1
|
Hossain MS, Vogt MB, Hawks SA, Coutermarsh-Ott SL, Duggal NK. Cross-protection against St. Louis encephalitis virus and Usutu virus by West Nile virus convalescent plasma. Virology 2025; 608:110555. [PMID: 40273513 PMCID: PMC12068966 DOI: 10.1016/j.virol.2025.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
West Nile virus (WNV), Usutu virus (USUV), and Saint Louis encephalitis virus (SLEV) are emerging mosquito-borne flaviviruses within the Japanese encephalitis virus serocomplex. They share a similar transmission cycle between passerine birds and Culex spp. mosquitoes, and their spillover can cause neuroinvasive diseases among humans and animals. Individuals might be exposed to more than one of these viruses during their lifetime. Previously, we found that WNV vaccination protected mice from USUV disease, and sera collected from the WNV vaccinated mice cross-neutralized USUV in vitro. However, whether WNV convalescent (post-recovery) plasma cross-protects against heterologous SLEV or USUV infection is unknown. In this study, in vivo experiments were conducted to assess whether WNV human convalescent plasma and/or mouse convalescent serum afforded protection to mice against SLEV and USUV infection and neuroinvasion. First, we found that human and mouse WNV convalescent samples cross-neutralized USUV and SLEV in vitro. We then passively transferred human or mouse WNV convalescent samples into mice and challenged them with WNV, USUV, or SLEV. Both human and mouse WNV convalescent samples reduced WNV neuroinvasion and SLEV and USUV viremia during acute infection. Mouse WNV convalescent serum significantly reduced SLEV titers in the brain and showed a trend towards resulting in less inflammation in the brain. These findings helped to better understand the potential cross-protection among WNV, SLEV, and USUV, and identified cross-neutralizing antibodies as potential correlates of protection for individuals exposed to multiple flaviviruses, though protection was incomplete.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Megan B Vogt
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Seth A Hawks
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Sheryl L Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
2
|
Walter Z, Li M, Molho M, Berish L, Isopi A, O'Mara M, Dittmar M, Nwaezeapu C, Richards A, McCullagh M, Krogan NJ, Cherry S, Johnson JR, Ramage H. An integrated proteomics approach identifies phosphorylation sites on viral and host proteins that regulate West Nile virus infection. Cell Rep 2025; 44:115728. [PMID: 40381193 DOI: 10.1016/j.celrep.2025.115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 03/22/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
Upon infection, viruses alter the proteome, creating a hospitable environment for infection. Cells respond to limit viral replication, including through protein regulation by post-translational modifications. We use mass spectrometry to define proteome alterations during West Nile virus (WNV) infection. Our studies identify upregulation of HERPUD1, which restricts WNV replication through a mechanism independent of its role in endoplasmic reticulum (ER)-associated degradation (ERAD). We also identify modifications on viral proteins, including a WNV NS3 phosphorylation site that impacts viral replication. Finally, we reveal activation of two host kinases with antiviral activity. We identify phosphorylation at S108 of AMPKβ1, a non-catalytic subunit that regulates activity of the AMPK complex. We also show activation of PAK2 by phosphorylation at S141, which restricts translation of the viral genome. This work contributes to our understanding of the interplay between host and virus while providing a resource to define the changes to the proteome that regulate viral infection.
Collapse
Affiliation(s)
- Zachary Walter
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Minghua Li
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Melissa Molho
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lauren Berish
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Isopi
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mary O'Mara
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chike Nwaezeapu
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alicia Richards
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; The J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jeffrey R Johnson
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Holly Ramage
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
3
|
Ruiz-Lozano RE, Zafar S, Berkenstock MK, Liberman P. Ocular manifestations of West Nile virus infection: A case report and systematic review of the literature. Eur J Ophthalmol 2025; 35:844-855. [PMID: 39659186 DOI: 10.1177/11206721241304150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
PurposeTo report the case of a patient with ocular West Nile virus infection (WNVI) and to describe the demographics, eye characteristics, and treatment of patients with WNVI reported in the literature.MethodsSystematic literature search using the PubMed MEDLINE database searching for all cases of ocular WNVI published from inception until October 14, 2023. Inclusion criteria were patients with serologic and/or cerebrospinal fluid diagnosis of WNVI with ocular involvement.ResultsA total of 60 patients (111 eyes), including the present case, were included. Most patients were males (57%), diagnosed in the United States (77%), and with a mean age at presentation of 54 years. The median time elapsed between the viral prodrome, and eye symptoms was 7 days. Neurologic involvement was present in 47 (78%) patients. Diabetes mellitus was the most frequent systemic comorbidity (45%). Posterior segment findings were present in 107 (96%) eyes. Multifocal chorioretinal lesions (86%), vitreous inflammation (51%), intraretinal hemorrhages (43%), and retinal vasculitis (21%) were the most frequent findings. Fluorescein angiography was performed in 88 (79%) eyes. Fifty-seven (51%) eyes did not receive treatment. Topical and systemic steroids were prescribed to 35% and 28% of eyes, respectively.ConclusionWNVI should be considered as a potential diagnosis in older patients who exhibit posterior uveitis, especially if they have recently experienced flu-like symptoms and have been exposed to mosquitoes. A comprehensive ocular assessment, which includes a dilated fundus examination and ocular imaging studies, can help raise suspicion for this condition even before serological confirmation is obtained.
Collapse
Affiliation(s)
| | - Sidra Zafar
- Division of Ocular Immunology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Meghan K Berkenstock
- Division of Ocular Immunology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paulina Liberman
- Division of Ocular Immunology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Tiberti N, Castilletti C, Gobbi FG. Extracellular vesicles in arbovirus infections: from basic biology to potential clinical applications. Front Cell Infect Microbiol 2025; 15:1558520. [PMID: 40357393 PMCID: PMC12066795 DOI: 10.3389/fcimb.2025.1558520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Arthropod-borne viruses, or arboviruses, are currently considered a global health threat responsible for potentially severe human diseases. The increased population density, changes in land use and climate change are some of the factors that are contributing to the spread of these infections over the last years. The pathogenesis of these diseases and the mechanisms of interaction with the host, especially those leading to the development of severe forms, are yet to be fully understood. In recent years extracellular vesicles (EVs) have emerged as important players in the inter-cellular and host-pathogen interaction arising a lot of interest also in the field of vector-borne viruses. In this context, EVs seem to play a dual role, by either promoting, thus facilitating, or preventing infection. Many studies are showing how viruses can hijack the vesiculation machinery to escape the host immune response and exploit EVs to sustain their replication and propagation, even though EVs shed by immune cells seem essential to promote antiviral responses. In this manuscript we reviewed the current knowledge regarding the association between EVs and vector-borne viruses, paying particular attention to their possible role in disease transmission and dissemination, as well as to their potential as novel tools for clinical applications, spanning from biomarkers of clinical utility to novel therapeutic options.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Concetta Castilletti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Federico Giovanni Gobbi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. Mol Cell 2025; 85:1147-1161.e9. [PMID: 39919747 PMCID: PMC11931551 DOI: 10.1016/j.molcel.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first-responder" cells during West Nile virus infection, we found that specific accumulation of antigenomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in first-responder cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late time points of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that, although most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
Affiliation(s)
| | - Jonathan Wilson
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Joshua M Ames
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Caleb Stokes
- Department of Immunology, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle Children's Hospital, Seattle, WA, USA
| | - Dante Moreno
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Noa Etzyon
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA; Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN, USA; Institute on Infectious Diseases, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Cody SG, Adam A, Siniavin A, Kang SS, Wang T. Flaviviruses-Induced Neurological Sequelae. Pathogens 2024; 14:22. [PMID: 39860983 PMCID: PMC11768111 DOI: 10.3390/pathogens14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses, a group of single-stranded RNA viruses spread by mosquitoes or ticks, include several significant neurotropic viruses, such as West Nile virus (WNV), Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV), and Zika virus (ZIKV). These viruses can cause a range of neurological diseases during acute infection, from mild, flu-like symptoms to severe and fatal encephalitis. A total of 20-50% of patients who recovered from acute flavivirus infections experienced long-term cognitive issues. Here, we discuss these major neurotropic flaviviruses-induced clinical diseases in humans and the recent findings in animal models and provide insights into the underlying disease mechanisms.
Collapse
Affiliation(s)
- Samantha Gabrielle Cody
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrei Siniavin
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
| | - Sam S. Kang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.G.C.); (A.A.); (A.S.); (S.S.K.)
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Visser I, Marshall EM, Agliani G, Rissmann M, van den Brand JMA, Koopmans MPG, Rockx B. In vitro and in vivo characterization of a novel West Nile virus lineage 2 strain. NPJ VIRUSES 2024; 2:61. [PMID: 40295818 PMCID: PMC11721649 DOI: 10.1038/s44298-024-00070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/08/2024] [Indexed: 04/30/2025]
Abstract
Over recent decades, West Nile virus (WNV) has continued to expand its geographical range, emerging in previously non-endemic areas, including northern Europe. In Europe, WNV lineage 2 strains are most prevalent and cause sporadic outbreaks of WNV disease in humans each transmission season. Here, we assessed the virulence of a newly emerged WNV lineage 2 strain that was isolated in the Netherlands in 2020 (WNV-NL20) and caused several cases of West Nile disease in humans and used a WNV lineage 2 strain related to major outbreaks of neuroinvasive disease in humans in central and south-eastern Europe in 2010 (WNV-578/10) as a reference. Infection of primary human cells of the blood-brain barrier in vitro did not show major differences in replication kinetics between WNV-578/10 and WNV-NL20. Experimental infection of mice showed that both WNV strains induced significant weight loss, neurological signs, and lethal disease. Neurological involvement was confirmed for both WNV strains by the presence of infectious virus and viral antigen in the brain. In conclusion, we show that the recent WNV-NL20 strain that emerged in the Netherlands is neurovirulent in mice. The use of in vitro and in vivo models to characterize the pathogenesis of emerging WNV strains may aid in predicting the neurovirulence of WNV infections in humans during potential future outbreaks.
