1
|
Chu J, Zhao M, Hu X, Wang Q, Li X, Cui R, Wang L. Soluble Guanylate Cyclase α1 Gene Influences Egg-Laying Amount and Hatching Rate in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e22153. [PMID: 39323098 DOI: 10.1002/arch.22153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Soluble guanylate cyclase (sGC) serves as a receptor of nitric oxide (NO) and is the core metalloenzyme in the NO signal transduction pathway. sGC plays a key role in the NO-cGMP signal transduction pathway and participates in various physiological processes, including cell differentiation, neuron transmission, and internal environment homeostasis. sGC consists of two subunits, α and β, each subunit containing multiple isoforms. In this study, we cloned and analyzed the sGC-α1 gene in the silkworm Bombyx mori (BmsGC-α1). The BmsGC-α1 gene was expressed highest at the pupal stages. The highest BmsGC-α1 mRNA expression was observed in the head of fifth instar larvae and in fat body during the wandering stage of B. mori. Furthermore, we observed that feeding fifth instar larvae with thyroid hormone and nitroglycerin induced the expression of the BmsGC-α1 gene. Injection of BmsGC-α1 siRNA into silkworms at the prepupal stage resulted in a significant decrease in BmsGC-α1 expression levels at 48 and 72 h postinjection. After silencing BmsGC-α1, both the egg-laying amount and hatching rate of silkworm eggs were significantly reduced compared to the control group. These results suggest that BmsGC-α1 plays an important role in regulating the reproductive system of silkworms. This finding enhances our understanding of the functional diversity of sGC in insects.
Collapse
Affiliation(s)
- Jianghong Chu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Science, Anhui Agricultural University, Hefei, China
| | - Mengting Zhao
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xiaoxuan Hu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Science, Anhui Agricultural University, Hefei, China
| | - Qing Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xudong Li
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Science, Anhui Agricultural University, Hefei, China
| | - Ruirui Cui
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Science, Anhui Agricultural University, Hefei, China
| | - Lei Wang
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Knittel LM, Swanson TL, Lee HJ, Copenhaver PF. Fasciclin 2 plays multiple roles in promoting cell migration within the developing nervous system of Manduca sexta. Dev Biol 2023; 499:31-46. [PMID: 37121309 PMCID: PMC10247491 DOI: 10.1016/j.ydbio.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The coordination of neuronal and glial migration is essential to the formation of most nervous systems, requiring a complex interplay of cell-intrinsic responses and intercellular guidance cues. During the development of the enteric nervous system (ENS) in Manduca sexta (tobacco hornworm), the IgCAM Fasciclin 2 (Fas2) serves several distinct functions to regulate these processes. As the ENS forms, a population of 300 neurons (EP cells) undergoes sequential phases of migration along well-defined muscle pathways on the visceral mesoderm to form a branching Enteric Plexus, closely followed by a trailing wave of proliferating glial cells that enwrap the neurons. Initially, both the neurons and glial cells express a GPI-linked form of Fas2 (GPI-Fas2), which helps maintain cell-cell contact among the pre-migratory neurons and later promotes glial ensheathment. The neurons then switch isoforms, predominantly expressing a combination of transmembrane isoforms lacking an intracellular PEST domain (TM-Fas2 PEST-), while their muscle band pathways on the midgut transiently express transmembrane isoforms containing this domain (TM-Fas2 PEST+). Using intracellular injection protocols to manipulate Fas2 expression in cultured embryos, we found that TM-Fas2 promotes the directed migration and outgrowth of individual neurons in the developing ENS. Concurrently, TM-Fas2 expression by the underlying muscle bands is also required as a substrate cue to support normal migration, while glial expression of GPI-Fas2 helps support their ensheathment of the migratory neurons. These results demonstrate how a specific IgCAM can play multiple roles that help coordinate neuronal and glial migration in the developing nervous system.
Collapse
Affiliation(s)
- Laura M Knittel
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Hun Joo Lee
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology L-215, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Looking at Developmental Neurotoxicity Testing from the Perspective of an Invertebrate Embryo. Int J Mol Sci 2022; 23:ijms23031871. [PMID: 35163796 PMCID: PMC8836978 DOI: 10.3390/ijms23031871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Developmental neurotoxicity (DNT) of chemical compounds disrupts the formation of a normal brain. There is impressive progress in the development of alternative testing methods for DNT potential in chemicals, some of which also incorporate invertebrate animals. This review briefly touches upon studies on the genetically tractable model organisms of Caenorhabditis elegans and Drosophila melanogaster about the action of specific developmental neurotoxicants. The formation of a functional nervous system requires precisely timed axonal pathfinding to the correct cellular targets. To address this complex key event, our lab developed an alternative assay using a serum-free culture of intact locust embryos. The first neural pathways in the leg of embryonic locusts are established by a pair of afferent pioneer neurons which use guidance cues from membrane-bound and diffusible semaphorin proteins. In a systematic approach according to recommendations for alternative testing, the embryo assay quantifies defects in pioneer navigation after exposure to a panel of recognized test compounds for DNT. The outcome indicates a high predictability for test-compound classification. Since the pyramidal neurons of the mammalian cortex also use a semaphorin gradient for neurite guidance, the assay is based on evolutionary conserved cellular mechanisms, supporting its relevance for cortical development.
Collapse
|
4
|
Bicker G, Stern M. Structural and Functional Plasticity in the Regenerating Olfactory System of the Migratory Locust. Front Physiol 2020; 11:608661. [PMID: 33424632 PMCID: PMC7793960 DOI: 10.3389/fphys.2020.608661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Regeneration after injury is accompanied by transient and lasting changes in the neuroarchitecture of the nervous system and, thus, a form of structural plasticity. In this review, we introduce the olfactory pathway of a particular insect as a convenient model to visualize neural regeneration at an anatomical level and study functional recovery at an electrophysiological level. The olfactory pathway of the locust (Locusta migratoria) is characterized by a multiglomerular innervation of the antennal lobe by olfactory receptor neurons. These olfactory afferents were axotomized by crushing the base of the antenna. The resulting degeneration and regeneration in the antennal lobe could be quantified by size measurements, dye labeling, and immunofluorescence staining of cell surface proteins implicated in axonal guidance during development. Within 3 days post lesion, the antennal lobe volume was reduced by 30% and from then onward regained size back to normal by 2 weeks post injury. The majority of regenerating olfactory receptor axons reinnervated the glomeruli of the antennal lobe. A few regenerating axons project erroneously into the mushroom body on a pathway that is normally chosen by second-order projection neurons. Based on intracellular responses of antennal lobe output neurons to odor stimulation, regenerated fibers establish functional synapses again. Following complete absence after nerve crush, responses to odor stimuli return to control level within 10–14 days. On average, regeneration of afferents, and re-established synaptic connections appear faster in younger fifth instar nymphs than in adults. The initial degeneration of olfactory receptor axons has a trans-synaptic effect on a second order brain center, leading to a transient size reduction of the mushroom body calyx. Odor-evoked oscillating field potentials, absent after nerve crush, were restored in the calyx, indicative of regenerative processes in the network architecture. We conclude that axonal regeneration in the locust olfactory system appears to be possible, precise, and fast, opening an avenue for future mechanistic studies. As a perspective of biomedical importance, the current evidence for nitric oxide/cGMP signaling as positive regulator of axon regeneration in connectives of the ventral nerve cord is considered in light of particular regeneration studies in vertebrate central nervous systems.
Collapse
Affiliation(s)
- Gerd Bicker
- Division of Cell Biology, Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Stern
- Division of Cell Biology, Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
5
|
Wright NJD. A review of the actions of Nitric Oxide in development and neuronal function in major invertebrate model systems. AIMS Neurosci 2019; 6:146-174. [PMID: 32341974 PMCID: PMC7179362 DOI: 10.3934/neuroscience.2019.3.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Ever since the late-eighties when endothelium-derived relaxing factor was found to be the gas nitric oxide, endogenous nitric oxide production has been observed in virtually all animal groups tested and additionally in plants, diatoms, slime molds and bacteria. The fact that this new messenger was actually a gas and therefore didn't obey the established rules of neurotransmission made it even more intriguing. In just 30 years there is now too much information for useful comprehensive reviews even if limited to animals alone. Therefore this review attempts to survey the actions of nitric oxide on development and neuronal function in selected major invertebrate models only so allowing some detailed discussion but still covering most of the primary references. Invertebrate model systems have some very useful advantages over more expensive and demanding animal models such as large, easily identifiable neurons and simple circuits in tissues that are typically far easier to keep viable. A table summarizing this information along with the major relevant references has been included for convenience.
Collapse
Affiliation(s)
- Nicholas J D Wright
- Associate professor of pharmacy, Wingate University School of Pharmacy, Wingate, NC28174, USA
| |
Collapse
|
6
|
Horenberg AL, Houghton AM, Pandey S, Seshadri V, Guilford WH. S-nitrosylation of cytoskeletal proteins. Cytoskeleton (Hoboken) 2019; 76:243-253. [PMID: 30969482 DOI: 10.1002/cm.21520] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/05/2019] [Accepted: 03/27/2019] [Indexed: 12/30/2022]
Abstract
Nitric oxide has pronounced effects on cellular functions normally associated with the cytoskeleton, including cell motility, shape, contraction, and mitosis. Protein S-nitrosylation, the covalent addition of a NO group to a cysteine sulfur, is a signaling pathway for nitric oxide that acts in parallel to cyclic guanosine monophosphate (cGMP), but is poorly studied compared to the latter. There is growing evidence that S-nitrosylation of cytoskeletal proteins selectively alters their function. We review that evidence, and find that S-nitrosylation of cytoskeletal targets has complementary but distinct effects to cyclic-GMP in motile and contractile cells-promoting cell migration, and biasing muscle contraction toward relaxation. However, the effects of S-nitrosylation on a host of cytoskeletal proteins and functions remains to be explored.
