1
|
Maes M, Vasupanrajit A, Jirakran K, Zhou B, Tunvirachaisakul C, Almulla AF. Simple dysmood disorder, a mild subtype of major depression, is not an inflammatory condition: Depletion of the compensatory immunoregulatory system. J Affect Disord 2025; 375:75-85. [PMID: 39848470 DOI: 10.1016/j.jad.2025.01.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/13/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND A recent study conducted by the laboratory of the first author revealed that major depression is composed of two distinct subtypes: major dysmood disorder (MDMD) and simple dysmood disorder (SDMD). The latter is a less severe phenotype with fewer aberrant biological pathways. MDMD, but not SDMD, patients were identified to have highly sensitized cytokine/growth factor networks using stimulated whole blood cultures. However, no information regarding serum cytokines/chemokines/growth factors in SDMD is available. OBJECTIVES This case-control study compares 48 serum cytokines/chemokines/growth factors in academic students with SDMD (n = 64) and first episode (FE)-SDMD (n = 47) to those of control students (n = 44) using a multiplex assay. FINDINGS Both FE-SDMD and SDMD exhibited a notable inhibition of immune profiles, such as the compensatory immunoregulatory response system (CIRS) and alternative M2 macrophage and T helper-2 (Th-2) profiles. We observed a substantial reduction in the serum concentrations of five proteins: interleukin (IL)-4, IL-10, soluble IL-2 receptor (sIL-2R), IL-12p40, and macrophage colony-stimulating factor. A considerable proportion of the variability observed in suicidal behaviors (26.7 %) can be accounted for by serum IL-4, IL-10, and sIL-2R (all decreased), CCL11 (eotaxin) and granulocyte CSF (both increased). The same biomarkers (except for IL-10), accounted for 25.5 % of the variance in SDMS severity. A significant correlation exists between decreased levels of IL-4 and elevated ratings of the brooding type of rumination. CONCLUSIONS SDMD is characterized by the suppression of the CIRS profile, which signifies a disruption of immune homeostasis and tolerance, rather than the presence of an inflammatory response.
Collapse
Affiliation(s)
- Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Maximizing Children's Developmental Potential, Department of Pediatric, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.
| |
Collapse
|
2
|
Perez Umana ER, Mendes E, Casaro MC, Lazarini M, Oliveira FA, Sperling AI, Ferreira CM. Exogenous acetate mitigates later enhanced allergic airway inflammation in a menopausal mouse model. Front Cell Infect Microbiol 2025; 15:1543822. [PMID: 40292217 PMCID: PMC12023485 DOI: 10.3389/fcimb.2025.1543822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/06/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Asthma, an inflammatory lung disease, disproportionately affects women in adulthood and is associated with a decline in estrogen levels during the menstrual cycle and menopause. To study asthma symptoms during menopause, we used a mouse model of postmenopausal asthma via ovariectomy (OVx). Similar to human menopause, we previously discovered that re-exposure of allergic OVx mice to allergen exacerbates lung inflammation. Surprisingly, we found that probiotic treatment alleviates this inflammatory exacerbation and produces acetate as one of its metabolites. Here, we investigate whether exogenous acetate alone can inhibit the exacerbation of experimental asthma in menopause. Methods Mice received acetate administration before and during sensitization. After challenge and OVx the mice were subjected to a second challenge to test whether acetate protected against airway inflammation after menopause induction. Results Acetate administration reduced all lung T2 inflammatory responses, as well as the serum immunoglobulin (IgE) level. Early acetate treatment led to an increase in regulatory T cells, even 3 weeks after cessation of the treatment, suggesting that the increase in Treg percentage is associated with the reduction of type 2 inflammation in the airways after menopause induction, indicating its potential role in this process. Given the significant role of the lung-gut axis in asthma and the association of asthma and menopause with intestinal dysfunctions, this finding is particularly relevant; we also analyzed several markers of intestinal integrity. Compared with sham-operated mice, rechallenged allergic menopausal mice had a reduction in the intestinal epithelial genes, MUC2 and OCLN, and preventive supplementation with acetate returned their expression to normal. No change was found in menopausal mice without allergic inflammation. Conclusion In conclusion, treatment with acetate prior to estrogen level decline protects sensitized and challenged mice against later airway T2 inflammation and may restore gut homeostasis.
Collapse
Affiliation(s)
- Evelyn Roxana Perez Umana
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema, Brazil
| | - Eduardo Mendes
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema, Brazil
| | - Mateus Campos Casaro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema, Brazil
| | - Mariana Lazarini
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema, Brazil
| | - Fernando A. Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC), Center of Mathematics, Computing and Cognition (CMCC), Federal University of ABC, São Bernando do Campo, Brazil
| | - Anne I. Sperling
- Pulmonary and Critical Care Laboratory, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences, University Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
3
|
Kakeji Y, Kogame T, Yagi Y, Kambe N, Kabashima K. A case of refractory alopecia areata successfully treated by combining delgocitinib ointment with excimer laser. SKIN HEALTH AND DISEASE 2025; 5:154-157. [PMID: 40365250 PMCID: PMC12068471 DOI: 10.1093/skinhd/vzaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/08/2025] [Indexed: 05/15/2025]
Abstract
Alopecia areata (AA) is an autoimmune disease that causes recurrent hair loss. No treatment has been effective in the long term because of the unstable efficacy and possible side effects. AA is primarily driven by Th1-type inflammation, centred around CD8+ T cells and interferon-γ (IFN-γ). Recent studies have revealed that the Janus kinase (JAK) family is also involved in the pathogenesis of AA, leading to JAK inhibitors emerging as a treatment for AA. We present a case of a 39-year-old Japanese woman with severe AA who exhibited a Severity of Alopecia Tool (SALT) score 80 accompanied by atopic dermatitis (AD). Despite conventional treatments, the condition worsened from a SALT score of 80 to 100. We subsequently attempted treatment with an excimer laser (EL), but no hair regrowth was observed. However, the introduction of 0.5% delgocitinib ointment in combination with EL led to complete hair regrowth beginning 2 months later, with complete remission achieved after 1 year. This case highlights the potential efficacy of combining delgocitinib ointment with EL in treating severe AA, particularly in patients with AD. The findings suggest that this combination therapy may provide a safer and more effective alternative to oral JAK inhibitors. Nevertheless, further studies are needed to elucidate the underlying mechanisms and fully evaluate the therapeutic synergy.
Collapse
Affiliation(s)
- Yukito Kakeji
- Department of Dermatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Toshiaki Kogame
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Yagi
- Department of Dermatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Naotomo Kambe
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Kotlyarov S, Oskin D. The Role of Inflammation in the Pathogenesis of Comorbidity of Chronic Obstructive Pulmonary Disease and Pulmonary Tuberculosis. Int J Mol Sci 2025; 26:2378. [PMID: 40141021 PMCID: PMC11942565 DOI: 10.3390/ijms26062378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The comorbid course of chronic obstructive pulmonary disease (COPD) and pulmonary tuberculosis is an important medical and social problem. Both diseases, although having different etiologies, have many overlapping relationships that mutually influence their course and prognosis. The aim of the current review is to discuss the role of different immune mechanisms underlying inflammation in COPD and pulmonary tuberculosis. These mechanisms are known to involve both the innate and adaptive immune system, including various cellular and intercellular interactions. There is growing evidence that immune mechanisms involved in the pathogenesis of both COPD and tuberculosis may jointly contribute to the tuberculosis-associated obstructive pulmonary disease (TOPD) phenotype. Several studies have reported prior tuberculosis as a risk factor for COPD. Therefore, the study of the mechanisms that link COPD and tuberculosis is of considerable clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Dmitry Oskin
- Department of Infectious Diseases and Phthisiology, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
5
|
Arroyo-Olarte RD, Flores-Castelán JC, Armas-López L, Escobedo G, Terrazas LI, Ávila-Moreno F, Leon-Cabrera S. Targeted Demethylation of FOXP3-TSDR Enhances the Suppressive Capacity of STAT6-deficient Inducible T Regulatory Cells. Inflammation 2024; 47:2159-2172. [PMID: 38700792 PMCID: PMC11606997 DOI: 10.1007/s10753-024-02031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 11/30/2024]
Abstract
In vitro induced T regulatory cells (iTregs) are promising for addressing inflammation-driven diseases. However, current protocols for the generation and expansion of iTregs fail to induce extensive demethylation of the Treg-specific demethylated region (TSDR) within the FOXP3 gene, recognized as the master regulator for regulatory T cells (Tregs). This deficiency results in the rapid loss of Foxp3 expression and an unstable regulatory phenotype. Nevertheless, inhibition of STAT6 signaling effectively stabilizes Foxp3 expression in iTregs. Thus, this study aimed to develop a protocol combining epigenetic editing with STAT6 deficiency to improve iTregs' ability to maintain stable suppressive function and a functional phenotype. Our findings demonstrate that the combination of STAT6 deficiency (STAT6-/-) with targeted demethylation of the TSDR using a CRISPR-TET1 tool leads to extensive demethylation of FOXP3-TSDR. Demethylation in STAT6-/- iTregs was associated with enhanced expression of Foxp3 and suppressive markers such as CTLA-4, PD-1, IL-10, and TGF-β. Furthermore, the edited STAT6-/- iTregs exhibited an increased capacity to suppress CD8+ and CD4+ lymphocytes and could more efficiently impair Th1-signature gene expression compared to conventional iTregs. In conclusion, the deactivation of STAT6 and TSDR-targeted demethylation via CRISPR-TET1 is sufficient to induce iTregs with heightened stability and increased suppressive capacity, offering potential applications against inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Rubén D Arroyo-Olarte
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Edo. De México, Tlalnepantla, México
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Edo. De México, Tlalnepantla, México
| | - Juan C Flores-Castelán
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Edo. De México, Tlalnepantla, México
| | - Leonel Armas-López
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Edo. De México, Tlalnepantla, México
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico City, Mexico
| | - Luis I Terrazas
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Edo. De México, Tlalnepantla, México
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Edo. De México, Tlalnepantla, México
| | - Federico Ávila-Moreno
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Edo. De México, Tlalnepantla, México
| | - Sonia Leon-Cabrera
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Edo. De México, Tlalnepantla, México.
