1
|
Li Q, Tan D, Xiong S, Yu K, Su Y, Zhu W. Time-restricted feeding promotes glucagon-like peptide-1 secretion and regulates appetite via tryptophan metabolism of gut Lactobacillus in pigs. Gut Microbes 2025; 17:2467185. [PMID: 39951352 PMCID: PMC11834429 DOI: 10.1080/19490976.2025.2467185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 02/16/2025] Open
Abstract
Previous clinical trials have shown that time-restricted feeding can be involved in regulating the metabolic health of humans and animals. However, the underlying mechanism has not been fully explored. In this study, the pig model was employed to simulate four prevalent human eating habits, with the aim of investigating the impact of gut microbiota and microbial metabolites on gut hormone secretion and appetite regulation. Compared to the ad libitum feeding (ALF) pattern, three time-restricted feeding patterns reduced total food intake and eating time. Meanwhile, three time-restricted feeding patterns induced elevated levels of serum and hypothalamic glucagon-like peptide-1 (GLP-1), while suppressing reward-related circuits in the hypothalamus. It is noteworthy that the early time-restricted feeding (eTRF) pattern increased the number of intestinal enteroendocrine cells (EECs) compared to ALF. Metagenomic and metabonomic analyses revealed that three time-restricted feeding patterns induced colonization of Lactobacillus and significantly increased the levels of its metabolite, indole-3-lactic acid (ILA). Dietary supplementation with ILA exhibited an increasing trend in fasting serum GLP-1 level of piglets. In vitro studies with pig intestinal organoids showed the Lactobacillus metabolite ILA enhanced GLP-1 secretion through the promotion of intestinal stem cell differentiation into EECs, rather than activating the ability of EECs to secrete GLP-1. Overall, time-restricted feeding promoted GLP-1 secretion and affected long-term appetite regulation by promoting the colonization of Lactobacillus and modulating microbial tryptophan metabolism.
Collapse
Affiliation(s)
- Qiuke Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Ding Tan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Shijie Xiong
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Bhattacharya S, Tie G, Singh PNP, Malagola E, Eskiocak O, He R, Kraiczy J, Gu W, Perlov Y, Alici-Garipcan A, Beyaz S, Wang TC, Zhou Q, Shivdasani RA. Intestinal secretory differentiation reflects niche-driven phenotypic and epigenetic plasticity of a common signal-responsive terminal cell. Cell Stem Cell 2025:S1934-5909(25)00095-5. [PMID: 40203837 DOI: 10.1016/j.stem.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/27/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Abstract
Enterocytes and four classic secretory cell types derive from intestinal epithelial stem cells. Based on morphology, location, and canonical markers, goblet and Paneth cells are considered distinct secretory types. Here, we report high overlap in their transcripts and sites of accessible chromatin, in marked contrast to those of their enteroendocrine or tuft cell siblings. Mouse and human goblet and Paneth cells express extraordinary fractions of few antimicrobial genes, which reflect specific responses to local niches. Wnt signaling retains some ATOH1+ secretory cells in crypt bottoms, where the absence of BMP signaling potently induces Paneth features. Cells that migrate away from crypt bottoms encounter BMPs and thereby acquire goblet properties. These phenotypes and underlying accessible cis-elements interconvert in post-mitotic cells. Thus, goblet and Paneth properties represent alternative phenotypic manifestations of a common signal-responsive terminal cell type. These findings reveal exquisite niche-dependent cell plasticity and cis-regulatory dynamics in likely response to antimicrobial needs.
Collapse
Affiliation(s)
- Swarnabh Bhattacharya
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Guodong Tie
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Pratik N P Singh
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, State University of New York, Stony Brook, NY 11794, USA
| | - Ruiyang He
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Kraiczy
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Gu
- Division of Regenerative Medicine & Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yakov Perlov
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Qiao Zhou
- Division of Regenerative Medicine & Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Pieszka M, Szczepanik K, Łoniewski I. Utilizing pigs as a model for studying intestinal barrier function. ANNALS OF ANIMAL SCIENCE 2024. [DOI: 10.2478/aoas-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Intestinal permeability has been extensively studied, particularly in gastrointestinal diseases such as inflammatory bowel disease, food allergy, visceral disease, celiac disease, and Crohn’s disease. These studies have established that changes in intestinal permeability contribute to the pathogenesis of many gastrointestinal and systemic diseases. While numerous works in the 20th century focused on this topic, it remains relevant for several reasons. Despite the development of new research techniques, it is still unclear whether changes in intestinal permeability are the primary mechanism initiating the disease process or if they occur secondary to an ongoing chronic inflammatory process. Investigating the possibility of stabilizing the intestinal barrier, thereby reducing its permeability preemptively to prevent damage and after the damage has occurred, may offer new therapeutic approaches. Increased intestinal permeability is believed to lead to reduced nutrient absorption, resulting in decreased immunity and production of digestive enzymes.
Collapse
Affiliation(s)
- Marek Pieszka
- Department of Animal Nutrition and Feed Sciences , National Research Institute of Animal Production , Balice , Poland
| | - Kinga Szczepanik
- Department of Animal Nutrition and Feed Sciences , National Research Institute of Animal Production , Balice , Poland
| | - Igor Łoniewski
- Sanprobi sp. z o.o. sp. k ., Kurza Stopka 5/C , Szczecin , Poland
- Department of Biochemical Science , Pomeranian Medical University in Szczecin , Szczecin , Poland
| |
Collapse
|
5
|
Philpott JD, Hovnanian KMR, Stefater-Richards M, Mehta NM, Martinez EE. The enteroendocrine axis and its effect on gastrointestinal function, nutrition, and inflammation. Curr Opin Crit Care 2024; 30:290-297. [PMID: 38872371 PMCID: PMC11295110 DOI: 10.1097/mcc.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
PURPOSE OF REVIEW Gastrointestinal (GI) dysfunction limits enteral nutrition (EN) delivery in critical illness and contributes to systemic inflammation. The enteroendocrine (EE) axis plays an integral role in this interface between nutrition, inflammation, and GI function in critical illness. In this review, we present an overview of the EE system with a focus on its role in GI inflammation and function. RECENT FINDINGS Enteroendocrine cells have been primarily described in their role in macronutrient digestion and absorption. Recent research has expanded on the diverse functions of EE cells including their ability to sense microbial peptides and metabolites and regulate immune function and inflammation. Therefore, EE cells may be both affected by and contribute to many pathophysiologic states and interventions of critical illness such as dysbiosis , inflammation, and alternative EN strategies. In this review, we present an overview of EE cells including their growing role in nonnutrient functions and integrate this understanding into relevant aspects of critical illness with a focus on EN. SUMMARY The EE system is key in maintaining GI homeostasis in critical illness, and how it is impacted and contributes to outcomes in the setting of dysbiosis , inflammation and different feeding strategies in critical illness should be considered.
Collapse
Affiliation(s)
- Jordan D. Philpott
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Mass General for Children, Boston, Massachusetts, USA
| | - K. Marco Rodriguez Hovnanian
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Mass General for Children, Boston, Massachusetts, USA
| | - Margaret Stefater-Richards
- Department of Medicine, Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nilesh M. Mehta
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Enid E. Martinez
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care, Boston Children’s Hospital, Boston, Massachusetts, USA
- Mucosal Immunology and Biology Research Center, Mass General for Children, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Atanga R, Appell LL, Thompson MN, Lauer FT, Brearley A, Campen MJ, Castillo EF, In JG. Single Cell Analysis of Human Colonoids Exposed to Uranium-Bearing Dust. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57006. [PMID: 38771937 PMCID: PMC11108582 DOI: 10.1289/ehp13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Uranium exposure remains an important environmental legacy and physiological health concern, with hundreds of abandoned uranium mines located in the Southwestern United States largely impacting underserved indigenous communities. The negative effects of heavy metals on barrier permeability and inhibition of intestinal epithelial healing have been described; however, transcriptomic changes within the intestinal epithelial cells and impacts on lineage differentiation are largely unknown. OBJECTIVES Herein, we sought to determine the molecular and cellular changes that occur in the colon in response to uranium bearing dust (UBD) exposure. METHODS Human colonoids from three biologically distinct donors were acutely exposed to UBD then digested for single cell RNA sequencing to define the molecular changes that occur to specific identities of colonic epithelial cells. Validation in colonoids was assessed using morphological and imaging techniques. RESULTS Human colonoids acutely exposed to UBD exhibited disrupted proliferation and hyperplastic differentiation of the secretory lineage cell, enteroendocrine cells (EEC). Single-cell RNA sequencing also showed more EEC subtypes present in UBD-exposed colonoids. DISCUSSION These findings highlight the significance of crypt-based proliferative cells and secretory cell differentiation using human colonoids to model major colonic responses to uranium-bearing particulate dust exposure. https://doi.org/10.1289/EHP13855.
Collapse
Affiliation(s)
- Roger Atanga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lidia L. Appell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Myranda N. Thompson
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, College of Arts and Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
7
|
Sakahara M, Okamoto T, Srivastava U, Natsume Y, Yamanaka H, Suzuki Y, Obama K, Nagayama S, Yao R. Paneth-like cells produced from OLFM4 + stem cells support OLFM4 + stem cell growth in advanced colorectal cancer. Commun Biol 2024; 7:27. [PMID: 38182890 PMCID: PMC10770338 DOI: 10.1038/s42003-023-05504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/25/2023] [Indexed: 01/07/2024] Open
Abstract
Tumor tissues consist of heterogeneous cells that originate from stem cells; however, their cell fate determination program remains incompletely understood. Using patient-derived organoids established from patients with advanced colorectal cancer (CRC), we evaluated the potential of olfactomedin 4 (OLFM4)+ stem cells to produce a bifurcated lineage of progenies with absorptive and secretory properties. In the early phases of organoid reconstruction, OLFM4+ cells preferentially gave rise to secretory cells. Additionally, we found that Paneth-like cells, which do not exist in the normal colon, were induced in response to Notch signaling inhibition. Video recordings of single OLFM4+ cells revealed that organoids containing Paneth-like cells were effectively propagated and that their selective ablation led to organoid collapse. In tumor tissues, Paneth-like cells were identified only in the region where tumor cells lost cell adhesion. These findings indicate that Paneth-like cells are directly produced by OLFM4+ stem cells and that their interaction contributes to tumor formation by providing niche factors. This study reveals the importance of the cell fate specification program for building a complete tumor cellular ecosystem, which might be targeted with novel therapeutics.