Collapse
Affiliation(s)
- Allison L Horenberg
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Alisa M Houghton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Saurav Pandey
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Vikram Seshadri
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - William H Guilford
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
7
|
Yang XX, Wong YH, Zhang Y, Zhang G, Qian PY. Exploring the regulatory role of nitric oxide (NO) and the NO-p38MAPK/cGMP pathway in larval settlement of the bryozoan Bugula neritina. BIOFOULING 2018; 34:545-556. [PMID: 29842799 DOI: 10.1080/08927014.2018.1470240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
The bryozoan Bugula neritina is a cosmopolitan marine fouling species that causes major fouling problems in sub-tropical waters. Settlement of B. neritina larvae can be triggered without an obvious external cue. Here, the negative regulatory role of nitric oxide (NO) during larval settlement of B. neritina was demonstrated to be mediated by cyclic guanosine monophosphate (cGMP). Although the regulatory role of the NO-p38 MAPK signaling axis in larval settlement was not evident, inhibition of nitric oxide synthase (NOS) led to the deactivation of p38 MAPK. Exclusive localization of NO and NO signaling components in sensory-related organs of the larvae is consistent with its signal transduction function in metamorphosis. Overall, this study provides new insights into the regulatory roles of the NO-p38MAPK/cGMP pathway in B. neritina settlement.
Collapse
Affiliation(s)
- Xiao-Xue Yang
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Yue Him Wong
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Yu Zhang
- b Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , PR China
| | - Gen Zhang
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Pei-Yuan Qian
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| |
Collapse
|
8
|
Tetrapyrroles as Endogenous TSPO Ligands in Eukaryotes and Prokaryotes: Comparisons with Synthetic Ligands. Int J Mol Sci 2016; 17:ijms17060880. [PMID: 27271616 PMCID: PMC4926414 DOI: 10.3390/ijms17060880] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/26/2022] Open
Abstract
The 18 kDa translocator protein (TSPO) is highly 0conserved in eukaryotes and prokaryotes. Since its discovery in 1977, numerous studies established the TSPO’s importance for life essential functions. For these studies, synthetic TSPO ligands typically are applied. Tetrapyrroles present endogenous ligands for the TSPO. Tetrapyrroles are also evolutionarily conserved and regulate multiple functions. TSPO and tetrapyrroles regulate each other. In animals TSPO-tetrapyrrole interactions range from effects on embryonic development to metabolism, programmed cell death, response to stress, injury and disease, and even to life span extension. In animals TSPOs are primarily located in mitochondria. In plants TSPOs are also present in plastids, the nuclear fraction, the endoplasmic reticulum, and Golgi stacks. This may contribute to translocation of tetrapyrrole intermediates across organelles’ membranes. As in animals, plant TSPO binds heme and protoporphyrin IX. TSPO-tetrapyrrole interactions in plants appear to relate to development as well as stress conditions, including salt tolerance, abscisic acid-induced stress, reactive oxygen species homeostasis, and finally cell death regulation. In bacteria, TSPO is important for switching from aerobic to anaerobic metabolism, including the regulation of photosynthesis. As in mitochondria, in bacteria TSPO is located in the outer membrane. TSPO-tetrapyrrole interactions may be part of the establishment of the bacterial-eukaryote relationships, i.e., mitochondrial-eukaryote and plastid-plant endosymbiotic relationships.
Collapse
|
9
|
Macaya CC, Saavedra PE, Cepeda RE, Nuñez VA, Sarrazin AF. A Tribolium castaneum whole-embryo culture protocol for studying the molecular mechanisms and morphogenetic movements involved in insect development. Dev Genes Evol 2016; 226:53-61. [PMID: 26739999 DOI: 10.1007/s00427-015-0524-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/16/2015] [Indexed: 12/01/2022]
Abstract
The development of the red flour beetle Tribolium castaneum is more representative of arthropods than the evolutionarily derived fly, Drosophila melanogaster. Thus, Tribolium is becoming an emerging organism model for studying the evolution of the mechanisms that control embryonic development in arthropods. In this regard, diverse genetic and molecular tools are currently available for Tribolium, as well as imaging and embryonic techniques. Recently, we developed a method for culturing embryos in order to study specific stages during Tribolium development. In this report, we present a detailed and "easy-to-follow" protocol for embryo handling and dissection, extending the use of whole-embryo culture to functional analysis by performing in vivo pharmacological manipulations. This experimental accessibility allowed us to study the relevance of microtubules in axis elongation, using nocodazole and taxol drugs to interfere with microtubule networks, followed by length measurement analysis. Additionally, we demonstrated that embryo handling had no effect on the development of Tribolium embryos, and we checked viability after dissection and bisection and during incubation using propidium iodide. The embryo culture protocol we describe here can be applied to study diverse developmental processes in Tribolium. We expect that this protocol can be adapted and applied to other arthropods.
Collapse
Affiliation(s)
- Constanza C Macaya
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Patricio E Saavedra
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Rodrigo E Cepeda
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Viviana A Nuñez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
| | - Andres F Sarrazin
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile.
| |
Collapse
|
10
|
Trentini JF, O'Neill JT, Poluch S, Juliano SL. Prenatal carbon monoxide impairs migration of interneurons into the cerebral cortex. Neurotoxicology 2015; 53:31-44. [PMID: 26582457 DOI: 10.1016/j.neuro.2015.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 01/15/2023]
Abstract
Prenatal exposure to carbon monoxide (CO) disrupts brain development, however little is known about effects on neocortical maturation. We exposed pregnant mice to CO from embryonic day 7 (E7) until birth. To study the effect of CO on neuronal migration into the neocortex we injected BrdU during corticogenesis and observed misplaced BrdU+ cells. The majority of cells not in their proper layer colocalized with GAD65/67, suggesting impairment of interneuron migration; interneuron subtypes were also affected. We subsequently followed interneuron migration from E15 organotypic cultures of mouse neocortex exposed to CO; the leading process length of migrating neurons diminished. To examine an underlying mechanism, we assessed the effects of CO on the cellular cascade mediating the cytoskeletal protein vasodilator-stimulated phosphoprotein (VASP). CO exposure resulted in decreased cGMP and in a downstream target, phosphorylated VASP. Organotypic cultures grown in the presence of the phosphodiesterase inhibitor IBMX resulted in a recovery of the leading processes. These data support the idea that CO acts as a signaling molecule and impairs function and neuronal migration by acting through the CO/NO-cGMP pathway. In addition, treated mice demonstrated functional impairment in behavioral tests.
Collapse
Affiliation(s)
- John F Trentini
- Graduate Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA
| | - J Timothy O'Neill
- Graduate Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; Department of Pediatrics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Sylvie Poluch
- Graduate Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD 20814, USA
| | - Sharon L Juliano
- Graduate Program in Neuroscience, Uniformed Services University, Bethesda, MD 20814, USA; Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD 20814, USA.
| |
Collapse
|
11
|
Komuro Y, Galas L, Lebon A, Raoult E, Fahrion JK, Tilot A, Kumada T, Ohno N, Vaudry D, Komuro H. The role of calcium and cyclic nucleotide signaling in cerebellar granule cell migration under normal and pathological conditions. Dev Neurobiol 2014; 75:369-87. [PMID: 25066767 DOI: 10.1002/dneu.22219] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/30/2014] [Accepted: 07/25/2014] [Indexed: 11/07/2022]
Abstract
In the developing brain, immature neurons migrate from their sites of origin to their final destination, where they reside for the rest of their lives. This active movement of immature neurons is essential for the formation of normal neuronal cytoarchitecture and proper differentiation. Deficits in migration result in the abnormal development of the brain, leading to a variety of neurological disorders. A myriad of extracellular guidance molecules and intracellular effector molecules is involved in controlling the migration of immature neurons in a cell type, cortical layer and birth-date-specific manner. To date, little is known about how extracellular guidance molecules transfer their information to the intracellular effector molecules, which regulate the migration of immature neurons. In this article, to fill the gap between extracellular guidance molecules and intracellular effector molecules, using the migration of cerebellar granule cells as a model system of neuronal cell migration, we explore the role of second messenger signaling (specifically Ca(2+) and cyclic nucleotide signaling) in the regulation of neuronal cell migration. We will, first, describe the cortical layer-specific changes in granule cell migration. Second, we will discuss the roles of Ca(2+) and cyclic nucleotide signaling in controlling granule cell migration. Third, we will present recent studies showing the roles of Ca(2+) and cyclic nucleotide signaling in the deficits in granule cell migration in mouse models of fetal alcohol spectrum disorders and fetal Minamata disease.
Collapse
Affiliation(s)
- Yutaro Komuro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Scheiblich H, Roloff F, Singh V, Stangel M, Stern M, Bicker G. Nitric oxide/cyclic GMP signaling regulates motility of a microglial cell line and primary microglia in vitro. Brain Res 2014; 1564:9-21. [PMID: 24713349 DOI: 10.1016/j.brainres.2014.03.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
Abstract
Microglia are the resident immune cells of the brain, which become rapidly activated and migrate to the site of insult in brain infection and disease. Activated microglia generate large amounts of the highly reactive messenger molecule nitric oxide (NO). NO is able to raise cyclic GMP levels via binding to soluble guanylyl cyclase. We investigated potential mechanistic links between inflammation, NO signaling, and microglial migration. To monitor cell migration, we used a scratch wound assay and compared results obtained in the BV-2 microglial line to primary microglia. Incubation with lipopolysaccharide (LPS) as stimulator of acute inflammatory processes enhanced migration of both microglial cell types. LPS activated NO production in BV-2 cells and application of an NO donor increased BV-2 cell migration while an NO scavenger reduced motility. Pharmacological inhibition of soluble guanylyl cyclase and the resulting decrease in motility can be rescued by a membrane permeant analog of cGMP. Despite differences in the threshold towards stimulation with the chemical agents, both BV-2 cells and primary microglia react in a similar way. The important role of NO/cGMP as positive regulator of microglial migration, the downstream targets of the signaling cascade, and resulting cytoskeletal changes can be conveniently investigated in a microglial cell line.
