1
|
Joung J, Heo Y, Kim Y, Kim J, Choi H, Jeon T, Jang Y, Kim EJ, Lee SH, Suh JM, Elledge SJ, Kim MS, Kang C. Cell enlargement modulated by GATA4 and YAP instructs the senescence-associated secretory phenotype. Nat Commun 2025; 16:1696. [PMID: 39962062 PMCID: PMC11833096 DOI: 10.1038/s41467-025-56929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Dynamic changes in cell size are associated with development and pathological conditions, including aging. Although cell enlargement is a prominent morphological feature of cellular senescence, its functional implications are unknown; moreover, how senescent cells maintain their enlargement state is less understood. Here we show that an extensive remodeling of actin cytoskeleton is necessary for establishing senescence-associated cell enlargement and pro-inflammatory senescence-associated secretory phenotype (SASP). This remodeling is attributed to a balancing act between the SASP regulator GATA4 and the mechanosensor YAP on the expression of the Rho family of GTPase RHOU. Genetic or pharmacological interventions that reduce cell enlargement attenuate SASP with minimal effect on senescence growth arrest. Mechanistically, actin cytoskeleton remodeling couples cell enlargement to the nuclear localization of GATA4 and NF-κB via the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. RhoU protein accumulates in mouse adipose tissue under senescence-inducing conditions. Furthermore, RHOU expression correlates with SASP expression in adipose tissue during human aging. Thus, our study highlights an unexpected instructive role of cell enlargement in modulating the SASP and reveals a mechanical branch in the senescence regulatory network.
Collapse
Affiliation(s)
- Joae Joung
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yekang Heo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Jaejin Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Haebeen Choi
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Taerang Jeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Eun-Jung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Sang Heon Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
Wang LN, Jia JS, Yang XL, Wen YT, Liu JX, Li DK, Chen XR, Wang JH, Li JK, Huang ZX, Yao KT. Foxa1 disruption enhances human cell integration in human-mouse interspecies chimeras. Cell Tissue Res 2025; 399:231-245. [PMID: 39708115 DOI: 10.1007/s00441-024-03941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Blastocyst complementation can potentially generate a rodent model with humanized nasopharyngeal epithelium (NE) that supports sustained Epstein-Barr virus (EBV) infection, enabling comprehensive studies of EBV biology in nasopharyngeal carcinoma. However, during this process, the specific gene knockouts required to establish a developmental niche for NE remain unclear. We performed bioinformatics analyses and generated Foxa1 mutant mice to confirm that Foxa1 disruption could potentially create a developmental niche for NE. Subsequently, MYD88-inactivated human pluripotent stem cells (hPSCs) were constructed and complemented with Foxa1-deficient mouse blastocysts, with Nosip-deficient mouse blastocysts as a control. The chimerism of human cells in mouse embryos was evaluated from E8.5 to E12.5 using genomic DNA PCR and immunohistochemistry. Our bioinformatics analysis indicated that the expression patterns of Foxa1 in E8.5 to E16.5 mouse embryos underscore its critical role in NE development. The generated mice with Foxa1 disordered region mutations displayed morphological abnormality in NE, suggesting Foxa1-knockouts could potentially establish a developmental niche for NE. In chimeric assays, human cells integrated into 80.00% of Foxa1-deficient embryos, compared with the 4.17% in controls. Immunohistochemistry results revealed robust proliferation of human cells in Foxa1-deficient mouse embryos. However, chimeras from Foxa1-deficient mouse embryos did not survive beyond E10.5, hindering the evaluation of human cell integration in mouse NE. Foxa1 disruption in mouse embryos significantly enhances the integration of human cells in human-mouse interspecies chimeras, thereby facilitating the generation of endoderm-derived organs through blastocyst complementation. Overcoming chimeras' embryonic lethality is crucial for successfully generating humanized NE in Foxa1-deficient mouse embryos.
Collapse
Affiliation(s)
- Li-Na Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Oncology, School of Medicine, Guangzhou First People's Hospital, Southern China University of Technology, Guangzhou, 510180, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jun-Shuang Jia
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Xing-Long Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Yue-Ting Wen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jing-Xian Liu
- Department of Oncology, Shenzen Hospital of Southern Medical University, Shenzhen, 518110, China
| | - Deng-Ke Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Xing-Rui Chen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Jia-Hong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Ji-Ke Li
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Xi Huang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| | - Kai-Tai Yao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Woo S, Strasser L. Atypical RhoUV GTPases in development and disease. Biochem Soc Trans 2024; 52:89-97. [PMID: 38314621 PMCID: PMC10903452 DOI: 10.1042/bst20230212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
RhoU and RhoV are members of the Rho family of small GTPases that comprise their own subfamily. RhoUV GTPases are classified as atypical due to the kinetics of their GTP/GDP binding cycles. They also possess unique N- and C-termini that regulate their subcellular localization and activity. RhoU and RhoV have been linked to cytoskeletal regulation, cell adhesion, and cell migration. They each exhibit distinct expression patterns during embryonic development and diseases such as cancer metastasis, suggesting they have specialized functions. In this review, we will discuss the known functions of RhoU and RhoV, with a focus on their roles in early development, organogenesis, and disease.
Collapse
Affiliation(s)
- Stephanie Woo
- Department of Molecular Cell Biology, University of California, Merced, CA, U.S.A
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, U.S.A
| | - Leesa Strasser
- Department of Molecular Cell Biology, University of California, Merced, CA, U.S.A
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA, U.S.A
| |
Collapse
|
4
|
Huang H, Wang S, Guan Y, Ren J, Liu X. Molecular basis and current insights of atypical Rho small GTPase in cancer. Mol Biol Rep 2024; 51:141. [PMID: 38236467 DOI: 10.1007/s11033-023-09140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100853, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China.
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
5
|
Soleymanjahi S, Blanc V, Molitor EA, Alvarado DM, Xie Y, Gazit V, Brown JW, Byrnes K, Liu TC, Mills JC, Ciorba MA, Rubin DC, Davidson NO. RBM47 regulates intestinal injury and tumorigenesis by modifying proliferation, oxidative response, and inflammatory pathways. JCI Insight 2023; 8:e161118. [PMID: 37014710 PMCID: PMC10243830 DOI: 10.1172/jci.insight.161118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
RNA-binding protein 47 (RBM47) is required for embryonic endoderm development, but a role in adult intestine is unknown. We studied intestine-specific Rbm47-knockout mice (Rbm47-IKO) following intestinal injury and made crosses into ApcMin/+ mice to examine alterations in intestinal proliferation, response to injury, and tumorigenesis. We also interrogated human colorectal polyps and colon carcinoma tissue. Rbm47-IKO mice exhibited increased proliferation and abnormal villus morphology and cellularity, with corresponding changes in Rbm47-IKO organoids. Rbm47-IKO mice adapted to radiation injury and were protected against chemical-induced colitis, with Rbm47-IKO intestine showing upregulation of antioxidant and Wnt signaling pathways as well as stem cell and developmental genes. Furthermore, Rbm47-IKO mice were protected against colitis-associated cancer. By contrast, aged Rbm47-IKO mice developed spontaneous polyposis, and Rbm47-IKO ApcMin/+ mice manifested an increased intestinal polyp burden. RBM47 mRNA was decreased in human colorectal cancer versus paired normal tissue, along with alternative splicing of tight junction protein 1 mRNA. Public databases revealed stage-specific reduction in RBM47 expression in colorectal cancer associated independently with decreased overall survival. These findings implicate RBM47 as a cell-intrinsic modifier of intestinal growth, inflammatory, and tumorigenic pathways.
