1
|
Muñoz Sandoval D, Bach FA, Ivens A, Harding AC, Smith NL, Mazurczyk M, Themistocleous Y, Edwards NJ, Silk SE, Barrett JR, Cowan GJ, Napolitani G, Savill NJ, Draper SJ, Minassian AM, Nahrendorf W, Spence PJ. Plasmodium falciparum infection induces T cell tolerance that is associated with decreased disease severity upon re-infection. J Exp Med 2025; 222:e20241667. [PMID: 40214640 PMCID: PMC11987708 DOI: 10.1084/jem.20241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025] Open
Abstract
Immunity to severe malaria is acquired quickly, operates independently of pathogen load, and represents a highly effective form of disease tolerance. The mechanism that underpins tolerance remains unknown. We used a human rechallenge model of falciparum malaria in which healthy adult volunteers were infected three times over a 12 mo period to track the development of disease tolerance in real-time. We found that parasitemia triggered a hardwired innate immune response that led to systemic inflammation, pyrexia, and hallmark symptoms of clinical malaria across the first three infections of life. In contrast, a single infection was sufficient to reprogram T cell activation and reduce the number and diversity of effector cells upon rechallenge. Crucially, this did not silence stem-like memory cells but instead prevented the generation of cytotoxic effectors associated with autoinflammatory disease. Tolerized hosts were thus able to prevent collateral tissue damage in the absence of antiparasite immunity.
Collapse
Affiliation(s)
- Diana Muñoz Sandoval
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Florian A. Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Adam C. Harding
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Natasha L. Smith
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Michalina Mazurczyk
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jordan R. Barrett
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Graeme J.M. Cowan
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Giorgio Napolitani
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas J. Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Angela M. Minassian
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Philip J. Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Wang M, Otto C, Fernández Zapata C, Dehlinger A, Gallaccio G, Diekmann LM, Niederschweiberer M, Schindler P, Körtvélyessy P, Kunkel D, Paul F, Ruprecht K, Böttcher C. Comprehensive analysis of B cell repopulation in ocrelizumab-treated patients with multiple sclerosis by mass cytometry and proteomics. iScience 2025; 28:112383. [PMID: 40322080 PMCID: PMC12049848 DOI: 10.1016/j.isci.2025.112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Ocrelizumab, an anti-CD20 antibody, depletes CD20+ B cells, which subsequently repopulate over months. Little is known about changes in other immune cell populations and molecular markers associated with B cell repopulation. Here, we performed a comprehensive characterization of immune cells from ocrelizumab-treated patients with multiple sclerosis (MS) using mass cytometry. About 50% of patients showed naive B cell repopulation after 6 months mainly with a transitional phenotype, whereas CD27+ memory B cells only rarely repopulated. This repopulation was associated with a reduction of memory T cells and activated myeloid cells, as well as reduced expression of activation/migration markers in both cell types. A plasma proteomics analysis identified proteins including TNFRSF13C, associated with B cell depletion and repopulation. Plasma levels of neurofilament light-chain protein declined after ocrelizumab treatment was not linked with B cell repopulation. These findings identify potential soluble markers for monitoring of ocrelizumab treatment in MS.
Collapse
Affiliation(s)
- Meng Wang
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carolin Otto
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Camila Fernández Zapata
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Adeline Dehlinger
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gerardina Gallaccio
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lisa-Marie Diekmann
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Moritz Niederschweiberer
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Patrick Schindler
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Neuroscience Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Peter Körtvélyessy
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Desiree Kunkel
- Flow & MassCytometry Core Facility, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Neuroscience Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Klemens Ruprecht
- Department of Neurology with Experimental Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a Cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Lindenberger Weg 80, Berlin 13125, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
3
|
Marshall L, Raychaudhuri S, Viatte S. Understanding rheumatic disease through continuous cell state analysis. Nat Rev Rheumatol 2025:10.1038/s41584-025-01253-6. [PMID: 40335652 DOI: 10.1038/s41584-025-01253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 05/09/2025]
Abstract
Autoimmune rheumatic diseases are a heterogeneous group of conditions, including rheumatoid arthritis (RA) and systemic lupus erythematosus. With the increasing availability of large single-cell datasets, novel disease-associated cell types continue to be identified and characterized at multiple omics layers, for example, 'T peripheral helper' (TPH) (CXCR5- PD-1hi) cells in RA and systemic lupus erythematosus and MerTK+ myeloid cells in RA. Despite efforts to define disease-relevant cell atlases, the very definition of a 'cell type' or 'lineage' has proven controversial as higher resolution assays emerge. This Review explores the cell types and states involved in disease pathogenesis, with a focus on the shifting perspectives on immune and stromal cell taxonomy. These understandings of cell identity are closely related to the computational methods adopted for analysis, with implications for the interpretation of single-cell data. Understanding the underlying cellular architecture of disease is also crucial for therapeutic research as ambiguity hinders translation to the clinical setting. We discuss the implications of different frameworks for cell identity for disease treatment and the discovery of predictive biomarkers for stratified medicine - an unmet clinical need for autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Lysette Marshall
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Soumya Raychaudhuri
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Divisions of Rheumatology, Inflammation and Immunity and Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Sebastien Viatte
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK.
- NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Murakami T, Yamaguchi Y, Amiya S, Yoshimine Y, Nameki S, Okita Y, Kato Y, Hirata H, Takeda Y, Kumanogoh A, Morita T. CD147-high classical monocytes: a cellular biomarker for COVID-19 disease severity and treatment response. Inflamm Regen 2025; 45:8. [PMID: 40189583 PMCID: PMC11974131 DOI: 10.1186/s41232-025-00371-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to severe coronavirus disease 2019 (COVID-19), which is characterized by cytokine storm and organ dysfunction. The spike S1 subunit induces inflammatory cytokine production, but the immune cell subsets that respond to S1 stimulation and contribute to disease severity remain unclear. METHODS We analyzed serum samples and peripheral blood mononuclear cells (PBMCs) from patients with COVID-19 (moderate: n = 7; severe: n = 25) and healthy controls (n = 38). Using mass cytometry (cytometry by time-of-flight; CyTOF), we analyzed immune cell responses to S1 subunit stimulation in PBMCs from healthy donors and patients with COVID-19. We examined correlations among identified cell populations, serum cytokine levels, and clinical parameters. RESULTS Serum S1 subunit levels correlated with disease severity and inflammatory cytokine concentrations. S1 subunit stimulation induced dose-dependent cytokine production from PBMCs, predominantly from myeloid cells. CyTOF analysis identified classical monocytes with high CD147 expression (CD147hi cMono) as the primary source of S1-induced cytokines. The proportion of CD147hi cMono increased significantly in severe COVID-19 and decreased with clinical improvement. The frequency of CD147hi cMono showed a stronger positive correlation with clinical severity markers in younger patients compared to older patients. CONCLUSIONS CD147hi cMono are the primary cellular source of S1-induced inflammatory cytokines and may serve as potential biomarkers for monitoring COVID-19 severity and treatment response.
Collapse
Affiliation(s)
- Teruaki Murakami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Saori Amiya
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Yuko Yoshimine
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Shinichiro Nameki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Yasutaka Okita
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Medical Center for Translational Research, Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, 565-0871, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Suita, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871, Japan.
- Strategic Global Partnership & X(Cross)-Innovation Initiative, Graduate School of Medicine, Osaka University and Osaka University Hospital, Osaka, Japan.
| |
Collapse
|
5
|
Drnevich J, Tan FJ, Almeida-Silva F, Castelo R, Culhane AC, Davis S, Doyle MA, Geistlinger L, Ghazi AR, Holmes S, Lahti L, Mahmoud A, Nishida K, Ramos M, Rue-Albrecht K, Shih DJH, Gatto L, Soneson C. Learning and teaching biological data science in the Bioconductor community. PLoS Comput Biol 2025; 21:e1012925. [PMID: 40261894 PMCID: PMC12013867 DOI: 10.1371/journal.pcbi.1012925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Modern biological research is increasingly data-intensive, leading to a growing demand for effective training in biological data science. In this article, we provide an overview of key resources and best practices available within the Bioconductor project-an open-source software community focused on omics data analysis. This guide serves as a valuable reference for both learners and educators in the field.
Collapse
Affiliation(s)
- Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| | - Frederick J. Tan
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Robert Castelo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aedin C. Culhane
- Limerick Digital Cancer Research Centre, School of Medicine, University of Limerick, Limerick, Ireland
| | - Sean Davis
- University of Colorado Anschutz School of Medicine, Denver, Colorado, United States of America
| | - Maria A. Doyle
- Limerick Digital Cancer Research Centre, School of Medicine, University of Limerick, Limerick, Ireland
| | - Ludwig Geistlinger
- Core for Computational Biomedicine, Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew R. Ghazi
- Core for Computational Biomedicine, Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susan Holmes
- Statistics Department, Stanford University, Stanford, California, United States of America
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Alexandru Mahmoud
- Channing Division of Network Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kozo Nishida
- RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Marcel Ramos
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, New York, United States of America
| | - Kevin Rue-Albrecht
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - David J. H. Shih
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
6
|
Vile R, Kendall B, Liseth O, Sangsuwannukul T, Elliott N, Yerovi MC, Thompson J, Swanson J, Rizk S, Diaz R, Tonne J. Immunodominant antiviral T cell responses outcompete immuno-subdominant antitumor responses to reduce the efficacy of oncolytic viroimmunotherapy. RESEARCH SQUARE 2025:rs.3.rs-6131273. [PMID: 40166032 PMCID: PMC11957203 DOI: 10.21203/rs.3.rs-6131273/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The paradigm in the field of oncolytic virotherapy proposes that tumor cell killing by an oncolytic virus (OV) culminates in the priming of antitumor CD8 T cells. However, this ignores the impact a highly immunodominant antiviral response against the OV has on the antitumor response which has been weakened by mechanisms of central tolerance. Here, we show that inflammatory Vesicular Stomatitis Virus (VSV) failed to prime an adoptively transferred, or pre-existing, population of tumor-reactive T cells. Combination with αPD1 immune checkpoint blockade therapy improved survival only when VSV expressed tumor associated antigens (TAA). These data show that, in this model, the highly inflammatory OV VSV alone actively outcompetes antitumor immunity. However, we also show that viral expression of a mutant near-self TAA can break central tolerance expanding heteroclitic self-reactive and near-self-reactive T cells, thus overcoming viral immunodominance by promoting tumor-specific T cell proliferation in parallel with expanding antiviral T cells.
Collapse
|
7
|
Drnevich J, Tan FJ, Almeida-Silva F, Castelo R, Culhane AC, Davis S, Doyle MA, Geistlinger L, Ghazi AR, Holmes S, Lahti L, Mahmoud A, Nishida K, Ramos M, Rue-Albrecht K, Shih DJ, Gatto L, Soneson C. Learning and teaching biological data science in the Bioconductor community. ARXIV 2025:arXiv:2410.01351v2. [PMID: 40160449 PMCID: PMC11952580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Modern biological research is increasingly data-intensive, leading to a growing demand for effective training in biological data science. In this article, we provide an overview of key resources and best practices available within the Bioconductor project - an open-source software community focused on omics data analysis. This guide serves as a valuable reference for both learners and educators in the field.
Collapse
Affiliation(s)
- Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Illinois, USA
| | - Frederick J Tan
- Johns Hopkins University, Department of Biology, Baltimore, Maryland, USA
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Robert Castelo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Aedin C Culhane
- Limerick Digital Cancer Research Centre, School of Medicine, University of Limerick, Ireland
| | - Sean Davis
- University of Colorado Anschutz School of Medicine, Denver, Colorado, USA
| | - Maria A Doyle
- Limerick Digital Cancer Research Centre, School of Medicine, University of Limerick, Ireland
| | - Ludwig Geistlinger
- Core for Computational Biomedicine, Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew R Ghazi
- Core for Computational Biomedicine, Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Holmes
- Statistics Department, Stanford University, Stanford, California, USA
| | - Leo Lahti
- Department of Computing, University of Turku, Finland
| | - Alexandru Mahmoud
- Channing Division of Network Medicine, Harvard Medical School, Boston, Massachusetts , USA
| | - Kozo Nishida
- RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima Minamimachi, Chuoku, Kobe, Hyogo, Japan
| | - Marcel Ramos
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, New York, USA
| | - Kevin Rue-Albrecht
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Jh Shih
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Charlotte Soneson
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
8
|
Zawidzka EM, Biavati L, Thomas A, Zanettini C, Marchionni L, Leone R, Borrello I. Tumor-specific CD8 + T cells from the bone marrow resist exhaustion and exhibit increased persistence in tumor-bearing hosts as compared with tumor-infiltrating lymphocytes. J Immunother Cancer 2025; 13:e009367. [PMID: 40010772 PMCID: PMC11865787 DOI: 10.1136/jitc-2024-009367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Immunotherapy is now an integral aspect of cancer therapy. Strategies employing adoptive cell therapy (ACT) have seen the establishment of chimeric antigen receptor (CAR)-T cells using peripheral blood lymphocytes as well as tumor-infiltrating lymphocytes (TILs) with significant clinical results. The bone marrow (BM) is an immunological niche housing T cells with specificity for previously encountered antigens, including tumor-associated antigens from certain solid cancers. This study sought to improve our understanding of tumor-specific BM T cells in the context of solid tumors by comparing them with TILs, and to assess whether there is a rationale for using the BM as a source of T cells for ACT against solid malignancies. METHODS We used the murine B16 melanoma model examining both the endogenous OVA-specific T cell response using an OVA-specific tetramer or examining the OVA-specific response with OVA-specific transgenic CD8+ (OT-1) T cells. Specifically, we compared baseline intrinsic properties of TILs or BM T cells from tumor-bearing mice and their changes following adoptive transfer in the tumor and bone marrow (as well as other compartments when indicated). RESULTS In tumor-bearing mice, endogenous tumor-specific T cells could be detected in the BM early in the course of tumor progression and possessed a more stem-cell-like and memory phenotype in an unsupervised cluster analysis compared with TILs which appeared more exhausted. The BM and tumor microenvironments significantly impact the fate of T cells. Naïve OT-1 transferred T cells acquired an exhausted phenotype in the tumor but maintained a more memory-like phenotype in the BM with tumor progression. Importantly, in a competitive transfer experiment, BM T cells infiltrated the tumor more efficiently than TILs, displayed a higher polyfunctionality with interleukin-2, interferon-γ, tumor necrosis factor-α production and showed greater persistence compared with TILs. CONCLUSIONS T cells from the BM appear superior to TILs as a source of cells for cellular therapy. They possess a memory-enriched phenotype and exhibit improved effector function, greater persistence within a tumor-bearing host, and the capacity for increased tumor infiltration. These data provide a foundation for further exploring the BM as a source of tumor-specific T cells for ACT in solid malignancies.
