1
|
Schultz JS, Okoli M, Lee S, Leonard CM, Sayre D, Heilig CM, Uhomoibhi P, Ogunniyi A, Ndodo N, Mba N, Abubakar AG, Akinmulero O, Dawurung AB, Okoye M, Iriemenam NC, Plucinski M, Steinhardt L, Rogier E, Ihekweazu C. Principal component analysis of the Serological response to Plasmodium Falciparum using a Multiplex bead-based assay in Nigeria. Sci Rep 2024; 14:30658. [PMID: 39730380 DOI: 10.1038/s41598-024-74236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/24/2024] [Indexed: 12/29/2024] Open
Abstract
Characterization of serological responses to Plasmodium falciparum (Pf) is of interest to understand disease burden and transmission dynamics; however, their interpretation is challenging. Dried blood spots from 30,815 participants aged 6 months to 15 years from the 2018 Nigeria HIV/AIDS Indicator and Impact Survey were analyzed by multiplex bead-based assay to measure immunoglobulin G (IgG) to Pf-stage-specific MSP-1, AMA-1, GLURPR0, LSA-1, and CSP. These IgG levels were analyzed by principal component analysis (PCA). PC1 and PC2 scores explained 41% and 17% of the total variance, respectively. PC1 unit vectors represented seropositivity. PC2 unit vectors for blood-stage antigens were in opposite directions to liver-stage and sporozoite antigens. PC2 scores were correlated with MSP-1 positively (R = 0.52, P < 0.001) and CSP negatively (R=-0.65, P < 0.001) and may help identify areas with prior exposure but higher risk for increased infections or epidemics. PCA of Pf serology can provide summary scores to possibly inform future programmatic interventions.
Collapse
Affiliation(s)
- Jonathan S Schultz
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Mary Okoli
- Centre for Disease Control and Prevention, Abuja, FCT, Nigeria
| | - Scott Lee
- Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Colleen M Leonard
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dean Sayre
- Malaria Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Charles M Heilig
- Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Nnaemeka Ndodo
- Centre for Disease Control and Prevention, Abuja, FCT, Nigeria
| | - Nwando Mba
- Centre for Disease Control and Prevention, Abuja, FCT, Nigeria
| | - Ado G Abubakar
- Institute of Human Virology Nigeria, Abuja, FCT, Nigeria
| | | | | | - McPaul Okoye
- Division of Global HIV and Tuberculosis, Centers for Disease Control and Prevention, Abuja, FCT, Nigeria
| | - Nnaemeka C Iriemenam
- Division of Global HIV and Tuberculosis, Centers for Disease Control and Prevention, Abuja, FCT, Nigeria
| | - Mateusz Plucinski
- Malaria Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura Steinhardt
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Malaria Branch, U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
2
|
Obeagu EI, Okoroiwu GI, Ubosi NI, Obeagu GU, Onohuean H, Muhammad T, Adias TC. Revolution in malaria detection: unveiling current breakthroughs and tomorrow's possibilities in biomarker innovation. Ann Med Surg (Lond) 2024; 86:5859-5876. [PMID: 39359838 PMCID: PMC11444567 DOI: 10.1097/ms9.0000000000002383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/06/2024] [Indexed: 10/04/2024] Open
Abstract
The ongoing battle against malaria has seen significant advancements in diagnostic methodologies, particularly through the discovery and application of novel biomarkers. Traditional diagnostic techniques, such as microscopy and rapid diagnostic tests, have their limitations in terms of sensitivity, specificity, and the ability to detect low-level infections. Recent breakthroughs in biomarker research promise to overcome these challenges, providing more accurate, rapid, and non-invasive detection methods. These advancements are critical in enhancing early detection, guiding effective treatment, and ultimately reducing the global malaria burden. Innovative approaches in biomarker detection are leveraging cutting-edge technologies like next-generation sequencing, proteomics, and metabolomics. These techniques have led to the identification of new biomarkers that can be detected in blood, saliva, or urine, offering less invasive and more scalable options for widespread screening. For instance, the discovery of specific volatile organic compounds in the breath of infected individuals presents a revolutionary non-invasive diagnostic tool. Additionally, the integration of machine learning algorithms with biomarker data is enhancing the precision and predictive power of malaria diagnostics, making it possible to distinguish between different stages of infection and identify drug-resistant strains. Looking ahead, the future of malaria detection lies in the continued exploration of multi-biomarker panels and the development of portable, point-of-care diagnostic devices. The incorporation of smartphone-based technologies and wearable biosensors promises to bring real-time monitoring and remote diagnostics to even the most resource-limited settings.
Collapse
Affiliation(s)
| | - G. I.A. Okoroiwu
- Department of Public Health Science, Faculty of Health Sciences, National Open University of Nigeria, Jabi, Abuja
| | - N. I. Ubosi
- Department of Public Health Science, Faculty of Health Sciences, National Open University of Nigeria, Jabi, Abuja
| | | | - Hope Onohuean
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Kampala
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Tukur Muhammad
- Department of Science Education & Educational Foundations, Faculty of Education Kampala International University Western Campus
| | - Teddy C. Adias
- Department of Haematology and Blood Transfusion Science, Faculty of Medical Laboratory Science, Federal University Otuoke, Bayelsa State, Nigeria
| |
Collapse
|
3
|
Angage D, Chmielewski J, Maddumage JC, Hesping E, Caiazzo S, Lai KH, Yeoh LM, Menassa J, Opi DH, Cairns C, Puthalakath H, Beeson JG, Kvansakul M, Boddey JA, Wilson DW, Anders RF, Foley M. A broadly cross-reactive i-body to AMA1 potently inhibits blood and liver stages of Plasmodium parasites. Nat Commun 2024; 15:7206. [PMID: 39174515 PMCID: PMC11341838 DOI: 10.1038/s41467-024-50770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Apical membrane antigen-1 (AMA1) is a conserved malarial vaccine candidate essential for the formation of tight junctions with the rhoptry neck protein (RON) complex, enabling Plasmodium parasites to invade human erythrocytes, hepatocytes, and mosquito salivary glands. Despite its critical role, extensive surface polymorphisms in AMA1 have led to strain-specific protection, limiting the success of AMA1-based interventions beyond initial clinical trials. Here, we identify an i-body, a humanised single-domain antibody-like molecule that recognises a conserved pan-species conformational epitope in AMA1 with low nanomolar affinity and inhibits the binding of the RON2 ligand to AMA1. Structural characterisation indicates that the WD34 i-body epitope spans the centre of the conserved hydrophobic cleft in AMA1, where interacting residues are highly conserved among all Plasmodium species. Furthermore, we show that WD34 inhibits merozoite invasion of erythrocytes by multiple Plasmodium species and hepatocyte invasion by P. falciparum sporozoites. Despite a short half-life in mouse serum, we demonstrate that WD34 transiently suppressed P. berghei infections in female BALB/c mice. Our work describes the first pan-species AMA1 biologic with inhibitory activity against multiple life-cycle stages of Plasmodium. With improved pharmacokinetic characteristics, WD34 could be a potential immunotherapy against multiple species of Plasmodium.
Collapse
Affiliation(s)
- Dimuthu Angage
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Jill Chmielewski
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Janesha C Maddumage
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Eva Hesping
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Sabrina Caiazzo
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Keng Heng Lai
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lee Ming Yeoh
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph Menassa
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - D Herbert Opi
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Callum Cairns
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Justin A Boddey
- Infectious Diseases & Immune Defense Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Burnet Institute, Melbourne, Victoria, 3004, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Robin F Anders
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia
| | - Michael Foley
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Victoria, 3086, Australia.
- AdAlta, Science Drive, Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
4
|
Dobbs KR, Atieli HE, Valim C, Beeson JG. Previous Malaria Exposures and Immune Dysregulation: Developing Strategies To Improve Malaria Vaccine Efficacy in Young Children. Am J Trop Med Hyg 2024; 110:627-630. [PMID: 38442424 PMCID: PMC10993830 DOI: 10.4269/ajtmh.23-0696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 03/07/2024] Open
Abstract
After several decades in development, two malaria vaccines based on the same antigen and with very similar constructs and adjuvants, RTS,S/AS01 (RTS,S) and R21/Matrix-M (R21), were recommended by the WHO for widespread vaccination of children. These vaccines are much-needed additions to malaria control programs that, when used in conjunction with other control measures, will help to accelerate reductions in malaria morbidity and mortality. Although R21 is not yet available, RTS,S is currently being integrated into routine vaccine schedules in some areas. However, the efficacy of RTS,S is partial, short-lived, and varies widely according to age and geographic location. It is not clear why RTS,S induces protection in some individuals and not others, what the immune mechanisms are that favor protective immunity with RTS,S, and how immune mechanisms are influenced by host and environmental factors. Several studies suggest that higher levels of previous malaria exposure negatively impact RTS,S clinical efficacy. In this article, we summarize data suggesting that previous malaria exposures negatively impact the efficacy of RTS,S and other malaria vaccine candidates. We highlight recent evidence suggesting that increasing malaria exposure impairs the generation of functional antibody responses to RTS,S. Finally, we discuss how investigation of clinical and immune factors associated with suboptimal responses to RTS,S can be used to develop strategies to optimize RTS,S, which will remain relevant to R21 and next-generation vaccines.
Collapse
Affiliation(s)
| | | | - Clarissa Valim
- Boston University School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
5
|
Ompad DC, Padhan TK, Kessler A, Tozan Y, Jones AM, van Eijk AM, Sullivan SA, Haque MA, Pradhan MM, Mohanty S, Carlton JM, Sahu PK. The effectiveness of malaria camps as part of the malaria control program in Odisha, India. Sci Rep 2023; 13:22998. [PMID: 38155156 PMCID: PMC10754896 DOI: 10.1038/s41598-023-46220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/30/2023] [Indexed: 12/30/2023] Open
Abstract
Durgama Anchalare Malaria Nirakaran (DAMaN) is a multi-component malaria intervention for hard-to-reach villages in Odisha, India. The main component, malaria camps (MCs), consists of mass screening, treatment, education, and intensified vector control. We evaluated MC effectiveness using a quasi-experimental cluster-assigned stepped-wedge study with a pretest-posttest control group in 15 villages: six immediate (Arm A), six delayed (Arm B), and three previous interventions (Arm C). The primary outcome was PCR + Plasmodium infection prevalence. The time (i.e., baseline vs. follow-up 3) x study arm interaction term shows that there were statistically significant lower odds of PCR + Plasmodium infection in Arm A (AOR = 0.36, 95% CI = 0.17, 0.74) but not Arm C as compared to Arm B at the third follow-up. The cost per person ranged between US$3-8, the cost per tested US$4-9, and the cost per treated US$82-1,614, per camp round. These results suggest that the DAMaN intervention is a promising and financially feasible approach for malaria control.