Collapse
Affiliation(s)
| | - Valerie Blanc
- Division of Gastroenterology, Department of Medicine
| | | | | | - Yan Xie
- Division of Gastroenterology, Department of Medicine
| | - Vered Gazit
- Division of Gastroenterology, Department of Medicine
| | | | | | | | - Jason C. Mills
- Division of Gastroenterology, Department of Medicine
- Department of Developmental Biology; and
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Deborah C. Rubin
- Division of Gastroenterology, Department of Medicine
- Department of Developmental Biology; and
| | - Nicholas O. Davidson
- Division of Gastroenterology, Department of Medicine
- Department of Developmental Biology; and
| |
Collapse
|
6
|
Gugnoni M, Manzotti G, Vitale E, Sauta E, Torricelli F, Reggiani F, Pistoni M, Piana S, Ciarrocchi A. OVOL2 impairs RHO GTPase signaling to restrain mitosis and aggressiveness of Anaplastic Thyroid Cancer. J Exp Clin Cancer Res 2022; 41:108. [PMID: 35337349 PMCID: PMC8957195 DOI: 10.1186/s13046-022-02316-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Anaplastic Thyroid Cancer (ATC) is an undifferentiated and aggressive tumor that often originates from well-Differentiated Thyroid Carcinoma (DTC) through a trans-differentiation process. Epithelial-to-Mesenchymal Transition (EMT) is recognized as one of the major players of this process. OVOL2 is a transcription factor (TF) that promotes epithelial differentiation and restrains EMT during embryonic development. OVOL2 loss in some types of cancers is linked to aggressiveness and poor prognosis. Here, we aim to clarify the unexplored role of OVOL2 in ATC. Methods Gene expression analysis in thyroid cancer patients and cell lines showed that OVOL2 is mainly associated with epithelial features and its expression is deeply impaired in ATC. To assess OVOL2 function, we established an OVOL2-overexpression model in ATC cell lines and evaluated its effects by analyzing gene expression, proliferation, invasion and migration abilities, cell cycle, specific protein localization through immunofluorescence staining. RNA-seq profiling showed that OVOL2 controls a complex network of genes converging on cell cycle and mitosis regulation and Chromatin Immunoprecipitation identified new OVOL2 target genes. Results Coherently with its reported function, OVOL2 re-expression restrained EMT and aggressiveness in ATC cells. Unexpectedly, we observed that it caused G2/M block, a consequent reduction in cell proliferation and an increase in cell death. This phenotype was associated to generalized abnormalities in the mitotic spindle structure and cytoskeletal organization. By RNA-seq experiments, we showed that many pathways related to cytoskeleton and migration, cell cycle and mitosis are profoundly affected by OVOL2 expression, in particular the RHO-GTPase pathway resulted as the most interesting. We demonstrated that RHO GTPase pathway is the central hub of OVOL2-mediated program in ATC and that OVOL2 transcriptionally inhibits RhoU and RhoJ. Silencing of RhoU recapitulated the OVOL2-driven phenotype pointing to this protein as a crucial target of OVOL2 in ATC. Conclusions Collectively, these data describe the role of OVOL2 in ATC and uncover a novel function of this TF in inhibiting the RHO GTPase pathway interlacing its effects on EMT, cytoskeleton dynamics and mitosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02316-2.
Collapse
|
7
|
Guo T, You K, Chen X, Sun Y, Wu Y, Wu P, Jiang Y. RBM47 inhibits hepatocellular carcinoma progression by targeting UPF1 as a DNA/RNA regulator. Cell Death Dis 2022; 8:320. [PMID: 35831298 PMCID: PMC9279423 DOI: 10.1038/s41420-022-01112-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
The mechanisms by which the tumor behaviors of hepatocellular carcinoma (HCC) support growth and metastasis remain largely unknown, and it has become increasingly apparent that molecular dysregulation is of considerable importance for cellular signaling pathways. Recently, RNA-binding motif protein 47 (RBM47) has been suggested to function as a tumor regulator by acting as an RNA binding protein (RBP), but its role in HCC remains ambiguous. Here, in HCC, we identified that RBM47 had an inhibitory influence on tumor behaviors in vitro and accordingly suppressed the growth and metastasis of xenograft tumors in vivo. Additionally, RBM47 was verified to positively regulate Upframeshift 1 (UPF1), which is a crucial protein involved in the nonsense-mediated RNA decay (NMD) process and was previously determined to be an HCC suppressor. Mechanistically, the stability of UPF1 mRNA was demonstrated to be enhanced with its 3’UTR bound by RBM47, which acted as an RNA binding protein. Meanwhile, RBM47 was also proven to promote the transcription of UPF1 as a transcription factor. Taken together, we concluded that RBM47 functioned as a tumor suppressor by upregulating UPF1, acting as a DNA/RNA binding protein at the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Tao Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Ke You
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xi Chen
- School of Stomatology, Weifang Medical University, Weifang, 261053, China
| | - Yuqi Sun
- School of Clinical Medicine, Weifang Medical University, Weifang, 261031, China
| | - Ying Wu
- Liuzhou Key Laboratory of Infectious Disease Immunity Research, Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, 545006, China
| | - Ping Wu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yingying Jiang
- School of Stomatology, Weifang Medical University, Weifang, 261053, China. .,Department of Dentistry, Affiliated Hospital of Weifang Medical University, Weifang, 261035, China.
| |
Collapse
|
8
|
Shivalingappa PKM, Sharma V, Shiras A, Bapat SA. RNA binding motif 47 (RBM47): emerging roles in vertebrate development, RNA editing and cancer. Mol Cell Biochem 2021; 476:4493-4505. [PMID: 34499322 DOI: 10.1007/s11010-021-04256-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
RNA-binding proteins (RBPs) are critical players in the post-transcriptional regulation of gene expression and are associated with each event in RNA metabolism. The term 'RNA-binding motif' (RBM) is assigned to novel RBPs with one or more RNA recognition motif (RRM) domains that are mainly involved in the nuclear processing of RNAs. RBM47 is a novel RBP conserved in vertebrates with three RRM domains whose contributions to various aspects of cellular functions are as yet emerging. Loss of RBM47 function affects head morphogenesis in zebrafish embryos and leads to perinatal lethality in mouse embryos, thereby assigning it to be an essential gene in early development of vertebrates. Its function as an essential cofactor for APOBEC1 in C to U RNA editing of several targets through substitution for A1CF in the A1CF-APOBEC1 editosome, established a new paradigm in the field. Recent advances in the understanding of its involvement in cancer progression assigned RBM47 to be a tumor suppressor that acts by inhibiting EMT and Wnt/[Formula: see text]-catenin signaling through post-transcriptional regulation. RBM47 is also required to maintain immune homeostasis, which adds another facet to its regulatory role in cellular functions. Here, we review the emerging roles of RBM47 in various biological contexts and discuss the current gaps in our knowledge alongside future perspectives for the field.
Collapse
Affiliation(s)
| | - Vaishali Sharma
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Anjali Shiras
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Sharmila A Bapat
- National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
9
|
Griffin K, Pedersen H, Stauss K, Lungova V, Thibeault SL. Characterization of intrauterine growth, proliferation and biomechanical properties of the murine larynx. PLoS One 2021; 16:e0245073. [PMID: 33439907 PMCID: PMC7806159 DOI: 10.1371/journal.pone.0245073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Current research approaches employ traditional tissue engineering strategies to promote vocal fold (VF) tissue regeneration, whereas recent novel advances seek to use principles of developmental biology to guide tissue generation by mimicking native developmental cues, causing tissue or allogenic/autologous progenitor cells to undergo the regeneration process. To address the paucity of data to direct VF differentiation and subsequent new tissue formation, we characterize structure-proliferation relationships and tissue elastic moduli over embryonic development using a murine model. Growth, cell proliferation, and tissue biomechanics were taken at E13.5, E15.5, E16.5, E18.5, P0, and adult time points. Quadratic growth patterns were found in larynx length, maximum transverse diameter, outer dorsoventral diameter, and VF thickness; internal VF length was found to mature linearly. Cell proliferation measured with EdU in the coronal and transverse planes of the VFs was found to decrease with increasing age. Exploiting atomic force microscopy, we measured significant differences in tissue stiffness across all time points except between E13.5 and E15.5. Taken together, our results indicate that as the VF mature and develop quadratically, there is a concomitant tissue stiffness increase. Greater gains in biomechanical stiffness at later prenatal stages, correlated with reduced cell proliferation, suggest that extracellular matrix deposition may be responsible for VF thickening and increased biomechanical function, and that the onset of biomechanical loading (breathing) may also contribute to increased stiffness. These data provide a profile of VF biomechanical and growth properties that can guide the development of biomechanically-relevant scaffolds and progenitor cell differentiation for VF tissue regeneration.
