1
|
Catto F, Kirschenbaum D, Economides AE, Reuss AM, Trevisan C, Caredio D, Dadgar-Kiani E, Mirzet D, Frick L, Weber-Stadlbauer U, Litvinov S, Koumoutsakos P, Lee JH, Aguzzi A. Quantitative 3D histochemistry reveals region-specific amyloid-β reduction by the antidiabetic drug netoglitazone. PLoS One 2025; 20:e0309489. [PMID: 40327707 PMCID: PMC12054868 DOI: 10.1371/journal.pone.0309489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/29/2025] [Indexed: 05/08/2025] Open
Abstract
A hallmark of Alzheimer's disease (AD) is the extracellular aggregation of toxic amyloid-beta (Aβ) peptides in form of plaques. Here, we identify netoglitazone, an antidiabetic compound previously tested in humans, as an Aβ aggregation antagonist. Netoglitazone improved cognition and reduced microglia activity in a mouse model of AD. Using quantitative whole-brain three-dimensional histology (Q3D), we precisely identified brain regions where netoglitazone reduced the number and size of Aβ plaques. We demonstrate the utility of Q3D in preclinical drug evaluation for AD by providing a high-resolution brain-wide view of drug efficacy. Applying Q3D has the potential to improve pre-clinical drug evaluation by providing information that can help identify mechanisms leading to brain region-specific drug efficacy.
Collapse
Affiliation(s)
- Francesca Catto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- IMAI MedTech GmbH, Zurich, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Athena E. Economides
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Maria Reuss
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Davide Caredio
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ehsan Dadgar-Kiani
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Delic Mirzet
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lukas Frick
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sergey Litvinov
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, United States of America
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, United States of America
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
3
|
Goo YT, Grigoriev V, Korzun T, Sharma KS, Singh P, Taratula OR, Marks DL, Taratula O. Blood-Brain Barrier-Penetrating Nanocarriers Enable Microglial-Specific Drug Delivery in Hypothalamic Neuroinflammation. Adv Healthc Mater 2025; 14:e2500521. [PMID: 40181631 DOI: 10.1002/adhm.202500521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Hypothalamic inflammation plays a pivotal role in appetite dysregulation across various pathological conditions, including cancer cachexia. However, delivering anti-inflammatory agents to microglia, key mediators of hypothalamic inflammation, remains challenging due to the unsurmountable blood-brain barrier (BBB). To overcome this challenge, dual peptide-functionalized polymeric nanocarriers capable of both BBB penetration and microglial targeting are engineered for systemic delivery of IRAK4 inhibitors to treat hypothalamic inflammation. After intravenous administration, the nanocarriers demonstrated efficient brain and hypothalamic accumulation in both acute (lipopolysaccharide-induced) and chronic (pancreatic cancer cachexia) neuroinflammation mouse models. Their microglial targeting capability is confirmed through hypothalamic immunohistochemistry and flow cytometry analysis using a BBB-microglia co-culture model. Systemic administration of IRAK4 inhibitor-loaded nanocarriers effectively attenuated hypothalamic inflammation in both animal models, as evidenced by marked reductions in pro-inflammatory cytokine expression. Treated animals displayed significantly increased food intake and improved body weight compared to the saline-treated group. In the cancer cachexia model, the treatment preserved muscle mass, reducing cachexia-induced gastrocnemius muscle loss by 50% relative to controls. These findings highlight the potential of this nanocarrier system as a promising therapeutic strategy for conditions characterized by hypothalamic dysfunction, particularly cancer cachexia, where neuroinflammation plays a crucial role in disease progression.
Collapse
Affiliation(s)
- Yoon Tae Goo
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Vladislav Grigoriev
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Kongbrailatpam Shitaljit Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| | - Daniel L Marks
- Endevica Bio, 1935 Techny Rd, Northbrook, Illinois, 60062, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
4
|
Abdi Z, Yong K, Schott J, Gatt A, Revesz T, Crutch S, Lashley T. Pathological Characterisation of Posterior Cortical Atrophy in Comparison With Amnestic Alzheimer's Disease. Neuropathol Appl Neurobiol 2025; 51:e70007. [PMID: 40174910 PMCID: PMC11964714 DOI: 10.1111/nan.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 04/04/2025]
Abstract
AIMS Posterior cortical atrophy (PCA) is a predominantly young-onset neurodegenerative syndrome, typically caused by Alzheimer's disease (PCA-AD). PCA-AD presents with visual and spatial dysfunction attributed to occipito-parietal or 'posterior' brain regions rather than memory difficulties characteristic of typical amnestic-led Alzheimer's disease (a-AD) attributed to medial temporal regions. Imaging and neuropathological studies suggest that PCA-AD is associated with a more posterior distribution of tau neurofibrillary tangles (NFTs), whereas β-amyloid pathology (Aβ) is diffusely deposited throughout the cortex. This study characterised the neuropathological substrates of PCA-AD in comparison with a-AD, to further understanding of the biological basis of phenotypical heterogeneity in AD. METHODS Immunohistochemistry for Aβ; tau; the microglial markers CD68, CR3-43 and Iba1; α-synuclein; and TDP-43 was carried out on 26 PCA-AD and 27 age and gender-matched a-AD cases at the Queen Square Brain Bank. Aβ, tau and the three microglial markers were quantified in the superior frontal, superior temporal, superior parietal and occipital (primary visual cortex) cortices, with α-synuclein and TDP-43 assessed using formal staging criteria. In addition, microglial circularity, a morphological indicator of microglial activation state, was calculated. RESULTS There was a higher load of Aβ and tau in the parietal region of PCA-AD compared to a-AD. In the PCA-AD compared to the a-AD group, there were significant increases in tau load in parietal and frontal relative to temporal regions. There was no difference in cerebral amyloid angiopathy (CAA) severity between PCA-AD and a-AD. There was a significantly lower temporal CD68 load in a-AD compared with PCA-AD. In a-AD, CD68 load was lowest and tau load highest in the temporal relative to all other regions. CONCLUSIONS This study demonstrates differences in the distribution of Aβ and tau and variations in regional neuroinflammatory response in PCA-AD and a-AD. These findings extend our understanding of the biological substrates underpinning PCA-AD and highlight the potential for exploring phenotypic variants to understand selective vulnerability in neurodegenerative diseases.
Collapse
Affiliation(s)
- Z. Abdi
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology, University College LondonLondonUK
- The Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - K. X. Yong
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - J. M. Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research InstituteUniversity College LondonLondon, UK
| | - A. Gatt
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - T. Revesz
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology, University College LondonLondonUK
- The Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - S. J. Crutch
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - T. Lashley
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
5
|
Wang MT, Wang YR, Zeng GH, Zeng XQ, Fei ZC, Chen J, Zhou J, Li XP, Xu ZQ, Wang YJ, Liu YH. Phenotypic alterations in peripheral blood B Lymphocytes of patients with Alzheimer's Disease. J Prev Alzheimers Dis 2025:100135. [PMID: 40121165 DOI: 10.1016/j.tjpad.2025.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Dysfunction of humoral immunity has been implicated in the pathogenesis of Alzheimer's disease (AD). The distribution of B lymphocyte subsets and their clinical relevance in AD remain unclear. OBJECTIVE In this study, we aimed to investigate the distribution of peripheral blood B lymphocyte subsets and their relevance with cognition and biomarkers in AD. DESIGN, SETTING, AND PARTICIPANTS We evaluated the immunophenotype of peripheral B lymphocytes in 27 AD patients confirmed by PET-Amyloid scan and 32 cognitively normal controls. RESULTS The phenotype of B lymphocytes is altered in AD patients. AD patients exhibit a decrease in both the numbers and proportions of switched memory (SwM) B cells and double-negative (DN) B cells. The proportion of unswitched memory (USwM) B cells was increased after in vitro stimulation. Additionally, B cells that produce proinflammatory cytokines including GM-CSF, IFN-γ, and TNF-α are increased, while those that produce the anti-inflammatory cytokine IL-10 are decreased in AD patients after in vitro stimulation. These alterations in B cell populations were linked to cognitive functions and biomarkers, including Aβ42/40 and pTau181, in AD patients. DISCUSSION This study reveals an altered B-lymphocyte phenotype in AD patients, marked by functional and compositional dysregulation. Further research incorporating mechanistic, longitudinal, and functional studies is needed to determine whether these immune perturbations directly contribute to AD pathogenesis or arise as secondary effects of neurodegeneration.
Collapse
Affiliation(s)
- Meng-Ting Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Ye-Ran Wang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China. Postal address: 400010
| | - Gui-Hua Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Xiao-Qin Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Zhang-Cheng Fei
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Jia Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Jin Zhou
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Xin-Peng Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Zhi-Qiang Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China; Key Laboratory of Aging and Brain Disease, Chongqing, PR China.
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, PR China; Key Laboratory of Aging and Brain Disease, Chongqing, PR China.
| |
Collapse
|
6
|
Pampuscenko K, Jankeviciute S, Morkuniene R, Sulskis D, Smirnovas V, Brown GC, Borutaite V. S100A9 protein activates microglia and stimulates phagocytosis, resulting in synaptic and neuronal loss. Neurobiol Dis 2025; 206:106817. [PMID: 39884585 DOI: 10.1016/j.nbd.2025.106817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
S100 calcium-binding protein A9 (S100A9, also known as calgranulin B) is expressed and secreted by myeloid cells under inflammatory conditions, and S100A9 can amplify inflammation. There is a large increase in S100A9 expression in the brains of patients with neurodegenerative diseases, such as Alzheimer's disease, and S100A9 has been suggested to contribute to neurodegeneration, but the mechanisms are unclear. Here we investigated the effects of extracellular recombinant S100A9 protein on microglia, neurons and synapses in primary rat brain neuronal-glial cell cultures. Incubation of cell cultures with 250-500 nM S100A9 caused neuronal loss without signs of apoptosis or necrosis, but accompanied by exposure of the "eat-me" signal - phosphatidylserine on neurons. S100A9 caused activation of microglial inflammation as evidenced by an increase in the microglial number, morphological changes, release of pro-inflammatory cytokines, and increased phagocytic activity. At lower concentrations, 10-100 nM S100A9 induced synaptic loss in the cultures. Depletion of microglia from the cultures prevented S100A9-induced neuronal and synaptic loss, indicating that neuronal and synaptic loss was mediated by microglia. These results suggest that extracellular S100A9 may contribute to neurodegeneration by activating microglial inflammation and phagocytosis, resulting in loss of synapses and neurons. This further suggests the possibility that neurodegeneration may be reduced by targeting S100A9 or microglia.
Collapse
Affiliation(s)
- Katryna Pampuscenko
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| | - Silvija Jankeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| | - Ramune Morkuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| | - Darius Sulskis
- Life Sciences Center, Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Vytautas Smirnovas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania.
| |
Collapse
|
7
|
Wang X, Shao X, Yu L, Sun J, Yin XS, Chen Z, Xu Y, Wang N, Zhang D, Qiu W, Liu F, Ma C. Changes in the pH value of the human brain in Alzheimer's disease pathology correlated with CD68-positive microglia: a community-based autopsy study in Beijing, China. Mol Brain 2025; 18:10. [PMID: 39930501 PMCID: PMC11808972 DOI: 10.1186/s13041-025-01180-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
The microenvironment of the central nervous system is highly complex and plays a crucial role in maintaining the function of neurons, which influences Alzheimer's disease (AD) progression. The pH value of the brain is a critical aspect of the brain microenvironment in regulating various physiological processes. However, the specific mechanisms and role of this mechanism are not yet fully understood. To better understand the relationship between brain pH and AD, we analyzed the brain pH of the frontal lobe and AD pathology scores in postmortem brain samples from 368 donors from the National Human Brain Bank for Development and Function, 96 of whom were diagnosed with AD pathology. Analysis revealed a significant decrease in brain pH in AD patients, which was strongly correlated with β-amyloid plaques and phosphorylated tau proteins. Here, we elucidated the differential protein expression level of CD68-positive microglia between control and AD groups (t = 3.198, df = 20, P = 0.0045), and its protein expression level was correlated negatively with the brain pH value (F = 26.93, p = 0.0006). Our findings revealed that increased activation of CD68-positive microglia and disrupted lysosomal homeostasis in the pathological brain tissue of individuals with AD may lead to a decrease in brain pH.
