1
|
Mladineo I, Hrabar J. Seventy years of coexistence: Parasites and Mediterranean fish aquaculture. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110355. [PMID: 40254086 DOI: 10.1016/j.fsi.2025.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
What can be regarded as a seedling of the contemporary aquaculture in the Mediterranean began back in the 1950s. The development of the industry did not always align with the development of ichthyopathology, a veterinary discipline aimed at identifying and combating fish diseases. Therefore, and due to the lack of published data, we are not always able to pinpoint the first outbreaks that accompanied the increase in aquaculture production. Nonetheless, fish pathogens, and parasites in particular, have shown diversity related to host species, their farming conditions and geography. Two parasite species currently regarded as dominant in Mediterranean aquaculture are the histozoic myxozoan Enteromyxum leei and the haematophagous polyopisthocotylean Sparicotyle chrysophrii, both of which infect gilthead seabream (Sparus aurata). The interactions between parasite and host with regard to the immune activity of both have been well studied using conventional immunology and omics approaches. For the remaining parasite-fish systems, our understanding of host responses and parasite mitigation mechanisms is still vague and mostly transposed from what we know of other systems. This review compiles the knowledge on fish response to the most frequent and economically important parasites in Mediterranean aquaculture, highlights the gaps and suggests further directions.
Collapse
Affiliation(s)
- Ivona Mladineo
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, 7053, TAS, Australia; Institute of Parasitology, Biology Centre Czech Academy of Sciences, Ceske Budejovice, 37005, Czechia.
| | - Jerko Hrabar
- Institute of Oceanography and Fisheries, Split, 21000, Croatia
| |
Collapse
|
2
|
Taklu M, Islami HR, Shekarabi SPH, Mousavi SA, Jourdehi AY. Supplemental effect of dietary nucleotides on hematological profile, hepatic biomarkers, antioxidant capacity, and digestive functions in Sterlet sturgeon, Acipenser ruthenus. Sci Rep 2025; 15:11408. [PMID: 40181029 PMCID: PMC11968847 DOI: 10.1038/s41598-025-96116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
This study investigated the effects of dietary nucleotides (NTs) on hematological indices, hepatic biomarkers, antioxidant capacity, digestive functions, and intestinal histomorphology of Sterlet sturgeon (Acipenser ruthenus). Over 10 weeks, five diets with varying levels of NTs (0 g/kg, 1.5 g/kg, 2.5 g/kg, 3.5 g/kg, and 5.0 g/kg) were fed to triplicate groups of the fish (initial weight: 95.33 ± 1.23 g) in a flow-through system. The results indicated that final weight and relative growth rate reached the highest values in fish fed with the 5.0 g/kg NTs supplemented diet (p < 0.05). The fish fed NTs-supplemented diets also had lower feed conversion ratios than those fed the basal diet (p < 0.05). While total leukocytes were increased by increasing the dietary NTs supplementation to the highest value in the fish fed with 3.5 g/kg NTs, no significant differences were obtained in RBC, Hb, MCHC, HCT, and eosinophil values among the experimental groups (p > 0.05). The highest WBC count was seen in the fish fed with 3.5 g/kg NTs compared to the control group (p < 0.05). The serum hepatic enzyme levels generally decreased with higher NTs supplementation, although alanine transaminase significantly increased at the 5.0 g/kg level (p < 0.05). The antioxidant capacity was improved in the fish fed with NTs at 0.25 and 0.35 g/kg (p < 0.05), while the serum malondialdehyde level was decreased up to 3.5 g/kg NTs but it was increased at 5.0 g/kg (p < 0.05). The protease and amylase activities peaked in the fish receiving 3.5 g/kg NTs (p < 0.05), with the highest lipase activity obtained in 2.5 g/kg NTs (p < 0.05). The intestinal histology revealed that the fish fed with NTs at 3.5 g/kg exhibited the greatest villus height and width, along with more goblet cells (p < 0.05). Based on the second-order polynomial regression analysis, the optimum dietary levels of NTs for positive effects on physiometabolic responses and intestine functions of the Sterlet sturgeon lies in the range of 2.2-3.6 g/kg.
Collapse
Affiliation(s)
- Meigol Taklu
- Department of Fisheries, Science and Research Branch, Islamic Azad University, P.O. Box: 14515-775, Tehran, Iran
| | - Houman Rajabi Islami
- Department of Fisheries, Science and Research Branch, Islamic Azad University, P.O. Box: 14515-775, Tehran, Iran.
| | - Seyed Pezhman Hosseini Shekarabi
- Iranian Fisheries Science Research Institute (IFSRI), National Research Center of Saline-waters Aquatics, Agricultural Research, Education and Extension Organization (AREEO), Bafq, Iran.
| | | | - Ayoub Yousefi Jourdehi
- Iranian Fisheries Science Research Institute (IFSRI), International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
| |
Collapse
|
3
|
Gruber C, Ocelova V, Kesselring JC, Wein S. Phytogenic Feed Additives as a Sustainable Alternative to Antibiotics: Enhancing Growth and Disease Resistance in Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2025; 15:380. [PMID: 39943150 PMCID: PMC11815862 DOI: 10.3390/ani15030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Pathogens and challenging conditions in fish farming are common problems that cause mortality and reduce growth performance. Phytogenic feed additives can support the immunity of fish and thereby improve performance, production, and disease resistance. Two experiments with Nile Tilapia aimed to evaluate the effects of a matrix-encapsulated phytogenic additive (Digestarom® P.E.P. MGE) in different feed formulations, which vary in the marine meal inclusion level (5% and 12.8%), on growth performance and resistance against Streptococcus agalactiae. Fish were stocked in a recirculating aquaculture tank system per experiment and were fed with diets with or without the phytogenic supplementation for 8 weeks (six replicates per group). After an intraperitoneal injection with a sterilized saline solution and bath immersion with S. agalactiae (5 × 106 CFU/mL), mortality of the fish was recorded for 20 days. Independent of the diet formulation, the supplementation with the phytogenic feed additive significantly improved the fish production; feed conversion ratio; immune response (mainly lactic acid dehydrogenase, differential blood cell counts, and the lysozyme activity in blood); and fish survival after the S. agalactiae challenge. Thus, phytogenic feed additives are promising strategies to improve Nile tilapia production by enhancing fish growth performance, health, and protection against S. agalactiae infections.
Collapse
Affiliation(s)
- Christina Gruber
- Animal Nutrition & Health R&D Center, DSM-Firmenich, 3430 Tulln, Austria; (V.O.); (J.C.K.); (S.W.)
| | | | | | | |
Collapse
|
4
|
Wang J, Amoah S, Stafford JL. A leukocyte immune-type receptor specific polyclonal antibody recognizes goldfish kidney leukocytes and activates the MAPK pathway in isolated goldfish kidney neutrophil-like cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105228. [PMID: 38997096 DOI: 10.1016/j.dci.2024.105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Leukocyte immune-type receptors (LITRs) belong to a large family of teleost immunoregulatory receptors that share phylogenetic and syntenic relationships with mammalian Fc receptor-like molecules (FCRLs). Recently, several putative stimulatory Carassius auratus (Ca)-LITR transcripts, including CaLITR3, have been identified in goldfish. CaLITR3 has four extracellular immunoglobulin-like (Ig-like) domains, a transmembrane domain containing a positively charged histidine residue, and a short cytoplasmic tail region. Additionally, the calitr3 transcript is highly expressed by goldfish primary kidney neutrophils (PKNs) and macrophages (PKMs). To further investigate the immunoregulatory potential of CaLITR3 in goldfish myeloid cells, we developed and characterized a CaLITR3-epitope-specific polyclonal antibody (anti-CaL3.D1 pAb). We show that the anti-CaL3.D1 pAb stains various hematopoietic cell types within the goldfish kidney, as well as in PKNs and PKMs. Moreover, cross-linking of the anti-CaL3.D1-pAb on PKN membranes induces phosphorylation of p38 and ERK1/2, critical components of the MAPK pathway involved in controlling a wide variety of innate immune effector responses such as NETosis, respiratory burst, and cytokine release. These findings support the stimulatory potential of CaLITR3 proteins as activators of fish granulocytes and pave the way for a more in-depth examination of the immunoregulatory functions of CaLITRs in goldfish myeloid cells.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | - Samuel Amoah
- Department of Biological Sciences, University of Alberta, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Alberta, Canada.
| |
Collapse
|
5
|
Han H, Zhang JM, Ji S, Zeng XB, Jin XC, Shen ZQ, Xie B, Luo XN, Li K, Liu LP. Histology and transcriptomic analysis reveal the inflammation and affected pathways under 2-methylisoborneol (2-MIB) exposure on grass carp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173233. [PMID: 38763196 DOI: 10.1016/j.scitotenv.2024.173233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/19/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
2-Methylisoborneol (2-MIB) is a common and widely distributed off-flavor compound in water. However, the toxic mechanisms of 2-MIB on aquatic organisms remain largely unexplored. In this study, grass carp larvae were exposed to different concentrations (0, 5, and 20 μg L-1) of 2-MIB for 96 h. The accumulation of 2-MIB in the dorsal muscle was measured. Histological analysis, ultrastructure observations, and transcriptomic sequencing were conducted on the liver tissues. The results showed that 2-MIB accumulated significantly in the fish muscle, with the accumulation increasing as the exposure concentration increased through gas chromatography-mass spectrometry (GC-MS) detection. Histological and ultrastructure observations indicated that 2-MIB caused concentration-dependent inflammatory infiltration and mitochondrial damage in the liver. Transcriptomic analysis revealed lipid metabolism disorders induced by exposure to 2-MIB in grass carp. Additionally, 5 μg L-1 2-MIB affected the neurodevelopment and cardiovascular system of grass carp larvae through extracellular matrix (ECM)-receptor interaction and focal adhesion pathway. Furthermore, several pathways related to the digestive system were significantly enriched, implying that 2-MIB may impact pancreatic secretion function, protein digestion and absorption processes. These findings provide new insights into the potential toxicological mechanisms of 2-MIB.
Collapse
Affiliation(s)
- Huan Han
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Jun-Ming Zhang
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Ji
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xiang-Biao Zeng
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xi-Chen Jin
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Zi-Qian Shen
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Bin Xie
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Xue-Neng Luo
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China
| | - Kang Li
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Li-Ping Liu
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai 201306, China; Center for Ecological Aquaculture (CEA), Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Aliu C, Ajayi OO, Olawuyi TS, Gbadamosi OK, Barbosa F, Adedire CO, Adeyemi JA. Tissue Accumulation, Cytotoxicity, Oxidative Stress, and Immunotoxicity in African Catfish, Clarias gariepinus Exposed to Sublethal Concentrations of Hexavalent Chromium. Biol Trace Elem Res 2024; 202:2294-2307. [PMID: 37608130 DOI: 10.1007/s12011-023-03812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Hexavalent chromium (Cr6+) is one of the stable oxidation states of chromium that has been reported to elicit various toxic effects in aquatic organisms. However, the mechanisms of Cr6+ toxicity are still poorly understood. Thus, the present study investigated the tissue accumulation, cytotoxic, oxidative stress, and immunotoxic effects of Cr6+ in juvenile Clarias gariepinus. The fish were exposed to waterborne Cr6+ concentrations (0, 0.42, 0.84, and 1.68 mg/L) for 28 days, after which they were sacrificed and various organs were harvested for the determination of Cr6+ levels. Other parameters that were indicators of oxidative stress, cytotoxicity, and immunotoxicity were measured. Cr6+ accumulated more in the kidney and liver of the exposed fish, especially at the highest concentration. The levels of lipid peroxidation and DNA fragmentation increased significantly in the exposed fish. The activities of superoxide dismutase and lactate dehydrogenase increased significantly in exposed fish compared to the control. The total white blood cells, lymphocytes, and neutrophils counts were significantly higher in the exposed fish compared to the control fish. The respiratory burst activity decreased significantly in the exposed fish while the myeloperoxidase content did not differ significantly. There were upregulations of TNF-α and HSP 70 while CYP II and MHC 2 were downregulated in the exposed fish. Also, exposure to Cr6+ resulted in various histopathological alterations in the architecture of the head kidney. The results indicate concentration-dependent toxic effects of Cr6+ in C. gariepinus. The study reveals the potentials of Cr6+ to accumulate in the different tissues of fish and caused cytotoxic, oxidative stress, and immunotoxic effects in the exposed fish.