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios 1, Los Reyes Iztacala, Edo. De México, Tlalnepantla, México.
| |
Collapse
|
6
|
Pu J, Hao G, Chen H, He W, Xiong C, Xiao J, Yang G. Preliminary evaluation of the protective effect of rEi-SAG19 on Eimeria intestinalis infection in rabbits. Exp Parasitol 2024; 267:108845. [PMID: 39423994 DOI: 10.1016/j.exppara.2024.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/10/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Eimeria intestinalis is one of the most pathogenic coccidia species in rabbits. Anticoccidial treaments are the main measures to control rabbit coccidiosis now, but there are drug resistance and residues concerns. Therefore, vaccine has been used as an alternative strategy. The surface antigens (SAGs) of apicomplexan protozoa play a role in adhesion and invasion of host intestinal cells, and are considered to be potential candidate antigens for vaccines. In this study, transcriptional analysis of 5 Ei-SAGs genes at four developmental stages was conducted, then the Ei-SAG19 gene were screened out for prokaryotic expression and the reactogenicity of recombinant SAG19 (rEi-SAG19) was investigated by immunoblotting. To assessment the protective effects of rEi-SAG19, rabbits (n = 40) were randomly divided into four groups (Blank control, PBS-infected, Trx-His-S-Quil-A-infected and rEi-SAG19 immunized groups), the rEi-SAG19 immunized group was subcutaneously immunized with 100 μg rEi-SAG19 in the neck with an interval of two weeks, and challenged with 5 × 104 homologous oocysts two weeks after the second immunization. Two weeks after the challenge, all rabbits were sacrificed. After that, the level of serum specific IgG antibody was detected weekly and the level of cytokines in serum before the challenge were determined. At the end of the experiment, the weight gain, oocyst reduction rate, lesion score and anticoccidial index (ACI) were calculated. The results showed that rEi-SAG19 has a good reactogenicity. The relative weight gain rate, oocyst reduction rate and ACI of the rabbits in rEi-SAG19 immunized group were 80.51%, 72.6%, and 165.1, respectively, which has a moderate protective effect. The level of serum specific IgG antibody and IL-4 rised significantly (P < 0.05), but the levels of IL-2, IFN-γ and IL-10 had no significant difference (P > 0.05). Our results indicated that rEi-SAG19 could provides moderate protective effect against E. intestinalis infection in rabbits (ACI = 165.1). Therefore, rEi-SAG19 could be used as a vaccine candidate antigen for E. intestinalis.
Collapse
Affiliation(s)
- Jiayan Pu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Ge Hao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Hao Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Wei He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Changming Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| |
Collapse
|
7
|
Guan J, Min S, Xia Y, Guo Z, Zhou X. Identifying colorectal cancer subtypes and establishing a prognostic model using metabolic plasticity and ferroptosis genes. Sci Rep 2024; 14:27277. [PMID: 39516556 PMCID: PMC11549462 DOI: 10.1038/s41598-024-78505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic plasticity and ferroptosis are essential for colorectal cancer (CRC) progression. The effects and prognostic value of metabolic plasticity- and ferroptosis-related genes (MPFRGs) in CRC remain unclear. We established a prognostic model for CRC patients by identifying important genes in metabolic plasticity and ferroptosis. Data of CRC patients were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus; MPFRG data were obtained from GeneCards and FerrDb. We performed functional (to explore differences between the two metabolic subtypes) and single-sample gene set (to assess the immune environment) enrichment analyses. Immunophenotype, tumor immunological dysfunction, and exclusion scores were assessed to determine patient immune responses. A least absolute shrinkage and selection operator-Cox regression model comprising 10 significant differentially expressed genes of metabolic plasticity and ferroptosis (MPFDEGs) was constructed using TCGA training cohort and validated using the GSE17536 and GSE39582 datasets. We established a nomogram comprising metabolic plasticity- and ferroptosis-based signatures, revealing the clinical application and potential molecular mechanisms underlying the role of MPFRGs in CRC. Our model (developed based on 10 MPFDEGs) is efficient for calculating the overall survival of CRC patients. Our findings provide new strategies for the clinical management and individualized treatment of these patients.
Collapse
Affiliation(s)
- Jingwen Guan
- Department of Pathology, Suzhou Hospital of Anhui Medical University, Anhui, China.
| | - Simin Min
- Department of Science and Education Section, Suzhou Hospital of Anhui Medical University, Anhui, China
| | - Yan Xia
- Department of Pathology, Suzhou Hospital of Anhui Medical University, Anhui, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, Anhui, China
| | - Xiaolan Zhou
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
8
|
Cheon J, Kim B, Lee J, Shin J, Kim TH. Functions and Clinical Applications of Extracellular Vesicles in T H2 Cell-Mediated Airway Inflammatory Diseases: A Review. Int J Mol Sci 2024; 25:9455. [PMID: 39273399 PMCID: PMC11394744 DOI: 10.3390/ijms25179455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Type 2 airway inflammation (T2AI), driven by type 2 innate lymphoid and CD4+ T helper 2 cells, leads to various diseases and conditions, such as chronic rhinosinusitis with nasal polyps, allergic rhinitis, and asthma. Emerging evidence suggests the involvement of extracellular vesicles (EVs) in these diseases. In this review, we describe the immunological T2AI pathogenic mechanisms, outline EV characteristics, and highlight their applications in the diagnosis and treatment of T2AI. An extensive literature search was conducted using appropriate strategies to identify relevant articles from various online databases. EVs in various biological samples showed disease-specific characteristics for chronic rhinosinusitis with nasal polyps, allergic rhinitis, and asthma, with some demonstrating therapeutic effects against these conditions. However, most studies have been limited to in vitro and animal models, highlighting the need for further clinical research on the diagnostic and therapeutic applications of EVs.
Collapse
Affiliation(s)
- Jaehwan Cheon
- Department of Biomedical Science, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Byoungjae Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Juhyun Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jaemin Shin
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Zong Y, Deng K, Chong WP. Regulation of Treg cells by cytokine signaling and co-stimulatory molecules. Front Immunol 2024; 15:1387975. [PMID: 38807592 PMCID: PMC11131382 DOI: 10.3389/fimmu.2024.1387975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs), a vital component of the immune system, are responsible for maintaining immune homeostasis and preventing excessive immune responses. This review explores the signaling pathways of the cytokines that regulate Treg cells, including transforming growth factor beta (TGF-β), interleukin (IL)-2, IL-10, and IL-35, which foster the differentiation and enhance the immunosuppressive capabilities of Tregs. It also examines how, conversely, signals mediated by IL-6 and tumor necrosis factor -alpha (TNF-α) can undermine Treg suppressive functions or even drive their reprogramming into effector T cells. The B7 family comprises indispensable co-stimulators for T cell activation. Among its members, this review focuses on the capacity of CTLA-4 and PD-1 to regulate the differentiation, function, and survival of Tregs. As Tregs play an essential role in maintaining immune homeostasis, their dysfunction contributes to the pathogenesis of autoimmune diseases. This review delves into the potential of employing Treg-based immunotherapy for the treatment of autoimmune diseases, transplant rejection, and cancer. By shedding light on these topics, this article aims to enhance our understanding of the regulation of Tregs by cytokines and their therapeutic potential for various pathological conditions.
Collapse
Affiliation(s)
- Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Kaihang Deng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| |
Collapse
|
10
|
Uriol-Rivera MG, Obrador-Mulet A, Juliá MR, Daza-Cajigal V, Delgado-Sanchez O, Garcia Alvarez A, Gomez-Lobon A, Carrillo-Garcia P, Saus-Sarrias C, Gómez-Cobo C, Ramis-Cabrer D, Gasco Company J, Molina-Infante J. Sequential administration of paricalcitol followed by IL-17 blockade for progressive refractory IgA nephropathy patients. Sci Rep 2024; 14:4866. [PMID: 38418932 PMCID: PMC10902332 DOI: 10.1038/s41598-024-55425-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
There is no established treatment for progressive IgA nephropathy refractory to steroids and immunosuppressant drugs (r-IgAN). Interleukin 17 (IL-17) blockade has garnered interest in immune-mediated diseases involving the gut-kidney axis. However, single IL-17A inhibition induced paradoxical effects in patients with Crohn's disease and some cases of de novo glomerulonephritis, possibly due to the complete Th1 cell response, along with the concomitant downregulation of regulatory T cells (Tregs). Seven r-IgAN patients were treated with at least six months of oral paricalcitol, followed by the addition of subcutaneous anti-IL-17A (secukinumab). After a mean follow-up of 28 months, proteinuria decreased by 71% (95% CI: 56-87), P < 0.001. One patient started dialysis, while the annual eGFR decline in the remaining patients [mean (95% CI)] was reduced by 4.9 mL/min/1.73 m2 (95% CI: 0.1-9.7), P = 0.046. Circulating Th1, Th17, and Treg cells remained stable, but Th2 cells decreased, modifying the Th1/Th2 ratio. Intriguingly, accumulation of circulating Th17.1 cells was observed. This novel sequential therapy appears to optimize renal advantages in patients with r-IgAN and elicit alterations in potentially pathogenic T helper cells.
Collapse
Affiliation(s)
- Miguel G Uriol-Rivera
- Nephrology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain.
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain.
| | - Aina Obrador-Mulet
- Nephrology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Maria Rosa Juliá
- Immunology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Vanessa Daza-Cajigal
- Immunology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Olga Delgado-Sanchez
- Pharmacy Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Angel Garcia Alvarez
- Pharmacy Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Ana Gomez-Lobon
- Pharmacy Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Paula Carrillo-Garcia
- Pathology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Carlos Saus-Sarrias
- Pathology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
| | - Cristina Gómez-Cobo
- Laboratory Medicine Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Daniel Ramis-Cabrer
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Joan Gasco Company
- Nephrology Department, Hospital Universitario Son Espases, Palma de Mallorca, Balearic Islands, Spain
- Fundació Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | | |
Collapse
|
11
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Tamayo JM, Osman HC, Schwartzer JJ, Ashwood P. The influence of asthma on neuroinflammation and neurodevelopment: From epidemiology to basic models. Brain Behav Immun 2024; 116:218-228. [PMID: 38070621 DOI: 10.1016/j.bbi.2023.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Asthma is a highly heterogeneous inflammatory disease that can have a significant effect on both the respiratory system and central nervous system. Population based studies and animal models have found asthma to be comorbid with a number of neurological conditions, including depression, anxiety, and neurodevelopmental disorders. In addition, maternal asthma during pregnancy has been associated with neurodevelopmental disorders in the offspring, such as autism spectrum disorders and attention deficit hyperactivity disorder. In this article, we review the most current epidemiological studies of asthma that identify links to neurological conditions, both as it relates to individuals that suffer from asthma and the impacts asthma during pregnancy may have on offspring neurodevelopment. We also discuss the relevant animal models investigating these links, address the gaps in knowledge, and explore the potential future directions in this field.