Collapse
Affiliation(s)
- Xue Wang
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiangqi Shao
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Liang Yu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jianru Sun
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiang-Sha Yin
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Zhen Chen
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yuanyuan Xu
- Experimental Teaching Center, School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Naili Wang
- Experimental Teaching Center, School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Di Zhang
- Experimental Teaching Center, School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fan Liu
- National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
8
|
Rao A, Chen N, Kim MJ, Blumenfeld J, Yip O, Liang Z, Shostak D, Hao Y, Nelson MR, Koutsodendris N, Grone B, Ding L, Yoon SY, Arriola P, Zilberter M, Huang Y. Microglia depletion reduces human neuronal APOE4-related pathologies in a chimeric Alzheimer's disease model. Cell Stem Cell 2025; 32:86-104.e7. [PMID: 39500314 DOI: 10.1016/j.stem.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/17/2024] [Accepted: 10/04/2024] [Indexed: 11/13/2024]
Abstract
Despite strong evidence supporting the important roles of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-related AD pathogenesis remain elusive. To examine such effects, we utilized microglial depletion in a chimeric model with induced pluripotent stem cell (iPSC)-derived human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) iPSC-derived human neurons into the hippocampus of human APOE3 or APOE4 knockin mice and then depleted microglia in half of the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aβ and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA sequencing analysis identified two pro-inflammatory microglial subtypes with elevated MHC-II gene expression enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis.
Collapse
Affiliation(s)
- Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nuo Chen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Zherui Liang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - David Shostak
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Maxine R Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Leo Ding
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Patrick Arriola
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Cade S, Prestidge C, Zhou X, Bobrovskaya L. The effects of a bioavailable curcumin formulation on Alzheimer's disease pathologies: A potential risk for neuroinflammation. IBRAIN 2024; 10:500-518. [PMID: 39691427 PMCID: PMC11649387 DOI: 10.1002/ibra.12187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024]
Abstract
Alzheimer's disease (AD) is a common cause of dementia characterized by the presence of two proteinaceous deposits in the brain. These pathologies may be a consequence of complex interactions between neurons and glia before the onset of cognitive impairments. Curcumin, a bioactive compound found in turmeric, is a promising candidate for AD because it alleviates neuropathologies in mouse models of the disease. Although its clinical efficacy has been hindered by low oral bioavailability, the development of new formulations may overcome this limitation. The purpose of this study was to determine the effects of a bioavailable curcumin formulation in a mouse model of AD. The formulation was administered to mice in drinking water after encapsulation into micelles using a previously validated method. A neuropathological assessment was performed to determine if it slows or alters the course of the disease. Cognitive performance was not included because it had already been assessed by a previous study. The bioavailable curcumin formulation was unable to alter the size or number of amyloid plaques in a transgenic mouse model. In addition, mechanisms that regulate amyloid beta production were unchanged, suggesting that the disease had not been altered. The number of reactive astrocytes in the hippocampus and dentate gyrus was not altered by curcumin. However, protein levels of glial fibrillary acidic protein were increased overall in the brain, suggesting that it may have aggravated neuroinflammation. Therefore, a higher dosage, despite its enhanced oral bioavailability, may have a potential risk for neuroinflammation.
Collapse
Affiliation(s)
- Shaun Cade
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Clive Prestidge
- Center for Pharmaceutical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Xin‐Fu Zhou
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
10
|
Zhu H, Liu J, Zhou J, Jin Y, Zhao Q, Jiang X, Gao H. Notopterygium incisum roots extract (NRE) alleviates neuroinflammation pathology in Alzheimer's disease through TLR4-NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118651. [PMID: 39094757 DOI: 10.1016/j.jep.2024.118651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Notopterygium incisum Ting ex H. T. Chang, also called 'Qianghuo', is a distinct umbelliferae plant in China. The rhizomes and roots of Notopterygium incisum have long been used to treat headaches, colds, analgesia and rheumatoid arthritis. It is a main traditional Chinese medicine in Qianghuo Yufeng Decoction, which was used to treat diseases such as liver and kidney insufficiency, mental paralysis and dementia. AIM OF THIS STUDY As the most common dementia, Alzheimer's disease (AD) has a complicated pathogenesis. So far, there is no effective drug to prevent its pathological process. Previous research has shown that Notopterygium incisum root extract (NRE) may inhibit the release of Aβ and the activation of tau in mice with AD. However, the effect of NRE on the pathological process of neuroinflammation is still unclear. MATERIALS AND METHODS We determined the pro-inflammatory cytokines levels in BV2 cells exposed to LPS/Aβ42 after treated with NRE. APP/PS1 and LPS-induced C57BL/6 neuroinflammatory mice were given NRE for 8 weeks and 5 days respectively to detect the pathological changes of neuroinflammation. RESULTS The findings showed that NRE had a notable inhibitory effect on the levels of TNF-α and IL-1β in BV2 cells induced by LPS/Aβ42. The results of in vivo experiments show that following NRE treatment, there was a notable decrease in the number of activated microglia in the hippocampus of APP/PS1 mice as indicated by immunofluorescence results. Sholl analysis showed that microglia branches increased in NRE group, indicating that M1 microglia activation was inhibited. In the mice model injected with LPS in the tail vein, PCR and Western Blot results confirmed the anti-inflammatory effect of NRE, Nissl staining showed the protective effect of NRE on neurons, and immunofluorescence results also indicated that the activation of M1 microglia was inhibited. CONCLUSION These results suggest that long term oral administration of NRE may inhibit neuroinflammation in the progression of AD.
Collapse
Affiliation(s)
- Huilin Zhu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jie Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jiayu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yue Jin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Pharmacodynamic Substances Research & Translational Medicine of Immune Diseases of Shenyang, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
11
|
Garland EF, Antony H, Kulagowska L, Scott T, Rogien C, Bottlaender M, Nicoll JAR, Boche D. The microglial translocator protein (TSPO) in Alzheimer's disease reflects a phagocytic phenotype. Acta Neuropathol 2024; 148:62. [PMID: 39540994 PMCID: PMC11564344 DOI: 10.1007/s00401-024-02822-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Translocator protein (TSPO) is a mitochondrial protein expressed by microglia, ligands for which are used as a marker of neuroinflammation in PET studies of Alzheimer's disease (AD). We previously showed increasing TSPO load in the cerebral cortex with AD progression, consistent with TSPO PET scan findings. Here, we aim to characterise the microglial phenotype associated with TSPO expression to aid interpretation of the signal generated by TSPO ligands in patients. Human post-mortem sections of temporal lobe (TL) and cerebellum (Cb) from cases classified by Braak group (0-II, III-IV, V-VI; each n = 10) were fluorescently double labelled for TSPO and microglial markers: Iba1, HLA-DR, CD68, MSR-A and CD64. Quantification was performed on scanned images using QuPath software to assess the microglial phenotype of TSPO. Qualitative analysis was also performed for TSPO with GFAP (astrocytes), CD31 (endothelial cells) and CD163 (perivascular macrophages) to characterise the cellular profile of TSPO. The percentage of CD68+TSPO+ double-labelled cells was significantly higher than for other microglial markers in both brain regions and in all Braak stages, followed by MSR-A+TSPO+ microglia. Iba1+TSPO+ cells were more numerous in the cerebellum than the temporal lobe, while CD64+TSPO+ cells were more numerous in the temporal lobe. No differences were observed for the other microglial markers. TSPO expression was also detected in endothelial cells, but not detected in astrocytes nor in perivascular macrophages. Our data suggest that TSPO is mainly related to a phagocytic profile of microglia (CD68+) in human AD, potentially highlighting the ongoing neurodegeneration.
Collapse
Affiliation(s)
- Emma F Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Henrike Antony
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Laura Kulagowska
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Thomas Scott
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Charlotte Rogien
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Michel Bottlaender
- Paris-Saclay University, CEA, CNRS, Service Hospitalier Frederic Joliot, Orsay, Inserm, BioMaps, France
- UNIACT Neurospin, CEA, Gif-Sur-Yvette, France
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
12
|
Wang YR, Zeng XQ, Wang J, Fowler CJ, Li QX, Bu XL, Doecke J, Maruff P, Martins RN, Rowe CC, Masters CL, Wang YJ, Liu YH. Autoantibodies to BACE1 promote Aβ accumulation and neurodegeneration in Alzheimer's disease. Acta Neuropathol 2024; 148:57. [PMID: 39448400 DOI: 10.1007/s00401-024-02814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
The profile of autoantibodies is dysregulated in patients with Alzheimer's disease (AD). Autoantibodies to beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) are present in human blood. This study aims to investigate the clinical relevance and pathophysiological roles of autoantibodies to BACE1 in AD. Clinical investigations were conducted in two independent cohorts, the Chongqing cohort, and the Australian Imaging, Biomarkers, and Lifestyle (AIBL) cohort. The Chongqing cohort included 55 AD patients, 28 patients with non-AD dementia, and 70 cognitively normal subjects (CN). The AIBL cohort included 162 Aβ-PET- CN, 169 Aβ-PET+ cognitively normal subjects (preclinical AD), and 31 Aβ-PET+ cognitively impaired subjects (Clinical AD). Plasma autoantibodies to BACE1 were determined by one-site Elisa. The associations of plasma autoantibodies to BACE1 with brain Aβ load and cognitive trajectory were investigated. The effects of autoantibodies to BACE1 on AD-type pathologies and underlying mechanisms were investigated in APP/PS1 mice and SH/APPswe/PS1wt cell lines. In the Chongqing cohort, plasma autoantibodies to BACE1 were higher in AD patients, in comparison with CN and non-AD dementia patients. In the AIBL cohort, plasma autoantibodies to BACE1 were highest in clinical AD patients, followed by preclinical AD and CN subjects. Higher autoantibodies to BACE1 were associated with an increased incidence of brain amyloid positivity conversion during follow-up. Autoantibodies to BACE1 exacerbated brain amyloid deposition and subsequent AD-type pathologies, including Tau hyperphosphorylation, neuroinflammation, and neurodegeneration in APP/PS1 mice. Autoantibodies to BACE1 increased Aβ production by promoting BACE1 expression through inhibiting PPARγ signaling. These findings suggest that autoantibodies to BACE1 are pathogenic in AD and the upregulation of these autoantibodies may promote the development of the disease. This study offers new insights into the mechanism of AD from an autoimmune perspective.
Collapse
Affiliation(s)
- Ye-Ran Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
- Centre of Health Management, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Qin Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | - Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | | | - Qiao-Xin Li
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Aging and Brain Disease, Chongqing, China
| | - James Doecke
- The Australian E-Health Research Centre, CSIRO, Herston, QLD, Australia
| | - Paul Maruff
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
- CogState, Melbourne, VIC, Australia
| | - Ralph N Martins
- School of Medical Sciences, Sarich Neuroscience Research Institute, Edith Cowan University, Nedlands, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Aging and Brain Disease, Chongqing, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Aging and Brain Disease, Chongqing, China.
| |
Collapse
|
13
|
Catto F, Dadgar-Kiani E, Kirschenbaum D, Economides A, Reuss AM, Trevisan C, Caredio D, Mirzet D, Frick L, Weber-Stadlbauer U, Litvinov S, Koumoutsakos P, Hyung Lee J, Aguzzi A. Quantitative 3D histochemistry reveals region-specific amyloid-β reduction by the antidiabetic drug netoglitazone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608042. [PMID: 39185170 PMCID: PMC11343181 DOI: 10.1101/2024.08.15.608042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
A hallmark of Alzheimer's disease (AD) is the extracellular aggregation of toxic amyloid-beta (Aβ) peptides in form of plaques. Here, we identify netoglitazone, an antidiabetic compound previously tested in humans, as an Aβ aggregation antagonist. Netoglitazone improved cognition and reduced microglia activity in a mouse model of AD. Using quantitative whole-brain three-dimensional histology (Q3D), we precisely identified brain regions where netoglitazone reduced the number and size of Aβ plaques. We demonstrate the utility of Q3D in preclinical drug evaluation for AD by providing a high-resolution brain-wide view of drug efficacy. Applying Q3D has the potential to improve pre-clinical drug evaluation by providing information that can help identify mechanisms leading to brain region-specific drug efficacy.