Collapse
Affiliation(s)
- Imke Visser
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Gianfilippo Agliani
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Melanie Rissmann
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Judith M A van den Brand
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | - Barry Rockx
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Frasca F, Sorrentino L, Fracella M, D’Auria A, Coratti E, Maddaloni L, Bugani G, Gentile M, Pierangeli A, d’Ettorre G, Scagnolari C. An Update on the Entomology, Virology, Pathogenesis, and Epidemiology Status of West Nile and Dengue Viruses in Europe (2018-2023). Trop Med Infect Dis 2024; 9:166. [PMID: 39058208 PMCID: PMC11281579 DOI: 10.3390/tropicalmed9070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, increases in temperature and tropical rainfall have facilitated the spread of mosquito species into temperate zones. Mosquitoes are vectors for many viruses, including West Nile virus (WNV) and dengue virus (DENV), and pose a serious threat to public health. This review covers most of the current knowledge on the mosquito species associated with the transmission of WNV and DENV and their geographical distribution and discusses the main vertebrate hosts involved in the cycles of WNV or DENV. It also describes virological and pathogenic aspects of WNV or DENV infection, including emerging concepts linking WNV and DENV to the reproductive system. Furthermore, it provides an epidemiological analysis of the human cases of WNV and DENV reported in Europe, from 1 January 2018 to 31 December 2023, with a particular focus on Italy. The first autochthonous cases of DENV infection, with the most likely vector being Aedes albopictus, have been observed in several European countries in recent years, with a high incidence in Italy in 2023. The lack of treatments and effective vaccines is a serious challenge. Currently, the primary strategy to prevent the spread of WNV and DENV infections in humans remains to limit the spread of mosquitoes.
Collapse
Affiliation(s)
- Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra D’Auria
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Eleonora Coratti
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Ginevra Bugani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Massimo Gentile
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| |
Collapse
|
9
|
Genoyer E, Wilson J, Ames JM, Stokes C, Moreno D, Etzyon N, Oberst A, Gale M. Exposure of negative-sense viral RNA in the cytoplasm initiates innate immunity to West Nile virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597966. [PMID: 38895355 PMCID: PMC11185705 DOI: 10.1101/2024.06.07.597966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
For many RNA viruses, immunity is triggered when RIG-I-like receptors (RLRs) detect viral RNA. However, only a minority of infected cells undergo innate immune activation. By examining these "first responder" cells during West Nile virus infection, we found that specific accumulation of anti- genomic negative-sense viral RNA (-vRNA) underlies innate immune activation and that RIG-I preferentially interacts with -vRNA. However, flaviviruses sequester -vRNA into membrane-bound replication compartments away from cytosolic sensors. We found that single-stranded -vRNA accumulates outside of replication compartments in "first responder" cells, rendering it accessible to RLRs. Exposure of this -vRNA occurs at late timepoints of infection, is linked to viral assembly, and depends on the expression of viral structural proteins. These findings reveal that while most infected cells replicate high levels of vRNA, release of -vRNA from replication compartments during assembly occurs at low frequency and is critical for initiation of innate immunity during flavivirus infection.
Collapse
|
10
|
Wu S, Zhang T, Qiang W, Yang Y. Modulation of immune responses in the central nervous system by Zika virus, West Nile virus, and dengue virus. Rev Med Virol 2024; 34:e2535. [PMID: 38610091 DOI: 10.1002/rmv.2535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Arthropod-borne viruses (arboviruses) pose significant threats to global public health by causing a spectrum of diseases ranging from mild febrile illnesses to severe neurological complications. Understanding the intricate interplay between arboviruses and the immune system within the central nervous system is crucial for developing effective strategies to combat these infections and mitigate their neurological sequelae. This review comprehensively explores the mechanisms by which arboviruses such as Zika virus, West Nile virus, and Dengue virus manipulate immune responses within the CNS, leading to diverse clinical manifestations.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Clinical Laboratory, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
- School of Medicine Huanghuai University, Zhumadian, China
| | - Ting Zhang
- School of Medicine Huanghuai University, Zhumadian, China
| | - Weidong Qiang
- School of Medicine Huanghuai University, Zhumadian, China
| | - Yang Yang
- Department Neurosurgery, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, China
| |
Collapse
|
11
|
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
12
|
Spiteri AG, Wishart CL, Ni D, Viengkhou B, Macia L, Hofer MJ, King NJC. Temporal tracking of microglial and monocyte single-cell transcriptomics in lethal flavivirus infection. Acta Neuropathol Commun 2023; 11:60. [PMID: 37016414 PMCID: PMC10074823 DOI: 10.1186/s40478-023-01547-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 04/06/2023] Open
Abstract
As the resident parenchymal myeloid population in the central nervous system (CNS), microglia are strategically positioned to respond to neurotropic virus invasion and have been implicated in promoting both disease resolution and progression in the acute and post-infectious phase of virus encephalitis. In a mouse model of West Nile virus encephalitis (WNE), infection of the CNS results in recruitment of large numbers of peripheral immune cells into the brain, the majority being nitric oxide (NO)-producing Ly6Chi inflammatory monocyte-derived cells (MCs). In this model, these cells enhance immunopathology and mortality. However, the contribution of microglia to this response is currently undefined. Here we used a combination of experimental tools, including single-cell RNA sequencing (scRNA-seq), microglia and MC depletion reagents, high-dimensional spectral cytometry and computational algorithms to dissect the differential contribution of microglia and MCs to the anti-viral immune response in severe neuroinflammation seen in WNE. Intriguingly, analysis of scRNA-seq data revealed 6 unique microglia and 3 unique MC clusters that were predominantly timepoint-specific, demonstrating substantial transcriptional adaptation with disease progression over the course of WNE. While microglia and MC adopted unique gene expression profiles, gene ontology enrichment analysis, coupled with microglia and MC depletion studies, demonstrated a role for both of these cells in the trafficking of peripheral immune cells into the CNS, T cell responses and viral clearance. Over the course of infection, microglia transitioned from a homeostatic to an anti-viral and then into an immune cell-recruiting phenotype. Conversely, MC adopted antigen-presenting, immune cell-recruiting and NO-producing phenotypes, which all had anti-viral function. Overall, this study defines for the first time the single-cell transcriptomic responses of microglia and MCs over the course of WNE, demonstrating both protective and pathological roles of these cells that could potentially be targeted for differential therapeutic intervention to dampen immune-mediated pathology, while maintaining viral clearance functions.
Collapse
Affiliation(s)
- Alanna G Spiteri
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Claire L Wishart
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Barney Viengkhou
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Laurence Macia
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Chronic Diseases Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Markus J Hofer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nicholas J C King
- Viral Immunopathology Laboratory, Infection, Immunity and Inflammation Research Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Cytometry, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia.
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, 2006, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
13
|
Amurri L, Horvat B, Iampietro M. Interplay between RNA viruses and cGAS/STING axis in innate immunity. Front Cell Infect Microbiol 2023; 13:1172739. [PMID: 37077526 PMCID: PMC10106766 DOI: 10.3389/fcimb.2023.1172739] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
While the function of cGAS/STING signalling axis in the innate immune response to DNA viruses is well deciphered, increasing evidence demonstrates its significant contribution in the control of RNA virus infections. After the first evidence of cGAS/STING antagonism by flaviviruses, STING activation has been detected following infection by various enveloped RNA viruses. It has been discovered that numerous viral families have implemented advanced strategies to antagonize STING pathway through their evolutionary path. This review summarizes the characterized cGAS/STING escape strategies to date, together with the proposed mechanisms of STING signalling activation perpetrated by RNA viruses and discusses possible therapeutic approaches. Further studies regarding the interaction between RNA viruses and cGAS/STING-mediated immunity could lead to major discoveries important for the understanding of immunopathogenesis and for the treatment of RNA viral infections.
Collapse
|
14
|
Stonedahl S, Leser JS, Clarke P, Potter H, Boyd TD, Tyler KL. Treatment with Granulocyte-Macrophage Colony-Stimulating Factor Reduces Viral Titers in the Brains of West Nile Virus-Infected Mice and Improves Survival. J Virol 2023; 97:e0180522. [PMID: 36802227 PMCID: PMC10062152 DOI: 10.1128/jvi.01805-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
West Nile virus (WNV) is the leading cause of epidemic arboviral encephalitis in the United States. As there are currently no proven antiviral therapies or licensed human vaccines, understanding the neuropathogenesis of WNV is critical for rational therapeutic design. In WNV-infected mice, the depletion of microglia leads to enhanced viral replication, increased central nervous system (CNS) tissue injury, and increased mortality, suggesting that microglia play a critical role in protection against WNV neuroinvasive disease. To determine if augmenting microglial activation would provide a potential therapeutic strategy, we administered granulocyte-macrophage colony-stimulating factor (GM-CSF) to WNV-infected mice. Recombinant human GM-CSF (rHuGMCSF) (sargramostim [Leukine]) is an FDA-approved drug used to increase white blood cells following leukopenia-inducing chemotherapy or bone marrow transplantation. Daily treatment of both uninfected and WNV-infected mice with subcutaneous injections of GM-CSF resulted in microglial proliferation and activation as indicated by the enhanced expression of the microglia activation marker ionized calcium binding adaptor molecule 1 (Iba1) and several microglia-associated inflammatory cytokines, including CCL2 (C-C motif chemokine ligand 2), interleukin 6 (IL-6), and IL-10. In addition, more microglia adopted an activated morphology as demonstrated by increased sizes and more pronounced processes. GM-CSF-induced microglial activation in WNV-infected mice was associated with reduced viral titers and apoptotic activity (caspase 3) in the brains of WNV-infected mice and significantly increased survival. WNV-infected ex vivo brain slice cultures (BSCs) treated with GM-CSF also showed reduced viral titers and caspase 3 apoptotic cell death, indicating that GM-CSF specifically targets the CNS and that its actions are not dependent on peripheral immune activity. Our studies suggest that stimulation of microglial activation may be a viable therapeutic approach for the treatment of WNV neuroinvasive disease. IMPORTANCE Although rare, WNV encephalitis poses a devastating health concern, with few treatment options and frequent long-term neurological sequelae. Currently, there are no human vaccines or specific antivirals against WNV infections, so further research into potential new therapeutic agents is critical. This study presents a novel treatment option for WNV infections using GM-CSF and lays the foundation for further studies into the use of GM-CSF as a treatment for WNV encephalitis as well as a potential treatment for other viral infections.
Collapse
Affiliation(s)
- Sarah Stonedahl
- Department of Immunology, University of Colorado, Aurora, Colorado, USA
- Department of Microbiology, University of Colorado, Aurora, Colorado, USA
| | - J. Smith Leser
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | - Penny Clarke
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | - Huntington Potter
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
- University of Colorado Alzheimer’s and Cognition Center, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - Timothy D. Boyd
- University of Colorado Alzheimer’s and Cognition Center, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome, Aurora, Colorado, USA
| | - Kenneth L. Tyler
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado, Aurora, Colorado, USA
- Denver VA Medical Center, Aurora, Colorado, USA
| |
Collapse
|
15
|
Aberrant Synaptic Pruning in CNS Diseases: A Critical Player in HIV-Associated Neurological Dysfunction? Cells 2022; 11:cells11121943. [PMID: 35741071 PMCID: PMC9222069 DOI: 10.3390/cells11121943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Even in the era of effective antiretroviral therapies, people living with Human Immunodeficiency Virus (HIV) are burdened with debilitating neurological dysfunction, such as HIV-associated neurocognitive disorders (HAND) and HIV-associated pain, for which there are no FDA approved treatments. Disruption to the neural circuits of cognition and pain in the form of synaptic degeneration is implicated in developing these dysfunctions. Glia-mediated synaptic pruning is a mechanism of structural plasticity in the healthy central nervous system (CNS), but recently, it has been discovered that dysregulated glia-mediated synaptic pruning is the cause of synaptic degeneration, leading to maladaptive plasticity and cognitive deficits in multiple diseases of the CNS. Considering the essential contribution of activated glial cells during the development of HAND and HIV-associated pain, it is possible that glia-mediated synaptic pruning is the causative mechanism of synaptic degeneration induced by HIV. This review will analyze the known examples of synaptic pruning during disease in order to better understand how this mechanism could contribute to the progression of HAND and HIV-associated pain.