Collapse
Affiliation(s)
- Danielle C Ompad
- School of Global Public Health, New York University, New York, NY, 10003, USA.
| | - Timir K Padhan
- Department of Molecular Biology and Infectious Diseases, Community Welfare Society Hospital, Rourkela, Odisha, 769042, India
| | - Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Yesim Tozan
- School of Global Public Health, New York University, New York, NY, 10003, USA
| | - Abbey M Jones
- School of Global Public Health, New York University, New York, NY, 10003, USA
| | - Anna Maria van Eijk
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Steven A Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mohammed A Haque
- Department of Molecular Biology and Infectious Diseases, Community Welfare Society Hospital, Rourkela, Odisha, 769042, India
| | - Madan Mohan Pradhan
- Department of Health and Family Welfare, State Vector Borne Disease Control Programme, Bhubaneswar, Odisha, 751001, India
| | - Sanjib Mohanty
- Department of Molecular Biology and Infectious Diseases, Community Welfare Society Hospital, Rourkela, Odisha, 769042, India
| | - Jane M Carlton
- School of Global Public Health, New York University, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Global Public Health, Baltimore, MD, 21205, USA
| | - Praveen K Sahu
- Department of Molecular Biology and Infectious Diseases, Community Welfare Society Hospital, Rourkela, Odisha, 769042, India
| |
Collapse
|
6
|
Perrotti E, L'Episcopia M, Menegon M, Soares IS, Rosas-Aguirre A, Speybroeck N, LLanos-Cuentas A, Menard D, Ferreira MU, Severini C. Reduced polymorphism of Plasmodium vivax early transcribed membrane protein (PvETRAMP) 11.2. Parasit Vectors 2023; 16:238. [PMID: 37461081 DOI: 10.1186/s13071-023-05851-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND ETRAMP11.2 (PVX_003565) is a well-characterized protein with antigenic potential. It is considered to be a serological marker for diagnostic tools, and it has been suggested as a potential vaccine candidate. Despite its immunological relevance, the polymorphism of the P. vivax ETRAMP11.2 gene (pvetramp11.2) remains undefined. The genetic variability of an antigen may limit the effectiveness of its application as a serological surveillance tool and in vaccine development and, therefore, the aim of this study was to investigate the genetic diversity of pvetramp11.2 in parasite populations from Amazonian regions and worldwide. We also evaluated amino acid polymorphism on predicted B-cell epitopes. The low variability of the sequence encoding PvETRAMP11.2 protein suggests that it would be a suitable marker in prospective serodiagnostic assays for surveillance strategies or in vaccine design against P. vivax malaria. METHODS The pvetramp11.2 of P. vivax isolates collected from Brazil (n = 68) and Peru (n = 36) were sequenced and analyzed to assess nucleotide polymorphisms, allele distributions, population differentiation, genetic diversity and signature of selection. In addition, sequences (n = 104) of seven populations from different geographical regions were retrieved from the PlasmoDB database and included in the analysis to study the worldwide allele distribution. Potential linear B-cell epitopes and their polymorphisms were also explored. RESULTS The multiple alignments of 208 pvetramp11.2 sequences revealed a low polymorphism and a marked geographical variation in allele diversity. Seven polymorphic sites and 11 alleles were identified. All of the alleles were detected in isolates from the Latin American region and five alleles were detected in isolates from the Southeast Asia/Papua New Guinea (SEA/PNG) region. Three alleles were shared by all Latin American populations (H1, H6 and H7). The H1 allele (reference allele from Salvador-1 strain), which was absent in the SEA/PNG populations, was the most represented allele in populations from Brazil (54%) and was also detected at high frequencies in populations from all other Latin America countries (range: 13.0% to 33.3%). The H2 allele was the major allele in SEA/PNG populations, but was poorly represented in Latin America populations (only in Brazil: 7.3%). Plasmodium vivax populations from Latin America showed a marked inter-population genetic differentiation (fixation index [Fst]) in contrast to SEA/PNG populations. Codon bias measures (effective number of codons [ENC] and Codon bias index [CBI]) indicated preferential use of synonymous codons, suggesting selective pressure at the translation level. Only three amino acid substitutions, located in the C-terminus, were detected. Linear B-cell epitope mapping predicted two epitopes in the Sal-1 PvETRAMP11.2 protein, one of which was fully conserved in all of the parasite populations analyzed. CONCLUSIONS We provide an overview of the allele distribution and genetic differentiation of ETRAMP11.2 antigen in P. vivax populations from different endemic areas of the world. The reduced polymorphism and the high degree of protein conservation supports the application of PvETRAMP11.2 protein as a reliable antigen for application in serological assays or vaccine design. Our findings provide useful information that can be used to inform future study designs.
Collapse
Affiliation(s)
- Edvige Perrotti
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy.
| | | | - Michela Menegon
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angel Rosas-Aguirre
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Alejandro LLanos-Cuentas
- Instituto de Medicina Tropical "Alexander Von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Didier Menard
- Laboratoire de Parasitologie Et Mycologie Médicale, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Parasitologie Et Pathologie Tropicale, Université de Strasbourg, Strasbourg, France
- Malaria Genetics and Resistance Unit-INSERM U1201, Institut Pasteur, Paris, France
| | - Marcelo Urbano Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Carlo Severini
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy.
| |
Collapse
|
7
|
Huang F, Cui Y, Huang Z, Wang S, Li S, Guo X, Guo X, Xia ZG. Serological surveillance on potential Plasmodium vivax exposure risk in a post-elimination setting. Front Cell Infect Microbiol 2023; 13:1132917. [PMID: 36968112 PMCID: PMC10034364 DOI: 10.3389/fcimb.2023.1132917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
China was declared malaria free in June of 2021. In the post-elimination setting, vigilant surveillance is essential to sustain malaria free status. Serological surveillance has been recognized as an efficient tool for assessing the immunity levels and exposure risk in a population. In this study, a cross-sectional serological survey was conducted in Yingjiang County, China, in August–September, 2021. The study sites were villages along the borders with Myanmar, which have no local transmission since the last indigenous case registered in 2016. A total of 923 participants from six villages were enrolled. The majority was aged > 36 years (56.12%) and 12.46% (115/923) participants had experienced malaria infection at least once. A magnetic- bead-based assay was used to test antibodies against Plasmodium vivax antigen PvMSP-119 to evaluate the prevalence of antibody positive subjects. A reversible catalytic model was used to assess the risk of exposure. The prevalence of anti-PvMSP-119 IgG was 12.84% [95% confidence interval (CI): 9.22%–16.47%], 13.93% (95% CI: 10.11%–17.74%), and 3.57% (95% CI: 1.40%–5.75%) in three different line-of-defense areas, which differed significantly (P < 0.0001). The prevalence of anti-PvMSP-119 IgG increased with age and no statistically significant difference was detected between the sexes. The reversible catalytic model indicated that the seropositive conversion rate and seronegative reversion rate were 0.0042, 0.0034, 0.0032 and 0.0024, 0.0004, 0.0065 in the first-, second-line-of-defense area and total areas, respectively, and the fitted value did not differ significantly from the observed value (P > 0.1). Although this study found the prevalence of antibody-positive subjects and the seroconversion rate in this post-elimination setting were lower than that in transmission setting, the population still had an exposure risk. Serological surveillance should be considered in post-elimination settings to provide valuable information with which to evaluate the risk of malaria re-establishment.
Collapse
Affiliation(s)
- Fang Huang
- Institute of Immunization, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yanwen Cui
- Division of Tuberculosis Control and Prevention, Shanghai Pudong Center for Disease Control and Prevention, Shanghai, China
| | - Zhuoying Huang
- Institute of Immunization, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Siqi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Department of Malaria, Chinese Center for Tropical Diseases Research, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shigang Li
- Division of Endemic Disease Control and Prevention, Yingjiang County Center for Disease Control and Prevention, Yingjiang, China
| | - Xiangrui Guo
- Division of Endemic Disease Control and Prevention, Yingjiang County Center for Disease Control and Prevention, Yingjiang, China
| | - Xiang Guo
- Institute of Immunization, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
- *Correspondence: Xiang Guo, ; Zhi-Gui Xia,
| | - Zhi-Gui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Department of Malaria, Chinese Center for Tropical Diseases Research, Shanghai, China
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- *Correspondence: Xiang Guo, ; Zhi-Gui Xia,
| |
Collapse
|
8
|
Ompad DC, Padhan TK, Kessler A, Mohanty S, Tozan Y, Jones AM, van Eijk AM, Sullivan SA, Haque MA, Pradhan MM, Mohanty S, Carlton JM, Sahu PK. The effectiveness of malaria camps as part of the malaria control program in Odisha, India. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.18.23284743. [PMID: 36711482 PMCID: PMC9882634 DOI: 10.1101/2023.01.18.23284743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Durgama Anchalare Malaria Nirakaran (DAMaN) is a multi-component malaria intervention for hard-to-reach villages in Odisha, India. The main component, Malaria Camps (MCs), consists of mass screening, treatment, education, and intensified vector control. We evaluated MC effectiveness using a quasi-experimental cluster-assigned stepped-wedge study with a pretest-posttest control group in 15 villages: six immediate (Arm A), six delayed (Arm B), and three previous interventions (Arm C). The primary outcome was PCR+ Plasmodium infection prevalence. Across all arms, the odds of PCR+ malaria were 54% lower at the third follow-up compared to baseline. A time (i.e., visit) x study arm interaction revealed significantly lower odds of PCR+ malaria in Arm A versus B at the third follow-up. The cost per person ranged between US$3-8, the cost per tested US$4-7, and the cost per treated US$82-1,614, per camp round. These results suggest that the DAMaN intervention is a promising, financially feasible approach for malaria control.