Collapse
Affiliation(s)
- Francesca Catto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
- IMAI MedTech, Wagistrasse 18, 8952 Schlieren, Zurich, Switzerland
| | - Ehsan Dadgar-Kiani
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 260, 8057 Zürich
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Daniel Kirschenbaum
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Athena Economides
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Anna Maria Reuss
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Davide Caredio
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Delic Mirzet
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Lukas Frick
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 260, 8057 Zürich
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Sergey Litvinov
- Computational Science and Engineering Laboratory, ETH Zürich, Clausiusstrasse 33, 8092, Zurich, Switzerland
- Computational Science and Engineering Laboratory, Harvard University, Cambridge, MA 02138, United States
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, Harvard University, Cambridge, MA 02138, United States
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland
| |
Collapse
|
14
|
Wenzel TJ, Desjarlais JD, Mousseau DD. Human brain organoids containing microglia that have arisen innately adapt to a β-amyloid challenge better than those in which microglia are integrated by co-culture. Stem Cell Res Ther 2024; 15:258. [PMID: 39135132 PMCID: PMC11320858 DOI: 10.1186/s13287-024-03876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Alzheimer disease (AD) is a heterogenous and multifactorial disease, and its pathology is partly driven by microglia and their activated phenotype. Brain organoids (BOs) are gaining prominence as a relevant model of the human brain for the study of AD; however, BOs are commonly devoid of microglia. To overcome this limitation, current protocols incorporate microglia through either (1) co-culture (BO co-culture), or (2) molecular manipulation at critical windows of BO development to have microglia arise innately (BO innate cultures). It is currently unclear whether the microglia incorporated into BOs by either of these two protocols differ in function. METHODS At in vitro day 90, BO innate cultures and BO-co-cultures were challenged with the AD-related β-amyloid peptide (Aβ) for up to 72 h. After Aβ challenge, BOs were collected for immunoblotting. Immunoblots compared immunodensity and protein banding of Aβ and ionized calcium-binding adapter molecule 1 (IBA1, a marker of microglial activation) in BOs. The translational potential of these observations was supported using 56 human cortical samples from neurocognitively normal donors and patients with early-onset AD and late-onset AD. Statistical analyses were conducted using the Kruskal-Wallis test, a two-way ANOVA, or a simple linear regression, and where applicable, followed by Dunn's or Sidak's test. RESULTS We show that BO co-cultures promote Aβ oligomerization as early as 24 h and this coincides with a significant increase in IBA1 levels. In contrast, the Aβs do not oligomerize in BO innate cultures and the IBA1 response was modest and only emerged after 48 h. In human cortical samples, we found IBA1 levels correlated with age at onset, age at death, and the putative diagnostic Aβ(1-42)/Aβ(1-40) ratio (particularly in their oligomeric forms) in a sex-dependent manner. CONCLUSIONS Our unique observations suggest that BOs with innate microglia model the response of a healthy brain to Aβ, and by extension the initial stages of Aβ challenge. It would be impossible to model these early stages of pathogenesis in BOs where microglia are already compromised, such as those with microglia incorporated by co-culture.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| | - Joseph D Desjarlais
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
15
|
Wetering JV, Geut H, Bol JJ, Galis Y, Timmermans E, Twisk JWR, Hepp DH, Morella ML, Pihlstrom L, Lemstra AW, Rozemuller AJM, Jonkman LE, van de Berg WDJ. Neuroinflammation is associated with Alzheimer's disease co-pathology in dementia with Lewy bodies. Acta Neuropathol Commun 2024; 12:73. [PMID: 38715119 PMCID: PMC11075309 DOI: 10.1186/s40478-024-01786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuroinflammation and Alzheimer's disease (AD) co-pathology may contribute to disease progression and severity in dementia with Lewy bodies (DLB). This study aims to clarify whether a different pattern of neuroinflammation, such as alteration in microglial and astroglial morphology and distribution, is present in DLB cases with and without AD co-pathology. METHODS The morphology and load (% area of immunopositivity) of total (Iba1) and reactive microglia (CD68 and HLA-DR), reactive astrocytes (GFAP) and proteinopathies of alpha-synuclein (KM51/pser129), amyloid-beta (6 F/3D) and p-tau (AT8) were assessed in a cohort of mixed DLB + AD (n = 35), pure DLB (n = 15), pure AD (n = 16) and control (n = 11) donors in limbic and neocortical brain regions using immunostaining, quantitative image analysis and confocal microscopy. Regional and group differences were estimated using a linear mixed model analysis. RESULTS Morphologically, reactive and amoeboid microglia were common in mixed DLB + AD, while homeostatic microglia with a small soma and thin processes were observed in pure DLB cases. A higher density of swollen astrocytes was observed in pure AD cases, but not in mixed DLB + AD or pure DLB cases. Mixed DLB + AD had higher CD68-loads in the amygdala and parahippocampal gyrus than pure DLB cases, but did not differ in astrocytic loads. Pure AD showed higher Iba1-loads in the CA1 and CA2, higher CD68-loads in the CA2 and subiculum, and a higher astrocytic load in the CA1-4 and subiculum than mixed DLB + AD cases. In mixed DLB + AD cases, microglial load associated strongly with amyloid-beta (Iba1, CD68 and HLA-DR), and p-tau (CD68 and HLA-DR), and minimally with alpha-synuclein load (CD68). In addition, the highest microglial activity was found in the amygdala and CA2, and astroglial load in the CA4. Confocal microscopy demonstrated co-localization of large amoeboid microglia with neuritic and classic-cored plaques of amyloid-beta and p-tau in mixed DLB + AD cases. CONCLUSIONS In conclusion, microglial activation in DLB was largely associated with AD co-pathology, while astrocytic response in DLB was not. In addition, microglial activity was high in limbic regions, with prevalent AD pathology. Our study provides novel insights into the molecular neuropathology of DLB, highlighting the importance of microglial activation in mixed DLB + AD.
Collapse
Affiliation(s)
- Janna van Wetering
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hanne Geut
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John J Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Yvon Galis
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Evelien Timmermans
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Dagmar H Hepp
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Martino L Morella
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lasse Pihlstrom
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Afina W Lemstra
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan 1117, The Netherlands
- Alzheimer Center, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands.
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Hickey JP, Collins AE, Nelson ML, Chen H, Kalisch BE. Modulation of Oxidative Stress and Neuroinflammation by Cannabidiol (CBD): Promising Targets for the Treatment of Alzheimer's Disease. Curr Issues Mol Biol 2024; 46:4379-4402. [PMID: 38785534 PMCID: PMC11120237 DOI: 10.3390/cimb46050266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common form of dementia globally. Although the direct cause of AD remains under debate, neuroinflammation and oxidative stress are critical components in its pathogenesis and progression. As a result, compounds like cannabidiol (CBD) are being increasingly investigated for their ability to provide antioxidant and anti-inflammatory neuroprotection. CBD is the primary non-psychotropic phytocannabinoid derived from Cannabis sativa. It has been found to provide beneficial outcomes in a variety of medical conditions and is gaining increasing attention for its potential therapeutic application in AD. CBD is not psychoactive and its lipophilic nature allows its rapid distribution throughout the body, including across the blood-brain barrier (BBB). CBD also possesses anti-inflammatory, antioxidant, and neuroprotective properties, making it a viable candidate for AD treatment. This review outlines CBD's mechanism of action, the role of oxidative stress and neuroinflammation in AD, and the effectiveness and limitations of CBD in preclinical models of AD.
Collapse
Affiliation(s)
| | | | | | | | - Bettina E. Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.P.H.); (A.E.C.); (M.L.N.); (H.C.)
| |
Collapse
|
17
|
Foley KE, Wilcock DM. Three major effects of APOE ε4 on Aβ immunotherapy induced ARIA. Front Aging Neurosci 2024; 16:1412006. [PMID: 38756535 PMCID: PMC11096466 DOI: 10.3389/fnagi.2024.1412006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The targeting of amyloid-beta (Aβ) plaques therapeutically as one of the primary causes of Alzheimer's disease (AD) dementia has been an ongoing effort spanning decades. While some antibodies are extremely promising and have been moved out of clinical trials and into the clinic, most of these treatments show similar adverse effects in the form of cerebrovascular damage known as amyloid-related imaging abnormalities (ARIA). The two categories of ARIA are of major concern for patients, families, and prescribing physicians, with ARIA-E presenting as cerebral edema, and ARIA-H as cerebral hemorrhages (micro- and macro-). From preclinical and clinical trials, it has been observed that the greatest genetic risk factor for AD, APOEε4, is also a major risk factor for anti-Aβ immunotherapy-induced ARIA. APOEε4 carriers represent a large population of AD patients, and, therefore, limits the broad adoption of these therapies across the AD population. In this review we detail three hypothesized mechanisms by which APOEε4 influences ARIA risk: (1) reduced cerebrovascular integrity, (2) increased neuroinflammation and immune dysregulation, and (3) elevated levels of CAA. The effects of APOEε4 on ARIA risk is clear, however, the underlying mechanisms require more research.
Collapse
Affiliation(s)
- Kate E. Foley
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
18
|
Bathe T, Hery GP, Villareal JAB, Phillips JL, Cohen EM, Sharma RV, Tsering W, Prokop S. Disease and brain region specific immune response profiles in neurodegenerative diseases with pure and mixed protein pathologies. Acta Neuropathol Commun 2024; 12:54. [PMID: 38581050 PMCID: PMC10996248 DOI: 10.1186/s40478-024-01770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024] Open
Abstract
The disease-specific accumulation of pathological proteins has long been the major focus of research in neurodegenerative diseases (ND), including Alzheimer's disease (AD) and related dementias (RD), but the recent identification of a multitude of genetic risk factors for ND in immune-associated genes highlights the importance of immune processes in disease pathogenesis and progression. Studies in animal models have characterized the local immune response to disease-specific proteins in AD and ADRD, but due to the complexity of disease processes and the co-existence of multiple protein pathologies in human donor brains, the precise role of immune processes in ND is far from understood. To better characterize the interplay between different extracellular and intracellular protein pathologies and the brain's intrinsic immune system in ND, we set out to comprehensively profile the local immune response in postmortem brain samples of individuals with "pure" beta-Amyloid and tau pathology (AD), "pure" α-Synuclein pathology in Lewy body diseases (LBD), as well as cases with Alzheimer's disease neuropathological changes (ADNC) and Lewy body pathology (MIX). Combining immunohistochemical profiling of microglia and digital image analysis, along with deep immunophenotyping using gene expression profiling on the NanoString nCounter® platform and digital spatial profiling on the NanoString GeoMx® platform we identified a robust immune activation signature in AD brain samples. This signature is maintained in persons with mixed pathologies, irrespective of co-existence of AD pathology and Lewy body (LB) pathology, while LBD brain samples with "pure" LB pathology exhibit an attenuated and distinct immune signature. Our studies highlight disease- and brain region-specific immune response profiles to intracellular and extracellular protein pathologies and further underscore the complexity of neuroimmune interactions in ND.
Collapse
Affiliation(s)
- Tim Bathe
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Gabriela P Hery
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Jonathan A B Villareal
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer L Phillips
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Eric M Cohen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Rohan V Sharma
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Wangchen Tsering
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32608, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
19
|
Hartnell IJ, Woodhouse D, Jasper W, Mason L, Marwaha P, Graffeuil M, Lau LC, Norman JL, Chatelet DS, Buee L, Nicoll JAR, Blum D, Dorothee G, Boche D. Glial reactivity and T cell infiltration in frontotemporal lobar degeneration with tau pathology. Brain 2024; 147:590-606. [PMID: 37703311 PMCID: PMC10834257 DOI: 10.1093/brain/awad309] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/23/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023] Open
Abstract
Frontotemporal lobar degeneration with tau (FTLD-tau) is a group of tauopathies that underlie ∼50% of FTLD cases. Identification of genetic risk variants related to innate/adaptive immunity have highlighted a role for neuroinflammation and neuroimmune interactions in FTLD. Studies have shown microglial and astrocyte activation together with T cell infiltration in the brain of THY-Tau22 tauopathy mice. However, this remains to be confirmed in FTLD-tau patients. We conducted a detailed post-mortem study of FTLD-tau cases including 45 progressive supranuclear palsy with clinical frontotemporal dementia, 33 Pick's disease, 12 FTLD-MAPT and 52 control brains to characterize the link between phosphorylated tau (pTau) epitopes and the innate and adaptive immunity. Tau pathology was assessed in the cerebral cortex using antibodies directed against: Tau-2 (phosphorylated and unphosphorylated tau), AT8 (pSer202/pThr205), AT100 (pThr212/pSer214), CP13 (pSer202), PHF1 (pSer396/pSer404), pThr181 and pSer356. The immunophenotypes of microglia and astrocytes were assessed with phenotypic markers (Iba1, CD68, HLA-DR, CD64, CD32a, CD16 for microglia and GFAP, EAAT2, glutamine synthetase and ALDH1L1 for astrocytes). The adaptive immune response was explored via CD4+ and CD8+ T cell quantification and the neuroinflammatory environment was investigated via the expression of 30 inflammatory-related proteins using V-Plex Meso Scale Discovery. As expected, all pTau markers were increased in FTLD-tau cases compared to controls. pSer356 expression was greatest in FTLD-MAPT cases versus controls (P < 0.0001), whereas the expression of other markers was highest in Pick's disease. Progressive supranuclear palsy with frontotemporal dementia consistently had a lower pTau protein load compared to Pick's disease across tau epitopes. The only microglial marker increased in FTLD-tau was CD16 (P = 0.0292) and specifically in FTLD-MAPT cases (P = 0.0150). However, several associations were detected between pTau epitopes and microglia, supporting an interplay between them. GFAP expression was increased in FTLD-tau (P = 0.0345) with the highest expression in Pick's disease (P = 0.0019), while ALDH1L1 was unchanged. Markers of astrocyte glutamate cycling function were reduced in FTLD-tau (P = 0.0075; Pick's disease: P < 0.0400) implying astrocyte reactivity associated with a decreased glutamate cycling activity, which was further associated with pTau expression. Of the inflammatory proteins assessed in the brain, five chemokines were upregulated in Pick's disease cases (P < 0.0400), consistent with the recruitment of CD4+ (P = 0.0109) and CD8+ (P = 0.0014) T cells. Of note, the CD8+ T cell infiltration was associated with pTau epitopes and microglial and astrocytic markers. Our results highlight that FTLD-tau is associated with astrocyte reactivity, remarkably little activation of microglia, but involvement of adaptive immunity in the form of chemokine-driven recruitment of T lymphocytes.