Collapse
Affiliation(s)
- Kate Griffin
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hailey Pedersen
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kari Stauss
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vlasta Lungova
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan L. Thibeault
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|
11
|
Getachew D, Kaneda R, Saeki Y, Matsumoto A, Otani H. Morphologic changes in the cytoskeleton and adhesion apparatus during the conversion from pseudostratified single columnar to stratified squamous epithelium in the developing mouse esophagus. Congenit Anom (Kyoto) 2021; 61:14-24. [PMID: 32776381 DOI: 10.1111/cga.12389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
The apico-basal (AB) polarity of epithelial cells is maintained by organized arrays of the cytoskeleton and adhesion apparatus. We previously reported that mouse embryonic esophageal epithelium exhibits interkinetic nuclear migration (INM), an AB-polarity-based regulatory mechanism of stem-cell proliferation, and suggested that the pseudostratified single columnar epithelium, a hallmark of INM, is converted to stratified squamous epithelium via rearrangement of the cytoskeleton and cell-adhesion apparatus. Here, we chronologically examined morphological changes in the cytoskeleton and adhesion apparatus in the mouse esophageal epithelium at embryonic day (E) 11.5, E13.5, E14.5, and E15.5, during which epithelial conversion has been suggested to occur. We used phalloidin to examine the apical terminal web (ATW), immunofluorescent anti-zonula occludens protein (ZO-1) antibody to reveal ZO-1, and anti-gamma tubulin antibody to detect primary cilia (PC). At E11.5, a thick ATW, apically oriented ZO-1 and apical PC were observed, indicating a pseudostratified single columnar structure. At E13.5 and E14.5, the phalloidin-staining, ZO-1, and PC distribution patterns were not apically localized, and the epithelial cells appeared to have lost the AB polarity, suggesting conversion of the epithelial structure and cessation of INM. At E15.5, light and transmission electron microscope observations revealed the ATW, ZO-1, PC, and tight junction which were localized into two-1ayers: the apical and subapical layers of the epithelium. These findings suggest that dynamic remodeling of the cytoskeleton and adhesion apparatus is involved in the conversion from pseudostratified single columnar to stratified squamous morphology and is closely related with temporal perturbation of the AB-polarity and cessation of INM.
Collapse
Affiliation(s)
- Dereje Getachew
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Ryo Kaneda
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yuko Saeki
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akihiro Matsumoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
12
|
High Throughput strategies Aimed at Closing the GAP in Our Knowledge of Rho GTPase Signaling. Cells 2020; 9:cells9061430. [PMID: 32526908 PMCID: PMC7348934 DOI: 10.3390/cells9061430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022] Open
Abstract
Since their discovery, Rho GTPases have emerged as key regulators of cytoskeletal dynamics. In humans, there are 20 Rho GTPases and more than 150 regulators that belong to the RhoGEF, RhoGAP, and RhoGDI families. Throughout development, Rho GTPases choregraph a plethora of cellular processes essential for cellular migration, cell–cell junctions, and cell polarity assembly. Rho GTPases are also significant mediators of cancer cell invasion. Nevertheless, to date only a few molecules from these intricate signaling networks have been studied in depth, which has prevented appreciation for the full scope of Rho GTPases’ biological functions. Given the large complexity involved, system level studies are required to fully grasp the extent of their biological roles and regulation. Recently, several groups have tackled this challenge by using proteomic approaches to map the full repertoire of Rho GTPases and Rho regulators protein interactions. These studies have provided in-depth understanding of Rho regulators specificity and have contributed to expand Rho GTPases’ effector portfolio. Additionally, new roles for understudied family members were unraveled using high throughput screening strategies using cell culture models and mouse embryos. In this review, we highlight theses latest large-scale efforts, and we discuss the emerging opportunities that may lead to the next wave of discoveries.
Collapse
|
13
|
Arraf AA, Yelin R, Reshef I, Jadon J, Abboud M, Zaher M, Schneider J, Vladimirov FK, Schultheiss TM. Hedgehog Signaling Regulates Epithelial Morphogenesis to Position the Ventral Embryonic Midline. Dev Cell 2020; 53:589-602.e6. [PMID: 32437643 DOI: 10.1016/j.devcel.2020.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/23/2020] [Accepted: 04/22/2020] [Indexed: 01/20/2023]
Abstract
Despite much progress toward understanding how epithelial morphogenesis is shaped by intra-epithelial processes including contractility, polarity, and adhesion, much less is known regarding how such cellular processes are coordinated by extra-epithelial signaling. During embryogenesis, the coelomic epithelia on the two sides of the chick embryo undergo symmetrical lengthening and thinning, converging medially to generate and position the dorsal mesentery (DM) in the embryonic midline. We find that Hedgehog signaling, acting through downstream effectors Sec5 (ExoC2), an exocyst complex component, and RhoU (Wrch-1), a small GTPase, regulates coelomic epithelium morphogenesis to guide DM midline positioning. These effects are accompanied by changes in epithelial cell-cell alignment and N-cadherin and laminin distribution, suggesting Hedgehog regulation of cell organization within the coelomic epithelium. These results indicate a role for Hedgehog signaling in regulating epithelial morphology and provide an example of how transcellular signaling can modulate specific cellular processes to shape tissue morphogenesis.
Collapse
Affiliation(s)
- Alaa A Arraf
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Inbar Reshef
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Julian Jadon
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Manar Abboud
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Mira Zaher
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Jenny Schneider
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Fanny K Vladimirov
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
14
|
Fried S, Gilboa D, Har-Zahav A, Lavrut PM, Du Y, Karjoo S, Russo P, Shamir R, Wells RG, Waisbourd-Zinman O. Extrahepatic cholangiocyte obstruction is mediated by decreased glutathione, Wnt and Notch signaling pathways in a toxic model of biliary atresia. Sci Rep 2020; 10:7599. [PMID: 32371929 PMCID: PMC7200694 DOI: 10.1038/s41598-020-64503-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia is a neonatal liver disease with extrahepatic bile duct obstruction and progressive liver fibrosis. The etiology and pathogenesis of the disease are unknown. We previously identified a plant toxin, biliatresone, responsible for biliary atresia in naturally-occurring animal models, that causes cholangiocyte destruction in in-vitro models. Decreases in reduced glutathione (GSH) mimic the effects of biliatresone, and agents that replenish cellular GSH ameliorate the effects of the toxin. The goals of this study were to define signaling pathways downstream of biliatresone that lead to cholangiocyte destruction and to determine their relationship to GSH. Using cholangiocyte culture and 3D cholangiocyte spheroid cultures, we found that biliatresone and decreases in GSH upregulated RhoU/Wrch1, a Wnt signaling family member, which then mediated an increase in Hey2 in the NOTCH signaling pathway, causing downregulation of the transcription factor Sox17. When these genes were up- or down-regulated, the biliatresone effect on spheroids was phenocopied, resulting in lumen obstruction. Biopsies of patients with biliary atresia demonstrated increased RhoU/Wrch1 and Hey2 expression in cholangiocytes. We present a novel pathway of cholangiocyte injury in a model of biliary atresia, which is relevant to human BA and may suggest potential future therapeutics.
Collapse
Affiliation(s)
- Sophia Fried
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dafna Gilboa
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Yu Du
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sara Karjoo
- Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Pierre Russo
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Orith Waisbourd-Zinman
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
15
|
Hodge RG, Ridley AJ. Regulation and functions of RhoU and RhoV. Small GTPases 2020; 11:8-15. [PMID: 29189096 PMCID: PMC6959303 DOI: 10.1080/21541248.2017.1362495] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 01/01/2023] Open
Abstract
Rho GTPases play central roles in a wide variety of cellular processes, including cytoskeletal dynamics, cell adhesion and cell polarity. RhoU and RhoV are Rho GTPases that have some atypical properties compared with classical Rho family members, such as the presence of N- and C-terminal extension regions, unusual GDP/GTP cycling and post-translational modification by palmitoylation but not prenylation. Their activity and localization is regulated by the N-terminal and C-terminal regions, and so far no GEFs or GAPs have been identified for them. Similar to Rac and Cdc42, they interact with PAK serine/threonine kinases, and in the case of PAK4, this interaction leads to RhoU protein stabilization. In cells, RhoU and RhoV alter cell shape and cell adhesion, which probably underlies some of the phenotypes reported for these proteins in vivo, for example in heart development and epithelial morphogenesis. However, the molecular basis for these functions of RhoU and RhoV remains to be characterized.