Collapse
Affiliation(s)
- Mizuho Sakahara
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuya Okamoto
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Upasna Srivastava
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Yasuko Natsume
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hitomi Yamanaka
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Nagayama
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
8
|
Lee J, Kim WK. Applications of Enteroendocrine Cells (EECs) Hormone: Applicability on Feed Intake and Nutrient Absorption in Chickens. Animals (Basel) 2023; 13:2975. [PMID: 37760373 PMCID: PMC10525316 DOI: 10.3390/ani13182975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
This review focuses on the role of hormones derived from enteroendocrine cells (EECs) on appetite and nutrient absorption in chickens. In response to nutrient intake, EECs release hormones that act on many organs and body systems, including the brain, gallbladder, and pancreas. Gut hormones released from EECs play a critical role in the regulation of feed intake and the absorption of nutrients such as glucose, protein, and fat following feed ingestion. We could hypothesize that EECs are essential for the regulation of appetite and nutrient absorption because the malfunction of EECs causes severe diarrhea and digestion problems. The importance of EEC hormones has been recognized, and many studies have been carried out to elucidate their mechanisms for many years in other species. However, there is a lack of research on the regulation of appetite and nutrient absorption by EEC hormones in chickens. This review suggests the potential significance of EEC hormones on growth and health in chickens under stress conditions induced by diseases and high temperature, etc., by providing in-depth knowledge of EEC hormones and mechanisms on how these hormones regulate appetite and nutrient absorption in other species.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
9
|
Atanga R, Appell LL, Lauer FT, Brearley A, Campen MJ, Castillo EF, In JG. Uranium-bearing dust induces differentiation and expansion of enteroendocrine cells in human colonoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552796. [PMID: 37609291 PMCID: PMC10441413 DOI: 10.1101/2023.08.10.552796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chronic exposure to environmental toxins and heavy metals has been associated with intestinal inflammation, increased susceptibility to pathogen-induced diseases, and higher incidences of colorectal cancer, all of which have been steadily increasing in prevalence for the past 40 years. The negative effects of heavy metals on barrier permeability and inhibition of intestinal epithelial healing have been described; however, transcriptomic changes within the intestinal epithelial cells and impacts on lineage differentiation are largely unknown. Uranium exposure remains an important environmental legacy and physiological health concern, with hundreds of abandoned uranium mines located in the Southwestern United States largely impacting underserved indigenous communities. Herein, using human colonoids, we defined the molecular and cellular changes that occur in response to uranium bearing dust (UBD) exposure. We used single cell RNA sequencing to define the molecular changes that occur to specific identities of colonic epithelial cells. We demonstrate that this environmental toxicant disrupts proliferation and induces hyperplastic differentiation of secretory lineage cells, particularly enteroendocrine cells (EEC). EECs respond to UBD exposure with increased differentiation into de novo EEC sub-types not found in control colonoids. This UBD-induced EEC differentiation does not occur via canonical transcription factors NEUROG3 or NEUROD1. These findings highlight the significance of crypts-based proliferative cells and secretory cell differentiation as major colonic responses to heavy metal-induced injury.
Collapse
Affiliation(s)
- Roger Atanga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Lidia L. Appell
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, College of Arts and Sciences, University of New Mexico, Albuquerque, NM
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
10
|
Role of Gut Microbiota through Gut–Brain Axis in Epileptogenesis: A Systematic Review of Human and Veterinary Medicine. BIOLOGY 2022; 11:biology11091290. [PMID: 36138769 PMCID: PMC9495720 DOI: 10.3390/biology11091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Epilepsy is a common chronic neurological disease in both dogs and humans. Despite the elevated prevalence and the many advances in human and veterinary medicine, the etiology and pathophysiology of epilepsy still remain unclear. In this systematic review, the authors discussed the possible role of the gut microbiota in the canine idiopathic epilepsy etiopathogenesis via the gut–brain axis. Abstract Canine idiopathic epilepsy is a common neurological disease characterized by the enduring predisposition of the cerebral cortex to generate seizures. An etiological explanation has not been fully identified in humans and dogs, and, among the presumed causes, several studies support the possible involvement of gut microbiota. In this review, the authors summarize the evidence of the reasonable role of gut microbiota in epilepsy through the so-called gut–brain axis. The authors provide an overview of recent clinical and preclinical studies in humans and dogs in which the modulation of intestinal permeability, the alteration of local immune response, and the alteration in production of essential metabolites and neurotransmitters associated with dysbiosis could be responsible for the pathogenesis of canine epilepsy. A systematic review of the literature, following the PRISMA guidelines, was performed in two databases (PubMed and Web of Science). Eleven studies were included and reviewed supporting the connection between gut microbiota and epilepsy via the gut–brain axis.
Collapse
|
11
|
van Erp JBF. Gastrointestinal tract-based implicit measures for cognition, emotion and behavior. FRONTIERS IN COMPUTER SCIENCE 2022. [DOI: 10.3389/fcomp.2022.899507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Implicit physiological measures such as heart rate and skin conductance convey information about someone's cognitive or affective state. Currently, gastrointestinal (GI) tract-based markers are not yet considered while both the organs involved as well as the microbiota populating the GI tract are bidirectionally connected to the brain and have a relation to emotion, cognition and behavior. This makes GI tract-based measures relevant and interesting, especially because the relation may be causal, and because they have a different timescale than current physiological measures. This perspective paper (1) presents the (mechanistic) involvement of the GI tract and its microbiota in emotion, cognition and behavior; (2) explores the added value of microbiome-based implicit measures as complementary to existing measures; and (3) sets the priorities to move forward. Five potential measures are proposed and discussed in more detail: bowel movement, short-chain fatty acids, tyrosine and tryptophan, GI tract flora composition, and cytokine levels. We conclude (1) that the involvement of the GI tract in emotion, cognition and behavior is undisputed, (2) that GI tract-based implicit measures are still in a conceptual phase of development but show potential and (3) that the first step to bring this field forward is to start validation studies in healthy humans and that are designed in the context of implicit measurements.
Collapse
|
12
|
Salahuddin M, Hiramatsu K, Kita K. Dietary carbohydrate influences the colocalization pattern of Glucagon-like Peptide-1 with neurotensin in the chicken ileum. Domest Anim Endocrinol 2022; 79:106693. [PMID: 34973620 DOI: 10.1016/j.domaniend.2021.106693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Glucagon-like peptide (GLP)-1 colocalizes with neurotensin (NT) in the same enteroendocrine cells (EECs) of the chicken ileum. The present study was designed to clarify the influence of dietary carbohydrate (CHO) on the colocalization pattern of GLP-1 with NT in the chicken distal ileum. Male White Leghorn chickens at 6 weeks of age (n = 15) were divided into three groups, a control and two experimental (low-CHO and CHO-free), with five chickens in each, and fed control or experimental diets for 7 d. Distal ileum was collected from each bird as a tissue sample and subjected to double immunofluorescence staining to detect GLP-1 and NT. Three types of EEC, GLP-1+/NT+, GLP-1+/NT- and GLP-1-/NT+, were demonstrated in the chicken ileum. GLP-1+/NT+ cells in the control group had a spindle-like shape with a long cytoplasmic process, but those in the experimental groups were round and lacked a cytoplasmic process. The ratio of GLP-1+/NT+ cells was significantly decreased in the two experimental groups compared with that in the control group. The ratio of GLP-1+/NT+ cells was significantly lower than those of GLP-1+/NT- and GLP-1-/NT+ cells in the two experimental groups. Most cells that were immunoreactive for GLP-1 and NT antisera lacked signals of proglucagon (PG) and NT precursor (NTP) mRNA in the experimental groups. The number of EECs expressing PG and NTP mRNA signals showed tendencies for decreases with a reduction of dietary CHO level. These findings suggest that dietary CHO could be a significant regulator of the pattern of colocalization pattern of GLP-1 with NT in the chicken ileum.
Collapse
Affiliation(s)
- M Salahuddin
- Department of Science and Technology, Graduate School of Medicine, Science and Technology, Shinshu University, Kami-ina, Nagano 399-4598, Japan
| | - K Hiramatsu
- Laboratory of Animal Functional Anatomy (LAFA), Faculty of Agriculture, Shinshu University, Kami-ina, Nagano 399-4598, Japan.
| | - K Kita
- Laboratory of Animal Nutrition, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
13
|
Tao E, Zhu Z, Hu C, Long G, Chen B, Guo R, Fang M, Jiang M. Potential Roles of Enterochromaffin Cells in Early Life Stress-Induced Irritable Bowel Syndrome. Front Cell Neurosci 2022; 16:837166. [PMID: 35370559 PMCID: PMC8964523 DOI: 10.3389/fncel.2022.837166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, also known as disorders of the gut–brain interaction; however, the pathophysiology of IBS remains unclear. Early life stress (ELS) is one of the most common risk factors for IBS development. However, the molecular mechanisms by which ELS induces IBS remain unclear. Enterochromaffin cells (ECs), as a prime source of peripheral serotonin (5-HT), play a pivotal role in intestinal motility, secretion, proinflammatory and anti-inflammatory effects, and visceral sensation. ECs can sense various stimuli and microbiota metabolites such as short-chain fatty acids (SCFAs) and secondary bile acids. ECs can sense the luminal environment and transmit signals to the brain via exogenous vagal and spinal nerve afferents. Increasing evidence suggests that an ECs-5-HT signaling imbalance plays a crucial role in the pathogenesis of ELS-induced IBS. A recent study using a maternal separation (MS) animal model mimicking ELS showed that MS induced expansion of intestinal stem cells and their differentiation toward secretory lineages, including ECs, leading to ECs hyperplasia, increased 5-HT production, and visceral hyperalgesia. This suggests that ELS-induced IBS may be associated with increased ECs-5-HT signaling. Furthermore, ECs are closely related to corticotropin-releasing hormone, mast cells, neuron growth factor, bile acids, and SCFAs, all of which contribute to the pathogenesis of IBS. Collectively, ECs may play a role in the pathogenesis of ELS-induced IBS. Therefore, this review summarizes the physiological function of ECs and focuses on their potential role in the pathogenesis of IBS based on clinical and pre-clinical evidence.
Collapse
Affiliation(s)
- Enfu Tao
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenya Zhu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Gao Long
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- *Correspondence: Mizu Jiang,
| |
Collapse
|
14
|
The Interplay between Nutrition, Innate Immunity, and the Commensal Microbiota in Adaptive Intestinal Morphogenesis. Nutrients 2021; 13:nu13072198. [PMID: 34206809 PMCID: PMC8308283 DOI: 10.3390/nu13072198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract is a functionally and anatomically segmented organ that is colonized by microbial communities from birth. While the genetics of mouse gut development is increasingly understood, how nutritional factors and the commensal gut microbiota act in concert to shape tissue organization and morphology of this rapidly renewing organ remains enigmatic. Here, we provide an overview of embryonic mouse gut development, with a focus on the intestinal vasculature and the enteric nervous system. We review how nutrition and the gut microbiota affect the adaptation of cellular and morphologic properties of the intestine, and how these processes are interconnected with innate immunity. Furthermore, we discuss how nutritional and microbial factors impact the renewal and differentiation of the epithelial lineage, influence the adaptation of capillary networks organized in villus structures, and shape the enteric nervous system and the intestinal smooth muscle layers. Intriguingly, the anatomy of the gut shows remarkable flexibility to nutritional and microbial challenges in the adult organism.