Collapse
Affiliation(s)
- Juan M Tamayo
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Hadley C Osman
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and the M.I.N.D. Institute, University of California at Davis, CA 95817, USA.
| |
Collapse
|
13
|
Zhang Q, Sun W, Wang Q, Zheng X, Zhang R, Zhang N. A High MCT-Based Ketogenic Diet Suppresses Th1 and Th17 Responses to Ameliorate Experimental Autoimmune Encephalomyelitis in Mice by Inhibiting GSDMD and JAK2-STAT3/4 Pathways. Mol Nutr Food Res 2024; 68:e2300602. [PMID: 38054637 DOI: 10.1002/mnfr.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Indexed: 12/07/2023]
Abstract
SCOPE Inflammation and pyroptosis play important roles in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated the therapeutic potential of ketogenic diet (KD) in EAE. METHODS AND RESULTS The administration of KD reduces demyelination and microglial activation in the spinal cord of EAE mice. Meanwhile, KD decreases the levels of Th1 and Th17 associated cytokines/transcription factors production (T-bet, IFN-γ, RORγt, and IL-17) and increases those of Th2 and Treg cytokines/transcription factors (GATA3, IL-4, Foxp3, and IL-10) in the spinal cord and spleen. Corresponding, KD reduces the expression of chemokines in EAE, which those chemokines associate with T-cell infiltration into central nervous system (CNS). In addition, KD inhibits the GSDMD activation in microglia, oligodendrocyte, CD31+ cells, CCR2+ cells, and T cells in the spinal cord. Moreover, KD significantly decreases the ratios of p-JAK2/JAK2, p-STAT3/STAT3, and p-STAT4/STAT4, as well as GSDMD in EAE mice. CONCLUSIONS this study demonstrates that KD reduces the activation and differentiation of T cells in the spinal cord and spleen and prevents T cell infiltration into CNS of EAE via modulating the GSDMD and STAT3/4 pathways, suggesting that KD is a potentially effective strategy in the treatment of MS.
Collapse
Affiliation(s)
- Qianye Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Wei Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, 252000, China
| |
Collapse
|
14
|
He S, Zhou F. Characterization of T-Cell Epitopes in Food Allergens by Bioinformatic Tools. Methods Mol Biol 2024; 2717:77-99. [PMID: 37737979 DOI: 10.1007/978-1-0716-3453-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The identification of T-cell epitopes is a critical step in the understanding of the immunologic mechanisms such as food allergy. Epitope screening in silico by bioinformatic tools can be used to identify T-cell epitopes, which can save time and resources. In this chapter, a multiparametric approach to predict and assess major histocompatibility complex (MHC) class II binding T-cell epitopes using bioinformatics was introduced for food allergens. Furthermore, the ability of predicted T-cell epitopes to induce interleukin (IL)-4, as well as the allergenicity potential based on the sequence analysis and population coverage of epitopes were also determined. The molecular docking approach was further used to explore the binding ability between epitopes and human leukocyte antigen (HLA) class II molecules. The amino acids that might be responsible for binding to HLA class II molecules and their binding interactions were analyzed.
Collapse
Affiliation(s)
- Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, China.
| | - Fanlin Zhou
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
15
|
Ridnour LA, Cheng RYS, Heinz WF, Pore M, Gonzalez AL, Femino EL, Moffat R, Wink AL, Imtiaz F, Coutinho L, Butcher D, Edmondson EF, Rangel MC, Wong STC, Lipkowitz S, Glynn S, Vitek MP, McVicar DW, Li X, Anderson SK, Paolocci N, Hewitt SM, Ambs S, Billiar TR, Chang JC, Lockett SJ, Wink DA. Spatial analysis of NOS2 and COX2 interaction with T-effector cells reveals immunosuppressive landscapes associated with poor outcome in ER- breast cancer patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572867. [PMID: 38187660 PMCID: PMC10769421 DOI: 10.1101/2023.12.21.572867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Multiple immunosuppressive mechanisms exist in the tumor microenvironment that drive poor outcomes and decrease treatment efficacy. The co-expression of NOS2 and COX2 is a strong predictor of poor prognosis in ER- breast cancer and other malignancies. Together, they generate pro-oncogenic signals that drive metastasis, drug resistance, cancer stemness, and immune suppression. Using an ER- breast cancer patient cohort, we found that the spatial expression patterns of NOS2 and COX2 with CD3+CD8+PD1- T effector (Teff) cells formed a tumor immune landscape that correlated with poor outcome. NOS2 was primarily associated with the tumor-immune interface, whereas COX2 was associated with immune desert regions of the tumor lacking Teff cells. A higher ratio of NOS2 or COX2 to Teff was highly correlated with poor outcomes. Spatial analysis revealed that regional clustering of NOS2 and COX2 was associated with stromal-restricted Teff, while only COX2 was predominant in immune deserts. Examination of other immunosuppressive elements, such as PDL1/PD1, Treg, B7H4, and IDO1, revealed that PDL1/PD1, Treg, and IDO1 were primarily associated with restricted Teff, whereas B7H4 and COX2 were found in tumor immune deserts. Regardless of the survival outcome, other leukocytes, such as CD4 T cells and macrophages, were primarily in stromal lymphoid aggregates. Finally, in a 4T1 model, COX2 inhibition led to a massive cell infiltration, thus validating the hypothesis that COX2 is an essential component of the Teff exclusion process and, thus, tumor evasion. Our study indicates that NOS2/COX2 expression plays a central role in tumor immunosuppression. Our findings indicate that new strategies combining clinically available NOS2/COX2 inhibitors with various forms of immune therapy may open a new avenue for the treatment of aggressive ER-breast cancers.
Collapse
Affiliation(s)
- Lisa A Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Robert Y S Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - Milind Pore
- Imaging Mass Cytometry Frederick National Laboratory for Cancer Research
| | - Ana L Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Elise L Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Rebecca Moffat
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - Adelaide L Wink
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - Fatima Imtiaz
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - Leandro Coutinho
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Donna Butcher
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute
| | - Elijah F Edmondson
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute
| | - M Cristina Rangel
- Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Sharon Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
| | | | - Daniel W McVicar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Stephen K Anderson
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Basic Science Program, Frederick National Laboratory for Cancer Research
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University, and Department of Biomedical Sciences, University of Padova, Italy
- Laboratory of Pathology CCR, NCI, NIH
| | | | - Stefan Ambs
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Timothy R Billiar
- Mary and Ron Neal Cancer Center, Houston Methodist Hospital and Weill Cornell Medicine, Houston, TX
| | - Jenny C Chang
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
- Imaging Mass Cytometry Frederick National Laboratory for Cancer Research
- Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, SP, Brazil
- Molecular Histopathology Laboratories, Leidos Biomedical Research Inc. for the National Cancer Institute
- Houston Methodist Weill Cornell Medical College, Houston TX
- Women's Malignancies Branch, CCR, NCI, NIH
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, Galway, Ireland
- (Mike Duke)
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
- Basic Science Program, Frederick National Laboratory for Cancer Research
- Division of Cardiology, Department of Medicine, Johns Hopkins University, and Department of Biomedical Sciences, University of Padova, Italy
- Laboratory of Pathology CCR, NCI, NIH
- Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
- Mary and Ron Neal Cancer Center, Houston Methodist Hospital and Weill Cornell Medicine, Houston, TX
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research; Leidos Biomedical Research Inc. for the National Cancer Institute, Frederick, MD
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| |
Collapse
|
16
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
17
|
Rabadam G, Wibrand C, Flynn E, Hartoularos GC, Sun Y, Ye CJ, Kim S, Gartner Z, Sirota M, Neely J. Coordinated immune dysregulation in Juvenile Dermatomyositis revealed by single-cell genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566033. [PMID: 37986917 PMCID: PMC10659396 DOI: 10.1101/2023.11.07.566033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Juvenile Dermatomyositis (JDM) is one of several childhood-onset autoimmune disorders characterized by a type I interferon response and autoantibodies. Treatment options are limited due to incomplete understanding of how the disease emerges from dysregulated cell states across the immune system. We therefore investigated the blood of JDM patients at different stages of disease activity using single-cell transcriptomics paired with surface protein expression. By immunophenotyping peripheral blood mononuclear cells, we observed skewing of the B cell compartment towards an immature naive state as a hallmark of JDM. Furthermore, we find that these changes in B cells are paralleled by signatures of Th2-mediated inflammation. Additionally, our work identified SIGLEC-1 expression in monocytes as a composite measure of heterogeneous type I interferon activity in disease. We applied network analysis to reveal that hyperactivation of the type I interferon response in all immune populations is coordinated with dysfunctional protein processing and regulation of cell death programming. This analysis separated the ubiquitously expressed type I interferon response into a central hub and revealed previously masked cell states. Together, these findings reveal the coordinated immune dysregulation underpinning JDM and provide novel insight into strategies for restoring balance in immune function.
Collapse
Affiliation(s)
- Gabrielle Rabadam
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, UCSF, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
| | - Camilla Wibrand
- Aarhus University, Aarhus, Denmark
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Emily Flynn
- CoLabs, UCSF, San Francisco, California, USA
| | - George C. Hartoularos
- Graduate Program in Biological and Medical Informatics, UCSF, San Francisco, California, USA
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
| | - Yang Sun
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Susan Kim
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Zev Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jessica Neely
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| |
Collapse
|
18
|
Zheremyan EA, Ustiugova AS, Uvarova AN, Karamushka NM, Stasevich EM, Gogoleva VS, Bogolyubova AV, Mitkin NA, Kuprash DV, Korneev KV. Differentially activated B cells develop regulatory phenotype and show varying immunosuppressive features: a comparative study. Front Immunol 2023; 14:1178445. [PMID: 37731503 PMCID: PMC10509016 DOI: 10.3389/fimmu.2023.1178445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Regulatory B lymphocytes (Bregs) are B cells with well-pronounced immunosuppressive properties, allowing them to suppress the activity of effector cells. A broad repertoire of immunosuppressive mechanisms makes Bregs an attractive tool for adoptive cell therapy for diseases associated with excessive activation of immune reactions. Such therapy implies Breg extraction from the patient's peripheral blood, ex vivo activation and expansion, and further infusion into the patient. At the same time, the utility of Bregs for therapeutic approaches is limited by their small numbers and extremely low survival rate, which is typical for all primary B cell cultures. Therefore, extracting CD19+ cells from the patient's peripheral blood and specifically activating them ex vivo to make B cells acquire a suppressive phenotype seems to be far more productive. It will allow a much larger number of B cells to be obtained initially, which may significantly increase the likelihood of successful immunosuppression after adoptive Breg transfer. This comparative study focuses on finding ways to efficiently manipulate B cells in vitro to differentiate them into Bregs. We used CD40L, CpG, IL4, IL21, PMA, and ionomycin in various combinations to generate immunosuppressive phenotype in B cells and performed functional assays to test their regulatory capacity. This work shows that treatment of primary B cells using CD40L + CpG + IL21 mix was most effective in terms of induction of functionally active regulatory B lymphocytes with high immunosuppressive capacity ex vivo.