Collapse
Affiliation(s)
- Richard G. Hodge
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| |
Collapse
|
16
|
Laurin M, Gomez NC, Levorse J, Sendoel A, Sribour M, Fuchs E. An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. eLife 2019; 8:e50226. [PMID: 31556874 PMCID: PMC6768663 DOI: 10.7554/elife.50226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 01/09/2023] Open
Abstract
During mammalian embryogenesis, extensive cellular remodeling is needed for tissue morphogenesis. As effectors of cytoskeletal dynamics, Rho GTPases and their regulators are likely involved, but their daunting complexity has hindered progress in dissecting their functions. We overcome this hurdle by employing high throughput in utero RNAi-mediated screening to identify key Rho regulators of skin morphogenesis. Our screen unveiled hitherto unrecognized roles for Rho-mediated cytoskeletal remodeling events that impact hair follicle specification, differentiation, downgrowth and planar cell polarity. Coupling our top hit with gain/loss-of-function genetics, interactome proteomics and tissue imaging, we show that RHOU, an atypical Rho, governs the cytoskeletal-junction dynamics that establish columnar shape and planar cell polarity in epidermal progenitors. Conversely, RHOU downregulation is required to remodel to a conical cellular shape that enables hair bud invagination and downgrowth. Our findings underscore the power of coupling screens with proteomics to unravel the physiological significance of complex gene families.
Collapse
Affiliation(s)
- Melanie Laurin
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Nicholas C Gomez
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - John Levorse
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Ataman Sendoel
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Megan Sribour
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Cell Biology and DevelopmentHoward Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
17
|
Slaymi C, Vignal E, Crès G, Roux P, Blangy A, Raynaud P, Fort P. The atypical RhoU/Wrch1 Rho GTPase controls cell proliferation and apoptosis in the gut epithelium. Biol Cell 2019; 111:121-141. [PMID: 30834544 DOI: 10.1111/boc.201800062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The mammalian gut epithelium displays among the highest rates of self-renewal, with a turnover time of less than 5 days. Renewal involves concerted proliferation at the bottom of the crypt, migration and differentiation along the crypt-villus axis and anoïkis/shedding in the luminal epithelium. Renewal is controlled by interplay between signalling pathways, among which canonical and non-canonical Wnt signals play prominent roles. Overall 92% of colon tumours show increased canonical Wnt signalling resulting from mutations, established as major driver steps towards carcinogenesis. RESULTS Here, we examined the physiological role of RhoU/Wrch1 in gut homeostasis. RhoU is an atypical Rho GTPase related to Cdc42/Rac1 and identified as a transcriptional target of non-canonical Wnt signalling. We found that RHOU expression is reduced in human colorectal tumour samples. We show that RhoU is mainly expressed in the differentiated compartment of the gut epithelium. Rhou specific invalidation in the mouse gut elicits cell hyperplasia and is associated in the colon with a highly disorganized luminal epithelium. Hyperplasia affects all cell types in the small intestine and colon and has a higher impact on goblet cells. Hyperplasia is associated with a reduction of apoptosis and an increased proliferation. RhoU knockdown in human DLD-1 colon cancer cells also elicits a higher growth index and reduces cell apoptosis. Last, loss of RhoU function in the mouse gut epithelium or in DLD-1 cells increases RhoA activity and the level of phosphorylated Myosin Light Chain-2, which may functionally link RhoU activity to apoptosis. CONCLUSION RhoU is mostly expressed in the differentiated compartment of the gut. It plays a role in homeostasis as its specific invalidation elicits hyperplasia of all cell types. This mainly results from a reduction of apoptosis, through actomyosin-dependent mechanisms. SIGNIFICANCE RhoU negatively controls cell growth in the intestinal epithelium. Since its expression is sensitive to non-canonical Wnt signals and is reduced in colorectal tumours, downregulating RhoU may thus have an instrumental role in tumour progression.
Collapse
Affiliation(s)
- Chaker Slaymi
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Emmanuel Vignal
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Gaëlle Crès
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Pierre Roux
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Anne Blangy
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Peggy Raynaud
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| | - Philippe Fort
- CRBM, CNRS, University of Montpellier, 34293, Montpellier CEDEX 5, France
| |
Collapse
|
18
|
Blanc V, Xie Y, Kennedy S, Riordan JD, Rubin DC, Madison BB, Mills JC, Nadeau JH, Davidson NO. Apobec1 complementation factor (A1CF) and RBM47 interact in tissue-specific regulation of C to U RNA editing in mouse intestine and liver. RNA (NEW YORK, N.Y.) 2019; 25:70-81. [PMID: 30309881 PMCID: PMC6298562 DOI: 10.1261/rna.068395.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/07/2018] [Indexed: 05/05/2023]
Abstract
Mammalian C to U RNA is mediated by APOBEC1, the catalytic deaminase, together with RNA binding cofactors (including A1CF and RBM47) whose relative physiological requirements are unresolved. Although A1CF complements APOBEC1 for in vitro RNA editing, A1cf-/- mice exhibited no change in apolipoproteinB (apoB) RNA editing, while Rbm47 mutant mice exhibited impaired intestinal RNA editing of apoB as well as other targets. Here we examined the role of A1CF and RBM47 in adult mouse liver and intestine, following deletion of either one or both gene products and also following forced (liver or intestinal) transgenic A1CF expression. There were minimal changes in hepatic and intestinal apoB RNA editing in A1cf-/- mice and no changes in either liver- or intestine-specific A1CF transgenic mice. Rbm47 liver-specific knockout (Rbm47LKO ) mice demonstrated reduced editing in a subset (11 of 20) of RNA targets, including apoB. By contrast, apoB RNA editing was virtually eliminated (<6% activity) in intestine-specific (Rbm47IKO ) mice with only five of 53 targets exhibiting C-to-U RNA editing. Double knockout of A1cf and Rbm47 in liver (ARLKO ) eliminated apoB RNA editing and reduced editing in the majority of other targets, with no changes following adenoviral APOBEC1 administration. Intestinal double knockout mice (ARIKO ) demonstrated further reduced editing (<10% activity) in four of five of the residual APOBEC1 targets identified in ARIKO mice. These data suggest that A1CF and RBM47 each function independently, yet interact in a tissue-specific manner, to regulate the activity and site selection of APOBEC1 dependent C-to-U RNA editing.
Collapse
Affiliation(s)
- Valerie Blanc
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Yan Xie
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Susan Kennedy
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Jesse D Riordan
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Blair B Madison
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Jason C Mills
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| | - Joseph H Nadeau
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63105, USA
| |
Collapse
|
19
|
Kaneda R, Saeki Y, Getachew D, Matsumoto A, Furuya M, Ogawa N, Motoya T, Rafiq AM, Jahan E, Udagawa J, Hashimoto R, Otani H. Interkinetic nuclear migration in the tracheal and esophageal epithelia of the mouse embryo: Possible implications for tracheo-esophageal anomalies. Congenit Anom (Kyoto) 2018; 58:62-70. [PMID: 28782137 DOI: 10.1111/cga.12241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 02/02/2023]
Abstract
Interkinetic nuclear migration (INM) is a cell polarity-based phenomenon in which progenitor cell nuclei migrate along the apico-basal axis of the pseudostratified epithelium in synchrony with the cell cycle. INM is suggested to be at least partially cytoskeleton-dependent and to regulate not only the proliferation/differentiation of stem/progenitor cells but also the localized/overall size and shape of organs/tissues. INM occurs in all three of the germ-layer derived epithelia, including the endoderm-derived gut. However, INM has not been documented in the esophagus and respiratory tube arising from the anterior foregut. Esophageal atresia with or without trachea-esophageal fistula (EA/TEF) is a relatively common developmental defect. Transcription factors and signaling molecules have been implicated in EA/TEF, but the etiology of EA/TEF-which has been suggested to involve cell polarity-related mechanisms-remains highly controversial. In the present study, we first examined whether INM exists in the trachea and esophagus of mouse embryos at embryonic day 11.5 (E11.5), just after separation of the two tubes from the anterior foregut. By labeling the DNA-synthesizing stem cell nuclei with 5-ethynyl-2'-deoxyuridine, a nucleotide analogue, and statistically analyzing chronological changes in the distribution pattern of the labeled nuclei by using multidimensional scaling, we showed the existence of INM in both the esophagus and trachea, with differences in the INM magnitude and cycle pattern. We further showed morphological changes from the INM-based pseudostratified single layer to the stratified multilayer in the esophageal epithelium in association with a temporal loss/perturbation of AB polarity, suggesting a possible relation with the pathogenesis of EA/TEF.