Collapse
Affiliation(s)
- Danielle C Ompad
- School of Global Public Health, New York University, New York, NY, 10003, USA
| | - Timir K Padhan
- Department of Molecular Biology & Infectious Diseases, Community Welfare Society Hospital, Rourkela, Odisha, 769042, India
| | - Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Stuti Mohanty
- Department of Molecular Biology & Infectious Diseases, Community Welfare Society Hospital, Rourkela, Odisha, 769042, India
| | - Yesim Tozan
- School of Global Public Health, New York University, New York, NY, 10003, USA
| | - Abbey M Jones
- School of Global Public Health, New York University, New York, NY, 10003, USA
| | - Anna Maria van Eijk
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Steven A Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mohammed A Haque
- Department of Molecular Biology & Infectious Diseases, Community Welfare Society Hospital, Rourkela, Odisha, 769042, India
| | - Madan Mohan Pradhan
- Department of Health & Family Welfare, State Vector Borne Disease Control Programme, Bhubaneswar, Odisha, 751001, India
| | - Sanjib Mohanty
- Department of Molecular Biology & Infectious Diseases, Community Welfare Society Hospital, Rourkela, Odisha, 769042, India
| | - Jane M Carlton
- School of Global Public Health, New York University, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Praveen K Sahu
- Department of Molecular Biology & Infectious Diseases, Community Welfare Society Hospital, Rourkela, Odisha, 769042, India
| |
Collapse
|
9
|
Feng G, Kurtovic L, Agius PA, Aitken EH, Sacarlal J, Wines BD, Hogarth PM, Rogerson SJ, Fowkes FJI, Dobaño C, Beeson JG. Induction, decay, and determinants of functional antibodies following vaccination with the RTS,S malaria vaccine in young children. BMC Med 2022; 20:289. [PMID: 36002841 PMCID: PMC9402280 DOI: 10.1186/s12916-022-02466-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND RTS,S is the first malaria vaccine recommended for implementation among young children at risk. However, vaccine efficacy is modest and short-lived. Antibodies play the major role in vaccine-induced immunity, but knowledge on the induction, decay, and determinants of antibody function is limited, especially among children. Antibodies that promote opsonic phagocytosis and other cellular functions appear to be important contributors to RTS,S immunity. METHODS We studied a phase IIb trial of RTS,S/AS02 conducted in young children in malaria-endemic regions of Mozambique. We evaluated the induction of antibodies targeting the circumsporozoite protein (CSP, vaccine antigen) that interact with Fcγ-receptors (FcRγs) and promote phagocytosis (neutrophils, monocytes, THP-1 cells), antibody-dependent respiratory burst (ADRB) by neutrophils, and natural killer (NK) cell activity, as well as the temporal kinetics of responses over 5 years of follow-up (ClinicalTrials.gov registry number NCT00197041). RESULTS RTS,S vaccination induced CSP-specific IgG with FcγRIIa and FcγRIII binding activity and promoted phagocytosis by neutrophils, THP-1 monocytes, and primary human monocytes, neutrophil ADRB activity, and NK cell activation. Responses were highly heterogenous among children, and the magnitude of neutrophil phagocytosis by antibodies was relatively modest, which may reflect modest vaccine efficacy. Induction of functional antibodies was lower among children with higher malaria exposure. Functional antibody magnitude and the functional activity of antibodies largely declined within a year post-vaccination, and decay were highest in the first 6 months, consistent with the decline in vaccine efficacy over that time. Decay rates varied for different antibody parameters and decay was slower for neutrophil phagocytosis. Biostatistical modelling suggested IgG1 and IgG3 contribute in promoting FcγR binding and phagocytosis, and IgG targeting the NANP-repeat and C-terminal regions CSP were similarly important for functional activities. CONCLUSIONS Results provide new insights to understand the modest and time-limited efficacy of RTS,S in children and the induction of antibody functional activities. Improving the induction and maintenance of antibodies that promote phagocytosis and cellular functions, and combating the negative effect of malaria exposure on vaccine responses are potential strategies for improving RTS,S efficacy and longevity.
Collapse
Affiliation(s)
- Gaoqian Feng
- Burnet Institute, Melbourne, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Burnet Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Paul A Agius
- Burnet Institute, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia.,Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Elizabeth H Aitken
- Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jahit Sacarlal
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Faculdade de Medicina, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| | - Bruce D Wines
- Burnet Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia.,Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia.,Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Medicine, The University of Melbourne, Melbourne, Australia.,Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia.,Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Carlota Dobaño
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,ISGlobal, Hospital Clínic Universitat de Barcelona, Barcelona, Catalonia, Spain.,CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - James G Beeson
- Burnet Institute, Melbourne, Australia. .,Department of Medicine, The University of Melbourne, Melbourne, Australia. .,Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
10
|
Estimation of Plasmodium falciparum transmission using multiepitope chimeric antigen in the postelimination phase in Yunnan, China. Parasitol Int 2022; 89:102597. [DOI: 10.1016/j.parint.2022.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
|
11
|
Chaudhury S, Bolton JS, Eller LA, Robb M, Ake J, Ngauy V, Regules JA, Kamau E, Bergmann-Leitner ES. Assessing Prevalence and Transmission Rates of Malaria through Simultaneous Profiling of Antibody Responses against Plasmodium and Anopheles Antigens. J Clin Med 2022; 11:jcm11071839. [PMID: 35407447 PMCID: PMC9000160 DOI: 10.3390/jcm11071839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
Reliably assessing exposure to mosquitoes carrying malaria parasites continues to be a challenge due to the lack of reliable, highly sensitive diagnostics with high-throughput potential. Here, we describe an approach that meets these requirements by simultaneously measuring immune responses to both disease vector and pathogen, using an electro-chemiluminescence-based multiplex assay platform. While using the same logistical steps as a classic ELISA, this platform allows for the multiplexing of up to ten antigens in a single well. This simple, reproducible, quantitative readout reports the magnitude, incidence, and prevalence of malaria infections in residents of malaria-endemic areas. By reporting exposure to both insect vectors and pathogen, the approach also provides insights into the efficacy of drugs and/or other countermeasures deployed against insect vectors aimed at reducing or eliminating arthropod-borne diseases. The high throughput of the assay enables the quick and efficient screening of sera from individuals for exposure to Plasmodium even if they are taking drug prophylaxis. We applied this assay to samples collected from controlled malaria infection studies, as well as those collected in field studies in malaria-endemic regions in Uganda and Kenya. The assay was sensitive to vector exposure, malaria infection, and endemicity, demonstrating its potential for use in malaria serosurveillance.
Collapse
Affiliation(s)
- Sidhartha Chaudhury
- Center Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Jessica S. Bolton
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
| | - Leigh Anne Eller
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (L.A.E.); (M.R.)
| | - Merlin Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (L.A.E.); (M.R.)
| | - Julie Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.A.); (E.K.)
| | - Viseth Ngauy
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
| | - Jason A. Regules
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
| | - Edwin Kamau
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.A.); (E.K.)
- Laboratory Medicine, Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Elke S. Bergmann-Leitner
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
- Correspondence:
| |
Collapse
|
12
|
Dharmaratne ADVTT, Dini S, O’Flaherty K, Price DJ, Beeson J, McGready R, Nosten F, Fowkes FJI, Simpson JA, Zaloumis SG. Quantification of the dynamics of antibody response to malaria to inform sero-surveillance in pregnant women. Malar J 2022; 21:75. [PMID: 35248084 PMCID: PMC8897879 DOI: 10.1186/s12936-022-04111-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Background Malaria remains a major public health threat and tools sensitive to detect infections in low malaria transmission areas are needed to progress elimination efforts. Pregnant women are particularly vulnerable to malaria infections. Throughout pregnancy they access routine antenatal care, presenting a unique sentinel population to apply novel sero-surveillance tools to measure malaria transmission. The aim of this study was to quantify the dynamic antibody responses to multiple antigens during pregnancy so as to identify a single or multiple antibody response of exposure to malaria in pregnancy. Methods This study involved a secondary analysis of antibody responses to six parasite antigens [five commonly studied merozoite antigens and the variant surface antigen 2-chondroitin sulphate A (VAR2CSA), a pregnancy-specific erythrocytic antigen] measured by enzyme-linked immunosorbent assay (ELISA) over the gestation period until delivery (median of 7 measurements/woman) in 250 pregnant women who attended antenatal clinics located at the Thai-Myanmar border. A multivariate mixture linear mixed model was used to cluster the pregnant women into groups that have similar longitudinal antibody responses to all six antigens over the gestational period using a Bayesian approach. The variable-specific entropy was calculated to identify the antibody responses that have the highest influence on the classification of the women into clusters, and subsequent agreement with grouping of women based on exposure to malaria during pregnancy. Results Of the 250 pregnant women, 135 had a Plasmodium infection detected by light microscopy during pregnancy (39% Plasmodium falciparum only, 33% Plasmodium vivax only and 28% mixed/other species), defined as cases. The antibody responses to all six antigens accurately identified the women who did not have a malaria infection detected during pregnancy (93%, 107/115 controls). Antibody responses to P. falciparum merozoite surface protein 3 (PfMSP3) and P. vivax apical membrane antigen 1 (PvAMA1) were the least dynamic. Antibody responses to the antigens P. falciparum apical membrane antigen 1 (PfAMA1) and PfVAR2CSA were able to identify the majority of the cases more accurately (63%, 85/135). Conclusion These findings suggest that the combination of antibodies, PfAMA1 and PfVAR2CSA, may be useful for sero-surveillance of malaria infections in pregnant women, particularly in low malaria transmission settings. Further investigation of other antibody markers is warranted considering these antibodies combined only detected 63% of the malaria infections during pregnancy. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04111-y.
Collapse
|
13
|
Yao M, Xiao L, Sun X, Lin Z, Hao X, Bai QQ, Yin DH. Surveillance of Plasmodium vivax transmission using serological models in the border areas of China-Myanmar. Malar J 2022; 21:69. [PMID: 35241079 PMCID: PMC8895518 DOI: 10.1186/s12936-022-04096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/20/2022] [Indexed: 11/22/2022] Open
Abstract
Background To understand the Plasmodium vivax malaria transmission intensity and to assess the effectiveness of prevention and control measures taken along the China–Myanmar border, a catalytic model was used to calculate the seroconversion rate, an important indicator of malaria transmission intensity with high sensitivity, which is particularly useful in areas of low transmission. Methods Five counties in Yunnan Province bordering Myanmar were selected as survey sites, and subjects were obtained in each county by stratified random sampling in 2013–2014. Fingerstick blood was collected from each subject and tested for antibodies to P. vivax Merozoite Surface Protein 1-19 (PvMSP1-19) using indirect ELISA. A catalytic conversion model was used to assess the transmission intensity of P. vivax malaria based on the maximum likelihood of generating a community seroconversion rate. Results A total of 3064 valid blood samples were collected. Antibody levels were positively correlated with age. The seroconversion rate (SCR) values for each village were Luoping (0.0054), Jingqiao (0.0061), Longpen (0.0087), Eluo (0.0079), Banwang (0.0042) and Banbie (0.0046), respectively. Conclusion Overall, the intensity of P. vivax malaria transmission in the border areas of Yunnan Province is low and not entirely consistent across counties. Consecutive serological surveys are needed to provide a sensitive evaluation of transmission dynamics and can help to confirm areas where infection is no longer present.