Collapse
Affiliation(s)
- Iain J Hartnell
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Declan Woodhouse
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - William Jasper
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Luke Mason
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Pavan Marwaha
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Manon Graffeuil
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Laurie C Lau
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, University of Southampton, Southampton O16 6YD, UK
| | - Jeanette L Norman
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine University of Southampton, Southampton SO16 6YD, UK
| | - David S Chatelet
- Biomedical Imaging Unit, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - Luc Buee
- University of Lille, Inserm, CHU Lille, UMR-S1172—Lille Neurosciences and Cognition, Lille 59045, France
- Alzheimer and Tauopathies, LabEX DISTALZ, Lille 59000, France
| | - James A R Nicoll
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - David Blum
- University of Lille, Inserm, CHU Lille, UMR-S1172—Lille Neurosciences and Cognition, Lille 59045, France
- Alzheimer and Tauopathies, LabEX DISTALZ, Lille 59000, France
| | - Guillaume Dorothee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris 75012, France
| | - Delphine Boche
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
20
|
Zhu Y, Li L, Jin X, Li Z, Wang C, Teng L, Li Y, Zhang Y, Wang D. Structure characterisation of polysaccharides purified from Boletus aereus Bull. and its improvement on AD-like behaviours via reliving neuroinflammation in APP/PS1 mice. Int J Biol Macromol 2024; 258:128819. [PMID: 38104691 DOI: 10.1016/j.ijbiomac.2023.128819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The water-soluble neutral polysaccharide BEP2, with a molecular weight of 26.65 kDa, was isolated from the aqueous extract obtained from the fruiting bodies of Boletus aereus Bull. BEP2 primarily comprises Gal, with specific site substitutions speculated at partial positions, such as the substitution of -OCH3 at position H-3 or the branch at position C-2 including α-L-Fucp-(1→, α-D-Manp-(1 → and α-D-Manp-(1 → 3)-α-L-Fucp-(1 → 6)-β-D-Glcp-(1→. Treatment with BEP2 significantly enhanced learning, memory, and cognitive function, while concurrently reducing the accumulation of β-amyloid and suppressing neuroinflammation within the brains of APP/PS1 mice. Based on the results of biochemical detection, gut microbiota analysis, and metabolomic profiling, we found that BEP2 significantly upregulated the abundance of two bacterial families while downregulation that of seven bacterial families within the intestinal ecosystem. Notably, the abundance of the S24-7 family was significantly increased. Treatment with BEP2 upregulated five metabolites, while downregulating three metabolites, including norepinephrine. Additionally, BEP2 decreased the levels of interleukin (IL)-1β and IL-6, regulated the activities of microglial cells and astrocytes and increased the levels of the chemokine fractalkine (CX3CL1) and its receptor on microglia (CX3CR1), as well as that of transforming growth factor (TGF)-β1. These findings confirmed the suppressive effects of BEP2 on neuroinflammation.
Collapse
Affiliation(s)
- Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhige Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
21
|
Jiao L, Jing Z, Zhang W, Su X, Yan H, Tian S. Codon Pattern and Context Analysis in Genes Triggering Alzheimer's Disease and Latent Tau Protein Aggregation Post-Anesthesia Exhibited Unique Molecular Patterns Associated with Functional Aspects. J Alzheimers Dis 2024; 97:1645-1660. [PMID: 38306048 DOI: 10.3233/jad-231142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background Previous reports have demonstrated post-operative dementia and Alzheimer's disease (AD), and increased amyloid-β levels and tau hyperphosphorylation have been observed in animal models post-anesthesia. Objective After surgical interventions, loss in memory has been observed that has been found linked with genes modulated after anesthesia. Present study aimed to study molecular pattern present in genes modulated post anesthesia and involved in characters progressing towards AD. Methods In the present study, 17 transcript variants belonging to eight genes, which have been found to modulate post-anesthesia and contribute to AD progression, were envisaged for their compositional features, molecular patterns, and codon and codon context-associated studies. Results The sequences' composition was G/C rich, influencing dinucleotide preference, codon preference, codon usage, and codon context. The G/C nucleotides being highly occurring nucleotides, CpGdinucleotides were also preferred; however, CpG was highly disfavored at p3-1 at the codon junction. The nucleotide composition of Cytosine exhibited a unique feature, and unlike other nucleotides, it did not correlate with codon bias. Contrarily, it correlated with the sequence lengths. The sequences were leucine-rich, and multiple leucine repeats were present, exhibiting the functional role of neuroprotection from neuroinflammation post-anesthesia. Conclusions The analysis pave the way to elucidate unique molecular patterns in genes modulated during anesthetic treatment and might help ameliorate the ill effects of anesthetics in the future.
Collapse
Affiliation(s)
- Liyuan Jiao
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ziye Jing
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenjie Zhang
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuesen Su
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hualei Yan
- Department of Anesthesiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shouyuan Tian
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
22
|
Lin JT, Morisaki M, Sampathkumar SA, Lau LC, Boche D, Khandaker GM, Sinclair LI. Neuroinflammation in comorbid depression in Alzheimer's disease: A pilot study using post-mortem brain tissue. NEUROSCIENCE APPLIED 2024; 3:None. [PMID: 39526037 PMCID: PMC11543635 DOI: 10.1016/j.nsa.2024.104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 11/16/2024]
Abstract
Comorbid depression and Alzheimer's disease (AD) is associated with poorer prognosis than either condition alone. Neuroinflammation has been implicated in the pathogenesis and progression of both depression and AD, but much of the existing research has been based on peripheral blood immune markers. Relatively little is known about the neuroinflammatory environment when these conditions occur simultaneously and using immune measures directly in the brain tissue. This pilot study aimed to examine brain inflammatory marker changes in AD cases comparing those with and without comorbid depression. Post-mortem brain tissue from AD cases with depression (n = 23) and AD cases with no history of psychiatric illness (n = 25) were analyzed for a range of inflammatory markers, including markers of microglial function (Iba1, P2RY12, CD64 and CD68 measured by immunohistochemistry); endothelial inflammatory markers (ICAM-1 and VCAM-1 measured by ELISA); and cytokine levels (IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNF-α measured using Mesoscale Discovery Multiplex Assays). Brains of AD cases with comorbid depression, compared with AD alone, had increased IL-4 in the superior frontal gyrus and increased TNFα & IL-12p70 in the insula. Levels of all other inflammatory markers including markers of microglial function and endothelial inflammation were similar between the two groups. We found no consistent changes in cytokines between the two brain regions in individuals with comorbid depression in AD. Further work in larger cohorts is needed to understand brain region specificity of immune marker alterations and the relationship of these changes with pre-mortem clinical outcomes.
Collapse
Affiliation(s)
- Jordan T. Lin
- Dementia Research Group, University of Bristol, Bristol, UK
| | | | | | - Laurie C. Lau
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, University of Southampton, Southampton, UK
| | - Delphine Boche
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Golam M. Khandaker
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| | | |
Collapse
|
23
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
24
|
Kollai S, Bereczki D, Glasz T, Hortobágyi T, Kovács T. Early histopathological changes of secondary degeneration in the spinal cord after total MCA territory stroke. Sci Rep 2023; 13:21934. [PMID: 38082027 PMCID: PMC10713562 DOI: 10.1038/s41598-023-49230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Previous research has not demonstrated secondary degeneration of the spinal cord (SpC) motoneurons after cerebral infarct. The aim of the present study is to investigate the involvement of the anterior horn cells (AHC) in the early post-stroke period using histomorphological and immunohistochemical methods. Post-mortem analysis of the 6th cervical segment was performed in 7 patients who had total MCA stroke within 1 month before death. Nissl-stained sections were used for morphometry, while CD68 and synaptophysin (SYP) immunohistochemistry to monitor microglial activation and synaptic changes in the anterior horn (AH), respectively. Contralateral to the cerebral lesion (contralesional side), cells were smaller after 3 days and larger after 1 week of stroke, especially regarding the large alpha motoneurons. CD68 density increased mainly on the contralesional Rexed's IX lamina of the SpC. SYP coverage of the large motoneurons was reduced on the contralesional side. Early microglial activation in the AH and electrophysiological signs has suggested the possibility of impairment of anterior horn cells (AHC-s). Our study supported that early microglial activation in the contralesional side of the SpC may primarily affect the area corresponding to the location of large motoneurons, and is accompanied by a transient shrinkage followed by increase in size of the large AHC-s with a reduction of their synaptic coverage. After MCA stroke, early involvement of the SpC motoneurons may be suspected by their morphological and synaptic changes and by the pattern of microglial activation.
Collapse
Affiliation(s)
- Sarolta Kollai
- Department of Neurology, Semmelweis University, Balassa U. 6, Budapest, 1083, Hungary
- Károly Schaffer Laboratory of Neuropathology, Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Dániel Bereczki
- Department of Neurology, Semmelweis University, Balassa U. 6, Budapest, 1083, Hungary
- HUN-REN-SU Neuroepidemiological Research Group, Budapest, Hungary
| | - Tibor Glasz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Old Age Psychiatry, Psychology and Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Tibor Kovács
- Department of Neurology, Semmelweis University, Balassa U. 6, Budapest, 1083, Hungary.
- Károly Schaffer Laboratory of Neuropathology, Department of Neurology, Semmelweis University, Budapest, Hungary.
- HUN-REN-SU Neuroepidemiological Research Group, Budapest, Hungary.
| |
Collapse
|
25
|
Nelson MR, Liu P, Agrawal A, Yip O, Blumenfeld J, Traglia M, Kim MJ, Koutsodendris N, Rao A, Grone B, Hao Y, Yoon SY, Xu Q, De Leon S, Choenyi T, Thomas R, Lopera F, Quiroz YT, Arboleda-Velasquez JF, Reiman EM, Mahley RW, Huang Y. The APOE-R136S mutation protects against APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. Nat Neurosci 2023; 26:2104-2121. [PMID: 37957317 PMCID: PMC10689245 DOI: 10.1038/s41593-023-01480-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD), leading to earlier age of clinical onset and exacerbating pathologies. There is a critical need to identify protective targets. Recently, a rare APOE variant, APOE3-R136S (Christchurch), was found to protect against early-onset AD in a PSEN1-E280A carrier. In this study, we sought to determine if the R136S mutation also protects against APOE4-driven effects in LOAD. We generated tauopathy mouse and human iPSC-derived neuron models carrying human APOE4 with the homozygous or heterozygous R136S mutation. We found that the homozygous R136S mutation rescued APOE4-driven Tau pathology, neurodegeneration and neuroinflammation. The heterozygous R136S mutation partially protected against APOE4-driven neurodegeneration and neuroinflammation but not Tau pathology. Single-nucleus RNA sequencing revealed that the APOE4-R136S mutation increased disease-protective and diminished disease-associated cell populations in a gene dose-dependent manner. Thus, the APOE-R136S mutation protects against APOE4-driven AD pathologies, providing a target for therapeutic development against AD.
Collapse
Affiliation(s)
- Maxine R Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Peng Liu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Ayushi Agrawal
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Michela Traglia
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Qin Xu
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Samuel De Leon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Tenzing Choenyi
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia de la Universidad de Antioquia, Medellin, Colombia
| | - Yakeel T Quiroz
- Grupo de Neurociencias de Antioquia de la Universidad de Antioquia, Medellin, Colombia
- Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- University of Arizona, Tucson, AZ, USA
| | - Robert W Mahley
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Rao A, Chen N, Kim MJ, Blumenfeld J, Yip O, Hao Y, Liang Z, Nelson MR, Koutsodendris N, Grone B, Ding L, Yoon SY, Arriola P, Huang Y. Microglia Depletion Reduces Human Neuronal APOE4-Driven Pathologies in a Chimeric Alzheimer's Disease Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566510. [PMID: 38014339 PMCID: PMC10680610 DOI: 10.1101/2023.11.10.566510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Despite strong evidence supporting the involvement of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's Disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-driven AD pathogenesis remain elusive. Here, we examined such effects utilizing microglial depletion in a chimeric model with human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) induced pluripotent stem cell (iPSC)-derived human neurons into the hippocampus of human APOE3 or APOE4 knock-in mice, and depleted microglia in half the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aβ and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA-sequencing analysis identified two pro-inflammatory microglial subtypes with high MHC-II gene expression that are enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis.