Collapse
Affiliation(s)
- Ryo Kaneda
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Yuko Saeki
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Dereje Getachew
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Akihiro Matsumoto
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Motohide Furuya
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Noriko Ogawa
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Tomoyuki Motoya
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Ashiq M Rafiq
- Center for the Promotion of Project Research, Organization for Research, Shimane University, Matsue, Japan
| | - Esrat Jahan
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Jun Udagawa
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | - Ryuju Hashimoto
- Department of Clinical Nursing, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hiroki Otani
- Department of Development Biology, Faculty of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
20
|
Bando SY, Iamashita P, Guth BE, dos Santos LF, Fujita A, Abe CM, Ferreira LR, Moreira-Filho CA. A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in Caco-2 cells. PLoS One 2017; 12:e0189613. [PMID: 29253906 PMCID: PMC5734773 DOI: 10.1371/journal.pone.0189613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023] Open
Abstract
Shiga toxin-producing (Stx) Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some of these strains may cause hemolytic uremic syndrome (HUS). The molecular mechanism underlying this capacity and the differential host cell response to HUS-causing strains are not yet completely understood. In Brazil O113:H21 strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here we conducted comparative gene co-expression network (GCN) analyses of two O113:H21 STEC strains: EH41, reference strain, isolated from HUS patient in Australia, and Ec472/01, isolated from cattle feces in Brazil. These strains were cultured in fresh or in Caco-2 cell conditioned media. GCN analyses were also accomplished for cultured Caco-2 cells exposed to EH41 or Ec472/01. Differential transcriptome profiles for EH41 and Ec472/01 were not significantly changed by exposure to fresh or Caco-2 conditioned media. Conversely, global gene expression comparison of both strains cultured in conditioned medium revealed a gene set exclusively expressed in EH41, which includes the dicA putative virulence factor regulator. Network analysis showed that this set of genes constitutes an EH41 specific transcriptional module. PCR analysis in Ec472/01 and in other 10 Brazilian cattle-isolated STEC strains revealed absence of dicA in all these strains. The GCNs of Caco-2 cells exposed to EH41 or to Ec472/01 presented a major transcriptional module containing many hubs related to inflammatory response that was not found in the GCN of control cells. Moreover, EH41 seems to cause gene network dysregulation in Caco-2 as evidenced by the large number of genes with high positive and negative covariance interactions. EH41 grows slowly than Ec472/01 when cultured in Caco-2 conditioned medium and fitness-related genes are hypoexpressed in that strain. Therefore, EH41 virulence may be derived from its capacity for dysregulating enterocyte genome functioning and its enhanced enteric survival due to slow growth.
Collapse
Affiliation(s)
- Silvia Yumi Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Priscila Iamashita
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Beatriz E. Guth
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Luis F. dos Santos
- Departament of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - André Fujita
- Department of Computer Science, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cecilia M. Abe
- Laboratory of Bacteriology, Butantan Institute, São Paulo, SP, Brazil
| | - Leandro R. Ferreira
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
21
|
Wang L, Koutelou E, Hirsch C, McCarthy R, Schibler A, Lin K, Lu Y, Jeter C, Shen J, Barton MC, Dent SYR. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation. Stem Cell Reports 2017; 10:287-299. [PMID: 29249668 PMCID: PMC5768892 DOI: 10.1016/j.stemcr.2017.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF) signaling pathway in early embryoid bodies (EBs). Gcn5-/- EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.
Collapse
Affiliation(s)
- Li Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Calley Hirsch
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ryan McCarthy
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Andria Schibler
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Abstract
Thyroid hormones are crucial for organismal development and homeostasis. In humans, untreated congenital hypothyroidism due to thyroid agenesis inevitably leads to cretinism, which comprises irreversible brain dysfunction and dwarfism. Elucidating how the thyroid gland - the only source of thyroid hormones in the body - develops is thus key for understanding and treating thyroid dysgenesis, and for generating thyroid cells in vitro that might be used for cell-based therapies. Here, we review the principal mechanisms involved in thyroid organogenesis and functional differentiation, highlighting how the thyroid forerunner evolved from the endostyle in protochordates to the endocrine gland found in vertebrates. New findings on the specification and fate decisions of thyroid progenitors, and the morphogenesis of precursor cells into hormone-producing follicular units, are also discussed.
Collapse
Affiliation(s)
- Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden
| | - Henrik Fagman
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg SE-40530, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Göteborg SE-41345, Sweden
| |
Collapse
|
23
|
Lin B, Xie F, Xiao Z, Hong X, Tian L, Liu K. Basal progenitor cells bridge the development, malignant cancers, and multiple diseases of esophagus. J Cell Physiol 2017; 233:3855-3866. [PMID: 28777465 DOI: 10.1002/jcp.26136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/19/2022]
Abstract
The esophagus is a pivotal organ originating from anterior foregut that links the mouth and stomach. Moreover, its development involves precise regulation of multiple signal molecules and signal transduction pathways. After abnormal regulation of these molecules in the basal cells of the esophagus occurs, multiple diseases, including esophageal atresia with or without tracheoesophageal fistula, Barrett esophagus, gastroesophageal reflux, and eosinophilic esophagitis, will take place as a result. Furthermore, expression changes of signal molecules or signal pathways in basal cells and the microenvironment around basal cells both can initiate the switch of malignant transformation. In this review, we highlight the molecular events underlying the transition of normal development to multiple esophageal diseases. Additionally, the animal models of esophageal development and related diseases, challenges, and strategies are extensively discussed.
Collapse
Affiliation(s)
- Baoshun Lin
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China
| | - Fuan Xie
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China
| | - Zhangwu Xiao
- Emergency Department of the 476 Hospital, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China
| | - Xiaoqian Hong
- Dong fang Hospital, Xiamen University, Fuzhou, Fujian, P. R. China
| | - Liming Tian
- Dong fang Hospital, Xiamen University, Fuzhou, Fujian, P. R. China
| | - Kuancan Liu
- Institute for Laboratory Medicine, Fuzhou General Hospital, PLA, Fuzhou, Fujian, P. R. China.,Dong fang Hospital, Xiamen University, Fuzhou, Fujian, P. R. China.,Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
24
|
Fine tuning of Rac1 and RhoA alters cuspal shapes by remolding the cellular geometry. Sci Rep 2016; 6:37828. [PMID: 27892530 PMCID: PMC5124948 DOI: 10.1038/srep37828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
The anatomic and functional combinations of cusps and lophs (ridges) define the tooth shape of rodent molars, which distinguishes species. The species-specific cusp patterns result from the spatiotemporal induction of enamel knots (EKs), which require precisely controlled cellular behavior to control the epithelial invagination. Despite the well-defined roles of EK in cusp patterning, the determinants of the ultimate cuspal shapes and involvement of epithelial cellular geometry are unknown. Using two typical tooth patterns, the lophodont in gerbils and the bunodont in mice, we showed that the cuspal shape is determined by the dental epithelium at the cap stage, whereas the cellular geometry in the inner dental epithelium (IDE) is correlated with the cuspal shape. Intriguingly, fine tuning Rac1 and RhoA interconvert cuspal shapes between two species by remolding the cellular geometry. Either inhibition of Rac1 or ectopic expression of RhoA could region-distinctively change the columnar shape of IDE cells in gerbils to drive invagination to produce cusps. Conversely, RhoA reduction in mice inhibited invagination and developed lophs. Furthermore, we found that Rac1 and RhoA modulate the choices of cuspal shape by coordinating adhesion junctions, actin distribution, and fibronectin localization to drive IDE invagination.