Collapse
Affiliation(s)
- Meixue Yao
- Key Laboratory of Environment and Health, Department of Epidemiology and Health Statistics, School of Public Health, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Lishun Xiao
- Key Laboratory of Environment and Health, Department of Epidemiology and Health Statistics, School of Public Health, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiaodong Sun
- Yunnan Institute of Parasitic Diseases, No.6 Xiyuan Road, Simao City, Puer, 665000, Yunnan, China
| | - Zurui Lin
- Yunnan Institute of Parasitic Diseases, No.6 Xiyuan Road, Simao City, Puer, 665000, Yunnan, China
| | - Xiao Hao
- Jinan Blood Center, No.127 Jingliu Road, Jinan, 250001, Shandong, China
| | - Qiong-Qiong Bai
- Key Laboratory of Environment and Health, Department of Epidemiology and Health Statistics, School of Public Health, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - De-Hui Yin
- Key Laboratory of Environment and Health, Department of Epidemiology and Health Statistics, School of Public Health, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
14
|
Sarkar R, Kessler A, Mawkhlieng B, Sullivan SA, Wilson ML, Carlton JM, Albert S. Household and individual level risk factors associated with declining malaria incidence in Meghalaya, India: implications for malaria elimination in low-endemic settings. Malar J 2021; 20:460. [PMID: 34895233 PMCID: PMC8665616 DOI: 10.1186/s12936-021-03982-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
Background A detailed analysis of household and individual level Plasmodium infection patterns in two low-endemic districts of Meghalaya was undertaken to better understand the epidemiology of malaria in northeast India. Methods Socio-demographic and behavioural information from residents (aged 1–69 years) of households were collected through pre-tested, questionnaire conducted in 2018 and 2019. Blood samples collected from participants were tested for Plasmodium falciparum and/or Plasmodium vivax infection using rapid diagnostic test, microscopy and PCR. Plasma samples from a subset of participants were analysed for antibodies against thirteen P. falciparum and four P. vivax antigens. Associations between household and individual level risk factors, and Plasmodium infections were evaluated using multilevel logistic regression models. Results A total of 2753 individuals from 827 households were enrolled in 2018, and 834 individuals from 222 households were enrolled in 2019. Of them, 33 (1.2%) were positive by PCR for P. falciparum in 2018 and none were positive for P. vivax. In 2019, no PCR-positive individuals were detected. All, but one, infections were asymptomatic; all 33 infections were sub-microscopic. Reported history of malaria in the past 12 months (OR = 8.84) and history of travel in the past 14 days (OR = 10.06) were significantly associated with Plasmodium infection. A significant trend of increased seropositivity with age was noted for all 17 antigens. Although adults (≥ 18 years) consistently had the highest seropositivity rates, a sizeable proportion of under-five children were also found to be seropositive. Almost all individuals (99.4%) reported sleeping under an insecticide-treated bed-net, and household indoor residual spray coverage in the 12 months preceding the survey was low (23%). Most participants correctly identified common signs and symptoms of malaria, i.e., fever (96.4%), headache (71.2%), chills (83.2%) and body-ache (61.8%). Almost all participants (94.3%) used government-provided services for treatment of malaria. Conclusion This study explored the epidemiology of malaria in two communities in Meghalaya, India, in the context of declining transmission. The presence of widespread asymptomatic infections and seropositivity among under-five children suggest that low-level Plasmodium transmission persists in this region. Implications of the study findings for malaria elimination efforts in low-transmission settings are discussed.
Collapse
Affiliation(s)
- Rajiv Sarkar
- Indian Institute of Public Health - Shillong, Shillong, Meghalaya, 793001, India. .,Martin Luther Christian University, Shillong, Meghalaya, 793006, India.
| | - Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | | | - Steven A Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mark L Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.,Department of Epidemiology, School of Global Public Health, New York University, New York, NY, 10003, USA
| | - Sandra Albert
- Indian Institute of Public Health - Shillong, Shillong, Meghalaya, 793001, India.,Martin Luther Christian University, Shillong, Meghalaya, 793006, India
| |
Collapse
|
15
|
O'Flaherty K, Oo WH, Zaloumis SG, Cutts JC, Aung KZ, Thein MM, Drew DR, Razook Z, Barry AE, Parischa N, Zaw NN, Thu HK, Thi A, Htay WYM, Soe AP, Simpson JA, Beeson JG, Agius PA, Fowkes FJI. Community-based molecular and serological surveillance of subclinical malaria in Myanmar. BMC Med 2021; 19:121. [PMID: 34044836 PMCID: PMC8161608 DOI: 10.1186/s12916-021-01993-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In the Greater Mekong Subregion (GMS), current malaria surveillance strategies rely on a network of village health volunteers (VHVs) reporting the results of rapid diagnostic tests (RDTs), known to miss many asymptomatic infections. Integration of more sensitive diagnostic molecular and serological measures into the VHV network may improve surveillance of residual malaria transmission in hard-to-reach areas in the region and inform targeted interventions and elimination responses. However, data on residual malaria transmission that would be captured by these measures in the VHV-led testing and treatment surveillance network in the GMS is unknown. METHODS A total of 114 VHVs were trained to collect dried blood spots from villagers undergoing routine RDTs as part of VHV-led active and passive case detection from April 2015 to June 2016. Samples were subjected to molecular testing (quantitative polymerase chain reaction [qPCR]) to determine Plasmodium falciparum and P. vivax infection and serological testing (against P. falciparum and P. vivax antigens) to determine exposure to P. falciparum and P. vivax. RESULTS Over 15 months, 114 VHVs performed 32,194 RDTs and collected samples for molecular (n = 13,157) and serological (n = 14,128) testing. The prevalence of molecular-detectable P. falciparum and P. vivax infection was 3.2% compared to the 0.16% prevalence of Plasmodium spp. by RDT, highlighting the large burden of infections undetected by standard surveillance. Peaks in anti-P. falciparum, but not P. vivax, merozoite IgG seroprevalence coincided with seasonal P. falciparum transmission peaks, even in those with no molecularly detectable parasites. At the individual level, antibody seropositivity was associated with reduced odds of contemporaneous P. falciparum (OR for PfCSP 0.51 [95%CI 0.35, 0.76], p = 0.001, PfAMA1 0.70 [95%CI 0.52, 0.93], p = 0.01, and PfMSP2 0.81 [95%CI 0.61, 1.08], p = 0.15), but not P. vivax infection (OR PvAMA1 1.02 [95%CI 0.73, 1.43], p = 0.89) indicating a potential role of immunity in protection against molecular-detectable P. falciparum parasitaemia. CONCLUSIONS We demonstrated that integration and implementation of sample collection for molecular and serological surveillance into networks of VHV servicing hard-to-reach populations in the GMS is feasible, can capture significant levels of ongoing undetected seasonal malaria transmission and has the potential to supplement current routine RDT testing. Improving malaria surveillance by advancing the integration of molecular and serological techniques, through centralised testing approaches or novel point-of-contact tests, will advance progress, and tracking, towards malaria elimination goals in the GMS.
Collapse
Affiliation(s)
- Katherine O'Flaherty
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Win Han Oo
- Burnet Institute Myanmar, Yangon, Myanmar
| | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Julia C Cutts
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | | | | | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Zahra Razook
- School of Medicine, Deakin University, Geelong, Australia
| | - Alyssa E Barry
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia.,School of Medicine, Deakin University, Geelong, Australia
| | - Naanki Parischa
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | | | | | - Aung Thi
- Department of Public Health, Myanmar Ministry of Health, Nay Pyi Taw, Myanmar
| | | | | | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia.,Department of Microbiology and Central Clinical School, Monash University, Melbourne, Australia
| | - Paul A Agius
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia.,Judith Lumley Centre, La Trobe University, Melbourne, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia. .,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia. .,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia. .,Department of Infectious Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
16
|
Alexander N, Carabali M, Lim JK. Estimating force of infection from serologic surveys with imperfect tests. PLoS One 2021; 16:e0247255. [PMID: 33661951 PMCID: PMC7932155 DOI: 10.1371/journal.pone.0247255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/04/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The force of infection, or the rate at which susceptible individuals become infected, is an important public health measure for assessing the extent of outbreaks and the impact of control programs. METHODS AND FINDINGS We present Bayesian methods for estimating force of infection using serological surveys of infections which produce a lasting immune response, accounting for imperfections of the test, and uncertainty in such imperfections. In this estimation, the sensitivity and specificity can either be fixed, or belief distributions of their values can be elicited to allow for uncertainty. We analyse data from two published serological studies of dengue, one in Colombo, Sri Lanka, with a single survey and one in Medellin, Colombia, with repeated surveys in the same individuals. For the Colombo study, we illustrate how the inferred force of infection increases as the sensitivity decreases, and the reverse for specificity. When 100% sensitivity and specificity are assumed, the results are very similar to those from a standard analysis with binomial regression. For the Medellin study, the elicited distribution for sensitivity had a lower mean and higher variance than the one for specificity. Consequently, taking uncertainty in sensitivity into account resulted in a wide credible interval for the force of infection. CONCLUSIONS These methods can make more realistic estimates of force of infection, and help inform the choice of serological tests for future serosurveys.
Collapse
Affiliation(s)
- Neal Alexander
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mabel Carabali
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Jacqueline K. Lim
- Global Dengue and Aedes-transmitted Diseases Consortium (GDAC), International Vaccine Institute, Seoul, Korea
| |
Collapse
|
17
|
Villasis E, Garro K, Rosas-Aguirre A, Rodriguez P, Rosado J, Gave A, Guzman-Guzman M, Manrique P, White M, Speybroeck N, Vinetz JM, Torres K, Gamboa D. PvMSP8 as a Novel Plasmodium vivax Malaria Sero-Marker for the Peruvian Amazon. Pathogens 2021; 10:pathogens10030282. [PMID: 33801386 PMCID: PMC7999794 DOI: 10.3390/pathogens10030282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
The measurement of recent malaria exposure can support malaria control efforts. This study evaluated serological responses to an in-house Plasmodium vivax Merozoite Surface Protein 8 (PvMSP8) expressed in a Baculovirus system as sero-marker of recent exposure to P. vivax (Pv) in the Peruvian Amazon. In a first evaluation, IgGs against PvMSP8 and PvMSP10 proteins were measured by Luminex in a cohort of 422 Amazonian individuals with known history of Pv exposure (monthly data of infection status by qPCR and/or microscopy over five months). Both serological responses were able to discriminate between exposed and non-exposed individuals in a good manner, with slightly higher performance of anti-PvMSP10 IgGs (area under the curve AUC = 0.78 [95% CI = 0.72–0.83]) than anti-PvMSP8 IgGs (AUC = 0.72 [95% CI = 0.67–0.78]) (p = 0.01). In a second evaluation, the analysis by ELISA of 1251 plasma samples, collected during a population-based cross-sectional survey, confirmed the good performance of anti-PvMSP8 IgGs for discriminating between individuals with Pv infection at the time of survey and/or with antecedent of Pv in the past month (AUC = 0.79 [95% CI = 0.74–0.83]). Anti-PvMSP8 IgG antibodies can be considered as a good biomarker of recent Pv exposure in low-moderate transmission settings of the Peruvian Amazon.
Collapse
Affiliation(s)
- Elizabeth Villasis
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Correspondence:
| | - Katherine Garro
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Research Institute of Health and Society (IRSS). Université Catholique de Louvain, Clos Chapelle-aux-champs 30/B1.30.14 1200 Woluwe-Saint-Lambert, Brussels 1200, Belgium;
| | - Pamela Rodriguez
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
| | - Jason Rosado
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris 75015, France; (J.R.); (M.W.)