Collapse
|
16
|
Stonedahl S, Leser JS, Clarke P, Tyler KL. Depletion of Microglia in an Ex Vivo Brain Slice Culture Model of West Nile Virus Infection Leads to Increased Viral Titers and Cell Death. Microbiol Spectr 2022; 10:e0068522. [PMID: 35412380 PMCID: PMC9045141 DOI: 10.1128/spectrum.00685-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 01/03/2023] Open
Abstract
West Nile virus (WNV) is a major cause of viral encephalitis in the United States. WNV infection of the brain leads to neuroinflammation characterized by activation of microglia, the resident phagocytic cells of the central nervous system (CNS). In this study, depletion of CNS microglia using the CSF1R antagonist PLX5622 increased the viral load in the brain and decreased the survival of mice infected with WNV (strain TX02). PLX5622 was also used in ex vivo brain slice cultures (BSCs) to investigate the role of intrinsic neuroinflammatory responses during WNV infection. PLX5622 effectively depleted microglia (>90% depletion) from BSCs resulting in increased viral titers (3 to 4-fold increase in PLX5622-treated samples) and enhanced virus-induced caspase 3 activity and cell death. Microglia depletion did not result in widespread alterations in cytokine and chemokine production in either uninfected or WNV infected BSCs. The results of this study demonstrated how microglia contribute to limiting viral growth and preventing cell death in WNV infected BSCs but were not required for the cytokine/chemokine response to WNV infection. This study highlighted the importance of microglia in the protection from neuroinvasive WNV infection and demonstrated that microglia responses were independent of WNV-induced peripheral immune responses. IMPORTANCE WNV infections of the CNS are rare but can have devastating long-term effects. There are currently no vaccines or specific antiviral treatments, so a better understanding of the pathogenesis and immune response to this virus is crucial. Previous studies have shown microglia to be important for protection from WNV, but more work is needed to fully comprehend the impact these cells have on neuroinvasive WNV infections. This study used PLX5622 to eliminate microglia in an ex vivo brain slice culture (BSC) model to investigate the role of microglia during a WNV infection. The use of BSCs provided a system in which immune responses innate to the CNS could be studied without interference from peripheral immunity. This study will allow for a better understanding of the complex nature of microglia during viral infections and will likely impact the development of new therapeutics that target microglia.
Collapse
Affiliation(s)
- Sarah Stonedahl
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, USA
| | | | - Penny Clarke
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
| | - Kenneth L. Tyler
- Department of Neurology, University of Colorado, Aurora, Colorado, USA
- Division of Infectious Disease, Department of Medicine, University of Colorado, Aurora, Colorado, USA
- Denver Veteran Affairs Medical Center, Aurora, Colorado, USA
| |
Collapse
|
17
|
West Nile Virus Neuroinfection in Humans: Peripheral Biomarkers of Neuroinflammation and Neuronal Damage. Viruses 2022; 14:v14040756. [PMID: 35458486 PMCID: PMC9027124 DOI: 10.3390/v14040756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/27/2023] Open
Abstract
Among emerging arthropod-borne viruses (arbovirus), West Nile virus (WNV) is a flavivirus that can be associated with severe neuroinvasive infections in humans. In 2018, the European WNV epidemic resulted in over 2000 cases, representing the most important arboviral epidemic in the European continent. Characterization of inflammation and neuronal biomarkers released during WNV infection, especially in the context of neuronal impairments, could provide insight into the development of predictive tools that could be beneficial for patient outcomes. We first analyzed the inflammatory signature in the serum of WNV-infected mice and found increased concentrations of several inflammatory cytokines. We next analyzed serum and cerebrospinal-fluid (CSF) samples from a cohort of patients infected by WNV between 2018 and 2019 in Hungary to quantify a large panel of inflammatory cytokines and neurological factors. We found higher levels of inflammatory cytokines (e.g., IL4, IL6, and IL10) and neuronal factors (e.g., BDNF, GFAP, MIF, TDP-43) in the sera of WNV-infected patients with neuroinvasive disease. Furthermore, the serum inflammatory profile of these patients persisted for several weeks after initial infection, potentially leading to long-term sequelae and having a deleterious effect on brain neurovasculature. This work suggests that early signs of increased serum concentrations of inflammatory cytokines and neuronal factors could be a signature underlying the development of severe neurological impairments. Biomarkers could play an important role in patient monitoring to improve care and prevent undesirable outcomes.
Collapse
|
18
|
Hruškovicová J, Bhide K, Petroušková P, Tkáčová Z, Mochnáčová E, Čurlík J, Bhide M, Kulkarni A. Engineering the Single Domain Antibodies Targeting Receptor Binding Motifs Within the Domain III of West Nile Virus Envelope Glycoprotein. Front Microbiol 2022; 13:801466. [PMID: 35432292 PMCID: PMC9012491 DOI: 10.3389/fmicb.2022.801466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne neurotrophic flavivirus causing mild febrile illness to severe encephalitis and acute flaccid paralysis with long-term or permanent neurological disorders. Due to the absence of targeted therapy or vaccines, there is a growing need to develop effective anti-WNV therapy. In this study, single-domain antibodies (sdAbs) were developed against the domain III (DIII) of WNV’s envelope glycoprotein to interrupt the interaction between DIII and the human brain microvascular endothelial cells (hBMEC). The peripheral blood mononuclear cells of the llama immunized with recombinant DIIIL297–S403 (rDIII) were used to generate a variable heavy chain only (VHH)-Escherichia coli library, and phage display was performed using the M13K07ΔpIII Hyperphages system. Phages displaying sdAbs against rDIII were panned with the synthetic analogs of the DIII receptor binding motifs, DIII-1G299–K307 and DIII-2V371–R388, and the VHH gene from the eluted phages was subcloned into E. coli SHuffle. Soluble sdAbs purified from 96 E. coli SHuffle clones were screened to identify 20 candidates strongly binding to the synthetic analogs of DIII-1G299–K307 and DIII-2V371–R388 on a dot blot assay. Among them, sdAbA1, sdAbA6, sdAbA9, and sdAbA10 blocked the interaction between rDIII and human brain microvascular endothelial cells (hBMECs) on Western blot and cell ELISA. However, optimum stability during the overexpression was noticed only for sdAbA10 and it also neutralized the WNV–like particles (WNV-VLP) in the Luciferase assay with an half maximal effective concentration (EC50) of 1.48 nm. Furthermore, the hemocompatibility and cytotoxicity of sdAbA10 were assessed by a hemolytic assay and XTT-based hBMEC proliferation assay resulting in 0.1% of hemolytic activity and 82% hBMEC viability, respectively. Therefore, the sdAbA10 targeting DIII-2V371–R388 of the WNV envelope glycoprotein is observed to be suitable for in vivo trials as a specific therapy for WNV–induced neuropathogenesis.
Collapse
Affiliation(s)
- Jana Hruškovicová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Zuzana Tkáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Ján Čurlík
- Department of Breeding and Diseases of Game, Fish and Bees, Ecology and Cynology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Amod Kulkarni,
| |
Collapse
|
19
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
20
|
Intrinsic Innate Immune Responses Control Viral Growth and Protect against Neuronal Death in an Ex Vivo Model of West Nile Virus-Induced Central Nervous System Disease. J Virol 2021; 95:e0083521. [PMID: 34190599 DOI: 10.1128/jvi.00835-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recruitment of immune cells from the periphery is critical for controlling West Nile virus (WNV) growth in the central nervous system (CNS) and preventing subsequent WNV-induced CNS disease. Neuroinflammatory responses, including the release of proinflammatory cytokines and chemokines by CNS cells, influence the entry and function of peripheral immune cells that infiltrate the CNS. However, these same cytokines and chemokines contribute to tissue damage in other models of CNS injury. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist that inhibits neuroinflammation. We used rosiglitazone in WNV-infected ex vivo brain slice cultures (BSC) to investigate the role of neuroinflammation within the CNS in the absence of peripheral immune cells. Rosiglitazone treatment inhibited WNV-induced expression of proinflammatory chemokines and cytokines, interferon beta (IFN-β), and IFN-stimulated genes (ISG) and also decreased WNV-induced activation of microglia. These decreased neuroinflammatory responses were associated with activation of astrocytes, robust viral growth, increased activation of caspase 3, and increased neuronal loss. Rosiglitazone had a similar effect on in vivo WNV infection, causing increased viral growth, tissue damage, and disease severity in infected mice, even though the number of infiltrating peripheral immune cells was higher in rosiglitazone-treated, WNV-infected mice than in untreated, infected controls. These results indicate that local neuroinflammatory responses are capable of controlling viral growth within the CNS and limiting neuronal loss and may function to keep the virus in check prior to the infiltration of peripheral immune cells, limiting both virus- and immune-mediated neuronal damage. IMPORTANCE West Nile virus is the most common cause of epidemic encephalitis in the United States and can result in debilitating CNS disease. There are no effective vaccines or treatments for WNV-induced CNS disease in humans. The peripheral immune response is critical for protection against WNV CNS infections. We now demonstrate that intrinsic immune responses also control viral growth and limit neuronal loss. These findings have important implications for developing new therapies for WNV-induced CNS disease.