Collapse
Affiliation(s)
- Elina A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alina S Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Aksinya N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nina M Karamushka
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Violetta S Gogoleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Apollinariya V Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Nikita A Mitkin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
19
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
20
|
Baris S, Benamar M, Chen Q, Catak MC, Martínez-Blanco M, Wang M, Fong J, Massaad MJ, Sefer AP, Kara A, Babayeva R, Eltan SB, Yucelten AD, Bozkurtlar E, Cinel L, Karakoc-Aydiner E, Zheng Y, Wu H, Ozen A, Schmitz-Abe K, Chatila TA. Severe allergic dysregulation due to a gain of function mutation in the transcription factor STAT6. J Allergy Clin Immunol 2023; 152:182-194.e7. [PMID: 36758835 PMCID: PMC10330134 DOI: 10.1016/j.jaci.2023.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Inborn errors of immunity have been implicated in causing immune dysregulation, including allergic diseases. STAT6 is a key regulator of allergic responses. OBJECTIVES This study sought to characterize a novel gain-of-function STAT6 mutation identified in a child with severe allergic manifestations. METHODS Whole-exome and targeted gene sequencing, lymphocyte characterization, and molecular and functional analyses of mutated STAT6 were performed. RESULTS This study reports a child with a missense mutation in the DNA binding domain of STAT6 (c.1114G>A, p.E372K) who presented with severe atopic dermatitis, eosinophilia, and elevated IgE. Naive lymphocytes from the affected patient displayed increased TH2- and suppressed TH1- and TH17-cell responses. The mutation augmented both basal and cytokine-induced STAT6 phosphorylation without affecting dephosphorylation kinetics. Treatment with the Janus kinase 1/2 inhibitor ruxolitinib reversed STAT6 hyperresponsiveness to IL-4, normalized TH1 and TH17 cells, suppressed the eosinophilia, and improved the patient's atopic dermatitis. CONCLUSIONS This study identified a novel inborn error of immunity due to a STAT6 gain-of-function mutation that gave rise to severe allergic dysregulation. Janus kinase inhibitor therapy could represent an effective targeted treatment for this disorder.
Collapse
Affiliation(s)
- Safa Baris
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Mónica Martínez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Muyun Wang
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Jason Fong
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon; Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Asena Pinar Sefer
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Altan Kara
- TUBITAK Marmara Research Center, Gene Engineering and Biotechnology Institute, Gebze, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ayse Deniz Yucelten
- Department of Dermatology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Emine Bozkurtlar
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Leyla Cinel
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Yumei Zheng
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Mass
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Mass
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology School of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
21
|
Lee Y, Kim SH, Jeong H, Kim KH, Jeon D, Cho Y, Lee D, Nam KT. Role of Nox4 in Mitigating Inflammation and Fibrosis in Dextran Sulfate Sodium-Induced Colitis. Cell Mol Gastroenterol Hepatol 2023; 16:411-429. [PMID: 37207801 PMCID: PMC10372905 DOI: 10.1016/j.jcmgh.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND & AIMS Fibrosis development in ulcerative colitis is associated directly with the severity of mucosal inflammation, which increases the risk of colorectal cancer. The transforming growth factor-β (TGF-β) signaling pathway is an important source of tissue fibrogenesis, which is stimulated directly by reactive oxygen species produced from nicotinamide adenine dinucleotide phosphate oxidases (NOX). Among members of the NOX family, NOX4 expression is up-regulated in patients with fibrostenotic Crohn's disease (CD) and in dextran sulfate sodium (DSS)-induced murine colitis. The aim of this study was to determine whether NOX4 plays a role in fibrogenesis during inflammation in the colon using a mouse model. METHODS Acute and recovery models of colonic inflammation were performed by DSS administration to newly generated Nox4-/- mice. Pathologic analysis of colon tissues was performed, including detection of immune cells, proliferation, and fibrotic and inflammatory markers. RNA sequencing was performed to detect differentially expressed genes between Nox4-/- and wild-type mice in both the untreated and DSS-treated conditions, followed by functional enrichment analysis to explore the molecular mechanisms contributing to pathologic differences during DSS-induced colitis and after recovery. RESULTS Nox4-/- mice showed increased endogenous TGF-β signaling in the colon, increased reactive oxygen species levels, intensive inflammation, and an increased fibrotic region after DSS treatment compared with wild-type mice. Bulk RNA sequencing confirmed involvement of canonical TGF-β signaling in fibrogenesis of the DSS-induced colitis model. Up-regulation of TGF-β signaling affects collagen activation and T-cell lineage commitment, increasing the susceptibility for inflammation. CONCLUSIONS Nox4 protects against injury and plays a crucial role in fibrogenesis in DSS-induced colitis through canonical TGF-β signaling regulation, highlighting a new treatment target.
Collapse
Affiliation(s)
- Yura Lee
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Hee Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Donghun Jeon
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
22
|
Zheng C, Shi Y, Zou Y. T cell co-stimulatory and co-inhibitory pathways in atopic dermatitis. Front Immunol 2023; 14:1081999. [PMID: 36993982 PMCID: PMC10040887 DOI: 10.3389/fimmu.2023.1081999] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) targeting the T cell inhibitory pathways has revolutionized cancer treatment. However, ICIs might induce progressive atopic dermatitis (AD) by affecting T cell reactivation. The critical role of T cells in AD pathogenesis is widely known. T cell co-signaling pathways regulate T cell activation, where co-signaling molecules are essential for determining the magnitude of the T cell response to antigens. Given the increasing use of ICIs in cancer treatment, a timely overview of the role of T cell co-signaling molecules in AD is required. In this review, we emphasize the importance of these molecules involved in AD pathogenesis. We also discuss the potential of targeting T cell co-signaling pathways to treat AD and present the unresolved issues and existing limitations. A better understanding of the T cell co-signaling pathways would aid investigation of the mechanism, prognosis evaluation, and treatment of AD.
Collapse
Affiliation(s)
- Chunjiao Zheng
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuling Shi
- Institute of Psoriasis, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| | - Ying Zou
- Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Yuling Shi, ; Ying Zou,
| |
Collapse
|
23
|
In Silico Pan-Cancer Analysis Reveals Prognostic Role of the Erythroferrone (ERFE) Gene in Human Malignancies. Int J Mol Sci 2023; 24:ijms24021725. [PMID: 36675239 PMCID: PMC9864255 DOI: 10.3390/ijms24021725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The erythroferrone gene (ERFE), also termed CTRP15, belongs to the C1q tumor necrosis factor-related protein (CTRP) family. Despite multiple reports about the involvement of CTRPs in cancer, the role of ERFE in cancer progression is largely unknown. We previously found that ERFE was upregulated in erythroid progenitors in myelodysplastic syndromes and strongly predicted overall survival. To understand the potential molecular interactions and identify cues for further functional investigation and the prognostic impact of ERFE in other malignancies, we performed a pan-cancer in silico analysis utilizing the Cancer Genome Atlas datasets. Our analysis shows that the ERFE mRNA is significantly overexpressed in 22 tumors and affects the prognosis in 11 cancer types. In certain tumors such as breast cancer and adrenocortical carcinoma, ERFE overexpression has been associated with the presence of oncogenic mutations and a higher tumor mutational burden. The expression of ERFE is co-regulated with the factors and pathways involved in cancer progression and metastasis, including activated pathways of the cell cycle, extracellular matrix/tumor microenvironment, G protein-coupled receptor, NOTCH, WNT, and PI3 kinase-AKT. Moreover, ERFE expression influences intratumoral immune cell infiltration. Conclusively, ERFE is aberrantly expressed in pan-cancer and can potentially function as a prognostic biomarker based on its putative functions during tumorigenesis and tumor development.
Collapse
|
24
|
Allergic Inflammation: Effect of Propolis and Its Flavonoids. Molecules 2022; 27:molecules27196694. [PMID: 36235230 PMCID: PMC9570745 DOI: 10.3390/molecules27196694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The incidence of allergic diseases and their complications are increasing worldwide. Today, people increasingly use natural products, which has been termed a "return to nature". Natural products with healing properties, especially those obtained from plants and bees, have been used in the prevention and treatment of numerous chronic diseases, including allergy and/or inflammation. Propolis is a multi-component resin rich in flavonoids, collected and transformed by honeybees from buds and plant wounds for the construction and adaptation of their nests. This article describes the current views regarding the possible mechanisms and multiple benefits of flavonoids in combating allergy and allergy-related complications. These benefits arise from flavonoid anti-allergic, anti-inflammatory, antioxidative, and wound healing activities and their effects on microbe-immune system interactions in developing host responses to different allergens. Finally, this article presents various aspects of allergy pathobiology and possible molecular approaches in their treatment. Possible mechanisms regarding the antiallergic action of propolis on the microbiota of the digestive and respiratory tracts and skin diseases as a method to selectively remove allergenic molecules by the process of bacterial biotransformation are also reported.
Collapse
|
25
|
Blockade of Tyrosine Kinase, LCK Leads to Reduction in Airway Inflammation through Regulation of Pulmonary Th2/Treg Balance and Oxidative Stress in Cockroach Extract-Induced Mouse Model of Allergic Asthma. Metabolites 2022; 12:metabo12090793. [PMID: 36144198 PMCID: PMC9506330 DOI: 10.3390/metabo12090793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Asthma is one of the most common inflammatory diseases affecting the airways. Approximately 300 million individuals suffer from asthma around the world. Allergic immune responses in the asthmatic airways are predominantly driven by Th2 cells and eosinophils. Lymphocyte-specific protein tyrosine kinase (LCK) is a non-receptor tyrosine kinase which regulates several key intracellular events through phosphorylation of its substrates. Some of the intracellular signaling pathways activated by LCK phosphorylation help in differentiation of Th2 cells which secrete allergic cytokines that amplify airway inflammation. Therefore, this investigative study was designed to determine the role of LCK in a cockroach extract (CE)-induced airway inflammation murine model of allergic asthma. Further, the effect of a pharmacological LCK inhibitor, A-770041, on allergic airway inflammation and key intracellular pathways in CD4+ T cells was assessed. Our data exhibit that there is an activation of LCK during allergic airway inflammation as depicted by increased p-LCK levels in CD4+ T cells. Activated LCK is involved in the activation of ITK, PLC-γ, GATA3, NFkB, and NFATc1. Activated LCK is also involved in the upregulation of Th2 related cytokines, such as IL-4/IL-5/IL-13 and oxidative stress, and the downregulation of Treg cells. Furthermore, utilization of LCK inhibitor causes the reduction in p-LCK, PLC-γ, GATA3, and NFATc1 as well as Th2 cytokines and oxidative stress. LCK inhibitor causes upregulation of Treg cells in allergic mice. LCK inhibitor also caused a reduction in CE-induced airway inflammation and mucus secretion. Therefore, the inhibition of LCK signaling could be a fruitful approach to adjust allergic airway inflammation through the attuning of Th2/Treg immune responses. This study could lead to the design of newer treatment options for better management of allergic inflammation in asthma.
