correlated with poorer verbal memory performance and with lower GMV in areas of the left prefrontal cortex that support memory processes. CONCLUSIONS These findings suggest that a diet rich in PUFAs is likely to exert favourable effects on brain morphology in brain areas important for memory and executive functions. This could constitute a possible mechanism for maintaining cognitive health in older age.
Collapse
|
46
|
Zuniga KE, Bishop NJ, Turner AS. Dietary lutein and zeaxanthin are associated with working memory in an older population. Public Health Nutr 2021; 24:1708-1715. [PMID: 32349832 PMCID: PMC10195438 DOI: 10.1017/s1368980019005020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of the study was to examine the association between dietary lutein and zeaxanthin (L + Z) intake and immediate word recall (IWR) and delayed word recall (DWR), and to identify the major contributors to dietary L + Z intake in a recent and representative sample of the older US population. DESIGN In this cross-sectional analysis, multivariate path analytic models estimated the association between L + Z consumption and cognitive performance while adjusting for covariates. SETTING Observations were drawn from the 2014 Health and Retirement Study, a nationally representative panel study of older US adults, and the 2013 Health Care and Nutrition Study, which assessed dietary intake via FFQ in a subsample of respondents. PARTICIPANTS The analytic sample included 6390 respondents aged ≥50 years. RESULTS L + Z intake was 2·44 ± 2·32 mg/d on average, and L + Z intake differed significantly across quartiles (P < 0·001). For example, average L + Z intake in Q1 was 0·74 ± 0·23 mg/d and in Q4 was 5·46 ± 2·88 mg/d. In covariate adjusted models, older adults in the highest quartiles of L + Z intake had significantly greater IWR and DWR scores than those in the lowest quartile. Leafy vegetables, cruciferous vegetables, dark yellow vegetables, fish and seafood, legumes, eggs and fruit were significant and meaningful predictors of dietary L + Z intake. CONCLUSION A high consumption of vegetables, fish and seafood, legumes, eggs and fruit is associated with a higher intake of L + Z and greater word recall among older adults.
Collapse
Affiliation(s)
- Krystle E Zuniga
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX78712, USA
| | - Nicholas J Bishop
- Family and Child Development, Texas State University, San Marcos, TX78666, USA
| | | |
Collapse
|
47
|
Macaron T, Giudici KV, Bowman GL, Sinclair A, Stephan E, Vellas B, de Souto Barreto P. Associations of Omega-3 fatty acids with brain morphology and volume in cognitively healthy older adults: A narrative review. Ageing Res Rev 2021; 67:101300. [PMID: 33607289 DOI: 10.1016/j.arr.2021.101300] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/09/2023]
Abstract
INTRODUCTION Human neurodevelopment is complete by the 4th decade of life at which point brain atrophy ensues with variable rate and regionality into old age. Literally all regions of the brain experience atrophy with older age, however the pattern and rate of atrophy can dictate the behavioral consequences (i.e., cognitive impairment, Alzheimer's disease). Substantial research has aimed to discover the reasons why some people experience greater morphologic changes that produce undesirable consequences with aging and how it may be prevented. One possible explanation is diet, particularly fish consumption and the intake of omega-3 polyunsaturated fatty acids (omega 3) concentrated in fish oil. This narrative review examines the available evidence on the association between omega-3 and brain volume in non-demented older adults. METHODS A PubMed search of the literature was conducted in search of studies that investigated the associations of omega-3 on brain morphology and volume in cognitively intact older adults. Inclusion criteria were: populations of adults aged 45 years or over, who were cognitively intact, free of any central nervous system disease, and free of advanced structural brain atrophy. Study participants had to have DHA and EPA levels measured either by blood testing or scoring of dietary intake. There were no restrictions to dates of publication. Studies including demented participants, or participants with substantial white or grey matter atrophy visible on magnetic resonance imaging were excluded. RESULTS AND CONCLUSION The search identified only 12 studies, 8 of which were cross-sectional observational studies, 3 longitudinal observational studies, and 1 randomized controlled trial published between 2007 and 2019. The largest amount of evidence indicated that the hippocampus was most frequently involved in this association, with a higher volume associated with higher omega-3 levels. Larger total grey matter, total brain volume, and lower white matter lesion volume were also associated with higher omega-3 among four of the reviewed studies. However, most studies reviewed provided mixed findings regarding the presence or absence of the association of interest, and the findings were observed to be brain region-dependent. Current evidence is still insufficient to formulate recommendations for omega-3 intake to support brain health specifically.