Collapse
Affiliation(s)
- Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Nuo Chen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Zherui Liang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Maxine R. Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Leo Ding
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Patrick Arriola
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
27
|
Rao NS, Putra M, Meyer C, Almanza A, Thippeswamy T. The effects of Src tyrosine kinase inhibitor, saracatinib, on the markers of epileptogenesis in a mixed-sex cohort of adult rats in the kainic acid model of epilepsy. Front Mol Neurosci 2023; 16:1294514. [PMID: 38025259 PMCID: PMC10665569 DOI: 10.3389/fnmol.2023.1294514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegeneration and neuroinflammation are key processes of epileptogenesis in temporal lobe epilepsy (TLE). A considerable number (∼30%) of patients with epilepsy are resistant to currently available antiseizure drugs and thus there is a need to develop adjunct therapies to modify disease progression. A vast majority of interventional strategies to treat TLE have utilized males which limits the translational nature of the studies. In this study, we investigated the effects of repeated low-dose kainic acid (KA) injection on the initial status epilepticus (SE) and the effects of Src kinase inhibitor, saracatinib (SAR/AZD0530; 20 mg/kg, oral, daily for 7 days), in a mixed-sex cohort of adult Sprague Dawley rats during early epileptogenesis. There were no sex differences in response to KA-induced SE, and neither did the stage of estrus influence SE severity. KA-induced SE caused significant astrogliosis and microgliosis across the hippocampus, piriform cortex, and amygdala. SAR treatment resulted in a significant reduction of microgliosis across brain regions. Microglial morphometrics such as branch length and the endpoints strongly correlated with CD68 expression in the vehicle-treated group but not in the SAR-treated group, indicating mitigation by SAR. KA-induced SE caused significant neuronal loss, including parvalbumin-positive inhibitory neurons, in both vehicle (VEH) and SAR-treated groups. SAR treatment significantly mitigated FJB-positive neuronal counts as compared to the VEH group. There was an increase in C3-positive reactive astrocytes in the VEH-treated group, and SAR treatment significantly reduced the increase in the piriform cortex. C3-positive astrogliosis significantly correlated with CD68 expression in the amygdala (AMY) of VEH-treated rats, and SAR treatment mitigated this relationship. There was a significant increase of pSrc(Y419)-positive microglia in both KA-treated groups with a statistically insignificant reduction by SAR. KA-induced SE caused the development of classical glial scars in the piriform cortex (PIR) in both KA-treated groups, while SAR treatment led to a 42.17% reduction in the size of glial scars. We did not observe sex differences in any of the parameters in this study. SAR, at the dose tested in the rat kainate model for a week in this study mitigated some of the markers of epileptogenesis in both sexes.
Collapse
Affiliation(s)
| | | | | | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
28
|
Koutsodendris N, Blumenfeld J, Agrawal A, Traglia M, Yip O, Rao A, Kim MJ, Nelson MR, Wang YH, Grone B, Hao Y, Thomas R, Zilberter M, Yoon SY, Arriola P, Huang Y. APOE4-promoted gliosis and degeneration in tauopathy are ameliorated by pharmacological inhibition of HMGB1 release. Cell Rep 2023; 42:113252. [PMID: 37863057 PMCID: PMC10873109 DOI: 10.1016/j.celrep.2023.113252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023] Open
Abstract
Apolipoprotein E4 (APOE4) is an important driver of Tau pathology, gliosis, and degeneration in Alzheimer's disease (AD). Still, the mechanisms underlying these APOE4-driven pathological effects remain elusive. Here, we report in a tauopathy mouse model that APOE4 promoted the nucleocytoplasmic translocation and release of high-mobility group box 1 (HMGB1) from hippocampal neurons, which correlated with the severity of hippocampal microgliosis and degeneration. Injection of HMGB1 into the hippocampus of young APOE4-tauopathy mice induced considerable and persistent gliosis. Selective removal of neuronal APOE4 reduced HMGB1 translocation and release. Treatment of APOE4-tauopathy mice with HMGB1 inhibitors effectively blocked the intraneuronal translocation and release of HMGB1 and ameliorated the development of APOE4-driven gliosis, Tau pathology, neurodegeneration, and myelin deficits. Single-nucleus RNA sequencing revealed that treatment with HMGB1 inhibitors diminished disease-associated and enriched disease-protective subpopulations of neurons, microglia, and astrocytes in APOE4-tauopathy mice. Thus, HMGB1 inhibitors represent a promising approach for treating APOE4-related AD.
Collapse
Affiliation(s)
- Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ayushi Agrawal
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Michela Traglia
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maxine R Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yung-Hua Wang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Patrick Arriola
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA 94158, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Neurology and Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
29
|
Lanooij SD, Drinkenburg WHIM, Eisel ULM, van der Zee EA, Kas MJH. The effects of social environment on AD-related pathology in hAPP-J20 mice and tau-P301L mice. Neurobiol Dis 2023; 187:106309. [PMID: 37748620 DOI: 10.1016/j.nbd.2023.106309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD). To date, AD pathology is primarily characterized by amyloid-β plaques and tau tangles. We aimed to assess the effect of single- and group-housing on AD-related pathology in a mouse model for amyloid pathology (J20, and WT controls) and a mouse model for tau pathology (P301L) with and without seeding of synthetic human tau fragments (K18). Female mice were either single housed (SH) or group housed (GH) from the age of 6-7 weeks onwards. In 12-week-old P301L mice, tau pathology was induced through seeding by injecting K18 into the dorsal hippocampus (P301LK18), while control mice received a PBS injection (P301LPBS). P301L mice were sacrificed at 4 months of age and J20 mice at 10 months of age. In all mice brain pathology was histologically assessed by examining microglia, the CA1 pyramidal cell layer and specific AD pathology: analysis of plaques in J20 mice and tau hyperphosphorylation in P301L mice. Contrary to our expectation, SH-J20 mice interestingly displayed fewer plaques in the hippocampus compared to GH-J20 mice. However, housing did not affect tau hyperphosphorylation at Ser202/Thr205 of P301L mice, nor neuronal cell death in the CA1 region in any of the mice. The number of microglia was increased by the J20 genotype, and their activation (based on cell body to cell size ratio) in the CA1 was affected by genotype and housing condition (interaction effect). Single housing of P301L mice was linked to the development of stereotypic behavior (i.e. somersaulting and circling behavior). In P301LK18 mice, an increased number of microglia were observed, among which were rod microglia. Taken together, our findings point to a significant effect of social housing conditions on amyloid plaques and microglia in J20 mice and on the development of stereotypic behavior in P301L mice, indicating that the social environment can modulate AD-related pathology.
Collapse
Affiliation(s)
- Suzanne D Lanooij
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - W H I M Drinkenburg
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands; Department of Neuroscience, Janssen Research & Development, a Division on Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - U L M Eisel
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - E A van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Neurobiology, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
30
|
Choi M, Ryu J, Vu HD, Kim D, Youn YJ, Park MH, Huynh PT, Hwang GB, Youn SW, Jeong YH. Transferrin-Conjugated Melittin-Loaded L-Arginine-Coated Iron Oxide Nanoparticles for Mitigating Beta-Amyloid Pathology of the 5XFAD Mouse Brain. Int J Mol Sci 2023; 24:14954. [PMID: 37834402 PMCID: PMC10573775 DOI: 10.3390/ijms241914954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases and a major contributor to dementia. Although the cause of this condition has been identified long ago as aberrant aggregations of amyloid and tau proteins, effective therapies for it remain elusive. The complexities of drug development for AD treatment are often compounded by the impermeable blood-brain barrier and low-yield brain delivery. In addition, the use of high drug concentrations to overcome this challenge may entail side effects. To address these challenges and enhance the precision of delivery into brain regions affected by amyloid aggregation, we proposed a transferrin-conjugated nanoparticle-based drug delivery system. The transferrin-conjugated melittin-loaded L-arginine-coated iron oxide nanoparticles (Tf-MeLioNs) developed in this study successfully mitigated melittin-induced cytotoxicity and hemolysis in the cell culture system. In the 5XFAD mouse brain, Tf-MeLioNs remarkably reduced amyloid plaque accumulation, particularly in the hippocampus. This study suggested Tf-LioNs as a potential drug delivery platform and Tf-MeLioNs as a candidate for therapeutic drug targeting of amyloid plaques in AD. These findings provide a foundation for further exploration and advancement in AD therapeutics.
Collapse
Affiliation(s)
- Moonseok Choi
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Junghwa Ryu
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Huy Duc Vu
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Dongsoo Kim
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Young-Jin Youn
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Min Hui Park
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Phuong Tu Huynh
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Gyu-Bin Hwang
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Sung Won Youn
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Yun Ha Jeong
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| |
Collapse
|
31
|
Belardo C, Boccella S, Perrone M, Fusco A, Morace AM, Ricciardi F, Bonsale R, ELBini-Dhouib I, Guida F, Luongo L, Bagetta G, Scuteri D, Maione S. Scopolamine-Induced Memory Impairment in Mice: Effects of PEA-OXA on Memory Retrieval and Hippocampal LTP. Int J Mol Sci 2023; 24:14399. [PMID: 37762702 PMCID: PMC10532394 DOI: 10.3390/ijms241814399] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Transient global amnesia, both persistent and transient, is a very common neuropsychiatric syndrome. Among animal models for amnesia and testing new drugs, the scopolamine test is the most widely used for transient global amnesia (TGA). This study examined the scopolamine-induced deficits in working memory, discriminative memory, anxiety, and motor activity in the presence of intranasal PEA-OXA, a dual antagonist of presynaptic α2 and H3 receptors. Male C57BL/6 mice were treated with intraperitoneal scopolamine (1 mg/kg) with or without pre-treatment (15 min) or post-treatment (15 min) with intranasal PEA-OXA (10 mg/kg). It was seen that scopolamine induced deficits of discriminative and spatial memory and motor deficit. These changes were associated with a loss of synaptic plasticity in the hippocampal dentate gyrus: impaired LTP after lateral entorhinal cortex/perforant pathway tetanization. Furthermore, hippocampal Ach levels were increased while ChA-T expression was reduced following scopolamine administration. PEA-OXA either prevented or restored the scopolamine-induced cognitive deficits (discriminative and spatial memory). However, the same treatment did not affect the altered motor activity or anxiety-like behavior induced by scopolamine. Consistently, electrophysiological analysis showed LTP recovery in the DG of the hippocampus, while the Ach level and ChoA-T were normalized. This study confirms the neuroprotective and pro-cognitive activity of PEA-OXA (probably through an increase in the extracellular levels of biogenic amines) in improving transient memory disorders for which the available pharmacological tools are obsolete or inadequate and not directed on specific pathophysiological targets.
Collapse
Affiliation(s)
- Carmela Belardo
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Serena Boccella
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Michela Perrone
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Antimo Fusco
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Andrea Maria Morace
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Federica Ricciardi
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Roozbe Bonsale
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Ines ELBini-Dhouib
- Laboratory of Biomolecules, Venoms and Theranostic Application, Institute Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia;
| | - Francesca Guida
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Livio Luongo
- Division of Pharmacology, Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (C.B.); (S.B.); (M.P.); (A.F.); (A.M.M.); (F.R.); (R.B.); (F.G.); (L.L.)
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy;
| | - Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy;
| | - Sabatino Maione
- Laboratory of Biomolecules, Venoms and Theranostic Application, Institute Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia;
| |
Collapse
|
32
|
Amin J, Gee C, Stowell K, Coulthard D, Boche D. T Lymphocytes and Their Potential Role in Dementia with Lewy Bodies. Cells 2023; 12:2283. [PMID: 37759503 PMCID: PMC10528562 DOI: 10.3390/cells12182283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative cause of dementia. People with DLB have an inferior prognosis compared to Alzheimer's disease (AD), but the diseases overlap in their neuropathology and clinical syndrome. It is imperative that we enhance our understanding of the aetiology and pathogenesis of DLB. The impact of peripheral inflammation on the brain in dementia has been increasingly explored in recent years, with T lymphocyte recruitment into brain parenchyma identified in AD and Parkinson's disease. There is now a growing range of literature emerging on the potential role of innate and adaptive immune cells in DLB, including T lymphocytes. In this review, we examine the profile of T lymphocytes in DLB, focusing on studies of post-mortem brain tissue, cerebrospinal fluid, and the blood compartment. We present an integrated viewpoint on the results of these studies by proposing how changes to the T lymphocyte profile in the brain and periphery may relate to each other. Improving our understanding of T lymphocytes in DLB has the potential to guide the development of disease-modifying treatments.