Collapse
Affiliation(s)
- Elizabeth M Zawidzka
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Luca Biavati
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Amy Thomas
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | | | | | - Robert Leone
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
| | - Ivan Borrello
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine School of Medicine, Baltimore, Maryland, USA
- Cancer Institute, Tampa General Hospital, Tampa, Florida, USA
| |
Collapse
|
9
|
Collins GB, de Souza Carvalho J, Jayasinghe SC, Gumuliauskaite U, Lowe DM, Thomas DC, Årstad E, De Maeyer RPH, Gilroy DW. A new model measuring bacterial phagocytosis and phagolysosomal oxidation in humans using the intradermal injection of methylene blue-labeled Escherichia coli. J Leukoc Biol 2025; 117:qiae217. [PMID: 39412158 PMCID: PMC11879004 DOI: 10.1093/jleuko/qiae217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Indexed: 03/06/2025] Open
Abstract
Phagocytosis is an important leukocyte function; however, using existing models it cannot be measured in human tissues in vivo. To address this, we characterized a new phagocytosis model using intradermal methylene blue-labeled Escherichia coli injection (MBEC). Methylene blue (MB) is a licensed human medicine and bacterial stain potentially useful for labeling E. coli that is safe for human injection. Ex vivo coculture of leukocytes with MBEC caused MB to transfer into neutrophils and macrophages by phagocytosis. During this, a "red shift" in MB fluorescence was shown to be caused by phagolysosomal oxidation. Hence, MBEC coculture could be used to measure phagocytosis and phagolysosomal oxidation in humans, ex vivo. In healthy volunteers, inflammatory exudate sampling using suction blisters 2 to 24 h after intradermal MBEC injection showed that tissue-acquired neutrophils and monocytes contained more MB than their circulating counterparts, whereas blood and inflamed tissue T, B, and natural killer cells were MBlo. This was validated with spectral flow cytometry by visualizing the MB emission spectrum in tissue-acquired neutrophils. Neutrophil MB emission spectra demonstrated more red shift at 24 h compared with earlier time points, in keeping with progressive phagolysosomal MB oxidation in neutrophils over time in vivo. This new MBEC model can therefore measure bacterial phagocytosis and phagolysosomal oxidation in human skin, in vivo. This has a number of important research applications, e.g. in studying human phagocyte biology, testing novel antimicrobials, and understanding why certain groups such as males, the elderly or those with diabetes, recent surgery, or malnutrition are at increased risk of bacterial infection.
Collapse
Affiliation(s)
- George B Collins
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
- Department of Cardiology, St Bartholomew's Hospital, Barts Health NHS Trust, London EC1A 7BE, United Kingdom
| | - Jhonatan de Souza Carvalho
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University, São Paulo 14801-903, Brazil
| | - Sandali C Jayasinghe
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Urte Gumuliauskaite
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - David M Lowe
- Institute of Immunity and Transplantation, The Pears Building, University College London, London NW3 2PP, United Kingdom
| | - David C Thomas
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Erik Årstad
- Centre for Radiopharmaceutical Chemistry, University College London, London WC1E 6BS, United Kingdom
| | - Roel P H De Maeyer
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Medicine, University of Oxford, Oxford OX3 7LD, United Kingdom
| | - Derek W Gilroy
- Department of Ageing, Rheumatology and Regenerative Medicine, Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
10
|
Riemann L, Gutierrez R, Odak I, Barros-Martins J, Roesner LM, Leon Lara X, Falk C, Schulz TF, Hansen G, Werfel T, Förster R. Integrative deep immune profiling of the elderly reveals systems-level signatures of aging, sex, smoking, and clinical traits. EBioMedicine 2025; 112:105558. [PMID: 39862806 PMCID: PMC11873576 DOI: 10.1016/j.ebiom.2025.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Aging increases disease susceptibility and reduces vaccine responsiveness, highlighting the need to better understand the aging immune system and its clinical associations. Studying the human immune system, however, remains challenging due to its complexity and significant inter-individual variability. METHODS We conducted an immune profiling study of 550 elderly participants (≥60 years) and 100 young controls (20-40 years) from the RESIST Senior Individuals (SI) cohort. Extensive demographic, clinical, and laboratory data were collected. Multi-color spectral flow cytometry and 48-plex plasma cytokine assays were used for deep immune phenotyping. Data were analyzed using unsupervised clustering and multi-dataset integration approaches. FINDINGS We studied 97 innate and adaptive immune cell populations, revealing intricate age- and sex-related changes in the elderly immune system. Our large sample size allowed detection of even subtle changes in cytokines and immune cell clusters. Integrative analysis combining clinical, laboratory, and immunological data revealed systems-level aging signatures, including shifts in specific immune cell subpopulations and cytokine concentrations (e.g., HGF and CCL27). Additionally, we identified unique immune signatures associated with smoking, obesity, and diseases such as osteoporosis, heart failure, and gout. INTERPRETATION This study provides one of the most comprehensive immune profiles of elderly individuals, uncovering high-resolution immune changes associated with aging. Our findings highlight clinically relevant immune signatures that enhance our understanding of aging-related diseases and could guide future research into new treatments, offering translational insights into human health and aging. FUNDING Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-EXC 2155-project number 390874280.
Collapse
Affiliation(s)
- Lennart Riemann
- Institute of Immunology, Hannover Medical School, Hannover, Germany; Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.
| | | | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany; The Tisch Cancer Institute, Icahn School of Medicine, New York, USA
| | - Joana Barros-Martins
- Institute of Immunology, Hannover Medical School, Hannover, Germany; Department of Microbiology and Immunology, Columbia University Medical Center, New York, USA
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ximena Leon Lara
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Falk
- Institute of Transplantation Immunology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Thomas F Schulz
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; German Center of Lung Research (DZL), BREATH, Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; German Centre for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany.
| |
Collapse
|
11
|
Zhang X, Yu W, Sun Y, Ye X, He Y, Huang X, Wang F, Lu Y, Zhang J. Anti-Inflammatory Resveratrol Protects Mice From Early Mortality After Haematopoietic Stem Cell Transplantation. J Cell Mol Med 2025; 29:e70395. [PMID: 39900564 PMCID: PMC11790355 DOI: 10.1111/jcmm.70395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
The occurrence of inflammation subsequent to haematopoietic stem cell transplantation is associated with an elevated risk of transplant-related mortality (TRM). However, the duration of inflammation and the potential efficacy of anti-inflammatory agents in reducing TRM remain uncertain. We performed a comprehensive investigation to examine the post-transplantation alterations of inflammatory mediators and to ascertain the correlation between inflammation level and TRM through the neutrophil-lymphocyte ratio, ELISAs and cytometric bead array. The findings revealed that the 30-day interval following transplantation is characterised by the most pronounced inflammatory response in both human and murine subjects, thereby elevating the risk of TRM. The inflammation is primarily caused by myeloid bias during haematopoietic reconstitution, which is a commonly overlooked aspect in clinical transplantation, additionally, a lesser extent of irradiation-induced injury. The administration of the anti-inflammatory agent resveratrol has the potential to reduce systemic inflammation and TRM by suppressing the NOD-like receptor signalling pathway and slowing down granulocyte implantation in HSCT mice. This approach did not impair the differentiation potential of haematopoietic stem cells. These findings demonstrate that the 30-day post-transplant period represents an opportunity to facilitate HSCT colonisation, mitigate transplant-related adverse effects, and potentially reap the benefits of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Xiao Zhang
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and Diseases, School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Wei Yu
- Department of Anesthesiology, the First Affiliated HospitalJinan UniversityGuangzhouGuangdongChina
| | - Yimeng Sun
- School of Clinical MedicineWeifang Medical UniversityWeifangShandongChina
| | - Xinyu Ye
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Yu He
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Xin Huang
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Fuhao Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Yi Lu
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and Diseases, School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| | - Jian Zhang
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and Diseases, School of MedicineSouthern University of Science and TechnologyShenzhenGuangdongChina
| |
Collapse
|
12
|
Zheng J, Dhakal H, Qing E, Shrestha R, Geller AE, Morrissey SM, Saxena D, Hu X, Li H, Li H, Wilhelmsen K, Wendt LH, Klumpp K, Hume PS, Janssen WJ, Brody R, Palmer KE, Uriarte SM, Ten Eyck P, Meyerholz DK, Merchant ML, McLeish K, Gallagher T, Huang J, Yan J, Perlman S. CXCL12 ameliorates neutrophilia and disease severity in SARS-CoV-2 infection. J Clin Invest 2025; 135:e188222. [PMID: 39773555 PMCID: PMC11827850 DOI: 10.1172/jci188222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025] Open
Abstract
Neutrophils, particularly low-density neutrophils (LDNs), are believed to contribute to acute COVID-19 severity. Here, we showed that neutrophilia can be detected acutely and even months after SARS-CoV-2 infection in patients and mice, while neutrophil depletion reduced disease severity in mice. A key factor in neutrophilia and severe disease in infected mice was traced to the chemokine CXCL12 secreted by bone marrow cells and unexpectedly, endothelial cells. CXCL12 levels were negatively correlated with LDN numbers in longitudinal analyses of patient blood samples. CXCL12 blockade in SARS-CoV-2-infected mice increased blood/lung neutrophil numbers, thereby accelerating disease progression without changing lung virus titers. The exaggerated mortality caused by CXCL12 blockade could be reversed by neutrophil depletion. In addition, blocking interactions between SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) reduced CXCL12 levels, suggesting a signal transduction from virus-mediated ACE2 ligation to increased CXCL12 secretion. Collectively, these results demonstrate a previously unappreciated role of CXCL12 in diminishing neutrophilia, including low-density neutrophilia, and its deleterious effects in SARS-CoV-2 infections. The results also support the involvement of SARS-CoV-2-endothelial cell interactions in viral pathogenesis.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology and
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Hima Dhakal
- Department of Microbiology and Immunology and
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Rejeena Shrestha
- Department of Microbiology and Immunology and
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | - Anne E. Geller
- Department of Microbiology and Immunology and
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | - Samantha M. Morrissey
- Department of Microbiology and Immunology and
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | - Divyasha Saxena
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Xiaoling Hu
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | - Hong Li
- Functional Immunomics Core, Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Haiyan Li
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | | | - Linder H. Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, USA
| | | | - Patrick S. Hume
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - William J. Janssen
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Rachel Brody
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kenneth E. Palmer
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology and
| | - Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Patrick Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, USA
| | | | | | - Kenneth McLeish
- Department of Medicine, Division of Nephrology and Hypertension and
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Jun Yan
- Department of Microbiology and Immunology and
- Division of Immunotherapy, the Hiram C. Polk, Jr., MD, Department of Surgery, Immuno-Oncology Program, Brown Cancer Center and
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Tessandier N, Elie B, Boué V, Selinger C, Rahmoun M, Bernat C, Grasset S, Groc S, Bedin AS, Beneteau T, Bonneau M, Graf C, Jacobs N, Kamiya T, Kerioui M, Lajoie J, Melki I, Prétet JL, Reyné B, Schlecht-Louf G, Sofonea MT, Supplisson O, Wymant C, Foulongne V, Guedj J, Hirtz C, Picot MC, Reynes J, Tribout V, Tuaillon É, Waterboer T, Segondy M, Bravo IG, Boulle N, Murall CL, Alizon S. Viral and immune dynamics of genital human papillomavirus infections in young women with high temporal resolution. PLoS Biol 2025; 23:e3002949. [PMID: 39836629 PMCID: PMC11750104 DOI: 10.1371/journal.pbio.3002949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/22/2024] [Indexed: 01/23/2025] Open
Abstract
Human papillomavirus (HPV) infections drive one in 20 new cancer cases, exerting a particularly high burden on women. Most anogenital HPV infections are cleared in less than two years, but the underlying mechanisms that favour persistence in around 10% of women remain largely unknown. Notwithstanding, it is precisely this information that is crucial for improving treatment, screening, and vaccination strategies. To understand viral and immune dynamics in non-persisting HPV infections, we set up an observational longitudinal cohort study with frequent on-site visits for biological sample collection. We enrolled 189 women aged from 18 to 25 and living in the area of Montpellier (France) between 2016 and 2020. We performed 974 on-site visits for a total of 1,619 months of follow-up. We collected data on virus load, local immune cell populations, local concentrations of cytokines, and circulating antibody titres. Using hierarchical Bayesian statistical modelling to simultaneously analyse the data from 164 HPV infections from 76 participants, we show that in two months after infection, HPV viral load in non-persisting infections reaches a plateau that lasts on average for 13 to 20 months (95% credibility interval) and is then followed by a rapid clearance phase. This first description of the dynamics of HPV infections comes with the identification of immune correlates associated with infection clearance, especially gamma-delta T cells and CXCL10 concentration. A limitation of this study on HPV kinetics is that many infection follow-ups are censored. Furthermore, some immune cell populations are difficult to label because cervical immunity is less well characterised than systemic immunity. These results open new perspectives for understanding the frontier between acute and chronic infections, and for controlling HPV-associated diseases, as well as for research on human cancers of infectious origin. Trial Registration: This trial was registered is registered at ClinicalTrials.gov under the ID NCT02946346. This study has been approved by the Comité de Protection des Personnes (CPP) Sud Méditerranée I (reference number 2016-A00712-49); by the Comité Consultatif sur le Traitement de l'Information en matière de Recherche dans le domaine de la Santé (reference number 16.504); by the Commission Nationale Informatique et Libertés (reference number MMS/ABD/ AR1612278, decision number DR-2016-488), by the Agence Nationale de Sécurité du Médicament et des Produits de Santé (reference 20160072000007).