Collapse
Affiliation(s)
- Christian Aliu
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Ogooluwa O Ajayi
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Toluwase S Olawuyi
- Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Oluyemi K Gbadamosi
- Department of Fisheries and Aquaculture Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Cafe´ s/no, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Chris O Adedire
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Joseph A Adeyemi
- Department of Biology, School of Life Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria.
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Cafe´ s/no, CEP 14040-903 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
7
|
Ahani S, Ahani S, Yousefi M, Taheri Mirghaed A, Abdel Rahman AN. Effects of Dietary Phytol Supplementation on Growth Performance, Immunological Parameters, Intestinal Bacteria, and Prevention of Oxidative Stress Following Transportation of Nile Tilapia, Oreochromis niloticus. AQUACULTURE NUTRITION 2024; 2024:7039179. [PMID: 39555567 PMCID: PMC11003384 DOI: 10.1155/2024/7039179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 11/19/2024]
Abstract
Nile tilapia, Oreochromis niloticus, (2.00 ± 0.02 g) were reared in 16 70-L tanks (40 individual/tank) and fed diets (approx. 345 g/kg protein, approx. 87 g/kg crude fat) containing 0 (CTL), 75 (PH-75), 150 (PH-150), and 300 (PH-300) mg/kg phytol (n = 4). After 60 days of feeding (4% daily), growth performance, humoral immune parameters, and gut bacteria were analyzed. Also, hepatic antioxidant parameters were determined before and after the fish were transported in plastic bags for 6 hr. The results showed that PH-75 exhibited the highest final weight (P < 0.001), weight gain (P < 0.001), feed intake (P < 0.001), feed efficiency (P=0.015), plasma lysozyme activity (P=0.004), and intestinal Lactobacillus sp. population (P=0.017), among the treatments. The highest plasma alternative complement activity (P=0.006) and the lowest intestinal total viable bacteria (P=0.027) were observed in PH-75 and PH-150. The highest plasma alkaline phosphatase activities were observed in PH-75 and PH-300 (P=0.014). The highest blood leukocyte (P=0.008), monocyte (P=0.010), and eosinophil (P < 0.001) were observed in PH-300, while the highest blood neutrophil was observed in all phytol treatments (P < 0.001). The highest hepatic lipid peroxidation was observed in PH-300, whereas PH-75 and PH-150 showed the lowest values (P < 0.001). The highest hepatic reduced glutathione was observed in PH-75, also PH-150 exhibited significant elevation in this parameter, compared to CTL (P < 0.001). Transportation led to significant elevations in the hepatic antioxidant enzymes' activities in CTL, PH-75, and PH-150; the highest activities were related to PH-75 and PH-150 treatments, which had also the highest post-transportation survivals (P < 0.001). In conclusion, phytol is a suitable feed supplement for Nile tilapia, improving growth performance and welfare, particularly at 75 mg/kg.
Collapse
Affiliation(s)
- Saman Ahani
- Science and Research, Islamic Azad University, Tehran, Iran
| | - Sara Ahani
- Science and Research, Islamic Azad University, Tehran, Iran
| | - Morteza Yousefi
- Department of Veterinary Medicine, RUDN University, Miklukho-Maklaya St, Moscow 117198, Russia
| | - Ali Taheri Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Afaf N. Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Egypt
| |
Collapse
|
8
|
Sayyaf Dezfuli B, Franchella E, Bernacchia G, De Bastiani M, Lorenzoni F, Carosi A, Lorenzoni M, Bosi G. Infection of endemic chub Squalius tenellus with the intestinal tapeworm Caryophyllaeus brachycollis (Cestoda): histopathology and ultrastructural surveys. Parasitology 2024; 151:157-167. [PMID: 38193283 PMCID: PMC10941047 DOI: 10.1017/s0031182023001233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 01/10/2024]
Abstract
The endemic chub Squalius tenellus (Heckel, 1843) was introduced more than 100 years ago to Lake Blidinje (Bosnia-Herzegovina). Only 1 species of enteric helminth was found in a sample of 35 chubs, the tapeworm Caryophyllaeus brachycollis (Janiszewska, 1953). The paper includes histopathological investigation with identification of innate immune cells involved in host reaction and molecular data allowed correct designation of the cestode species. Of 35 specimens of chub examined, 21 (60%) harboured individuals of C. brachycollis and a total of 1619 tapeworms were counted, the intensity of infection ranged from 1 to 390 worms per fish (46.2 ± 15.3, mean ± s.e.). Histopathological and ultrastructural investigations showed strict contact between the worm's body and the epithelia and increase in the number of mucous cells, rodlet cells among the epithelial cells. Within the tunica propria-submucosa, beneath the site of scolex attachment, numerous neutrophils and mast cells were noticed. This is the first study of the occurrence of C. brachycollis in chub from Lake Blidinje and on the response of the innate immune cells of S. tenellus to this tapeworm. Interestingly, in 3 very heavily infected chubs, perforation of the intestinal wall was documented; this is uncommon among cestodes which use fish as a definitive host.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Emanuela Franchella
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Morena De Bastiani
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Francesca Lorenzoni
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, St. Elce di sotto 5, 06123 Perugia, Italy
| | - Antonella Carosi
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, St. Elce di sotto 5, 06123 Perugia, Italy
| | - Massimo Lorenzoni
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, St. Elce di sotto 5, 06123 Perugia, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. of University 6, 26900, Lodi, Italy
| |
Collapse
|
9
|
Sayyaf Dezfuli B, Lorenzoni M, Carosi A, Giari L, Bosi G. Teleost innate immunity, an intricate game between immune cells and parasites of fish organs: who wins, who loses. Front Immunol 2023; 14:1250835. [PMID: 37908358 PMCID: PMC10613888 DOI: 10.3389/fimmu.2023.1250835] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Fish, comprising over 27,000 species, represent the oldest vertebrate group and possess both innate and adaptive immune systems. The susceptibility of most wild fish to parasitic infections and related diseases is well-established. Among all vertebrates, the digestive tract creates a remarkably favorable and nutrient-rich environment, which, in turn, renders it susceptible to microparasites and macroparasites. Consequently, metazoan parasites emerge as important disease agents, impacting both wild and farmed fish and resulting in substantial economic losses. Given their status as pathogenic organisms, these parasites warrant considerable attention. Helminths, a general term encompassing worms, constitute one of the most important groups of metazoan parasites in fish. This group includes various species of platyhelminthes (digeneans, cestodes), nematodes, and acanthocephalans. In addition, myxozoans, microscopic metazoan endoparasites, are found in water-dwelling invertebrates and vertebrate hosts. It is worth noting that several innate immune cells within the fish alimentary canal and certain visceral organs (e.g., liver, spleen, and gonads) play active roles in the immune response against parasites. These immune cells include macrophages, neutrophils, rodlet cells, and mast cells also known as eosinophilic granular cells. At the site of intestinal infection, helminths often impact mucous cells number and alter mucus composition. This paper presents an overview of the state of the art on the occurrence and characteristics of innate immune cells in the digestive tract and other visceral organs in different fish-parasite systems. The data, coming especially from studies employed immunohistochemical, histopathological, and ultrastructural analyses, provide evidence supporting the involvement of teleost innate immune cells in modulating inflammatory responses to metazoan and protozoan parasitic infections.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Antonella Carosi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| |
Collapse
|
10
|
Cao J, Kong W, Cheng G, Xu Z. Role of mTORC1 Signaling in Regulating the Immune Function of Granulocytes in Teleost Fish. Int J Mol Sci 2023; 24:13745. [PMID: 37762047 PMCID: PMC10530975 DOI: 10.3390/ijms241813745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Granulocytes are crucial innate immune cells that have been extensively studied in teleost fish. Studies in mammals have revealed that mechanistic target of rapamycin complex 1 (mTORC1) signaling acts as a significant immune regulatory hub, influencing granulocyte immune function. To investigate whether mTORC1 signaling also regulates the immune function of granulocytes in teleost fish, we established a model of RAPA inhibition of the mTORC1 signaling pathway using granulocytes from largemouth bass (Micropterus salmoides). Our results demonstrated that inhibition of mTORC1 signaling promoted autophagy and apoptosis of granulocytes while inhibiting cell proliferation. Moreover, inhibition of the mTORC1 signaling pathway enhanced the phagocytosis capacity of granulocytes. Collectively, our findings revealed the evolutionarily conserved role of the mTORC1 signaling pathway in regulating granulocyte responses, thus providing novel insights into the function of granulocytes in teleost fish.
Collapse
Affiliation(s)
- Jiafeng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (G.C.)
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Gaofeng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (G.C.)
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Zhen Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| |
Collapse
|
11
|
Ferreira IA, Peixoto D, Losada AP, Quiroga MI, do Vale A, Costas B. Early innate immune responses in European sea bass ( Dicentrarchus labrax L.) following Tenacibaculum maritimum infection. Front Immunol 2023; 14:1254677. [PMID: 37731496 PMCID: PMC10507263 DOI: 10.3389/fimmu.2023.1254677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction The marine aquaculture industry has been witnessing a worldwide emergence of tenacibaculosis, a poorly understood bacterial disease caused by Tenacibaculum maritimum that affects commercially important fish. So far, knowledge on the T. maritimum virulence mechanisms is scarce and the pathogen-host interaction operating in tenacibaculosis remain to be disclosed. This study aimed at contributing to a better understanding of this disease, by evaluating the early innate immune response triggered in European sea bass (Dicentrarchus labrax) by a bath-challenge with T. maritimum. Methods Groups of sea bass were bath-challenged with T. maritimum (challenged fish) or mock-challenged. Undisturbed fish were used as controls (time 0). Samples of blood, liver and mucosal organs (skin, gills and posterior-intestine) were collected at 0 h (control) and at 6, 24, 48 and 72 h post-challenge (n=12). Mucosal organs were used for analyzing the expression of immune-related genes by RT-qPCR, as well as blood samples for assessing haematological and innate humoral parameters and liver for oxidative stress assessment. Results An increased expression of il-1β, il8, mmp9 and hamp1 was detected in all mucosal organs of infected fish when compared with control and mock-challenged fish, suggesting a pro-inflammatory response against T. maritimum transversal to all organs. The faster induction of these pro-inflammatory genes was observed in the gills. Regarding the systemic response, challenged fish presented neutrophilia, monocytosis, signs of anemia, and a decrease of bactericidal and lysozyme activities in plasma. Almost no variations were observed regarding hepatic oxidative stress. Discussion/Conclusions The present study suggests that T. maritimum induces a local innate immune response upon bath infection not only in the skin of European sea bass, but also in the gills and posterior-intestine, likely triggered by the T. maritimum's capacity to adhere, colonize and damage these organs that can function as entry ways to bacteria, leading ultimately to the seen host's systemic response.