Collapse
|
21
|
Fragkou PC, Moschopoulos CD, Karofylakis E, Kelesidis T, Tsiodras S. Update in Viral Infections in the Intensive Care Unit. Front Med (Lausanne) 2021; 8:575580. [PMID: 33708775 PMCID: PMC7940368 DOI: 10.3389/fmed.2021.575580] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of highly sensitive molecular diagnostic techniques has improved our ability to detect viral pathogens leading to severe and often fatal infections that require admission to the Intensive Care Unit (ICU). Viral infections in the ICU have pleomorphic clinical presentations including pneumonia, acute respiratory distress syndrome, respiratory failure, central or peripheral nervous system manifestations, and viral-induced shock. Besides de novo infections, certain viruses fall into latency and can be reactivated in both immunosuppressed and immunocompetent critically ill patients. Depending on the viral strain, transmission occurs either directly through contact with infectious materials and large droplets, or indirectly through suspended air particles (airborne transmission of droplet nuclei). Many viruses can efficiently spread within hospital environment leading to in-hospital outbreaks, sometimes with high rates of mortality and morbidity, thus infection control measures are of paramount importance. Despite the advances in detecting viral pathogens, limited progress has been made in antiviral treatments, contributing to unexpectedly high rates of unfavorable outcomes. Herein, we review the most updated data on epidemiology, common clinical features, diagnosis, pathogenesis, treatment and prevention of severe community- and hospital-acquired viral infections in the ICU settings.
Collapse
Affiliation(s)
- Paraskevi C. Fragkou
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| | - Charalampos D. Moschopoulos
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| | - Emmanouil Karofylakis
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| | - Theodoros Kelesidis
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| |
Collapse
|
22
|
Antiviral Cytokine Response in Neuroinvasive and Non-Neuroinvasive West Nile Virus Infection. Viruses 2021; 13:v13020342. [PMID: 33671821 PMCID: PMC7927094 DOI: 10.3390/v13020342] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
Data on the immune response to West Nile virus (WNV) are limited. We analyzed the antiviral cytokine response in serum and cerebrospinal fluid (CSF) samples of patients with WNV fever and WNV neuroinvasive disease using a multiplex bead-based assay for the simultaneous quantification of 13 human cytokines. The panel included cytokines associated with innate and early pro-inflammatory immune responses (TNF-α/IL-6), Th1 (IL-2/IFN-γ), Th2 (IL-4/IL-5/IL-9/IL-13), Th17 immune response (IL-17A/IL-17F/IL-21/IL-22) and the key anti-inflammatory cytokine IL-10. Elevated levels of IFN-γ were detected in 71.7% of CSF and 22.7% of serum samples (p = 0.003). Expression of IL-2/IL-4/TNF-α and Th1 17 cytokines (IL-17A/IL-17F/IL-21) was detected in the serum but not in the CSF (except one positive CSF sample for IL-17F/IL-4). While IL-6 levels were markedly higher in the CSF compared to serum (CSF median 2036.71, IQR 213.82–6190.50; serum median 24.48, IQR 11.93–49.81; p < 0.001), no difference in the IL-13/IL-9/IL-10/IFN-γ/IL-22 levels in serum/CSF was found. In conclusion, increased concentrations of the key cytokines associated with innate and early acute phase responses (IL-6) and Th1 type immune responses (IFN-γ) were found in the CNS of patients with WNV infection. In contrast, expression of the key T-cell growth factor IL-2, Th17 cytokines, a Th2 cytokine IL-4 and the proinflammatory cytokine TNF-α appear to be concentrated mainly in the periphery.
Collapse
|
23
|
Bartlett ML, Griffin DE. Acute RNA Viral Encephalomyelitis and the Role of Antibodies in the Central Nervous System. Viruses 2020; 12:v12090988. [PMID: 32899509 PMCID: PMC7551998 DOI: 10.3390/v12090988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Acute RNA viral encephalomyelitis is a serious complication of numerous virus infections. Antibodies in the cerebral spinal fluid (CSF) are correlated to better outcomes, and there is substantive evidence of antibody secreting cells (ASCs) entering the central nervous system (CNS) and contributing to resolution of infection. Here, we review the RNA viruses known to cause acute viral encephalomyelitis with mechanisms of control that require antibody or ASCs. We compile the cytokines, chemokines, and surface receptors associated with ASC recruitment to the CNS after infection and compare known antibody-mediated mechanisms as well as potential noncytolytic mechanisms for virus control. These non-canonical functions of antibodies may be employed in the CNS to protect precious non-renewable neurons. Understanding the immune-specialized zone of the CNS is essential for the development of effective treatments for acute encephalomyelitis caused by RNA viruses.
Collapse
|
24
|
Stonedahl S, Clarke P, Tyler KL. The Role of Microglia during West Nile Virus Infection of the Central Nervous System. Vaccines (Basel) 2020; 8:E485. [PMID: 32872152 PMCID: PMC7563127 DOI: 10.3390/vaccines8030485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
Encephalitis resulting from viral infections is a major cause of hospitalization and death worldwide. West Nile Virus (WNV) is a substantial health concern as it is one of the leading causes of viral encephalitis in the United States today. WNV infiltrates the central nervous system (CNS), where it directly infects neurons and induces neuronal cell death, in part, via activation of caspase 3-mediated apoptosis. WNV infection also induces neuroinflammation characterized by activation of innate immune cells, including microglia and astrocytes, production of inflammatory cytokines, breakdown of the blood-brain barrier, and infiltration of peripheral leukocytes. Microglia are the resident immune cells of the brain and monitor the CNS for signs of injury or pathogens. Following infection with WNV, microglia exhibit a change in morphology consistent with activation and are associated with increased expression of proinflammatory cytokines. Recent research has focused on deciphering the role of microglia during WNV encephalitis. Microglia play a protective role during infections by limiting viral growth and reducing mortality in mice. However, it also appears that activated microglia are triggered by T cells to mediate synaptic elimination at late times during infection, which may contribute to long-term neurological deficits following a neuroinvasive WNV infection. This review will discuss the important role of microglia in the pathogenesis of a neuroinvasive WNV infection. Knowledge of the precise role of microglia during a WNV infection may lead to a greater ability to treat and manage WNV encephalitis.
Collapse
Affiliation(s)
- Sarah Stonedahl
- Department of Immunology and Microbiology University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Tyler
- Department of Immunology and Microbiology, Infectious Disease, Medicine and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs, Aurora, CO 80045, USA
| |
Collapse
|
25
|
Leis AA, Grill MF, Goodman BP, Sadiq SB, Sinclair DJ, Vig PJS, Bai F. Tumor Necrosis Factor-Alpha Signaling May Contribute to Chronic West Nile Virus Post-infectious Proinflammatory State. Front Med (Lausanne) 2020; 7:164. [PMID: 32426358 PMCID: PMC7203783 DOI: 10.3389/fmed.2020.00164] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background: West Nile virus (WNV) causes a spectrum of human disease ranging from a febrile illness (WNV fever) to severe neuroinvasive disease (meningitis, encephalitis, acute flaccid paralysis). Since WNV gained entry into North America in 1999, clinicians caring for WNV survivors have observed persistent neurological symptoms occurring long-after the production of neutralizing antibodies and clearance of the virus. Accordingly, alternative pathogeneses other than direct viral invasion have been hypothesized to explain these post-infectious symptoms. The dominant hypothesis is that antiviral inflammatory responses triggered initially to clear WNV may persist to promote a post-infectious proinflammatory state. Methods: In 4 serologically-confirmed WNV patients with persistent post-infectious symptoms (3 WNV fever, 1 neuroinvasive disease), we ordered a comprehensive cytokine panel at weeks 8, 10, 12, and 36 months post-onset of illness, respectively, to better understand the pathophysiology of the protracted symptoms. Results: All patients had abnormally elevated tumor necrosis factor alpha (TNF-α), a major molecule triggering antiviral cytokines and chronic inflammation in many human autoimmune diseases, but heretofore not reported to be upregulated in human WNV infection. Three patients also had elevations of other proinflammatory proteins. Major symptoms included fatigue, arthralgias, myalgias, generalized or multifocal pain or weakness, imbalance, headaches, cognitive problems, and symptoms of dysautonomia. Conclusion: The findings provide support for an extended post-infectious proinflammatory state that may contribute to chronic inflammation and long-term morbidity in some WNV survivors and further suggest that TNF-α may play a pathogenic role in initiating this inflammatory environment. Clinical trials may be warranted to determine if TNF-α inhibitors or other immunosuppressive agents can improve patient outcomes.
Collapse
Affiliation(s)
- A Arturo Leis
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS, United States
| | - Marie F Grill
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Brent P Goodman
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Syed B Sadiq
- Mississippi Baptist Medical Center, Jackson, MS, United States
| | | | - Parminder J S Vig
- Departments of Neurology, Neurobiology, and Biochemistry, University of Mississippi Medical Center, Jackson, MS, United States
| | - Fengwei Bai
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
26
|
Savopoulos C, Pilalas D, Kaiafa GD, Panagiotou G, Grammenou MC, Kouskouras K, Tegos T, Psomas E, Papa A, Foroglou N, Hatzitolios AI. West Nile virus neuroinvasive disease. QJM 2020; 113:125-126. [PMID: 31593223 DOI: 10.1093/qjmed/hcz255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 09/25/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- C Savopoulos
- From the First Propedeutic Department of Internal Medicine, Thessaloniki, Greece
| | - D Pilalas
- From the First Propedeutic Department of Internal Medicine, Thessaloniki, Greece
| | - G D Kaiafa
- From the First Propedeutic Department of Internal Medicine, Thessaloniki, Greece
| | - G Panagiotou
- From the First Propedeutic Department of Internal Medicine, Thessaloniki, Greece
| | - M-C Grammenou
- From the First Propedeutic Department of Internal Medicine, Thessaloniki, Greece
| | | | - T Tegos
- First Department of Neurology, AHEPA University Hospital, Medical School, Aristotle University, Thessaloniki, Greece
| | - E Psomas
- From the First Propedeutic Department of Internal Medicine, Thessaloniki, Greece
| | - A Papa
- Department of Microbiology, Medical School, Aristotle University, Thessaloniki, Greece
| | - N Foroglou
- First Department of Neurosurgery, AHEPA University Hospital, Medical School, Aristotle University, Thessaloniki, Greece
| | - A I Hatzitolios
- From the First Propedeutic Department of Internal Medicine, Thessaloniki, Greece
| |
Collapse
|
27
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
29
|
Jourdain F, Samy AM, Hamidi A, Bouattour A, Alten B, Faraj C, Roiz D, Petrić D, Pérez-Ramírez E, Velo E, Günay F, Bosevska G, Salem I, Pajovic I, Marić J, Kanani K, Paronyan L, Dente MG, Picard M, Zgomba M, Sarih M, Haddad N, Gaidash O, Sukhiasvili R, Declich S, Shaibi T, Sulesco T, Harrat Z, Robert V. Towards harmonisation of entomological surveillance in the Mediterranean area. PLoS Negl Trop Dis 2019; 13:e0007314. [PMID: 31194743 PMCID: PMC6563966 DOI: 10.1371/journal.pntd.0007314] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The Mediterranean Basin is historically a hotspot for trade, transport, and migration. As a result, countries surrounding the Mediterranean Sea share common public health threats. Among them are vector-borne diseases, and in particular, mosquito-borne viral diseases are prime candidates as (re)emerging diseases and are likely to spread across the area. Improving preparedness and response capacities to these threats at the regional level is therefore a major issue. The implementation of entomological surveillance is, in particular, of utmost importance. Guidance in designing entomological surveillance systems is critical, and these systems may pursue different specific objectives depending on the disease. The purpose of the proposed review is to draw up guidelines for designing effective and sustainable entomological surveillance systems in order to improve preparedness and response. However, we make it clear that there is no universal surveillance system, so the thinking behind harmonisation is to define evidence-based standards in order to promote best practises, identify the most appropriate surveillance activities, and optimise the use of resources. Such guidance is aimed at policymakers and diverse stakeholders and is intended to be used as a framework for the implementation of entomological surveillance programmes. It will also be useful to collaborate and share information with health professionals involved in other areas of disease surveillance. Medical entomologists and vector control professionals will be able to refer to this report to advocate for tailored entomological surveillance strategies. The main threats targeted in this review are the vectors of dengue virus, chikungunya virus, Zika virus, West Nile virus, and Rift Valley fever virus. The vectors of all these arboviruses are mosquitoes. METHODS Current knowledge on vector surveillance in the Mediterranean area is reviewed. The analysis was carried out by a collaboration of the medical entomology experts in the region, all of whom belong to the MediLabSecure network, which is currently funded by the European Union and represents an international effort encompassing 19 countries in the Mediterranean and Black Sea region. FINDINGS Robust surveillance systems are required to address the globalisation of emerging arboviruses. The prevention and management of mosquito-borne viral diseases must be addressed in the prism of a One Health strategy that includes entomological surveillance as an integral part of the policy. Entomological surveillance systems should be designed according to the entomological and epidemiological context and must have well-defined objectives in order to effect a tailored and graduated response. We therefore rely on different scenarios according to different entomological and epidemiological contexts and set out detailed objectives of surveillance. The development of multidisciplinary networks involving both academics and public authorities will provide resources to address these health challenges by promoting good practises in surveillance (identification of surveillance aims, design of surveillance systems, data collection, dissemination of surveillance results, evaluation of surveillance activities) and through the sharing of effective knowledge and information. These networks will also contribute to capacity building and stronger collaborations between sectors at both the local and regional levels. Finally, concrete guidance is offered on the vector of the main arbovirus based on the current situation in the area.