Collapse
|
26
|
Tsiogka A, Kyriazopoulou M, Kontochristopoulos G, Nicolaidou E, Stratigos A, Rigopoulos D, Gregoriou S. The JAK/STAT Pathway and Its Selective Inhibition in the Treatment of Atopic Dermatitis: A Systematic Review. J Clin Med 2022; 11:jcm11154431. [PMID: 35956047 PMCID: PMC9369061 DOI: 10.3390/jcm11154431] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, the broadening understanding of the pathogenesis of atopic dermatitis (AD) has led to the development of novel therapeutic molecules, that target core inflammatory components of the disease. The Janus kinase (JAK)/signal transducer and activation of transcription (STAT) pathway constitutes the principal signaling cascade for a large number of cytokines and growth factors and is involved in intracellular signal transduction and subsequent regulation of gene transcription. Current knowledge suggests that the robust activation of the T-helper (Th)-2 [interleukin (IL)-4, IL-5, IL-13, IL-31] and Th22 (IL-22) immune responses in both skin and serum plays a pivotal role in the immunopathogenesis of AD especially at the acute stage, followed by a variable degree of Th1 (interferon-γ, tumor necrosis factor alpha) and Th17 (IL-17) activation in chronic disease. Of note, most of the aforementioned inflammatory cytokines utilize the JAK/STAT pathway for downstream signal transduction, explaining the emerging role of JAK inhibitors in the therapeutic armamentarium of AD. The present systematic review aims to discuss the involvement of JAK/STAT pathway in the pathogenesis of AD and summarize the clinical data available on the efficacy and safety of JAK inhibitors which have been used in the treatment of AD thus far.
Collapse
|
27
|
Okamura T, Hamaguchi M, Tominaga H, Kitagawa N, Hashimoto Y, Majima S, Senmaru T, Okada H, Ushigome E, Nakanishi N, Shichino S, Fukui M. Characterization of Peripheral Blood TCR in Patients with Type 1 Diabetes Mellitus by BD RhapsodyTM VDJ CDR3 Assay. Cells 2022; 11:cells11101623. [PMID: 35626661 PMCID: PMC9139223 DOI: 10.3390/cells11101623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
The sequence of complementarity-determining region 3 of the T-cell receptor (TCR) varies widely due to the insertion of random bases during V-(D)-J recombination. In this study, we used single-cell VDJ sequencing using the latest technology, BD Rhapsody, to identify the TCR sequences of autoreactive T-cells characteristic of Japanese type 1 diabetes mellitus (T1DM) and to clarify the pairing of TCR of peripheral blood mononuclear cells from four patients with T1DM at the single-cell level. The expression levels of the TCR alpha variable (TRAV) 17 and TRAV21 in T1DM patients were higher than those in healthy Japanese subjects. Furthermore, the Shannon index of CD8+ T cells and FOXP3+ cells in T1DM patients was lower than that of healthy subjects. The gene expression of PRF1, GZMH, ITGB2, NKG7, CTSW, and CST7 was increased, while the expression of CD4, CD7, CD5, HLA-A, CD27, and IL-32 was decreased in the CD8+ T cells of T1DM patients. The upregulated gene expression was IL4R and TNFRSF4 in FOXP3+ cells of T1DM patients. Overall, these findings demonstrate that TCR diversity and gene expression of CD8+ and FOXP3+ cells are different in patients with T1DM and healthy subjects.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Hiroyuki Tominaga
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Noriyuki Kitagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan;
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
- Correspondence: ; Tel.: +81-75-251-5505
| |
Collapse
|
28
|
Karimian M, Ghazaey Zidanloo S, Jahantigh D. Influence of FOXP3 gene polymorphisms on the risk of preeclampsia: a meta-analysis and a bioinformatic approach. Clin Exp Hypertens 2022; 44:280-290. [PMID: 35014581 DOI: 10.1080/10641963.2021.2022685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIM Preeclampsia (PE), a multifactorial disorder, is the main cause of maternal mortality and morbidity. Genetic polymorphisms in key proteins involved in the immune system may change the risk of PE risk. In this study, we examined the association of two rs2232365 and rs3761548 common polymorphisms of the FOXP3 immune response gene with PE susceptibility by a meta-analysis which was followed by an in-silico analysis. MATERIALS AND METHODS Through a systematic search in databases including PubMed, MEDLINE, Google Scholar, and Science Direct, we find eligible studies for meta-analysis. Some bioinformatics tools were used to detect the impact of rs2232365 and rs3761548 polymorphisms on the FOXP3 gene function. RESULTS Our data revealed that there is a significant association between rs3761548 polymorphism and decreased risk of PE. In addition, we observed a significant association between rs2232365 and increased risk of mild preeclampsia. Also, our bioinformatic analysis showed that both rs2232365 and rs3761548 polymorphisms could affect FOXP3 gene function. CONCLUSION Based on our findings, the rs3761548 genetic variation could be a protective factor against PE risk. While the rs2232365 polymorphism may be a genetic risk factor for mild preeclampsia. Therefore, as a preliminary study, these genetic variations could be considered molecular biomarkers for PE disorder.
Collapse
Affiliation(s)
- Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Danial Jahantigh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
29
|
Bergeron HC, Tripp RA. Immunopathology of RSV: An Updated Review. Viruses 2021; 13:2478. [PMID: 34960746 PMCID: PMC8703574 DOI: 10.3390/v13122478] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
RSV is a leading cause of respiratory tract disease in infants and the elderly. RSV has limited therapeutic interventions and no FDA-approved vaccine. Gaps in our understanding of virus-host interactions and immunity contribute to the lack of biological countermeasures. This review updates the current understanding of RSV immunity and immunopathology with a focus on interferon responses, animal modeling, and correlates of protection.
Collapse
Affiliation(s)
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
30
|
McGinley J, Thwaites R, Brebner W, Greenan-Barrett L, Aerssens J, Öner D, Bont L, Wildenbeest J, Martinón-Torres F, Nair H, Pollard AJ, Openshaw P, Drysdale S. A Systematic Review and Meta-analysis of Animal Studies Investigating the Relationship Between Serum Antibody, T Lymphocytes, and Respiratory Syncytial Virus Disease. J Infect Dis 2021; 226:S117-S129. [PMID: 34522970 DOI: 10.1093/infdis/jiab370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infections occur in human populations around the globe, causing disease of variable severity, disproportionately affecting infants and older adults (>65 years of age). Immune responses can be protective but also contribute to disease. Experimental studies in animals enable detailed investigation of immune responses, provide insights into clinical questions, and accelerate the development of passive and active vaccination. We aimed to review the role of antibody and T-cell responses in relation to RSV disease severity in animals. METHODS Systematic review and meta-analysis of animal studies examining the association between T-cell responses/phenotype or antibody titers and severity of RSV disease. The PubMed, Zoological Record, and Embase databases were screened from January 1980 to May 2018 to identify animal studies of RSV infection that assessed serum antibody titer or T lymphocytes with disease severity as an outcome. Sixty-three studies were included in the final review. RESULTS RSV-specific antibody appears to protect from disease in mice, but such an effect was less evident in bovine RSV. Strong T-cell, Th1, Th2, Th17, CD4/CD8 responses, and weak Treg responses accompany severe disease in mice. CONCLUSIONS Murine studies suggest that measures of T-lymphocyte activity (particularly CD4 and CD8 T cells) may be predictive biomarkers of severity. Further inquiry is merited to validate these results and assess relevance as biomarkers for human disease.
Collapse
Affiliation(s)
- Joseph McGinley
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Will Brebner
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Jeroen Aerssens
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Deniz Öner
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Louis Bont
- Department of Paediatric Infectious Diseases and Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joanne Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Harish Nair
- University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Simon Drysdale
- Oxford Vaccine Group, Paediatrics, University of Oxford, Oxford, United Kingdom.,Paediatric Infectious Diseases Unit, St George's University Hospitals NHS Foundation Trust, London, United Kingdom.,Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | | |
Collapse
|
31
|
Guo K, Zhang X. Cytokines that Modulate the Differentiation of Th17 Cells in Autoimmune Uveitis. J Immunol Res 2021; 2021:6693542. [PMID: 33816637 PMCID: PMC7990547 DOI: 10.1155/2021/6693542] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has suggested that T helper 17 (Th17) cells play a central role in the pathogenesis of ocular immune disease. The association between pathogenic Th17 cells and the development of uveitis has been confirmed in experimental and clinical studies. Several cytokines affect the initiation and stabilization of the differentiation of Th17 cells. Therefore, understanding the mechanism of related cytokines in the differentiation of Th17 cells is important for exploring the pathogenesis and the potential therapeutic targets of uveitis. This article briefly describes the structures, mechanisms, and targeted drugs of cytokines-including interleukin (IL)-6, transforming growth factor-β1 (TGF-β1), IL-1β, IL-23, IL-27, IL-35, IL-2, IL-4, IL-21, and interferon (IFN)-γ-which have an important influence on the differentiation of Th17 cells and discusses their potential as therapeutic targets for treating autoimmune uveitis.
Collapse
Affiliation(s)
- Kailei Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
32
|
Consensus opinion on immune-mediated cytopenias after hematopoietic cell transplant for inherited metabolic disorders. Bone Marrow Transplant 2021; 56:1238-1247. [PMID: 33441980 DOI: 10.1038/s41409-020-01179-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Hematopoietic stem cell transplantation (HCT) has been increasingly used for patients with inherited metabolic disorders (IMD). Immune mediated cytopenias (IMCs) after HCT, manifesting as hemolytic anemia, thrombocytopenia, and/or neutropenia, are recognized as a significant complication in this patient population, yet our understanding of the incidence, risk factors, and pathophysiology is currently limited. Review of the published literature demonstrates a higher incidence in younger patients who undergo HCT for a nonmalignant disease indication. However, a few reports suggest that the incidence is even higher among those with IMD (incidence ranging from 10 to 56%). This review summarizes the literature, provides an approach to better understanding of the possible etiology of IMCs, and proposes a diagnostic and management plan for patients with IMD who develop single or multi-lineage cytopenias after HCT.
Collapse
|
33
|
Ni FF, Liu GL, Jia SL, Chen RR, Liu LB, Li CR, Yang J, Gao XJ. Function of miR-24 and miR-27 in Pediatric Patients With Idiopathic Nephrotic Syndrome. Front Pediatr 2021; 9:651544. [PMID: 33968853 PMCID: PMC8096900 DOI: 10.3389/fped.2021.651544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose: We investigated the pathogenesis of idiopathic nephrotic syndrome (INS) by measuring the effects two specific miRNAs on Th2 cells in children with this disease. Methods: After informed consent, we enrolled 20 children with active INS before steroid initiation, 20 children with INS in remission after steroid therapy, and 20 age-matched healthy controls. Flow cytometry was used to measure the levels of Th2 cells and a cytometric bead array was used to measure the levels of IgE, interleukin (IL)-4, and IL-13. RT-PCR was used to measure the levels of miR-24 and miR-27 in CD4+TCD25- cells. PBMCs were isolated using Ficoll density gradient centrifugation, and transfected with different mimic or inhibitor miRNAs. RT-PCR was used to measure the expression of different RNAs, and flow cytometry was used to determine the percentage of Th2 cells. Results: Relative to healthy controls, children with active INS had higher percentages of Th2 cells (P < 0.05), but there was no significant difference in controls and children in remission. The plasma levels of IgE, IL-4, and IL-13 were significantly increased in children with active INS (P < 0.05). There were lower levels of miR-24 and miR-27 in children with active non-atopic INS (P < 0.05). Transfection experiments indicated that upregulation of each miRNA decreased the percentage of Th2 cells and the level of IL-4 (P < 0.05), and down-regulation of each miRNA had the opposite effects (P < 0.05). Conclusion: Children with active INS, with or without atopy, had higher levels of IgE, possibly related to their higher levels of IL-13 and IL-4 due to a drift toward Th2 cells. miR-24 and miR-27 suppressed the expression of Th2 cells and have a critical function regulating Th2 cell expression in INS.