Collapse
Affiliation(s)
- Inês A. Ferreira
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Diogo Peixoto
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - Ana Paula Losada
- Departamento de Anatomía, Produción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - María Isabel Quiroga
- Departamento de Anatomía, Produción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ana do Vale
- Fish Immunology and Vaccinology Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Benjamín Costas
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Torrealba D, Morales-Lange B, Mulero V, Vasemägi A, Mercado L, Gallardo-Matus J. Heritability of Immunity Traits and Resistance of Atlantic Salmon against the Sea Louse Caligus rogercresseyi. BIOLOGY 2023; 12:1078. [PMID: 37626964 PMCID: PMC10452322 DOI: 10.3390/biology12081078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
The immune response of Atlantic salmon to sea lice has been extensively studied, but we still do not know the mechanisms by which some fish become resistant and others do not. In this study, we estimated the heritabilities of three key proteins associated with the innate immunity and resistance of Salmo salar against the sea louse Caligus rogercresseyi. In particular, we quantified the abundance of 2 pro-inflammatory cytokines, Tnfα and Il-8, and an antioxidant enzyme, Nkef, in Atlantic salmon skin and gill tissue from 21 families and 268 individuals by indirect ELISA. This covers a wide parasite load range from low or resistant (mean sea lice ± SE = 8.7 ± 0.9) to high or susceptible (mean sea lice ± SE = 43.3 ± 2.0). Our results showed that susceptible fish had higher levels of Nkef and Tnfα than resistant fish in their gills and skin, although gill Il-8 was higher in resistant fish, while no significant differences were found in the skin. Furthermore, moderate to very high heritable genetic variation was estimated for Nkef (h2 skin: 0.96 ± 0.14 and gills: 0.97 ± 0.11) and Tnfα (h2 skin: 0.53 ± 0.17 and gills: 0.32 ± 0.14), but not for Il-8 (h2 skin: 0.22 ± 0.12 ns and gills: 0.09 ± 0.08 ns). This work provides evidence that Nkef and Tnfα protein expressions are highly heritable and related to resistance against sea lice in Atlantic salmon.
Collapse
Affiliation(s)
- Débora Torrealba
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2373223, Chile;
| | - Byron Morales-Lange
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2373223, Chile; (B.M.-L.); (L.M.)
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, C. Campus Universitario, 5, 30100 Murcia, Spain;
| | - Anti Vasemägi
- Department of Aquatic Resources, Swedish University of Agricultural Sciences. Almas Allé 8, SE-750 07 Uppsala, Sweden;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Friedrich Reinhold Kreutzwaldi 1a, 51014 Tartu, Estonia
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos en Organismos Acuáticos, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2373223, Chile; (B.M.-L.); (L.M.)
| | - José Gallardo-Matus
- Laboratorio de Genética y Genómica Aplicada, Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2373223, Chile;
| |
Collapse
|
13
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
14
|
Haddad F, Soliman AM, Wong ME, Albers EH, Semple SL, Torrealba D, Heimroth RD, Nashiry A, Tierney KB, Barreda DR. Fever integrates antimicrobial defences, inflammation control, and tissue repair in a cold-blooded vertebrate. eLife 2023; 12:83644. [PMID: 36917159 PMCID: PMC10014077 DOI: 10.7554/elife.83644] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Multiple lines of evidence support the value of moderate fever to host survival, but the mechanisms involved remain unclear. This is difficult to establish in warm-blooded animal models, given the strict programmes controlling core body temperature and the physiological stress that results from their disruption. Thus, we took advantage of a cold-blooded teleost fish that offered natural kinetics for the induction and regulation of fever and a broad range of tolerated temperatures. A custom swim chamber, coupled to high-fidelity quantitative positional tracking, showed remarkable consistency in fish behaviours and defined the febrile window. Animals exerting fever engaged pyrogenic cytokine gene programmes in the central nervous system, increased efficiency of leukocyte recruitment into the immune challenge site, and markedly improved pathogen clearance in vivo, even when an infecting bacterium grew better at higher temperatures. Contrary to earlier speculations for global upregulation of immunity, we identified selectivity in the protective immune mechanisms activated through fever. Fever then inhibited inflammation and markedly improved wound repair. Artificial mechanical hyperthermia, often used as a model of fever, recapitulated some but not all benefits achieved through natural host-driven dynamic thermoregulation. Together, our results define fever as an integrative host response that regulates induction and resolution of acute inflammation, and demonstrate that this integrative strategy emerged prior to endothermy during evolution.
Collapse
|
15
|
Abbasi M, Taheri Mirghaed A, Hoseini SM, Rajabiesterabadi H, Hoseinifar SH, Van Doan H. Effects of Dietary Glycine Supplementation on Growth Performance, Immunological, and Erythrocyte Antioxidant Parameters in Common Carp, Cyprinus carpio. Animals (Basel) 2023; 13:ani13030412. [PMID: 36766300 PMCID: PMC9913273 DOI: 10.3390/ani13030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
The effects of dietary glycine supplementation, 0 (control), 5 (5 GL), and 10 (10 GL) g/kg, have been investigated on growth performance, hematological parameters, erythrocyte antioxidant capacity, humoral and mucosal immunity in common carp, Cyprinus carpio. After eight weeks feeding, the 5 GL treatment exhibited significant improvement in growth performance and feed efficacy, compared to the control treatment. Red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin, hematocrit, neutrophil and monocyte counts/percentages, RBC reduced glutathione (GSH) content, and skin mucosal alkaline phosphatase, peroxidase, protease, and lysozyme activities were similar in the glycine-treated fish and significantly higher than the control treatment. Blood lymphocyte percentage decreased in the glycine-treated fish, but lymphocyte count increased, compared to the control fish. RBC glutathione reductase activities in the glycine-treated fish were similar and significantly lower than the control treatment. The highest plasma lysozyme and alternative complement activities were observed in GL treatment. The glycine-treated fish, particularly 5 GL, exhibited significant improvement in RBC osmotic fragility resistance. Dietary glycine had no significant effects on RBC glutathione peroxidase activity, plasma immunoglobulin, eosinophil percentage/count, and hematological indices. In conclusion, most of the benefits of dietary glycine supplementation may be mediated by increased glutathione synthesis and antioxidant power.
Collapse
Affiliation(s)
- Marzieh Abbasi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara 4361996196, Iran
| | - Ali Taheri Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran 14119963111, Iran
| | - Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan 4916687631, Iran
| | - Hamid Rajabiesterabadi
- Young Researchers and Elite Club, Azadshahr Branch, Islamic Azad University, Golestan 8998549617, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
| | - Hien Van Doan
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-941-000
| |
Collapse
|
16
|
Gan Q, Chi H, Dalmo RA, Meng X, Tang X, Xing J, Sheng X, Zhan W. Characterization of myeloperoxidase and its contribution to antimicrobial effect on extracellular traps in flounder ( Paralichthys olivaceus). Front Immunol 2023; 14:1124813. [PMID: 36776890 PMCID: PMC9908613 DOI: 10.3389/fimmu.2023.1124813] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Myeloperoxidase (MPO) is a cationic leukocyte haloperoxidase and together with other proteins, they possess activities against various microorganisms and are involved in extracellular trap (ET) formation. The present work describes the gene and deduced protein sequences, and functions of MPO in flounder (PoMPO). The PoMPO possesses a 2313 bp open reading frame (ORF) that encodes a protein of 770 amino acids. The highest PoMPO mRNA expression levels were found in the head kidney, followed by peritoneal cells, gill, spleen, skin, muscle, and liver. PoMPO was expressed in MHCII+ and GCSFR+ cells which indicated that PoMPO mainly is expressed in flounder macrophages and granulocytes. Bacterial lipopolysaccharide-stimulated peritoneal leukocytes showed an increased protein level of PoMPO while it seemed that LPS also promoted the migration of MPO+ cells from the head kidney into the peripheral blood and peritoneal cavity. After phorbol 12-myristate 13-acetate (PMA) or bacterial stimulation, flounder leukocytes produced typical ET structures containing DNA with decoration by MPO. The ETs containing DNA and PoMPO effectively inhibited the proliferation of ET-trapped bacteria. Blocking PoMPO with antibodies decreased the enzymatic activity, which attenuated the antibacterial activity of ETs. This study pinpoints the involvement of ETs in flounder innate responses to pathogens.
Collapse
Affiliation(s)
- Qiujie Gan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China,*Correspondence: Heng Chi,
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Xianghu Meng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Soliman AM, Barreda DR. Acute Inflammation in Tissue Healing. Int J Mol Sci 2022; 24:ijms24010641. [PMID: 36614083 PMCID: PMC9820461 DOI: 10.3390/ijms24010641] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
There are well-established links between acute inflammation and successful tissue repair across evolution. Innate immune reactions contribute significantly to pathogen clearance and activation of subsequent reparative events. A network of molecular and cellular regulators supports antimicrobial and tissue repair functions throughout the healing process. A delicate balance must be achieved between protection and the potential for collateral tissue damage associated with overt inflammation. In this review, we summarize the contributions of key cellular and molecular components to the acute inflammatory process and the effective and timely transition toward activation of tissue repair mechanisms. We further discuss how the disruption of inflammatory responses ultimately results in chronic non-healing injuries.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: ; Tel.: +1-(780)492-0375
| |
Collapse
|
18
|
Sellaththurai S, Ganeshalingam S, Jung S, Choi JY, Kim DJ, Lee J. Insight into the molecular structure and function of peptidoglycan recognition protein SC2 (PGRP-SC2) from Amphiprion clarkii: Investigating the role in innate immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 131:559-569. [PMID: 36241004 DOI: 10.1016/j.fsi.2022.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) belong to the pattern recognition receptor (PRR) family and are conserved from insects to mammals. PGRPs show specific binding abilities to peptidoglycans (PGNs) in various microbes. In this study, molecular and functional analyses of PGRP-SC2 from Amphiprion clarkii (AcPGRP-SC2) were conducted. The 492 bp ORF of AcPGRP-SC2 encoded a protein of 164 amino acids with a molecular weight of 17.58 kDa and pI of 8.9. The PGRP superfamily domain was identified from the protein sequence of AcPGRP-SC2 and sequence similarities were observed with homologous proteins. Quantitative polymerase chain reaction (qPCR) analysis revealed that AcPGRP-SC2 transcripts were ubiquitously expressed in all tested tissues, with high levels in the skin, and transcript expression was significantly modulated by immune stimulation with lipopolysaccharide (LPS), Polyinosinic:polycytidylic acid (poly I:C), and Vibrio harveyi post-immune challenge. Recombinant AcPGRP-SC2 with the maltose-binding protein fusion (rAcPGRP-SC2) was used to evaluate LPS-, PGN-, and bacterial-binding activities and to conduct bacterial agglutination assays, and the results demonstrated that AcPGRP-SC2 exhibited bacterial recognition, binding, and colonization abilities to a range of Gram-positive and Gram-negative bacterial strains. Moreover, rAcPGRP-SC2-pre-treated Fat Head Minnow (FHM) cells exhibited significant upregulation in NF-ĸB1, NF-ĸB2, and stat3 expression upon treatment with killed bacteria. Taken together, our findings suggest that AcPGRP-SC2 plays an important role in the immune response against microbial pathogens in A. clarkii.