Collapse
Affiliation(s)
- Nicolas Tessandier
- CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| | - Baptiste Elie
- CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| | - Vanina Boué
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| | - Christian Selinger
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | - Claire Bernat
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Soraya Groc
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
- PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
| | | | | | - Marine Bonneau
- Department of Obstetrics and Gynaecology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Christelle Graf
- Department of Obstetrics and Gynaecology, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Nathalie Jacobs
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, University of Liège, Liège, Belgium
| | - Tsukushi Kamiya
- CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France
| | | | - Julie Lajoie
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Imène Melki
- CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France
| | - Jean-Luc Prétet
- Université de Franche-Comté, CNRS, Chrono-environnement, Besançon, France
- Centre National de Référence Papillomavirus, CHRU de Besançon, France
| | - Bastien Reyné
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| | - Géraldine Schlecht-Louf
- UMR996, Inflammation, Chemokines and Immunopathology, INSERM, Université Paris-Saclay, Orsay, France
| | - Mircea T. Sofonea
- PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
- CHU de Nîmes, Nîmes, France
| | - Olivier Supplisson
- CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France
- Sorbonne Université, France
| | - Chris Wymant
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Christophe Hirtz
- RMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Marie-Christine Picot
- Department of Medical Information (DIM), Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Jacques Reynes
- Department of Infectious and Tropical Diseases, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Vincent Tribout
- Center for Free Information, Screening and Diagnosis (CeGIDD), Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Tim Waterboer
- German Cancer Research Center (DKFZ), Infections and Cancer Epidemiology, Heidelberg, Germany
| | - Michel Segondy
- PCCEI, Univ. Montpellier, Inserm, EFS, Montpellier, France
| | | | | | - Carmen Lía Murall
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
- National Microbiology Laboratory (NML), Public Health Agency of Canada (PHAC), Canada
| | - Samuel Alizon
- CIRB, CNRS, INSERM, Collège de France, Université PSL, Paris, France
- MIVEGEC, CNRS, IRD, Université de Montpellier, France
| |
Collapse
|
14
|
Kröger C, Müller S, Leidner J, Kröber T, Warnat-Herresthal S, Spintge JB, Zajac T, Neubauer A, Frolov A, Carraro C, Jessen F, Puccio S, Aschenbrenner AC, Schultze JL, Pecht T, Beyer MD, Bonaguro L. Unveiling the power of high-dimensional cytometry data with cyCONDOR. Nat Commun 2024; 15:10702. [PMID: 39702306 PMCID: PMC11659560 DOI: 10.1038/s41467-024-55179-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
High-dimensional cytometry (HDC) is a powerful technology for studying single-cell phenotypes in complex biological systems. Although technological developments and affordability have made HDC broadly available in recent years, technological advances were not coupled with an adequate development of analytical methods that can take full advantage of the complex data generated. While several analytical platforms and bioinformatics tools have become available for the analysis of HDC data, these are either web-hosted with limited scalability or designed for expert computational biologists, making their use unapproachable for wet lab scientists. Additionally, end-to-end HDC data analysis is further hampered due to missing unified analytical ecosystems, requiring researchers to navigate multiple platforms and software packages to complete the analysis. To bridge this data analysis gap in HDC we develop cyCONDOR, an easy-to-use computational framework covering not only all essential steps of cytometry data analysis but also including an array of downstream functions and tools to expand the biological interpretation of the data. The comprehensive suite of features of cyCONDOR, including guided pre-processing, clustering, dimensionality reduction, and machine learning algorithms, facilitates the seamless integration of cyCONDOR into clinically relevant settings, where scalability and disease classification are paramount for the widespread adoption of HDC in clinical practice. Additionally, the advanced analytical features of cyCONDOR, such as pseudotime analysis and batch integration, provide researchers with the tools to extract deeper insights from their data. We use cyCONDOR on a variety of data from different tissues and technologies demonstrating its versatility to assist the analysis of high-dimensional data from preprocessing to biological interpretation.
Collapse
Affiliation(s)
- Charlotte Kröger
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Sophie Müller
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jacqueline Leidner
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Theresa Kröber
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefanie Warnat-Herresthal
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Jannis Bastian Spintge
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
| | - Timo Zajac
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anna Neubauer
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Aleksej Frolov
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Caterina Carraro
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, Bonn, Germany
- Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Köln, Germany
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, Italy
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, via Manzoni 56, Rozzano, Milan, Italy
| | - Anna C Aschenbrenner
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Joachim L Schultze
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
| | - Tal Pecht
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Marc D Beyer
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome Center, Bonn, Germany
- Immunogenomics & Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
15
|
Toh J, Reitsma AJ, Tajima T, Younes SF, Ezeiruaku C, Jenkins KC, Peña JK, Zhao S, Wang X, Lee EYZ, Glass MC, Kalesinskas L, Ganesan A, Liang I, Pai JA, Harden JT, Vallania F, Vizcarra EA, Bhagat G, Craig FE, Swerdlow SH, Morscio J, Dierickx D, Tousseyn T, Satpathy AT, Krams SM, Natkunam Y, Khatri P, Martinez OM. Multi-modal analysis reveals tumor and immune features distinguishing EBV-positive and EBV-negative post-transplant lymphoproliferative disorders. Cell Rep Med 2024; 5:101851. [PMID: 39657667 PMCID: PMC11722118 DOI: 10.1016/j.xcrm.2024.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/09/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The oncogenic Epstein-Barr virus (EBV) can drive tumorigenesis with disrupted host immunity, causing malignancies including post-transplant lymphoproliferative disorders (PTLDs). PTLD can also arise in the absence of EBV, but the biological differences underlying EBV(+) and EBV(-) B cell PTLD and the associated host-EBV-tumor interactions remain poorly understood. Here, we reveal the core differences between EBV(+) and EBV(-) PTLD, characterized by increased expression of genes related to immune processes or DNA interactions, respectively, and the augmented ability of EBV(+) PTLD B cells to modulate the tumor microenvironment through elaboration of monocyte-attracting cytokines/chemokines. We create a reference resource of proteins distinguishing EBV(+) B lymphoma cells from EBV(-) B lymphoma including the immunomodulatory molecules CD300a and CD24, respectively. Moreover, we show that CD300a is essential for maximal survival of EBV(+) PTLD B lymphoma cells. Our comprehensive multi-modal analyses uncover the biological underpinnings of PTLD and offer opportunities for precision therapies.
Collapse
Affiliation(s)
- Jiaying Toh
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA; PhD Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Andrea J Reitsma
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Tetsuya Tajima
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheren F Younes
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chimere Ezeiruaku
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Kayla C Jenkins
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Josselyn K Peña
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA; PhD Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shuchun Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Xi Wang
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Esmond Y Z Lee
- PhD Program in Stem Cell and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Marla C Glass
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Laurynas Kalesinskas
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA; PhD Program in Biomedical Informatics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ananthakrishnan Ganesan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA; Institute for Computational and Mathematical Engineering, School of Engineering, Stanford University, Stanford, CA, USA
| | - Irene Liang
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Joy A Pai
- PhD Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - James T Harden
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA; PhD Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Francesco Vallania
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Edward A Vizcarra
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Govind Bhagat
- Department of Pathology, Columbia University, New York, NY, USA
| | - Fiona E Craig
- Laboratory of Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Steven H Swerdlow
- Division of Hematopathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie Morscio
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Daan Dierickx
- Department of Hematology, University Hospitals Leuven, and the Laboratory for Experimental Hematology, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Thomas Tousseyn
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheri M Krams
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA; Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Olivia M Martinez
- Department of Surgery, Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA; Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Mazziotta F, Martin LE, Eagan DN, Bar M, Kinsella S, Paulson KG, Voillet V, Lahman MC, Hunter D, Schmitt TM, Duerkopp N, Yeung C, Tang TH, Gottardo R, Asano Y, Wilcox EC, Lee B, Zhang T, Lopedote P, Penter L, Wu CJ, Milano F, Greenberg PD, Chapuis AG. Acute Myeloid Leukemia Skews Therapeutic WT1-specific CD8 TCR-T Cells Towards an NK-like Phenotype that Compromises Function and Persistence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.13.24318504. [PMID: 39763516 PMCID: PMC11702715 DOI: 10.1101/2024.12.13.24318504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Acute myeloid leukemia (AML) that is relapsed and/or refractory post-allogeneic hematopoietic cell transplantation (HCT) is usually fatal. In a prior study, we demonstrated that AML relapse in high-risk patients was prevented by post-HCT immunotherapy with Epstein-Barr virus (EBV)-specific donor CD8+ T cells engineered to express a high-affinity Wilms Tumor Antigen 1 (WT1)-specific T-cell receptor (TTCR-C4). However, in the present study, infusion of EBV- or Cytomegalovirus (CMV)-specific TTCR-C4 did not clearly improve outcomes in fifteen patients with active disease post-HCT. TCRC4-transduced EBV-specific T cells persisted longer post-transfer than CMV-specific T cells. Persisting TTCR-C4 skewed towards dysfunctional natural killer-like terminal differentiation, distinct from the dominant exhaustion programs reported for T-cell therapies targeting solid tumors. In one patient with active AML post-HCT, a sustained TTCR-C4 effector-memory profile correlated with long-term TTCR-C4 persistence and disease control. These findings reveal complex mechanisms underlying AML-induced T-cell dysfunction, informing future therapeutic strategies for addressing post-HCT relapse.
Collapse
Affiliation(s)
- Francesco Mazziotta
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Lauren E. Martin
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Daniel N. Eagan
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Merav Bar
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
- Bristol Myers Squibb
| | - Sinéad Kinsella
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kelly G. Paulson
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Miranda C. Lahman
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Daniel Hunter
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Thomas M. Schmitt
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Natalie Duerkopp
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cecilia Yeung
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tzu-Hao Tang
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Raphael Gottardo
- Biomedical Data Science Center, Lausanne University Hospital
- University of Lausanne, Lausanne, Switzerland
- Agora Translational Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yuta Asano
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elise C. Wilcox
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Bo Lee
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tianzi Zhang
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Paolo Lopedote
- Department of Medicine, St. Elizabeth’s Medical Center, Boston University, Boston, MA, USA
| | - Livius Penter
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Hematology, Oncology, and Tumorimmunology, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Filippo Milano
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutch Cancer Center, Seattle, WA, USA
| | - Philip D. Greenberg
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Departments of Immunology and Medicine, University of Washington, Seattle, WA, USA
| | - Aude G. Chapuis
- Program in Immunology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Sciences and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutch Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Tasis A, Papaioannou NE, Grigoriou M, Paschalidis N, Loukogiannaki C, Filia A, Katsiki K, Lamprianidou E, Papadopoulos V, Rimpa CM, Chatzigeorgiou A, Kourtzelis I, Gerasimou P, Kyprianou I, Costeas P, Liakopoulos P, Liapis K, Kolovos P, Chavakis T, Alissafi T, Kotsianidis I, Mitroulis I. Single-Cell Analysis of Bone Marrow CD8+ T Cells in Myeloid Neoplasms Reveals Pathways Associated with Disease Progression and Response to Treatment with Azacitidine. CANCER RESEARCH COMMUNICATIONS 2024; 4:3067-3083. [PMID: 39485042 PMCID: PMC11616010 DOI: 10.1158/2767-9764.crc-24-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
Immunophenotypic analysis identified a BM CD57+CXCR3+ subset of CD8+ T cells associated with response to AZA in patients with MDS and AML. Single-cell RNA sequencing analysis revealed that IFN signaling is linked to the response to treatment, whereas TGF-β signaling is associated with treatment failure, providing insights into new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Tasis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikos E. Papaioannou
- Laboratory of Immune Regulation, Center of Basic Sciences, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Maria Grigoriou
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Nikolaos Paschalidis
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Catherine Loukogiannaki
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Anastasia Filia
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Kyriaki Katsiki
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Papadopoulos
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Maria Rimpa
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Kourtzelis
- Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - Ioannis Kyprianou
- Molecular Hematology-Oncology, Karaiskakio Foundation, Nicosia, Cyprus
| | - Paul Costeas
- Molecular Hematology-Oncology, Karaiskakio Foundation, Nicosia, Cyprus
| | - Panagiotis Liakopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Liapis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany
| | - Themis Alissafi
- Laboratory of Immune Regulation, Center of Basic Sciences, Biomedical Research Foundation Academy of Athens, Athens, Greece
- Laboratory of Biology, School of Medicine, Athens, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- Translational Research and Laboratory Medicine Unit, First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany
| |
Collapse
|
18
|
Huang SW, Jiang W, Xu S, Zhang Y, Du J, Wang YQ, Yang KY, Zhang N, Liu F, Zou GR, Jin F, Wu HJ, Zhou YY, Zhu XD, Chen NY, Xu C, Qiao H, Liu N, Sun Y, Ma J, Liang YL, Liu X. Systemic longitudinal immune profiling identifies proliferating Treg cells as predictors of immunotherapy benefit: biomarker analysis from the phase 3 CONTINUUM and DIPPER trials. Signal Transduct Target Ther 2024; 9:285. [PMID: 39438442 PMCID: PMC11496634 DOI: 10.1038/s41392-024-01988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
The identification of predictors for immunotherapy is often hampered by the absence of control groups in many studies, making it difficult to distinguish between prognostic and predictive biomarkers. This study presents biomarker analyses from the phase 3 CONTINUUM trial (NCT03700476), the first to show that adding anti-PD-1 (aPD1) to chemoradiotherapy (CRT) improves event-free survival (EFS) in patients with locoregionally advanced nasopharyngeal carcinoma. A dynamic single-cell atlas was profiled using mass cytometry on peripheral blood mononuclear cell samples from 12 pairs of matched relapsing and non-relapsing patients in the aPD1-CRT arm. Using a supervised representation learning algorithm, we identified a Ki67+ proliferating regulatory T cells (Tregs) population expressing high levels of activated and immunosuppressive molecules including FOXP3, CD38, HLA-DR, CD39, and PD-1, whose abundance correlated with treatment outcome. The frequency of these Ki67+ Tregs was significantly higher at baseline and increased during treatment in patients who relapsed compared to non-relapsers. Further validation through flow cytometry (n = 120) confirmed the predictive value of this Treg subset. Multiplex immunohistochemistry (n = 249) demonstrated that Ki67+ Tregs in tumors could predict immunotherapy benefit, with aPD1 improving EFS only in patients with low baseline levels of Ki67+ Tregs. These findings were further validated in the multicenter phase 3 DIPPER trial (n = 262, NCT03427827) and the phase 3 OAK trial of anti-PD-L1 immunotherapy in NSCLC, underscoring the predictive value of Ki67+ Treg frequency in identifying the beneficiaries of immunotherapy and potentially guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Sai-Wei Huang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Wei Jiang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Sha Xu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yuan Zhang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Juan Du
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ya-Qin Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Kun-Yu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ning Zhang
- Department of Radiation Oncology, The First People's Hospital of Foshan, Foshan, PR China
| | - Fang Liu
- Department of Pathology, The First People's Hospital of Foshan, Foshan, PR China
| | - Guo-Rong Zou
- Department of Oncology, Panyu Central Hospital, Guangzhou, PR China
| | - Feng Jin
- Department of Oncology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, PR China
| | - Hai-Jun Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yang-Ying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiao-Dong Zhu
- Department of Radiation Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, PR China
| | - Nian-Yong Chen
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China
| | - Cheng Xu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Han Qiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Na Liu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ying Sun
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jun Ma
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| | - Ye-Lin Liang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| | - Xu Liu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China.