Collapse
Affiliation(s)
- Jay Amin
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Memory Assessment and Research Centre, Tom Rudd Unit, Moorgreen Hospital, Southern Health NHS Foundation Trust, Southampton SO30 3JB, UK
| | - Claire Gee
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Memory Assessment and Research Centre, Tom Rudd Unit, Moorgreen Hospital, Southern Health NHS Foundation Trust, Southampton SO30 3JB, UK
| | - Kiran Stowell
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Daisy Coulthard
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
33
|
Thapa M, Kumari A, Chin CY, Choby JE, Jin F, Bogati B, Chopyk DM, Koduri N, Pahnke A, Elrod EJ, Burd EM, Weiss DS, Grakoui A. Translocation of gut commensal bacteria to the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555630. [PMID: 37693595 PMCID: PMC10491268 DOI: 10.1101/2023.08.30.555630] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The gut-brain axis, a bidirectional signaling network between the intestine and the central nervous system, is crucial to the regulation of host physiology and inflammation. Recent advances suggest a strong correlation between gut dysbiosis and neurological diseases, however, relatively little is known about how gut bacteria impact the brain. Here, we reveal that gut commensal bacteria can translocate directly to the brain when mice are fed an altered diet that causes dysbiosis and intestinal permeability, and that this also occurs without diet alteration in distinct murine models of neurological disease. The bacteria were not found in other systemic sites or the blood, but were detected in the vagus nerve. Unilateral cervical vagotomy significantly reduced the number of bacteria in the brain, implicating the vagus nerve as a conduit for translocation. The presence of bacteria in the brain correlated with microglial activation, a marker of neuroinflammation, and with neural protein aggregation, a hallmark of several neurodegenerative diseases. In at least one model, the presence of bacteria in the brain was reversible as a switch from high-fat to standard diet resulted in amelioration of intestinal permeability, led to a gradual loss of detectable bacteria in the brain, and reduced the number of neural protein aggregates. Further, in murine models of Alzheimer's disease, Parkinson's disease, and autism spectrum disorder, we observed gut dysbiosis, gut leakiness, bacterial translocation to the brain, and microglial activation. These data reveal a commensal bacterial translocation axis to the brain in models of diverse neurological diseases.
Collapse
Affiliation(s)
- Manoj Thapa
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Anuradha Kumari
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Chui-Yoke Chin
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Jacob E. Choby
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Fengzhi Jin
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Bikash Bogati
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Daniel M. Chopyk
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Nitya Koduri
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Andrew Pahnke
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Elizabeth J. Elrod
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
| | - Eileen M. Burd
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - David S. Weiss
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia
| | - Arash Grakoui
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
34
|
Garland EF, Dennett O, Lau LC, Chatelet DS, Bottlaender M, Nicoll JAR, Boche D. The mitochondrial protein TSPO in Alzheimer's disease: relation to the severity of AD pathology and the neuroinflammatory environment. J Neuroinflammation 2023; 20:186. [PMID: 37580767 PMCID: PMC10424356 DOI: 10.1186/s12974-023-02869-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
The 18kD translocator protein (TSPO) is used as a positron emission tomography (PET) target to quantify neuroinflammation in patients. In Alzheimer's disease (AD), the cerebellum is the pseudo-reference region for comparison with the cerebral cortex due to the absence of AD pathology and lower levels of TSPO. However, using the cerebellum as a pseudo-reference region is debated, with other brain regions suggested as more suitable. This paper aimed to establish the neuroinflammatory differences between the temporal cortex and cerebellar cortex, including TSPO expression. Using 60 human post-mortem samples encompassing the spectrum of Braak stages (I-VI), immunostaining for pan-Aβ, hyperphosphorylated (p)Tau, TSPO and microglial proteins Iba1, HLA-DR and MSR-A was performed in the temporal cortex and cerebellum. In the cerebellum, Aβ but not pTau, increased over the course of the disease, in contrast to the temporal cortex, where both proteins were significantly increased. TSPO increased in the temporal cortex, more than twofold in the later stages of AD compared to the early stages, but not in the cerebellum. Conversely, Iba1 increased in the cerebellum, but not in the temporal cortex. TSPO was associated with pTau in the temporal cortex, suggesting that TSPO positive microglia may be reacting to pTau itself and/or neurodegeneration at later stages of AD. Furthermore, the neuroinflammatory microenvironment was examined, using MesoScale Discovery assays, and IL15 only was significantly increased in the temporal cortex. Together this data suggests that the cerebellum maintains a more homeostatic environment compared to the temporal cortex, with a consistent TSPO expression, supporting its use as a pseudo-reference region for quantification in TSPO PET scans.
Collapse
Affiliation(s)
- Emma F Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Oliver Dennett
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Laurie C Lau
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - David S Chatelet
- Biomedical Imaging Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Michel Bottlaender
- CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frederic Joliot, Paris-Sacaly University, 91400, Orsay, France
- UNIACT Neurospin, CEA, Gif-Sur-Yvette, 91191, France
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Trust, Southampton, SO16 6YD, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
35
|
Wharton SB, Simpson JE, Ince PG, Richardson CD, Merrick R, Matthews FE, Brayne C, CFAS. Insights into the pathological basis of dementia from population-based neuropathology studies. Neuropathol Appl Neurobiol 2023; 49:e12923. [PMID: 37462105 PMCID: PMC10946587 DOI: 10.1111/nan.12923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
The epidemiological neuropathology perspective of population and community-based studies allows unbiased assessment of the prevalence of various pathologies and their relationships to late-life dementia. In addition, this approach provides complementary insights to conventional case-control studies, which tend to be more representative of a younger clinical cohort. The Cognitive Function and Ageing Study (CFAS) is a longitudinal study of cognitive impairment and frailty in the general United Kingdom population. In this review, we provide an overview of the major findings from CFAS, alongside other studies, which have demonstrated a high prevalence of pathology in the ageing brain, particularly Alzheimer's disease neuropathological change and vascular pathology. Increasing burdens of these pathologies are the major correlates of dementia, especially neurofibrillary tangles, but there is substantial overlap in pathology between those with and without dementia, particularly at intermediate burdens of pathology and also at the oldest ages. Furthermore, additional pathologies such as limbic-predominant age-related TDP-43 encephalopathy, ageing-related tau astrogliopathy and primary age-related tauopathies contribute to late-life dementia. Findings from ageing population-representative studies have implications for the understanding of dementia pathology in the community. The high prevalence of pathology and variable relationship to dementia status has implications for disease definition and indicate a role for modulating factors on cognitive outcome. The complexity of late-life dementia, with mixed pathologies, indicates a need for a better understanding of these processes across the life-course to direct the best research for reducing risk in later life of avoidable clinical dementia syndromes.
Collapse
Affiliation(s)
- Stephen B. Wharton
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Julie E. Simpson
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Paul G. Ince
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | | | - Richard Merrick
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | | - Carol Brayne
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | |
Collapse
|
36
|
Vo TTT, Kong G, Kim C, Juang U, Gwon S, Jung W, Nguyen H, Kim SH, Park J. Exploring scavenger receptor class F member 2 and the importance of scavenger receptor family in prediagnostic diseases. Toxicol Res 2023; 39:341-353. [PMID: 37398563 PMCID: PMC10313632 DOI: 10.1007/s43188-023-00176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 07/04/2023] Open
Abstract
Scavenger Receptor Class F Member 2 (SCARF2), also known as the Type F Scavenger Receptor Family gene, encodes for Scavenger Receptor Expressed by Endothelial Cells 2 (SREC-II). This protein is a crucial component of the scavenger receptor family and is vital in protecting mammals from infectious diseases. Although research on SCARF2 is limited, mutations in this protein have been shown to cause skeletal abnormalities in both SCARF2-deficient mice and individuals with Van den Ende-Gupta syndrome (VDEGS), which is also associated with SCARF2 mutations. In contrast, other scavenger receptors have demonstrated versatile responses and have been found to aid in pathogen elimination, lipid transportation, intracellular cargo transportation, and work in tandem with various coreceptors. This review will concentrate on recent progress in comprehending SCARF2 and the functions played by members of the Scavenger Receptor Family in pre-diagnostic diseases.
Collapse
Affiliation(s)
- Thuy-Trang T. Vo
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Gyeyeong Kong
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Chaeyeong Kim
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Uijin Juang
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Suhwan Gwon
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Woohyeong Jung
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Huonggiang Nguyen
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015 Republic of Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, 35015 Republic of Korea
| |
Collapse
|
37
|
Seidel F, Fluiter K, Kleemann R, Worms N, van Nieuwkoop A, Caspers MPM, Grigoriadis N, Kiliaan AJ, Baas F, Michailidou I, Morrison MC. Ldlr-/-.Leiden mice develop neurodegeneration, age-dependent astrogliosis and obesity-induced changes in microglia immunophenotype which are partly reversed by complement component 5 neutralizing antibody. Front Cell Neurosci 2023; 17:1205261. [PMID: 37457817 PMCID: PMC10346859 DOI: 10.3389/fncel.2023.1205261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Obesity has been linked to vascular dysfunction, cognitive impairment and neurodegenerative diseases. However, experimental models that recapitulate brain pathology in relation to obesity and vascular dysfunction are still lacking. Methods In this study we performed the histological and histochemical characterization of brains from Ldlr-/-.Leiden mice, an established model for obesity and associated vascular disease. First, HFD-fed 18 week-old and 50 week-old Ldlr-/-.Leiden male mice were compared with age-matched C57BL/6J mice. We then assessed the effect of high-fat diet (HFD)-induced obesity on brain pathology in Ldlr-/-.Leiden mice and tested whether a treatment with an anti-complement component 5 antibody, a terminal complement pathway inhibitor recently shown to reduce vascular disease, can attenuate neurodegeneration and neuroinflammation. Histological analyses were complemented with Next Generation Sequencing (NGS) analyses of the hippocampus to unravel molecular pathways underlying brain histopathology. Results We show that chow-fed Ldlr-/-.Leiden mice have more severe neurodegeneration and show an age-dependent astrogliosis that is not observed in age-matched C57BL/6J controls. This was substantiated by pathway enrichment analysis using the NGS data which showed that oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction pathways, all associated with neurodegeneration, were significantly altered in the hippocampus of Ldlr-/-.Leiden mice compared with C57BL/6J controls. Obesity-inducing HFD-feeding did not aggravate neurodegeneration and astrogliosis in Ldlr-/-.Leiden mice. However, brains from HFD-fed Ldlr-/-.Leiden mice showed reduced IBA-1 immunoreactivity and increased CD68 immunoreactivity compared with chow-fed Ldlr-/-.Leiden mice, indicating alteration of microglial immunophenotype by HFD feeding. The systemic administration of an anti-C5 treatment partially restored the HFD effect on microglial immunophenotype. In addition, NGS data of hippocampi from Ldlr-/-.Leiden mice showed that HFD feeding affected multiple molecular pathways relative to chow-fed controls: HFD notably inactivated synaptogenesis and activated neuroinflammation pathways. The anti-C5 treatment restored the HFD-induced effect on molecular pathways to a large extent. Conclusion This study shows that the Ldlr-/-.Leiden mouse model is suitable to study brain histopathology and associated biological processes in a context of obesity and provides evidence of the potential therapeutic value of anti-complement therapy against obesity-induced neuroinflammation.
Collapse
Affiliation(s)
- Florine Seidel
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Anita van Nieuwkoop
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Martien P. M. Caspers
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| |
Collapse
|
38
|
Zhang WB, Huang Y, Guo XR, Zhang MQ, Yuan XS, Zu HB. DHCR24 reverses Alzheimer's disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice. Acta Neuropathol Commun 2023; 11:102. [PMID: 37344916 DOI: 10.1186/s40478-023-01593-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Accumulating evidences reveal that cellular cholesterol deficiency could trigger the onset of Alzheimer's disease (AD). As a key regulator, 24-dehydrocholesterol reductase (DHCR24) controls cellular cholesterol homeostasis, which was found to be downregulated in AD vulnerable regions and involved in AD-related pathological activities. However, DHCR24 as a potential therapeutic target for AD remains to be identified. In present study, we demonstrated the role of DHCR24 in AD by employing delivery of adeno-associated virus carrying DHCR24 gene into the hippocampus of 5xFAD mice. Here, we found that 5xFAD mice had lower levels of cholesterol and DHCR24 expression, and the cholesterol loss was alleviated by DHCR24 overexpression. Surprisingly, the cognitive impairment of 5xFAD mice was significantly reversed after DHCR24-based gene therapy. Moreover, we revealed that DHCR24 knock-in successfully prevented or reversed AD-related pathology in 5xFAD mice, including amyloid-β deposition, synaptic injuries, autophagy, reactive astrocytosis, microglial phagocytosis and apoptosis. In conclusion, our results firstly demonstrated that the potential value of DHCR24-mediated regulation of cellular cholesterol level as a promising treatment for AD.