Collapse
Affiliation(s)
- Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Subothini Ganeshalingam
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Ji Yong Choi
- Jeju Fisheries Research Institute, National Institute Fisheries Science, Jeju, 63068, South Korea
| | - Dae-Jung Kim
- Jeju Fisheries Research Institute, National Institute Fisheries Science, Jeju, 63068, South Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
19
|
Li GX, Jiang XH, Zang JN, Zhu BZ, Jia CC, Niu KW, Liu X, Jiang R, Wang B. B-cell receptor associated protein 31 deficiency decreases the expression of adhesion molecule CD11b/CD18 and PSGL-1 in neutrophils to ameliorate acute lung injury. Int J Biochem Cell Biol 2022; 152:106299. [PMID: 36210579 PMCID: PMC9484107 DOI: 10.1016/j.biocel.2022.106299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022]
Abstract
Acute lung injury (ALI) and its more severe condition acute respiratory distress syndrome (ARDS) are critical life-threatening disorders characterized by an excessive influx of neutrophils into the alveolar space. Neutrophil infiltration is a multi-step process involving the sequential engagement of adhesion molecules. The adhesion molecule CD11b/CD18 acts as an important role in the recruitment of neutrophils to lung tissues in the ALI model. B-cell receptor associated protein 31 (BAP31), an endoplasmic reticulum transmembrane protein, has been reported to regulate the cellular anterograde transport of CD11b/CD18 in human neutrophils. To explore how BAP31 regulates CD11b/CD18 in mouse neutrophils, we constructed myeloid-specific BAP31 knockdown mice in this study. Biological investigations indicated that BAP31 deficiency could significantly alleviated lung injury, as evidenced by the improved histopathological morphology, reduced pulmonary wet/dry weight ratio, inhibited myeloperoxidase level and decreased neutrophil counts in the bronchoalveolar lavage fluid. Further studies clarified that BAP31 deficiency obviously down-regulated the expression of CD11b/CD18 and P-selectin glycoprotein ligand-1 (PSGL-1) by deactivating the nuclear factor kappa B (NF-κB) signaling pathway. Collectively, our results revealed that BAP31 depletion exerted a protective effect on ALI, which was possibly dependent on the attenuation of neutrophil adhesion and infiltration by blocking the expression of adhesion molecules CD11b/CD18 and PSGL-1. These findings implied the potential of BAP31 as an appealing protein to mediate the occurrence of ALI.
Collapse
Affiliation(s)
- Guo-Xun Li
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiao-Han Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jing-Nan Zang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Ben-Zhi Zhu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Cong-Cong Jia
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Kun-Wei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Road, Xi'an, Shaanxi 710032, China
| | - Xia Liu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Rui Jiang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
20
|
Haugland GT, Rønneseth A, Gundersen L, Lunde HS, Nordland K, Wergeland HI. Neutrophils in Atlantic salmon (Salmo salar L.) are MHC class II+ and secret IL-12p40 upon bacterial exposure. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Carvalho NS, Lemes JBP, Pagliusi M, Machado ACDS, Malange KF, Pral LP, Fachi JL, Nishijima CM, Dos Santos GG, Tambeli CH, Sartori CR, Vinolo MAR, Parada CA. Neutrophil-Derived COX-2 has a Key Role during Inflammatory Hyperalgesia. Inflammation 2022; 45:2280-2293. [PMID: 35840810 DOI: 10.1007/s10753-022-01690-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
Inflammation is a vital process for the injured tissue restoration and one of its hallmarks is inflammatory hyperalgesia. The cyclooxygenase (COX) pathway is strongly related to the inflammatory and painful process. Usually, the COX-1 isoform is described as homeostatic, while COX-2 is characterized as inducible in inflammatory conditions. Although it is well known that neutrophil cells are the first to arrive at the inflamed site and the major source of COX-2 is still unknown, the specific role of neutrophil-derived COX-2 in the pain process is. Thus, in the present study, we demonstrate for the first time that neutrophil-derived COX-2 plays a key role in peripheral inflammatory hyperalgesia. Conditional knockout mice for COX-2 in neutrophils (COX-2 fl/fl: Mrp8cre±) exhibited higher pain sensitivity after carrageenan (CG) injection and long-lasting IL-1β-induced hyperalgesia compared with the control group (COX-2 fl/fl). Also, CG-induced inflammation in COX-2 fl/fl: Mrp8cre± mice showed COX-1 overexpression, and increased neutrophil migration and pro-inflammatory cytokines (e.g., IL-1β and CXCL1). These findings revealed that neutrophil COX-2 has an important role in the regulation of inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Nathalia Santos Carvalho
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil
| | - Julia Borges Paes Lemes
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil.,Department of Anesthesiology, University of California, San Diego, LA Jolla, CA, USA
| | - Marco Pagliusi
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil.,Department of Pharmacology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Carolina Dos Santos Machado
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil
| | - Kauê Franco Malange
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil.,Department of Anesthesiology, University of California, San Diego, LA Jolla, CA, USA
| | - Laís Passariello Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - José Luís Fachi
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Catarine Massucato Nishijima
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil
| | | | - Claudia Herrera Tambeli
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil
| | - Cesar Renato Sartori
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Carlos Amilcar Parada
- Laboratory of the Study of Pain, Department of Structural and Functional Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, SP, CEP, 13083-862, Brazil.
| |
Collapse
|
22
|
Peixoto D, Machado M, Azeredo R, Costas B. Chronic Inflammation Modulates Opioid Receptor Gene Expression and Triggers Respiratory Burst in a Teleost Model. BIOLOGY 2022; 11:biology11050764. [PMID: 35625492 PMCID: PMC9138576 DOI: 10.3390/biology11050764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022]
Abstract
Stress-inducing husbandry and rearing conditions, bacterial infections or parasitic diseases may all lead to chronic inflammation. The immune response will then channel energy away from growth, reproduction and other important physiological processes, to fuel immune-related metabolic responses. The present study aims to unravel the mechanisms and contribute with new information on the molecular, cellular and humoral parameters of European seabass (Dicentrarchus labrax) undergoing chronic inflammation that can be used as health indicators for application in fish health management. European seabass individuals were intra-peritoneally injected with either Freund’s Incomplete Adjuvant (FIA) to induce inflammation or Hanks Balanced Salt Solution (HBSS) to serve as sham. Fish were sampled at 24 h, 7, 14 and 21 days post-injection and blood, plasma and head-kidney were collected. The results found were clear indicators of an inflamed peritoneal cavity and an ongoing systemic immune response that persisted for at least 21 days. Locally, inflammation was characterized by an intense recruitment of immune cells that was still evident 21 days after injection, thus illustrating the chronic character of the immune response. Cellular response was also noticed peripherally with leukocyte numbers rising in the blood of FIA-injected fish. Furthermore, the cellular-mediated respiratory burst peaked at 21 days post-FIA injection, suggesting that phagocytes were still actively fighting the phlogistic agent. Regarding the head-kidney molecular analysis, cxcr4 and il34 appear to be good markers of a chronic inflammation response due to their importance for pathways with high relevance in chronic inflammation settings. In addition, opioid receptor nopr seems to be a good marker of a chronic inflammation response due to its role in detecting noxious stimuli. The present study can serve as a baseline to assess long-term immune-related responses in future studies. For that, more research is nonetheless required to select more responsive and specific molecular markers.
Collapse
Affiliation(s)
- Diogo Peixoto
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (M.M.); (R.A.)
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEIMAR), Universidad de Cádiz, 11519 Puerto Real, Spain
- Correspondence: (D.P.); (B.C.)
| | - Marina Machado
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (M.M.); (R.A.)
| | - Rita Azeredo
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (M.M.); (R.A.)
| | - Benjamín Costas
- CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, 4450-208 Matosinhos, Portugal; (M.M.); (R.A.)
- Correspondence: (D.P.); (B.C.)
| |
Collapse
|
23
|
Kaimal S, Farmer BD, Renukdas NN, Abdelrahman HA, Kelly AM. Evaluating Stress-Mediated Microbial Pathogenesis in Golden Shiners, Notemigonus crysoleucas. Front Physiol 2022; 13:886480. [PMID: 35634142 PMCID: PMC9132093 DOI: 10.3389/fphys.2022.886480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
Flavobacterium covae (columnaris) is a microbial pathogen of the Golden Shiner (Notemigonus crysoleucas), a principal bait species. We investigated the effects of density and water temperature on the survival of fish subjected to a columnaris challenge and whether flow cytometry (FCM) could be a fast and reliable method to distinguish and enumerate F. covae populations from water and fish in experimental tanks. Juvenile Golden Shiners averaging 2.62 (±0.78 S.D.) g (negative for F. covae) were used in simultaneous trials at 22°C and 28°C in two ultra-low flow-through systems: each consisting of four treatments and five replicates per treatment. Treatments were fish stocked at either 600 fish/m3 or 2,400 fish/m3 and either challenged with F. covae or not; survival was observed for 48 h after challenge. Samples of water and fish tissue were obtained for FCM enumerations and validation by qPCR. No significant differences in survival were recorded between density treatments; however, high temperature and columnaris challenge treatments showed significantly higher mortality. Bacterial enumeration (number/mL) by FCM highly correlated with bacterial counts r = 0.81 (p = 0.001) in the water samples. Higher water temperatures may have increased columnaris infections and mortality in Golden Shiners. Flow cytometry is a reliable method of enumerating F. covae from experimental tank water samples.
Collapse
Affiliation(s)
- Sindhu Kaimal
- Department of Aquaculture and Fisheries, The University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Bradley D. Farmer
- United States Department of Agriculture, Agriculture Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, United States
| | - Nilima N. Renukdas
- Department of Aquaculture and Fisheries, The University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Hisham A. Abdelrahman
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Alabama Fish Farming Center, Auburn University, Greensboro, AL, United States
| | - Anita M. Kelly
- Department of Aquaculture and Fisheries, The University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
- *Correspondence: Anita M. Kelly,
| |
Collapse
|
24
|
Development of a histopathological index for skeletal muscle analysis in Rattus norvegicus (Rodentia: Muridae). Acta Histochem 2022; 124:151892. [PMID: 35421662 DOI: 10.1016/j.acthis.2022.151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle histopathological changes induced or caused by pathologies in animal models, can impair functionality, being the main focus of therapeutic studies. This study aimed to propose a histopathological index to assess, in a quantitative manner, skeletal muscle changes induced by experimental protocols for Rodentia's models. For the development, evaluation of fit and parsimony, replicability, and sensitivity index, Wistar rats from experiments with the same experimental design, but with different variation factors, were used to achieve different levels of damage. The anterior tibial muscle of these animals was collected, processed histologically, and stained with hematoxylin and eosin. The adjustment and parsimony of the index were availed through Confirmatory Factor Analysis, reproducibility for evaluation of three people trained through the Intra-Class Correlation, and the discrimination capacity through a one-way ANOVA Test. We pointed out the adjustment for the proposed index while the ICC showed high reproducibility (n = 56; k = 3; ICC = 0.9790) and differences in the extent of damage between groups, following the hierarchical association promoted by experimental model stresses. The results show that the proposed index has a good fit and parsimony (χ2 = 426.34; p < 0.0001), in addition to being easily replicable by other researchers who know the morphology of muscle tissue and its morphological changes. It is worth mentioning that the development of tools that facilitate histopathological analysis, and that can quantitatively express the findings, are of great importance for the studies of regenerative science, reinforcing the relevance of this study.