Collapse
|
48
|
The effects of lutein and zeaxanthin on resting state functional connectivity in older Caucasian adults: a randomized controlled trial. Brain Imaging Behav 2021; 14:668-681. [PMID: 30680611 DOI: 10.1007/s11682-018-00034-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The carotenoids lutein (L) and zeaxanthin (Z) accumulate in retinal regions of the eye and have long been shown to benefit visual health. A growing literature suggests cognitive benefits as well, particularly in older adults. The present randomized controlled trial sought to investigate the effects of L and Z on brain function using resting state functional magnetic resonance imaging (fMRI). It was hypothesized that L and Z supplementation would (1) improve intra-network integrity of default mode network (DMN) and (2) reduce inter-network connectivity between DMN and other resting state networks. 48 community-dwelling older adults (mean age = 72 years) were randomly assigned to receive a daily L (10 mg) and Z (2 mg) supplement or a placebo for 1 year. Resting state fMRI data were acquired at baseline and post-intervention. A dictionary learning and sparse coding computational framework, based on machine learning principles, was used to investigate intervention-related changes in functional connectivity. DMN integrity was evaluated by calculating spatial overlap rate with a well-established DMN template provided in the neuroscience literature. Inter-network connectivity was evaluated via time series correlations between DMN and nine other resting state networks. Contrary to expectation, results indicated that L and Z significantly increased rather than decreased inter-network connectivity (Cohen's d = 0.89). A significant intra-network effect on DMN integrity was not observed. Rather than restoring what has been described in the available literature as a "youth-like" pattern of intrinsic brain activity, L and Z may facilitate the aging brain's capacity for compensation by enhancing integration between networks that tend to be functionally segregated earlier in the lifespan.
Collapse
|
49
|
Widomska J, Gruszecki WI, Subczynski WK. Factors Differentiating the Antioxidant Activity of Macular Xanthophylls in the Human Eye Retina. Antioxidants (Basel) 2021; 10:601. [PMID: 33919673 PMCID: PMC8070478 DOI: 10.3390/antiox10040601] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Macular xanthophylls, which are absorbed from the human diet, accumulate in high concentrations in the human retina, where they efficiently protect against oxidative stress that may lead to retinal damage. In addition, macular xanthophylls are uniquely spatially distributed in the retina. The zeaxanthin concentration (including the lutein metabolite meso-zeaxanthin) is ~9-fold greater than lutein concentration in the central fovea. These numbers do not correlate at all with the dietary intake of xanthophylls, for which there is a dietary zeaxanthin-to-lutein molar ratio of 1:12 to 1:5. The unique spatial distributions of macular xanthophylls-lutein, zeaxanthin, and meso-zeaxanthin-in the retina, which developed during evolution, maximize the protection of the retina provided by these xanthophylls. We will correlate the differences in the spatial distributions of macular xanthophylls with their different antioxidant activities in the retina. Can the major protective function of macular xanthophylls in the retina, namely antioxidant actions, explain their evolutionarily determined, unique spatial distributions? In this review, we will address this question.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Wieslaw I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| |
Collapse
|
50
|
Smith AD, Jernerén F, Refsum H. ω-3 fatty acids and their interactions. Am J Clin Nutr 2021; 113:775-778. [PMID: 33711096 DOI: 10.1093/ajcn/nqab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- A David Smith
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Fredrik Jernerén
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, UK.,Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|