- Sorbonne Université, Faculté des Sciences et Ingénierie, École Doctorale Pierre Louis - Santé Publique, Campus des Cordeliers, ED 393, F-75005 Paris, France
| | - Anthony Gave
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Paulo Manrique
- Leishmania and Malaria Research Unit. Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Michael White
- Malaria: Parasites and Hosts Unit, Institut Pasteur, Paris 75015, France; (J.R.); (M.W.)
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS). Université Catholique de Louvain, Clos Chapelle-aux-champs 30/B1.30.14 1200 Woluwe-Saint-Lambert, Brussels 1200, Belgium;
| | - Joseph Michael Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Katherine Torres
- Laboratorio de Malaria, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru; (K.G.); (P.R.); (K.T.)
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (A.R.-A.); (J.M.V.); (D.G.)
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| |
Collapse
|
18
|
Rosado J, White MT, Longley RJ, Lacerda M, Monteiro W, Brewster J, Sattabongkot J, Guzman-Guzman M, Llanos-Cuentas A, Vinetz JM, Gamboa D, Mueller I. Heterogeneity in response to serological exposure markers of recent Plasmodium vivax infections in contrasting epidemiological contexts. PLoS Negl Trop Dis 2021; 15:e0009165. [PMID: 33591976 PMCID: PMC7909627 DOI: 10.1371/journal.pntd.0009165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/26/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Antibody responses as serological markers of Plasmodium vivax infection have been shown to correlate with exposure, but little is known about the other factors that affect antibody responses in naturally infected people from endemic settings. To address this question, we studied IgG responses to novel serological exposure markers (SEMs) of P. vivax in three settings with different transmission intensity. METHODOLOGY We validated a panel of 34 SEMs in a Peruvian cohort with up to three years' longitudinal follow-up using a multiplex platform and compared results to data from cohorts in Thailand and Brazil. Linear regression models were used to characterize the association between antibody responses and age, the number of detected blood-stage infections during follow-up, and time since previous infection. Receiver Operating Characteristic (ROC) analysis was used to test the performance of SEMs to identify P. vivax infections in the previous 9 months. PRINCIPAL FINDINGS Antibody titers were associated with age, the number of blood-stage infections, and time since previous P. vivax infection in all three study sites. The association between antibody titers and time since previous P. vivax infection was stronger in the low transmission settings of Thailand and Brazil compared to the higher transmission setting in Peru. Of the SEMs tested, antibody responses to RBP2b had the highest performance for classifying recent exposure in all sites, with area under the ROC curve (AUC) = 0.83 in Thailand, AUC = 0.79 in Brazil, and AUC = 0.68 in Peru. CONCLUSIONS In low transmission settings, P. vivax SEMs can accurately identify individuals with recent blood-stage infections. In higher transmission settings, the accuracy of this approach diminishes substantially. We recommend using P. vivax SEMs in low transmission settings pursuing malaria elimination, but they are likely to be less effective in high transmission settings focused on malaria control.
Collapse
Affiliation(s)
- Jason Rosado
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Sorbonne Université, ED 393, Paris, France
| | - Michael T. White
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
| | - Rhea J. Longley
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Australia
| | - Marcus Lacerda
- Instituto Leônidas & Maria Deane (Fiocruz), Manaus, Brazil
- Tropical Medicine Foundation Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Wuelton Monteiro
- Tropical Medicine Foundation Dr Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Jessica Brewster
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Jetsumon Sattabongkot
- Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mitchel Guzman-Guzman
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ivo Mueller
- Unit of Malaria: Parasites and hosts, Institut Pasteur, Paris, France
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Australia
| |
Collapse
|
19
|
van den Hoogen LL, Bareng P, Alves J, Reyes R, Macalinao M, Rodrigues JM, Fernandes JM, Goméz LF, Hall T, Singh SK, Fornace K, Luchavez J, Kitchen A, Chiodini P, Espino F, Tetteh KKA, Stresman G, Sepúlveda N, Drakeley C. Comparison of Commercial ELISA Kits to Confirm the Absence of Transmission in Malaria Elimination Settings. Front Public Health 2020; 8:480. [PMID: 33014975 PMCID: PMC7509087 DOI: 10.3389/fpubh.2020.00480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Antimalarial antibody measurements are useful because they reflect historical and recent exposure to malaria. As such, they may provide additional information to assess ongoing transmission in low endemic or pre-elimination settings where cases are rare. In addition, the absence of antibody responses in certain individuals can indicate the cessation of transmission. Commercial malaria enzyme-linked immunosorbent assays (ELISA) detect antimalarial antibodies and are commonly used to screen blood donations for possible malaria infection. However, there is no standardized test to detect antimalarial antibodies for epidemiological use. Here we compared five commercially available ELISA kits (Trinity Biotech, newbio, DiaPro, Cellabs, and NovaTec) in search of a standardized tool for supporting claims of absence of malaria transmission. For comparison, a research-based (RB) ELISA protocol was performed alongside the commercial kits. Results: The commercial kits were first compared using serum samples from known malaria-unexposed individuals (n = 223) and Toxoplasma-infected individuals (n = 191) to assess specificity and cross-reactivity against non-malaria infections. In addition, 134 samples from ≥10-year-olds collected in a hyperendemic region in the Gambia in the early 1990s were used to assess sensitivity. Three out of five kits showed high sensitivity (90–92%), high specificity (98–99%), low cross-reactivity (0–3%) and were considered user-friendly (Trinity Biotech, newbio and NovaTec). Two of these kits (Trinity Biotech and NovaTec) were taken forward for epidemiological evaluation and results were compared to those using the RB-ELISA. Samples from two pre-elimination settings (Praia, Cape Verde; n = 1,396, and Bataan, the Philippines; n = 1,824) were tested. Serological results from both the Trinity Biotech kit and the RB-ELISA concurred with recent passively detected case counts in both settings. Results from the Trinity Biotech kit reflected a significant decrease in the number of reported cases in Bataan in the 1990s better than the RB-ELISA. Results from the NovaTec kit did not reflect transmission patterns in either setting. Conclusion: The Trinity Biotech commercial ELISA kit was considered reliable for epidemiological use and accurately described transmission patterns in two (previously) malaria endemic settings. The use of this simple and standardized serological tool may aid national control and elimination programs by confirming that regions are free from malaria.
Collapse
Affiliation(s)
- Lotus L van den Hoogen
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paolo Bareng
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | - Joana Alves
- National Institute of Public Health, Praia, Cape Verde
| | - Ralph Reyes
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | - Malou Macalinao
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | | | - José M Fernandes
- Faculty of Science and Technology, University of Cape Verde, Praia, Cape Verde
| | - Lara F Goméz
- Department of Natural, Life and Environmental Sciences, Jean Piaget University of Cape Verde, Praia, Cape Verde
| | - Tom Hall
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susheel K Singh
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Kimberly Fornace
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jennifer Luchavez
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | - Alan Kitchen
- NHS Blood and Transplant, London, United Kingdom
| | - Peter Chiodini
- Hospital for Tropical Diseases and London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fe Espino
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gillian Stresman
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nuno Sepúlveda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Centre of Statistics and Applications, University of Lisbon, Lisbon, Portugal
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
20
|
Amlabu E, Ilani P, Opoku G, Nyarko PB, Quansah E, Thiam LG, Anim M, Ayivor-Djanie R, Akuh OA, Mensah-Brown H, Rayner JC, Awandare GA. Molecular Characterization and Immuno-Reactivity Patterns of a Novel Plasmodium falciparum Armadillo-Type Repeat Protein, PfATRP. Front Cell Infect Microbiol 2020; 10:114. [PMID: 32266165 PMCID: PMC7100384 DOI: 10.3389/fcimb.2020.00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 01/30/2023] Open
Abstract
Nearly half of the genes in the Plasmodium falciparum genome have not yet been functionally investigated. We used homology-based structural modeling to identify multiple copies of Armadillo repeats within one uncharacterized gene expressed during the intraerythrocytic stages, PF3D7_0410600, subsequently referred to as P. falciparum Armadillo-Type Repeat Protein (PfATRP). Soluble recombinant PfATRP was expressed in a bacterial expression system, purified to apparent homogeneity and the identity of the recombinant PfATRP was confirmed by mass spectrometry. Affinity-purified α-PfATRP rabbit antibodies specifically recognized the recombinant protein. Immunofluorescence assays revealed that α-PfATRP rabbit antibodies reacted with P. falciparum schizonts. Anti-PfATRP antibody exhibited peripheral staining patterns around the merozoites. Given the localization of PfATRP in merozoites, we tested for an egress phenotype during schizont arrest assays and demonstrated that native PfATRP is inaccessible on the surface of merozoites in intact schizonts. Dual immunofluorescence assays with markers for the inner membrane complex (IMC) and microtubules suggest partial colocalization in both asexual and sexual stage parasites. Using the soluble recombinant PfATRP in a screen of plasma samples revealed that malaria-infected children have naturally acquired PfATRP-specific antibodies.
Collapse
Affiliation(s)
- Emmanuel Amlabu
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Philip Ilani
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Grace Opoku
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Prince B. Nyarko
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Evelyn Quansah
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Laty G. Thiam
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Manfred Anim
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Reuben Ayivor-Djanie
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biomedical Sciences, SBBS, University of Health and Allied Sciences, Ho, Ghana
| | - Ojo-ajogu Akuh
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Henrietta Mensah-Brown
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Gordon A. Awandare
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
21
|
Varela ML, Koffi D, White M, Niang M, Mbengue B, Diene Sarr F, Touré AO, Perraut R. Practical example of multiple antibody screening for evaluation of malaria control strategies. Malar J 2020; 19:117. [PMID: 32192514 PMCID: PMC7082935 DOI: 10.1186/s12936-020-03186-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ongoing efforts to fight Plasmodium falciparum malaria has reduced malaria in many areas, but new tools are needed to monitor further progress, including indicators of decreasing exposure to parasite infection. Sero-surveillance is considered promising to monitor exposure, transmission and immunity. METHODS IgG responses to three antigen biomarkers were evaluated in a retrospective study involving: (i) surveys of 798 asymptomatic villagers from 2 Senegalese endemic settings conducted before 2002 and after the 2013 intensification of control measures, and (ii) in 105 symptomatic individuals from different settings in Côte d'Ivoire. Response to up to eight P. falciparum antigens, including recombinant MSP1p9 antigen and LSA141 peptide, were analysed using multiplex technology and responses to whole P. falciparum schizont extract (SE, local strain adapted to culture) were measured by ELISA. RESULTS MSP1p9 and LSA141 IgG responses were shown to be relevant indicators monitoring immune status in the different study sites both from Côte d'Ivoire and Senegal. Between 2002 and 2013, individuals participating in both studies showed higher decline of sero-positivity in young (< 15 years: range 12% to 50%) than older (> 15 years: no decline to 15%) individuals from Dielmo and Ndiop. A mathematical sero-catalytic model from the complete Dielmo/Ndiop survey was used to reconstruct declining levels of sero-positivity in more detail, demonstrating that anti-SE seroprevalence levels most accurately reflected malaria exposure in the two villages. CONCLUSION For standard screening of population immune status at sites envisaging elimination, the use of ELISA-based assays targeting selected antigens can contribute to provide important epidemiologic surveillance data to aid malaria control programmes.