Collapse
|
25
|
Comparative transcriptome profiling of virulent and avirulent isolates of Neoparamoeba perurans. Sci Rep 2022; 12:5860. [PMID: 35393457 PMCID: PMC8989968 DOI: 10.1038/s41598-022-09806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Neoparamoeba perurans, the aetiological agent of amoebic gill disease, remains a persistent threat to Atlantic salmon mariculture operations worldwide. Innovation in methods of AGD control is required yet constrained by a limited understanding of the mechanisms of amoebic gill disease pathogenesis. In the current study, a comparative transcriptome analysis of two N. perurans isolates of contrasting virulence phenotypes is presented using gill-associated, virulent (wild type) isolates, and in vitro cultured, avirulent (clonal) isolates. Differential gene expression analysis identified a total of 21,198 differentially expressed genes between the wild type and clonal isolates, with 5674 of these genes upregulated in wild type N. perurans. Gene set enrichment analysis predicted gene sets enriched in the wild type isolates including, although not limited to, cortical actin cytoskeleton, pseudopodia, phagocytosis, macropinocytic cup, and fatty acid beta-oxidation. Combined, the results from these analyses suggest that upregulated gene expression associated with lipid metabolism, oxidative stress response, protease activity, and cytoskeleton reorganisation is linked to pathogenicity in wild type N. perurans. These findings provide a foundation for future AGD research and the development of novel therapeutic and prophylactic AGD control measures for commercial aquaculture.
Collapse
|
26
|
Parker J, Guslund NC, Jentoft S, Roth O. Characterization of Pipefish Immune Cell Populations Through Single-Cell Transcriptomics. Front Immunol 2022; 13:820152. [PMID: 35154138 PMCID: PMC8828949 DOI: 10.3389/fimmu.2022.820152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 01/16/2023] Open
Abstract
Teleost adaptive immune systems have evolved with more flexibility than previously assumed. A particularly enigmatic system to address immune system modifications in the evolutionary past is represented by the Syngnathids, the family of pipefishes, seahorses and seadragons. These small fishes with their unique male pregnancy have lost the spleen as an important immune organ as well as a functional major histocompatibility class II (MHC II) pathway. How these evolutionary changes have impacted immune cell population dynamics have up to this point remained unexplored. Here, we present the first immune cell repertoire characterization of a syngnathid fish (Syngnathus typhle) using single-cell transcriptomics. Gene expression profiles of individual cells extracted from blood and head-kidney clustered in twelve putative cell populations with eight belonging to those with immune function. Upregulated cell marker genes identified in humans and teleosts were used to define cell clusters. While the suggested loss of CD4+ T-cells accompanied the loss of the MHC II pathway was supported, the upregulation of specific subtype markers within the T-cell cluster indicates subpopulations of regulatory T-cells (il2rb) and cytotoxic T-cells (gzma). Utilizing single-cell RNA sequencing this report is the first to characterize immune cell populations in syngnathids and provides a valuable foundation for future cellular classification and experimental work within the lineage.
Collapse
Affiliation(s)
- Jamie Parker
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Marine Evolutionary Biology, Christian-Albrechts-University, Kiel, Germany
| | - Naomi Croft Guslund
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.,Marine Evolutionary Biology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
27
|
Rastgar S, Alijani Ardeshir R, Segner H, Tyler CR, J G M Peijnenburg W, Wang Y, Salati AP, Movahedinia A. Immunotoxic effects of metal-based nanoparticles in fish and bivalves. Nanotoxicology 2022; 16:88-113. [PMID: 35201945 DOI: 10.1080/17435390.2022.2041756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a global research interest in metal nanoparticles (MNPs) due to their diverse applications, rapidly increasing use, and increased presence in the aquatic environment. Currently, most MNPs in the environment are at levels unlikely to cause overt toxicity. Sub-lethal effects that MNPs may induce, notable immunotoxicity, could however have significant health implications. Thus, deciphering the immunological interactions of MNPs with aquatic organisms constitutes a much-needed area of research. In this article, we critically assess the evidence for immunotoxic effects of MNPs in bivalves and fish, as key wildlife sentinels with widely differing ecological niches that are used as models in ecotoxicology. The first part of this review details the properties, fate, and fundamental physicochemical behavior of MNPs in the aquatic ecosystem. We then consider the toxicokinetics of MNP uptake, accumulation, and deposition in fish and bivalves. The main body of the review then focuses on immune reactions in response to MNPs exposure in bivalves and fish illustrating their immunotoxic potential. Finally, we identify major knowledge gaps in our current understanding of the implications of MNPs exposure for immunological functions and the associated health consequences for bivalves and fish, as well as the general lessons learned on the immunotoxic properties of the emerging class of nanoparticulate contaminants in fish and bivalves.
Collapse
Affiliation(s)
- Sara Rastgar
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.,Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, PR China
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
28
|
Evaluation of blood cell viability rate, gene expression, and O-GlcNAcylation profiles as indicative signatures for fungal stimulation of salmonid cell models. Mol Immunol 2021; 142:120-129. [PMID: 34979452 DOI: 10.1016/j.molimm.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
Fungal diseases of fish are a significant economic problem in aquaculture. Using high-throughput expression analysis, we identified potential transcript markers in primary head kidney and secondary embryonic cells from salmonid fish after stimulation with the inactivated fungi Mucor hiemalis and Fusarium aveneacium and with purified fungal molecular patterns. The transcript levels of most of the 45 selected genes were altered in head-kidney cells after 24 h of stimulation with fungal antigens. Stimulation with the inactivated fungus M. hiemalis induced the most pronounced transcriptional changes, including the pathogen receptor-encoding genes CLEC18A and TLR22, the cytokine-encoding genes IL6 and TNF, and the gene encoding the antimicrobial peptide LEAP2. In parallel, we analyzed the total GlcNAcylation status of embryonic salmonid cells with or without stimulation with inactivated fungi. O-GlcNAcylation modulates gene expression, intracellular protein, and signal activity, but we detected no significant differences after a 3-h stimulation. A pathway analysis tool identified the "apoptosis of leukocytes" based on the expression profile 24 h after fungal stimulation. Fluorescence microscopy combined with flow cytometry revealed apoptosis in 50 % of head-kidney leukocytes after 3 h stimulation with M. hiemalis, but this level decreased by > 5% after 24 h of stimulation. The number of apoptotic cells significantly increased in all blood cells after a 3-h stimulation with fungal molecular patterns compared to unstimulated controls. This in vitro approach identified transcript-based parameters that were strongly modulated by fungal infections of salmonid fish.
Collapse
|
29
|
Tarasco M, Gavaia PJ, Bensimon-Brito A, Cardeira-da-Silva J, Ramkumar S, Cordelières FP, Günther S, Bebianno MJ, Stainier DYR, Cancela ML, Laizé V. New insights into benzo[⍺]pyrene osteotoxicity in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112838. [PMID: 34607190 DOI: 10.1016/j.ecoenv.2021.112838] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Persistent and ubiquitous organic pollutants, such as the polycyclic aromatic hydrocarbon benzo[⍺]pyrene (BaP), represent a major threat to aquatic organisms and human health. Beside some well-documented adverse effects on the development and reproduction of aquatic organisms, BaP was recently shown to affect fish bone formation and skeletal development through mechanisms that remain poorly understood. In this work, zebrafish bone-related in vivo assays were used to evaluate the osteotoxic effects of BaP during bone development and regeneration. Acute exposure of zebrafish larvae to BaP from 3 to 6 days post-fertilization (dpf) induced a dose-dependent reduction of the opercular bone size and a depletion of osteocalcin-positive cells, indicating an effect on osteoblast maturation. Chronic exposure of zebrafish larvae to BaP from 3 to 30 dpf affected the development of the axial skeleton and increased the incidence and severity of skeletal deformities. In young adults, BaP affected the mineralization of newly formed fin rays and scales, and impaired fin ray patterning and scale shape, through mechanisms that involve an imbalanced bone remodeling. Gene expression analyses indicated that BaP induced the activation of xenobiotic and metabolic pathways, while negatively impacting extracellular matrix formation and organization. Interestingly, BaP exposure positively regulated inflammation markers in larvae and increased the recruitment of neutrophils. A direct interaction between neutrophils and bone extracellular matrix or bone forming cells was observed in vivo, suggesting a role for neutrophils in the mechanisms underlying BaP osteotoxicity. Our work provides novel data on the cellular and molecular players involved in BaP osteotoxicity and brings new insights into a possible role for neutrophils in inflammatory bone reduction.
Collapse
Affiliation(s)
- Marco Tarasco
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB) and Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Anabela Bensimon-Brito
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany; DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; INSERM, ATIP-Avenir, Aix Marseille University, Marseille Medical Genetics, Marseille, France
| | - João Cardeira-da-Silva
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Srinath Ramkumar
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany; Department of Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Fabrice P Cordelières
- Bordeaux Imaging Center (BIC), UMS 3420 CNRS - Université de Bordeaux - US4 INSERM, Pôle d'imagerie photonique, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Maria J Bebianno
- Centre of Marine and Environmental Research (CIMA), University of Algarve, Faro, Portugal
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB) and Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| |
Collapse
|
30
|
Salomón R, Furones MD, Reyes-López FE, Tort L, Firmino JP, Esteban MA, Espinosa Ruíz C, Quintela JC, Pinilla-Rosas JM, Vallejos-Vidal E, Gisbert E. A Bioactive Extract Rich in Triterpenic Acid and Polyphenols from Olea europaea Promotes Systemic Immunity and Protects Atlantic Salmon Smolts Against Furunculosis. Front Immunol 2021; 12:737601. [PMID: 34867959 PMCID: PMC8633542 DOI: 10.3389/fimmu.2021.737601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
In the present study, the modulation of the transcriptional immune response (microarray analysis) in the head kidney (HK) of the anadromous fish Atlantic salmon (Salmo salar) fed a diet supplemented with an olive fruit extract (AQUOLIVE®) was evaluated. At the end of the trial (133 days), in order to investigate the immunomodulatory properties of the phytogenic tested against a bacterial infection, an in vivo challenge with Aeromonas salmonicida was performed. A total number of 1,027 differentially expressed genes (DEGs) (805 up- and 222 downregulated) were found when comparing the transcriptomic profiling of the HK from fish fed the control and AQUOLIVE® diets. The HK transcripteractome revealed an expression profile that mainly favored biological processes related to immunity. Particularly, the signaling of i-kappa B kinase/NF-kappa and the activation of leukocytes, such as granulocytes and neutrophils degranulation, were suggested to be the primary actors of the innate immune response promoted by the tested functional feed additive in the HK. Moreover, the bacterial challenge with A. salmonicida that lasted 12 days showed that the cumulative survival was higher in fish fed the AQUOLIVE® diet (96.9 ± 6.4%) than the control group (60.7 ± 13.5%). These results indicate that the dietary supplementation of AQUOLIVE® at the level of 0.15% enhanced the systemic immune response and reduced the A. salmonicida cumulative mortality in Atlantic salmon smolts.