Collapse
|
15
|
Serra-Campos AO, Abreu-Junior ANG, Nascimento AA, Abidu-Figueiredo M, Lima MSCS, Machado-Santos C. Gastroesophageal tube of the Iguana iguana (Iguanidae): histological description, histochemical and immunohistochemical analysis of 5-HT and SS cells. BRAZ J BIOL 2021; 83:e242086. [PMID: 34161453 DOI: 10.1590/1519-6984.242086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
The work aims were to describe the histological and histochemical structure of the gastroesophageal tube of Iguana iguana and verify the occurrence and distribution of immunoreactive serotonin (5-HT) and somatostatin (SS) cells. Fragments of the gastrointestinal tract (GIT) of five iguanas were which underwent standard histological and immunohistochemistry technique. Immunoreactive cells for 5-HT and SS were quantified using the STEPanizer. The oesophagus has ciliated columnar pseudostratified epithelium with staining Alcian blue (AB) + and goblet cells highly reactive to periodic acid Schiff (PAS). In the cervical oesophagus, the numerical density of 5-HT cells per unit area (QA [5-HT cells]/µm2) was 4.6x10-2 ± 2.0 and celomatic oesophagus presented QA = 4.0x10-2 ± 1.0. The epithelium of the stomach is simple columnar, PAS and AB +. The cranial and middle regions of the stomach presented (QA [5-HT cells]/µm2) = 6.18x10-2 ± 3.2 and the caudal region, QA = 0.6x10-2 ± 0.2. The SS cells were only observed in the caudal stomach, with numerical density (QA [SS cells]/µm2) = 1.4x10-2 ± 0.9 In I. iguana, variation was observed in terms of the distribution of mucus secretions and the pattern of occurrence of serotonin and somatostatin-secreting enteroendocrine cells in the TGI, which possibly will result in an interspecific adaptive response.
Collapse
Affiliation(s)
- A O Serra-Campos
- Universidade Federal Fluminense - UFF, Departamento de Morfologia, Laboratório de Ensino e Pesquisa em Histologia e Embriologia Comparada - LEPHEC, Niterói, RJ, Brasil
| | - A N G Abreu-Junior
- Universidade Federal do Piauí - UFPI, Departamento de Biologia, Laboratório de Herpertologia, Floriano, PI, Brasil
| | - A A Nascimento
- Universidade Federal Rural do Rio de Janeiro - UFRRJ, Instituto de Ciências Biológicas e da Saúde, Programa de Pós-graduação em Biologia Animal, Seropédica, RJ, Brasil
| | - M Abidu-Figueiredo
- Universidade Federal Rural do Rio de Janeiro - UFRRJ, Instituto de Ciências Biológicas e da Saúde, Programa de Pós-graduação em Biologia Animal, Seropédica, RJ, Brasil
| | - M S C S Lima
- Universidade Federal do Piauí - UFPI, Departamento de Biologia, Laboratório de Herpertologia, Floriano, PI, Brasil
| | - C Machado-Santos
- Universidade Federal Fluminense - UFF, Departamento de Morfologia, Laboratório de Ensino e Pesquisa em Histologia e Embriologia Comparada - LEPHEC, Niterói, RJ, Brasil
| |
Collapse
|
16
|
Wei L, Singh R, Ha SE, Martin AM, Jones LA, Jin B, Jorgensen BG, Zogg H, Chervo T, Gottfried-Blackmore A, Nguyen L, Habtezion A, Spencer NJ, Keating DJ, Sanders KM, Ro S. Serotonin Deficiency Is Associated With Delayed Gastric Emptying. Gastroenterology 2021; 160:2451-2466.e19. [PMID: 33662386 PMCID: PMC8532026 DOI: 10.1053/j.gastro.2021.02.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Gastrointestinal (GI) motility is regulated by serotonin (5-hydroxytryptamine [5-HT]), which is primarily produced by enterochromaffin (EC) cells in the GI tract. However, the precise roles of EC cell-derived 5-HT in regulating gastric motility remain a major point of conjecture. Using a novel transgenic mouse line, we investigated the distribution of EC cells and the pathophysiologic roles of 5-HT deficiency in gastric motility in mice and humans. METHODS We developed an inducible, EC cell-specific Tph1CreERT2/+ mouse, which was used to generate a reporter mouse line, Tph1-tdTom, and an EC cell-depleted line, Tph1-DTA. We examined EC cell distribution, morphology, and subpopulations in reporter mice. GI motility was measured in vivo and ex vivo in EC cell-depleted mice. Additionally, we evaluated 5-HT content in biopsy and plasma specimens from patients with idiopathic gastroparesis (IG). RESULTS Tph1-tdTom mice showed EC cells that were heterogeneously distributed throughout the GI tract with the greatest abundance in the antrum and proximal colon. Two subpopulations of EC cells were identified in the gut: self-renewal cells located at the base of the crypt and mature cells observed in the villi. Tph1-DTA mice displayed delayed gastric emptying, total GI transit, and colonic transit. These gut motility alterations were reversed by exogenous provision of 5-HT. Patients with IG had a significant reduction of antral EC cell numbers and 5-HT content, which negatively correlated with gastric emptying rate. CONCLUSIONS The Tph1CreERT2/+ mouse provides a powerful tool to study the functional roles of EC cells in the GI tract. Our findings suggest a new pathophysiologic mechanism of 5-HT deficiency in IG.
Collapse
Affiliation(s)
- Lai Wei
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Rajan Singh
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Se Eun Ha
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Alyce M Martin
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Lauren A Jones
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Byungchang Jin
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Brian G Jorgensen
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Hannah Zogg
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Tyler Chervo
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Andres Gottfried-Blackmore
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Linda Nguyen
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California
| | - Nick J Spencer
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Damien J Keating
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada
| | - Seungil Ro
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada.
| |
Collapse
|
17
|
Zhao M, Ren K, Xiong X, Cheng M, Zhang Z, Huang Z, Han X, Yang X, Alejandro EU, Ruan HB. Protein O-GlcNAc Modification Links Dietary and Gut Microbial Cues to the Differentiation of Enteroendocrine L Cells. Cell Rep 2021; 32:108013. [PMID: 32783937 PMCID: PMC7457433 DOI: 10.1016/j.celrep.2020.108013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/16/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
Intestinal L cells regulate a wide range of metabolic processes, and L-cell dysfunction has been implicated in the pathogenesis of obesity and diabetes. However, it is incompletely understood how luminal signals are integrated to control the development of L cells. Here we show that food availability and gut microbiota-produced short-chain fatty acids control the posttranslational modification on intracellular proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) in intestinal epithelial cells. Via FOXO1 O-GlcNAcylation, O-GlcNAc transferase (OGT) suppresses expression of the lineage-specifying transcription factor Neurogenin 3 and, thus, L cell differentiation from enteroendocrine progenitors. Intestinal epithelial ablation of OGT in mice not only causes L cell hyperplasia and increased secretion of glucagon-like peptide 1 (GLP-1) but also disrupts gut microbial compositions, which notably contributes to decreased weight gain and improved glycemic control. Our results identify intestinal epithelial O-GlcNAc signaling as a brake on L cell development and function in response to nutritional and microbial cues. Zhao et al. identify OGT in intestinal epithelial cells as a “molecular brake” on L cell development and function in response to nutritional and microbial cues. OGT inhibits Ngn3 gene transcription and enteroendocrine differentiation via FOXO1 O-GlcNAcylation. Microbiota-derived SCFAs drive epithelial O-GlcNAcylation, which further influences gut microbiota to control systemic metabolism.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kaiqun Ren
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; College of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Xiwen Xiong
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Meng Cheng
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zan Huang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Xiaonan Han
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoyong Yang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06519, USA; Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
18
|
Input-output signal processing plasticity of vagal motor neurons in response to cardiac ischemic injury. iScience 2021; 24:102143. [PMID: 33665562 PMCID: PMC7898179 DOI: 10.1016/j.isci.2021.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/01/2021] [Accepted: 01/29/2021] [Indexed: 11/23/2022] Open
Abstract
Vagal stimulation is emerging as the next frontier in bioelectronic medicine to modulate peripheral organ health and treat disease. The neuronal molecular phenotypes in the dorsal motor nucleus of the vagus (DMV) remain largely unexplored, limiting the potential for harnessing the DMV plasticity for therapeutic interventions. We developed a mesoscale single-cell transcriptomics data from hundreds of DMV neurons under homeostasis and following physiological perturbations. Our results revealed that homeostatic DMV neuronal states can be organized into distinguishable input-output signal processing units. Remote ischemic preconditioning induced a distinctive shift in the neuronal states toward diminishing the role of inhibitory inputs, with concomitant changes in regulatory microRNAs miR-218a and miR-495. Chronic cardiac ischemic injury resulted in a dramatic shift in DMV neuronal states suggestive of enhanced neurosecretory function. We propose a DMV molecular network mechanism that integrates combinatorial neurotransmitter inputs from multiple brain regions and humoral signals to modulate cardiac health.
Collapse
|
19
|
Zhang T, Ahn K, Emerick B, Modarai SR, Opdenaker LM, Palazzo J, Schleiniger G, Fields JZ, Boman BM. APC mutations in human colon lead to decreased neuroendocrine maturation of ALDH+ stem cells that alters GLP-2 and SST feedback signaling: Clue to a link between WNT and retinoic acid signalling in colon cancer development. PLoS One 2020; 15:e0239601. [PMID: 33112876 PMCID: PMC7592776 DOI: 10.1371/journal.pone.0239601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
APC mutations drive human colorectal cancer (CRC) development. A major contributing factor is colonic stem cell (SC) overpopulation. But, the mechanism has not been fully identified. A possible mechanism is the dysregulation of neuroendocrine cell (NEC) maturation by APC mutations because SCs and NECs both reside together in the colonic crypt SC niche where SCs mature into NECs. So, we hypothesized that sequential inactivation of APC alleles in human colonic crypts leads to progressively delayed maturation of SCs into NECs and overpopulation of SCs. Accordingly, we used quantitative immunohistochemical mapping to measure indices and proportions of SCs and NECs in human colon tissues (normal, adenomatous, malignant), which have different APC-zygosity states. In normal crypts, many cells staining for the colonic SC marker ALDH1 co-stained for chromogranin-A (CGA) and other NEC markers. In contrast, in APC-mutant tissues from familial adenomatous polyposis (FAP) patients, the proportion of ALDH+ SCs progressively increased while NECs markedly decreased. To explain how these cell populations change in FAP tissues, we used mathematical modelling to identify kinetic mechanisms. Computational analyses indicated that APC mutations lead to: 1) decreased maturation of ALDH+ SCs into progenitor NECs (not progenitor NECs into mature NECs); 2) diminished feedback signaling by mature NECs. Biological experiments using human CRC cell lines to test model predictions showed that mature GLP-2R+ and SSTR1+ NECs produce, via their signaling peptides, opposing effects on rates of NEC maturation via feedback regulation of progenitor NECs. However, decrease in this feedback signaling wouldn't explain the delayed maturation because both progenitor and mature NECs are depleted in CRCs. So the mechanism for delayed maturation must explain how APC mutation causes the ALDH+ SCs to remain immature. Given that ALDH is a key component of the retinoic acid (RA) signaling pathway, that other components of the RA pathway are selectively expressed in ALDH+ SCs, and that exogenous RA ligands can induce ALDH+ cancer SCs to mature into NECs, RA signaling must be attenuated in ALDH+ SCs in CRC. Thus, attenuation of RA signaling explains why ALDH+ SCs remain immature in APC mutant tissues. Since APC mutation causes increased WNT signaling in FAP and we found that sequential inactivation of APC in FAP patient tissues leads to progressively delayed maturation of colonic ALDH+ SCs, the hypothesis is developed that human CRC evolves due to an imbalance between WNT and RA signaling.