Collapse
Affiliation(s)
- Frédéric Jourdain
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| | - Abdallah M. Samy
- Entomology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Afrim Hamidi
- University of Prishtina, Faculty of Agriculture and Veterinary Sciences, Prishtina, Kosovo
| | - Ali Bouattour
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT03 Service d’entomologie médicale, Tunis, Tunisia
| | - Bülent Alten
- Hacettepe University, Faculty of Science, Biology Department, Ecology Section, Ankara, Turkey
| | - Chafika Faraj
- Laboratoire d'Entomologie Médicale, Institut National d'Hygiène, Rabat, Morocco
| | - David Roiz
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| | - Dušan Petrić
- Faculty of Agriculture, Department of Phytomedicine and Environment Protection, Laboratory for Medical Entomology, University of Novi Sad, Novi Sad, Serbia
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), Carretera Algete-El Casar, Valdeolmos, Madrid, Spain
| | - Enkeledja Velo
- Control of Infectious Diseases Department, Institute of Public Health, Tirana, Albania
| | - Filiz Günay
- Hacettepe University, Faculty of Science, Biology Department, Ecology Section, Ankara, Turkey
| | - Golubinka Bosevska
- Institute of Public Health of R. Macedonia, Laboratory for virology and molecular diagnostics, Skopje, the Former Yugoslav Republic of Macedonia
| | - Ibrahim Salem
- Ministry of Health, Central public health laboratory, Ramallah, Palestine
| | - Igor Pajovic
- University of Montenegro, Biotechnical Faculty, Podgorica, Montenegro
| | - Jelena Marić
- PI Veterinary Institute of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Khalil Kanani
- Parasitic and Zoonotic Diseases Department, Vector-Borne Diseases programmes manager, MOH, Ramallah, Jordan
| | - Lusine Paronyan
- Epidemiology of Vector borne and Parasitic diseases, National Center for Disease Control and Prevention, Ministry of Health, Yerevan, Armenia
| | - Maria-Grazia Dente
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marie Picard
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| | - Marija Zgomba
- Faculty of Agriculture, Department of Phytomedicine and Environment Protection, Laboratory for Medical Entomology, University of Novi Sad, Novi Sad, Serbia
| | - M'hammed Sarih
- Laboratoire des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Nabil Haddad
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health, Lebanese University, Fanar, Lebanon
| | - Oleksandr Gaidash
- State Body “Ukrainian I. I. Mechnikov Research Anti-Plague Institute of Ministry of Health of Ukraine”, Laboratory of Especially Dangerous Infections Epizootology, Odessa, Ukraine
| | - Roena Sukhiasvili
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Silvia Declich
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Taher Shaibi
- Reference Laboratory of Parasites & Vector Borne Diseases, NCDC Libya, and Zoology Department, Faculty of Science, University of Tripoli, Libya
| | - Tatiana Sulesco
- Institute of Zoology, Ministry of Education, Culture and Research, Chisinau, Moldova
| | - Zoubir Harrat
- Laboratoire éco-épidémiologie Parasitaire et Génétique des Populations, Institut Pasteur d’Algérie, Algiers, Algeria
| | - Vincent Robert
- French National Research Institute for Sustainable Development, Research unit MIVEGC IRD-CNRS-Montpellier University, Montpellier, France
| |
Collapse
|
30
|
Castro-Jorge LAD, Siconelli MJL, Ribeiro BDS, Moraes FMD, Moraes JBD, Agostinho MR, Klein TM, Floriano VG, Fonseca BALD. West Nile virus infections are here! Are we prepared to face another flavivirus epidemic? Rev Soc Bras Med Trop 2019; 52:e20190089. [PMID: 30942263 DOI: 10.1590/0037-8682-0089-2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 01/29/2023] Open
Abstract
Emerging arthropod-borne viruses (arboviruses), such as chikungunya and Zika viruses, are a major threat to public health in countries like Brazil where biodiversity is high and medical care is sometimes precarious. West Nile fever is a disease caused by the West Nile Virus (WNV), an RNA virus belonging to the Flaviviridae family. It is transmitted by infected mosquitoes to numerous animals like birds, reptiles and mammals, including human and non-human primates. In the last decade, the number of reported cases of WNV infection in humans and animals has increased in the Americas. Circulation of WNV in forests and rural areas in Brazil has been detected based on serological surveys and, in 2014, the first case of West Nile fever was confirmed in a patient from Piauí State. In 2018, the virus was isolated for the first time from a horse from a rural area in the state of Espírito Santo presenting with a neurological disorder; this raises the possibility that other cases of WNV encephalitis may have occurred without clinical recognition and without laboratory diagnosis by specific assays. The imminent WNV outbreak poses a challenge for Brazilian clinicians and researchers. In this review, we summarize the basic biological and ecological characteristics of this virus and the clinical presentation and treatment of febrile illnesses caused by WNV. We also discuss the epidemiological aspects, prophylaxis of WNV infections, and monitoring strategies that could be applied in the possibility of a WNV outbreak in Brazil.
Collapse
Affiliation(s)
- Luiza Antunes de Castro-Jorge
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Márcio Junio Lima Siconelli
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Beatriz Dos Santos Ribeiro
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Flávia Masson de Moraes
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Jonathan Ballico de Moraes
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Mayara Rovariz Agostinho
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Taline Monteiro Klein
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Vitor Gonçalves Floriano
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | |
Collapse
|
31
|
Pradhan S, Anand S, Choudhury SS. Cognitive behavioural impairment with irreversible sensorineural deafness as a complication of West Nile encephalitis. J Neurovirol 2019; 25:429-433. [PMID: 30903400 DOI: 10.1007/s13365-019-00733-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/26/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Despite common clinical features to suggest encephalitis, different viral encephalitides are known to have some specific clinical features, which if present, may suggest infection by a particular virus. West Nile viral (WNV) encephalitis has not been described with any specific diagnostic feature so far. In this context, we describe three patients of West Nile encephalitis (WNE) who had behavioural and cognitive impairment with acute irreversible bilaterally symmetrical sensorineural deafness. Clinical profiles of these cases suggest that the patients who present with prominent behavioural and cognitive changes and have in addition features of bilateral sensorineural deafness may be considered as the possible case of WNE.
Collapse
Affiliation(s)
- Sunil Pradhan
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
| | - Sucharita Anand
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Surjyaprakash S Choudhury
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
32
|
Chandwani MN, Creisher PS, O'Donnell LA. Understanding the Role of Antiviral Cytokines and Chemokines on Neural Stem/Progenitor Cell Activity and Survival. Viral Immunol 2018; 32:15-24. [PMID: 30307795 DOI: 10.1089/vim.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system are accompanied by the expression of cytokines and chemokines that can be critical for the control of viral replication in the brain. The outcomes of cytokine/chemokine signaling in neural cells vary widely, with cell-specific effects on cellular activity, proliferation, and survival. Neural stem/progenitor cells (NSPCs) are often altered during viral infections, through direct infection by the virus or by the influence of immune cell activity or cytokine/chemokine signaling. However, it has been challenging to dissect the contribution of the virus and specific inflammatory mediators during an infection. In addition to initiating an antiviral program in infected NSPCs, cytokines/chemokines can induce multiple changes in NSPC behavior that can perturb NSPC numbers, differentiation into other neural cells, and migration to sites of injury, and ultimately brain development and repair. The focus of this review was to dissect the effects of common antiviral cytokines and chemokines on NSPC activity, and to consider the subsequent pathological consequences for the host from changes in NSPC function.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Patrick S Creisher
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Lauren A O'Donnell
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Differentiation enhances Zika virus infection of neuronal brain cells. Sci Rep 2018; 8:14543. [PMID: 30266962 PMCID: PMC6162312 DOI: 10.1038/s41598-018-32400-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/21/2018] [Indexed: 01/19/2023] Open
Abstract
Zika virus (ZIKV) is an emerging, mosquito-borne pathogen associated with a widespread 2015–2016 epidemic in the Western Hemisphere and a proven cause of microcephaly and other fetal brain defects in infants born to infected mothers. ZIKV infections have been also linked to other neurological illnesses in infected adults and children, including Guillain-Barré syndrome (GBS), acute flaccid paralysis (AFP) and meningoencephalitis, but the viral pathophysiology behind those conditions remains poorly understood. Here we investigated ZIKV infectivity in neuroblastoma SH-SY5Y cells, both undifferentiated and following differentiation with retinoic acid. We found that multiple ZIKV strains, representing both the prototype African and contemporary Asian epidemic lineages, were able to replicate in SH-SY5Y cells. Differentiation with resultant expression of mature neuron markers increased infectivity in these cells, and the extent of infectivity correlated with degree of differentiation. New viral particles in infected cells were visualized by electron microscopy and found to be primarily situated inside vesicles; overt damage to the Golgi apparatus was also observed. Enhanced ZIKV infectivity in a neural cell line following differentiation may contribute to viral neuropathogenesis in the developing or mature central nervous system.