Collapse
Affiliation(s)
- Ricardo Salomón
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain.,PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M Dolors Furones
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joana P Firmino
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| | - M Angeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Cristóbal Espinosa Ruíz
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - José C Quintela
- Scientific Department, Natac Biotech, Alcorcón, Madrid, Spain
| | | | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| |
Collapse
|
31
|
Fei C, Nie L, Zhang J, Chen J. Potential Applications of Fluorescence-Activated Cell Sorting (FACS) and Droplet-Based Microfluidics in Promoting the Discovery of Specific Antibodies for Characterizations of Fish Immune Cells. Front Immunol 2021; 12:771231. [PMID: 34868030 PMCID: PMC8635192 DOI: 10.3389/fimmu.2021.771231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022] Open
Abstract
Akin to their mammalian counterparts, teleost fish possess a complex assortment of highly specialized immune cells that are capable of unleashing potent innate immune responses to eradicate or mitigate incoming pathogens, and also differentiate into memory lymphocytes to provide long-term protection. Investigations into specific roles and functions of fish immune cells depend on the precise separation of each cell type. Commonly used techniques, for example, density gradient centrifugation, rely on immune cells to have differing sizes or densities and thus fail to separate between similar cell types (e.g. T and B lymphocytes). Furthermore, a continuously growing database of teleost genomic information has revealed an inventory of cellular markers, indicating the possible presence of immune cell subsets in teleost fish. This further complicates the interpretation of results if subsets of immune cells are not properly separated. Consequently, monoclonal antibodies (mAbs) against specific cellular markers are required to precisely identify and separate novel subsets of immune cells in fish. In the field of fish immunology, mAbs are largely generated using the hybridoma technology, resulting in the development of mAbs against specific cellular markers in different fish species. Nevertheless, this technology suffers from being labour-intensive, time-consuming and most importantly, the inevitable loss of diversities of antibodies during the fusion of antibody-expressing B lymphocytes and myeloma cells. In light of this, the focus of this review is to discuss the potential applications of fluorescence-activated cell sorting and droplet-based microfluidics, two emerging technologies capable of screening and identifying antigen-specific B lymphocytes in a high-throughput manner, in promoting the development of valuable reagents for fish immunology studies. Our main goal is to encourage the incorporation of alternative technologies into the field of fish immunology to promote the production of specific antibodies in a high-throughput and cost-effective way, which could better allow for the precise separation of fish immune cells and also facilitate the identification of novel immune cell subsets in teleost fish.
Collapse
Affiliation(s)
- Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jianhua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
32
|
do Amaral MA, Paredes LC, Padovani BN, Mendonça-Gomes JM, Montes LF, Câmara NOS, Morales Fénero C. Mitochondrial connections with immune system in Zebrafish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100019. [PMID: 36420514 PMCID: PMC9680083 DOI: 10.1016/j.fsirep.2021.100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients' availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish. However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.
Collapse
Affiliation(s)
- Mariana Abrantes do Amaral
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Lais Cavalieri Paredes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Juliana Moreira Mendonça-Gomes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Luan Fávero Montes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Camila Morales Fénero
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
33
|
Álvarez de Haro N, Van AP, Robb CT, Rossi AG, Desbois AP. Release of chromatin extracellular traps by phagocytes of Atlantic salmon, Salmo salar (Linnaeus, 1758). FISH & SHELLFISH IMMUNOLOGY 2021; 119:209-219. [PMID: 34438058 PMCID: PMC8653909 DOI: 10.1016/j.fsi.2021.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 05/05/2023]
Abstract
Neutrophils release chromatin extracellular traps (ETs) as part of the fish innate immune response to counter the threats posed by microbial pathogens. However, relatively little attention has been paid to this phenomenon in many commercially farmed species, despite the importance of understanding host-pathogen interactions and the potential to influence ET release to reduce disease outbreaks. The aim of this present study was to investigate the release of ETs by Atlantic salmon (Salmo salar L.) immune cells. Extracellular structures resembling ETs of different morphology were observed by fluorescence microscopy in neutrophil suspensions in vitro, as these structures stained positively with Sytox Green and were digestible with DNase I. Immunofluorescence studies confirmed the ET structures to be decorated with histones H1 and H2A and neutrophil elastase, which are characteristic for ETs in mammals and other organisms. Although the ETs were released spontaneously, release in neutrophil suspensions was stimulated most significantly with 5 μg/ml calcium ionophore (CaI) for 1 h, whilst the fish pathogenic bacterium Aeromonas salmonicida (isolates 30411 and Hooke) also exerted a stimulatory effect. Microscopic observations revealed bacteria in association with ETs, and fewer bacterial colonies of A. salmonicida Hooke were recovered at 3 h after co-incubation with neutrophils that had been induced to release ETs. Interestingly, spontaneous release of ETs was inversely associated with fish mass (p < 0.05), a surrogate for age. Moreover, suspensions enriched for macrophages and stimulated with 5 μg/ml CaI released ET-like structures that occasionally led to the formation of large clumps of cells. A deeper understanding for the roles and functions of ETs within innate immunity of fish hosts, and their interaction with microbial pathogens, may open new avenues towards protecting cultured stocks against infectious diseases.
Collapse
Affiliation(s)
- Neila Álvarez de Haro
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Andre P Van
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Calum T Robb
- University of Edinburgh, Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom
| | - Adriano G Rossi
- University of Edinburgh, Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, EH16 4TJ, United Kingdom
| | - Andrew P Desbois
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom.
| |
Collapse
|
34
|
Soliman AM, Yoon T, Wang J, Stafford JL, Barreda DR. Isolation of Skin Leukocytes Uncovers Phagocyte Inflammatory Responses During Induction and Resolution of Cutaneous Inflammation in Fish. Front Immunol 2021; 12:725063. [PMID: 34630399 PMCID: PMC8497900 DOI: 10.3389/fimmu.2021.725063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Leukocytes offer a critical layer of protection to the host following skin infections. Delineating the kinetics of cutaneous leukocyte recruitment as well as their anti-microbial and regulatory profiles is challenging since it requires the isolation of adequate cell numbers and maintenance of their functional properties. Herein, we took advantage of a modified procedure to gain insights into the contributions of fish phagocytes through induction and resolution phases of acute cutaneous inflammation in goldfish (Carassius auratus). Our data shows early upregulation of pro-inflammatory cytokines and chemokines, which was paired with neutrophil-dominant leukocyte migration of neutrophils from circulation to the injury site. Recruited neutrophils were associated with high levels of reactive oxygen species (ROS). Following pathogen elimination, a reduction in ROS levels and pro-inflammatory cytokines expression preceded the resolution of inflammation. These results provide a better understanding of the cutaneous immune responses in fish. Moreover, the increased viability and functionality of isolated skin leukocytes opens the door to better understand a range of additional skin diseases.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Taekwan Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jiahui Wang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Piscirickettsia salmonis-Triggered Extracellular Traps Formation as an Innate Immune Response of Atlantic Salmon-Derived Polymorphonuclear Neutrophils. BIOLOGY 2021; 10:biology10030206. [PMID: 33803375 PMCID: PMC7999065 DOI: 10.3390/biology10030206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Within innate immunity, polymorphonuclear neutrophils (PMN) are the most abundant leukocyte population. Alongside PMN, monocytes, eosinophils, and basophils are also known to exist. All of them can release extracellular traps (ETs), a complex web-like structure composed of chromatin decorated with nuclear histones, granular enzymes, peptides, and proteins, to firmly entrap invasive pathogens, thereby slowing dissemination and helping to develop proper immune responses against bacteria, fungi, viruses, and parasites. Here, we showed for the first time that Atlantic salmon-derived PMN released ETs-like structures in vitro, in response to highly pathogenic facultative intracellular rickettsial bacteria Piscirickettsia salmonis. The release of ET-like structures from PMN could be a new alternative to improve farmed salmon’s defense against pathogens. Abstract Extracellular traps (ETs) are webs of DNA, citrullinated histones, anti-microbial peptides, and proteins that were not previously reported in Atlantic salmon (Salmo salar). ETs are mainly released from polymorphonuclear neutrophils (PMN) and are considered a novel PMN-derived effector mechanism against different invasive pathogens. Here, we showed that Atlantic salmon-derived PMN released ETs-like structures in vitro in response to highly pathogenic facultative intracellular rickettsial bacteria Piscirickettsia salmonis. PMN were isolated from pre-smolt Atlantic salmon and stimulated in vitro with oleic acid and P. salmonis. Extracellular DNA was measured using the PicoGreen™ dye, while immunofluorescence image analysis was used to confirm the classical components of salmonid-extruded ETs. Future studies are required to better understand the role of Atlantic salmon-derived ETs orchestrating innate/adaptive immunity and the knowledge on regulation pathways involved in this cell death process. Thus, comprehension of salmonid-derived ETs against P. salmonis might represent novel alternative strategies to improve host innate defense mechanisms of farmed salmon against closely related rickettsial bacteria, as a complement to disease prevention and control strategies.
Collapse
|
36
|
Abstract
Tissue or organ regeneration is a complex process with successful outcomes depending on the type of tissue and organism. Upon damage, mammals can only efficiently restore a few tissues including the liver, skin, epithelia of the lung, kidney, and gut. In contrast, lower vertebrates such as zebrafish possess an extraordinary regeneration ability, which restores the normal function of a broad spectrum of tissues including heart, fin, brain, spinal cord, and retina. This regeneration process is either mediated by the proliferation of resident stem cells, or cells that dedifferentiate into a stem cell-like. In recent years, evidence has suggested that the innate immune system can modulate stem cell activity to initiate the regenerative response to damage. This review will explore some of the newer concepts of inflammation in zebrafish regeneration in different tissues. Understanding how inflammation regulates regeneration in zebrafish would provide important clues to improve the therapeutic strategies for repairing injured mammalian tissues that do not have an inherent regenerative capacity.
Collapse
Affiliation(s)
- Maria Iribarne
- Center for Zebrafish Research, Department of Biological Sciences; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
37
|
Luo Y, Pang XX, Ansari AR, Wu XT, Li HZ, Zhang ZW, Song H. Visfatin Exerts Immunotherapeutic Effects in Lipopolysaccharide-Induced Acute Lung Injury in Murine Model. Inflammation 2020; 43:109-122. [PMID: 31696351 DOI: 10.1007/s10753-019-01100-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Visfatin acts as a significant regulator of inflammatory cytokines. However, the immunological response and therapeutic effects of visfatin under bacterial stress in murine lung tissue are still not clear. To investigate the role of visfatin on lipopolysaccharide (LPS)-induced acute lung injury (ALI), thirty Kunming mice were divided into Saline, LPS, and LPS + visfatin groups. After routine blood examination, the effects of visfatin on inflammatory cytokines, lung tissue structure, and expression of inflammatory mediators were explored through hematoxylin-eosin (H&E), Masson and immunohistochemical staining, quantitative polymerase chain reaction (Q-PCR), and Western blotting. Compared with the Saline group, neutrophil percentage, peripheral blood neutrophil count, and the ratio of lymphocyte count (NLR) were upregulated in LPS group. Moreover, Masson staining showed alterations in lung tissue structure; the mRNA level of different cytokines (IL-6, IL-1β, TNF-α, IL-10, TLR4, IFN-γ) was upregulated; and the protein expression of interleukin (IL)-6, myeloperoxidase (MPO), and transforming growth factor-β1 (TGF-β) was significantly (p < 0.05) different in LPS group. Compared with LPS group, neutrophil percentage significantly decreased (p < 0.01), the numbers of lymphocytes significantly (p < 0.05) increased, NLR decreased, Masson staining of the lung was extremely different (p < 0.01), the structure of the lung was slightly damaged, and the myeloperoxidase values of lung showed no differences in LPS + visfatin. Hence, visfatin inhibits the lung inflammation induced by ALI. During the ALI, visfatin acts by decreasing NLR, downregulated the expression of MPO, enhanced antioxidant capacity, and regulated the inflammatory factors IL-1β, IL-6, IL-10, and TNF-α to reduce the lung injury.