Collapse
Affiliation(s)
- Tao Zhang
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Koree Ahn
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Brooks Emerick
- Center for Applications of Mathematics in Medicine, Department of Mathematical Sciences, University of Delaware, Newark, DE, United States of America
| | - Shirin R. Modarai
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
| | - Lynn M. Opdenaker
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
| | - Juan Palazzo
- Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Gilberto Schleiniger
- Center for Applications of Mathematics in Medicine, Department of Mathematical Sciences, University of Delaware, Newark, DE, United States of America
| | | | - Bruce M. Boman
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, Newark, DE, United States of America
- University of Delaware, Newark, DE, United States of America
- Thomas Jefferson University, Philadelphia, PA, United States of America
- Center for Applications of Mathematics in Medicine, Department of Mathematical Sciences, University of Delaware, Newark, DE, United States of America
| |
Collapse
|
20
|
Osinski C, Le Gléau L, Poitou C, de Toro-Martin J, Genser L, Fradet M, Soula HA, Leturque A, Blugeon C, Jourdren L, Hubert EL, Clément K, Serradas P, Ribeiro A. Type 2 diabetes is associated with impaired jejunal enteroendocrine GLP-1 cell lineage in human obesity. Int J Obes (Lond) 2020; 45:170-183. [PMID: 33037328 PMCID: PMC7752761 DOI: 10.1038/s41366-020-00694-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/07/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022]
Abstract
Objectives Altered enteroendocrine cell (EEC) function in obesity and type 2 diabetes is not fully understood. Understanding the transcriptional program that controls EEC differentiation is important because some EEC types harbor significant therapeutic potential for type 2 diabetes. Methods EEC isolation from jejunum of obese individuals with (ObD) or without (Ob) type 2 diabetes was obtained with a new method of cell sorting. EEC transcriptional profiles were established by RNA-sequencing in a first group of 14 Ob and 13 ObD individuals. EEC lineage and densities were studied in the jejunum of a second independent group of 37 Ob, 21 ObD and 22 non obese (NOb) individuals. Results The RNA seq analysis revealed a distinctive transcriptomic signature and a decreased differentiation program in isolated EEC from ObD compared to Ob individuals. In the second independent group of ObD, Ob and NOb individuals a decreased GLP-1 cell lineage and GLP-1 maturation from proglucagon, were observed in ObD compared to Ob individuals. Furthermore, jejunal density of GLP-1-positive cells was significantly reduced in ObD compared to Ob individuals. Conclusions These results highlight that the transcriptomic signature of EEC discriminate obese subjects according to their diabetic status. Furthermore, type 2 diabetes is associated with reduced GLP-1 cell differentiation and proglucagon maturation leading to low GLP-1-cell density in human obesity. These mechanisms could account for the decrease plasma GLP-1 observed in metabolic diseases.
Collapse
Affiliation(s)
- Céline Osinski
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France
| | - Léa Le Gléau
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France
| | - Christine Poitou
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France.,Nutrition Department, Pitié-Salpêtrière hospital, Assistance Publique/Hôpitaux de Paris, F-75013, Paris, France
| | - Juan de Toro-Martin
- Sorbonne Université, Université de Paris, INSERM, Cordeliers Research Center, F-75006, Paris, France.,Institute of Nutrition and Functional Foods (INAF), School of Nutrition, Université Laval, Quebec, QC, Canada
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France.,Hepato-Biliary-Pancreatic Gastrointestinal Surgery and Liver Transplantation, Pitié-Salpêtrière Hospital, Assistance Publique/Hôpitaux de Paris, F-75013, Paris, France
| | - Magali Fradet
- Cytometry platform, Institut Cardiometabolism and Nutrition, F-75013, Paris, France.,Institut de Biologie, CIRB, Collège de France, F-75005, Paris, France
| | - Hédi Antoine Soula
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France
| | - Armelle Leturque
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France
| | - Corinne Blugeon
- Genomics core facility, Département de biologie, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Laurent Jourdren
- Genomics core facility, Département de biologie, Institut de Biologie de l'ENS (IBENS), École normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Edwige Ludiwyne Hubert
- Sorbonne Université, Université de Paris, INSERM, Cordeliers Research Center, F-75006, Paris, France.,SERVIER, ADIR, F-92284, Suresnes, cedex, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France.,Nutrition Department, Pitié-Salpêtrière hospital, Assistance Publique/Hôpitaux de Paris, F-75013, Paris, France
| | - Patricia Serradas
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France.
| | - Agnès Ribeiro
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches, F-75013, Paris, France.
| |
Collapse
|
21
|
Rindi G, Wiedenmann B. Neuroendocrine neoplasia of the gastrointestinal tract revisited: towards precision medicine. Nat Rev Endocrinol 2020; 16:590-607. [PMID: 32839579 DOI: 10.1038/s41574-020-0391-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Over the past 5 years, a number of notable research advances have been made in the field of neuroendocrine cancer, specifically with regard to neuroendocrine cancer of the gastrointestinal tract. The aim of this Review is to provide an update on current knowledge that has proven effective for the clinical management of patients with these tumours. For example, for the first time in the tubular gastrointestinal tract, well-differentiated high-grade (grade 3) tumours and mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) are defined in the WHO classification. This novel classification enables efficient identification of the most aggressive well-differentiated neuroendocrine tumours and helps in defining the degree of aggressiveness of MiNENs. The Review also discusses updates to epidemiology, cell biology (including vesicle-specific components) and the as-yet-unresolved complex genetic background that varies according to site and differentiation status. The Review summarizes novel diagnostic instruments, including molecules associated with the secretory machinery, novel radiological approaches (including pattern recognition techniques), novel PET tracers and liquid biopsy combined with DNA or RNA assays. Surgery remains the treatment mainstay; however, peptide receptor radionuclide therapy with novel radioligands and new emerging medical therapies (including vaccination and immunotherapy) are evolving and being tested in clinical trials, which are summarized and critically reviewed here.
Collapse
Affiliation(s)
- Guido Rindi
- Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Bertram Wiedenmann
- Charité, Campus Virchow Klinikum and Charité Mitte, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
22
|
Beumer J, Gehart H, Clevers H. Enteroendocrine Dynamics - New Tools Reveal Hormonal Plasticity in the Gut. Endocr Rev 2020; 41:5856764. [PMID: 32531023 PMCID: PMC7320824 DOI: 10.1210/endrev/bnaa018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
The recent intersection of enteroendocrine cell biology with single-cell technologies and novel in vitro model systems has generated a tremendous amount of new data. Here we highlight these recent developments and explore how these findings contribute to the understanding of endocrine lineages in the gut. In particular, the concept of hormonal plasticity, the ability of endocrine cells to produce different hormones over the course of their lifetime, challenges the classic notion of cell types. Enteroendocrine cells travel in the course of their life through different signaling environments that directly influence their hormonal repertoire. In this context, we examine how enteroendocrine cell fate is determined and modulated by signaling molecules such as bone morphogenetic proteins (BMPs) or location along the gastrointestinal tract. We analyze advantages and disadvantages of novel in vitro tools, adult stem cell or iPS-derived intestinal organoids, that have been crucial for recent findings on enteroendocrine development and plasticity. Finally, we illuminate the future perspectives of the field and discuss how understanding enteroendocrine plasticity can lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, CT Utrecht, The Netherlands
| | - Helmuth Gehart
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, CT Utrecht, The Netherlands.,Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, CT Utrecht, The Netherlands.,Oncode Institute, Hubrecht Institute, CT Utrecht, The Netherlands
| |
Collapse
|
23
|
Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:43-110. [PMID: 33814115 DOI: 10.1016/bs.pmbts.2020.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
24
|
Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol 2020; 22:39-53. [PMID: 32958874 DOI: 10.1038/s41580-020-0278-0] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
Intestinal stem cells at the bottom of crypts fuel the rapid renewal of the different cell types that constitute a multitasking tissue. The intestinal epithelium facilitates selective uptake of nutrients while acting as a barrier for hostile luminal contents. Recent discoveries have revealed that the lineage plasticity of committed cells - combined with redundant sources of niche signals - enables the epithelium to efficiently repair tissue damage. New approaches such as single-cell transcriptomics and the use of organoid models have led to the identification of the signals that guide fate specification of stem cell progeny into the six intestinal cell lineages. These cell types display context-dependent functionality and can adapt to different requirements over their lifetime, as dictated by their microenvironment. These new insights into stem cell regulation and fate specification could aid the development of therapies that exploit the regenerative capacity and functionality of the gut.