Collapse
Affiliation(s)
- Hannah Scheiblich
- Division of Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, D-30173 Hannover, Germany.
| | - Frank Roloff
- Division of Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, D-30173 Hannover, Germany.
| | - Vikramjeet Singh
- Department of Neurology, Hannover Medical School, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Michael Stern
- Division of Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, D-30173 Hannover, Germany.
| | - Gerd Bicker
- Division of Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, D-30173 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
13
|
Nitric oxide synthase (NOS) in the cyprid of Amphibalanus amphitrite (Cirripedia, Crustacea). Neurosci Lett 2013; 555:209-14. [PMID: 24076140 DOI: 10.1016/j.neulet.2013.09.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/11/2013] [Accepted: 09/14/2013] [Indexed: 01/26/2023]
Abstract
The Amphibalanus amphitrite barnacle is a sessile marine crustacean and a major constituent of benthic as well as intertidal communities. A. amphitrite is also an important component of biofouling on artificial substrates. The role of nitric oxide (NO) was recently observed in the settlement of this species. In this work, we used immunohistochemical and histoenzymatic methods to investigate, for the first time, the presence and distribution of NO synthetic enzymes (NOS) in the competent-for-settlement cyprid of A. amphitrite. NOS-like immunoreactivity was observed in various regions of the cyprid: gut mucosa, mantel epithelium, thoracic muscle, and abductor muscles. Intense immunoreactivity was also present in the cement gland and oil cells, while widespread immunoreactivity was observed in the compound eye. NADPH-diaphorase method was used to provide further data and understand NOS-distribution. The results show that NOS is likely to be present in structures - such as muscles and cement gland - which are key for settlement.
Collapse
|
14
|
Hao MM, Bornstein JC, Vanden Berghe P, Lomax AE, Young HM, Foong JPP. The emergence of neural activity and its role in the development of the enteric nervous system. Dev Biol 2012; 382:365-74. [PMID: 23261929 DOI: 10.1016/j.ydbio.2012.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, the University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Artinian L, Zhong L, Yang H, Rehder V. Nitric oxide as intracellular modulator: internal production of NO increases neuronal excitability via modulation of several ionic conductances. Eur J Neurosci 2012; 36:3333-43. [PMID: 22913584 DOI: 10.1111/j.1460-9568.2012.08260.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) has been shown to regulate neuronal excitability in the nervous system, but little is known as to whether NO, which is synthesized in certain neurons, also serves functional roles within NO-producing neurons themselves. We investigated this possibility by using a nitric oxide synthase (NOS)-expressing neuron, and studied the role of intrinsic NO production on neuronal firing properties in single-cell culture. B5 neurons of the pond snail Helisoma trivolvis fire spontaneous action potentials (APs), but once the intrinsic activity of NOS was inhibited, neurons became hyperpolarized and were unable to fire evoked APs. These striking long-term effects could be attributed to intrinsic NO acting on three types of conductances, a persistent sodium current (I(NaP) ), voltage-gated Ca currents (I(Ca) ) and small-conductance calcium-activated potassium (SK) channels. We show that NOS inhibitors 7-nitroindazole and S-methyl-l-thiocitrulline resulted in a decrease in I(NaP) , and that their hyperpolarizing and inhibiting effects on spontaneous spiking were mimicked by the inhibitor of I(NaP) , riluzole. Moreover, inhibition of NOS, soluble guanylate cyclase (sGC) or protein kinase G (PKG) attenuated I(Ca) , and blocked spontaneous and depolarization-induced spiking, suggesting that intrinsic NO controlled I(Ca) via the sGC/PKG pathway. The SK channel inhibitor apamin partially prevented the hyperpolarization observed after inhibition of NOS, suggesting a downregulation of SK channels by intrinsic NO. Taken together, we describe a novel mechanism by which neurons utilize their self-produced NO as an intrinsic modulator of neuronal excitability. In B5 neurons, intrinsic NO production is necessary to maintain spontaneous tonic and evoked spiking activity.
Collapse
Affiliation(s)
- Liana Artinian
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
16
|
Riccio O, Jacobshagen M, Golding B, Vutskits L, Jabaudon D, Hornung JP, Dayer AG. Excess of serotonin affects neocortical pyramidal neuron migration. Transl Psychiatry 2011; 1:e47. [PMID: 22833193 PMCID: PMC3309486 DOI: 10.1038/tp.2011.49] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The serotonin transporter (SERT) is a key molecule involved in the homeostasis of extracellular levels of serotonin and is regulated developmentally. Genetic deletion of SERT in rodents increases extracellular levels of serotonin and affects cellular processes involved in neocortical circuit assembly such as barrel cortex wiring and cortical interneuron migration. Importantly, pharmacological blockade of SERT during brain development leads to phenotypes relevant to psychiatry in rodents and to an increased risk for autism spectrum disorders in humans. Furthermore, developmental adversity interacts with genetically-driven variations of serotonin function in humans and nonhuman primates to increase the risk for a variety of stress-related phenotypes. In this study, we investigate whether an excess of serotonin affects the migration of neocortical pyramidal neurons during development. Using in utero electroporation combined with time-lapse imaging to specifically monitor pyramidal neurons during late mouse embryogenesis, we show that an excess of serotonin reversibly affects the radial migration of pyramidal neurons. We further identify that the serotonin receptor 5-HT(6) is expressed in pyramidal neuron progenitors and that 5-HT(6) receptor activation replicates the effects of serotonin stimulation. Finally, we show that the positioning of superficial layer pyramidal neurons is altered in vivo in SERT knockout mice. Taken together, these results indicate that a developmental excess of serotonin decreases the migration speed of cortical pyramidal neurons, affecting a fundamental step in the assembly of neural circuits. These findings support the hypothesis that developmental dysregulation of serotonin homeostasis has detrimental effects on neocortical circuit formation and contributes to increased vulnerability to psychiatric disorders.
Collapse
Affiliation(s)
- O Riccio
- Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland,Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland,Geneva Neuroscience Center, University of Geneva Medical School, Geneva, Switzerland
| | - M Jacobshagen
- Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland,Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland,Geneva Neuroscience Center, University of Geneva Medical School, Geneva, Switzerland
| | - B Golding
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland,Geneva Neuroscience Center, University of Geneva Medical School, Geneva, Switzerland
| | - L Vutskits
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland,Geneva Neuroscience Center, University of Geneva Medical School, Geneva, Switzerland,Department of Anesthesiology Pharmacology and Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - D Jabaudon
- Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland,Geneva Neuroscience Center, University of Geneva Medical School, Geneva, Switzerland,Clinic of Neurology, University Hospital of Geneva, Geneva, Switzerland
| | - J P Hornung
- Department of Cellular Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | - A G Dayer
- Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland,Department of Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland,Geneva Neuroscience Center, University of Geneva Medical School, Geneva, Switzerland,Department of Mental Health and General Psychiatry, University Geneva Medical Center (CMU), Rue Michel-Servet 1, 1211 Genève 4, Switzerland. E-mail:
| |
Collapse
|
17
|
Tegenge MA, Rockel TD, Fritsche E, Bicker G. Nitric oxide stimulates human neural progenitor cell migration via cGMP-mediated signal transduction. Cell Mol Life Sci 2011; 68:2089-99. [PMID: 20957508 PMCID: PMC11114808 DOI: 10.1007/s00018-010-0554-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
Abstract
Neuronal migration is one of the most critical processes during early brain development. The gaseous messenger nitric oxide (NO) has been shown to modulate neuronal and glial migration in various experimental models. Here, we analyze a potential role for NO signaling in the migration of fetal human neural progenitor cells. Cells migrate out of cultured neurospheres and differentiate into both neuronal and glial cells. The neurosphere cultures express neuronal nitric oxide synthase and soluble guanylyl cyclase that produces cGMP upon activation with NO. By employing small bioactive enzyme activators and inhibitors in both gain and loss of function experiments, we show NO/cGMP signaling as a positive regulator of migration in neurosphere cultures of early developing human brain cells. Since NO signaling regulates cell movements from developing insects to mammalian nervous systems, this transduction pathway may have evolutionary conserved functions.