Collapse
Affiliation(s)
- Fen-Fen Ni
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, China
| | - Guang-Lei Liu
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, China
| | - Shi-Lei Jia
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, China
| | - Ran-Ran Chen
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, China
| | - Li-Bing Liu
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, China
| | - Cheng-Rong Li
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, China
| | - Jun Yang
- Department of Immunology, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiao-Jie Gao
- Department of Nephrology, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
34
|
Roberts G, Almqvist C, Boyle R, Crane J, Hogan SP, Marsland B, Saglani S, Woodfolk JA. Developments in the mechanisms of allergy in 2018 through the eyes of Clinical and Experimental Allergy, Part I. Clin Exp Allergy 2020; 49:1541-1549. [PMID: 31833127 DOI: 10.1111/cea.13532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the first of two linked articles, we describe the development in the mechanisms underlying allergy as described by Clinical & Experimental Allergy and other journals in 2018. Experimental models of allergic disease, basic mechanisms and clinical mechanisms are all covered.
Collapse
Affiliation(s)
- Graham Roberts
- Clinical and Experimental Sciences and Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Isle of Wight, UK
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Boyle
- Department of Paediatrics, Imperial College London, London, UK
| | - Julian Crane
- Department of Medicine, University of Otago Wellington, Wellington, New Zealand
| | - Simon P Hogan
- Department of Pathology, Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ben Marsland
- Department of Immunology and Pathology, Monash University, Melbourne, Vic., Australia
| | - Segal Saglani
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Judith A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
35
|
Choi DW, Jung SY, Shon DH, Shin HS. Piperine Ameliorates Trimellitic Anhydride-Induced Atopic Dermatitis-Like Symptoms by Suppressing Th2-Mediated Immune Responses via Inhibition of STAT6 Phosphorylation. Molecules 2020; 25:molecules25092186. [PMID: 32392825 PMCID: PMC7248773 DOI: 10.3390/molecules25092186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease predominately related to Type 2 helper T (Th2) immune responses. In this study, we investigated whether piperine is able to improve AD symptoms using a trimellitic anhydride (TMA)-induced AD-like mouse model. Topical treatment with piperine reduced ear swelling (ear thickness and epidermal thickness) induced by TMA exposure. Furthermore, piperine inhibited pro-inflammatory cytokines such as TNF-α and IL-1β in mouse ears, compared with the TMA-induced AD group. In measuring allergic immune responses in draining lymph nodes (dLNs), we found that IL-4 secretion, GATA3 mRNA level, and STAT6 phosphorylation were suppressed by piperine treatment. In an ex vivo study, piperine also inhibited the phosphorylation of STAT6 on the CD4+ T cells isolated from splenocytes of BALB/c mice, and piperine suppressed IL-4-induced CCL26 mRNA expression and STAT6 phosphorylation in human keratinocytes resulting in the inhibition of infiltration of CCR3+ cells into inflammatory lesions. These results demonstrate that piperine could ameliorate AD symptoms through suppression of Th2-mediated immune responses, including the STAT6/GATA3/IL-4 signaling pathway. Therefore, we suggest that piperine is an excellent candidate as an inhibitor of STAT6 and may help to improve AD symptoms.
Collapse
Affiliation(s)
- Dae Woon Choi
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 34113, Korea; (D.W.C.); (S.Y.J.)
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| | - Sun Young Jung
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 34113, Korea; (D.W.C.); (S.Y.J.)
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| | - Dong-Hwa Shon
- Department of Food Processing and Distribution, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Korea;
| | - Hee Soon Shin
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 34113, Korea; (D.W.C.); (S.Y.J.)
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
- Correspondence:
| |
Collapse
|
36
|
Transcriptome-wide Sequencing Reveals Molecules and Pathways Involved in Neurofibromatosis Type I Combined With Spinal Deformities. Spine (Phila Pa 1976) 2020; 45:E489-E498. [PMID: 31770328 DOI: 10.1097/brs.0000000000003338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UNLABELLED MINI: We identified differentially expressed genes (DEGs) that may be involved in the development of neurofibromatosis type I by whole-transcriptional sequencing. Seven hundred eighty DEGs were identified which include protein coding genes, miRNAs, and lncRNAs. The enrichment analysis may reveal pathways that these DEGs involved. A total of 383 protein-pairs for DEGs may unfold the possible mechanism how the disease is developed. STUDY DESIGN This is a clinical basic study on neurofibromatosis type I (NF-1) with spinal deformity. OBJECTIVE The current research focuses on screening key molecules affecting NF-1 with spinal deformity by transcriptome sequencing and discovering its underlying molecular biological mechanisms. SUMMARY OF BACKGROUND DATA NF-1 is a complex multisystem human disorder, which is often found in spinal deformities patients. The success rate of orthopedic surgery for neurofibromatosis type I combined with spinal deformities patients was low because of the lack of molecular pathology. METHODS In our study, the transcriptome-wide sequencing was preformed to identify the differentially expressed genes (DEGs) involved in this disease. RESULTS Seven hundred eighty DEGs were identified which include protein coding genes, miRNAs, and lncRNAs. The DO, GO, KEGG and Reactome enrichment analysis may reveal pathways that these DEGs involved. And the 383 protein-pairs for DEGs that are involved in NF-1 combined with spinal deformities may unfold the possible mechanism how this disease is developed. CONCLUSION The differentially expressed miRNAs and lncRNAs may contribute the ceRNA network. We focused on three key DEGs: FGFR2, MAP3K1 and STAT4. FGFR2 and MAP3K1 are members of the RAS/RAF/MEK/ERK-signaling pathway, and STAT4 were involved in the JAK/STAT pathway. The expression changes were verified by other researches and the functional cross-talk between the Ras/MAPK and JAK/STAT pathways may contribute in the disease development. This study took insight of the molecular mechanism of this disease. More detailed interactions between these factors are needed to be further explored. These key DEGs and involved pathways may provide clues in the clinical process for patients with NF-1, especially in prognosis prediction. LEVEL OF EVIDENCE N/A.
Collapse
|
37
|
Martínez-Blanco M, Pérez-Rodríguez L, Lozano-Ojalvo D, Molina E, López-Fandiño R. Ovalbumin-Derived Peptides Activate Retinoic Acid Signalling Pathways and Induce Regulatory Responses Through Toll-Like Receptor Interactions. Nutrients 2020; 12:nu12030831. [PMID: 32245005 PMCID: PMC7146383 DOI: 10.3390/nu12030831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022] Open
Abstract
This study investigates the potential of a hydrolysate of ovalbumin with pepsin (OP) to preclude Th2-type immunity by the enhancement of tolerogenic dendritic cells (DCs) and regulatory T (Treg) cells. Through Toll-like receptor (TLR) stimulation, OP enhances the retinoic acid pathway on DCs by means of the induction of aldehyde dehydrogenase enzymes and transforming growth factor beta (TGF-β), and it confers upon DC the ability to upregulate interleukin 10 (IL-10) as well as other tolerance-promoting mediators downstream of TRL signalling, such as IL-27, IL-33, Notch ligands, OX40L, and the transcription factors IRF4 and IRF8. OP-conditioned DCs induce the expansion of Foxp3+ and Tr1 cells in co-culture with CD4+ T cells. Furthermore, OP directly conditions CD4+ T cells from naïve mice, without the mediation of DCs, to express aldehyde dehydrogenase (ALDH) enzymes and, in the presence of the Th2 cytokine IL-4 and exogenous TGF-β, it enhances Foxp3 expression. It is noteworthy that, on CD4+ T cells isolated from egg-allergic mice, OP significantly enriches the levels of Foxp3+ and Foxp3+ RORγt+ CD4+ T cells. In conclusion, we show that food peptides may work, analogously to microbial-driven signals, through TLRs, to promote a tolerogenic phenotype on cells of the innate and adaptive immune system, a property that is further enhanced in the context of a Th2 cytokine-rich environment.
Collapse
|
38
|
Treg expression of CIS suppresses allergic airway inflammation through antagonizing an autonomous TH2 program. Mucosal Immunol 2020; 13:293-302. [PMID: 31780776 PMCID: PMC7044046 DOI: 10.1038/s41385-019-0236-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/17/2019] [Accepted: 11/12/2019] [Indexed: 02/04/2023]
Abstract
Maintenance of regulatory T (Treg) cells is crucial for the regulatory function of Treg cells in immune homeostasis and self-tolerance; however, the detailed underlying mechanisms remain elusive. In the current study, we found that the cytokine suppressor CIS (cytokine induced SH-2 protein) is required for maintenance of Treg cell identity. Mice with Treg-specific Cis-deficiency displayed aggravated experimental allergic asthma, and in adulthood, developed splenomegaly, lymphadenopathy and spontaneous eosinophilic airway inflammation, accompanied by accumulation of effector memory helper T (TH) cells. Cis-deficiency led to the loss of Foxp3 expression and the decrease in suppressive function of Treg cells. Cis-deficient Treg cells expressed TH2 cell signature genes, Gata3, Irf4 and Il4, and excessive interleukin-4-signal transducer and activator of transcription 6 (IL-4-STAT6) signals resulted in repressive chromatin modification in the Foxp3 locus and permissive modification in the Il4 loci. In vitro, blockade of IL-4 restored the expression of Foxp3 and the suppressive function of inducible Treg (iTreg) cells. Thus, we identified a novel feedback loop in stabilization of Treg cells and suppression of TH2-type inflammation in a Treg-intrinsic manner.