Collapse
Affiliation(s)
| | - David Koffi
- Unité de Paludologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Michael White
- Malaria Unit, Parasites and hosts, Institut Pasteur, Paris, France
| | - Makhtar Niang
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Babacar Mbengue
- Unité d'Immunogénétique, Institut Pasteur de Dakar, Dakar, Senegal.,Service d'Immunologie FMPO, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | | | | | - Ronald Perraut
- Unité d'Immunologie, Institut Pasteur de Dakar, Dakar, Senegal. .,Unité d'Immunogénétique, Institut Pasteur de Dakar, Dakar, Senegal. .,Centre Pasteur du Cameroun, Annexe de Garoua, Garoua, Cameroun.
| |
Collapse
|
22
|
van den Hoogen LL, Présumé J, Romilus I, Mondélus G, Elismé T, Sepúlveda N, Stresman G, Druetz T, Ashton RA, Joseph V, Eisele TP, Hamre KES, Chang MA, Lemoine JF, Tetteh KKA, Boncy J, Existe A, Drakeley C, Rogier E. Quality control of multiplex antibody detection in samples from large-scale surveys: the example of malaria in Haiti. Sci Rep 2020; 10:1135. [PMID: 31980693 PMCID: PMC6981173 DOI: 10.1038/s41598-020-57876-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Measuring antimalarial antibodies can estimate transmission in a population. To compare outputs, standardized laboratory testing is required. Here we describe the in-country establishment and quality control (QC) of a multiplex bead assay (MBA) for three sero-surveys in Haiti. Total IgG data against 21 antigens were collected for 32,758 participants. Titration curves of hyperimmune sera were included on assay plates, assay signals underwent 5-parameter regression, and inspection of the median and interquartile range (IQR) for the y-inflection point was used to determine assay precision. The medians and IQRs were similar for Surveys 1 and 2 for most antigens, while the IQRs increased for some antigens in Survey 3. Levey-Jennings charts for selected antigens provided a pass/fail criterion for each assay plate and, of 387 assay plates, 13 (3.4%) were repeated. Individual samples failed if IgG binding to the generic glutathione-S-transferase protein was observed, with 659 (2.0%) samples failing. An additional 455 (1.4%) observations failed due to low bead numbers (<20/analyte). The final dataset included 609,438 anti-malaria IgG data points from 32,099 participants; 96.6% of all potential data points if no QC failures had occurred. The MBA can be deployed with high-throughput data collection and low inter-plate variability while ensuring data quality.
Collapse
Affiliation(s)
- Lotus L van den Hoogen
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | - Gina Mondélus
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Tamara Elismé
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | - Nuno Sepúlveda
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
- Centre of Statistics and Applications, University of Lisbon, Lisbon, Portugal
| | - Gillian Stresman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Thomas Druetz
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
- Department of Social and Preventive Medicine, University of Montreal School of Public Health, Montreal, Canada
| | - Ruth A Ashton
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
| | - Vena Joseph
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
| | - Thomas P Eisele
- Center for Applied Malaria Research and Evaluation, Tulane University School of Public Health & Tropical Medicine, New Orleans, Louisiana, USA
| | - Karen E S Hamre
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- CDC Foundation, Atlanta, Georgia, USA
| | - Michelle A Chang
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jean F Lemoine
- Ministère de la santé publique et de la population, Port-au-Prince, Haiti
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | | | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Rosas-Aguirre A, Patra KP, Calderón M, Torres K, Gamboa D, Arocutipa E, Málaga E, Garro K, Fernández C, Trompeter G, Alnasser Y, Llanos-Cuentas A, Gilman RH, Vinetz JM. Anti-MSP-10 IgG indicates recent exposure to Plasmodium vivax infection in the Peruvian Amazon. JCI Insight 2020; 5:130769. [PMID: 31770108 DOI: 10.1172/jci.insight.130769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDSerological tools for the accurate detection of recent malaria exposure are needed to guide and monitor malaria control efforts. IgG responses against Plasmodium vivax and P. falciparum merozoite surface protein-10 (MSP10) were measured as a potential way to identify recent malaria exposure in the Peruvian Amazon.METHODSA field-based study included 470 participants in a longitudinal cohort who completed a comprehensive evaluation: light microscopy and PCR on enrollment, at least 1 monthly follow-up by light microscopy, a second PCR, and serum and dried blood spots for serological analysis at the end of the follow-up. IgG titers against novel mammalian cell-produced recombinant PvMSP10 and PfMSP10 were determined by ELISA.RESULTSDuring the follow-up period, 205 participants were infected, including 171 with P. vivax, 26 with P. falciparum, 6 with infections by both species but at different times, and 2 with mixed infections. Exposure to P. vivax was more accurately identified when serological responses to PvMSP10 were obtained from serum (sensitivity, 58.1%; specificity, 81.8%; AUC: 0.76) than from dried blood spots (sensitivity, 35.2; specificity, 83.5%; AUC: 0.64) (PAUC < 0.001). Sensitivity was highest (serum, 82.9%; dried blood spot, 45.7%) with confirmed P. vivax infections occurring 7-30 days before sample collection; sensitivity decreased significantly in relation to time since last documented infection. PvMSP10 serological data did not show evidence of interspecies cross-reactivity. Anti-PfMSP10 responses poorly discriminated between P. falciparum-exposed and nonexposed individuals (AUC = 0.59; P > 0.05).CONCLUSIONAnti-PvMSP10 IgG indicates recent exposure to P. vivax at the population level in the Amazon region. Serum, not dried blood spots, should be used for such serological tests.FUNDINGCooperative agreement U19AI089681 from the United States Public Health Service, NIH/National Institute of Allergy and Infectious Diseases, as the Amazonian International Center of Excellence in Malaria Research.
Collapse
Affiliation(s)
- Angel Rosas-Aguirre
- Fund for Scientific Research FNRS, Brussels, Belgium.,Research Institute of Health and Society, Université catholique de Louvain, Brussels, Belgium.,Instituto de Medicina, Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kailash P Patra
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Maritza Calderón
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and
| | - Katherine Torres
- Instituto de Medicina, Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Instituto de Medicina, Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edith Arocutipa
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edith Málaga
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Garro
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Fernández
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Grace Trompeter
- Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yossef Alnasser
- Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina, Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert H Gilman
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joseph M Vinetz
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, and.,Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
24
|
Bendezu J, Villasis E, Morales Ruiz S, Garro K, Infante B, Gutierrez-Loli R, Rodríguez P, Fernández-Díaz M, Gamboa D, Torres K. Evaluation of Plasmodium falciparum MSP10 and its development as a serological tool for the Peruvian Amazon region. Malar J 2019; 18:327. [PMID: 31547821 PMCID: PMC6757379 DOI: 10.1186/s12936-019-2959-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Different antigens are needed to characterize Plasmodium falciparum infection in terms of seroreactivity and targets for invasion inhibition, in order to guide and identify the proper use of such proteins as tools for the development of serological markers and/or as vaccine candidates. METHODS IgG responses in 84 serum samples from individuals with P. falciparum infection [classified as symptomatic (Sym) or asymptomatic (Asym)], or acute Plasmodium vivax infection, from the Peruvian Amazon region, were evaluated by enzyme-linked immunosorbent assays specific for a baculovirus-produced recombinant protein P. falciparum Merozoite Surface Protein 10 (rMSP10) and for non-EGF region selected peptides of PfMSP10 selected by a bioinformatics tool (PfMSP10-1, PfMSP10-2 and PfMSP10-3). Monoclonal antibodies against the selected peptides were evaluated by western blotting, confocal microscopy and inhibition invasion assays. RESULTS Seroreactivity analysis of the P. falciparum Sym- and Asym-infected individuals against rMSP10 showed a higher response as compared to the individuals with P. vivax acute infection. IgG responses against peptide PfMSP10-1 were weak. Interestingly high IgG response was found against peptide PfMSP10-2 and the combination of peptides PfMSP10-1 + PfMSP10-2. Monoclonal antibodies were capable of detecting native PfMSP10 on purified schizonts by western blot and confocal microscopy. A low percentage of inhibition of merozoite invasion of erythrocytes in vitro was observed when the monoclonal antibodies were compared with the control antibody against AMA-1 antigen. Further studies are needed to evaluate the role of PfMSP10 in the merozoite invasion. CONCLUSIONS The rMSP10 and the PfMSP10-2 peptide synthesized for this study may be useful antigens for evaluation of P. falciparum malaria exposure in Sym and Asym individuals from the Peruvian Amazon region. Moreover, these antigens can be used for further investigation of the role of this protein in other malaria-endemic areas.
Collapse
Affiliation(s)
- Jorge Bendezu
- Laboratorios de Investigación y Desarrollo, FARVET, Carretera Panamericana Sur No 766 km 198.5, Chincha Alta, Ica, Peru.
| | - Elizabeth Villasis
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt-Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Sandra Morales Ruiz
- Laboratorios de Investigación y Desarrollo, FARVET, Carretera Panamericana Sur No 766 km 198.5, Chincha Alta, Ica, Peru
| | - Katherine Garro
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Berónica Infante
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Renzo Gutierrez-Loli
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pamela Rodríguez
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manolo Fernández-Díaz
- Laboratorios de Investigación y Desarrollo, FARVET, Carretera Panamericana Sur No 766 km 198.5, Chincha Alta, Ica, Peru
| | - Dionicia Gamboa
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt-Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru
| | - Katherine Torres
- Laboratorios de Investigación y Desarrollo "Abraham Vaisberg Wolach, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Medicina Tropical Alexander von Humboldt-Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru.