Collapse
Affiliation(s)
- Wen-Bin Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Yue Huang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiao-Rou Guo
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Meng-Qi Zhang
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China
| | - Xiang-Shan Yuan
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Heng-Bing Zu
- Department of Neurology, Jinshan Hospital Affiliated to Fudan University, No.1508 Long-Hang Road, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
39
|
Kloske CM, Gearon MD, Weekman EM, Rogers C, Patel E, Bachstetter A, Nelson PT, Wilcock DM. Association between APOE genotype and microglial cell morphology. J Neuropathol Exp Neurol 2023; 82:620-630. [PMID: 37087107 PMCID: PMC10280358 DOI: 10.1093/jnen/nlad031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
APOE is the largest genetic risk factor for late-onset Alzheimer disease (AD) with E4 conferring an increased risk for AD compared to E3. The ApoE protein can impact diverse pathways in the brain including neuroinflammation but the precise impact of ApoE isoforms on inflammation remains unknown. As microglia are a primary source of neuroinflammation, this study determined whether ApoE isoforms have an impact on microglial morphology and activation using immunohistochemistry and digital analyses. Analysis of ionized calcium-binding adaptor molecule 1 (Iba1) immunoreactivity indicated greater microglial activation in both the hippocampus and superior and middle temporal gyrus (SMTG) in dementia participants versus non-demented controls. Further, only an increase in activation was seen in E3-Dementia participants in the entire SMTG, whereas in the grey matter of the SMTG, only a diagnosis of dementia impacted activation. Specific microglial morphologies showed a reduction in ramified microglia in the dementia group. For rod microglia, a reduction was seen in E4-Control patients in the hippocampus whereas in the SMTG an increase was seen in E4-Dementia patients. These findings suggest an association between ApoE isoforms and microglial morphologies and highlight the importance of considering ApoE isoforms in studies of AD pathology.
Collapse
Affiliation(s)
- Courtney M Kloske
- Department of Physiology, College of Medicine, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Mary D Gearon
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Erica M Weekman
- Department of Physiology, College of Medicine, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Colin Rogers
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Ela Patel
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Adam Bachstetter
- Department of Neuroscience, College of Medicine, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Peter T Nelson
- Department of Pathology and Laboratory Medicine, College of Medicine, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Donna M Wilcock
- Department of Physiology, College of Medicine, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
40
|
Puech C, Badran M, Runion AR, Barrow MB, Cataldo K, Gozal D. Cognitive Impairments, Neuroinflammation and Blood-Brain Barrier Permeability in Mice Exposed to Chronic Sleep Fragmentation during the Daylight Period. Int J Mol Sci 2023; 24:9880. [PMID: 37373028 DOI: 10.3390/ijms24129880] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH) and sleep fragmentation (SF). In murine models, chronic SF can impair endothelial function and induce cognitive declines. These deficits are likely mediated, at least in part, by alterations in Blood-brain barrier (BBB) integrity. Male C57Bl/6J mice were randomly assigned to SF or sleep control (SC) conditions for 4 or 9 weeks and in a subset 2 or 6 weeks of normal sleep recovery. The presence of inflammation and microglia activation were evaluated. Explicit memory function was assessed with the novel object recognition (NOR) test, while BBB permeability was determined by systemic dextran-4kDA-FITC injection and Claudin 5 expression. SF exposures resulted in decreased NOR performance and in increased inflammatory markers and microglial activation, as well as enhanced BBB permeability. Explicit memory and BBB permeability were significantly associated. BBB permeability remained elevated after 2 weeks of sleep recovery (p < 0.01) and returned to baseline values only after 6 weeks. Chronic SF exposures mimicking the fragmentation of sleep that characterizes patients with OSA elicits evidence of inflammation in brain regions and explicit memory impairments in mice. Similarly, SF is also associated with increased BBB permeability, the magnitude of which is closely associated with cognitive functional losses. Despite the normalization of sleep patterns, BBB functional recovery is a protracted process that merits further investigation.
Collapse
Affiliation(s)
- Clementine Puech
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - Mohammad Badran
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO 65201, USA
| | - Max B Barrow
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - Kylie Cataldo
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, 400 N Keene St., Suite 010, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
41
|
Noorani I, Sidlauskas K, Pellow S, Savage R, Norman JL, Chatelet DS, Fabian M, Grundy P, Ching J, Nicoll JAR, Boche D. Clinical impact of anti-inflammatory microglia and macrophage phenotypes at glioblastoma margins. Brain Commun 2023; 5:fcad176. [PMID: 37324244 PMCID: PMC10265726 DOI: 10.1093/braincomms/fcad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Glioblastoma is a devastating brain cancer for which effective treatments are required. Tumour-associated microglia and macrophages promote glioblastoma growth in an immune-suppressed microenvironment. Most recurrences occur at the invasive margin of the surrounding brain, yet the relationships between microglia/macrophage phenotypes, T cells and programmed death-ligand 1 (an immune checkpoint) across human glioblastoma regions are understudied. In this study, we performed a quantitative immunohistochemical analysis of 15 markers of microglia/macrophage phenotypes (including anti-inflammatory markers triggering receptor expressed on myeloid cells 2 and CD163, and the low-affinity-activating receptor CD32a), T cells, natural killer cells and programmed death-ligand 1, in 59 human IDH1-wild-type glioblastoma multi-regional samples (n = 177; 1 sample at tumour core, 2 samples at the margins: the infiltrating zone and leading edge). Assessment was made for the prognostic value of markers; the results were validated in an independent cohort. Microglia/macrophage motility and activation (Iba1, CD68), programmed death-ligand 1 and CD4+ T cells were reduced, and homeostatic microglia (P2RY12) were increased in the invasive margins compared with the tumour core. There were significant positive correlations between microglia/macrophage markers CD68 (phagocytic)/triggering receptor expressed on myeloid cells 2 (anti-inflammatory) and CD8+ T cells in the invasive margins but not in the tumour core (P < 0.01). Programmed death-ligand 1 expression was associated with microglia/macrophage markers (including anti-inflammatory) CD68, CD163, CD32a and triggering receptor expressed on myeloid cells 2, only in the leading edge of glioblastomas (P < 0.01). Similarly, there was a positive correlation between programmed death-ligand 1 expression and CD8+ T-cell infiltration in the leading edge (P < 0.001). There was no relationship between CD64 (a receptor for autoreactive T-cell responses) and CD8+/CD4+ T cells, or between the microglia/macrophage antigen presentation marker HLA-DR and microglial motility (Iba1) in the tumour margins. Natural killer cell infiltration (CD335+) correlated with CD8+ T cells and with CD68/CD163/triggering receptor expressed on myeloid cells 2 anti-inflammatory microglia/macrophages at the leading edge. In an independent large glioblastoma cohort with transcriptomic data, positive correlations between anti-inflammatory microglia/macrophage markers (triggering receptor expressed on myeloid cells 2, CD163 and CD32a) and CD4+/CD8+/programmed death-ligand 1 RNA expression were validated (P < 0.001). Finally, multivariate analysis showed that high triggering receptor expressed on myeloid cells 2, programmed death-ligand 1 and CD32a expression at the leading edge were significantly associated with poorer overall patient survival (hazard ratio = 2.05, 3.42 and 2.11, respectively), independent of clinical variables. In conclusion, anti-inflammatory microglia/macrophages, CD8+ T cells and programmed death-ligand 1 are correlated in the invasive margins of glioblastoma, consistent with immune-suppressive interactions. High triggering receptor expressed on myeloid cells 2, programmed death-ligand 1 and CD32a expression at the human glioblastoma leading edge are predictors of poorer overall survival. Given substantial interest in targeting microglia/macrophages, together with immune checkpoint inhibitors in cancer, these data have major clinical implications.
Collapse
Affiliation(s)
- Imran Noorani
- Department of Neuromuscular Diseases, The Francis Crick Institute and University College London, London NW1 1AT, UK
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London SO16 6AQ, UK
| | - Kastytis Sidlauskas
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sean Pellow
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Reece Savage
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jeannette L Norman
- Histochemistry Research Unit, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - David S Chatelet
- Biomedical Imaging Unit, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Mark Fabian
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Paul Grundy
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jeng Ching
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - James A R Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Cellular Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
42
|
Merchant JP, Zhu K, Henrion MYR, Zaidi SSA, Lau B, Moein S, Alamprese ML, Pearse RV, Bennett DA, Ertekin-Taner N, Young-Pearse TL, Chang R. Predictive network analysis identifies JMJD6 and other potential key drivers in Alzheimer's disease. Commun Biol 2023; 6:503. [PMID: 37188718 PMCID: PMC10185548 DOI: 10.1038/s42003-023-04791-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Despite decades of genetic studies on late-onset Alzheimer's disease, the underlying molecular mechanisms remain unclear. To better comprehend its complex etiology, we use an integrative approach to build robust predictive (causal) network models using two large human multi-omics datasets. We delineate bulk-tissue gene expression into single cell-type gene expression and integrate clinical and pathologic traits, single nucleotide variation, and deconvoluted gene expression for the construction of cell type-specific predictive network models. Here, we focus on neuron-specific network models and prioritize 19 predicted key drivers modulating Alzheimer's pathology, which we then validate by knockdown in human induced pluripotent stem cell-derived neurons. We find that neuronal knockdown of 10 of the 19 targets significantly modulates levels of amyloid-beta and/or phosphorylated tau peptides, most notably JMJD6. We also confirm our network structure by RNA sequencing in the neurons following knockdown of each of the 10 targets, which additionally predicts that they are upstream regulators of REST and VGF. Our work thus identifies robust neuronal key drivers of the Alzheimer's-associated network state which may represent therapeutic targets with relevance to both amyloid and tau pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Julie P Merchant
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kuixi Zhu
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Marc Y R Henrion
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Pembroke Place, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Blantyre, Malawi
| | - Syed S A Zaidi
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Branden Lau
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
- Arizona Research Labs, Genetics Core, University of Arizona, Tucson, AZ, USA
| | - Sara Moein
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Melissa L Alamprese
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
| | - Rui Chang
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
- INTelico Therapeutics LLC, Tucson, AZ, USA.
- PATH Biotech LLC, Tucson, AZ, USA.
| |
Collapse
|
43
|
Griffiths J, Grant SGN. Synapse pathology in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:13-23. [PMID: 35690535 DOI: 10.1016/j.semcdb.2022.05.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
Synapse loss and damage are central features of Alzheimer's disease (AD) and contribute to the onset and progression of its behavioural and physiological features. Here we review the literature describing synapse pathology in AD, from what we have learned from microscopy in terms of its impacts on synapse architecture, to the mechanistic role of Aβ, tau and glial cells, mitochondrial dysfunction, and the link with AD risk genes. We consider the emerging view that synapse pathology may operate at a further level, that of synapse diversity, and discuss the prospects for leveraging new synaptome mapping methods to comprehensively understand the molecular properties of vulnerable and resilient synapses. Uncovering AD impacts on brain synapse diversity should inform therapeutic approaches targeted at preserving or replenishing lost and damaged synapses and aid the interpretation of clinical imaging approaches that aim to measure synapse damage.
Collapse
Affiliation(s)
- Jessica Griffiths
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Dementia Research Institute at Imperial College, Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
44
|
Kashif M, Waseem M, Vijendra PD, Pandurangan AK. Protective Effects of Cannabis in Neuroinflammation-Mediated Alzheimer's Disease. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:48-75. [DOI: 10.4018/978-1-6684-5652-1.ch002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In recent years, Alzheimer's disease (AD) has been recognized as an age-related neurological disorder wherein neurons degenerate and exhibit abnormal structure and function. Aging is the primary factor in the progression of AD from mild to severe cognitive impairment. No effective targeted therapies are presently available, and treatment is limited to symptomatic management. The neuropathologic hallmarks of the disease include the accumulation of amyloid-beta (Aβ) plaques in brain tissues and the aggregation of hyperphosphorylated-tau proteins (tangles) within neurons. Associated hyperactivation of neuroinflammation results in release of inflammatory molecules from neurons, microglia, and astrocytes, which have been linked with neuronal loss and the worsening neurodegeneration. The anti-inflammatory and neuroprotective properties of cannabis-based medicines may offer benefits in delaying the progression of neurodegenerative diseases including AD. This chapter explores the role of cannabinoids in countering neuroinflammation-mediated AD pathology.