Collapse
|
39
|
Li S, Wang H, Wu H, Chang X. Therapeutic Effect of Exogenous Regulatory T Cells on Collagen-induced Arthritis and Rheumatoid Arthritis. Cell Transplant 2020; 29:963689720954134. [PMID: 32990025 PMCID: PMC7784507 DOI: 10.1177/0963689720954134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/14/2020] [Accepted: 08/07/2020] [Indexed: 01/02/2023] Open
Abstract
Regulatory T (Treg) cells have anti-inflammatory functions and heighten immune tolerance. The proportion and functions of Treg cells are perturbed in rheumatoid arthritis (RA), contributing to the excessive immune activation associated with this disease. We therefore hypothesized that supplementation with foreign Treg cells could be used to treat RA. To investigate the therapeutic effects of exogenous Treg cells on RA and its mechanism, we used human Treg cells to treat collagen-induced arthritis (CIA) in a rat model to observe whether exogenous Treg cells can treat the disease across species. Successful treatment would indicate that Treg cell transplantation in humans is more likely to affect RA. In the present study, human Treg cells were collected from healthy human peripheral blood and culture-expanded in vitro. Induced human Treg cells were injected into CIA rats via the tail vein. The rats' lymphocyte subtypes, cytokines, and Th1/Th2 ratios were measured using flow cytometry. In the rats, following injection of the human Treg cells, the severity of CIA was significantly reduced (P < 0.01), the proportion of endogenous Treg cells increased in the peripheral blood and spleen (P = 0.007 and P < 0.01, respectively), and the proportion of B cells decreased (P = 0.031). The IL-5 level, IL-6 level, and Th1/Th2 ratio in the peripheral blood were decreased (P = 0.013, 0.009, and 0.012, respectively). The culture-expanded human Treg cells were also cultured with synovial fibroblast cells from RA patients (RASFs). After coculture with Treg cells, RASFs showed reduced proliferation (P < 0.01) and increased apoptosis (P = 0.037). These results suggest that exogenous and induced Treg cells can produce a therapeutic effect in RA and CIA by increasing endogenous Treg cells and RASF apoptosis and reducing B cells, the Th1/Th2 ratio, and secretion levels of IL-5 and IL-6. Treg cell transplantation could serve as a therapy for RA that does not cause immune rejection.
Collapse
Affiliation(s)
- Shutong Li
- Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, PR China
- Medical School of Pingdingshan University, Pingdingshan, Henan, PR China
| | - Hongxing Wang
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, PR China
| | - Hui Wu
- Medical Research Center of Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, PR China
| | - Xiaotian Chang
- Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| |
Collapse
|
40
|
Zhao Y, Liu B, Wang Y, Xiao B. Effect of fasudil on experimental autoimmune neuritis and its mechanisms of action. ACTA ACUST UNITED AC 2019; 53:e8669. [PMID: 31859913 PMCID: PMC6915906 DOI: 10.1590/1414-431x20198669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Abstract
This study aimed to investigate the therapeutic effect of fasudil on treating experimental autoimmune neuritis (EAN). Twenty-four EAN mice were randomly assigned to fasudil treatment (Fasudil group) or saline treatment (EAN model group) for 28 days. Clinical symptom score was evaluated every other day; inflammatory cell infiltration, demyelination, anti-myelin basic protein (MBP), inflammatory cytokines, inducible nitric oxide synthase (iNOS), and arginase-1 were detected in sciatic nerves at day 28. Th1, Th2, Th17, and Tregs proportions in splenocytes were detected at day 28. Clinical symptom score was found to be attenuated in the Fasudil group compared to the EAN model group from day 12 to day 28. Sciatic nerve inflammatory cell counts by HE staining and demyelination by luxol fast blue staining were both reduced, while MBP was increased in the Fasudil group compared to the EAN model group at day 28. Interferon γ (IFN-γ) and interleukin (IL)-17 were reduced, while IL-4 and IL-10 were elevated in the Fasudil group at day 28. Sciatic nerve M1 macrophages marker iNOS was decreased while M2 macrophages marker arginase-1 was increased in the Fasudil group at day 28. CD4+IFN-γ+ (Th1) and CD4+IL-17+ (Th17) cell proportions were both decreased, CD4+IL-4+ (Th2) cell proportion was similar, while CD25+FOXP3+ (Treg) cell proportion in splenocytes was increased in the Fasudil group. In summary, fasudil presented a good therapeutic effect for treating EAN by attenuating Th1/Th17 cells and promoting Tregs activation as well as M2 macrophages polarization.
Collapse
Affiliation(s)
- Yanyin Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bingyou Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Baoguo Xiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Chen J, Guan L, Tang L, Liu S, Zhou Y, Chen C, He Z, Xu L. T Helper 9 Cells: A New Player in Immune-Related Diseases. DNA Cell Biol 2019; 38:1040-1047. [PMID: 31414895 PMCID: PMC6791470 DOI: 10.1089/dna.2019.4729] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The helper T cell 9 (Thelper-9, Th9), as a functional subgroup of CD4+T cells, was first discovered in 2008. Th9 cells expressed transcription factor PU.1 and cytokine interleukin-9 (IL-9) characteristically. Recent researches have shown that the differentiation of Th9 cells was coregulated by cytokine transforming growth factor β, IL-4, and various transcription factors. Th9 cells, as a new player, played an important role in various immune-related diseases, including tumors, inflammatory diseases, parasite infection, and other diseases. In this article, we summarize the related research progress and discuss the possible prospect.
Collapse
Affiliation(s)
- Jing Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lian Guan
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lin Tang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shiming Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Zunyi, Guizhou, China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou, China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
- Address correspondence to: Lin Xu, PhD, Department of Immunology, Zunyi Medical University, Zunyi 563003, Guizhou, China
| |
Collapse
|
42
|
Immune-Mediated Cytopenias After Hematopoietic Cell Transplantation: Pathophysiology, Clinical Manifestations, Diagnosis, and Treatment Strategies. Curr Oncol Rep 2019; 21:87. [PMID: 31414187 DOI: 10.1007/s11912-019-0838-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Discuss the pathophysiology, clinical presentation, diagnosis, and treatment of immune-mediated cytopenias (IMC) after hematopoietic cell transplantation (HCT). RECENT FINDINGS Key risk factors for post-HCT IMC include younger age, non-malignant disease, and umbilical cord blood stem cell source. While anemia predominates, any or all three hematopoietic cell lines can be affected. In rare cases, IMC can cause graft failure or death. IMC is hypothesized to result from immune dysregulation upon reconstitution of donor hematopoietic cells (i.e., dysfunctional regulatory T cells). Aside from blood product transfusions, IMC treatment includes immune-suppressive or ablative agents. First-line therapies, including corticosteroids and intravenous immunoglobulin, are often inadequate, prompting use of additional agents aimed at antibody production/T cell dysfunction or direct antibody removal via plasmapheresis. IMC occurs in up to 20% of high-risk HCT populations. Morbidity and mortality from IMC post-HCT have been reduced by improved recognition and aggressive early interventions.
Collapse
|
43
|
Thaver S, Bennett EJ, Foa L, Richards SM, Lyons AB, Zosky GR. Pregnancy protects against the pro-inflammatory respiratory responses induced by particulate matter exposure. CHEMOSPHERE 2019; 225:796-802. [PMID: 30904759 DOI: 10.1016/j.chemosphere.2019.03.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/07/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Little is known about the effect of pregnancy on the response to particulate matter. The aim of this study was to determine if pregnancy increases the susceptibility to PM from different sources using a mouse model. METHODS Pregnant, eight-week-old C57BL/6J mice were exposed intranasally to 50 μg of diesel exhaust particles (DEP), iron oxide (Fe2O3) or silica (SiO2) in 50 μL of saline, or saline alone, on gestational day (E)7.5, E12.5 and E17.5. Groups of non-pregnant mice were exposed on day (D)0, D5 and D10. Biological samples were collected 24 h after the last exposure. Serum IL-4 and IL-6 levels were quantified by ELISA. Bronchoalveolar lavage (BAL) fluid was collected for inflammatory cells counts and assessment of IFN-ɣ, IL-4, IL-5, IL-6, IL-8 and IL-10 levels by ELISA. The spleen and thymus were also collected and the percentage of B cells and CD4+, CD8+ and CD4+CD25 + T cells were determined by flow cytometry. RESULTS Exposure to silica caused an influx of lymphocytes, eosinophils and neutrophils into the lung. The magnitude of this response was suppressed by pregnancy. Pregnancy also enhanced the production of CD4+CD25 + T cells in response to DEP and silica exposure. CONCLUSIONS Collectively, our data suggest that pregnancy reduces the inflammatory response to silica and alters the immune response to DEP. These responses were accompanied by pregnancy related changes including increased IL-4 production, reduced IL-8 production and an increase in the proportion of CD4+CD25 + T cells in response to PM exposure.
Collapse
Affiliation(s)
- Santon Thaver
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Ellen J Bennett
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Lisa Foa
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Stephen M Richards
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - A Bruce Lyons
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Graeme R Zosky
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
44
|
Chen X, Deng R, Chi W, Hua X, Lu F, Bian F, Gao N, Li Z, Pflugfelder SC, Paiva CS, Li D. IL-27 signaling deficiency develops Th17-enhanced Th2-dominant inflammation in murine allergic conjunctivitis model. Allergy 2019; 74:910-921. [PMID: 30515838 DOI: 10.1111/all.13691] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/17/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND While most studies focus on pro-allergic cytokines, the protective role of immunosuppressive cytokines in allergic inflammation is not well elucidated. This study was to explore a novel anti-inflammatory role and cellular/molecular mechanism of IL-27 in allergic inflammation. METHODS A murine model of experimental allergic conjunctivitis (EAC) was induced in BALB/c, C57BL/6 or IL-27Rα-deficient (WSX-1-/- ) mice by short ragweed pollen, with untreated or PBS-treated mice as controls. The serum, eyeballs, conjunctiva, cervical lymph nodes (CLNs) were used for study. Gene expression was determined by RT-qPCR, and protein production and activation were evaluated by immunostaining, ELISA and Western blotting. RESULTS Typical allergic manifestations and stimulated thymic stromal lymphopoietin (TSLP) signaling and Th2 responses were observed in ocular surface of EAC models in BALB/c and C57BL/6 mice. The decrease of IL-27 at mRNA (IL-27/EBI3) and protein levels were detected in serum, conjunctiva and CLN, as evaluated by RT-qPCR, immunofluorescent staining, ELISA and Western blotting. EAC induced in WSX-1-/- mice showed aggravated allergic signs with higher TSLP-driven Th2-dominant inflammation, accompanied by stimulated Th17 responses, including IL-17A, IL-17F, and transcription factor RORγt. In contrast, Th1 cytokine IFNγ and Treg marker IL-10, with their respective transcription factors T-bet and foxp3, were largely suppressed. Interestingly, imbalanced activation between reduced phosphor (P)-STAT1 and stimulated P-STAT6 were revealed in EAC, especially WSX-1-/- -EAC mice. CONCLUSION These findings demonstrated a natural protective mechanism by IL-27, of which signaling deficiency develops a Th17-type hyperresponse that further aggravates Th2-dominant allergic inflammation.