| |
Collapse
|
25
|
Feleke SM, Brhane BG, Mamo H, Assefa A, Woyessa A, Ogawa GM, Cama V. Sero-identification of the aetiologies of human malaria exposure (Plasmodium spp.) in the Limu Kossa District of Jimma Zone, South western Ethiopia. Malar J 2019; 18:292. [PMID: 31455373 PMCID: PMC6712699 DOI: 10.1186/s12936-019-2927-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/20/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Malaria remains a very important public health problem in Ethiopia. Currently, only Plasmodium falciparum and Plasmodium vivax are considered in the malaria diagnostic and treatment policies. However, the existence and prevalence of Plasmodium ovale spp. and Plasmodium malariae in Ethiopia have not been extensively investigated. The objective of this study was to use a multiplex IgG antibody detection assay to evaluate evidence for exposure to any of these four human malaria parasites among asymptomatic individuals. METHODS Dried blood spots (DBS) were collected from 180 healthy study participants during a 2016 onchocerciasis survey in the Jimma Zone, southwest Ethiopia. IgG antibody reactivity was detected using a multiplex bead assay for seven Plasmodium antigens: P. falciparum circumsporozoite protein (CSP), P. falciparum apical membrane antigen-1 (AMA1), P. falciparum liver stage antigen-1 (LSA1), and homologs of the merozoite surface protein-1 (MSP1)-19kD antigens that are specific for P. falciparum, P. vivax, P. ovale spp. and P. malariae. RESULTS One hundred six participants (59%) were IgG seropositive for at least one of the Plasmodium antigens tested. The most frequent responses were against P. falciparum AMA1 (59, 33%) and P. vivax (55, 28%). However, IgG antibodies against P. ovale spp. and P. malariae were detected in 19 (11%) and 13 (7%) of the participants, respectively, providing serological evidence that P. malariae and P. ovale spp., which are rarely reported, may also be endemic in Jimma. CONCLUSION The findings highlight the informative value of multiplex serology and the need to confirm whether P. malariae and P. ovale spp. are aetiologies of malaria in Ethiopia, which is critical for proper diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Adugna Woyessa
- Ethiopian Public Health Institute (EPHI), Addis Ababa, Ethiopia
| | - Guilherme Maerschner Ogawa
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Vitaliano Cama
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| |
Collapse
|
26
|
Kurtovic L, Agius PA, Feng G, Drew DR, Ubillos I, Sacarlal J, Aponte JJ, Fowkes FJI, Dobaño C, Beeson JG. Induction and decay of functional complement-fixing antibodies by the RTS,S malaria vaccine in children, and a negative impact of malaria exposure. BMC Med 2019; 17:45. [PMID: 30798787 PMCID: PMC6388494 DOI: 10.1186/s12916-019-1277-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/31/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Leading malaria vaccine, RTS,S, is based on the circumsporozoite protein (CSP) of sporozoites. RTS,S confers partial protection against malaria in children, but efficacy wanes relatively quickly after primary immunization. Vaccine efficacy has some association with anti-CSP IgG; however, it is unclear how these antibodies function, and how functional antibodies are induced and maintained over time. Recent studies identified antibody-complement interactions as a potentially important immune mechanism against sporozoites. Here, we investigated whether RTS,S vaccine-induced antibodies could function by interacting with complement. METHODS Serum samples were selected from children in a phase IIb trial of RTS,S/AS02A conducted at two study sites of high and low malaria transmission intensity in Manhiça, Mozambique. Samples following primary immunization and 5-year post-immunization follow-up time points were included. Vaccine-induced antibodies were characterized by isotype, subclass, and epitope specificity, and tested for the ability to fix and activate complement. We additionally developed statistical methods to model the decay and determinants of functional antibodies after vaccination. RESULTS RTS,S vaccination induced anti-CSP antibodies that were mostly IgG1, with some IgG3, IgG2, and IgM. Complement-fixing antibodies were effectively induced by vaccination, and targeted the central repeat and C-terminal regions of CSP. Higher levels of complement-fixing antibodies were associated with IgG that equally recognized both the central repeat and C-terminal regions of CSP. Older age and higher malaria exposure were significantly associated with a poorer induction of functional antibodies. There was a marked decay in functional complement-fixing antibodies within months after vaccination, as well as decays in IgG subclasses and IgM. Statistical modeling suggested the decay in complement-fixing antibodies was mostly attributed to the waning of anti-CSP IgG1, and to a lesser extent IgG3. CONCLUSIONS We demonstrate for the first time that RTS,S can induce complement-fixing antibodies in young malaria-exposed children. The short-lived nature of functional responses mirrors the declining vaccine efficacy of RTS,S over time. The negative influence of age and malaria exposure on functional antibodies has implications for understanding vaccine efficacy in different settings. These findings provide insights into the mechanisms and longevity of vaccine-induced immunity that will help inform the future development of highly efficacious and long-lasting malaria vaccines.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Paul A Agius
- Burnet Institute, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia
| | | | | | - Itziar Ubillos
- ISGlobal, Hospital Clínic Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Jahit Sacarlal
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Faculdade de Medicina, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| | - John J Aponte
- ISGlobal, Hospital Clínic Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Freya J I Fowkes
- Burnet Institute, Melbourne, Australia.,Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - James G Beeson
- Burnet Institute, Melbourne, Australia. .,Department of Immunology and Pathology, Monash University, Melbourne, Australia. .,Department of Microbiology, Monash University, Clayton, Australia. .,Department of Medicine, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
27
|
Greenhouse B, Daily J, Guinovart C, Goncalves B, Beeson J, Bell D, Chang MA, Cohen JM, Ding X, Domingo G, Eisele TP, Lammie PJ, Mayor A, Merienne N, Monteiro W, Painter J, Rodriguez I, White M, Drakeley C, Mueller I, The Malaria Serology Convening. Priority use cases for antibody-detecting assays of recent malaria exposure as tools to achieve and sustain malaria elimination. Gates Open Res 2019; 3:131. [PMID: 31172051 PMCID: PMC6545519 DOI: 10.12688/gatesopenres.12897.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 01/12/2023] Open
Abstract
Measurement of malaria specific antibody responses represents a practical and informative method for malaria control programs to assess recent exposure to infection. Technical advances in recombinant antigen production, serological screening platforms, and analytical methods have enabled the identification of several target antigens for laboratory based and point-of-contact tests. Questions remain as to how these serological assays can best be integrated into malaria surveillance activities to inform programmatic decision-making. This report synthesizes discussions from a convening at Institut Pasteur in Paris in June 2017 aimed at defining practical and informative use cases for serology applications and highlights five programmatic uses for serological assays including: documenting the absence of transmission; stratification of transmission; measuring the effect of interventions; informing a decentralized immediate response; and testing and treating P. vivax hypnozoite carriers.
Collapse
Affiliation(s)
- Bryan Greenhouse
- Department of Medicine,, University of California San Francisco, San Francisco, CA, USA
| | | | - Caterina Guinovart
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- PATH, Seattle, WA, USA
| | | | | | - David Bell
- Intellectual Ventures, Bellevue, WA, USA
| | | | | | | | | | - Thomas P. Eisele
- Center for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | | | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Wuelto Monteiro
- Tropical Medicine Foundation Dr. Heitor Viera Dourado, Manaus, Amazonas, Brazil
| | - John Painter
- Centers of Disease Control and Prevention, Atlanta, GA, USA
| | - Isabel Rodriguez
- Department of Medicine,, University of California San Francisco, San Francisco, CA, USA
| | | | - Chris Drakeley
- London School of Tropical Medicine & Hygiene, London, UK
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - The Malaria Serology Convening
- Department of Medicine,, University of California San Francisco, San Francisco, CA, USA
- Consultant to UNITAID, Denver, CO, USA
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- PATH, Seattle, WA, USA
- London School of Tropical Medicine & Hygiene, London, UK
- The Burnet Institute, Melbourne, Australia
- Intellectual Ventures, Bellevue, WA, USA
- Centers of Disease Control and Prevention, Atlanta, GA, USA
- Clinton Health Access Initiative (CHAI), Boston, MA, USA
- FIND, Geneva, Switzerland
- Center for Applied Malaria Research and Evaluation, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Institut Pasteur, Paris, France
- Tropical Medicine Foundation Dr. Heitor Viera Dourado, Manaus, Amazonas, Brazil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
28
|
Targets of complement-fixing antibodies in protective immunity against malaria in children. Nat Commun 2019; 10:610. [PMID: 30723225 PMCID: PMC6363798 DOI: 10.1038/s41467-019-08528-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies against P. falciparum merozoites fix complement to inhibit blood-stage replication in naturally-acquired and vaccine-induced immunity; however, specific targets of these functional antibodies and their importance in protective immunity are unknown. Among malaria-exposed individuals, we show that complement-fixing antibodies to merozoites are more strongly correlated with protective immunity than antibodies that inhibit growth quantified using the current reference assay for merozoite vaccine evaluation. We identify merozoite targets of complement-fixing antibodies and identify antigen-specific complement-fixing antibodies that are strongly associated with protection from malaria in a longitudinal study of children. Using statistical modelling, combining three different antigens targeted by complement-fixing antibodies could increase the potential protective effect to over 95%, and we identify antigens that were common in the most protective combinations. Our findings support antibody-complement interactions against merozoite antigens as important anti-malaria immune mechanisms, and identify specific merozoite antigens for further evaluation as vaccine candidates. Antibodies against Plasmodium falciparum merozoites that fix complement can inhibit blood-stage replication. Here, Reiling et al. show that complement-fixing antibodies strongly correlate with protective immunity in children, identify the merozoite targets, and predict antigen combinations that should result in strong protection.