Collapse
|
34
|
Kosch R, Delarocque J, Claus P, Becker SC, Jung K. Gene expression profiles in neurological tissues during West Nile virus infection: a critical meta-analysis. BMC Genomics 2018; 19:530. [PMID: 30001706 PMCID: PMC6044103 DOI: 10.1186/s12864-018-4914-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 02/05/2023] Open
Abstract
Background Infections with the West Nile virus (WNV) can attack neurological tissues in the host and alter gene expression levels therein. Several individual studies have analyzed these changes in the transcriptome based on measurements with DNA microarrays. Individual microarray studies produce a high-dimensional data structure with the number of studied genes exceeding the available sample size by far. Therefore, the level of scientific evidence of these studies is rather low and results can remain uncertain. Furthermore, the individual studies concentrate on different types of tissues or different time points after infection. A general statement regarding the transcriptional changes through WNV infection in neurological tissues is therefore hard to make. We screened public databases for transcriptome expression studies related to WNV infections and used different analysis pipelines to perform meta-analyses of these data with the goal of obtaining more stable results and increasing the level of evidence. Results We generated new lists of genes differentially expressed between WNV infected neurological tissues and control samples. A comparison with these genes to findings of a meta-analysis of immunological tissues is performed to figure out tissue-specific differences. While 5.879 genes were identified exclusively in the neurological tissues, 15 genes were found exclusively in the immunological tissues, and 44 genes were commonly detected in both tissues. Most findings of the original studies could be confirmed by the meta-analysis with a higher statistical power, but some genes and GO terms related to WNV were newly detected, too. In addition, we identified gene ontology terms related to certain infection processes, which are significantly enriched among the differentially expressed genes. In the neurological tissues, 17 gene ontology terms were found significantly different, and 2 terms in the immunological tissues. Conclusions A critical discussion of our findings shows benefits but also limitations of the meta-analytic approach. In summary, the produced gene lists, identified gene ontology terms and network reconstructions appear to be more reliable than the results from the individual studies. Our meta-analysis provides a basis for further research on the transcriptional mechanisms by WNV infections in neurological tissues. Electronic supplementary material The online version of this article (10.1186/s12864-018-4914-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robin Kosch
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17p, Hanover, 30559, Germany
| | - Julien Delarocque
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17p, Hanover, 30559, Germany
| | - Peter Claus
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Str. 1, Hanover, 30625, Germany
| | - Stefanie C Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, Hanover, 30559, Germany.,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, Hanover, 30559, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17p, Hanover, 30559, Germany. .,Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, Hanover, 30559, Germany.
| |
Collapse
|
35
|
Nugent C, Berdine G, Nugent K. The undead in culture and science. Proc (Bayl Univ Med Cent) 2018; 31:244-249. [PMID: 29706835 DOI: 10.1080/08998280.2018.1441216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 10/17/2022] Open
Abstract
The undead have a significant role in mythology, religion, folklore, and literature. In the 1800s, the word zombie was used to describe reanimated corpses in the Caribbean who often worked on plantations doing long, arduous field work. The movie White Zombie was released in 1932 and exploited this folklore, but it ignored the fact that zombies represent one outcome in Vodou religious beliefs regarding death and the migration of spirits following death. The interest in zombies eventually led to sociological and medical investigations into zombification. Wade Davis reported that powders used by malevolent priests (bokors) contained tetrodotoxin, which could cause the neurologic changes underlying the zombie phenotype. Recent clinical studies have indicated that synthetic cannabinoids and synthetic cathinones can cause bizarre zombie-like behavior. According to Haitian folklore, zombies can develop when bokors reanimate someone who suddenly died from an acute illness or who was purposely poisoned. Recent studies in molecular biology suggest that the sequence of programmed cell death can be reversed when the stressor is removed and that cells, tissues, and bodies (at least in Drosophila flies) can recover. These scientific studies would support the remote possibility that the near dead might recover under certain circumstances but have residual neuropsychological dysfunction. Alternatively, the bokors could maintain control of their victims using drugs with properties similar to those of synthetic cannabinoids. The concept of zombification needs to be considered in the context of culture, religion, and science.
Collapse
Affiliation(s)
- Connie Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Gilbert Berdine
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
36
|
In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Sci Rep 2018. [PMID: 29311619 DOI: 10.1038/s41598‐017‐17765‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Zika virus (ZIKV) has recently caused a pandemic disease, and many cases of ZIKV infection in pregnant women resulted in abortion, stillbirth, deaths and congenital defects including microcephaly, which now has been proposed as ZIKV congenital syndrome. This study aimed to investigate the in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases. Brain tissue samples were collected from 15 cases, including 10 microcephalic ZIKV-positive neonates with fatal outcome and five neonatal control flavivirus-negative neonates that died due to other causes, but with preserved central nervous system (CNS) architecture. In microcephaly cases, the histopathological features of the tissue samples were characterized in three CNS areas (meninges, perivascular space, and parenchyma). The changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells. The in situ immune response against ZIKV in the CNS of newborns is complex. Despite the predominant expression of Th2 cytokines, other cytokines such as Th1, Th17, Treg, Th9, and Th22 are involved to a lesser extent, but are still likely to participate in the immunopathogenic mechanisms of neural disease in fatal cases of microcephaly caused by ZIKV.
Collapse
|
37
|
Azevedo RSS, de Sousa JR, Araujo MTF, Martins Filho AJ, de Alcantara BN, Araujo FMC, Queiroz MGL, Cruz ACR, Vasconcelos BHB, Chiang JO, Martins LC, Casseb LMN, da Silva EV, Carvalho VL, Vasconcelos BCB, Rodrigues SG, Oliveira CS, Quaresma JAS, Vasconcelos PFC. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Sci Rep 2018; 8:1. [PMID: 29311619 PMCID: PMC5758755 DOI: 10.1038/s41598-017-17765-5] [Citation(s) in RCA: 2413] [Impact Index Per Article: 344.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
Zika virus (ZIKV) has recently caused a pandemic disease, and many cases of ZIKV infection in pregnant women resulted in abortion, stillbirth, deaths and congenital defects including microcephaly, which now has been proposed as ZIKV congenital syndrome. This study aimed to investigate the in situ immune response profile and mechanisms of neuronal cell damage in fatal Zika microcephaly cases. Brain tissue samples were collected from 15 cases, including 10 microcephalic ZIKV-positive neonates with fatal outcome and five neonatal control flavivirus-negative neonates that died due to other causes, but with preserved central nervous system (CNS) architecture. In microcephaly cases, the histopathological features of the tissue samples were characterized in three CNS areas (meninges, perivascular space, and parenchyma). The changes found were mainly calcification, necrosis, neuronophagy, gliosis, microglial nodules, and inflammatory infiltration of mononuclear cells. The in situ immune response against ZIKV in the CNS of newborns is complex. Despite the predominant expression of Th2 cytokines, other cytokines such as Th1, Th17, Treg, Th9, and Th22 are involved to a lesser extent, but are still likely to participate in the immunopathogenic mechanisms of neural disease in fatal cases of microcephaly caused by ZIKV.
Collapse
Affiliation(s)
- Raimunda S S Azevedo
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Jorge R de Sousa
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Marialva T F Araujo
- Departamento de Patologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | | | - Bianca N de Alcantara
- Programa de Pós-Graduação em Virologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Fernanda M C Araujo
- Laboratório Central de Saúde Pública, SES do Ceará, Fortaleza, Ceará, Brazil
| | - Maria G L Queiroz
- Laboratório Central de Saúde Pública, SES do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Ana C R Cruz
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Universidade do Estado do Pará, Belém, Pará, Brazil
| | | | - Jannifer O Chiang
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Lívia C Martins
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Livia M N Casseb
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Eliana V da Silva
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Valéria L Carvalho
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | | | - Sueli G Rodrigues
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Consuelo S Oliveira
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil.,Universidade do Estado do Pará, Belém, Pará, Brazil
| | - Juarez A S Quaresma
- Universidade do Estado do Pará, Belém, Pará, Brazil.,Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Pedro F C Vasconcelos
- Departamento de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil. .,Universidade do Estado do Pará, Belém, Pará, Brazil.
| |
Collapse
|
38
|
Sebastián UU, Ricardo AVA, Alvarez BC, Cubides A, Luna AF, Arroyo-Parejo M, Acuña CE, Quintero AV, Villareal OC, Pinillos OS, Vieda E, Bello M, Peña S, Dueñas-Castell C, Rodriguez GMV, Ranero JLM, López RLM, Olaya SG, Vergara JC, Tandazo A, Ospina JPS, Leyton Soto IM, Fowler RA, Marshall JC. Zika virus-induced neurological critical illness in Latin America: Severe Guillain-Barre Syndrome and encephalitis. J Crit Care 2017; 42:275-281. [PMID: 28806562 PMCID: PMC7127615 DOI: 10.1016/j.jcrc.2017.07.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKAV) is classically described as causing minor symptoms in adult patients, however neurologic complications have been recognized. The recent outbreak in Central and South America has resulted in serious illness in some adult patients. We report adult patients in Latin America diagnosed with ZIKAV infection admitted to Intensive Care Units (ICUs). METHODS Multicenter, prospective case series of adult patients with laboratory diagnosis of ZIKAV in 16 ICUs in 8 countries. RESULTS Between December 1st 2015 and April 2nd 2016, 16 ICUs in 8 countries enrolled 49 critically ill patients with diagnosis of ZIKAV infection. We included 10 critically ill patients with ZIKAV infection, as diagnosed with RT-PCR, admitted to the ICU. Neurologic manifestations concordant with Guillain-Barre Syndrome (GBS) were present in all patients, although 2 evolved into an encephalitis-like picture. 2 cases died, one due to encephalitis, the other septic shock. CONCLUSIONS Differing from what was usually reported, ZIKAV infection can result in life-threatening neurologic illness in adults, including GBS and encephalitis. Collaborative reporting to identify severe illness from an emerging pathogen can provide valuable insights into disease epidemiology and clinical presentation, and inform public health authorities about acute care priorities.