Collapse
|
25
|
Kanthan R, Tharmaradinam S, Asif T, Ahmed S, Kanthan SC. Mixed epithelial endocrine neoplasms of the colon and rectum - An evolution over time: A systematic review. World J Gastroenterol 2020; 26:5181-5206. [PMID: 32982118 PMCID: PMC7495040 DOI: 10.3748/wjg.v26.i34.5181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mixed tumors of the colon and rectum, composed of a combination of epithelial and endocrine elements of benign and malignant potential are rare neoplasms. These can occur anywhere in the gastrointestinal tract and are often diagnosed incidentally. Though they have been a well-documented entity in the pancreas, where the exocrine-endocrine mixed tumors have been known for a while, recognition and accurate diagnosis of these tumors in the colon and rectum, to date, remains a challenge. This is further compounded by the different terminologies that have been attributed to these lesions over the years adding to increased confusion and misclassification. Therefore, dedicated literature reviews of these lesions in the colon and rectum are inconsistent and are predominantly limited to case reports and case series of limited case numbers. Though, most of these tumors are high grade and of advanced stage, intermediate and low grade lesions of these mixed tumors are also increasingly been reported. There are no established independent consensus based guidelines for the therapeutic patient management of these unique lesions. AIM To provide a comprehensive targeted literature review of these complex mixed tumors in the colon and rectum that chronicles the evolution over time with summarization of historical perspectives of terminology and to further our understanding regarding their pathogenesis including genomic landscape, clinicoradiological features, pathology, treatment, prognosis, the current status of the management of the primary lesions, their recurrences and metastases. METHODS A comprehensive review of the published English literature was conducted using the search engines PubMed, MEDLINE and GOOGLE scholar. The following search terms ["mixed tumors colon" OR mixed endocrine/neuroendocrine tumor/neoplasm/lesion colon OR adenocarcinoma and endocrine/neuroendocrine tumor colon OR mixed adenocarcinoma and endocrine/neuroendocrine carcinoma colon OR Amphicrine tumors OR Collision tumors] were used. Eligibility criteria were defined and all potential relevant items, including full articles and/or abstracts were independently reviewed, assessed and agreed upon items were selected for in-depth analysis. RESULTS In total 237 full articles/abstracts documents were considered for eligibility of which 45 articles were illegible resulting in a total of 192 articles that were assessed for eligibility of which 139 have been selected for reference in this current review. This seminal manuscript is a one stop article that provides a detailed outlook on the evolution over time with summarization of historical perspectives, nomenclature, clinicoradiological features, pathology, treatment, prognosis and the current status of the management of both the primary lesions, their recurrences and metastases. Gaps in knowledge have also been identified and discussed. An important outcome of this manuscript is the justified proposal for a new, simple, clinically relevant, non-ambiguous terminology for these lesions to be referred to as mixed epithelial endocrine neoplasms (MEENs). CONCLUSION MEEN of the colon and rectum are poorly understood rare entities that encompass an extensive range of heterogeneous tumors with a wide variety of combinations leading to tumors of high, intermediate or low grade malignant potential. This proposed new revised terminology of MEEN will solve the biggest hurdle of confusion and misclassification that plagues these rare unique colorectal neoplasms thus facilitating the future design of multi institutional prospective randomized controlled clinical trials to develop and evaluate newer therapeutic strategies that are recommended for continued improved understanding and personal optimization of clinical management of these unique colorectal neoplasms.
Collapse
Affiliation(s)
- Rani Kanthan
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon S7N 0W8, SK, Canada
| | - Suresh Tharmaradinam
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon S7N 0W8, SK, Canada
| | - Tehmina Asif
- Division of Oncology, Saskatoon Cancer Centre, Saskatoon S7N 0W8, SK, Canada
| | - Shahid Ahmed
- Division of Oncology, Saskatoon Cancer Centre, Saskatoon S7N 0W8, SK, Canada
| | - Selliah C Kanthan
- Division of General Surgery, University of Saskatchewan, Saskatoon S7N 0W8, SK, Canada
| |
Collapse
|
26
|
Lee TY, Cho IS, Bashyal N, Naya FJ, Tsai MJ, Yoon JS, Choi JM, Park CH, Kim SS, Suh-Kim H. ERK Regulates NeuroD1-mediated Neurite Outgrowth via Proteasomal Degradation. Exp Neurobiol 2020; 29:189-206. [PMID: 32606250 PMCID: PMC7344372 DOI: 10.5607/en20021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Neurogenic differentiation 1 (NeuroD1) is a class B basic helix-loop-helix (bHLH) transcription factor and regulates differentiation and survival of neuronal and endocrine cells by means of several protein kinases, including extracellular signal-regulated kinase (ERK). However, the effect of phosphorylation on the functions of NeuroD1 by ERK has sparked controversy based on context-dependent differences across diverse species and cell types. Here, we evidenced that ERK-dependent phosphorylation controlled the stability of NeuroD1 and consequently, regulated proneural activity in neuronal cells. A null mutation at the ERK-dependent phosphorylation site, S274A, increased the half-life of NeuroD1 by blocking its ubiquitin-dependent proteasomal degradation. The S274A mutation did not interfere with either the nuclear translocation of NeuroD1 or its heterodimerization with E47, its ubiquitous partner and class A bHLH transcription factor. However, the S274A mutant increased transactivation of the E-box-mediated gene and neurite outgrowth in F11 neuroblastoma cells, compared to the wild-type NeuroD1. Transcriptome and Gene Ontology enrichment analyses indicated that genes involved in axonogenesis and dendrite development were downregulated in NeuroD1 knockout (KO) mice. Overexpression of the S274A mutant salvaged neurite outgrowth in NeuroD1-deficient mice, whereas neurite outgrowth was minimal with S274D, a phosphomimicking mutant. Our data indicated that a longer protein half-life enhanced the overall activity of NeuroD1 in stimulating downstream genes and neuronal differentiation. We propose that blocking ubiquitin-dependent proteasomal degradation may serve as a strategy to promote neuronal activity by stimulating the expression of neuron-specific genes in differentiating neurons.
Collapse
Affiliation(s)
- Tae-Young Lee
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea.,Research Center, CelleBrain Ltd., Jeonju 54871, Korea
| | - In-Su Cho
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Narayan Bashyal
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Francisco J Naya
- Department of Biology, Life Science and Engineering Building, Boston University, Boston, MA 00215, USA
| | - Ming-Jer Tsai
- Department of Medicine and Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeong Seon Yoon
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jung-Mi Choi
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sung-Soo Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea
| | - Haeyoung Suh-Kim
- Department of Anatomy, Ajou University School of Medicine, Suwon 16499, Korea.,Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, Korea.,Research Center, CelleBrain Ltd., Jeonju 54871, Korea
| |
Collapse
|
27
|
El-Salhy M. Possible role of intestinal stem cells in the pathophysiology of irritable bowel syndrome. World J Gastroenterol 2020; 26:1427-1438. [PMID: 32308344 PMCID: PMC7152517 DOI: 10.3748/wjg.v26.i13.1427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is not completely understood. However, several factors are known to play a role in pathophysiology of IBS such as genetics, diet, gut microbiota, gut endocrine cells, stress and low-grade inflammation. Understanding the pathophysiology of IBS may open the way for new treatment approaches. Low density of intestinal stem cells and low differentiation toward enteroendocrine cells has been reported recently in patients with IBS. These abnormalities are believed to be the cause of the low density of enteroendocrine cells seen in patients with IBS. Enteroendocrine cells regulate gastrointestinal motility, secretion, absorption and visceral sensitivity. Gastrointestinal dysmotility, abnormal absorption/secretion and visceral hypersensitivity are all seen in patients with IBS and haven been attributed to the low density the intestinal enteroendocrine cells in these patients. The present review conducted a literature search in Medline (PubMed) covering the last ten years until November 2019, where articles in English were included. Articles about the intestinal stem cells and their possible role in the pathophysiology of IBS are discussed in the present review. The present review discusses the assumption that intestinal stem cells play a central role in the pathophysiology of IBS and that the other factors known to contribute to the pathophysiology of IBS such as genetics, diet gut microbiota, stress, and low-grade inflammation exert their effects through affecting the intestinal stem cells. It reports further the data that support this assumption on genetics, diet, gut microbiota, stress with depletion of glutamine, and inflammation.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, Stord 54 09, Norway
- Department of Clinical Medicine, University of Bergen, Bergen 50 21, Norway
| |
Collapse
|
28
|
Lund ML, Sorrentino G, Egerod KL, Kroone C, Mortensen B, Knop FK, Reimann F, Gribble FM, Drucker DJ, de Koning EJP, Schoonjans K, Bäckhed F, Schwartz TW, Petersen N. L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling. Diabetes 2020; 69:614-623. [PMID: 32041793 PMCID: PMC7224989 DOI: 10.2337/db19-0764] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) mimetics are effective drugs for treatment of type 2 diabetes, and there is consequently extensive interest in increasing endogenous GLP-1 secretion and L-cell abundance. Here we identify G-protein-coupled bile acid receptor 1 (GPBAR1) as a selective regulator of intestinal L-cell differentiation. Lithocholic acid and the synthetic GPBAR1 agonist, L3740, selectively increased L-cell density in mouse and human intestinal organoids and elevated GLP-1 secretory capacity. L3740 induced expression of Gcg and transcription factors Ngn3 and NeuroD1 L3740 also increased the L-cell number and GLP-1 levels and improved glucose tolerance in vivo. Further mechanistic examination revealed that the effect of L3740 on L cells required intact GLP-1 receptor and serotonin 5-hydroxytryptamine receptor 4 (5-HT4) signaling. Importantly, serotonin signaling through 5-HT4 mimicked the effects of L3740, acting downstream of GLP-1. Thus, GPBAR1 agonists and other powerful GLP-1 secretagogues facilitate L-cell differentiation through a paracrine GLP-1-dependent and serotonin-mediated mechanism.
Collapse
Affiliation(s)
- Mari Lilith Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giovanni Sorrentino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristoffer Lihme Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chantal Kroone
- Department of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands
| | - Brynjulf Mortensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip Krag Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Frank Reimann
- Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, U.K
| | - Fiona M Gribble
- Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, U.K
| | - Daniel J Drucker
- Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Centre, Leiden, the Netherlands
- Hubrecht Institute/Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Fredrik Bäckhed
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular and Clinical Medicine at Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Tsakmaki A, Fonseca Pedro P, Pavlidis P, Hayee B, Bewick GA. ISX-9 manipulates endocrine progenitor fate revealing conserved intestinal lineages in mouse and human organoids. Mol Metab 2020; 34:157-173. [PMID: 32180555 PMCID: PMC7036449 DOI: 10.1016/j.molmet.2020.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 01/17/2023] Open
Abstract
Objective Enteroendocrine cells (EECs) survey the gut luminal environment and coordinate hormonal, immune and neuronal responses to it. They exhibit well-characterised physiological roles ranging from the control of local gut function to whole body metabolism, but little is known regarding the regulatory networks controlling their differentiation, especially in the human gut. The small molecule isoxazole-9 (ISX-9) has been shown to stimulate neuronal and pancreatic beta-cell differentiation, both closely related to EEC differentiation. Our aim was to use ISX-9 as a tool to explore EEC differentiation. Methods We investigated the effects of ISX-9 on EEC differentiation in mouse and human intestinal organoids, using real-time quantitative polymerase chain reaction (RT-qPCR), fluorescent-activated cell sorting, immunostaining and single-cell RNA sequencing. Results ISX-9 increased the number of neurogenin3-RFP (Ngn3)-positive endocrine progenitor cells and upregulated NeuroD1 and Pax4, transcription factors that play roles in mouse EEC specification. Single-cell analysis showed induction of Pax4 expression in a developmentally late Ngn3+ population of cells and potentiation of genes associated with progenitors biased toward serotonin-producing enterochromaffin (EC) cells. Further, we observed enrichment of organoids with functional EC cells that was partly dependent on stimulation of calcium signalling in a population of cells residing outside the crypt base. Inducible Pax4 overexpression, in ileal organoids, uncovered its importance as a component of early human endocrine specification and highlighted the potential existence of two major endocrine lineages, the early appearing enterochromaffin lineage and the later developing peptidergic lineage which contains classical gut hormone cell types. Conclusion Our data provide proof-of-concept for the controlled manipulation of specific endocrine lineages with small molecules, whilst also shedding new light on human EEC differentiation and its similarity to the mouse. Given their diverse roles, understanding endocrine lineage plasticity and its control could have multiple therapeutic implications. ISX-9 promotes flux through the Ngn3 lineage and enriches it with enterochromaffin cells. ISX-9 engages an enterochromaffin biased transcriptional programme in endocrine fated cells. Enterochromaffin bias is partly dependent on calcium signalling in progenitor cells. ISX-9 reveals conserved gut endocrine specification between mouse and human. Pax4 overexpression in human ileum organoids mimics the effects of ISX-9 on EC bias.