| |
Collapse
|
19
|
Tao W, Sinha A, Raddassi K, Pandit A. Parameter optimization for stable clustering using FlowSOM: a case study from CyTOF. Front Immunol 2024; 15:1414400. [PMID: 39445014 PMCID: PMC11497637 DOI: 10.3389/fimmu.2024.1414400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
High-dimensional cell phenotyping is a powerful tool to study molecular and cellular changes in health and diseases. CyTOF enables high-dimensional cell phenotyping using tens of surface and intra-cellular markers. To utilize the full potential of CyTOF, we need advanced clustering and machine learning methodologies to enable automated gating of the complex data. Here we show that critical modifications to a machine learning based FlowSOM package and precise parameter optimization can enable us to reliably analyze the complex CyTOF data. We show the impact of key parameters on clustering outcomes while addressing bugs within the publicly available package. We modified the FlowSOM pipeline to fix the bugs, enable scalability to handle large datasets and perform parameter optimization. We further validated this modified pipeline on a substantial external immunological dataset demonstrating the need of data-specific tailored parameter optimization to ensure reliable definition and interrogation of immune cell populations associated with immune disorders.
Collapse
|
20
|
Lin L, Luo J, Cai Y, Wu X, Zhou L, Li T, Wang X, Xu H. Mass cytometry identifies imbalance of multiple immune-cell subsets associated with biologics treatment in ankylosing spondylitis. Int J Rheum Dis 2024; 27:e15378. [PMID: 39420773 DOI: 10.1111/1756-185x.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE This study aims to comprehensively investigate immune-cell landscapes in ankylosing spondylitis (AS) patients and explore longitudinal immunophenotyping changes induced by biological agents. METHODS We employed mass cytometry with 35 cellular markers to analyze blood samples from 34 AS patients and 13 healthy controls (HC). Eleven AS patients were re-evaluated 1 month (4 patients) and 3 months (7 patients) after treatment with biological agents. Flow Self-Organizing Maps (FlowSOM) clustering was performed to identify specific cellular metaclusters. We compared cellular abundances across distinct subgroups and validated subset differences using gating strategies in flow cytometry scatter plots, visualized with FlowJo software. The proportions of differential subsets were then used for intercellular and clinical correlation analysis, as well as for constructing diagnostic models based on the random forest algorithm. RESULTS In AS patients, we identified and validated nine different immune-cell subsets compared to HC. Three subsets increased: helper T-cell 17 (Th17), mucosa-associated invariant T-cell (MAIT), and classical monocytes (CM). Six subsets decreased: effector memory T-cell (TEM), naïve B cells, transitional B cells, IL10+ memory B cells, non-classical monocytes (NCM), and neutrophils. Treatments with biological agents could rectify cellular abnormalities, particularly the imbalance of CM/NCM. Furthermore, these subsets may serve as biomarkers for assessing disease activity and constructing effective diagnostic models for AS. CONCLUSION These findings provide novel insights into the specific patterns of immune cell in AS, facilitating the further development of novel biomarkers and potential therapeutic targets for AS patients.
Collapse
Affiliation(s)
- Li Lin
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Jing Luo
- School of Medicine, Tsinghua University, Beijing, China
| | - Yue Cai
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Ling Zhou
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
- National Key Laboratory for Immunity and Inflammation, Shanghai, China
- School of Medicine, Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
21
|
Hunewald O, Demczuk A, Longworth J, Ollert M. CyCadas: accelerating interactive annotation and analysis of clustered cytometry data. Bioinformatics 2024; 40:btae595. [PMID: 39374546 PMCID: PMC11488975 DOI: 10.1093/bioinformatics/btae595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024] Open
Abstract
MOTIVATION Single cell profiling by cytometry has emerged as a key technology in biology, immunology and clinical-translational medicine. The correct annotation, which refers to the identification of clusters as specific cell populations based on their marker expression, of clustered high-dimensional cytometry data, is a critical step of the analysis. Its accuracy determines the correct interpretation of the biological data. Despite the progress in various clustering algorithms, the annotation of clustered data still remains a manual, time consuming and error-prone task. We developed a user-friendly cluster annotation and differential abundance detection tool that can be applied on data generated with Self Organizing Map clustering algorithms, thus simplifying the annotation process of datasets that consist of hundreds or thousands of clusters. RESULTS We present Cytometry Cluster Annotation and Differential Abundance Suite (CyCadas), a semi-automated software tool that facilitates cluster annotation in cytometry data by offering both visual and computational guidance. CyCadas addresses the critical need for efficient and accurate annotation of high-resolution clustered cytometry data, significantly reducing the time needed to perform the analysis compared to both manual gating approaches and manual annotation of clustered data. The tool features a user-friendly interface, visual tools enabling data exploration and automated threshold estimation to separate negative and positive marker expression. It facilitates the definition and annotation of cell phenotypes among multiple clusters in a tree-based data structure. Finally, it calculates the abundance of various cell populations across the conditions with statistical interpretation. It is an ideal resource for researchers aiming to streamline their cytometry workflow. AVAILABILITY AND IMPLEMENTATION CyCadas is available as open source at: https://github.com/DII-LIH-Luxembourg/cycadas.
Collapse
Affiliation(s)
- Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
- Bioinformatics & AI, Department of Medical Informatics, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Agnieszka Demczuk
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Joseph Longworth
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Centre, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
22
|
Kostopoulos IV, Ntanasis-Stathopoulos I, Rousakis P, Malandrakis P, Panteli C, Eleutherakis-Papaiakovou E, Angelis N, Spiliopoulou V, Syrigou RE, Bakouros P, Dimitrakopoulou G, Fotiou D, Migkou M, Kanellias N, Paschalidis N, Gavriatopoulou M, Kastritis E, Dimopoulos MA, Tsitsilonis OE, Terpos E. Low circulating tumor cell levels correlate with favorable outcomes and distinct biological features in multiple myeloma. Am J Hematol 2024; 99:1887-1896. [PMID: 38860642 DOI: 10.1002/ajh.27414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
There is growing interest in multiple myeloma (MM) circulating tumor cells (CTCs), but their rareness in peripheral blood (PB) and inconsistency in cutoffs question their clinical utility. Herein, we applied next-generation flow cytometry in 550 bone marrow (BM) and matched PB samples to define an optimal CTC cutoff for both transplant-eligible and transplant-ineligible newly diagnosed MM (NDMM) patients. Deep phenotyping was performed to investigate unique microenvironmental features associated with CTC dissemination. CTCs were detected in 90% of patients (median 0.01%; range: 0.0002%-12.6%) and increased levels associated with adverse features. Correlations were observed between high CTC percentages and a diffused MRI pattern, a distinct BM composition characterized by altered B-cell differentiation together with an expansion of effector cells and tumor-associated macrophages, as well as a greater phenotypic dissimilarity between BM and PB clonal cells. Progression-free survival (PFS) and overall survival (OS) gradually worsened with each logarithmic increment of CTCs. Conversely, NDMM patients without CTCs showed unprecedented outcomes, with 5-year PFS and OS rates of 83% and 97%, respectively. A cutoff of 0.02% CTCs was independent of the ISS, LDH, and cytogenetics in a multivariate analysis of risk factors for PFS. The 0.02% CTC cutoff synergized with the MGUS-like phenotype and the R-ISS for improving the risk stratification systems. MRD negativity was less frequent if CTCs were ≥0.02% at diagnosis, but whenever achieved, the poor prognosis of these patients was abrogated. This study shows the clinical utility of CTC assessment in MM and provides evidence toward a consensus cutoff for risk stratification.
Collapse
Affiliation(s)
- Ioannis V Kostopoulos
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Rousakis
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysanthi Panteli
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Nikolaos Angelis
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Spiliopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Rodanthi-Eleni Syrigou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Bakouros
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Dimitrakopoulou
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Paschalidis
- Mass Cytometry-CyTOF Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Ourania E Tsitsilonis
- Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Sun J, Choy D, Sompairac N, Jamshidi S, Mishto M, Kordasti S. ImmCellTyper facilitates systematic mass cytometry data analysis for deep immune profiling. eLife 2024; 13:RP95494. [PMID: 39240985 PMCID: PMC11379455 DOI: 10.7554/elife.95494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Mass cytometry is a cutting-edge high-dimensional technology for profiling marker expression at the single-cell level, advancing clinical research in immune monitoring. Nevertheless, the vast data generated by cytometry by time-of-flight (CyTOF) poses a significant analytical challenge. To address this, we describe ImmCellTyper (https://github.com/JingAnyaSun/ImmCellTyper), a novel toolkit for CyTOF data analysis. This framework incorporates BinaryClust, an in-house developed semi-supervised clustering tool that automatically identifies main cell types. BinaryClust outperforms existing clustering tools in accuracy and speed, as shown in benchmarks with two datasets of approximately 4 million cells, matching the precision of manual gating by human experts. Furthermore, ImmCellTyper offers various visualisation and analytical tools, spanning from quality control to differential analysis, tailored to users' specific needs for a comprehensive CyTOF data analysis solution. The workflow includes five key steps: (1) batch effect evaluation and correction, (2) data quality control and pre-processing, (3) main cell lineage characterisation and quantification, (4) in-depth investigation of specific cell types; and (5) differential analysis of cell abundance and functional marker expression across study groups. Overall, ImmCellTyper combines expert biological knowledge in a semi-supervised approach to accurately deconvolute well-defined main cell lineages, while maintaining the potential of unsupervised methods to discover novel cell subsets, thus facilitating high-dimensional immune profiling.
Collapse
Affiliation(s)
- Jing Sun
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Desmond Choy
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Nicolas Sompairac
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Shirin Jamshidi
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
- Research Group of Molecular Immunology, Francis Crick Institute, London, United Kingdom
| | - Shahram Kordasti
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Haematology Department, Guy's Hospital, London, United Kingdom
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
24
|
Church EC, Bishop E, Fiore-Gartland A, Yu KKQ, Chang M, Jones RM, Brache JK, Ballweber Fleming L, Phan JM, Makatsa MS, Heptinstall J, Chiong K, Dintwe O, Naidoo A, Voillet V, Mayer-Blackwell K, Nwanne G, Andersen-Nissen E, Vary JC, Tomaras GD, McElrath MJ, Sherman DR, Murphy SC, Kublin JG, Seshadri C. Probing Dermal Immunity to Mycobacteria through a Controlled Human Infection Model. Immunohorizons 2024; 8:695-711. [PMID: 39283647 PMCID: PMC11447685 DOI: 10.4049/immunohorizons.2400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Cutaneous mycobacterial infections cause substantial morbidity and are challenging to diagnose and treat. An improved understanding of the dermal immune response to mycobacteria may inspire new therapeutic approaches. We conducted a controlled human infection study with 10 participants who received 2 × 106 CFUs of Mycobacterium bovis bacillus Calmette-Guérin (Tice strain) intradermally and were randomized to receive isoniazid or no treatment. Peripheral blood was collected at multiple time points for flow cytometry, bulk RNA sequencing (RNA-seq), and serum Ab assessments. Systemic immune responses were detected as early as 8 d postchallenge in this M. bovis bacillus Calmette-Guérin-naive population. Injection-site skin biopsies were performed at days 3 and 15 postchallenge and underwent immune profiling using mass cytometry and single-cell RNA-seq, as well as quantitative assessments of bacterial viability and burden. Molecular viability testing and standard culture results correlated well, although no differences were observed between treatment arms. Single-cell RNA-seq revealed various immune and nonimmune cell types in the skin, and communication between them was inferred by ligand-receptor gene expression. Day 3 communication was predominantly directed toward monocytes from keratinocyte, muscle, epithelial, and endothelial cells, largely via the migration inhibitory factor pathway and HLA-E-KLRK1 interaction. At day 15, communication was more balanced between cell types. These data reveal the potential role of nonimmune cells in the dermal immune response to mycobacteria and the utility of human challenge studies to augment our understanding of mycobacterial infections.