Collapse
Affiliation(s)
- Million Adane Tegenge
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Thomas Dino Rockel
- Group of Molecular Toxicology, Institut für Umweltmedizinische Forschung at the Heinrich Heine-University gGmbH, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Ellen Fritsche
- Group of Molecular Toxicology, Institut für Umweltmedizinische Forschung at the Heinrich Heine-University gGmbH, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
- Department of Dermatology, University Hospital, RWTH Aachen, Pauwelsstraûe 30, 52074 Aachen, Germany
| | - Gerd Bicker
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
18
|
McDonald AA, Chang ES, Mykles DL. Cloning of a nitric oxide synthase from green shore crab, Carcinus maenas: A comparative study of the effects of eyestalk ablation on expression in the molting glands (Y-organs) of C. maenas, and blackback land crab, Gecarcinus lateralis. Comp Biochem Physiol A Mol Integr Physiol 2011; 158:150-62. [DOI: 10.1016/j.cbpa.2010.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 09/29/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
19
|
Bradley S, Tossell K, Lockley R, McDearmid JR. Nitric oxide synthase regulates morphogenesis of zebrafish spinal cord motoneurons. J Neurosci 2010; 30:16818-31. [PMID: 21159953 PMCID: PMC6634927 DOI: 10.1523/jneurosci.4456-10.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/08/2010] [Accepted: 10/14/2010] [Indexed: 02/02/2023] Open
Abstract
Nitric oxide (NO) is a signaling molecule that is synthesized in a range of tissues by the NO synthases (NOSs). In the immature nervous system, the neuronal isoform of NOS (NOS1) is often expressed during periods of axon outgrowth and elaboration. However, there is little direct molecular evidence to suggest that NOS1 influences these processes. Here we address the functional role of NOS1 during in vivo zebrafish locomotor circuit development. We show that NOS1 is expressed in a population of interneurons that lie close to nascent motoneurons of the spinal cord. To determine how this protein regulates spinal network assembly, we perturbed NOS1 expression in vivo with antisense morpholino oligonucleotides. This treatment dramatically increased the number of axon collaterals formed by motoneuron axons, an effect mimicked by pharmacological inhibition of the NO/cGMP signaling pathway. In contrast, exogenous elevation of NO/cGMP levels suppressed motor axon branching. These effects were not accompanied by a change in motoneuron number, suggesting that NOS1 does not regulate motoneuron differentiation. Finally we show that perturbation of NO signaling affects the ontogeny of locomotor performance. Our findings provide evidence that NOS1 is a key regulator of motor axon ontogeny in the developing vertebrate spinal cord.
Collapse
Affiliation(s)
- Sophie Bradley
- Department of Biology, College of Medicine, Biological Sciences, and Psychology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Kyoko Tossell
- Department of Biology, College of Medicine, Biological Sciences, and Psychology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Rachel Lockley
- Department of Biology, College of Medicine, Biological Sciences, and Psychology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Jonathan Robert McDearmid
- Department of Biology, College of Medicine, Biological Sciences, and Psychology, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
20
|
Estephane D, Anctil M. Retinoic acid and nitric oxide promote cell proliferation and differentially induce neuronal differentiation in vitro in the cnidarian Renilla koellikeri. Dev Neurobiol 2010; 70:842-52. [DOI: 10.1002/dneu.20824] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Stern M, Bicker G. Nitric oxide as a regulator of neuronal motility and regeneration in the locust embryo. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:958-965. [PMID: 20361970 DOI: 10.1016/j.jinsphys.2010.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 05/29/2023]
Abstract
Nitric oxide (NO) is known as a gaseous messenger in the nervous system. It plays a role in synaptic plasticity, but also in development and regeneration of nervous systems. We have studied the function of NO and its signaling cascade via cyclic GMP in the locust embryo. Its developing nervous system is well suited for pharmacological manipulations in tissue culture. The components of this signaling pathway are localized by histochemical and immunofluorescence techniques. We have analyzed cellular mechanisms of NO action in three examples: 1. in the peripheral nervous system during antennal pioneer axon outgrowth, 2. in the enteric nervous system during migration of neurons forming the midgut nerve plexus, and 3. in the central nervous system during axonal regeneration of serotonergic neurons after axotomy. In each case, internally released NO or NO-induced cGMP synthesis act as permissive signals for the developmental process. Carbon monoxide (CO), as a second gaseous messenger, modulates enteric neuron migration antagonistic to NO.
Collapse
Affiliation(s)
- Michael Stern
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany.
| | | |
Collapse
|
22
|
Hao MM, Moore RE, Roberts RR, Nguyen T, Furness JB, Anderson RB, Young HM. The role of neural activity in the migration and differentiation of enteric neuron precursors. Neurogastroenterol Motil 2010; 22:e127-37. [PMID: 20082666 DOI: 10.1111/j.1365-2982.2009.01462.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND As they migrate through the developing gut, a sub-population of enteric neural crest-derived cells (ENCCs) begins to differentiate into neurons. The early appearance of neurons raises the possibility that electrical activity and neurotransmitter release could influence the migration or differentiation of ENNCs. METHODS The appearance of neuronal sub-types in the gut of embryonic mice was examined using immunohistochemistry. The effects of blocking various forms of neural activity on ENCC migration and neuronal differentiation were examined using explants of cultured embryonic gut. KEY RESULTS Nerve fibers were present in close apposition to many ENCCs. Commencing at E11.5, neuronal nitric oxide synthase (nNOS), calbindin and IK(Ca) channel immunoreactivities were shown by sub-populations of enteric neurons. In cultured explants of embryonic gut, tetrodotoxin (TTX, an inhibitor of action potential generation), nitro-L-arginine (NOLA, an inhibitor of nitric oxide synthesis) and clotrimazole (an IK(Ca) channel blocker) did not affect the rate of ENCC migration, but tetanus toxin (an inhibitor of SNARE-mediated vesicle fusion) significantly impaired ENCC migration as previously reported. In explants of E11.5 and E12.5 hindgut grown in the presence of TTX or tetanus toxin there was a decrease in the number nNOS+ neurons close to the migratory wavefront, but no significant difference in the proportion of all ENCC that expressed the pan-neuronal marker, Hu. CONCLUSIONS & INFERENCES (i) Some enteric neuron sub-types are present very early during the development of the enteric nervous system. (ii) The rate of differentiation of some sub-types of enteric neurons appears to be influenced by TTX- and tetanus toxin-sensitive mechanisms.
Collapse
Affiliation(s)
- M M Hao
- Department of Anatomy & Cell Biology, University of Melbourne, Vic., Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Knipp S, Bicker G. A developmental study of enteric neuron migration in the grasshopper using immunological probes. Dev Dyn 2010; 238:2837-49. [PMID: 19842181 DOI: 10.1002/dvdy.22115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Motility of enteric plexus neurons in the grasshopper Locusta migratoria depends critically on the NO/cGMP signaling cascade. This is reflected in a strong NO-dependent cGMP staining in migrating enteric midgut neurons. In contrast, first cGMP immunoreactivity (cGMP-IR) in the foregut enteric ganglia was detected clearly after the main migratory processes have taken place. Thus, expression of cGMP-IR in migrating neurons is a distinct phenomenon restricted to neurons forming midgut and foregut plexus, that does not occur during convergence of neurons forming the enteric ganglia. Analysis of time lapse video microscopy of migrating midgut neurons together with an immunofluorescence study of midgut cellular structures suggests a contribution of the midgut musculature to enteric neuron guidance. Additionally, during midgut plexus formation a fasciculating signal for enteric neuron neurites appears to be provided by the cell adhesion molecule Fasciclin I.
Collapse
Affiliation(s)
- Sabine Knipp
- University of Veterinary Medicine Hannover, Division of Cell Biology, Institute of Physiology, Hannover, Germany
| | | |
Collapse
|
24
|
The nitric oxide-cGMP pathway controls the directional polarity of growth cone guidance via modulating cytosolic Ca2+ signals. J Neurosci 2009; 29:7886-97. [PMID: 19535600 DOI: 10.1523/jneurosci.0087-09.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Asymmetric Ca(2+) signals across the growth cone mediate attractive or repulsive axon guidance depending on the occurrence of Ca(2+)-induced Ca(2+) release (CICR) through ryanodine receptors (RyRs). Although the neuronal isoform of nitric oxide (NO) synthase (nNOS) is highly expressed in developing dorsal root ganglion (DRG) neurons, the role of NO in axon guidance remains essentially unknown. Here we report that the NO-cGMP pathway negatively regulates CICR to control the directional polarity of DRG axon guidance. Intracellular levels of NO and cGMP depend on extracellular substrates: laminin activates the NO-cGMP pathway, whereas the adhesion molecule L1 does not. The activity of NO and cGMP determines the turning direction of growth cones with respect to asymmetric Ca(2+) signals that are produced by photolysing caged Ca(2+). The Ca(2+) signals cause growth cone repulsion on a laminin substrate, which is converted to attraction by pharmacological blockade of the NO-cGMP pathway or genetic deletion of nNOS. Conversely, Ca(2+)-induced growth cone attraction on an L1 substrate is converted to repulsion by increasing NO levels. Such NO-mediated switching of turning direction involves the regulation of CICR through RyRs. Furthermore, growth cone repulsion induced by an extracellular gradient of a physiological cue, neurotrophin-4, is dependent on Ca(2+) signals and converted to attraction by inhibiting the NO-cGMP pathway. These results suggest that, on contact with different adhesive environments, growth cones can change their turning responses to axon guidance cues by modulating CICR via endogenous NO and cGMP.
Collapse
|
25
|
Tegenge MA, Bicker G. Nitric oxide and cGMP signal transduction positively regulates the motility of human neuronal precursor (NT2) cells. J Neurochem 2009; 110:1828-41. [PMID: 19627439 DOI: 10.1111/j.1471-4159.2009.06279.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developmental studies in both vertebrates and invertebrates implicate an involvement of nitric oxide (NO) signaling in cell proliferation, neuronal motility, and synaptic maturation. However, it is unknown whether NO plays a role in the development of the human nervous system. We used a model of human neuronal precursor cells from a well-characterized teratocarcinoma cell line (NT2). The precursor cells proliferate during retinoic acid treatment as spherical aggregate culture that stains for nestin and betaIII-tubulin. Cells migrate out of the aggregates to acquire fully differentiated neuronal phenotypes. The cells express neuronal nitric oxide synthase and soluble guanylyl cyclase (sGC), an enzyme that synthesizes cGMP upon activation by NO. The migration of the neuronal precursor cell is blocked by the use of nNOS, sGC, and protein kinase G (PKG) inhibitors. Inhibition of sGC can be rescued by a membrane permeable analog of cGMP. In gain of function experiments the application of a NO donor and cGMP analog facilitate cell migration. Our results from the differentiating NT2 model neurons point towards a vital role of the NO/cGMP/PKG signaling cascade as positive regulator of cell migration in the developing human brain.