Collapse
Affiliation(s)
- Mohd Kashif
- B.S. Abdur Rahman Crescent Institute of Science and Technology, India
| | | | | | | |
Collapse
|
45
|
Koutsodendris N, Blumenfeld J, Agrawal A, Traglia M, Grone B, Zilberter M, Yip O, Rao A, Nelson MR, Hao Y, Thomas R, Yoon SY, Arriola P, Huang Y. Neuronal APOE4 removal protects against tau-mediated gliosis, neurodegeneration and myelin deficits. NATURE AGING 2023; 3:275-296. [PMID: 37118426 PMCID: PMC10154214 DOI: 10.1038/s43587-023-00368-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/17/2023] [Indexed: 04/30/2023]
Abstract
Apolipoprotein E4 (APOE4) is the strongest known genetic risk factor for late-onset Alzheimer's disease (AD). Conditions of stress or injury induce APOE expression within neurons, but the role of neuronal APOE4 in AD pathogenesis is still unclear. Here we report the characterization of neuronal APOE4 effects on AD-related pathologies in an APOE4-expressing tauopathy mouse model. The selective genetic removal of APOE4 from neurons led to a significant reduction in tau pathology, gliosis, neurodegeneration, neuronal hyperexcitability and myelin deficits. Single-nucleus RNA-sequencing revealed that the removal of neuronal APOE4 greatly diminished neurodegenerative disease-associated subpopulations of neurons, oligodendrocytes, astrocytes and microglia whose accumulation correlated to the severity of tau pathology, neurodegeneration and myelin deficits. Thus, neuronal APOE4 plays a central role in promoting the development of major AD pathologies and its removal can mitigate the progressive cellular and tissue alterations occurring in this model of APOE4-driven tauopathy.
Collapse
Affiliation(s)
- Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Ayushi Agrawal
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Michela Traglia
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Maxine R Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Reuben Thomas
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Patrick Arriola
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Departments of Neurology and Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
Davies C, Tulloch J, Yip E, Currie L, Colom-Cadena M, Wegmann S, Hyman BT, Wilkins L, Hooley M, Tzioras M, Spires-Jones TL. Apolipoprotein E isoform does not influence trans-synaptic spread of tau pathology in a mouse model. Brain Neurosci Adv 2023; 7:23982128231191046. [PMID: 37600228 PMCID: PMC10433884 DOI: 10.1177/23982128231191046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 08/22/2023] Open
Abstract
A key hallmark of Alzheimer's disease (AD) is the accumulation of hyperphosphorylated tau in neurofibrillary tangles. This occurs alongside neuroinflammation and neurodegeneration. Pathological tau propagates through the AD brain in a defined manner, which correlates with neuron and synapse loss and cognitive decline. One proposed mechanism of tau spread is through synaptically connected brain structures. Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset AD and is associated with increased tau burden. Whether the apolipoprotein E (APOE) genotype influences neurodegeneration via tau spread is currently unknown. Here, we demonstrate that virally expressed human tau (with the P301L mutation) injected into mouse entorhinal cortex at 5-6 months or 15-16 months of age spreads trans-synaptically to the hippocampus by 14 weeks post-injection. Injections of tau in mice expressing human APOE2, APOE3 or APOE4, as well as APOE knock-outs, showed that tau can spread trans-synaptically in all genotypes and that APOE genotype and age do not affect the spread of tau. These data suggest that APOE genotype is not directly linked to synaptic spread of tau in our model, but other mechanisms involving non-cell autonomous manners of tau spread are still possible.
Collapse
Affiliation(s)
- Caitlin Davies
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jane Tulloch
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Ellie Yip
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lydia Currie
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Marti Colom-Cadena
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lewis Wilkins
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Monique Hooley
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Makis Tzioras
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
47
|
Kamaruzzaman MA, Romli MH, Abas R, Vidyadaran S, Hidayat Baharuldin MT, Nasaruddin ML, Thirupathirao V, Sura S, Warsito K, Mohd Nor NH, Azwaruddin MA, Alshawsh MA, Mohd Moklas MA. Regulatory role of the endocannabinoid system on glial cells toward cognitive function in Alzheimer's disease: A systematic review and meta-analysis of animal studies. Front Pharmacol 2023; 14:1053680. [PMID: 36959856 PMCID: PMC10028478 DOI: 10.3389/fphar.2023.1053680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Objective: Over the last decade, researchers have sought to develop novel medications against dementia. One potential agent under investigation is cannabinoids. This review systematically appraised and meta-analyzed published pre-clinical research on the mechanism of endocannabinoid system modulation in glial cells and their effects on cognitive function in animal models of Alzheimer's disease (AD). Methods: A systematic review complying with PRISMA guidelines was conducted. Six databases were searched: EBSCOHost, Scopus, PubMed, CINAHL, Cochrane, and Web of Science, using the keywords AD, cannabinoid, glial cells, and cognition. The methodological quality of each selected pre-clinical study was evaluated using the SYRCLE risk of bias tool. A random-effects model was applied to analyze the data and calculate the effect size, while I2 and p-values were used to assess heterogeneity. Results: The analysis included 26 original articles describing (1050 rodents) with AD-like symptoms. Rodents treated with cannabinoid agonists showed significant reductions in escape latency (standard mean difference [SMD] = -1.26; 95% confidence interval [CI]: -1.77 to -0.76, p < 0.00001) and ability to discriminate novel objects (SMD = 1.40; 95% CI: 1.04 to 1.76, p < 0.00001) compared to the control group. Furthermore, a significant decrease in Aβ plaques (SMD = -0.91; 95% CI: -1.55 to -0.27, p = 0.006) was observed in the endocannabinoid-treated group compared to the control group. Trends were observed toward neuroprotection, as represented by decreased levels of glial cell markers including glial fibrillary acid protein (SMD = -1.47; 95% CI: -2.56 to -0.38, p = 0.008) and Iba1 (SMD = -1.67; 95% CI: -2.56 to -0.79, p = 0.0002). Studies on the wild-type mice demonstrated significantly decreased levels of pro-inflammatory markers TNF-α, IL-1, and IL-6 (SMD = -2.28; 95% CI: -3.15 to -1.41, p = 0.00001). Despite the non-significant decrease in pro-inflammatory marker levels in transgenic mice (SMD = -0.47; 95% CI: -1.03 to 0.08, p = 0.09), the result favored the endocannabinoid-treated group over the control group. Conclusion: The revised data suggested that endocannabinoid stimulation promotes cognitive function via modulation of glial cells by decreasing pro-inflammatory markers in AD-like rodent models. Thus, cannabinoid agents may be required to modulate the downstream chain of effect to enhance cognitive stability against concurrent neuroinflammation in AD. Population-based studies and well-designed clinical trials are required to characterize the acceptability and real-world effectiveness of cannabinoid agents. Systematic Review Registration: [https://inplasy.com/inplasy-2022-8-0094/], identifier [Inplasy Protocol 3770].
Collapse
Affiliation(s)
- Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Hibatullah Romli
- Department of Nursing and Rehabilitation, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Sharmili Vidyadaran
- Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | - Sreenivasulu Sura
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- Department of Preclinical Sciences, Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Kampar, Malaysia
| | - Kabul Warsito
- Department of Agrotechnology, Faculty of Science and Technology, University of Pembangunan Panca Budi, Medan, Indonesia
| | - Nurul Huda Mohd Nor
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Amsyar Azwaruddin
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Science, Monash University, Clayton, VIC, Australia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Mohamad Aris Mohd Moklas, ; Mohammed Abdullah Alshawsh,
| |
Collapse
|
48
|
Implications of fractalkine on glial function, ablation and glial proteins/receptors/markers—understanding its therapeutic usefulness in neurological settings: a narrative review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Background
Fractalkine (CX3CL1) is a chemokine predominantly released by neurons. As a signaling molecule, CX3CL1 facilitates talk between neurons and glia. CX3CL1 is considered as a potential target which could alleviate neuroinflammation. However, certain controversial results and ambiguous role of CX3CL1 make it inexorable to decipher the overall effects of CX3CL1 on the physiopathology of glial cells.
Main body of the abstract
Implications of cross-talk between CX3CL1 and different glial proteins/receptors/markers will give a bird eye view of the therapeutic significance of CX3CL1. Keeping with the need, this review identifies the effects of CX3CL1 on glial physiopathology, glial ablation, and gives a wide coverage on the effects of CX3CL1 on certain glial proteins/receptors/markers.
Short conclusion
Pinpoint prediction of the therapeutic effect of CX3CL1 on neuroinflammation needs further research. This is owing to certain obscure roles and implications of CX3CL1 on different glial proteins/receptors/markers, which are crucial under neurological settings. Further challenges are imposed due to the dichotomous roles played by CX3CL1. The age-old chemokine shows many newer scopes of research in near future. Thus, overall assessment of the effect of CX3CL1 becomes crucial prior to its administration in neuroinflammation.
Collapse
|
49
|
Dingwall CB, Strickland A, Yum SW, Yim AK, Zhu J, Wang PL, Yamada Y, Schmidt RE, Sasaki Y, Bloom AJ, DiAntonio A, Milbrandt J. Macrophage depletion blocks congenital SARM1-dependent neuropathy. J Clin Invest 2022; 132:e159800. [PMID: 36287209 PMCID: PMC9711884 DOI: 10.1172/jci159800] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Axon loss contributes to many common neurodegenerative disorders. In healthy axons, the axon survival factor NMNAT2 inhibits SARM1, the central executioner of programmed axon degeneration. We identified 2 rare NMNAT2 missense variants in 2 brothers afflicted with a progressive neuropathy syndrome. The polymorphisms resulted in amino acid substitutions V98M and R232Q, which reduced NMNAT2 NAD+-synthetase activity. We generated a mouse model to mirror the human syndrome and found that Nmnat2V98M/R232Q compound-heterozygous CRISPR mice survived to adulthood but developed progressive motor dysfunction, peripheral axon loss, and macrophage infiltration. These disease phenotypes were all SARM1-dependent. Remarkably, macrophage depletion therapy blocked and reversed neuropathic phenotypes in Nmnat2V98M/R232Q mice, identifying a SARM1-dependent neuroimmune mechanism as a key driver of disease pathogenesis. These findings demonstrate that SARM1 induced inflammatory neuropathy and highlight the potential of immune therapy as a treatment for this rare syndrome and other neurodegenerative conditions associated with NMNAT2 loss and SARM1 activation.
Collapse
Affiliation(s)
- Caitlin B. Dingwall
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sabrina W. Yum
- Division of Neurology, Children’s Hospital of Philadelphia, Department of Neurology, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Aldrin K.Y. Yim
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jian Zhu
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peter L. Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yurie Yamada
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert E. Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - A. Joseph Bloom
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
| | - Aaron DiAntonio
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Needleman Center for Neurometabolism and Axonal Therapeutics, St. Louis, Missouri, USA
| |
Collapse
|
50
|
Fernandez A, Gomez MT, Vidal R. Lack of ApoE inhibits ADan amyloidosis in a mouse model of familial Danish dementia. J Biol Chem 2022; 299:102751. [PMID: 36436561 PMCID: PMC9792896 DOI: 10.1016/j.jbc.2022.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
The Apolipoprotein E-ε4 allele (APOE-ε4) is the strongest genetic risk factor for late onset Alzheimer disease (AD). ApoE plays a critical role in amyloid-β (Aβ) accumulation in AD, and genetic deletion of the murine ApoE gene in mouse models results in a decrease or inhibition of Aβ deposition. The association between the presence of ApoE and amyloid in amyloidoses suggests a more general role for ApoE in the fibrillogenesis process. However, whether decreasing levels of ApoE would attenuate amyloid pathology in different amyloidoses has not been directly addressed. Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease characterized by the presence of widespread parenchymal and vascular Danish amyloid (ADan) deposition and neurofibrillary tangles. A transgenic mouse model for FDD (Tg-FDD) is characterized by parenchymal and vascular ADan deposition. To determine the effect of decreasing ApoE levels on ADan accumulation in vivo, we generated a mouse model by crossing Tg-FDD mice with ApoE KO mice (Tg-FDD+/-/ApoE-/-). Lack of ApoE results in inhibition of ADan deposition up to 18 months of age. Additionally, our results from a genetic screen of Tg-FDD+/-/ApoE-/- mice emphasize the significant role for ApoE in neurodegeneration in FDD via glial-mediated mechanisms. Taken together, our findings suggest that the interaction between ApoE and ADan plays a key role in FDD pathogenesis, in addition to the known role for ApoE in amyloid plaque formation in AD.
Collapse
Affiliation(s)
- Anllely Fernandez
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Maria-Teresa Gomez
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, USA,For correspondence: Ruben Vidal
| |
Collapse
|