Collapse
Affiliation(s)
- Xin Chen
- School of Optometry and Ophthalmology Wenzhou Medical University Wenzhou China
- Ocular Surface Center Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston Texas
| | - Ruzhi Deng
- School of Optometry and Ophthalmology Wenzhou Medical University Wenzhou China
- Ocular Surface Center Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston Texas
| | - Wei Chi
- Ocular Surface Center Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston Texas
- Zhongshan Ophthalmic Center Sun Yan‐Sen University Guangzhou China
| | - Xia Hua
- Ocular Surface Center Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston Texas
| | - Fan Lu
- School of Optometry and Ophthalmology Wenzhou Medical University Wenzhou China
| | - Fang Bian
- Ocular Surface Center Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston Texas
| | - Ning Gao
- Ocular Surface Center Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston Texas
| | - Zhijie Li
- Department of Pediatrics Baylor College of Medicine Houston Texas
| | - Stephen C. Pflugfelder
- Ocular Surface Center Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston Texas
| | - Cintia S. Paiva
- Ocular Surface Center Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston Texas
| | - De‐Quan Li
- Ocular Surface Center Cullen Eye Institute Department of Ophthalmology Baylor College of Medicine Houston Texas
| |
Collapse
|
45
|
Mahaki H, Jabarivasal N, Sardarian K, Zamani A. The effects of extremely low-frequency electromagnetic fields on c-Maf, STAT6, and RORα expressions in spleen and thymus of rat. Electromagn Biol Med 2019; 38:177-183. [PMID: 31017814 DOI: 10.1080/15368378.2019.1608832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The study investigated the effect of extremely low-frequency electromagnetic fields (ELF-EMFs) exposure at different magnetic flux densities on genes expression of transcription factor Maf (c-Maf), signal transducer and activator of transcription 6 (STAT6), and retinoid-related orphan receptor alpha (RORα) in the spleen and thymus of rats. Eighty adult male rats were separated into four ELF-EMFs exposed and were exposed to magnetic flux densities of 1, 100, 500, and 2000 µT at a frequency of 50 Hz for 2 h daily for up to 60 d. All rats were intraperitoneally immunized on d 31, 44, and 58 of exposure. The experimental results showed that the expression levels of c-Maf, STAT6, and RORα in the thymus were not significantly changed at different magnetic flux densities. The expression levels of RORα and c-Maf were significantly downregulated at the densities of 1 and 100 µT, while the expression of STAT6 was only significantly decreased at the density of 100 µT. In conclusion, low magnetic flux densities of ELF-EMFs may reduce the expression levels of c-Maf, STAT6, and RORα genes in the spleen.
Collapse
Affiliation(s)
- Hanie Mahaki
- a Department of Immunology , School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran.,b Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Naghi Jabarivasal
- c Department of Medical Physics , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Khosro Sardarian
- a Department of Immunology , School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran.,b Research Center for Molecular Medicine , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Alireza Zamani
- a Department of Immunology , School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran.,d Molecular Immunology Research Group , Research Center for Molecular Medicine, Hamadan University of Medical Sciences , Hamadan , Iran
| |
Collapse
|
46
|
Liu K, Wen H, Cai H, Wu M, An R, Chu D, Yu L, Shen J, Chen L, Du J. Protective Effect Against Toxoplasmosis in BALB/c Mice Vaccinated With Toxoplasma gondii Macrophage Migration Inhibitory Factor. Front Microbiol 2019; 10:813. [PMID: 31105655 PMCID: PMC6491892 DOI: 10.3389/fmicb.2019.00813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/01/2019] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite responsible for toxoplasmosis, which can cause severe disease in the fetus and immunocompromised individuals. Developing an effective vaccine is crucial to control this disease. Macrophage migration inhibitory factor (MIF) has gained substantial attention as a pivotal upstream cytokine to mediate innate and adaptive immune responses. Homologs of MIF have been discovered in many parasitic species, and one homolog of MIF has been isolated from the parasite Toxoplasma gondii. In this study, the recombinant Toxoplasma gondii MIF (rTgMIF) as a protein vaccine was expressed and evaluated by intramuscular injection in BALB/c mice. We divided the mice into different dose groups of vaccines, and all immunizations with purified rTgMIF protein were performed at 0, 2, and 4 weeks. The protective efficacy of vaccination was analyzed by antibody assays, cytokine measurements and lymphoproliferative assays, respectively. The results obtained indicated that the rTgMIF vaccine elicited strong humoral and cellular immune responses with high levels of IgG antibody and IFN-γ production compared to those of the controls, in addition to slight higher levels of IL-4 production. After vaccination, a stronger lymphoproliferative response was also noted. Additionally, the survival time of mice immunized with rTgMIF was longer than that of the mice in control groups after challenge infection with virulent T. gondii RH tachyzoites. Moreover, the number of brain tissue cysts in vaccinated mice was reduced by 62.26% compared with the control group. These findings demonstrated that recombinant TgMIF protein is a potential candidate for vaccine development against toxoplasmosis.
Collapse
Affiliation(s)
- Kang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Hongyang Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Deyong Chu
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Li Yu
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| |
Collapse
|
47
|
Wang M, Gu Z, Yang J, Zhao H, Cao Z. Changes among TGF-β1+ Breg cells and helper T cell subsets in a murine model of allergic rhinitis with prolonged OVA challenge. Int Immunopharmacol 2019; 69:347-357. [DOI: 10.1016/j.intimp.2019.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 01/08/2023]
|
48
|
Kim SB, Lee AY, Chun JM, Lee AR, Kim HS, Seo YS, Moon BC, Kwon BI. Anthriscus sylvestris root extract reduces allergic lung inflammation by regulating interferon regulatory factor 4-mediated Th2 cell activation. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:165-175. [PMID: 30552991 DOI: 10.1016/j.jep.2018.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anthriscus sylvestris L. Hoffmann (AS) is a perennial plant that grows in Asia and Eastern Europe. Its dried root is used to treat conditions such as asthma, bronchitis, and cough. AIM OF THE STUDY The present study investigated the anti-inflammatory effects of whole AS extract (ASE) on allergic lung inflammation in vitro and in vivo as well as the underlying mechanisms. MATERIALS AND METHODS We used an ovalbumin (OVA)-induced asthma mouse model and in vitro primary T helper (Th)2 polarization system. Five groups of 8-week-old female C57BL/6 mice were divided into the following groups: saline control, or OVA-induced allergic asthma with vehicle, ASE (100 or 200 mg/kg), or dexamethasone (5 mg/kg) treatment for 7 days. RESULTS ASE attenuated mucus secretion in airway epithelial cells, inflammatory cell infiltration, eosinophilia, and Th2 cytokine levels in bronchoalveolar lavage fluid. Mice administered ASE showed reductions in the activated cluster of differentiation 4+ T cell population and GATA-binding protein-3 gene expression in the lung, and diminished Th2 cell differentiation and activation in vitro. Furthermore, ASE-treated mice showed decreased interleukin-6 and interferon regulatory factor (IRF)4 expression, with corresponding reductions in nitric oxide levels in the lungs of asthmatic mice and in stimulated RAW cells. CONCLUSION ASE exerts anti-asthmatic effects by inhibiting IRF4 expression and thereby suppressing Th2 cell activation.
Collapse
Affiliation(s)
- Sung-Bae Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - A Yeong Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Jin Mi Chun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - A Reum Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Hyo Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Yun Soo Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Byeong Cheol Moon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Bo-In Kwon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Department of Pathology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do 26339, Republic of Korea.
| |
Collapse
|
49
|
Ma B, Wu Y, Chen B, Yao Y, Wang Y, Bai H, Li C, Yang Y, Chen Y. Cyanidin-3-O-β-glucoside attenuates allergic airway inflammation by modulating the IL-4Rα-STAT6 signaling pathway in a murine asthma model. Int Immunopharmacol 2019; 69:1-10. [PMID: 30660871 DOI: 10.1016/j.intimp.2019.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/01/2019] [Accepted: 01/05/2019] [Indexed: 12/20/2022]
Abstract
Cyanidin-3-O-β-glucoside (Cy-3-g), a typical and abundant monomer of anthocyanins, exhibits a variety of biological activities, such as anti-atherosclerosis, anti-obesity, and anticancer effects. However, to date little is known about its effects on asthma. This study aimed to investigate the efficacy of dietary Cy-3-g on allergic asthma in an animal model. BALB/c mice were sensitized and challenged with ovalbumin (OVA) to induce allergic asthma. The pathological changes of the lung tissues, type 2 helper (Th2)-associated cytokine production in bronchoalveolar lavage fluid (BALF), and the interleukin 4 receptor alpha (IL-4Rα)-signal transducer and activator of transcription 6 (STAT6) signaling pathway activities were assessed. We found that Cy-3-g significantly inhibited OVA-induced inflammatory cell infiltration and mucus hyper-production in lung tissues, reduced the production of interleukin 4 (IL-4), interleukin 5 (IL-5) and interleukin 13 (IL-13) in BALF. Furthermore, Cy-3-g effectively suppressed OVA-induced up-regulation of the IL-4Rα-STAT6 signaling pathway activity of the lung tissues. These results demonstrated that dietary Cy-3-g could attenuate allergic airway inflammation in a murine asthma model, and Cy-3-g might be used as an agent for asthma prevention and/or treatment in the future.
Collapse
Affiliation(s)
- Baihui Ma
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China
| | - Yinfan Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China
| | - Binlin Chen
- The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yanling Yao
- Department of Nutrition, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yanyan Wang
- Department of Food-borne Disease and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Haolei Bai
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University (Guangzhou Campus), Guangzhou, China; Guangdong Engineering Technology Research Center of Nutrition Translation, Guangzhou, China; School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China.
| | - Yanqiu Chen
- Department of Otolaryngology, Guangzhou Women and Children Medical Centre, Guangzhou, China.
| |
Collapse
|
50
|
Involvement of ILR4α and TLR4 in miscarriages. J Reprod Immunol 2019; 131:36-43. [PMID: 30639993 DOI: 10.1016/j.jri.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND The purpose of this study was to analyze the involvement of signaling via Interleukin-4-Receptor α (IL4Rα) and Toll like receptor (TLR) 4 at the fetomaternal interface in the process of early pregnancy. PATIENTS AND METHODS Placenta specimens of 46 patients in early pregnancy were analyzed (normal pregnancy (n = 15), spontaneous (n = 15) and habitual abortion (n = 16)). TLR4 and IL4Rα were analyzed by immunohistochemistry, immunofluorescence and real time PCR. Statistical analysis was carried out using SPSS 23 and Microsoft Excel. RESULTS IL4Rα could be detected in trophoblast cells of all groups. It was significantly downregulated in the syncytiotrophoblast of spontaneous and recurrent abortions (p = 0.001), and in decidual tissue of spontaneous abortions (p = 0.001). Expression of TLR4 was decreased in the intermediate villous trophoblast (IVT) and decidua of spontaneous abortions (p = 0.04 & 0.003, respectively). On mRNA level expression of IL4Rα and TLR4 was significantly decreased in the group of recurrent miscarriages (IL4Rα p = 0.002, TLR4 p = 0.004). CONCLUSION This study contributes new findings to the understanding of the complex molecular interplay at the fetomaternal interface in normal pregnancy and miscarriages. For the first time signaling via IL4Rα being involved at the very beginning of the generation of new life could demonstrated. Moreover, new evidence was provided regarding TLR4 playing a pivotal role in early pregnancy.
Collapse
|