Collapse
Affiliation(s)
- Million Adane Tegenge
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | |
Collapse
|
26
|
Currie DA, Corlew R, de Vente J, Moody WJ. Elevated glutamate and NMDA disrupt production of the second messenger cyclic GMP in the early postnatal mouse cortex. Dev Neurobiol 2009; 69:255-66. [PMID: 19172658 DOI: 10.1002/dneu.20697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) plays many roles during nervous system development. Consequently, cGMP production shows complex patterns of regulation throughout early development. Elevated glutamate levels are known to increase cGMP levels in the mature nervous system. A number of clinical conditions including ischemia and perinatal asphyxia can result in elevated glutamate levels in the developing brain. To investigate the effects of elevated glutamate levels on cGMP in the developing cortex we exposed mouse brain slices to glutamate or N-methyl D-aspartate (NMDA). We find that at early postnatal stages when the endogenous production of cGMP is high, glutamate or NMDA exposure results in a significant lowering of the overall production of cGMP in the cortex, unlike the situation in the mature brain. However, this response pattern is complex with regional and cell-type specific exceptions to the overall lowered cGMP production. These data emphasize that the response of the developing brain to physiological disturbances can be different from that of the mature brain, and must be considered in the context of the developmental events occurring at the time of disturbance.
Collapse
Affiliation(s)
- Douglas A Currie
- Department of Biology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
27
|
Kumada T, Jiang Y, Kawanami A, Cameron DB, Komuro H. Autonomous turning of cerebellar granule cells in vitro by intrinsic programs. Dev Biol 2009; 326:237-49. [PMID: 19063877 PMCID: PMC2654712 DOI: 10.1016/j.ydbio.2008.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Revised: 10/05/2008] [Accepted: 11/17/2008] [Indexed: 11/23/2022]
Abstract
External guidance cues play a role in controlling neuronal cell turning in the developing brain, but little is known about whether intrinsic programs are also involved in controlling the turning. In this study, we examined whether granule cells undergo autonomous changes in the direction of migration in the microexplant cultures of the early postnatal mouse cerebellum. We found that granule cells exhibit spontaneous and periodical turning without cell-cell contact and in the absence of external guidance cues. The frequency of turning was increased by stimulating the Ca(2+) influx and the internal Ca(2+) release, or inhibiting the cAMP signaling pathway, while the frequency was reduced by inhibiting the Ca(2+) influx. Granule cell turning in vitro was classified into four distinct modes, which were characterized by the morphological changes in the leading process and the trailing process, such as bifurcating, turning, withdrawing, and changing the polarity. The occurrence of the 1st and 2nd modes of turning was differentially affected by altering the Ca(2+) and cAMP signaling pathways. Collectively, the results demonstrate that intrinsic programs regulate the autonomous turning of cerebellar granule cells in vitro. Furthermore, the results suggest that extrinsic signals play a role as essential modulators of intrinsic programs.
Collapse
Affiliation(s)
- Tatsuro Kumada
- Department of Neurosciences/NC30, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
28
|
Knipp S, Bicker G. Regulation of enteric neuron migration by the gaseous messenger molecules CO and NO. Development 2008; 136:85-93. [PMID: 19019991 DOI: 10.1242/dev.026716] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The enteric nervous system (ENS) of insects is a useful model to study cell motility. Using small-molecule compounds to activate or inactivate biosynthetic enzymes, we demonstrate that the gaseous messenger molecules carbon monoxide (CO) and nitric oxide (NO) regulate neuron migration in the locust ENS. CO is produced by heme oxygenase (HO) enzymes and has the potential to signal via the sGC/cGMP pathway. While migrating on the midgut, the enteric neurons express immunoreactivity for HO. Here, we show that inhibition of HO by metalloporphyrins promotes enteric neuron migration in intact locust embryos. Thus, the blocking of enzyme activity results in a gain of function. The suppression of migratory behavior by activation of HO or application of a CO donor strongly implicates the release of CO as an inhibitory signal for neuron migration in vivo. Conversely, inhibition of nitric oxide synthase or application of the extracellular gaseous molecule scavenger hemoglobin reduces cell migration. The cellular distribution of NO and CO biosynthetic enzymes, together with the results of the chemical manipulations in whole embryo culture suggest CO as a modulator of transcellular NO signals during neuronal migration. Thus, we provide the first evidence that CO regulates embryonic nervous system development in a rather simple invertebrate model.
Collapse
Affiliation(s)
- Sabine Knipp
- University of Veterinary Medicine Hannover, Division of Cell Biology, Institute of Physiology, Bischofsholer Damm 15, D-30173 Hannover, Germany
| | | |
Collapse
|
29
|
Maa MC, Chang MY, Chen YJ, Lin CH, Yu CJ, Yang YL, Li J, Chen PR, Tang CH, Lei HY, Leu TH. Requirement of inducible nitric-oxide synthase in lipopolysaccharide-mediated Src induction and macrophage migration. J Biol Chem 2008; 283:31408-16. [PMID: 18786925 DOI: 10.1074/jbc.m801158200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we have demonstrated the induction of Src in lipopolysaccharide (LPS)-stimulated macrophages. In this study, we observed that pharmacological blockade or knockout of inducible nitric-oxide synthase (iNOS) reduced LPS-mediated Src induction and macrophage migration. Either SNAP (a NO donor) or 8-Br-cGMP (a cGMP analogue) could rescue these defects in iNOS-null macrophages, which indicated the participation of NO/cGMP in LPS-elicited Src expression and mobilization. In addition, Src family kinase (SFK)-specific inhibitor, PP2, inhibited SNAP- and 8-Br-cGMP-evoked motility implicating the involvement of SFKs downstream of NO/cGMP. Analysis of the expression of SFKs indicated LPS dramatically induced Src, which could be attributable to the increased level of the src transcript. Attenuation of Src by src-specific siRNA reduced LPS- and SNAP-evoked mobilization in Raw264.7 macrophages, and reintroduction of avian Src could rescue their motility. Furthermore, LPS-mediated Src induction led to increased FAK Pi-Tyr-397 and Pi-Tyr-861, which was also iNOS-dependent. With these findings, we concluded that iNOS was important for LPS-mediated macrophage locomotion and Src was a critical player in this process.
Collapse
Affiliation(s)
- Ming-Chei Maa
- Institute of Medical Science, China Medical University, Taichung 40402.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Stern M, Bicker G. Nitric oxide regulates axonal regeneration in an insect embryonic CNS. Dev Neurobiol 2008; 68:295-308. [PMID: 18044735 DOI: 10.1002/dneu.20585] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In higher vertebrates, the central nervous system (CNS) is unable to regenerate after injury, at least partially because of growth-inhibiting factors. Invertebrates lack many of these negative regulators, allowing us to study the positive factors in isolation. One possible molecular player in neuronal regeneration is the nitric oxide (NO)-cyclic guanosine-monophosphate (cGMP) transduction pathway which is known to regulate axonal growth and neural migration. Here, we present an experimental model in which we study the effect of NO on CNS regeneration in flat-fillet locust embryo preparations in culture after crushing the connectives between abdominal ganglia. Using whole-mount immunofluorescence, we examine the morphology of identified serotonergic neurons, which send a total of four axons through these connectives. After injury, these axons grow out again and reach the neighboring ganglion within 4 days in culture. We quantify the number of regenerating axons within this period and test the effect of drugs that interfere with NO action. Application of exogenous NO or cGMP promotes axonal regeneration, whereas scavenging NO or inhibition of soluble guanylyl cyclase delays regeneration, an effect that can be rescued by application of external cGMP. NO-induced cGMP immunostaining confirms the serotonergic neurons as direct targets for NO. Putative sources of NO are resolved using the NADPH-diaphorase technique. We conclude that NO/cGMP promotes outgrowth of regenerating axons in an insect embryo, and that such embryo-culture systems are useful tools for studying CNS regeneration.
Collapse
Affiliation(s)
- Michael Stern
- Institute of Physiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany.
| | | |
Collapse
|
31
|
Currie DA, de Vente J, Moody WJ. Developmental appearance of cyclic guanosine monophosphate (cGMP) production and nitric oxide responsiveness in embryonic mouse cortex and striatum. Dev Dyn 2007; 235:1668-77. [PMID: 16518821 DOI: 10.1002/dvdy.20732] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) regulates multiple aspects of both structural development and physiological function in the developing nervous system. Recent in vitro experiments have shown that cGMP also modulates the response of developing vertebrate neurons to guidance molecules. This has led to the proposal that in vivo cGMP plays a critical role in directing the outgrowth of the apical dendrites of developing neurons in the cerebral cortex. Despite this proposed role, the onset, localization, and dynamics of cGMP production in the embryonic cortex are unknown. To investigate the potential contribution of cGMP in the embryo, we have used a pharmacological and immunohistochemical approach to test whether the endogenous production of cGMP, and the capacity to produce cGMP in response to nitric oxide (NO), in the cerebral cortex is compatible with the proposed developmental roles for cGMP. We find that cortical cGMP production and NO sensitivity are regionally and developmentally regulated. Cortical cGMP production begins at E15, later than in the ganglionic eminences, becomes high in the cortical plate but not the ventricular zone, and is dependent on nitric oxide synthase activity. Furthermore, although radially migrating neurons were not NO responsive until they reached the cortical plate, NO exposure revealed an additional population of tangentially migrating presumptive interneurons from the ganglionic eminences with the capacity to produce cGMP. These results provide a new level of understanding of the stage and cell type specific regulation of the NO/cGMP pathway during embryonic development.