Collapse
Affiliation(s)
- Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Patricia Fonseca Pedro
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Polychronis Pavlidis
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Bu'Hussain Hayee
- Department of Gastroenterology, King's College Hospital NHS Foundation Trust, London, UK
| | - Gavin A Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK.
| |
Collapse
|
30
|
El-Salhy M, Hatlebakk JG, Hausken T. Possible role of peptide YY (PYY) in the pathophysiology of irritable bowel syndrome (IBS). Neuropeptides 2020; 79:101973. [PMID: 31727345 DOI: 10.1016/j.npep.2019.101973] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder of unknown aetiology for which there is no effective treatment. Although IBS does not increase mortality, it reduces the quality of life and is an economic burden to both the patients themselves and society as a whole. Peptide YY (PYY) is localized in endocrine cells located in the ileum, colon and rectum. The concentration of PYY and the density of PYY cells are decreased in both the colon and rectum but unchanged in the ileum of patients with IBS. The low density of PYY cells in the large intestine may be caused by a decreased number of stem cells and their progeny toward endocrine cells. PYY regulates the intestinal motility, secretion and absorption as well as visceral sensitivity via modulating serotonin release. An abnormality in PYY may therefore contribute to the intestinal dysmotility and visceral hypersensitivity seen in IBS patients. Diet management involving consuming a low-FODMAP diet restores the density of PYY cells in the large intestine and improves abdominal symptoms in patients with IBS. This review shows that diet management appears to be a valuable tool for correcting the PYY abnormalities in the large intestine of IBS patients in the clinic.
Collapse
Affiliation(s)
- Magdy El-Salhy
- Section for Gastroenterology, Department of Medicine, Stord Hospital, Stord, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| | - Jan Gunnar Hatlebakk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Functional Gastrointestinal Disorders, Bergen, Norway..
| |
Collapse
|
31
|
Ohki J, Sakashita A, Aihara E, Inaba A, Uchiyama H, Matsumoto M, Ninomiya Y, Yamane T, Oishi Y, Iwatsuki K. Comparative analysis of enteroendocrine cells and their hormones between mouse intestinal organoids and native tissues. Biosci Biotechnol Biochem 2020; 84:936-942. [PMID: 31916916 DOI: 10.1080/09168451.2020.1713043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocrine cells in the gastrointestinal tract secrete multiple hormones to maintain homeostasis in the body. In the present study, we generated intestinal organoids from the duodenum, jejunum, and ileum of Neurogenin 3 (Ngn3)-EGFP mice and examined how enteroendocrine cells (EECs) within organoid cultures resemble native epithelial cells in the gut. Transcriptome analysis of EGFP-positive cells from Ngn3-EGFP organoids showed gene expression pattern comparable to EECs in vivo. We also compared mRNAs of five major hormones, namely, ghrelin (Ghrl), cholecystokinin (Cck), Gip, secretin (Sct), and glucagon (Gcg) in organoids and small intestine along the longitudinal axis and found that expression patterns of these hormones in organoids were similar to those in native tissues. These findings suggest that an intestinal organoid culture system can be utilized as a suitable model to study enteroendocrine cell functions in vitro.
Collapse
Affiliation(s)
- Junko Ohki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan.,Department of Health and Nutrition, Tsukuba International University, Ibaraki, Japan
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eitaro Aihara
- Department of Pharmacology and System Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Akihiko Inaba
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hironobu Uchiyama
- Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Yuzo Ninomiya
- Division of Sensory Physiology, Research & Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan.,Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Takumi Yamane
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuichi Oishi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ken Iwatsuki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
32
|
Dayem AA, Lee SB, Kim K, Lim KM, Jeon TI, Cho SG. Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges. BMB Rep 2019. [PMID: 30940326 PMCID: PMC6549913 DOI: 10.5483/bmbrep.2019.52.5.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Breakthroughs in stem cell technology have contributed to disease modeling and drug screening via organoid technology. Organoid are defined as three-dimensional cellular aggregations derived from adult tissues or stem cells. They recapitulate the intricate pattern and functionality of the original tissue. Insulin is secreted mainly by the pancreatic β cells. Large-scale production of insulin-secreting β cells is crucial for diabetes therapy. Here, we provide a brief overview of organoids and focus on recent advances in protocols for the generation of pancreatic islet organoids from pancreatic tissue or pluripotent stem cells for insulin secretion. The feasibility and limitations of organoid cultures derived from stem cells for insulin production will be described. As the pancreas and gut share the same embryological origin and produce insulin, we will also discuss the possible application of gut organoids for diabetes therapy. Better understanding of the challenges associated with the current protocols for organoid culture facilitates development of scalable organoid cultures for applications in biomedicine.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Tak-Il Jeon
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
33
|
Qin HY, Xavier Wong HL, Zang KH, Li X, Bian ZX. Enterochromaffin cell hyperplasia in the gut: Factors, mechanism and therapeutic clues. Life Sci 2019; 239:116886. [PMID: 31678286 DOI: 10.1016/j.lfs.2019.116886] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 02/08/2023]
Abstract
Enterochromaffin (EC) cell is the main cell type that responsible for 5-hydroxytryptamine (5-HT) synthesis, storage and release of the gut. Intestinal 5-HT play a key role in visceral sensation, intestinal motility and permeability, EC cell hyperplasia and increased 5-HT bioavailability in the gut have been found to be involved in the symptoms generation of irritable bowel syndrome and inflammatory bowel disease. EC cells originate from intestinal stem cells, the interaction between proliferation and differentiation signals on intestinal stem cells enable EC cell number to be regulated in a normal level. This review focuses on the impact factors, pathogenesis mechanisms, and therapeutic clues for intestinal EC cells hyperplasia, and showed that EC cell hyperplasia was observed under the condition of physiological stress, intestinal infection or intestinal inflammation, the disordered proliferation and/or differentiation of intestinal stem cells as well as their progenitor cells all contribute to the pathogenesis of intestinal EC cell hyperplasia. The altered intestinal niche, i.e. increased corticotrophin releasing factor (CRF) signal, elevated nerve growth factor (NGF) signal, and Th2-dominant cytokines production, has been found to have close correlation with intestinal EC cell hyperplasia. Currently, CRF receptor antagonist, nuclear factor-κB inhibitor, and NGF receptor neutralizing antibody have been proved useful to attenuate intestinal EC cell hyperplasia, which may provide a promising clue for the therapeutic strategy in EC cell hyperplasia related diseases.
Collapse
Affiliation(s)
- Hong-Yan Qin
- Department of Pharmacy, First Hospital of Lanzhou University, Lanzhou, China
| | - Hoi Leong Xavier Wong
- Institute of Brain and Gut Axis (IBAG), Centre of Clinical Research for Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kai-Hong Zang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xun Li
- Fifth Department of General Surgery, First Hospital of Lanzhou University, Lanzhou, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, China.
| | - Zhao-Xiang Bian
- Institute of Brain and Gut Axis (IBAG), Centre of Clinical Research for Chinese Medicine, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
34
|
Chu D, He Y, Li N, Zhang H, Zhang H, Li C, Deng Z, Chen Y, Han X, Li Y, Wei T. Immunohistochemical distribution of glucagon-like peptide 1 in the digestive system of different aquatic vertebrates. Anat Histol Embryol 2019; 49:31-37. [PMID: 31571240 DOI: 10.1111/ahe.12479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022]
Abstract
The distribution of glucagon-like peptide 1 (GLP-1)-positive cells in digestive tracts and pancreases of aquatic vertebrates was investigated by immunohistochemical staining method. The results suggested that GLP-1-positive cells were distributed in the columnar mucous epithelium and tubular glands of lamina propria in the digestive system. However, GLP-1-positive cells were also found in subepithelial lamina propria of the mucosae and muscularis in each segment of the digestive tract of Rana nigromaculata. The distribution densities of these cells reached peaks in the stomachs, and the middle or end segments of small intestines of Chinese softshell turtle, Bufo gargarizans, R. nigromaculata and catfish, and there was the third distribution density peak in the rectum of catfish. The total amount or overall density of GLP-1-positive cells varied a lot in the digestive tracts of different animal species. The distribution density was relatively low in the digestive tract of chub and reached the maximum in the digestive tracts of snakehead and catfish, but no GLP-1-positive cells were found in the digestive tract of bighead carp. GLP-1-positive cells were densely distributed in the pancreases of Chinese softshell turtle, B. gargarizans and R. nigromaculata. These cells spread over the superficial layers of islets or scattered in exocrine pancreas in the pancreas of B. gargarizans, spread in the endocrine cells or scattered in the pancreas of Chinese softshell turtle, scattered in the pancreas of R. nigromaculata and distributed in the superficial layers of islets in the pancreas of catfish.
Collapse
Affiliation(s)
- Dechang Chu
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Ying He
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Na Li
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Hongmei Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Chunhua Li
- Logistics Management Office, Heze University, Heze, China
| | - Zhenxu Deng
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Yan Chen
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Xue Han
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Yangui Li
- College of Agriculture and Bioengineering, Heze University, Heze, China
| | - Tao Wei
- College of Agriculture and Bioengineering, Heze University, Heze, China
| |
Collapse
|
35
|
|
36
|
Klöppel G. [Neuroendocrine neoplasms : Two families with distinct features unified in one classification (German version)]. DER PATHOLOGE 2019; 40:211-219. [PMID: 30969346 DOI: 10.1007/s00292-019-0594-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All neuroendocrine neoplasms (NENs) are characterized by the expression of synaptophysin and chromogranin A (or B). Yet, they are not a homogeneous group of tumors. Paradigmatic for these tumors are the NENs of the gastroenteropancreatic (GEP) system. Two NEN families can be distinguished: predominantly well differentiated and low-proliferative NENs, called neuroendocrine tumors (NET), and poorly differentiated and high-proliferative NENs, called neuroendocrine carcinomas (NECs). Based on their proliferative activity, GEP NETs are further classified into G1, G2, and G3 tumors. NECs are per definition G3 carcinomas. The morphological NEN dichotomy is supported by differences in epidemiology, genetics, clinics, and prognosis, and potentially has its cause originating from different progenitor cells. Genetically, NECs are distinguished by TP53 and RB1 alterations, which are lacking in NETs and are helpful in the distinction of NETs from NECs. Comparison of the GEP NEN WHO classification with extragastroenteropancreatic NEN classifications commonly reveal differences in terminology and categorization. In addition, they lack a grading system. However, common to all NEN classifications is the recognition of two tumor families differing in histological differentiation and prognosis. This allows the construction of a uniform classification frame for all NENs.