Collapse
|
25
|
Bildsoe H, Fan X, Wilkie EE, Ashoti A, Jones VJ, Power M, Qin J, Wang J, Tam PP, Loebel DA. Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance. Dev Biol 2016; 418:189-203. [DOI: 10.1016/j.ydbio.2016.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
|
26
|
Tam PPL, Fossat N, Wilkie E, Loebel DAF, Ip CK, Ramialison M. Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network. Curr Top Dev Biol 2016; 117:497-521. [PMID: 26969997 DOI: 10.1016/bs.ctdb.2015.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head.
Collapse
Affiliation(s)
- Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Emilie Wilkie
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Bioinformatics Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Chi Kin Ip
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; Systems Biology Institute Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
27
|
Fossat N, Radziewic T, Jones V, Tourle K, Tam PPL. Conditional restoration and inactivation of Rbm47 reveal its tissue-context requirement for viability and growth. Genesis 2016; 54:115-22. [PMID: 26789794 DOI: 10.1002/dvg.22920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 02/02/2023]
Abstract
Rbm47 encodes a RNA binding protein that is necessary for Cytidine to Uridine RNA editing. Rbm47(gt/gt) mutant mice that harbor inactivated Rbm47 display poor viability. Here it was determined that the loss of Rbm47(gt/gt) offspring is due to embryonic lethality at mid-gestation. It was further showed that growth of the surviving Rbm47(gt/gt) mutants is impaired. Rbm47 is expressed in both the visceral endoderm and the definitive endoderm. Using the utility of the switchable FlEx gene-trap cassette and the activity of Cre and FLP recombinases to generate mice that conditionally inactivate and restore Rbm47 function in tissue-specific manner, it was demonstrated that Rbm47 function is required in the embryo proper, and not the visceral endoderm, for viability and growth. genesis 54:115-122, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, 2145, Australia.,Discipline of Medicine, Sydney Medical School, University of Sydney, New South Wales, 2006, Australia
| | - Tania Radziewic
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, 2145, Australia
| | - Vanessa Jones
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, 2145, Australia
| | - Karin Tourle
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, 2145, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, 2145, Australia.,Discipline of Medicine, Sydney Medical School, University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
28
|
Loebel DAF, Plageman TF, Tang TL, Jones VJ, Muccioli M, Tam PPL. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open 2016; 5:130-9. [PMID: 26772200 PMCID: PMC4823982 DOI: 10.1242/bio.014415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development of the gut endoderm and its subsequent remodeling for the formation of organ buds are accompanied by changes to epithelial cell shape and polarity. Members of the Rho-related family of small GTPases and their interacting proteins play multiple roles in regulating epithelial morphogenesis. In this study we examined the role of Cdc42 in foregut development and organ bud formation. Ablation of Cdc42 in post-gastrulation mouse embryos resulted in a loss of apical-basal cell polarity and columnar epithelial morphology in the ventral pharyngeal endoderm, in conjunction with a loss of apical localization of the known CDC42 effector protein PARD6B. Cell viability but not proliferation in the foregut endoderm was impaired. Outgrowth of the liver, lung and thyroid buds was severely curtailed in Cdc42-deficient embryos. In particular, the thyroid bud epithelium did not display the apical constriction that normally occurs concurrently with the outgrowth of the bud into the underlying mesenchyme. SHROOM3, a protein that interacts with Rho GTPases and promotes apical constriction, was strongly expressed in the thyroid bud and its sub-cellular localization was disrupted in Cdc42-deficient embryos. In Shroom3 gene trap mutant embryos, the thyroid bud epithelium showed no apical constriction, while the bud continued to grow and protruded into the foregut lumen. Our findings indicate that Cdc42 is required for epithelial polarity and organization in the endoderm and for apical constriction in the thyroid bud. It is possible that the function of CDC42 is partly mediated by SHROOM3. Summary: Conditional Cdc42 knockout revealed requirements for Cdc42 in endoderm polarity, and in thyroid apical constriction and morphogenesis. Shroom3 mutant embryos also displayed thyroid bud abnormalities, suggesting a possible functional interaction.
Collapse
Affiliation(s)
- David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Timothy F Plageman
- Ohio State University College of Optometry, Columbus, OH 43210-1280, USA
| | - Theresa L Tang
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia
| | - Vanessa J Jones
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia
| | - Maria Muccioli
- Ohio State University College of Optometry, Columbus, OH 43210-1280, USA
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Locked Bag 32, Wentworthville, New South Wales 2145, Australia Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
29
|
Conte D, Garaffo G, Lo Iacono N, Mantero S, Piccolo S, Cordenonsi M, Perez-Morga D, Orecchia V, Poli V, Merlo GR. The apical ectodermal ridge of the mouse model of ectrodactyly Dlx5;Dlx6-/- shows altered stratification and cell polarity, which are restored by exogenous Wnt5a ligand. Hum Mol Genet 2015; 25:740-54. [PMID: 26685160 PMCID: PMC4743692 DOI: 10.1093/hmg/ddv514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/10/2015] [Indexed: 02/06/2023] Open
Abstract
The congenital malformation split hand/foot (SHFM) is characterized by missing central fingers and dysmorphology or fusion of the remaining ones. Type-1 SHFM is linked to deletions/rearrangements of the DLX5–DLX6 locus and point mutations in the DLX5 gene. The ectrodactyly phenotype is reproduced in mice by the double knockout (DKO) of Dlx5 and Dlx6. During limb development, the apical ectodermal ridge (AER) is a key-signaling center responsible for early proximal–distal growth and patterning. In Dlx5;6 DKO hindlimbs, the central wedge of the AER loses multilayered organization and shows down-regulation of FGF8 and Dlx2. In search for the mechanism, we examined the non-canonical Wnt signaling, considering that Dwnt-5 is a target of distalless in Drosophila and the knockout of Wnt5, Ryk, Ror2 and Vangl2 in the mouse causes severe limb malformations. We found that in Dlx5;6 DKO limbs, the AER expresses lower levels of Wnt5a, shows scattered β-catenin responsive cells and altered basolateral and planar cell polarity (PCP). The addition of Wnt5a to cultured embryonic limbs restored the expression of AER markers and its stratification. Conversely, the inhibition of the PCP molecule c-jun N-terminal kinase caused a loss of AER marker expression. In vitro, the addition of Wnt5a on mixed primary cultures of embryonic ectoderm and mesenchyme was able to confer re-polarization. We conclude that the Dlx-related ectrodactyly defect is associated with the loss of basoapical and PCP, due to reduced Wnt5a expression and that the restoration of the Wnt5a level is sufficient to partially reverts AER misorganization and dysmorphology.
Collapse
Affiliation(s)
- Daniele Conte
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giulia Garaffo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Nadia Lo Iacono
- Human Genome Department, Istituto Tecnologie Biomediche, CNR Milano, Italy
| | - Stefano Mantero
- Human Genome Department, Istituto Tecnologie Biomediche, CNR Milano, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padova, Padova, Italy and
| | | | - David Perez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Valeria Orecchia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giorgio R Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy,
| |
Collapse
|
30
|
Abstract
Cytidine (C) to Uridine (U) RNA editing is a post-trancriptional modification that until recently was known to only affect Apolipoprotein b (Apob) RNA and minimally require 2 components of the C to U editosome, the deaminase APOBEC1 and the RNA-binding protein A1CF. Our latest work has identified a novel RNA-binding protein, RBM47, as a core component of the editosome, which can substitute A1CF for the editing of ApoB mRNA. In addition, new RNA species that are subjected to C to U editing have been identified. Here, we highlight these recent discoveries and discuss how they change our view of the composition of the C to U editing machinery and expand our knowledge of the functional attributes of C to U RNA editing.