Collapse
Affiliation(s)
- Douglas A Currie
- Department of Biology, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
32
|
Lindsay SL, Ramsey S, Aitchison M, Renné T, Evans TJ. Modulation of lamellipodial structure and dynamics by NO-dependent phosphorylation of VASP Ser239. J Cell Sci 2007; 120:3011-21. [PMID: 17684063 DOI: 10.1242/jcs.003061] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The initial step in directed cell movement is lamellipodial protrusion, an action driven by actin polymerization. Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family proteins are key regulators of this actin polymerization and can control lamellipodial protrusion rate. Ena/VASP proteins are substrates for modification by cyclic-nucleotide-dependent protein kinases at a number of sites. Phosphorylation of Ser239 of VASP in vitro inhibits its anti-capping and filament-bundling activity but the effects of this modification on lamellipodial structure and function are unknown. To examine the functional effects of this modification in living cells, we studied VASP phosphorylation at Ser239 by nitric oxide (NO) stimulation of cGMP-dependent protein kinase. Using live cell imaging of primary cells transfected with GFP-VASP constructs, we found that NO produced rapid retraction of lamellipodia together with cell rounding that was dependent on guanylate cyclase and type II cGMP-dependent protein kinase. In cells expressing a mutant VASP (Ser239Ala) lacking the site preferentially phosphorylated by this kinase, NO had no effect. Phosphorylation of Ser239 of VASP results in loss of lamellipodial protrusions and cell rounding, and is a powerful means of controlling directed actin polymerization within lamellipodia.
Collapse
Affiliation(s)
- Susan L Lindsay
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow Biomedical Research Centre, 120, University Place, Glasgow, G12 8TA, UK
| | | | | | | | | |
Collapse
|
33
|
Knoll JG, Wolfe CA, Tobet SA. Estrogen modulates neuronal movements within the developing preoptic area-anterior hypothalamus. Eur J Neurosci 2007; 26:1091-9. [PMID: 17767488 PMCID: PMC2295210 DOI: 10.1111/j.1460-9568.2007.05751.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The preoptic area-anterior hypothalamus (POA-AH) is characterized by sexually dimorphic features in a number of vertebrates and is a key region of the forebrain for regulating physiological responses and sexual behaviours. Using live-cell fluorescence video microscopy with organotypic brain slices, the current study examined sex differences in the movement characteristics of neurons expressing yellow fluorescent protein (YFP) driven by the Thy-1 promoter. Cells in slices from embryonic day 14 (E14), but not E13, mice displayed significant sex differences in their basal neuronal movement characteristics. Exposure to 10 nm estradiol-17beta (E2), but not 100 nm dihydrotestosterone, significantly altered cell movement characteristics within minutes of exposure, in a location-specific manner. E2 treatment decreased the rate of motion of cells located in the dorsal POA-AH but increased the frequency of movement in cells located more ventrally. These effects were consistent across age and sex. To further determine whether early-developing sex differences in the POA-AH depend upon gonadal steroids, we examined cell positions in mice with a disruption of the steroidogenic factor-1 gene, in which gonads do not form. An early-born cohort of cells were labelled with the mitotic indicator bromodeoxyuridine (BrdU) on E11. More cells were found in the POA-AH of females than males on the day of birth (P0) regardless of gonadal status. These results support the hypothesis that estrogen partially contributes to brain sexual dimorphism through its influence on cell movements during development. Estrogen's influence may be superimposed upon a pre-existing genetic bias.
Collapse
Affiliation(s)
- John Gabriel Knoll
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
34
|
Welshhans K, Rehder V. Nitric oxide regulates growth cone filopodial dynamics via ryanodine receptor-mediated calcium release. Eur J Neurosci 2007; 26:1537-47. [PMID: 17714493 DOI: 10.1111/j.1460-9568.2007.05768.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) is a gaseous intercellular messenger involved in numerous processes during development, including wiring of the nervous system. Neuronal growth cones are responsible for establishing the correct connectivity in the nervous system, but how NO might affect neuronal pathfinding is not fully understood. We have demonstrated in a previous study that local application of a NO donor, NOC-7, via micropipette onto individual growth cones from Helisoma trivolvis B5 neurons results in an increase in filopodial length, a decrease in filopodial number and an increase in the intracellular calcium concentration ([Ca(2+)](i)). Moreover, these NO-induced effects were demonstrated to be mediated via an intracellular cascade involving soluble guanylyl cyclase, protein kinase G (PKG) and cyclic adenosine diphosphate ribose (cADPR). We now demonstrate that the increase in the [Ca(2+)](i) that results from local NO application is mediated via release from ryanodine receptor (RyR)-sensitive intracellular stores. We also show that PKG and RyRs are localized within growth cones and microinjection of cADPR mimics the effects of NO, providing further support that the NO-induced effects are mediated via cADPR. Lastly, we provide evidence that calcium influx across the plasma membrane is a necessary component of the NO-induced calcium increase; however, this calcium influx is secondary to the RyR-induced calcium release from intracellular stores. This study details a signalling pathway by which NO can cause changes in growth cone morphology and thus provides a mechanism by which NO could affect neuronal wiring by acting locally on individual growth cones during the pathfinding process.
Collapse
Affiliation(s)
- Kristy Welshhans
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30302, USA
| | | |
Collapse
|
35
|
Gutièrrez-Mecinas M, Crespo C, Blasco-Ibáñez JM, Nácher J, Varea E, Martínez-Guijarro FJ. Migrating neuroblasts of the rostral migratory stream are putative targets for the action of nitric oxide. Eur J Neurosci 2007; 26:392-402. [PMID: 17623019 DOI: 10.1111/j.1460-9568.2007.05672.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It has been demonstrated that the gaseous messenger nitric oxide influences cell proliferation and cell migration, and therefore affects adult neurogenesis in mammals. Here, we investigated the putative targets for this action in the rostral migratory stream of the rat. We used immunocytochemical detection of the beta1 subunit of the enzyme soluble guanylyl cyclase, which can be activated by nitric oxide. Our results under light and electron microscopy demonstrated that the migrating neuroblasts (type A cells) were beta1-immunopositive. The astrocytes (type B cells), immature precursors (type C cells) and ependymal cells (type E cells) were beta1-immunonegative. The neurochemical characterization of the soluble guanylyl cyclase-containing cells confirmed these results. In this regard, the beta1-containing cells expressed doublecortin, a protein expressed by type A cells, and did not express glial fibrillary acidic protein, which is a marker for type B cells. Injection of 5-bromo-2'-deoxyuridine 2 h before killing demonstrated that proliferating cells did not contain soluble guanylyl cyclase. Finally, we found that beta1-containing type A cells also expressed the A3 subunit of the cyclic nucleotide-gated ion channels. Altogether, the present results indicate that nitric oxide may influence adult neurogenesis acting on the migrating neuroblasts of the rostral migratory stream. In these cells, nitric oxide may activate the enzyme soluble guanylyl cyclase, triggering the production of the second messenger cGMP. In turn, cGMP might induce the opening of cyclic nucleotide-gated ion channels, which are present in these cells.
Collapse
Affiliation(s)
- María Gutièrrez-Mecinas
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Valencia, Street Dr Moliner 50, E-46100 Burjasot, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Copenhaver PF. How to innervate a simple gut: familiar themes and unique aspects in the formation of the insect enteric nervous system. Dev Dyn 2007; 236:1841-64. [PMID: 17420985 PMCID: PMC3097047 DOI: 10.1002/dvdy.21138] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Like the vertebrate enteric nervous system (ENS), the insect ENS consists of interconnected ganglia and nerve plexuses that control gut motility. However, the insect ENS lies superficially on the gut musculature, and its component cells can be individually imaged and manipulated within cultured embryos. Enteric neurons and glial precursors arise via epithelial-to-mesenchymal transitions that resemble the generation of neural crest cells and sensory placodes in vertebrates; most cells then migrate extensive distances before differentiating. A balance of proneural and neurogenic genes regulates the morphogenetic programs that produce distinct structures within the insect ENS. In vivo studies have also begun to decipher the mechanisms by which enteric neurons integrate multiple guidance cues to select their pathways. Despite important differences between the ENS of vertebrates and invertebrates, common features in their programs of neurogenesis, migration, and differentiation suggest that these relatively simple preparations may provide insights into similar developmental processes in more complex systems.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
37
|
Frederiksen LJ, Sullivan R, Maxwell LR, Macdonald-Goodfellow SK, Adams MA, Bennett BM, Siemens DR, Graham CH. Chemosensitization of cancer in vitro and in vivo by nitric oxide signaling. Clin Cancer Res 2007; 13:2199-206. [PMID: 17404104 DOI: 10.1158/1078-0432.ccr-06-1807] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Hypoxia contributes to drug resistance in solid cancers, and studies have revealed that low concentrations of nitric oxide (NO) mimetics attenuate hypoxia-induced drug resistance in tumor cells in vitro. Classic NO signaling involves activation of soluble guanylyl cyclase, generation of cyclic GMP (cGMP), and activation of cGMP-dependent protein kinase. Here, we determined whether chemosensitization by NO mimetics requires cGMP-dependent signaling and whether low concentrations of NO mimetics can chemosensitize tumors in vivo. EXPERIMENTAL DESIGN Survival of human prostate and breast cancer cells was assessed by clonogenic assays following exposure to chemotherapeutic agents. The effect of NO mimetics on tumor chemosensitivity in vivo was determined using a mouse xenograft model of human prostate cancer. Drug efflux in vitro was assessed by measuring intracellular doxorubicin-associated fluorescence. RESULTS Low concentrations of the NO mimetics glyceryl trinitrate (GTN) and isosorbide dinitrate attenuated hypoxia-induced resistance to doxorubicin and paclitaxel. Similar to hypoxia-induced drug resistance, inhibition of various components of the NO signaling pathway increased resistance to doxorubicin, whereas activation of the pathway with 8-bromo-cGMP attenuated hypoxia-induced resistance. Drug efflux was unaffected by hypoxia and inhibitors of drug efflux did not significantly attenuate hypoxia-induced chemoresistance. Compared with mice treated with doxorubicin alone, tumor growth was decreased in mice treated with doxorubicin and a transdermal GTN patch. The presence of GTN and GTN metabolites in plasma samples was confirmed by gas chromatography. CONCLUSION Tumor hypoxia induces resistance to anticancer drugs by interfering with endogenous NO signaling and reactivation of NO signaling represents a novel approach to enhance chemotherapy.