Collapse
Affiliation(s)
- G Klöppel
- Institut für Pathologie, Konsultationszentrum für Pankreas und Endokrine Tumoren, Technische Universität München, Trogerstr 18, 81675, München, Deutschland.
| |
Collapse
|
37
|
Diet in Irritable Bowel Syndrome (IBS): Interaction with Gut Microbiota and Gut Hormones. Nutrients 2019; 11:nu11081824. [PMID: 31394793 PMCID: PMC6723613 DOI: 10.3390/nu11081824] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 12/15/2022] Open
Abstract
Diet plays an important role not only in the pathophysiology of irritable bowel syndrome (IBS), but also as a tool that improves symptoms and quality of life. The effects of diet seem to be a result of an interaction with the gut bacteria and the gut endocrine cells. The density of gut endocrine cells is low in IBS patients, and it is believed that this abnormality is the direct cause of the symptoms seen in IBS patients. The low density of gut endocrine cells is probably caused by a low number of stem cells and low differentiation progeny toward endocrine cells. A low fermentable oligo-, di-, monosaccharide, and polyol (FODMAP) diet and fecal microbiota transplantation (FMT) restore the gut endocrine cells to the level of healthy subjects. It has been suggested that our diet acts as a prebiotic that favors the growth of a certain types of bacteria. Diet also acts as a substrate for gut bacteria fermentation, which results in several by-products. These by-products might act on the stem cells in such a way that the gut stem cells decrease, and consequently, endocrine cell numbers decrease. Changing to a low-FODMAP diet or changing the gut bacteria through FMT improves IBS symptoms and restores the density of endocrine cells.
Collapse
|
38
|
Dayem AA, Lee SB, Kim K, Lim KM, Jeon TI, Cho SG. Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges. BMB Rep 2019; 52:295-303. [PMID: 30940326 PMCID: PMC6549913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 10/13/2023] Open
Abstract
Breakthroughs in stem cell technology have contributed to disease modeling and drug screening via organoid technology. Organoid are defined as three-dimensional cellular aggregations derived from adult tissues or stem cells. They recapitulate the intricate pattern and functionality of the original tissue. Insulin is secreted mainly by the pancreatic β cells. Large-scale production of insulin-secreting β cells is crucial for diabetes therapy. Here, we provide a brief overview of organoids and focus on recent advances in protocols for the generation of pancreatic islet organoids from pancreatic tissue or pluripotent stem cells for insulin secretion. The feasibility and limitations of organoid cultures derived from stem cells for insulin production will be described. As the pancreas and gut share the same embryological origin and produce insulin, we will also discuss the possible application of gut organoids for diabetes therapy. Better understanding of the challenges associated with the current protocols for organoid culture facilitates development of scalable organoid cultures for applications in biomedicine. [BMB Reports 2019; 52(5): 295-303].
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Tak-il Jeon
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
39
|
Göke B. Modern Methods of Transcriptomic and Peptidomic Profiling of Enteroendocrine Cells Promise Progress for a Better Understanding of (Patho)physiology and New Therapies for Obesity and Diabetes. Diabetes 2019; 68:904-905. [PMID: 31010883 DOI: 10.2337/dbi18-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Burkhard Göke
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
40
|
Chang-Graham AL, Danhof HA, Engevik MA, Tomaro-Duchesneau C, Karandikar UC, Estes MK, Versalovic J, Britton RA, Hyser JM. Human Intestinal Enteroids With Inducible Neurogenin-3 Expression as a Novel Model of Gut Hormone Secretion. Cell Mol Gastroenterol Hepatol 2019; 8:209-229. [PMID: 31029854 PMCID: PMC6664234 DOI: 10.1016/j.jcmgh.2019.04.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Enteroendocrine cells (EECs) are specialized epithelial cells that produce molecules vital for intestinal homeostasis, but because of their limited numbers, in-depth functional studies have remained challenging. Human intestinal enteroids (HIEs) that are derived from intestinal crypt stem cells are biologically relevant in an in vitro model of the intestinal epithelium. HIEs contain all intestinal epithelial cell types; however, similar to the intestine, HIEs spontaneously produce few EECs, which limits their study. METHODS To increase the number of EECs in HIEs, we used lentivirus transduction to stably engineer jejunal HIEs with doxycycline-inducible expression of neurogenin-3 (NGN3), a transcription factor that drives EEC differentiation (tetNGN3-HIEs). We examined the impact of NGN3 induction on EECs by quantifying the increase in the enterochromaffin cells and other EEC subtypes. We functionally assessed secretion of serotonin and EEC hormones in response to norepinephrine and rotavirus infection. RESULTS Treating tetNGN3-HIEs with doxycycline induced a dose-dependent increase of chromogranin A (ChgA)-positive and serotonin-positive cells, showing increased enterochromaffin cell differentiation. Despite increased ChgA-positive cells, other differentiated cell types of the epithelium remained largely unchanged by gene expression and immunostaining. RNA sequencing of doxycycline-induced tetNGN3-HIEs identified increased expression of key hormones and enzymes associated with several other EEC subtypes. Doxycycline-induced tetNGN3-HIEs secreted serotonin, monocyte chemoattractant protein-1, glucose-dependent insulinotropic peptide, peptide YY, and ghrelin in response to norepinephrine and rotavirus infection, further supporting the presence of multiple EEC types. CONCLUSIONS We have combined HIEs and inducible-NGN3 expression to establish a flexible in vitro model system for functional studies of EECs in enteroids and advance the molecular and physiological investigation of EECs.
Collapse
Affiliation(s)
- Alexandra L Chang-Graham
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Heather A Danhof
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Melinda A Engevik
- Department of Pathology and Immunology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Catherine Tomaro-Duchesneau
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas; Department of Medicine, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - James Versalovic
- Department of Pathology and Immunology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas; Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
41
|
Abstract
Type 1 diabetes is a disease characterized by the destruction of insulin-secreting β-cells in the pancreas. Individuals are treated for this disease with lifelong insulin replacement. However, one attractive treatment possibility is to reprogram an individual’s endogenous cells to acquire the ability to secrete insulin, essentially replacing destroyed β-cells. Herein, we review the literature on the topic of reprogramming endodermal cells to produce insulin.
Collapse
Affiliation(s)
- Wendy M McKimpson
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| | - Domenico Accili
- Department of Medicine (Endocrinology), Columbia University, New York, New York
| |
Collapse
|
42
|
Zhang X, Grosfeld A, Williams E, Vasiliauskas D, Barretto S, Smith L, Mariadassou M, Philippe C, Devime F, Melchior C, Gourcerol G, Dourmap N, Lapaque N, Larraufie P, Blottière HM, Herberden C, Gerard P, Rehfeld JF, Ferraris RP, Fritton JC, Ellero-Simatos S, Douard V. Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism. FASEB J 2019; 33:7126-7142. [PMID: 30939042 DOI: 10.1096/fj.201801526rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current fructose consumption levels often overwhelm the intestinal capacity to absorb fructose. We investigated the impact of fructose malabsorption on intestinal endocrine function and addressed the role of the microbiota in this process. To answer this question, a mouse model of moderate fructose malabsorption [ketohexokinase mutant (KHK)-/-] and wild-type (WT) littermate mice were used and received a 20%-fructose (KHK-F and WT-F) or 20%-glucose diet. Cholecystokinin (Cck) mRNA and protein expression in the ileum and cecum, as well as preproglucagon (Gcg) and neurotensin (Nts) mRNA expression in the cecum, increased in KHK-F mice. In KHK-F mice, triple-label immunohistochemistry showed major up-regulation of CCK in enteroendocrine cells (EECs) that were glucagon-like peptide-1 (GLP-1)+/Peptide YY (PYY-) in the ileum and colon and GLP-1-/PYY- in the cecum. The cecal microbiota composition was drastically modified in the KHK-F in association with an increase in glucose, propionate, succinate, and lactate concentrations. Antibiotic treatment abolished fructose malabsorption-dependent induction of cecal Cck mRNA expression and, in mouse GLUTag and human NCI-H716 cells, Cck mRNA expression levels increased in response to propionate, both suggesting a microbiota-dependent process. Fructose reaching the lower intestine can modify the composition and metabolism of the microbiota, thereby stimulating the production of CCK from the EECs possibly in response to propionate.-Zhang, X., Grosfeld, A., Williams, E., Vasiliauskas, D., Barretto, S., Smith, L., Mariadassou, M., Philippe, C., Devime, F., Melchior, C., Gourcerol, G., Dourmap, N., Lapaque, N., Larraufie, P., Blottière, H. M., Herberden, C., Gerard, P., Rehfeld, J. F., Ferraris, R. P., Fritton, J. C., Ellero-Simatos, S., Douard, V. Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism.
Collapse
Affiliation(s)
- Xufei Zhang
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Collège Doctoral, Sorbonne Université, Paris, France
| | - Alexandra Grosfeld
- Centre de Recherche des Cordeliers, INSERM Unité Mixte de Recherche (UMR) S1138, Sorbonne Université, Sorbonne Cités, Université Paris-Diderot (UPD), Centre National de la Recherche Scientifique (CNRS)-Instituts Hospitalo-Universitaires (IHU), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Edek Williams
- Department of Orthopedics, Rutgers University, Newark, New Jersey, USA
| | - Daniel Vasiliauskas
- Paris-Saclay Institute of Neuroscience, Université Paris Sud, Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Gif-sur-Yvette, France
| | | | | | - Mahendra Mariadassou
- Mathématiques et Informatique Appliquées du Génome à l'Environnement (MaIAGE), Unité de Recherche (UR) 1404, INRA, Jouy-en-Josas, France
| | - Catherine Philippe
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Fabienne Devime
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Chloé Melchior
- INSERM Unit 1073, University of Rouen (UNIROUEN), Normandie University, Rouen, France
| | - Guillaume Gourcerol
- INSERM Unit 1073, University of Rouen (UNIROUEN), Normandie University, Rouen, France
| | - Nathalie Dourmap
- UNIROUEN, INSERM U1245 and Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Normandy University, Rouen, France
| | - Nicolas Lapaque
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Larraufie
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Hervé M Blottière
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Christine Herberden
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Gerard
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; and
| | - Ronaldo P Ferraris
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, Newark, New Jersey, USA
| | | | | | - Veronique Douard
- Micalis Institute, Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
43
|
Abstract
Single-cell transcriptomics coupled with dynamic two-color fluorescence are used by Gehart et al. (2019) to elucidate adult mammalian cell trajectories in real time. The authors' close examination of intestinal enteroendocrine differentiation reveals new lineage features and shifting cell identities, and experiments in organoids uncover specific roles for transcriptional regulators identified by this approach.