Collapse
Affiliation(s)
- Nicolas Fossat
- a Embryology Unit; Children's Medical Research Institute ; Westmead , Australia
| | | |
Collapse
|
31
|
Mesenchymal-epithelial interactions during digestive tract development and epithelial stem cell regeneration. Cell Mol Life Sci 2015; 72:3883-96. [PMID: 26126787 DOI: 10.1007/s00018-015-1975-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/16/2022]
Abstract
The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior-posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal-epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal-epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal-epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration.
Collapse
|
32
|
Viotti M, Foley AC, Hadjantonakis AK. Gutsy moves in mice: cellular and molecular dynamics of endoderm morphogenesis. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0547. [PMID: 25349455 DOI: 10.1098/rstb.2013.0547] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the importance of the gut and its accessory organs, our understanding of early endoderm development is still incomplete. Traditionally, endoderm has been difficult to study because of its small size and relative fragility. However, recent advances in live cell imaging technologies have dramatically expanded our understanding of this tissue, adding a new appreciation for the complex molecular and morphogenetic processes that mediate gut formation. Several spatially and molecularly distinct subpopulations have been shown to exist within the endoderm before the onset of gastrulation. Here, we review findings that have uncovered complex cell movements within the endodermal layer, before and during gastrulation, leading to the conclusion that cells from primitive endoderm contribute descendants directly to gut.
Collapse
Affiliation(s)
- Manuel Viotti
- Genentech Incorporated, South San Francisco, CA 94080, USA
| | - Ann C Foley
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA
| | | |
Collapse
|
33
|
Lungova V, Verheyden JM, Herriges J, Sun X, Thibeault SL. Ontogeny of the mouse vocal fold epithelium. Dev Biol 2015; 399:263-82. [PMID: 25601450 PMCID: PMC4352410 DOI: 10.1016/j.ydbio.2014.12.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 11/09/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
This investigation provides the first systematic determination of the cellular and molecular progression of vocal fold (VF) epithelium development in a murine model. We define five principal developmental events that constitute the progression from VF initiation in the embryonic anterior foregut tube to fully differentiated and functional adult tissue. These developmental events include (1) the initiation of the larynx and vocal folds with apposition of the lateral walls of the primitive laryngopharynx (embryonic (E) day 10.5); (2) the establishment of the epithelial lamina with fusion of the lateral walls of the primitive laryngopharynx (E11.5); (3) the epithelial lamina recanalization and separation of VFs (E13.5-18.5); (4) the stratification of the vocal folds (E13.5-18.5); and (5) the maturation of vocal fold epithelium (postnatal stages). The illustration of these morphogenetic events is substantiated by dynamic changes in cell proliferation and apoptosis, as well as the expression pattern of key transcription factors, FOXA2, SOX2 and NKX2-1 that specify and pattern the foregut endoderm. Furthermore, we documented the gradual conversion of VF epithelial cells from simple precursors expressing cytokeratins 8 and 18 in the embryo into mature stratified epithelial cells also expressing cytokeratins 5 and 14 in the adult. Interestingly, in the adult, cytokeratins 5 and 14 appear to be expressed in all cell layers in the VF, in contrast to their preferential localization to the basal cell layer in surrounding epithelium. To begin investigating the role of signaling molecules in vocal fold development, we characterized the expression pattern of SHH pathway genes, and how loss of Shh affects vocal fold development in the mutant. This study defines the cellular and molecular context and serves as the necessary foundation for future functional investigations of VF formation.
Collapse
Affiliation(s)
- Vlasta Lungova
- Department of Surgery, UW Madison, 5107 WIMR, 1111 Highland Ave, Madison, WI 53705, USA
| | - Jamie M Verheyden
- Laboratory of Genetics, Biotechnology Center, UW Madison, 425-g Henry Mall, Madison, WI 53706, USA
| | - John Herriges
- Laboratory of Genetics, Biotechnology Center, UW Madison, 425-g Henry Mall, Madison, WI 53706, USA
| | - Xin Sun
- Laboratory of Genetics, Biotechnology Center, UW Madison, 425-g Henry Mall, Madison, WI 53706, USA.
| | - Susan L Thibeault
- Department of Surgery, UW Madison, 5107 WIMR, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
34
|
Wang J, Rhee S, Palaria A, Tremblay KD. FGF signaling is required for anterior but not posterior specification of the murine liver bud. Dev Dyn 2014; 244:431-43. [PMID: 25302779 DOI: 10.1002/dvdy.24215] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The definitive endoderm arises as a naive epithelial sheet that produces the entire gut tube and associated organs including the liver, pancreas and lungs. Murine explant studies demonstrate that fibroblast growth factor (FGF) signaling from adjacent tissues is required to induce hepatic gene expression from isolated foregut endoderm. The requirement of FGF signaling during liver development is examined by means of small molecule inhibition during whole embryo culture. RESULTS Loss of FGF signaling before hepatic induction results in morphological defects and gene expression changes that are confined to the anterior liver bud. In contrast the posterior portion of the liver bud remains relatively unaffected. Because FGF is thought to act as a morphogen during endoderm organogenesis, the ventral pancreas was also examined after FGF inhibition. Although the size of the ventral pancreas is not affected, loss of FGF signaling results in a significantly higher density of ventral pancreas cells. CONCLUSIONS The requirement for FGF-mediated induction of hepatic gene expression differs across the anterior/posterior axis of the developing liver bud. These results underscore the importance of studying tissue differentiation in the context of the whole embryo.
Collapse
Affiliation(s)
- Jikui Wang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | | | | | | |
Collapse
|
35
|
Schmid D, Zeis T, Sobrio M, Schaeren-Wiemers N. MAL overexpression leads to disturbed expression of genes that influence cytoskeletal organization and differentiation of Schwann cells. ASN Neuro 2014; 6:1759091414548916. [PMID: 25290060 PMCID: PMC4187015 DOI: 10.1177/1759091414548916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the developing peripheral nervous system, a coordinated reciprocal signaling between Schwann cells and axons is crucial for accurate myelination. The myelin and lymphocyte protein MAL is a component of lipid rafts that is important for targeting proteins and lipids to distinct domains. MAL overexpression impedes peripheral myelinogenesis, which is evident by a delayed onset of myelination and reduced expression of the myelin protein zero (Mpz/P0) and the low-affinity neurotrophin receptor p75(NTR). This study shows that MAL overexpression leads to a significant reduction of Mpz and p75(NTR) expression in primary mouse Schwann cell cultures, which was already evident before differentiation, implicating an effect of MAL in early Schwann cell development. Their transcription was robustly reduced, despite normal expression of essential transcription factors and receptors. Further, the cAMP response element-binding protein (CREB) and phosphoinositide 3-kinase signaling pathways important for Schwann cell differentiation were correctly induced, highlighting that other so far unknown rate limiting factors do exist. We identified novel genes expressed by Schwann cells in a MAL-dependent manner in vivo and in vitro. A number of those, including S100a4, RhoU and Krt23, are implicated in cytoskeletal organization and plasma membrane dynamics. We showed that S100a4 is predominantly expressed by nonmyelinating Schwann cells, whereas RhoU was localized within myelin membranes, and Krt23 was detected in nonmyelinating as well as in myelinating Schwann cells. Their differential expression during early peripheral nerve development further underlines their possible role in influencing Schwann cell differentiation and myelination.