Collapse
Affiliation(s)
- E. Chandler Church
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
- Seattle-King County Public Health, Seattle, WA
| | - Emma Bishop
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | | | - Krystle K. Q. Yu
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Ming Chang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - Richard M. Jones
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA
| | - Justin K. Brache
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA
| | | | - Jolie M. Phan
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Mohau S. Makatsa
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Jack Heptinstall
- Duke Center for Human Systems Immunology, Duke University, Durham, NC
| | - Kelvin Chiong
- Duke Center for Human Systems Immunology, Duke University, Durham, NC
| | - One Dintwe
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Anneta Naidoo
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Valentin Voillet
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | | | - Gift Nwanne
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Jay C. Vary
- Department of Dermatology, University of Washington School of Medicine, Seattle, WA
| | | | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - David R. Sherman
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA
| | - James G. Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
25
|
Schlenker R, Schwalie PC, Dettling S, Huesser T, Irmisch A, Mariani M, Martínez Gómez JM, Ribeiro A, Limani F, Herter S, Yángüez E, Hoves S, Somandin J, Siebourg-Polster J, Kam-Thong T, de Matos IG, Umana P, Dummer R, Levesque MP, Bacac M. Myeloid-T cell interplay and cell state transitions associated with checkpoint inhibitor response in melanoma. MED 2024; 5:759-779.e7. [PMID: 38593812 DOI: 10.1016/j.medj.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND The treatment of melanoma, the deadliest form of skin cancer, has greatly benefited from immunotherapy. However, many patients do not show a durable response, which is only partially explained by known resistance mechanisms. METHODS We performed single-cell RNA sequencing of tumor immune infiltrates and matched peripheral blood mononuclear cells of 22 checkpoint inhibitor (CPI)-naive stage III-IV metastatic melanoma patients. After sample collection, the same patients received CPI treatment, and their response was assessed. FINDINGS CPI responders showed high levels of classical monocytes in peripheral blood, which preferentially transitioned toward CXCL9-expressing macrophages in tumors. Trajectories of tumor-infiltrating CD8+ T cells diverged at the level of effector memory/stem-like T cells, with non-responder cells progressing into a state characterized by cellular stress and apoptosis-related gene expression. Consistently, predicted non-responder-enriched myeloid-T/natural killer cell interactions were primarily immunosuppressive, while responder-enriched interactions were supportive of T cell priming and effector function. CONCLUSIONS Our study illustrates that the tumor immune microenvironment prior to CPI treatment can be indicative of response. In perspective, modulating the myeloid and/or effector cell compartment by altering the described cell interactions and transitions could improve immunotherapy response. FUNDING This research was funded by Roche Pharma Research and Early Development.
Collapse
Affiliation(s)
- Ramona Schlenker
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany.
| | | | - Steffen Dettling
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany
| | - Tamara Huesser
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Anja Irmisch
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marisa Mariani
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Julia M Martínez Gómez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alison Ribeiro
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Florian Limani
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Sylvia Herter
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Emilio Yángüez
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Sabine Hoves
- Roche Innovation Center Munich, Roche Pharma Research and Early Development (pRED), Penzberg, Germany
| | - Jitka Somandin
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | | | | | | | - Pablo Umana
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marina Bacac
- Roche Innovation Center Zurich, pRED, Schlieren, Switzerland
| |
Collapse
|
26
|
Giese MA, Bennin DA, Schoen TJ, Peterson AN, Schrope JH, Brand J, Jung HS, Keller NP, Beebe DJ, Dinh HQ, Slukvin II, Huttenlocher A. PTP1B phosphatase dampens iPSC-derived neutrophil motility and antimicrobial function. J Leukoc Biol 2024; 116:118-131. [PMID: 38417030 PMCID: PMC11212797 DOI: 10.1093/jleuko/qiae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Neutrophils are rapidly recruited to sites of infection and are critical for pathogen clearance. Therapeutic use of primary neutrophils has been limited, as they have a short lifespan and are not amenable to genetic manipulation. Human induced pluripotent stem cells (iPSCs) can provide a robust source of neutrophils for infusion and are genetically tractable. However, current work has indicated that dampened intracellular signaling limits iPSC-derived neutrophil (iNeutrophil) cellular activation and antimicrobial response. Here, we show that protein tyrosine phosphatase 1B (PTP1B) inhibits intracellular signaling and dampens iNeutrophil effector function. Deletion of the PTP1B phosphatase increased PI3K and ERK signaling and was associated with increased F-actin polymerization, cell migration, and phagocytosis. In contrast, other effector functions like NETosis and reactive oxygen species production were reduced. PTP1B-deficient neutrophils were more responsive to Aspergillus fumigatus and displayed rapid recruitment and control of hyphal growth. Accordingly, depletion of PTP1B increased production of inflammatory factors including the neutrophil chemokine interleukin-8. Taken together, these findings suggest that PTP1B limits iNeutrophil motility and antimicrobial function.
Collapse
Affiliation(s)
- Morgan A Giese
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Cellular and Molecular Biology Graduate Program, University of Wisconsin–Madison, 1525 Linden Dr. Madison 53706, WI, United States
| | - David A Bennin
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
| | - Taylor J Schoen
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin–Madison, 2015 Linden Dr. Madison 53706, WI, United States
| | - Ashley N Peterson
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin–Madison, 2015 Linden Dr. Madison 53706, WI, United States
| | - Jonathan H Schrope
- Department of Biomedical Engineering, University of Wisconsin–Madison, 1550 Engineering Dr. Madison 53706, WI, United States
| | - Josh Brand
- Cell and Molecular Pathology Graduate Program, University of Wisconsin–Madison, 1685 Highland Ave. Madison 53705, WI, United States
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
| | - Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct. Madison 53715, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave. Madison 53705, WI, United States
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Ave. Madison 53705, WI, United States
| | - Huy Q Dinh
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin–Madison, 1111 Highland Ave. Madison 53705, WI, United States
| | - Igor I Slukvin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1223 Capitol Ct. Madison 53715, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave. Madison 53705, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1685 Highland Ave. Madison 53705, WI, United States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, 1550 Linden Dr. Madison 53706, WI, United States
- Department of Pediatrics, University of Wisconsin–Madison, 600 Highland Ave. Madison 53705, WI, United States
| |
Collapse
|
27
|
Balog JÁ, Horti-Oravecz K, Kövesdi D, Bozsik A, Papp J, Butz H, Patócs A, Szebeni GJ, Grolmusz VK. Peripheral immunophenotyping reveals lymphocyte stimulation in healthy women living with hereditary breast and ovarian cancer syndrome. iScience 2024; 27:109882. [PMID: 38799565 PMCID: PMC11126817 DOI: 10.1016/j.isci.2024.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
Germline pathogenic variants in BRCA1 and BRCA2 (gpath(BRCA1/2)) represent genetic susceptibility for hereditary breast and ovarian cancer syndrome. Tumor-immune interactions are key contributors to breast cancer pathogenesis. Although earlier studies confirmed pro-tumorigenic immunological alterations in breast cancer patients, data are lacking in healthy carriers of gpath(BRCA1/2). Peripheral blood mononuclear cells of 66 women with or without germline predisposition or breast cancer were studied with a mass cytometry panel that identified 4 immune subpopulations of altered frequencies between healthy controls and healthy gpath(BRCA1) carriers, while no difference was observed in healthy gpath(BRCA2) carriers compared to controls. Moreover, 3 (one IgD-CD27+CD95+ B cell subpopulation and two CD45RA-CCR7+CD38+ CD4+ T cell subpopulations) out of these 4 subpopulations were also elevated in triple-negative breast cancer patients compared to controls. Our results reveal an activated peripheral immune phenotype in healthy carriers of gpath(BRCA1) that needs to be further elucidated to be leveraged in risk-reducing strategies.
Collapse
Affiliation(s)
- József Ágoston Balog
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Core Facility, HUN-REN Biological Research Center, 6726 Szeged, Hungary
| | - Klaudia Horti-Oravecz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- Semmelweis University, Doctoral School, 1085 Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
| | - Janos Papp
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Gábor János Szebeni
- Institute of Genetics, Laboratory of Functional Genomics, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Core Facility, HUN-REN Biological Research Center, 6726 Szeged, Hungary
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine University of Szeged, 6725 Szeged, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics and the National Tumorbiology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, 1122 Budapest, Hungary
- HUN-REN-SE Hereditary Cancers Research Group, Hungarian Research Network – Semmelweis University, 1122 Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
28
|
Everson RG, Hugo W, Sun L, Antonios J, Lee A, Ding L, Bu M, Khattab S, Chavez C, Billingslea-Yoon E, Salazar A, Ellingson BM, Cloughesy TF, Liau LM, Prins RM. TLR agonists polarize interferon responses in conjunction with dendritic cell vaccination in malignant glioma: a randomized phase II Trial. Nat Commun 2024; 15:3882. [PMID: 38719809 PMCID: PMC11078958 DOI: 10.1038/s41467-024-48073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
In this randomized phase II clinical trial, we evaluated the effectiveness of adding the TLR agonists, poly-ICLC or resiquimod, to autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination in patients with newly-diagnosed or recurrent WHO Grade III-IV malignant gliomas. The primary endpoints were to assess the most effective combination of vaccine and adjuvant in order to enhance the immune potency, along with safety. The combination of ATL-DC vaccination and TLR agonist was safe and found to enhance systemic immune responses, as indicated by increased interferon gene expression and changes in immune cell activation. Specifically, PD-1 expression increases on CD4+ T-cells, while CD38 and CD39 expression are reduced on CD8+ T cells, alongside an increase in monocytes. Poly-ICLC treatment amplifies the induction of interferon-induced genes in monocytes and T lymphocytes. Patients that exhibit higher interferon response gene expression demonstrate prolonged survival and delayed disease progression. These findings suggest that combining ATL-DC with poly-ICLC can induce a polarized interferon response in circulating monocytes and CD8+ T cells, which may represent an important blood biomarker for immunotherapy in this patient population.Trial Registration: ClinicalTrials.gov Identifier: NCT01204684.
Collapse
Affiliation(s)
- Richard G Everson
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Willy Hugo
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lu Sun
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Joseph Antonios
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexander Lee
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lizhong Ding
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Melissa Bu
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sara Khattab
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Carolina Chavez
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Emma Billingslea-Yoon
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Benjamin M Ellingson
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy F Cloughesy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurology/Neuro-Oncology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Robert M Prins
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
29
|
Yang L, Yang Q, Lin L, Zhang C, Dong L, Gao X, Zhang Z, Zeng C, Wang PG. LectoScape: A Highly Multiplexed Imaging Platform for Glycome Analysis and Biomedical Diagnosis. Anal Chem 2024; 96:6558-6565. [PMID: 38632928 DOI: 10.1021/acs.analchem.3c04925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Glycosylation, a fundamental biological process, involves the attachment of glycans to proteins, lipids, and RNA, and it plays a crucial role in various biological pathways. It is of great significance to obtain the precise spatial distribution of glycosylation modifications at the cellular and tissue levels. Here, we introduce LectoScape, an innovative method enabling detailed imaging of tissue glycomes with up to 1 μm resolution through image mass cytometry (IMC). This method utilizes 12 distinct, nonoverlapping lectins selected via microarray technology, enabling the multiplexed detection of a wide array of glycans. Furthermore, we developed an efficient labeling strategy for these lectins. Crucially, our approach facilitates the concurrent imaging of diverse glycan motifs, including N-glycan and O-glycan, surpassing the capabilities of existing technologies. Using LectoScape, we have successfully delineated unique glycan structures in various cell types, enhancing our understanding of the glycan distribution across human tissues. Our method has identified specific glycan markers, such as α2,3-sialylated Galβ1, 3GalNAc in O-glycan, and terminal GalNAc, as diagnostic indicators for cervical intraepithelial neoplasia. This highlights the potential of LectoScape in cancer diagnostics through the detection of abnormal glycosylation patterns.
Collapse
Affiliation(s)
- Lujie Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chi Zhang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lingkai Dong
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Chen Zeng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
30
|
Balog JÁ, Zvara Á, Bukovinszki V, Puskás LG, Balog A, Szebeni GJ. Comparative single-cell multiplex immunophenotyping of therapy-naive patients with rheumatoid arthritis, systemic sclerosis, and systemic lupus erythematosus shed light on disease-specific composition of the peripheral immune system. Front Immunol 2024; 15:1376933. [PMID: 38726007 PMCID: PMC11079270 DOI: 10.3389/fimmu.2024.1376933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Systemic autoimmune diseases (SADs) are a significant burden on the healthcare system. Understanding the complexity of the peripheral immunophenotype in SADs may facilitate the differential diagnosis and identification of potential therapeutic targets. Methods Single-cell mass cytometric immunophenotyping was performed on peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) and therapy-naive patients with rheumatoid arthritis (RA), progressive systemic sclerosis (SSc), and systemic lupus erythematosus (SLE). Immunophenotyping was performed on 15,387,165 CD45+ live single cells from 52 participants (13 cases/group), using an antibody panel to detect 34 markers. Results Using the t-SNE (t-distributed stochastic neighbor embedding) algorithm, the following 17 main immune cell types were determined: CD4+/CD57- T cells, CD4+/CD57+ T cells, CD8+/CD161- T cells, CD8+/CD161+/CD28+ T cells, CD8dim T cells, CD3+/CD4-/CD8- T cells, TCRγ/δ T cells, CD4+ NKT cells, CD8+ NKT cells, classic NK cells, CD56dim/CD98dim cells, B cells, plasmablasts, monocytes, CD11cdim/CD172dim cells, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs). Seven of the 17 main cell types exhibited statistically significant frequencies in the investigated groups. The expression levels of the 34 markers in the main populations were compared between HCs and SADs. In summary, 59 scatter plots showed significant differences in the expression intensities between at least two groups. Next, each immune cell population was divided into subpopulations (metaclusters) using the FlowSOM (self-organizing map) algorithm. Finally, 121 metaclusters (MCs) of the 10 main immune cell populations were found to have significant differences to classify diseases. The single-cell T-cell heterogeneity represented 64MCs based on the expression of 34 markers, and the frequency of 23 MCs differed significantly between at least twoconditions. The CD3- non-T-cell compartment contained 57 MCs with 17 MCs differentiating at least two investigated groups. In summary, we are the first to demonstrate the complexity of the immunophenotype of 34 markers over 15 million single cells in HCs vs. therapy-naive patients with RA, SSc, and SLE. Disease specific population frequencies or expression patterns of peripheral immune cells provide a single-cell data resource to the scientific community.