Collapse
|
44
|
Filippello A, Urbano F, Di Mauro S, Scamporrino A, Di Pino A, Scicali R, Rabuazzo AM, Purrello F, Piro S. Chronic Exposure to Palmitate Impairs Insulin Signaling in an Intestinal L-cell Line: A Possible Shift from GLP-1 to Glucagon Production. Int J Mol Sci 2018; 19:E3791. [PMID: 30487448 PMCID: PMC6321596 DOI: 10.3390/ijms19123791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and impaired glucagon-like peptide-1 (GLP-1) secretion/function. Lipotoxicity, a chronic elevation of free fatty acids in the blood, could affect insulin-signaling in many peripheral tissues. To date, the effects of lipotoxicity on the insulin receptor and insulin resistance in the intestinal L-cells need to be elucidated. Moreover, recent observations indicate that L-cells may be able to process not only GLP-1 but also glucagon from proglucagon. The aim of this study was to investigate the effects of chronic palmitate exposure on insulin pathways, GLP-1 secretion and glucagon synthesis in the GLUTag L-cell line. Cells were cultured in the presence/absence of palmitate (0.5 mM) for 24 h to mimic lipotoxicity. Palmitate treatment affected insulin-stimulated GLP-1 secretion, insulin receptor phosphorylation and IRS-1-AKT pathway signaling. In our model lipotoxicity induced extracellular signal-regulated kinase (ERK 44/42) activation both in insulin stimulated and basal conditions and also up-regulated paired box 6 (PAX6) and proglucagon expression (Gcg). Interestingly, palmitate treatment caused an increased glucagon secretion through the up-regulation of prohormone convertase 2. These results indicate that a state of insulin resistance could be responsible for secretory alterations in L-cells through the impairment of insulin-signaling pathways. Our data support the hypothesis that lipotoxicity might contribute to L-cell deregulation.
Collapse
Affiliation(s)
- Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Francesca Urbano
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Agata Maria Rabuazzo
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| |
Collapse
|
45
|
Comparison of enteroendocrine cells and pancreatic β-cells using gene expression profiling and insulin gene methylation. PLoS One 2018; 13:e0206401. [PMID: 30379923 PMCID: PMC6209304 DOI: 10.1371/journal.pone.0206401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023] Open
Abstract
Various subtypes of enteroendocrine cells (EECs) are present in the gut epithelium. EECs and pancreatic β-cells share similar pathways of differentiation during embryonic development and after birth. In this study, similarities between EECs and β-cells were evaluated in detail. To obtain specific subtypes of EECs, cell sorting by flow cytometry was conducted from STC-1 cells (a heterogenous EEC line), and each single cell was cultured and passaged. Five EEC subtypes were established according to hormone expression, measured by quantitative RT-PCR and immunostaining: L, K, I, G and S cells expressing glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, cholecystokinin, gastrin and secretin, respectively. Each EEC subtype was found to express not only the corresponding gut hormone but also other gut hormones. Global microarray gene expression profiles revealed a higher similarity between each EEC subtype and MIN6 cells (a β-cell line) than between C2C12 cells (a myoblast cell line) and MIN6 cells, and all EEC subtypes were highly similar to each other. Genes for insulin secretion-related proteins were mostly enriched in EECs. However, gene expression of transcription factors crucial in mature β-cells, such as PDX1, MAFA and NKX6.1, were remarkably low in all EEC subtypes. Each EEC subtype showed variable methylation in three cytosine-guanosine dinucleotide sites in the insulin gene (Ins2) promoter, which were fully unmethylated in MIN6 cells. In conclusion, our data confirm that five EEC subtypes are closely related to β-cells, suggesting a potential target for cell-based therapy in type 1 diabetes.
Collapse
|
46
|
Petersen N, Frimurer TM, Terndrup Pedersen M, Egerod KL, Wewer Albrechtsen NJ, Holst JJ, Grapin-Botton A, Jensen KB, Schwartz TW. Inhibiting RHOA Signaling in Mice Increases Glucose Tolerance and Numbers of Enteroendocrine and Other Secretory Cells in the Intestine. Gastroenterology 2018; 155:1164-1176.e2. [PMID: 29935151 DOI: 10.1053/j.gastro.2018.06.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Glucagon-like peptide 1 (GLP1) is produced by L cells in the intestine, and agonists of the GLP1 receptor are effective in the treatment of diabetes. Levels of GLP1 increase with numbers of L cells. Therefore, agents that increase numbers of L cell might be developed for treatment of diabetes. Ras homologue family member A (RhoA) signaling through Rho-associated coiled-coil-containing protein kinases 1 and 2 (ROCK1 and ROCK2) controls cell differentiation, but it is not clear whether this pathway regulates enteroendocrine differentiation in the intestinal epithelium. We investigated the effects of Y-27632, an inhibitor of ROCK1 and ROCK2, on L-cell differentiation. METHODS We collected intestinal tissues from GLU-Venus, GPR41-RFP, and Neurog3-RFP mice, in which the endocrine lineage is fluorescently labeled, for in vitro culture and histologic analysis. Small intestine organoids derived from these mice were cultured with Y-27632 and we measured percentages of L cells, expression of intestinal cell-specific markers, and secretion of GLP1 in medium. Mice were fed a normal chow or a high-fat diet and given Y-27632 or saline (control) and blood samples were collected for measurement of GLP1, insulin, and glucose. RESULTS Incubation of intestinal organoids with Y-27632 increased numbers of L cells and secretion of GLP1. These increases were associated with upregulated expression of genes encoding intestinal hormones, neurogenin 3, neurogenic differentiation factor 1, forkhead box A1 and A2, and additional markers of secretory cells. Mice fed the normal chow diet and given Y-27632 had increased numbers of L cells in intestinal tissues, increased plasma levels of GLP1 and insulin, and lower blood levels of glucose compared with mice fed the normal chow diet and given saline. In mice with insulin resistance induced by the high-fat diet, administration of Y-27632 increased secretion of GLP1 and glucose tolerance compared with administration of saline. CONCLUSIONS In mouse intestinal organoids, an inhibitor of RhoA signaling increased the differentiation of the secretory lineage and the development of enteroendocrine cells. Inhibitors of RhoA signaling or other strategies to increase numbers of L cells might be developed for treatment of patients with type 2 diabetes or for increasing glucose tolerance.
Collapse
Affiliation(s)
- Natalia Petersen
- Section of Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas M Frimurer
- Section of Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Kristoffer L Egerod
- Section of Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Translational Metabolic Physiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Translational Metabolic Physiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Grapin-Botton
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Medical and Health, University of Copenhagen, Copenhagen, Denmark
| | - Kim B Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Medical and Health, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Section of Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Adriaenssens AE, Reimann F, Gribble FM. Distribution and Stimulus Secretion Coupling of Enteroendocrine Cells along the Intestinal Tract. Compr Physiol 2018; 8:1603-1638. [DOI: 10.1002/cphy.c170047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Hamilton CA, Young R, Jayaraman S, Sehgal A, Paxton E, Thomson S, Katzer F, Hope J, Innes E, Morrison LJ, Mabbott NA. Development of in vitro enteroids derived from bovine small intestinal crypts. Vet Res 2018; 49:54. [PMID: 29970174 PMCID: PMC6029049 DOI: 10.1186/s13567-018-0547-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
Cattle are an economically important domestic animal species. In vitro 2D cultures of intestinal epithelial cells or epithelial cell lines have been widely used to study cell function and host-pathogen interactions in the bovine intestine. However, these cultures lack the cellular diversity encountered in the intestinal epithelium, and the physiological relevance of monocultures of transformed cell lines is uncertain. Little is also known of the factors that influence cell differentiation and homeostasis in the bovine intestinal epithelium, and few cell-specific markers that can distinguish the different intestinal epithelial cell lineages have been reported. Here we describe a simple and reliable procedure to establish in vitro 3D enteroid, or "mini gut", cultures from bovine small intestinal (ileal) crypts. These enteroids contained a continuous central lumen lined with a single layer of polarized enterocytes, bound by tight junctions with abundant microvilli on their apical surfaces. Histological and transcriptional analyses suggested that the enteroids comprised a mixed population of intestinal epithelial cell lineages including intestinal stem cells, enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We show that bovine enteroids can be successfully maintained long-term through multiple serial passages without observable changes to their growth characteristics, morphology or transcriptome. Furthermore, the bovine enteroids can be cryopreserved and viable cultures recovered from frozen stocks. Our data suggest that these 3D bovine enteroid cultures represent a novel, physiologically-relevant and tractable in vitro system in which epithelial cell differentiation and function, and host-pathogen interactions in the bovine small intestine can be studied.
Collapse
Affiliation(s)
- Carly A Hamilton
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Rachel Young
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Siddharth Jayaraman
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Anuj Sehgal
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,College of Medical, Veterinary and Life Sciences, University of Glasgow, 5/20 Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Edith Paxton
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Sarah Thomson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Jayne Hope
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Elisabeth Innes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, UK
| | - Liam J Morrison
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
49
|
Magnusson MK, Lasson A, Stridsberg M, Isaksson S, Strid H, Öhman L. Faecal secretogranin and chromogranin levels persist over time and are unrelated to disease history and outcome in patients with ulcerative colitis. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1484602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Maria K. Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lasson
- Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Mats Stridsberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Stefan Isaksson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Strid
- Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
50
|
Marei MK, El Backly RM. Dental Mesenchymal Stem Cell-Based Translational Regenerative Dentistry: From Artificial to Biological Replacement. Front Bioeng Biotechnol 2018; 6:49. [PMID: 29770323 PMCID: PMC5941981 DOI: 10.3389/fbioe.2018.00049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Dentistry is a continuously changing field that has witnessed much advancement in the past century. Prosthodontics is that branch of dentistry that deals with replacing missing teeth using either fixed or removable appliances in an attempt to simulate natural tooth function. Although such "replacement therapies" appear to be easy and economic they fall short of ever coming close to their natural counterparts. Complications that arise often lead to failures and frequent repairs of such devices which seldom allow true physiological function of dental and oral-maxillofacial tissues. Such factors can critically affect the quality of life of an individual. The market for dental implants is continuously growing with huge economic revenues. Unfortunately, such treatments are again associated with frequent problems such as peri-implantitis resulting in an eventual loss or replacement of implants. This is particularly influential for patients having co-morbid diseases such as diabetes or osteoporosis and in association with smoking and other conditions that undoubtedly affect the final treatment outcome. The advent of tissue engineering and regenerative medicine therapies along with the enormous strides taken in their associated interdisciplinary fields such as stem cell therapy, biomaterial development, and others may open arenas to enhancing tissue regeneration via designing and construction of patient-specific biological and/or biomimetic substitutes. This review will overview current strategies in regenerative dentistry while overviewing key roles of dental mesenchymal stem cells particularly those of the dental pulp, until paving the way to precision/translational regenerative medicine therapies for future clinical use.
Collapse
Affiliation(s)
- Mona K Marei
- Department of Removable Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Rania M El Backly
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,Endodontics, Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|