Collapse
Affiliation(s)
- You Luo
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin-Xin Pang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS), Jhang, Jhang, Pakistan.,University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Xin-Tong Wu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui-Zhen Li
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe-Wei Zhang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
38
|
Valle A, Leiro JM, Pereiro P, Figueras A, Novoa B, Dirks RPH, Lamas J. Interactions between the Parasite Philasterides dicentrarchi and the Immune System of the Turbot Scophthalmus maximus. A Transcriptomic Analysis. BIOLOGY 2020; 9:biology9100337. [PMID: 33076342 PMCID: PMC7602577 DOI: 10.3390/biology9100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The present study analyses the interactions between Philasterides dicentrarchi (a ciliate parasite that causes high mortalities in cultured flatfish) and the peritoneal cells of the turbot Scophthalmus maximus during an experimental infection. The transcriptomic response was evaluated in the parasites and in the fish peritoneal cells, at 1, 2 and 4 h post-infection (hpi) in turbot injected intraperitoneally (ip) with 107 ciliates and at 12 and 48 hpi in turbot injected ip with 105 ciliates. Numerous genes were differentially expressed (DE) in P. dicentrarchi, relative to their expression in control ciliates (0 hpi): 407 (369 were up-regulated) at 1 hpi, 769 (415 were up-regulated) at 2 hpi and 507 (119 were up-regulated) at 4 hpi. Gene ontology (GO) analysis of the DE genes showed that the most representative categories of biological processes affected at 1, 2 and 4 hpi were biosynthetic processes, catabolic processes, biogenesis, proteolysis and transmembrane transport. Twelve genes of the ABC transporter family and eight genes of the leishmanolysin family were DE at 1, 2 and 4 hpi. Most of these genes were strongly up-regulated (UR), suggesting that they are involved in P. dicentrarchi infection. A third group of UR genes included several genes related to ribosome biogenesis, DNA transcription and RNA translation. However, expression of tubulins and tubulin associated proteins, such as kinesins or dyneins, which play key roles in ciliate division and movement, was down-regulated (DR). Similarly, genes that coded for lysosomal proteins or that participate in the cell cycle mitotic control, glycolysis, the Krebs cycle and/or in the electron transport chain were also DR. The transcriptomic analysis also revealed that in contrast to many parasites, which passively evade the host immune system, P. dicentrarchi strongly stimulated turbot peritoneal cells. Many genes related to inflammation were DE in peritoneal cells at 1, 2 and 4 hpi. However, the response was much lower at 12 hpi and almost disappeared completely at 48 hpi in fish that were able to kill P. dicentrarchi during the first few hpi. The genes that were DE at 1, 2 and 4 hpi were mainly related to the apoptotic process, the immune response, the Fc-epsilon receptor signalling pathway, the innate immune response, cell adhesion, cell surface receptors, the NF-kappaB signalling pathway and the MAPK cascade. Expression of toll-like receptors 2, 5 and 13 and of several components of NF-κB, MAPK and JAK/STAT signalling pathways was UR in the turbot peritoneal cells. Genes expressing chemokines and chemokine receptors, genes involved in prostaglandin and leukotriene synthesis, prostaglandins, leukotriene receptors, proinflammatory cytokines and genes involved in apoptosis were strongly UR during the first four hours of infection. However, expression of anti-inflammatory cytokines such as Il-10 and lipoxygenases with anti-inflammatory activity (i.e., arachidonate 15-lipoxygenase) were only UR at 12 and/or 48 hpi, indicating an anti-inflammatory state in these groups of fish. In conclusion, the present study shows the regulation of several genes in P. dicentrarchi during the early stages of infection, some of which probably play important roles in this process. The infection induced a potent acute inflammatory response, and many inflammatory genes were regulated in peritoneal cells, showing that the turbot uses all the protective mechanisms it has available to prevent the entry of the parasite.
Collapse
Affiliation(s)
- Alejandra Valle
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - José Manuel Leiro
- Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Patricia Pereiro
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Antonio Figueras
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Beatriz Novoa
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; (P.P.); (A.F.); (B.N.)
| | - Ron P. H. Dirks
- Future Genomics Technologies, Leiden BioScience Park, 2333 BE Leiden, The Netherlands;
| | - Jesús Lamas
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Correspondence: ; Tel.: +34-88-181-6951; Fax: +34-88-159-6904
| |
Collapse
|
39
|
Khan MZ, Khan A, Xiao J, Ma J, Ma Y, Chen T, Shao D, Cao Z. Overview of Research Development on the Role of NF-κB Signaling in Mastitis. Animals (Basel) 2020; 10:E1625. [PMID: 32927884 PMCID: PMC7552152 DOI: 10.3390/ani10091625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Mastitis is the inflammation of the mammary gland. Escherichia coli and Staphylococcus aureus are the most common bacteria responsible for mastitis. When mammary epithelial cells are infected by microorganisms, this activates an inflammatory response. The bacterial infection is recognized by innate pattern recognition receptors (PRRs) in the mammary epithelial cells, with the help of Toll-like receptors (TLRs). Upon activation by lipopolysaccharides, a virulent agent of bacteria, the TLRs further trigger nuclear factor-κB (NF-κB) signaling to accelerate its pathogenesis. The NF-κB has an essential role in many biological processes, such as cell survival, immune response, inflammation and development. Therefore, the NF-κB signaling triggered by the TLRs then regulates the transcriptional expression of specific inflammatory mediators to initiate inflammation of the mammary epithelial cells. Thus, any aberrant regulation of NF-κB signaling may lead to many inflammatory diseases, including mastitis. Hence, the inhibiting of NF-κB signaling has potential therapeutic applications in mastitis control strategies. In this review, we highlighted the regulation and function of NF-κB signaling in mastitis. Furthermore, the role of NF-κB signaling for therapeutic purposes in mastitis control has been explored in the current review.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| | - Dafu Shao
- Institute of Agricultural Information of CAAS, Beijing 100081, China;
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.K.); (J.X.); (J.M.); (Y.M.); (T.C.)
| |
Collapse
|
40
|
Zhu W, Nie X, Tao Q, Yao H, Wang DA. Interactions at engineered graft-tissue interfaces: A review. APL Bioeng 2020; 4:031502. [PMID: 32844138 PMCID: PMC7443169 DOI: 10.1063/5.0014519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
The interactions at the graft-tissue interfaces are critical for the results of engraftments post-implantation. To improve the success rate of the implantations, as well as the quality of the patients' life, understanding the possible reactions between artificial materials and the host tissues is helpful in designing new generations of material-based grafts aiming at inducing specific responses from surrounding tissues for their own reparation and regeneration. To help researchers understand the complicated interactions that occur after implantations and to promote the development of better-designed grafts with improved biocompatibility and patient responses, in this review, the topics will be discussed from the basic reactions that occur chronologically at the graft-tissue interfaces after implantations to the existing and potential applications of the mechanisms of such reactions in designing of grafts. It offers a chance to bring up-to-date advances in the field and new strategies of controlling the graft-tissue interfaces.
Collapse
Affiliation(s)
- Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Xiaolei Nie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Qi Tao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, People's Republic of China
| | - Dong-An Wang
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
41
|
Kamely M, He W, Wakaruk J, Whelan R, Naranjo V, Barreda DR. Impact of Reduced Dietary Crude Protein in the Starter Phase on Immune Development and Response of Broilers Throughout the Growth Period. Front Vet Sci 2020; 7:436. [PMID: 32903566 PMCID: PMC7438798 DOI: 10.3389/fvets.2020.00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Crude protein (CP) levels in commercial broiler (Gallus gallus) diets, optimized for maximum yield production vs. feed cost, have only begun to be assessed for impact on immune function. In order to study immune effects of dietary CP levels, different starter phase (day 1–14) diets were fed to 230 Ross 708 male broiler chicks randomly assigned at 1 day of age into two treatment groups. Group 1: Standard diet (STD) contained 3,000 kcal AMEn/kg energy and 23.78% CP; and Group 2: Reduced crude protein diet (RCP) contained 3,000 kcal AMEn/kg energy and 21.23% CP. From day 15–35 a common standard grower/finisher diet (3,150 kcal AMEn/kg energy and 22.18% CP) was allocated to both groups. Zymosan, a glycan derived from yeast cell walls that binds to TLR 2 and Dectin-1, was used for intra-abdominal challenge. Results demonstrated that a reduced crude protein starter diet (21.23 vs. 23.78% CP) between age 1–14, while maintaining the same levels of metabolizable energy and essential amino acids, did not affect broilers growth performance or lymphoid organ weights (P > 0.05). Interestingly, basal leukocyte levels in the RCP group significantly (P < 0.01) increased in the blood compartment at d35 in the unchallenged birds. Significant enhancements to leukocyte infiltration into the abdominal cavity were also detected post-immune challenge with zymosan (day 14 and day 35; P < 0.01). Post-challenge levels of TNF-α, IL-1β, and CXCL8 gene expression cells collected from the abdominal cavity were not affected by the diets (P > 0.05). Moreover, dietary treatments did not influence percentage of ROS producing cells in the abdominal cavity (P > 0.05). To our best knowledge, this is the first study that reports the impacts of reduced crude protein diet on the innate immune response of poultry to an acute inflammation model in the abdominal cavity. Overall, our results highlight that reduced crude protein diets can be used without negatively impacting broiler performance and may enhance the capacity of broilers to recruit leukocytes upon infection.
Collapse
Affiliation(s)
- Mohammad Kamely
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Wanwei He
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rose Whelan
- Evonik Nutrition & Care GmbH, Hanau, Germany
| | | | - Daniel R Barreda
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
42
|
Akhtar M, Guo S, Guo YF, Zahoor A, Shaukat A, Chen Y, Umar T, Deng PG, Guo M. Upregulated-gene expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) via TLRs following NF-κB and MAPKs in bovine mastitis. Acta Trop 2020; 207:105458. [PMID: 32243879 DOI: 10.1016/j.actatropica.2020.105458] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/23/2022]
Abstract
Mastitis is the inflammation of mammary glands which causes huge economic loss in dairy cows. Inflammation, any tissue injury and pathogens in cow udder activate Toll-like Receptors (TLRs). Staphylococcus aureus (S. aureus) is the major cause of mastitis. In mastitis, activated TLRs initiate the NF-κB/MAPKs pathways which further trigger the gene expression associated with mastitis followed by innate immune response. In this study, pathogenic-induced gene expression profile of pro-inflammatory cytokines in mammary gland tissues, was investigated in mastitis. The Hematoxylin and Eosin (H & E) results indicated severe histopathological changes in infected tissues. Western blot results suggested the over expressions of TLR2/TLR4 with NF-κB/MAPKs pathways activation in infected tissues. qRT-PCR results revealed the gene expression associated with TLR2/TLR4-mediated NF-κB/MAPKs pathways in infected tissues in comparison with non-infected. Statistical analysis of mRNA and relative protein expression levels indicated the up-regulation of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in infected tissues rather than non-infected tissues. These results suggested that the up-regulation of gene expression levels implicated the underlying regulatory pathways for proper immune function in mammary glands. In conclusion, our study might give new insights for investigation and better understanding of mammary gland pathophysiology and TLRs and NF-κB/MAPKs-mediated gene expression of pro-inflammatory cytokines.