Collapse
Affiliation(s)
- József Á. Balog
- Laboratory of Functional Genomics, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Vivien Bukovinszki
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Gyorgyi Health Centre, University of Szeged, Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Gyorgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Gábor J. Szebeni
- Laboratory of Functional Genomics, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
- Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary
- Department of Internal Medicine, Hematology Centre, Faculty of Medicine University of Szeged, Szeged, Hungary
- Astridbio Technologies Ltd., Szeged, Hungary
| |
Collapse
|
31
|
Mao Z, Betti MJ, Cedeno MA, Pedroza LA, Basaria S, Liu Q, Choi JM, Markle JG. Clinical and cellular phenotypes resulting from a founder mutation in IL10RB. Clin Exp Immunol 2024; 216:113-119. [PMID: 37503744 PMCID: PMC11036105 DOI: 10.1093/cei/uxad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023] Open
Abstract
Inborn errors of immunity are a group of rare genetically determined diseases that impair immune system development or function. Many of these diseases include immune dysregulation, autoimmunity, or autoinflammation as prominent clinical features. In some children diagnosed with very early onset inflammatory bowel disease (VEOIBD), monogenic inborn errors of immune dysregulation underlie disease. We report a case of VEOIBD caused by a novel homozygous loss of function mutation in IL10RB. We use cytometry by time-of-flight with a broad panel of antibodies to interrogate the immunophenotype of this patient and detect reduced frequencies of CD4 and CD8 T cells with additional defects in some populations of T helper cells, innate-like T cells, and memory B cells. Finally, we identify the patient's mutation as a founder allele in an isolated indigenous population and estimate the age of this variant by studying the shared ancestral haplotype.
Collapse
Affiliation(s)
- Zhiming Mao
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael J Betti
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Miguel A Cedeno
- Department of Pediatrics, Hospital de ninos Roberto Gilbert Elizalde, Guayaquil, Ecuador
| | - Luis A Pedroza
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Shamel Basaria
- Division of Molecular Pathogenesis, Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Liu
- Division of Molecular Pathogenesis, Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph M Choi
- Division of Molecular Pathogenesis, Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Janet G Markle
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Molecular Pathogenesis, Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
32
|
Wan R, Srikaram P, Xie S, Chen Q, Hu C, Wan M, Li Y, Gao P. PPARγ attenuates cellular senescence of alveolar macrophages in asthma-COPD overlap. Respir Res 2024; 25:174. [PMID: 38643159 PMCID: PMC11032609 DOI: 10.1186/s12931-024-02790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. METHODS Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. RESULTS The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. CONCLUSION The findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.Key words ACO, Asthma, COPD, Macrophages, Senescence, PPARγ.
Collapse
Affiliation(s)
- Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Prakhyath Srikaram
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Shaobing Xie
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengping Hu
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuanyuan Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
- The Johns Hopkins Asthma & Allergy Center, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.
| |
Collapse
|
33
|
Wang Z, Pan B, Su L, Yu H, Wu X, Yao Y, Zhang X, Qiu J, Tang N. SUMOylation inhibitors activate anti-tumor immunity by reshaping the immune microenvironment in a preclinical model of hepatocellular carcinoma. Cell Oncol (Dordr) 2024; 47:513-532. [PMID: 38055116 DOI: 10.1007/s13402-023-00880-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSE High levels of heterogeneity and immunosuppression characterize the HCC immune microenvironment (TME). Unfortunately, the majority of hepatocellular carcinoma (HCC) patients do not benefit from immune checkpoint inhibitors (ICIs) therapy. New small molecule therapies for the treatment of HCC are the goal of our research. METHODS SUMOylation inhibitors (TAK-981 and ML-792) were evaluated for the treatment of preclinical mouse HCC models (including subcutaneous and orthotopic HCC models). We profile immune cell subsets from tumor samples after SUMOylation inhibitors treatment using single-cell RNA sequencing (scRNA-seq), mass cytometry (CyTOF), flow cytometry, and multiple immunofluorescences (mIF). RESULTS We discover that SUMOylation is higher in HCC patient samples compared to normal liver tissue. TAK-981 and ML-792 decrease SUMOylation at nanomolar levels in HCC cells and also successfully reduced the tumor burden. Analysis combining scRNA-seq and CyTOF demonstrate that treatment with SUMOylation inhibitors reduces the exhausted CD8+T (Tex) cells while enhancing the cytotoxic NK cells, M1 macrophages and cytotoxic T lymphocytes (CTL) in preclinical mouse HCC model. Furthermore, SUMOylation inhibitors have the potential to activate innate immune signals from CD8+T, NK and macrophages while promoting TNFα and IL-17 secretion. Most notably, SUMOylation inhibitors can directly alter the TME by adjusting the abundance of intestinal microbiota, thereby restoring anti-tumor immunity in HCC models. CONCLUSIONS This preclinical study suggests that SUMO signaling inhibitors may be beneficial for the treatment of HCC.
Collapse
Affiliation(s)
- Zengbin Wang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Lili Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Huahui Yu
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoxuan Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Jiacheng Qiu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China.
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| |
Collapse
|
34
|
Haddox CL, Nathenson MJ, Mazzola E, Lin JR, Baginska J, Nau A, Weirather JL, Choy E, Marino-Enriquez A, Morgan JA, Cote GM, Merriam P, Wagner AJ, Sorger PK, Santagata S, George S. Phase II Study of Eribulin plus Pembrolizumab in Metastatic Soft-tissue Sarcomas: Clinical Outcomes and Biological Correlates. Clin Cancer Res 2024; 30:1281-1292. [PMID: 38236580 PMCID: PMC10982640 DOI: 10.1158/1078-0432.ccr-23-2250] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
PURPOSE Eribulin modulates the tumor-immune microenvironment via cGAS-STING signaling in preclinical models. This non-randomized phase II trial evaluated the combination of eribulin and pembrolizumab in patients with soft-tissue sarcomas (STS). PATIENTS AND METHODS Patients enrolled in one of three cohorts: leiomyosarcoma (LMS), liposarcomas (LPS), or other STS that may benefit from PD-1 inhibitors, including undifferentiated pleomorphic sarcoma (UPS). Eribulin was administered at 1.4 mg/m2 i.v. (days 1 and 8) with fixed-dose pembrolizumab 200 mg i.v. (day 1) of each 21-day cycle, until progression, unacceptable toxicity, or completion of 2 years of treatment. The primary endpoint was the 12-week progression-free survival rate (PFS-12) in each cohort. Secondary endpoints included the objective response rate, median PFS, safety profile, and overall survival (OS). Pretreatment and on-treatment blood specimens were evaluated in patients who achieved durable disease control (DDC) or progression within 12 weeks [early progression (EP)]. Multiplexed immunofluorescence was performed on archival LPS samples from patients with DDC or EP. RESULTS Fifty-seven patients enrolled (LMS, n = 19; LPS, n = 20; UPS/Other, n = 18). The PFS-12 was 36.8% (90% confidence interval: 22.5-60.4) for LMS, 69.6% (54.5-89.0) for LPS, and 52.6% (36.8-75.3) for UPS/Other cohorts. All 3 patients in the UPS/Other cohort with angiosarcoma achieved RECIST responses. Toxicity was manageable. Higher IFNα and IL4 serum levels were associated with clinical benefit. Immune aggregates expressing PD-1 and PD-L1 were observed in a patient that completed 2 years of treatment. CONCLUSIONS The combination of eribulin and pembrolizumab demonstrated promising activity in LPS and angiosarcoma.
Collapse
Affiliation(s)
- Candace L. Haddox
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael J. Nathenson
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emanuele Mazzola
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jia-Ren Lin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Joanna Baginska
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Allison Nau
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason L. Weirather
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Edwin Choy
- Division of Hematology Oncology, Massachusetts General Cancer Center, Boston, Massachusetts
| | | | - Jeffrey A. Morgan
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gregory M. Cote
- Division of Hematology Oncology, Massachusetts General Cancer Center, Boston, Massachusetts
| | - Priscilla Merriam
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J. Wagner
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Peter K. Sorger
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Sandro Santagata
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Suzanne George
- Sarcoma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
35
|
Giovenzana A, Bezzecchi E, Bichisecchi A, Cardellini S, Ragogna F, Pedica F, Invernizzi F, Di Filippo L, Tomajer V, Aleotti F, Scotti GM, Socci C, Cesana G, Olmi S, Morelli MJ, Falconi M, Giustina A, Bonini C, Piemonti L, Ruggiero E, Petrelli A. Fat-to-blood recirculation of partially dysfunctional PD-1 +CD4 Tconv cells is associated with dysglycemia in human obesity. iScience 2024; 27:109032. [PMID: 38380252 PMCID: PMC10877684 DOI: 10.1016/j.isci.2024.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Obesity is characterized by the accumulation of T cells in insulin-sensitive tissues, including the visceral adipose tissue (VAT), that can interfere with the insulin signaling pathway eventually leading to insulin resistance (IR) and type 2 diabetes. Here, we found that PD-1+CD4 conventional T (Tconv) cells, endowed with a transcriptomic and functional profile of partially dysfunctional cells, are diminished in VAT of obese patients with dysglycemia (OB-Dys), without a concomitant increase in apoptosis. These cells showed enhanced capacity to recirculate into the bloodstream and had a non-restricted TCRβ repertoire divergent from that of normoglycemic obese and lean individuals. PD-1+CD4 Tconv were reduced in the circulation of OB-Dys, exhibited an altered migration potential, and were detected in the liver of patients with non-alcoholic steatohepatitis. The findings suggest a potential role for partially dysfunctional PD-1+CD4 Tconv cells as inter-organ mediators of IR in obese patients with dysglycemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stefano Olmi
- San Marco Hospital GSD, Zingonia, Bergamo, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Massimo Falconi
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Bonini
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | | |
Collapse
|
36
|
Wan R, Srikaram P, Xie S, Chen Q, Hu C, Wan M, Li Y, Gao P. PPARγ Attenuates Cellular Senescence of Alveolar Macrophages in Asthma- COPD Overlap. RESEARCH SQUARE 2024:rs.3.rs-4009724. [PMID: 38496493 PMCID: PMC10942556 DOI: 10.21203/rs.3.rs-4009724/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. Collectively, the findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.
Collapse
Affiliation(s)
| | | | | | | | | | - Mei Wan
- Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
37
|
Zhu XY, Klomjit N, Pawar AS, Puranik AS, Yang ZZ, Lutgens E, Eirin A, Lerman A, Textor SC, Lerman LO. Altered immune cell phenotypes within chronically ischemic human kidneys distal to occlusive renal artery disease. Am J Physiol Renal Physiol 2024; 326:F257-F264. [PMID: 38031731 PMCID: PMC11198973 DOI: 10.1152/ajprenal.00234.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
Renal artery stenosis (RAS) is a major cause of ischemic kidney disease, which is largely mediated by inflammation. Mapping the immune cell composition in ischemic kidneys might provide useful insight into the disease pathogenesis and uncover therapeutic targets. We used mass cytometry (CyTOF) to explore the single-cell composition in a unique data set of human kidneys nephrectomized due to chronic occlusive vascular disease (RAS, n = 3), relatively healthy donor kidneys (n = 6), and unaffected sections of kidneys with renal cell carcinoma (RCC, n = 3). Renal fibrosis and certain macrophage populations were also evaluated in renal sections. Cytobank analysis showed in RAS kidneys decreased cell populations expressing epithelial markers (CD45-/CD13+) and increased CD45+ inflammatory cells, whereas scattered tubular-progenitor-like cells (CD45-/CD133+/CD24+) increased compared with kidney donors. Macrophages switched to proinflammatory phenotypes in RAS, and the numbers of IL-10-producing dendritic cells (DC) were also lower. Compared with kidney donors, RAS kidneys had decreased overall DC populations but increased plasmacytoid DC. Furthermore, senescent active T cells (CD45+/CD28+/CD57+), aged neutrophils (CD45+/CD15+/CD24+/CD11c+), and regulatory B cells (CD45+/CD14-/CD24+/CD44+) were increased in RAS. RCC kidneys showed a distribution of cell phenotypes comparable with RAS but less pronounced, accompanied by an increase in CD34+, CD370+, CD103+, and CD11c+/CD103+ cells. Histologically, RAS kidneys showed significantly increased fibrosis and decreased CD163+/CD141+ cells. The single-cell platform CyTOF enables the detection of significant changes in renal cells, especially in subsets of immune cells in ischemic human kidneys. Endogenous pro-repair cell types in RAS warrant future study for potential immune therapy.NEW & NOTEWORTHY The single-cell platform mass cytometry (CyTOF) enables detection of significant changes in one million of renal cells, especially in subsets of immune cells in ischemic human kidneys distal to renal artery stenosis (RAS). We found that pro-repair cell types such as scattered tubular-progenitor-like cells, aged neutrophils, and regulatory B cells show a compensatory increase in RAS. Immune cell phenotype changes may reflect ongoing inflammation and impaired immune defense capability in the kidneys.