Collapse
|
38
|
Bell EN, Tse MY, Frederiksen LJ, Gardhouse A, Pang SC, Graham CH, Siemens DR. Atrial Natriuretic Peptide Attenuates Hypoxia Induced Chemoresistance in Prostate Cancer Cells. J Urol 2007; 177:751-6. [PMID: 17222675 DOI: 10.1016/j.juro.2006.09.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Indexed: 11/24/2022]
Abstract
PURPOSE Low tumor oxygenation (hypoxia) correlates with resistance to chemotherapeutic agents. We recently reported that in vitro hypoxia induced resistance to various anti-cancer drugs can be attenuated by nitric oxide mimetic agents. Natriuretic peptides are molecules that mediate their cellular effects by activating a signaling pathway similar to that activated by nitric oxide. In the current study we determined whether atrial natriuretic peptide is able to inhibit hypoxia induced chemoresistance in prostate carcinoma cells. MATERIALS AND METHODS Reverse transcriptase-polymerase chain reaction and atrial natriuretic peptide binding studies were used to determine the presence and function of natriuretic peptide receptors on a panel of human cell lines as well as in tissue samples. Drug sensitivity assays of cell lines exposed to hypoxic or standard conditions were performed in the presence of various concentrations of atrial natriuretic peptide. RESULTS These studies revealed the presence of the 3 known natriuretic peptide receptors A, B and C in PC-3 and DU-145 human prostate carcinoma cells (American Type Culture Collection, Manassas, Virginia) as well as in tissue samples of human prostate cancer. Atrial natriuretic peptide binding to these cells was unaffected by culture in 0.5% vs 20% O(2). Clonogenic assays revealed that incubation of these cells in 0.5% O(2) for 24 hours resulted in a subsequent 4 to 10-fold increase in their survival following 1-hour exposure to doxorubicin (Sigma) (12.5 microM) (p <0.001). While small concentrations of atrial natriuretic peptide (10(-7) to 10(-13) M) did not affect sensitivity to doxorubicin in cells incubated in 20% O(2), similar concentrations of atrial natriuretic peptide inhibited the survival of these cells incubated in 0.5% O(2) by up to 50% (p <0.006). Using the cyclic guanosine monophosphate dependent protein kinase G inhibitor KT5823 (15 microM) the chemosensitizing effect of atrial natriuretic peptide was abrogated. CONCLUSIONS These results indicate the potential use of natriuretic peptides as adjuvants to chemotherapy for prostate cancer.
Collapse
Affiliation(s)
- Erin N Bell
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The construction of the brain during embryonic development was thought to be largely independent of its electrical activity. In this view, proliferation, migration and differentiation of neurons are driven entirely by genetic programs and activity is important only at later stages in refinement of connections. However, recent findings demonstrate that activity plays essential roles in early development of the nervous system. Activity has similar roles in the incorporation of newly born neurons in the adult nervous system, suggesting that there are general rules underlying activity-dependent development. The extensive involvement of activity makes it likely that it is required at all developmental stages as a necessary partner with genetic programs.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences and Centre for Molecular Genetics, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, California 92093-0357, USA.
| |
Collapse
|
40
|
|
41
|
Bicker G. Pharmacological approaches to nitric oxide signalling during neural development of locusts and other model insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 64:43-58. [PMID: 17167749 DOI: 10.1002/arch.20161] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A novel aspect of cellular signalling during the formation of the nervous system is the involvement of the messenger molecule nitric oxide (NO), which has been discovered in the mammalian vascular system as mediator of smooth muscle relaxation. NO is a membrane-permeant molecule, which activates soluble guanylyl cyclase (sGC) and leads to the formation of cyclic GMP (cGMP) in target cells. The analysis of specific cell types in model insects such as Locusta, Schistocerca, Acheta, Manduca, and Drosophila shows that the NO/cGMP pathway is required for the stabilization of photoreceptor growth cones at the start of synaptic assembly in the optic lobe, for regulation of cell proliferation, and for correct outgrowth of pioneer neurons. Inhibition of the NOS and sGC enzymes combined with rescue experiments show that NO, and potentially also another atypical messenger, carbon monoxide (CO), orchestrate cell migration of enteric neurons. Cultured insect embryos are accessible model systems in which the molecular pathways linking cytoskeletal rearrangement to directed cell movements can be analyzed in natural settings. Based on the results obtained from the insect models, I discuss current evidence for NO and cGMP as essential signalling molecules for the development of vertebrate brains.
Collapse
Affiliation(s)
- Gerd Bicker
- University of Veterinary Medicine Hannover, Cell Biology, Institute of Physiology, Hannover, Germany.
| |
Collapse
|
42
|
Stern M, Knipp S, Bicker G. Embryonic differentiation of serotonin-containing neurons in the enteric nervous system of the locust (Locusta migratoria). J Comp Neurol 2007; 501:38-51. [PMID: 17206618 DOI: 10.1002/cne.21235] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The enteric nervous system (ENS) of the locust consists of four ganglia (frontal and hypocerebral ganglion, and the paired ingluvial ganglia) located on the foregut, and nerve plexus innervating fore- and midgut. One of the major neurotransmitters of the ENS, serotonin, is known to play a vital role in gut motility and feeding. We followed the anatomy of the serotonergic system throughout embryonic development. Serotonergic neurons are generated in the anterior neurogenic zones of the foregut and migrate rostrally along the developing recurrent nerve to contribute to the frontal ganglion. They grow descending neurites, which arborize in all enteric ganglia and both nerve plexus. On the midgut, the neurites closely follow the leading migrating midgut neurons. The onset of serotonin synthesis occurs around halfway through development-the time of the beginning of midgut closure. Cells developing to serotonergic phenotype express the serotonin uptake transporter (SERT) significantly earlier, beginning at 40% of development. The neurons begin SERT expression during migration along the recurrent nerve, indicating that they are committed to a serotonergic phenotype before reaching their final destination. After completion of the layout of the enteric ganglia (at 60%) a maturational phase follows, during which serotonin-immunoreactive cell bodies increase in size and the fine arborizations in the nerve plexus develop varicosities, putative sites of serotonin release (at 80%). This study provides the initial step for future investigation of potential morphoregulatory functions of serotonin during ENS development.
Collapse
Affiliation(s)
- Michael Stern
- Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, D-30173 Hannover, Germany.
| | | | | |
Collapse
|
43
|
Abstract
Neuronal motility is a fundamental feature that underlies the development, regeneration, and plasticity of the nervous system. Two major developmental events--directed migration of neuronal precursor cells to the proper positions and guided elongation of axons to their target cells--depend on large-scale neuronal motility. At a finer scale, motility is also manifested in many aspects of neuronal structures and functions, ranging from differentiation and refinement of axonal and dendritic morphology during development to synapse remodeling associated with learning and memory in the adult brain. As a primary second messenger that conveys the cytoplasmic actions of electrical activity and many neuroactive ligands, Ca(2+) plays a central role in the regulation of neuronal motility. Recent studies have revealed common Ca(2+)-dependent signaling pathways that are deployed for regulating cytoskeletal dynamics associated with neuronal migration, axon and dendrite development and regeneration, and synaptic plasticity.
Collapse
Affiliation(s)
- James Q Zheng
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
44
|
Tornieri K, Rehder V. Nitric oxide release from a single cell affects filopodial motility on growth cones of neighboring neurons. Dev Neurobiol 2007; 67:1932-43. [PMID: 17874460 DOI: 10.1002/dneu.20572] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO), a gaseous messenger, has been reported to be involved in a variety of functions in the nervous system, ranging from neuronal pathfinding to learning and memory. We have shown previously that the application of NO via NO donors to growth cones of identified Helisoma buccal neurons B5 in vitro induces an increase in filopodial length, a decrease in filopodial number, and a slowing in neurite advance. It is unclear, however, whether NO released from a physiological source would affect growth cone dynamics. Here we used cell bodies of identified neurons known to express the NO synthesizing enzyme nitric oxide synthase (NOS) as a source of constitutive NO production and tested their effect on growth cones of other cells in a sender-receiver paradigm. We showed that B5 cell bodies induced a rapid increase in filopodial length in NO-responsive growth cones, and that this effect was blocked by the NOS inhibitor 7-NI, suggesting that the effect was mediated by NO. Inhibition of soluble guanylyl cyclase (sGC) with ODQ blocked filopodial elongation induced by B5 somata, confirming that NO acted via sGC. We also demonstrate that the effect of NO was reversible and that a cell releasing NO can affect growth cones over a distance of at least 100 microm. Our results suggest that NO released from a physiological source can affect the motility of nearby growth cones and thus should be considered a signaling molecule with the potential to affect the outcome of neuronal pathfinding in vivo.