Collapse
|
43
|
Fingerhut L, Dolz G, de Buhr N. What Is the Evolutionary Fingerprint in Neutrophil Granulocytes? Int J Mol Sci 2020; 21:E4523. [PMID: 32630520 PMCID: PMC7350212 DOI: 10.3390/ijms21124523] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
Over the years of evolution, thousands of different animal species have evolved. All these species require an immune system to defend themselves against invading pathogens. Nevertheless, the immune systems of different species are obviously counteracting against the same pathogen with different efficiency. Therefore, the question arises if the process that was leading to the clades of vertebrates in the animal kingdom-namely mammals, birds, amphibians, reptiles, and fish-was also leading to different functions of immune cells. One cell type of the innate immune system that is transmigrating as first line of defense in infected tissue and counteracts against pathogens is the neutrophil granulocyte. During the host-pathogen interaction they can undergo phagocytosis, apoptosis, degranulation, and form neutrophil extracellular traps (NETs). In this review, we summarize a wide spectrum of information about neutrophils in humans and animals, with a focus on vertebrates. Special attention is kept on the development, morphology, composition, and functions of these cells, but also on dysfunctions and options for cell culture or storage.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Gaby Dolz
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
| | - Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
44
|
Dezfuli BS, Castaldelli G, Tomaini R, Manera M, DePasquale JA, Bosi G. Challenge for macrophages and mast cells of Chelon ramada to counter an intestinal microparasite, Myxobolus mugchelo (Myxozoa). DISEASES OF AQUATIC ORGANISMS 2020; 138:171-183. [PMID: 32213665 DOI: 10.3354/dao03459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thinlip mullet Chelon ramada is the most abundant mullet species found in the Comacchio lagoons (northern Adriatic Sea, Italy). Histological and ultrastructural sections of the intestine of C. ramada showed that over 83% of 48 mullets were infected with the intestinal parasite Myxobolus mugchelo (Myxozoa). In histological sections, plasmodia of M. mugchelo containing mature spores were situated closer to mucosal folds and were surrounded by numerous mast cells (MCs). Mature spores, generally oval in shape, were observed in the paracellular space among the enterocytes or within them. Near the infected epithelial cells, several MCs, rodlet cells and few neutrophils occurred. In intestinal epithelium, large cells resembling macrophages, some with spores of M. mugchelo inside, were observed. These macrophage-like cells were foamy and possessed elongate striated granules. The number of MCs and macrophages in the intestinal epithelium was significantly higher in parasitized fish. In some parasitized intestines, portions of epithelium were displaced by spores, or the spores were observed inside the damaged enterocytes. Immunohistochemical analysis of C. ramada infected or uninfected intestinal tissue revealed the presence of histamine, serotonin (5-HT), leu-enkephalin and inducible-nitric oxide synthase in epithelial macrophages. Several epithelial cells positive to proliferating cell-nuclear antigen were also observed in the proximity of the macrophages. The current study is the first to record the occurrence of intraepithelial macrophages which engulf myxozoan spores. A hypothesis on migration of spores from pancreas via intestinal wall to gut lumen is presented.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences & Biotechnology, University of Ferrara, St Borsari 46, 44121 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Picard-Sánchez A, Estensoro I, Del Pozo R, Piazzon MC, Palenzuela O, Sitjà-Bobadilla A. Acquired protective immune response in a fish-myxozoan model encompasses specific antibodies and inflammation resolution. FISH & SHELLFISH IMMUNOLOGY 2019; 90:349-362. [PMID: 31067499 DOI: 10.1016/j.fsi.2019.04.300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
The myxozoan parasite Enteromyxum leei causes chronic enteritis in gilthead sea bream (GSB, Sparus aurata) leading to intestinal dysfunction. Two trials were performed in which GSB that had survived a previous infection with E. leei (SUR), and naïve GSB (NAI), were exposed to water effluent containing parasite stages. Humoral factors (total IgM and IgT, specific anti-E. leei IgM, total serum peroxidases), histopathology and gene expression were analysed. Results showed that SUR maintained high levels of specific anti-E. leei IgM (up to 16 months), expressed high levels of immunoglobulins at the intestinal mucosa, particularly the soluble forms, and were resistant to re-infection. Their acquired-type response was complemented by other immune effectors locally and systemically, like cell cytotoxicity (high granzyme A expression), complement activity (high c3 and fucolectin expression), and serum peroxidases. In contrast to NAI, SUR displayed a post-inflammatory phenotype in the intestine and head kidney, characteristic of inflammation resolution (low il1β, high il10 and low hsp90α expression).
Collapse
Affiliation(s)
- Amparo Picard-Sánchez
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Raquel Del Pozo
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - M Carla Piazzon
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Oswaldo Palenzuela
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain.
| |
Collapse
|
46
|
Katakura F, Nishiya K, Wentzel AS, Hino E, Miyamae J, Okano M, Wiegertjes GF, Moritomo T. Paralogs of Common Carp Granulocyte Colony-Stimulating Factor (G-CSF) Have Different Functions Regarding Development, Trafficking and Activation of Neutrophils. Front Immunol 2019; 10:255. [PMID: 30837998 PMCID: PMC6389648 DOI: 10.3389/fimmu.2019.00255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/29/2019] [Indexed: 01/08/2023] Open
Abstract
Mammalian granulocyte colony-stimulating factor (G-CSF; CSF3) is a primary cytokine that promotes the development, mobilization, and activation of neutrophils and their precursors. Teleosts have been reported to possess two paralogs as a likely result of the teleost-wide whole genome duplication (WGD) event, but functional divergence of G-CSF paralogs remains poorly understood. Common carp are an allotetraploid species owing to an additional WGD event in the carp lineage and here, we report on genomic synteny, sequence similarity, and phylogeny of four common carp G-CSF paralogs (g-csfa1 and g-csfa2; g-csfb1 and g-csfb2). G-csfa1 and g-csfa2 show differential and relatively high gene expression levels, while g-csfb1 and g-csfb2 show low basal gene expression levels in most tissues. All paralogs are expressed higher in macrophages than in other leukocyte sub-types and are highly up-regulated by treatment of macrophages with mitogens. Recombinant G-CSFa1 and G-CSFb1 both promoted the proliferation of kidney hematopoietic cells, while only G-CSFb1 induced the differentiation of kidney cells along the neutrophil-lineage. Colony-forming unit assays revealed that G-CSFb1 alone stimulates the formation of CFU-G colonies from head- and trunk-kidney whereas the combination of G-CSFa1 and G-CSFb1 stimulates the formation of both CFU-G and CFU-GM colonies. Recombinant G-CSFa1 and G-CSFb1 also exhibit chemotactic activity against kidney neutrophils and up-regulation of cxcr1 mRNA expression was highest in neutrophils after G-CSFb1 stimulation. Furthermore, G-CSFb1 more than G-CSFa1 induced priming of kidney neutrophils through up-regulation of a NADPH-oxidase component p47 phox . In vivo administration of G-CSF paralogs increased the number of circulating blood neutrophils of carp. Our findings demonstrate that gene duplications in teleosts can lead to functional divergence between paralogs and shed light on the sub-functionalization of G-CSF paralogs in cyprinid fish.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Kohei Nishiya
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Annelieke S. Wentzel
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Erika Hino
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Jiro Miyamae
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Masaharu Okano
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Geert F. Wiegertjes
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Science, Wageningen University & Research, Wageningen, Netherlands
| | - Tadaaki Moritomo
- Laboratory of Comparative Immunology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| |
Collapse
|
47
|
Torrealba D, More-Bayona JA, Wakaruk J, Barreda DR. Innate Immunity Provides Biomarkers of Health for Teleosts Exposed to Nanoparticles. Front Immunol 2019; 9:3074. [PMID: 30687312 PMCID: PMC6335578 DOI: 10.3389/fimmu.2018.03074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, the unique properties of nanoparticles have fostered novel applications in various fields such as biology, pharmaceuticals, agriculture, and others. Unfortunately, their rapid integration into daily life has also led to environmental concerns due to uncontrolled release of nanoparticles into the aquatic environment. Despite increasing awareness of nanoparticle bioaccumulation in the aquatic environment, much remains to be learned about their impact on aquatic organisms and how to best monitor these effects. Herein, we provide the first review of innate immunity as an emerging tool to assess the health of fish following nanoparticle exposure. Fish are widely used as sentinels for aquatic ecosystem pollution and innate immune parameters offer sensitive and reliable tools that can be harnessed for evaluation of contamination events. The most frequent biomarkers highlighted in literature to date include, but are not limited to, parameters associated with leukocyte dynamics, oxidative stress, and cytokine production. Taken together, innate immunity offers finite and sensitive biomarkers for assessment of the impact of nanoparticles on fish health.
Collapse
Affiliation(s)
- Débora Torrealba
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Juan A. More-Bayona
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Daniel R. Barreda
- Immunology and Animal Health Laboratory, Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
48
|
Yin X, Mu L, Li Y, Wu L, Yang Y, Bian X, Li B, Liao S, Miao Y, Ye J. Identification and characterization of a B-type mannose-binding lectin from Nile tilapia (Oreochromis niloticus) in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2019; 84:91-99. [PMID: 30273652 DOI: 10.1016/j.fsi.2018.09.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Lectins are a group of carbohydrate-binding proteins, which play an important role in innate immune system against pathogen infection. In this study, a B-type mannose-binding lectin (OnBML) was identified from Nile tilapia (Oreochromis niloticus), and characterized at expression patterns against bacterial infection and capability to promote phagocytosis by macrophages. The open reading frame of OnBML is 354 bp of nucleotide sequence encoding polypeptides of 117 amino acids. The deduced protein is highly homologous to other teleost BMLs, containing two repeats of the conserved mannose-binding motif QXDXNXVXY. Expression of OnBML was widely exhibited in all examined tissues, with the most abundance in spleen and following gill, peripheral blood, and head kidney. The OnBML expressions were significantly up-regulated following two major bacterial infections including a Gram-positive bacterium (Streptococcus agalactiae) and a Gram-negative bacterium (Aeromonas hydrophila) in vivo and in vitro. Recombinant OnBML protein possessed capacities of mannose-binding and calcium-dependent agglutination to S. agalactiae and A. hydrophila, and promoted the phagocytosis by macrophages. Taken together, the present study indicated that OnBML is likely to get involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yuan Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xia Bian
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Bingxi Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Shaoan Liao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Yutao Miao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
49
|
Diesel exhaust particle promotes tumor lung metastasis via the induction of BLT1-mediated neutrophilic lung inflammation. Cytokine 2018; 111:530-540. [DOI: 10.1016/j.cyto.2018.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/12/2018] [Accepted: 05/29/2018] [Indexed: 01/18/2023]
|
50
|
Jørgensen LVG, Korbut R, Jeberg S, Kania PW, Buchmann K. Association between adaptive immunity and neutrophil dynamics in zebrafish (Danio rerio) infected by a parasitic ciliate. PLoS One 2018; 13:e0203297. [PMID: 30204772 PMCID: PMC6133357 DOI: 10.1371/journal.pone.0203297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/17/2018] [Indexed: 01/12/2023] Open
Abstract
The protective immune response in zebrafish (Danio rerio) against the parasitic ciliate Ichthyophthirius multifiliis, targeting host skin, fins and gills, comprises an accelerated and manifold elevated immunoglobulin gene expression as well as a significantly elevated number of neutrophils at infected sites. Experimental fish were subjected to a primary I. multifiliis infection followed by a series of secondary exposures before they were challenged by a high dosage of infective theronts. Immunized fish responded immediately with a protective response suggesting existence of immunological memory whereas fish exposed to the parasite for the first time obtained a marked infection. The primary response to infection was dominated by expression of genes encoding acute phase reactants and inflammatory cytokines as well as recruitment of neutrophils at infected locations. Immunized fish showed a significantly upregulated immunoglobulin gene expression following challenge, which indicates existence of a secondary response effected by antibodies. Both responses induced a significantly elevated expression of the Th2 signature cytokine Il13. The increased presence of neutrophils in immunized fish suggests that innate cell mediated immunity supplements or influence the protective response against the parasite.
Collapse
Affiliation(s)
- Louise von Gersdorff Jørgensen
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| | - Rozalia Korbut
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sandra Jeberg
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Per Walter Kania
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kurt Buchmann
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|