Collapse
Affiliation(s)
- Xiang-Yang Zhu
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Nattawat Klomjit
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Aditya S Pawar
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Amrutesh S Puranik
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Zhi-Zhang Yang
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States
| | - Esther Lutgens
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | - Alfonso Eirin
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | - Stephen C Textor
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Lilach O Lerman
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, Minnesota, United States
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
38
|
Pan L, Mou T, Huang Y, Hong W, Yu M, Li X. Ursa: A Comprehensive Multiomics Toolbox for High-Throughput Single-Cell Analysis. Mol Biol Evol 2023; 40:msad267. [PMID: 38091963 PMCID: PMC10752348 DOI: 10.1093/molbev/msad267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/08/2023] [Accepted: 11/03/2023] [Indexed: 12/28/2023] Open
Abstract
The burgeoning amount of single-cell data has been accompanied by revolutionary changes to computational methods to map, quantify, and analyze the outputs of these cutting-edge technologies. Many are still unable to reap the benefits of these advancements due to the lack of bioinformatics expertise. To address this issue, we present Ursa, an automated single-cell multiomics R package containing 6 automated single-cell omics and spatial transcriptomics workflows. Ursa allows scientists to carry out post-quantification single or multiomics analyses in genomics, transcriptomics, epigenetics, proteomics, and immunomics at the single-cell level. It serves as a 1-stop analytic solution by providing users with outcomes to quality control assessments, multidimensional analyses such as dimension reduction and clustering, and extended analyses such as pseudotime trajectory and gene-set enrichment analyses. Ursa aims bridge the gap between those with bioinformatics expertise and those without by providing an easy-to-use bioinformatics package for scientists in hoping to accelerate their research potential. Ursa is freely available at https://github.com/singlecellomics/ursa.
Collapse
Affiliation(s)
- Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, Solna 171 65, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna 171 65, Sweden
| | - Tian Mou
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yue Huang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna 171 65, Sweden
| | - Weifeng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Min Yu
- Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuexin Li
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna 171 65, Sweden
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| |
Collapse
|
39
|
Wang M, Dehlinger A, Zapata CF, Golan M, Gallaccio G, Sander LE, Schlickeiser S, Kunkel D, Schmitz-Hübsch T, Sawitzki B, Karni A, Braun J, Loyal L, Thiel A, Bellmann-Strobl J, Paul F, Meyer-Arndt L, Böttcher C. Associations of myeloid cells with cellular and humoral responses following vaccinations in patients with neuroimmunological diseases. Nat Commun 2023; 14:7728. [PMID: 38007484 PMCID: PMC10676398 DOI: 10.1038/s41467-023-43553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023] Open
Abstract
Disease-modifying therapies (DMTs) are widely used in neuroimmunological diseases such as multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Although these treatments are known to predispose patients to infections and affect their responses to vaccination, little is known about the impact of DMTs on the myeloid cell compartment. In this study, we use mass cytometry to examine DMT-associated changes in the innate immune system in untreated and treated patients with MS (n = 39) or NMOSD (n = 23). We also investigated the association between changes in myeloid cell phenotypes and longitudinal responsiveness to homologous primary, secondary, and tertiary SARS-CoV-2 mRNA vaccinations. Multiple DMT-associated myeloid cell clusters, in particular CD64+HLADRlow granulocytes, showed significant correlations with B and T cell responses induced by vaccination. Our findings suggest the potential role of myeloid cells in cellular and humoral responses following vaccination in DMT-treated patients with neuroimmunological diseases.
Collapse
Affiliation(s)
- Meng Wang
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Adeline Dehlinger
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Camila Fernández Zapata
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Maya Golan
- Neuroimmunology and Multiple Sclerosis Unit and Laboratory, Sourasky Medical Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gerardina Gallaccio
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health Berlin, Berlin, Germany
| | - Desiree Kunkel
- Flow&MassCytometry Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Birgit Sawitzki
- Translational Immunology, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Arnon Karni
- Neuroimmunology and Multiple Sclerosis Unit and Laboratory, Sourasky Medical Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine and Sagol School of Neuroscience Tel Aviv University, Tel Aviv, Israel
| | - Julian Braun
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Lucie Loyal
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Andreas Thiel
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Immunomics-Regenerative Immunology and Aging, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lil Meyer-Arndt
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Si-M / "Der Simulierte Mensch" a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
40
|
Liu Y, Zhou J, Chen B, Liu X, Cai Y, Liu W, Hao H, Li S. High-dimensional mass cytometry reveals systemic and local immune signatures in necrotizing enterocolitis. Front Immunol 2023; 14:1292987. [PMID: 38045686 PMCID: PMC10690805 DOI: 10.3389/fimmu.2023.1292987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Objective Patients with necrotizing enterocolitis display severe gastrointestinal complications of prematurity, but the mechanism driving this clinical profile remains unknown. We used mass cytometry time-of-flight to characterize and compare immune cell populations in the blood and intestine tissue from patients with and without (controls) necrotizing enterocolitis at single-cell resolution. Methods We completed a deep mapping of the immune system of the peripheral blood mononuclear cells and intestinal mucosa tissue using mass cytometry to evaluate immune cell types, which revealed global immune dysregulation characteristics underlying necrotizing enterocolitis. Results Compared with controls, natural killer cells display signs of heightened activation and increased cytotoxic potential in the peripheral blood and mucosa of patients with necrotizing enterocolitis. Furthermore, CD4+ T effector memory cells, non-classical monocytes, active dendritic cells, and neutrophils were specifically enriched in the mucosa, suggesting trafficking from the periphery to areas of inflammation. Moreover, we mapped the systemic and local distinct immune signatures suggesting patterns of cell localization in necrotizing enterocolitis. Conclusion We used mass cytometry time-of-flight technology to identify immune cell populations specific to the peripheral blood and intestinal mucosa tissue from patients with necrotizing enterocolitis and controls. This information might be used to develop precise diagnosis and therapies that target specific cell populations in patients with necrotizing enterocolitis.
Collapse
Affiliation(s)
- Yufeng Liu
- Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, Guangzhou, China
| | - Jialiang Zhou
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Baozhu Chen
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Liu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Sim J, O'Guin E, Monahan K, Sugimoto C, McLean SA, Albertorio-Sáez L, Zhao Y, Laumet S, Dagenais A, Bernard MP, Folger JK, Robison AJ, Linnstaedt SD, Laumet G. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565129. [PMID: 37961295 PMCID: PMC10635095 DOI: 10.1101/2023.11.03.565129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain. Graphical abstract
Collapse
|
42
|
Baxter RM, Wang CS, Garcia-Perez JE, Kong DS, Coleman BM, Larchenko V, Schuyler RP, Jackson C, Ghosh T, Rudra P, Paul D, Claassen M, Rochford R, Cambier JC, Ghosh D, Cooper JC, Smith MJ, Hsieh EWY. Expansion of extrafollicular B and T cell subsets in childhood-onset systemic lupus erythematosus. Front Immunol 2023; 14:1208282. [PMID: 37965329 PMCID: PMC10641733 DOI: 10.3389/fimmu.2023.1208282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Most childhood-onset SLE patients (cSLE) develop lupus nephritis (cLN), but only a small proportion achieve complete response to current therapies. The prognosis of children with LN and end-stage renal disease is particularly dire. Mortality rates within the first five years of renal replacement therapy may reach 22%. Thus, there is urgent need to decipher and target immune mechanisms that drive cLN. Despite the clear role of autoantibody production in SLE, targeted B cell therapies such as rituximab (anti-CD20) and belimumab (anti-BAFF) have shown only modest efficacy in cLN. While many studies have linked dysregulation of germinal center formation to SLE pathogenesis, other work supports a role for extrafollicular B cell activation in generation of pathogenic antibody secreting cells. However, whether extrafollicular B cell subsets and their T cell collaborators play a role in specific organ involvement in cLN and/or track with disease activity remains unknown. Methods We analyzed high-dimensional mass cytometry and gene expression data from 24 treatment naïve cSLE patients at the time of diagnosis and longitudinally, applying novel computational tools to identify abnormalities associated with clinical manifestations (cLN) and disease activity (SLEDAI). Results cSLE patients have an extrafollicular B cell expansion signature, with increased frequency of i) DN2, ii) Bnd2, iii) plasmablasts, and iv) peripheral T helper cells. Most importantly, we discovered that this extrafollicular signature correlates with disease activity in cLN, supporting extrafollicular T/B interactions as a mechanism underlying pediatric renal pathogenesis. Discussion This study integrates established and emerging themes of extrafollicular B cell involvement in SLE by providing evidence for extrafollicular B and peripheral T helper cell expansion, along with elevated type 1 IFN activation, in a homogeneous cohort of treatment-naïve cSLE patients, a point at which they should display the most extreme state of their immune dysregulation.
Collapse
Affiliation(s)
- Ryan M. Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Christine S. Wang
- Department of Pediatrics, Section of Rheumatology, School of Medicine, University of Colorado, Children’s Hospital Colorado, Aurora, CO, United States
| | - Josselyn E. Garcia-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Daniel S. Kong
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Brianne M. Coleman
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Valentyna Larchenko
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Ronald P. Schuyler
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Conner Jackson
- Center for Innovative Design and Analysis, School of Public Health, University of Colorado, Aurora, CO, United States
| | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, United States
| | - Pratyaydipta Rudra
- Department of Statistics, Oklahoma State University, Stillwater, OK, United States
| | - Debdas Paul
- Clinical Bioinformatics & Machine Learning in Translational Single-Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Manfred Claassen
- Clinical Bioinformatics & Machine Learning in Translational Single-Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Rosemary Rochford
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, United States
| | - Jennifer C. Cooper
- Department of Pediatrics, Section of Rheumatology, School of Medicine, University of Colorado, Children’s Hospital Colorado, Aurora, CO, United States
| | - Mia J. Smith
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Pediatrics, Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Elena W. Y. Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Pediatrics, Section of Allergy and Immunology, School of Medicine, University of Colorado, Children’s Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
43
|
Bach FA, Muñoz Sandoval D, Mazurczyk M, Themistocleous Y, Rawlinson TA, Harding AC, Kemp A, Silk SE, Barrett JR, Edwards NJ, Ivens A, Rayner JC, Minassian AM, Napolitani G, Draper SJ, Spence PJ. A systematic analysis of the human immune response to Plasmodium vivax. J Clin Invest 2023; 133:e152463. [PMID: 37616070 PMCID: PMC10575735 DOI: 10.1172/jci152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUNDThe biology of Plasmodium vivax is markedly different from that of P. falciparum; how this shapes the immune response to infection remains unclear. To address this shortfall, we inoculated human volunteers with a clonal field isolate of P. vivax and tracked their response through infection and convalescence.METHODSParticipants were injected intravenously with blood-stage parasites and infection dynamics were tracked in real time by quantitative PCR. Whole blood samples were used for high dimensional protein analysis, RNA sequencing, and cytometry by time of flight, and temporal changes in the host response to P. vivax were quantified by linear regression. Comparative analyses with P. falciparum were then undertaken using analogous data sets derived from prior controlled human malaria infection studies.RESULTSP. vivax rapidly induced a type I inflammatory response that coincided with hallmark features of clinical malaria. This acute-phase response shared remarkable overlap with that induced by P. falciparum but was significantly elevated (at RNA and protein levels), leading to an increased incidence of pyrexia. In contrast, T cell activation and terminal differentiation were significantly increased in volunteers infected with P. falciparum. Heterogeneous CD4+ T cells were found to dominate this adaptive response and phenotypic analysis revealed unexpected features normally associated with cytotoxicity and autoinflammatory disease.CONCLUSIONP. vivax triggers increased systemic interferon signaling (cf P. falciparum), which likely explains its reduced pyrogenic threshold. In contrast, P. falciparum drives T cell activation far in excess of P. vivax, which may partially explain why falciparum malaria more frequently causes severe disease.TRIAL REGISTRATIONClinicalTrials.gov NCT03797989.FUNDINGThe European Union's Horizon 2020 Research and Innovation programme, the Wellcome Trust, and the Royal Society.
Collapse
Affiliation(s)
- Florian A. Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Diana Muñoz Sandoval
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Insitute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | | | | | | | - Adam C. Harding
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Kemp
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jordan R. Barrett
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Angela M. Minassian
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, and
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip J. Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
44
|
García-Solís B, Van Den Rym A, Martinez-Martínez L, Franco T, Pérez-Caraballo JJ, Markle J, Cubillos-Zapata C, Marín AV, Recio MJ, Regueiro JR, Navarro-Zapata A, Mestre-Durán C, Ferreras C, Martín Cotázar C, Mena R, de la Calle-Fabregat C, López-Lera A, Fernández Arquero M, Pérez-Martínez A, López-Collazo E, Sánchez-Ramón S, Casanova JL, Martínez-Barricarte R, de la Calle-Martín O, Pérez de Diego R. Inherited human ezrin deficiency impairs adaptive immunity. J Allergy Clin Immunol 2023; 152:997-1009.e11. [PMID: 37301410 PMCID: PMC11009781 DOI: 10.1016/j.jaci.2023.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Inborn errors of immunity (IEI) are a group of monogenic diseases that confer susceptibility to infection, autoimmunity, and cancer. Despite the life-threatening consequences of some IEI, their genetic cause remains unknown in many patients. OBJECTIVE We investigated a patient with an IEI of unknown genetic etiology. METHODS Whole-exome sequencing identified a homozygous missense mutation of the gene encoding ezrin (EZR), substituting a threonine for an alanine at position 129. RESULTS Ezrin is one of the subunits of the ezrin, radixin, and moesin (ERM) complex. The ERM complex links the plasma membrane to the cytoskeleton and is crucial for the assembly of an efficient immune response. The A129T mutation abolishes basal phosphorylation and decreases calcium signaling, leading to complete loss of function. Consistent with the pleiotropic function of ezrin in myriad immune cells, multidimensional immunophenotyping by mass and flow cytometry revealed that in addition to hypogammaglobulinemia, the patient had low frequencies of switched memory B cells, CD4+ and CD8+ T cells, MAIT, γδ T cells, and centralnaive CD4+ cells. CONCLUSIONS Autosomal-recessive human ezrin deficiency is a newly recognized genetic cause of B-cell deficiency affecting cellular and humoral immunity.