Collapse
Affiliation(s)
- Ugarte Ubiergo Sebastián
- Critical Care Department, Clínica Indisa, Universidad Andrés Bello, Santiago de Chile, Chile; FEPIMCTI, Council WFSICCM, Chile
| | | | | | - Angela Cubides
- Universidad Santiago de Cali, Cali, Colombia; Universidad del Valle, Cali, Colombia
| | - Angélica F Luna
- General Critical Care Unit and Intermediate Care, Neiva, Colombia
| | - Max Arroyo-Parejo
- Hospital Privado Clínica Santa Sofía, Caracas, Venezuela; Hospital Vargas de Caracas, Caracas, Venezuela
| | | | | | - Orlando Ch Villareal
- Clínica Evaluamos, Córdoba, Colombia; Facultad de Medicina, Universidad del Sinú, Córdoba, Colombia
| | - Oscar S Pinillos
- Metabolic Disorders and Intensive Care Research Group, Cali, Colombia
| | - Elías Vieda
- Hospital Universitario del Valle, Cali, Colombia
| | - Manuel Bello
- Critical Care Department, Hospital Nacional San Rafael, San Salvador, El Salvador; Salvadorean Critical Care Association, El Salvador
| | - Susana Peña
- Ministry of Health, San Salvador, El Salvador
| | | | | | - Jorge L M Ranero
- Hospital General de Enfermedades, Instituto Guatemalteco de Seguridad Social, Guatemala City, Guatemala
| | | | - Sandra G Olaya
- Obstetric and Gynecologic Intensive Care Unit, Hospital San Jorge Pereira, Colombia
| | - José C Vergara
- Hospital Luis Vernaza, Holy Spirit University of Guayaquil Ecuador, Guayaquil, Ecuador; Universidad Espíritu Santo de Guayaquil, Ecuador
| | - Ana Tandazo
- Hospital Luis Vernaza, Holy Spirit University of Guayaquil Ecuador, Guayaquil, Ecuador; Universidad Espíritu Santo de Guayaquil, Ecuador
| | | | | | - R A Fowler
- Clinical Epidemiology, Sunnybrook Research Institute, Canada; Sunnybrook Health Sciences Centre, Canada; Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Canada
| | - John C Marshall
- Surgery, University of Toronto, Canada; Michael Hospital, Toronto, Canada
| |
Collapse
|
39
|
Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo. mBio 2017; 8:mBio.00819-17. [PMID: 28811340 PMCID: PMC5559630 DOI: 10.1128/mbio.00819-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR-/-) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR-/-) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR-/- λR-/- mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity.IMPORTANCE YFV-17D is a live attenuated flavivirus vaccine strain recognized as one of the most effective vaccines ever developed. However, the host and viral determinants governing YFV-17D attenuation and its potent immunogenicity are still unknown. Here, we analyzed the role of type III interferon (IFN)-mediated signaling, a host immune defense mechanism, in controlling YFV-17D infection and attenuation in different mouse models. We uncovered a critical role of type III IFN-mediated signaling in preserving the integrity of the blood-brain barrier and preventing viral brain invasion. Type III IFN also played a major role in regulating the induction of a potent but balanced immune response that prevented viral evasion of the host immune system. An improved understanding of the complex mechanisms regulating YFV-17D attenuation will provide insights into the key virus-host interactions that regulate host immune responses and infection outcomes as well as open novel avenues for the development of innovative vaccine strategies.
Collapse
|
40
|
Yu J, Liu X, Ke C, Wu Q, Lu W, Qin Z, He X, Liu Y, Deng J, Xu S, Li Y, Zhu L, Wan C, Zhang Q, Xiao W, Xie Q, Zhang B, Zhao W. Effective Suckling C57BL/6, Kunming, and BALB/c Mouse Models with Remarkable Neurological Manifestation for Zika Virus Infection. Viruses 2017; 9:v9070165. [PMID: 28661429 PMCID: PMC5537657 DOI: 10.3390/v9070165] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/10/2017] [Accepted: 06/21/2017] [Indexed: 01/07/2023] Open
Abstract
Since 2015, 84 countries and territories reported evidence of vector-borne Zika Virus (ZIKV) transmission. The World Health Organization (WHO) declared that ZIKV and associated consequences especially the neurological autoimmune disorder Guillain–Barré syndrome (GBS) and microcephaly will remain a significant enduring public health challenge requiring intense action. We apply a standardization of the multi-subcutaneous dorsal inoculation method to systematically summarize clinical neurological manifestation, viral distribution, and tissue damage during the progress of viremia and systemic spread in suckling mouse models. We found that C57BL/6 and Kunming mice (KM) both showed remarkable and uniform neurologic manifestations. C57BL/6 owned the highest susceptibility and pathogenicity to the nervous system, referred to as movement disorders, with 100% incidence, while KM was an economic model for a Chinese study characterized by lower limb weakness with 62% morbidity. Slight yellow extraocular exudates were observed in BALB/c, suggesting the association with similar ocular findings to those of clinical cases. The virus distribution and pathological changes in the sera, brains, livers, kidneys, spleens, and testes during disease progression had strong regularity and uniformity, demonstrating the effectiveness and plasticity of the animal models. The successful establishment of these animal models will be conducive to expound the pathogenic mechanism of GBS.
Collapse
Affiliation(s)
- Jianhai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Xuling Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Changwen Ke
- Institute of Microbiology, Center for Diseases Control and Prevention of Guangdong Province, 176 Xin Gang West Road, Guangzhou, Guangdong 510300, China.
| | - Qinghua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Weizhi Lu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Zhiran Qin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Yujing Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Jieli Deng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Suiqi Xu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Ying Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Li Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Chengsong Wan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Weiwei Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Qian Xie
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
- Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmacy, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
41
|
Cumberworth SL, Barrie JA, Cunningham ME, de Figueiredo DPG, Schultz V, Wilder-Smith AJ, Brennan B, Pena LJ, Freitas de Oliveira França R, Linington C, Barnett SC, Willison HJ, Kohl A, Edgar JM. Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected. Acta Neuropathol Commun 2017; 5:50. [PMID: 28645311 PMCID: PMC5481922 DOI: 10.1186/s40478-017-0450-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/02/2022] Open
Abstract
The recent global outbreak of Zika virus (ZIKV) infection has been linked to severe neurological disorders affecting the peripheral and central nervous systems (PNS and CNS, respectively). The pathobiology underlying these diverse clinical phenotypes are the subject of intense research; however, even the principal neural cell types vulnerable to productive Zika infection remain poorly characterised. Here we used CNS and PNS myelinating cultures from wild type and Ifnar1 knockout mice to examine neuronal and glial tropism and short-term consequences of direct infection with a Brazilian variant of ZIKV. Cell cultures were infected pre- or post-myelination for various intervals, then stained with cell-type and ZIKV-specific antibodies. In bypassing systemic immunity using ex vivo culture, and the type I interferon response in Ifnar1 deficient cells, we were able to evaluate the intrinsic infectivity of neural cells. Through systematic quantification of ZIKV infected cells in myelinating cultures, we found that ZIKV infection is enhanced in the absence of the type I interferon responses and that CNS cells are considerably more susceptible to infection than PNS cells. In particular, we demonstrate that CNS axons and myelinating oligodendrocytes are especially vulnerable to injury. These results have implications for understanding the pathobiology of neurological symptoms associated with ZIKV infection. Furthermore, we provide a quantifiable ex vivo infection model that can be used for fundamental and therapeutic studies on viral neuroinvasion and its consequences.
Collapse
Affiliation(s)
| | - Jennifer A Barrie
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Madeleine E Cunningham
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Daniely Paulino Gomes de Figueiredo
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Verena Schultz
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Adrian J Wilder-Smith
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, G61 1QH, Glasgow, Scotland, UK
| | - Lindomar J Pena
- Oswaldo Cruz Foundation/Aggeu Magalhães Institute, Department of Virology, UFPE Campus-Cidade Universitária, Recife/PE, Brazil
| | | | - Christopher Linington
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Susan C Barnett
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, G61 1QH, Glasgow, Scotland, UK.
| | - Julia M Edgar
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, G12 8TA, Glasgow, Scotland, UK.
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075, Goettingen, Germany.
| |
Collapse
|
42
|
Wang L, Yang L, Fikrig E, Wang P. An essential role of PI3K in the control of West Nile virus infection. Sci Rep 2017; 7:3724. [PMID: 28623344 PMCID: PMC5473900 DOI: 10.1038/s41598-017-03912-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/05/2017] [Indexed: 01/05/2023] Open
Abstract
The phosphatidyl-inositol-3 kinases (PI3K) pathway regulates a variety of cellular processes, including cell proliferation, RNA processing, protein translation, autophagy, apoptosis and antiviral immunity. Many viruses depend on PI3K signaling for replication. However, its role in flaviviral infection has not been clearly defined. Here we report that PI3K signaling is critical for the control of West Nile virus (WNV) infection by regulating type I IFN (IFN-I) response. Inhibition of PI3K activity by 3-methyl adenine (3-MA), Wortmannin (WM) and LY294002 (LY) increased viral titers by 3-16 folds in primary mouse macrophages, embryonic fibroblasts and human cell lines. Both 3-MA and LY repressed IFN-I mRNA and protein expression significantly. Surprisingly, WM enhanced the mRNA expression of IFN-I and TNF-α, and TNF-α protein production modestly, while dramatically decreased the secreted IFN-I. Further studies showed that the catalytic subunit p110δ of class I PI3K played a role in induction of antiviral immune responses. Lastly translocation of interferon regulatory factor 7(IRF7) from the cytosol to the nuclei was effectively blocked in the presence of PI3K inhibitors. Our results clearly define an antiviral role of PI3K by modulating immune responses and demonstrate differential mode of action of three PI3K inhibitors on IFN-I.
Collapse
Affiliation(s)
- Leilei Wang
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, 10595, NY, USA
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Long Yang
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, 10595, NY, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Yale University School of Medicine, 300 Cedar St, New Haven, CT, 06510, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Penghua Wang
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, 10595, NY, USA.
| |
Collapse
|
43
|
Pilalas D, Skoura L, Margariti A, Chatzidimitriou D, Sarantopoulos A, Tsachouridou O, Papa A, Metallidis S. West Nile virus meningitis in a patient with human immunodeficiency virus type 1 infection. New Microbes New Infect 2017; 19:126-128. [PMID: 28831299 PMCID: PMC5554934 DOI: 10.1016/j.nmni.2017.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022] Open
Abstract
The emergence of West Nile virus lineage 2 in central Macedonia, Greece, in 2010 resulted in large outbreaks for 5 consecutive years. We report a case of viral meningitis in an individual infected with human immunodeficiency virus type 1, which preceded the recognition of the outbreak and was confirmed retrospectively as West Nile virus neuroinvasive disease.