Collapse
Affiliation(s)
- Daniela Schmid
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Thomas Zeis
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | - Monia Sobrio
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland
| | | |
Collapse
|
36
|
Celli J. Genetics of gastrointestinal atresias. Eur J Med Genet 2014; 57:424-39. [DOI: 10.1016/j.ejmg.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 06/21/2014] [Indexed: 01/04/2023]
|
37
|
Fossat N, Tourle K, Radziewic T, Barratt K, Liebhold D, Studdert JB, Power M, Jones V, Loebel DAF, Tam PPL. C to U RNA editing mediated by APOBEC1 requires RNA-binding protein RBM47. EMBO Rep 2014; 15:903-10. [PMID: 24916387 DOI: 10.15252/embr.201438450] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cytidine (C) to Uridine (U) RNA editing is a post-transcriptional modification that is accomplished by the deaminase APOBEC1 and its partnership with the RNA-binding protein A1CF. We identify and characterise here a novel RNA-binding protein, RBM47, that interacts with APOBEC1 and A1CF and is expressed in tissues where C to U RNA editing occurs. RBM47 can substitute for A1CF and is necessary and sufficient for APOBEC1-mediated editing in vitro. Editing is further impaired in Rbm47-deficient mutant mice. These findings suggest that RBM47 and APOBEC1 constitute the basic machinery for C to U RNA editing.
Collapse
Affiliation(s)
- Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia Discipline of Medicine, Sydney Medical School University of Sydney, Sydney, NSW, Australia
| | - Karin Tourle
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Tania Radziewic
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Kristen Barratt
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Doreen Liebhold
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Joshua B Studdert
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Melinda Power
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - Vanessa Jones
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia
| | - David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia Discipline of Medicine, Sydney Medical School University of Sydney, Sydney, NSW, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, NSW, Australia Discipline of Medicine, Sydney Medical School University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
38
|
RNA-sequencing analysis reveals new alterations in cardiomyocyte cytoskeletal genes in patients with heart failure. J Transl Med 2014; 94:645-53. [PMID: 24709777 DOI: 10.1038/labinvest.2014.54] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/12/2014] [Accepted: 02/26/2014] [Indexed: 12/15/2022] Open
Abstract
Changes in cardiomyocyte cytoskeletal components, a crucial scaffold of cellular structure, have been found in heart failure (HF); however, the altered cytoskeletal network remains to be elucidated. This study investigated a new map of cytoskeleton-linked alterations that further explain the cardiomyocyte morphology and contraction disruption in HF. RNA-Sequencing (RNA-Seq) analysis was performed in 29 human LV tissue samples from ischemic cardiomyopathy (ICM; n=13) and dilated cardiomyopathy (DCM, n=10) patients undergoing cardiac transplantation and six healthy donors (control, CNT) and up to 16 ICM, 13 DCM and 7 CNT tissue samples for qRT-PCR. Gene Ontology analysis of RNA-Seq data demonstrated that cytoskeletal processes are altered in HF. We identified 60 differentially expressed cytoskeleton-related genes in ICM and 58 genes in DCM comparing with CNT, hierarchical clustering determined that shared cytoskeletal genes have a similar behavior in both pathologies. We further investigated MYLK4, RHOU, and ANKRD1 cytoskeletal components. qRT-PCR analysis revealed that MYLK4 was downregulated (-2.2-fold; P<0.05) and ANKRD1 was upregulated (2.3-fold; P<0.01) in ICM patients vs CNT. RHOU mRNA levels showed a statistical trend to decrease (-2.9-fold). In DCM vs CNT, MYLK4 (-4.0-fold; P<0.05) and RHOU (-3.9-fold; P<0.05) were downregulated and ANKRD1 (2.5-fold; P<0.05) was upregulated. Accordingly, MYLK4 and ANKRD1 protein levels were decreased and increased, respectively, in both diseases. Furthermore, ANKRD1 and RHOU mRNA levels were related with LV function (P<0.05). In summary, we have found a new map of changes in the ICM and DCM cardiomyocyte cytoskeleton. ANKRD1 and RHOU mRNA levels were related with LV function which emphasizes their relevance in HF. These new cytoskeletal changes may be responsible for altered contraction and cell architecture disruption in HF patients. Moreover, these results improve our knowledge on the role of cytoskeleton in functional and structural alterations in HF.
Collapse
|
39
|
Abstract
The embryonic foregut of the mouse embryo is lined by a layer of endoderm cells whose architecture changes during development. The transition from a squamous to columnar epithelial morphology is accompanied by the upregulation of an atypical Rho GTPase, Rhou. Subsequently, multi-layering of the epithelium at the site of organ bud formation is associated with the downregulation of Rhou. Rho-related small GTPases are known to play multiple roles in establishing and maintaining epithelial polarity, cytoskeletal organization, morphogenesis and differentiation of epithelial tissues, but their role in the early development of the endoderm in mammals is largely unexplored. Our recent study has shown that Rhou is required for maintaining F-actin polarization, epithelial morphogenesis and differentiation of the endoderm. Rhou expression responds to canonical WNT signaling and its activity influences the cytoskeletal organization and differentiation of endodermal cells, possibly via activation of JNK-mediated pathways. In this context, Rhou provides a possible link between β-catenin dependent WNT signaling and cellular processes normally associated with WNT/PCP pathways.
Collapse
Affiliation(s)
- David A F Loebel
- Embryology Unit, Children's Medical Research Institute and Sydney Medical School, The University of Sydney, Sydney, NSW Australia.
| | | |
Collapse
|
40
|
Uemura M, Ozawa A, Nagata T, Kurasawa K, Tsunekawa N, Nobuhisa I, Taga T, Hara K, Kudo A, Kawakami H, Saijoh Y, Kurohmaru M, Kanai-Azuma M, Kanai Y. Sox17 haploinsufficiency results in perinatal biliary atresia and hepatitis in C57BL/6 background mice. Development 2013; 140:639-48. [PMID: 23293295 DOI: 10.1242/dev.086702] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Congenital biliary atresia is an incurable disease of newborn infants, of unknown genetic causes, that results in congenital deformation of the gallbladder and biliary duct system. Here, we show that during mouse organogenesis, insufficient SOX17 expression in the gallbladder and bile duct epithelia results in congenital biliary atresia and subsequent acute 'embryonic hepatitis', leading to perinatal death in ~95% of the Sox17 heterozygote neonates in C57BL/6 (B6) background mice. During gallbladder and bile duct development, Sox17 was expressed at the distal edge of the gallbladder primordium. In the Sox17(+/-) B6 embryos, gallbladder epithelia were hypoplastic, and some were detached from the luminal wall, leading to bile duct stenosis or atresia. The shredding of the gallbladder epithelia is probably caused by cell-autonomous defects in proliferation and maintenance of the Sox17(+/-) gallbladder/bile duct epithelia. Our results suggest that Sox17 plays a dosage-dependent function in the morphogenesis and maturation of gallbladder and bile duct epithelia during the late-organogenic stages, highlighting a novel entry point to the understanding of the etiology and pathogenesis of human congenital biliary atresia.
Collapse
Affiliation(s)
- Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rho GTPase function in development: How in vivo models change our view. Exp Cell Res 2012; 318:1779-87. [DOI: 10.1016/j.yexcr.2012.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/07/2012] [Accepted: 05/10/2012] [Indexed: 12/16/2022]
|
42
|
Jacobs IJ, Ku WY, Que J. Genetic and cellular mechanisms regulating anterior foregut and esophageal development. Dev Biol 2012; 369:54-64. [PMID: 22750256 DOI: 10.1016/j.ydbio.2012.06.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 12/22/2022]
Abstract
Separation of the single anterior foregut tube into the esophagus and trachea involves cell proliferation and differentiation, as well as dynamic changes in cell-cell adhesion and migration. These biological processes are regulated and coordinated at multiple levels through the interplay of the epithelium and mesenchyme. Genetic studies and in vitro modeling have shed light on relevant regulatory networks that include a number of transcription factors and signaling pathways. These signaling molecules exhibit unique expression patterns and play specific functions in their respective territories before the separation process occurs. Disruption of regulatory networks inevitably leads to defective separation and malformation of the trachea and esophagus and results in the formation of a relatively common birth defect, esophageal atresia with or without tracheoesophageal fistula (EA/TEF). Significantly, some of the signaling pathways and transcription factors involved in anterior foregut separation continue to play important roles in the morphogenesis of the individual organs. In this review, we will focus on new findings related to these different developmental processes and discuss them in the context of developmental disorders or birth defects commonly seen in clinics.
Collapse
Affiliation(s)
- Ian J Jacobs
- Department of Biology, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|