Collapse
Affiliation(s)
- Blanca García-Solís
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | | | - Teresa Franco
- Immunology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jareb J Pérez-Caraballo
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tenn; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tenn
| | - Janet Markle
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tenn; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tenn
| | - Carolina Cubillos-Zapata
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Centre for Biomedical Research Network, CIBEres, Madrid, Spain
| | - Ana V Marín
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - María J Recio
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - José R Regueiro
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Alfonso Navarro-Zapata
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carmen Mestre-Durán
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Cristina Ferreras
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carla Martín Cotázar
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Roció Mena
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | | | - Alberto López-Lera
- IdiPAZ Institute for Health Research, La Paz University Hospital, CIBERER U-754, Madrid, Spain
| | - Miguel Fernández Arquero
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain; Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain; Clinical Immunology Department, San Carlos Clinical Hospital, Madrid, Spain
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Imagine Institute, University Paris Descartes, Paris, France; Howard Hughes Medical Institute, New York, NY
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tenn; Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tenn
| | | | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain.
| |
Collapse
|
45
|
Parrish A, Boudaud M, Grant ET, Willieme S, Neumann M, Wolter M, Craig SZ, De Sciscio A, Cosma A, Hunewald O, Ollert M, Desai MS. Akkermansia muciniphila exacerbates food allergy in fibre-deprived mice. Nat Microbiol 2023; 8:1863-1879. [PMID: 37696941 PMCID: PMC10522492 DOI: 10.1038/s41564-023-01464-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/05/2023] [Indexed: 09/13/2023]
Abstract
Alterations in the gut microbiome, including diet-driven changes, are linked to the rising prevalence of food allergy. However, little is known about how specific gut bacteria trigger the breakdown of oral tolerance. Here we show that depriving specific-pathogen-free mice of dietary fibre leads to a gut microbiota signature with increases in the mucin-degrading bacterium Akkermansia muciniphila. This signature is associated with intestinal barrier dysfunction, increased expression of type 1 and 2 cytokines and IgE-coated commensals in the colon, which result in an exacerbated allergic reaction to food allergens, ovalbumin and peanut. To demonstrate the causal role of A. muciniphila, we employed a tractable synthetic human gut microbiota in gnotobiotic mice. The presence of A. muciniphila within the microbiota, combined with fibre deprivation, resulted in stronger anti-commensal IgE coating and innate type-2 immune responses, which worsened symptoms of food allergy. Our study provides important insights into how gut microbes can regulate immune pathways of food allergy in a diet-dependent manner.
Collapse
Affiliation(s)
- Amy Parrish
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Stéphanie Willieme
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Mareike Neumann
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mathis Wolter
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sophie Z Craig
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alessandro De Sciscio
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
46
|
Kinney SM, Ortaleza K, Won SY, Licht BJM, Sefton MV. Immunomodulation by subcutaneously injected methacrylic acid-based hydrogels and tolerogenic dendritic cells in a mouse model of autoimmune diabetes. Biomaterials 2023; 301:122265. [PMID: 37586232 DOI: 10.1016/j.biomaterials.2023.122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023]
Abstract
Type 1 diabetes is an autoimmune disease associated with the destruction of insulin-producing β cells. Immunotherapies are being developed to mitigate autoimmune diabetes. One promising option is the delivery of tolerogenic dendritic cells (DCs) primed with specific β-cell-associated autoantigens. These DCs can combat autoreactive cells and promote expansion of β-cell-specific regulatory immune cells, including Tregs. Tolerogenic DCs are typically injected systemically (or near target lymph nodes) in suspension, precluding control over the microenvironment surrounding tolerogenic DC interactions with the host. In this study we show that degradable, synthetic methacrylic acid (MAA)-based hydrogels are an inherently immunomodulating delivery vehicle that enhances tolerogenic DC therapy in the context of autoimmune diabetes. MAA hydrogels were found to affect the local recruitment and activation state of macrophages, DCs, T cells and other cells. Delivering tolerogenic DCs in the MAA hydrogel improved the local host response (e.g., fewer cytotoxic T cells) and enhanced peripheral Treg expansion. Non obese diabetic (NOD) mice treated with tolerogenic DCs subcutaneously injected in MAA hydrogels showed a delay in onset of autoimmune diabetes compared to control vehicles. Our findings further demonstrate the usefulness of MAA-based hydrogels as platforms for regenerative medicine in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Sean M Kinney
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Krystal Ortaleza
- Institute of Biomedical Engineering, University of Toronto, Canada
| | - So-Yoon Won
- Institute of Biomedical Engineering, University of Toronto, Canada
| | | | - Michael V Sefton
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
47
|
Maeda S, Hashimoto H, Maeda T, Tamechika SY, Isogai S, Naniwa T, Niimi A. High-dimensional analysis of T-cell profiling variations following belimumab treatment in systemic lupus erythematosus. Lupus Sci Med 2023; 10:e000976. [PMID: 37802602 PMCID: PMC10565340 DOI: 10.1136/lupus-2023-000976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study sought to elucidate the molecular impacts of belimumab (BEL) treatment on T-cell immune profiling in SLE. METHODS We used mass cytometry with 25 marker panels for T-cell immune profiling in peripheral blood T cells (CD3+) from 22 patients with BEL-treated SLE and 20 controls with non-BEL-treated SLE. An unsupervised machine-learning clustering, FlowSOM, was used to identify 39 T-cell clusters (TCLs; TCL01-TCL39). TCLs (% of CD3+) showing significant (p<0.05) associations with BEL treatment (BEL-TCL) were selected by a linear mixed-effects model for comparing groups of time-series data. Furthermore, we analysed the association between BEL treatment and variations in regulatory T-cell (Treg) phenotypes, and the ratio of other T-cell subsets to Treg as secondary analysis. RESULTS Clinical outcomes: BEL treatment was associated with a decrease in daily prednisolone use (coef=-0.1769, p=0.00074), and an increase in serum CH50 (coef=0.4653, p=0.003), C3 (coef=1.1047, p=0.00001) and C4 (coef=0.2990, p=0.00157) levels. Molecular effects: five distinct BEL-TCLs (TCL 04, 07, 11, 12 and 27) were identified. Among these, BEL-treated patients exhibited increased proportions in the Treg-like cluster TCL11 (coef=0.404, p=0.037) and two naïve TCLs (TCL04 and TCL07). TCL27 showed increased levels (coef=0.222, p=0.037) inversely correlating with baseline C3 levels. Secondary analyses revealed associations between BEL treatment and an increase in Tregs (coef=1.749, p=0.0044), elevated proportions of the fraction of Tregs with inhibitory function (fTregs, coef=0.7294, p=0.0178) and changes in peripheral helper T cells/fTreg (coef=-4.475, p=0.0319) and T helper 17/fTreg ratios (coef=-6.7868, p=0.0327). Additionally, BEL was linked to variations in T-cell immunoglobulin and mucin domain-containing protein-3 expression (coef=0.2422, p=0.039). CONCLUSIONS The study suggests an association between BEL treatment and variations in T cells, particularly Tregs, in SLE pathologies involving various immune cells.
Collapse
Affiliation(s)
- Shinji Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Hiroya Hashimoto
- Clinical Research Management Center, Nagoya City University Hospital, Nagoya, Japan
| | - Tomoyo Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shin-Ya Tamechika
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shuntaro Isogai
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Taio Naniwa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
48
|
Suwalska A, Polanska J. GMM-Based Expanded Feature Space as a Way to Extract Useful Information for Rare Cell Subtypes Identification in Single-Cell Mass Cytometry. Int J Mol Sci 2023; 24:14033. [PMID: 37762336 PMCID: PMC10531342 DOI: 10.3390/ijms241814033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Cell subtype identification from mass cytometry data presents a persisting challenge, particularly when dealing with millions of cells. Current solutions are consistently under development, however, their accuracy and sensitivity remain limited, particularly in rare cell-type detection due to frequent downsampling. Additionally, they often lack the capability to analyze large data sets. To overcome these limitations, a new method was suggested to define an extended feature space. When combined with the robust clustering algorithm for big data, it results in more efficient cell clustering. Each marker's intensity distribution is presented as a mixture of normal distributions (Gaussian Mixture Model, GMM), and the expanded space is created by spanning over all obtained GMM components. The projection of the initial flow cytometry marker domain into the expanded space employs GMM-based membership functions. An evaluation conducted on three established cellular identification algorithms (FlowSOM, ClusterX, and PARC) utilizing the most substantial publicly available annotated dataset by Samusik et al. demonstrated the superior performance of the suggested approach in comparison to the standard. Although our approach identified 20 cell clusters instead of the expected 24, their intra-cluster homogeneity and inter-cluster differences were superior to the 24-cluster FlowSOM-based solution.
Collapse
Affiliation(s)
| | - Joanna Polanska
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
49
|
Everson RG, Hugo W, Sun L, Antonios J, Lee A, Ding L, Bu M, Khattab S, Chavez C, Billingslea-Yoon E, Salazar A, Ellingson BM, Cloughesy TF, Liau LM, Prins RM. Dendritic Cell Vaccination in Conjunction with a TLR Agonist Polarizes Interferon Immune Responses in Malignant Glioma Patients. RESEARCH SQUARE 2023:rs.3.rs-3287211. [PMID: 37790490 PMCID: PMC10543402 DOI: 10.21203/rs.3.rs-3287211/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination is a promising immunotherapy for patients with high grade gliomas, but responses have not been demonstrated in all patients. To determine the most effective combination of autologous tumor lysate-pulsed DC vaccination, with or without the adjuvant toll-like receptor (TLR) agonists poly-ICLC or resiquimod, we conducted a Phase 2 clinical trial in 23 patients with newly diagnosed or recurrent WHO Grade III-IV malignant gliomas. We then performed deep, high-dimensional immune profiling of these patients to better understand how TLR agonists may influence the systemic immune responses induced by ATL-DC vaccination. Bulk RNAseq data demonstrated highly significant upregulation of type 1 and type 2 interferon gene expression selectively in patients who received adjuvant a TLR agonist together with ATL-DC. CyTOF analysis of patient peripheral blood mononuclear cells (PBMCs) showed increased expression of PD-1 on CD4+ T-cells, decreases in CD38 and CD39 on CD8+ T cells and elevated proportion of monocytes after ATL-DC + TLR agonist administration. In addition, scRNA-seq demonstrated a higher expression fold change of IFN-induced genes with poly-ICLC treatment in both peripheral blood monocytes and T lymphocytes. Patients who had higher expression of interferon response genes lived significantly longer and had longer time to progression compared to those with lower expression. The results suggest that ATL-DC in conjunction with adjuvant poly-ICLC induces a polarized interferon response in circulating monocytes and specific activation of a CD8+ T cell population, which may represent an important blood biomarker for immunotherapy in this patient population. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01204684.
Collapse
Affiliation(s)
- Richard G. Everson
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Richard Everson and Willy Hugo contributed equally to this work as first authors
| | - Willy Hugo
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Richard Everson and Willy Hugo contributed equally to this work as first authors
| | - Lu Sun
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Joseph Antonios
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Alexander Lee
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Department of Molecular and Medical Pharmacology , David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Lizhong Ding
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Melissa Bu
- Department of Medicine, Division of Dermatology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Sarah Khattab
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Carolina Chavez
- Department of Molecular and Medical Pharmacology , David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Emma Billingslea-Yoon
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| | | | - Benjamin M. Ellingson
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Timothy F. Cloughesy
- Department of Molecular and Medical Pharmacology , David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Department of Neurology/Neuro-Oncology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Linda M. Liau
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| | - Robert M. Prins
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
- Department of Molecular and Medical Pharmacology , David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, 90095, U.S.A
| |
Collapse
|
50
|
Goldman O, Adler LN, Hajaj E, Croese T, Darzi N, Galai S, Tishler H, Ariav Y, Lavie D, Fellus-Alyagor L, Oren R, Kuznetsov Y, David E, Jaschek R, Stossel C, Singer O, Malitsky S, Barak R, Seger R, Erez N, Amit I, Tanay A, Saada A, Golan T, Rubinek T, Sang Lee J, Ben-Shachar S, Wolf I, Erez A. Early Infiltration of Innate Immune Cells to the Liver Depletes HNF4α and Promotes Extrahepatic Carcinogenesis. Cancer Discov 2023; 13:1616-1635. [PMID: 36972357 PMCID: PMC10326600 DOI: 10.1158/2159-8290.cd-22-1062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Multiple studies have identified metabolic changes within the tumor and its microenvironment during carcinogenesis. Yet, the mechanisms by which tumors affect the host metabolism are unclear. We find that systemic inflammation induced by cancer leads to liver infiltration of myeloid cells at early extrahepatic carcinogenesis. The infiltrating immune cells via IL6-pSTAT3 immune-hepatocyte cross-talk cause the depletion of a master metabolic regulator, HNF4α, consequently leading to systemic metabolic changes that promote breast and pancreatic cancer proliferation and a worse outcome. Preserving HNF4α levels maintains liver metabolism and restricts carcinogenesis. Standard liver biochemical tests can identify early metabolic changes and predict patients' outcomes and weight loss. Thus, the tumor induces early metabolic changes in its macroenvironment with diagnostic and potentially therapeutic implications for the host. SIGNIFICANCE Cancer growth requires a permanent nutrient supply starting from early disease stages. We find that the tumor extends its effect to the host's liver to obtain nutrients and rewires the systemic and tissue-specific metabolism early during carcinogenesis. Preserving liver metabolism restricts tumor growth and improves cancer outcomes. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Omer Goldman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lital N Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Croese
- Department of Brain Science, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Darzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Galai
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hila Tishler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yarden Ariav
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dor Lavie
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Rami Jaschek
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Chani Stossel
- Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Oded Singer
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Renana Barak
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Amit
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center, Hebrew University and Faculty of Medicine, Jerusalem, Israel
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Rubinek
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Joo Sang Lee
- Department of Precision Medicine, School of Medicine and Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shay Ben-Shachar
- Clalit Research Institute, Innovation Division, Clalit Health Services, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Wolf
- Oncology Division, Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|