Collapse
Affiliation(s)
- D Pilalas
- Infectious Diseases Division, 1st Department of Internal Medicine, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - L Skoura
- National AIDS Reference Centre of Northern Greece-Aristotle University Medical School, Thessaloniki, Greece
| | - A Margariti
- National AIDS Reference Centre of Northern Greece-Aristotle University Medical School, Thessaloniki, Greece
| | - D Chatzidimitriou
- National AIDS Reference Centre of Northern Greece-Aristotle University Medical School, Thessaloniki, Greece
| | - A Sarantopoulos
- Clinical Immunology Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - O Tsachouridou
- Infectious Diseases Division, 1st Department of Internal Medicine, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - A Papa
- National Reference Laboratory for Arboviruses-Aristotle University Medical School, Thessaloniki, Greece
| | - S Metallidis
- Infectious Diseases Division, 1st Department of Internal Medicine, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| |
Collapse
|
44
|
AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proc Natl Acad Sci U S A 2017; 114:2024-2029. [PMID: 28167751 DOI: 10.1073/pnas.1620558114] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although a causal relationship between Zika virus (ZIKV) and microcephaly has been established, it remains unclear why ZIKV, but not other pathogenic flaviviruses, causes congenital defects. Here we show that when viruses are produced in mammalian cells, ZIKV, but not the closely related dengue virus (DENV) or West Nile virus (WNV), can efficiently infect key placental barrier cells that directly contact the fetal bloodstream. We show that AXL, a receptor tyrosine kinase, is the primary ZIKV entry cofactor on human umbilical vein endothelial cells (HUVECs), and that ZIKV uses AXL with much greater efficiency than does DENV or WNV. Consistent with this observation, only ZIKV, but not WNV or DENV, bound the AXL ligand Gas6. In comparison, when DENV and WNV were produced in insect cells, they also infected HUVECs in an AXL-dependent manner. Our data suggest that ZIKV, when produced from mammalian cells, infects fetal endothelial cells much more efficiently than other pathogenic flaviviruses because it binds Gas6 more avidly, which in turn facilitates its interaction with AXL.
Collapse
|
45
|
Al-Shujairi WH, Clarke JN, Davies LT, Alsharifi M, Pitson SM, Carr JM. Intracranial Injection of Dengue Virus Induces Interferon Stimulated Genes and CD8+ T Cell Infiltration by Sphingosine Kinase 1 Independent Pathways. PLoS One 2017; 12:e0169814. [PMID: 28095439 PMCID: PMC5240945 DOI: 10.1371/journal.pone.0169814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/21/2016] [Indexed: 02/05/2023] Open
Abstract
We have previously reported that the absence of sphingosine kinase 1 (SK1) affects both dengue virus (DENV) infection and innate immune responses in vitro. Here we aimed to define SK1-dependancy of DENV-induced disease and the associated innate responses in vivo. The lack of a reliable mouse model with a fully competent interferon response for DENV infection is a challenge, and here we use an experimental model of DENV infection in the brain of immunocompetent mice. Intracranial injection of DENV-2 into C57BL/6 mice induced body weight loss and neurological symptoms which was associated with a high level of DENV RNA in the brain. Body weight loss and DENV RNA level tended to be greater in SK1-/- compared with wildtype (WT) mice. Brain infection with DENV-2 is associated with the induction of interferon-β (IFN-β) and IFN-stimulated gene (ISG) expression including viperin, Ifi27l2a, IRF7, and CXCL10 without any significant differences between WT and SK1-/- mice. The SK2 and sphingosine-1-phosphate (S1P) levels in the brain were unchanged by DENV infection or the lack of SK1. Histological analysis demonstrated the presence of a cellular infiltrate in DENV-infected brain with a significant increase in mRNA for CD8 but not CD4 suggesting this infiltrate is likely CD8+ but not CD4+ T-lymphocytes. This increase in T-cell infiltration was not affected by the lack of SK1. Overall, DENV-infection in the brain induces IFN and T-cell responses but does not influence the SK/S1P axis. In contrast to our observations in vitro, SK1 has no major influence on these responses following DENV-infection in the mouse brain.
Collapse
Affiliation(s)
- Wisam H. Al-Shujairi
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Jennifer N. Clarke
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Lorena T. Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Mohammed Alsharifi
- Vaccine Research Laboratory, Research Centre for Infectious Diseases, and Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jillian M. Carr
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
46
|
Manangeeswaran M, Ireland DDC, Verthelyi D. Zika (PRVABC59) Infection Is Associated with T cell Infiltration and Neurodegeneration in CNS of Immunocompetent Neonatal C57Bl/6 Mice. PLoS Pathog 2016; 12:e1006004. [PMID: 27855206 PMCID: PMC5113993 DOI: 10.1371/journal.ppat.1006004] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/16/2016] [Indexed: 02/04/2023] Open
Abstract
The recent spread of Zika virus (ZIKV) and its association with increased rates of Guillain Barre and other neurological disorders as well as congenital defects that include microcephaly has created an urgent need to develop animal models to examine the pathogenesis of the disease and explore the efficacy of potential therapeutics and vaccines. Recently developed infection models for ZIKV utilize mice defective in interferon responses. In this study we establish and characterize a new model of peripheral ZIKV infection using immunocompetent neonatal C57BL/6 mice and compare its clinical progression, virus distribution, immune response, and neuropathology with that of C57BL/6-IFNAR KO mice. We show that while ZIKV infected IFNAR KO mice develop bilateral hind limb paralysis and die 5–6 days post-infection (dpi), immunocompetent B6 WT mice develop signs of neurological disease including unsteady gait, kinetic tremors, severe ataxia and seizures by 13 dpi that subside gradually over 2 weeks. Immunohistochemistry show viral antigen predominantly in cerebellum at the peak of the disease in both models. However, whereas IFNAR KO mice showed infiltration by neutrophils and macrophages and higher expression of IL-1, IL-6 and Cox2, B6 WT mice show a cellular infiltration in the CNS composed predominantly of T cells, particularly CD8+ T cells, and increased mRNA expression levels of IFNg, GzmB and Prf1 at peak of disease. Lastly, the CNS of B6 WT mice shows evidence of neurodegeneration predominantly in the cerebellum that are less prominent in mice lacking the IFN response possibly due to the difference in cellular infiltrates and rapid progression of the disease in that model. The development of the B6 WT model of ZIKV infection will provide insight into the immunopathology of the virus and facilitate assessments of possible therapeutics and vaccines. The recent spread of Zika virus (ZIKV) and its association with increased rates of neurological disorders and congenital defects created an urgent need for animal models to examine the pathogenesis of the disease and explore the efficacy of potential therapeutics and vaccines. We describe the first symptomatic PRVABC59(ZIKV) animal model in immunocompetent B6 WT mice showing that a subcutaneous challenge in 1 day old mice leads to non-lethal neurological disease that is characterized by unsteady gait, kinetic tremors, severe ataxia and seizures that subsides after 2 weeks. ZIKV infects neurons in cerebellum of mice and elicits the infiltration of lymphocytes into the brain. The immune response protects mice from death but may also contribute to neurodegeneration as mice with defective interferon responses have increased virus loads in brain and peripheral organs, succumbing to the disease in 5–6 days, but have fewer signs of neurodegeneration. This mouse model bypasses transplacental transmission and consequent placental insufficiency and will facilitate detailed investigations into the pathogenesis of the disease as well as mechanistic studies for possible therapeutics and vaccines. Lastly, its non-lethal outcome allows for studies assessing the long term effects of the infection, and exploring conditions that could lead to disease reactivation.
Collapse
Affiliation(s)
- Mohanraj Manangeeswaran
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Derek D. C. Ireland
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Daniela Verthelyi
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Londono-Renteria B, Troupin A, Colpitts TM. Arbovirosis and potential transmission blocking vaccines. Parasit Vectors 2016; 9:516. [PMID: 27664127 PMCID: PMC5035468 DOI: 10.1186/s13071-016-1802-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Infectious diseases caused by arboviruses (viruses transmitted by arthropods) are undergoing unprecedented epidemic activity and geographic expansion. With the recent introduction of West Nile virus (1999), chikungunya virus (2013) and Zika virus (2015) to the Americas, stopping or even preventing the expansion of viruses into susceptible populations is an increasing concern. With a few exceptions, available vaccines protecting against arboviral infections are nonexistent and current disease prevention relies on vector control interventions. However, due to the emergence of and rapidly spreading insecticide resistance, different disease control methods are needed. A feasible method of reducing emerging tropical diseases is the implementation of vaccines that prevent or decrease viral infection in the vector. These vaccines are designated ‘transmission blocking vaccines’, or TBVs. Here, we summarize previous TBV work, discuss current research on arboviral TBVs and present several promising TBV candidates.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA.
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
48
|
Ronca SE, Dineley KT, Paessler S. Neurological Sequelae Resulting from Encephalitic Alphavirus Infection. Front Microbiol 2016; 7:959. [PMID: 27379085 PMCID: PMC4913092 DOI: 10.3389/fmicb.2016.00959] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
The recent surge in viral clinical cases and associated neurological deficits have reminded us that viral infections can lead to detrimental, long-term effects, termed sequelae, in survivors. Alphaviruses are enveloped, single-stranded positive-sense RNA viruses in the Togaviridae family. Transmission of alphaviruses between and within species occurs mainly via the bite of an infected mosquito bite, giving alphaviruses a place among arboviruses, or arthropod-borne viruses. Alphaviruses are found throughout the world and typically cause arthralgic or encephalitic disease in infected humans. Originally detected in the 1930s, today the major encephalitic viruses include Venezuelan, Western, and Eastern equine encephalitis viruses (VEEV, WEEV, and EEEV, respectively). VEEV, WEEV, and EEEV are endemic to the Americas and are important human pathogens, leading to thousands of human infections each year. Despite awareness of these viruses for nearly 100 years, we possess little mechanistic understanding regarding the complications (sequelae) that emerge after resolution of acute infection. Neurological sequelae are those complications involving damage to the central nervous system that results in cognitive, sensory, or motor deficits that may also manifest as emotional instability and seizures in the most severe cases. This article serves to provide an overview of clinical cases documented in the past century as well as a summary of the reported neurological sequelae due to VEEV, WEEV, and EEEV infection. We conclude with a treatise on the utility of, and practical considerations for animal models applied to the problem of neurological sequelae of viral encephalopathies in order to decipher mechanisms and interventional strategies.
Collapse
Affiliation(s)
- Shannon E Ronca
- Department of Pathology, University of Texas Medical Branch, Galveston, TXUSA; Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TXUSA
| | - Kelly T Dineley
- Department of Neurology, Center for Addiction Research, Rodent In Vivo Assessment Core, Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, TX USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TXUSA; Institute for Human Infections and Immunity, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TXUSA
| |
Collapse
|