Collapse
Affiliation(s)
- Karine Tornieri
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | |
Collapse
|
45
|
Vohra BP, Tsuji K, Nagashimada M, Uesaka T, Wind D, Armon J, Enomoto H, Heuckeroth RO. Differential gene expression and functional analysis implicate novel mechanisms in enteric nervous system precursor migration and neuritogenesis. Dev Biol 2006; 298:259-71. [PMID: 16904662 PMCID: PMC1952185 DOI: 10.1016/j.ydbio.2006.06.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 05/17/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Enteric nervous system (ENS) development requires complex interactions between migrating neural-crest-derived cells and the intestinal microenvironment. Although some molecules influencing ENS development are known, many aspects remain poorly understood. To identify additional molecules critical for ENS development, we used DNA microarray, quantitative real-time PCR and in situ hybridization to compare gene expression in E14 and P0 aganglionic or wild type mouse intestine. Eighty-three genes were identified with at least two-fold higher expression in wild type than aganglionic bowel. ENS expression was verified for 39 of 42 selected genes by in situ hybridization. Additionally, nine identified genes had higher levels in aganglionic bowel than in WT animals suggesting that intestinal innervation may influence gene expression in adjacent cells. Strikingly, many synaptic function genes were expressed at E14, a time when the ENS is not needed for survival. To test for developmental roles for these genes, we used pharmacologic inhibitors of Snap25 or vesicle-associated membrane protein (VAMP)/synaptobrevin and found reduced neural-crest-derived cell migration and decreased neurite extension from ENS precursors. These results provide an extensive set of ENS biomarkers, demonstrate a role for SNARE proteins in ENS development and highlight additional candidate genes that could modify Hirschsprung's disease penetrance.
Collapse
Affiliation(s)
- Bhupinder P.S. Vohra
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Keiji Tsuji
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mayumi Nagashimada
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Uesaka
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daniel Wind
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Jennifer Armon
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| | - Hideki Enomoto
- Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Robert O. Heuckeroth
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO 63110 U.S.A
| |
Collapse
|
46
|
Krumenacker JS, Murad F. NO-cGMP signaling in development and stem cells. Mol Genet Metab 2006; 87:311-4. [PMID: 16356747 DOI: 10.1016/j.ymgme.2005.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 10/30/2005] [Accepted: 10/31/2005] [Indexed: 02/06/2023]
Abstract
Despite the recognition that the NO-cGMP signaling pathway is involved in so many physiological and pathological events, a clear understanding of many of the functions of this signaling pathway remains elusive. Because of its pleiotropic and often transient actions, its modulation for therapeutic purposes in multiple pathological states is a complex issue. Recent work that combines the areas of developmental and stem cell biology and NO-cGMP signaling in various models may help us elucidate some of these functions and even discover novel actions for this signaling paradigm. This review will discuss some of the recent work in these areas, with additional focus on the nitric oxide receptor, soluble guanylyl cyclase.
Collapse
Affiliation(s)
- Joshua S Krumenacker
- The Brown Foundation Institute of Molecular Medicine, University of Texas Houston Health Science Center, Houston, 77030, USA
| | | |
Collapse
|
47
|
Welshhans K, Rehder V. Local activation of the nitric oxide/cyclic guanosine monophosphate pathway in growth cones regulates filopodial length via protein kinase G, cyclic ADP ribose and intracellular Ca2+ release. Eur J Neurosci 2006; 22:3006-16. [PMID: 16367767 DOI: 10.1111/j.1460-9568.2005.04490.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is a gaseous messenger that has been shown to affect growth cone motility and neurite outgrowth in several model systems, but how NO brings about its effects is not understood. We have previously demonstrated that global and long-term application of NO to Helisoma trivolvis B5 neurons results in a transient increase in filopodial length, decrease in filopodial number and decrease in neurite outgrowth, all of which are mediated via soluble guanylyl cyclase (sGC) and involve an increase in the intracellular Ca2+ concentration [S. Van Wagenen & V. Rehder (1999)Journal of Neurobiology, 39, 168-185; K.R. Trimm & V. Rehder (2004) European Journal of Neuroscience, 19, 809-818]. The goal of the current study was twofold: to investigate the effects of short-term NO exposure on individual growth cones and to further elucidate the downstream pathway through which NO exerts its effects. Local application of the NO donor NOC-7 for 10-20 ms via puffer micropipette resulted in a transient increase in filopodial length and a small decrease in filopodial number. We show evidence that these effects of NO are mediated via sGC, protein kinase G and cyclic ADP ribose, resulting in the release of Ca2+ from intracellular stores, probably of the ryanodine-sensitive type. These results suggest that growth cones expressing sGC are highly sensitive to local and short-term exposure to NO, which they may experience during pathfinding, and that the stereotyped response of transient filopodial elongation seen in B5 neurons in response to NO requires intracellular Ca2+ release.
Collapse
Affiliation(s)
- Kristy Welshhans
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30302-4010, USA
| | | |
Collapse
|
48
|
Kumada T, Lakshmana MK, Komuro H. Reversal of neuronal migration in a mouse model of fetal alcohol syndrome by controlling second-messenger signalings. J Neurosci 2006; 26:742-56. [PMID: 16421294 PMCID: PMC6675380 DOI: 10.1523/jneurosci.4478-05.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The brains of fetal alcohol syndrome patients exhibit impaired neuronal migration, but little is known about the mechanisms underlying this abnormality. Here we show that Ca2+ signaling and cyclic nucleotide signaling are the central targets of alcohol action in neuronal cell migration. Acute administration of ethanol reduced the frequency of transient Ca2+ elevations in migrating neurons and cGMP levels and increased cAMP levels. Experimental manipulations of these second-messenger pathways, through stimulating Ca2+ and cGMP signaling or inhibiting cAMP signaling, completely reversed the action of ethanol on neuronal migration in vitro as well as in vivo. Each second messenger has multiple but distinct downstream targets, including Ca2+/calmodulin-dependent protein kinase II, calcineurin, protein phosphatase 1, Rho GTPase, mitogen-activated protein kinase, and phosphoinositide 3-kinase. These results demonstrate that the aberrant migration of immature neurons in the fetal brain caused by maternal alcohol consumption may be corrected by controlling the activity of these second-messenger pathways.
Collapse
Affiliation(s)
- Tatsuro Kumada
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
49
|
Muir CP, Adams MA, Graham CH. Nitric oxide attenuates resistance to doxorubicin in three-dimensional aggregates of human breast carcinoma cells. Breast Cancer Res Treat 2005; 96:169-76. [PMID: 16331349 DOI: 10.1007/s10549-005-9076-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Compared with monolayer culture, tumour cells cultured as multicellular aggregates (spheroids) exhibit much higher levels of resistance to chemotherapeutic agents, a phenomenon known as multicellular resistance (MCR). Associated with multicellular aggregates is a heterogeneous microenvironment characterised by gradients in oxygen, pH, and nutrients. We previously showed that nitric oxide (NO) signalling plays an important role in the regulation of chemosensitivity in cancer cells cultured as monolayer, and that hypoxia increases resistance to anti-cancer agents largely through a mechanism involving the inhibition of NO signalling. The goal of the present study was to determine whether NO mimetics chemosensitize breast cancer cells in spheroid cultures. Survival of MDA-MB-231 breast carcinoma cells was determined by clonogenic assay following spheroid culture, doxorubicin exposure, and NO mimetic administration. When spheroids were incubated for 24 h with the NO mimetics diethylenetriamine/nitric oxide adduct (DETA/NO) and glyceryl trinitrate (GTN), cell survival after doxorubicin (200 microM) exposure was decreased by 33% (p<0.006) and by up to 47% (p<0.02), respectively. Nitric oxide-mediated signalling involves the generation of the second messenger cyclic guanosine monophosphate (cGMP). Administration of a non-hydrolysable cGMP analogue, 8-Bromo-cGMP, significantly decreased MCR (p<0.04). The effect of NO mimetic exposure on tumour cell chemosensitivity was not due to increased penetration of doxorubicin into spheroids, nor was it associated with an increase in cell proliferation. These results suggest that NO mimetics attenuate MCR to doxorubicin through a mechanism involving cGMP-dependent signalling. Therefore, NO-mimetics may potentially be used as chemosensitizers in cancer therapy.
Collapse
Affiliation(s)
- C P Muir
- Department of Anatomy and Cell Biology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
50
|
Wenzel B, Kunst M, Günther C, Ganter GK, Lakes-Harlan R, Elsner N, Heinrich R. Nitric oxide/cyclic guanosine monophosphate signaling in the central complex of the grasshopper brain inhibits singing behavior. J Comp Neurol 2005; 488:129-39. [PMID: 15924338 DOI: 10.1002/cne.20600] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Grasshopper sound production, in the context of mate finding, courtship, and rivalry, is controlled by the central body complex in the protocerebrum. Stimulation of muscarinic acetylcholine receptors in the central complex has been demonstrated to stimulate specific singing in various grasshoppers including the species Chorthippus biguttulus. Sound production elicited by stimulation of muscarinic acetylcholine receptors in the central complex is inhibited by co-applications of various drugs activating the nitric oxide/cyclic guanosine monophosphate (cGMP) signaling pathway. The nitric oxide-donor sodium nitroprusside caused a reversible suppression of muscarine-stimulated sound production that could be blocked by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxaline-1-one (ODQ), which prevents the formation of cGMP by specifically inhibiting soluble guanylyl cyclase. Furthermore, injections of both the membrane-permeable cGMP analog 8-Br-cGMP and the specific inhibitor of the cGMP-degrading phosphodiesterase Zaprinast reversibly inhibited singing. To identify putative sources of nitric oxide, brains of Ch. biguttulus were subjected to both nitric oxide synthase immunocytochemistry and NADPH-diaphorase staining. Among other areas known to express nitric oxide synthase, both procedures consistently labeled peripheral layers in the upper division of the central body complex, suggesting that neurons supplying this neuropil contain nitric oxide synthase and may generate nitric oxide upon activation. Exposure of dissected brains to nitric oxide and 3-(5'hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) induced cGMP-associated immunoreactivity in both the upper and lower division. Therefore, both the morphological and pharmacological data presented in this study strongly suggest a contribution of the nitric oxide/cGMP signaling pathway to the central control of grasshopper sound production.
Collapse
Affiliation(s)
- Beate Wenzel
- Institute of Zoology, University of Göttingen, 37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|