Collapse
|
29
|
Barua P, Beeson JG, Maleta K, Ashorn P, Rogerson SJ. The impact of early life exposure to Plasmodium falciparum on the development of naturally acquired immunity to malaria in young Malawian children. Malar J 2019; 18:11. [PMID: 30658632 PMCID: PMC6339377 DOI: 10.1186/s12936-019-2647-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/12/2019] [Indexed: 11/23/2022] Open
Abstract
Background Antibodies targeting malaria blood-stage antigens are important targets of naturally acquired immunity, and may act as valuable biomarkers of malaria exposure. Methods Six-hundred and one young Malawian children from a randomized trial of prenatal nutrient supplementation with iron and folic acid or pre- and postnatal multiple micronutrients or lipid-based nutrient supplements were followed up weekly at home and febrile episodes were investigated for malaria from birth to 18 months of age. Antibodies were measured for 601 children against merozoite surface proteins (MSP1 19kD, MSP2), erythrocyte binding antigen 175 (EBA175), reticulocyte binding protein homologue 2 (Rh2A9), schizont extract and variant surface antigens expressed by Plasmodium falciparum-infected erythrocytes (IE) at 18 months of age. The antibody measurement data was related to concurrent malaria infection and to documented episodes of clinical malaria. Results At 18 months of age, antibodies were significantly higher among parasitaemic than aparasitaemic children. Antibody levels against MSP1 19kD, MSP2, schizont extract, and IE variant surface antigens were significantly higher in children who had documented episodes of malaria than in children who did not. Antibody levels did not differ between children with single or multiple malaria episodes before 18 months, nor between children who had malaria before 6 months of age or between 6 and 18 months. Conclusions Antibodies to merozoite and IE surface antigens increased following infection in early childhood, but neither age at first infection nor number of malaria episodes substantially affected antibody acquisition. These findings have implications for malaria surveillance during early childhood in the context of elimination. Trials registration Clinical Trials Registration: NCT01239693 (Date of registration: 11-10-2010). URL: http://www.ilins.org
Collapse
Affiliation(s)
- Priyanka Barua
- The Department of Medicine (RMH), Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.,Department of Zoology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - James G Beeson
- The Department of Medicine (RMH), Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.,Burnet Institute, Melbourne, VIC, 3004, Australia.,Department of Microbiology and Central Clinical School, Monash University, Melbourne, VIC, 3800, Australia
| | - Kenneth Maleta
- School of Public Health and Family Medicine, University of Malawi, Blantyre 3, Malawi
| | - Per Ashorn
- Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, 33100, Tampere, Finland.,Research and Development, Maternal, Newborn and Adolescent Health, World Health Organization, Geneva 27, 1211, Switzerland
| | - Stephen J Rogerson
- The Department of Medicine (RMH), Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
30
|
Ouédraogo M, Samadoulougou S, Rouamba T, Hien H, Sawadogo JEM, Tinto H, Alegana VA, Speybroeck N, Kirakoya-Samadoulougou F. Spatial distribution and determinants of asymptomatic malaria risk among children under 5 years in 24 districts in Burkina Faso. Malar J 2018; 17:460. [PMID: 30526598 PMCID: PMC6286519 DOI: 10.1186/s12936-018-2606-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/01/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In malaria endemic countries, asymptomatic cases constitute an important reservoir of infections sustaining transmission. Estimating the burden of the asymptomatic population and identifying areas with elevated risk is important for malaria control in Burkina Faso. This study analysed the spatial distribution of asymptomatic malaria infection among children under 5 in 24 health districts in Burkina Faso and identified the determinants of this distribution. METHODS The data used in this study were collected in a baseline survey on "evaluation of the impact of pay for performance on the quality of care" conducted in 24 health districts in Burkina Faso, between October 2013 and March 2014. This survey involved 7844 households and 1387 community health workers. A Bayesian hierarchical logistic model that included spatial dependence and covariates was implemented to identify the determinants of asymptomatic malaria infection. The posterior probability distribution of a parameter from the model was summarized using odds ratio (OR) and 95% credible interval (95% CI). RESULTS The overall prevalence of asymptomatic malaria infection in children under 5 years of age was estimated at 38.2%. However, significant variation was observed between districts ranging from 11.1% in the district of Barsalgho to 77.8% in the district of Gaoua. Older children (48-59 vs < 6 months: OR: 6.79 [5.62, 8.22]), children from very poor households (Richest vs poorest: OR: 0.85 [0.74-0.96]), households located more than 5 km from a health facility (< 5 km vs ≥ 5 km: OR: 1.14 [1.04-1.25]), in localities with inadequate number of nurses (< 3 vs ≥ 3: 0.72 [0.62, 0.82], from rural areas (OR: 1.67 [1.39-2.01]) and those surveyed in high transmission period of asymptomatic malaria (OR: 1.27 [1.10-1.46]) were most at risk for asymptomatic malaria infection. In addition, the spatial analysis identified the following nine districts that reported significantly higher risks: Batié, Boromo, Dano, Diébougou, Gaoua, Ouahigouya, Ouargaye, Sapouy and Toma. The district of Zabré reported the lowest risk. CONCLUSION The analysis of spatial distribution of infectious reservoir allowed the identification of risk areas as well as the identification of individual and contextual factors. Such national spatial analysis should help to prioritize areas for increased malaria control activities.
Collapse
Affiliation(s)
- Mady Ouédraogo
- Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université libre de Bruxelles, Brussels, Belgium.,Institut de Recherche Santé et Sociétés, Faculté de Santé Publique, Université catholique de Louvain, Brussels, Belgium
| | - Sékou Samadoulougou
- Pôle Epidémiologie et Biostatistique, Institut de Recherche Expérimentale et Clinique, Faculté de Santé Publique, Université catholique de Louvain, Brussels, Belgium
| | - Toussaint Rouamba
- Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université libre de Bruxelles, Brussels, Belgium.,Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | - Hervé Hien
- Département de Santé Publique, Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - John E M Sawadogo
- Département de Santé Publique, Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Halidou Tinto
- Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | - Victor A Alegana
- Geography and Environment, University of Southampton, Southampton, UK.,Flowminder Foundation, Stockholm, Sweden
| | - Niko Speybroeck
- Institut de Recherche Santé et Sociétés, Faculté de Santé Publique, Université catholique de Louvain, Brussels, Belgium
| | - Fati Kirakoya-Samadoulougou
- Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
31
|
Optimization of a magnetic bead-based assay (MAGPIX ®-Luminex) for immune surveillance of exposure to malaria using multiple Plasmodium antigens and sera from different endemic settings. Malar J 2018; 17:324. [PMID: 30189885 PMCID: PMC6127931 DOI: 10.1186/s12936-018-2465-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Background Serological markers are potentially useful tools for monitoring the progress of malaria control programs, but a better understanding of antibody response dynamics is necessary. The use of a magnetic bead-based immunoassay (MBA) is advantageous compared to ELISA, due to its multiplexing capacity, but limited information is available on the standardization and validation of this assay. Methods Several parameters for multiplex testing of antibodies to Plasmodium antigens were analysed using a set of 4 antigens and 98 sera from Senegalese rural asymptomatic and urban symptomatic individuals. The 4 antigens included Plasmodium falciparum CSP and PfAMA1 peptides, recombinant P. falciparum MSP4p20 and a Plasmodium malariae CSP (PmCSP) peptide. Comparisons with ELISA were done using MSP4p20 and whole schizont extract (SE) antigens. Results The use of fewer beads (1000 beads per well instead of 2000) and 5 µg of antigen per 106 bead were validated as lower amounts. The use of a carrier protein (BSA) was shown to be critical when using peptides and the effect of a 24 h delayed measures was evaluated (5–25% signal decrease). Analysis of Ab responses showed almost equally high levels and prevalence in all transmission settings. Clear distinctions between rural and urban malaria were noted using PmCSP and SE antigens. Conclusions This study underlines the importance of further optimization of the MBA technique and highlights the interest of using multistage/multispecies antigens for surveillance of malaria in endemic settings.
Collapse
|
32
|
Ya-Umphan P, Cerqueira D, Cottrell G, Parker DM, Fowkes FJI, Nosten F, Corbel V. Anopheles Salivary Biomarker as a Proxy for Estimating Plasmodium falciparum Malaria Exposure on the Thailand-Myanmar Border. Am J Trop Med Hyg 2018; 99:350-356. [PMID: 29869601 DOI: 10.4269/ajtmh.18-0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Timely identification and treatment of malaria transmission "hot spots" is essential to achieve malaria elimination. Here we investigate the relevance of using an Anopheles salivary biomarker to estimate Plasmodium falciparum malaria exposure risk along the Thailand-Myanmar border to guide malaria control. Between May 2013 and December 2014, > 9,000 blood samples collected in a cluster randomized control trial were screened with serological assays to measure the antibody responses to Anopheles salivary antigen (gSG6-P1) and P. falciparum malaria antigens (circumsporozoite protein, merozoite surface protein 119 [MSP-119]). Plasmodium falciparum infections were monitored through passive and active case detection. Seroprevalence to gSG6-P1, MSP-119, and CSP were 71.8% (95% Confidence interval [CI]: 70.9, 72.7), 68.6% (95% CI: 67.7, 69.5), and 8.6% (95% CI: 8.0, 9.2), respectively. Multivariate analysis showed that individuals with the highest Ab response to gSG6-P1 had six times the odds of being positive to CSP antigens (P < 0.001) and two times the odds of P. falciparum infection compared with low gSG6-P1 responders (P = 0.004). Spatial scan statistics revealed the presence of clusters of gSG6-P1 that partially overlapped P. falciparum infections. The gSG6-P1 salivary biomarker represents a good proxy for estimating P. falciparum malaria risk and could serve to implement hot spot-targeted vector control interventions to achieve malaria elimination.
Collapse
Affiliation(s)
- Phubeth Ya-Umphan
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 5290 UM1-UM2), Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| | - Dominique Cerqueira
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Gilles Cottrell
- Institut de Recherche pour le Développement (IRD), Université Paris Descartes, Sorbonne Paris Cité, UMR 216, Paris, France
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, University of California, Irvine, California.,Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Freya J I Fowkes
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Disease Elimination Program, Life Sciences, Burnet Institute, Melbourne, Australia
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, United Kingdom.,Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 5290 UM1-UM2), Institut de Recherche pour le Développement (IRD), University of Montpellier, Montpellier, France
| |
Collapse
|
33
|
Kang SY, Battle KE, Gibson HS, Ratsimbasoa A, Randrianarivelojosia M, Ramboarina S, Zimmerman PA, Weiss DJ, Cameron E, Gething PW, Howes RE. Spatio-temporal mapping of Madagascar's Malaria Indicator Survey results to assess Plasmodium falciparum endemicity trends between 2011 and 2016. BMC Med 2018; 16:71. [PMID: 29788968 PMCID: PMC5964908 DOI: 10.1186/s12916-018-1060-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Reliable measures of disease burden over time are necessary to evaluate the impact of interventions and assess sub-national trends in the distribution of infection. Three Malaria Indicator Surveys (MISs) have been conducted in Madagascar since 2011. They provide a valuable resource to assess changes in burden that is complementary to the country's routine case reporting system. METHODS A Bayesian geostatistical spatio-temporal model was developed in an integrated nested Laplace approximation framework to map the prevalence of Plasmodium falciparum malaria infection among children from 6 to 59 months in age across Madagascar for 2011, 2013 and 2016 based on the MIS datasets. The model was informed by a suite of environmental and socio-demographic covariates known to influence infection prevalence. Spatio-temporal trends were quantified across the country. RESULTS Despite a relatively small decrease between 2013 and 2016, the prevalence of malaria infection has increased substantially in all areas of Madagascar since 2011. In 2011, almost half (42.3%) of the country's population lived in areas of very low malaria risk (<1% parasite prevalence), but by 2016, this had dropped to only 26.7% of the population. Meanwhile, the population in high transmission areas (prevalence >20%) increased from only 2.2% in 2011 to 9.2% in 2016. A comparison of the model-based estimates with the raw MIS results indicates there was an underestimation of the situation in 2016, since the raw figures likely associated with survey timings were delayed until after the peak transmission season. CONCLUSIONS Malaria remains an important health problem in Madagascar. The monthly and annual prevalence maps developed here provide a way to evaluate the magnitude of change over time, taking into account variability in survey input data. These methods can contribute to monitoring sub-national trends of malaria prevalence in Madagascar as the country aims for geographically progressive elimination.
Collapse
Affiliation(s)
- Su Yun Kang
- Malaria Atlas Project, Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katherine E Battle
- Malaria Atlas Project, Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Harry S Gibson
- Malaria Atlas Project, Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arsène Ratsimbasoa
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar.,University of Antananarivo, Antananarivo, Madagascar
| | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar.,Faculté des Sciences, Université de Toliara, Toliara, Madagascar
| | - Stéphanie Ramboarina
- National Malaria Control Programme, Ministry of Health, Antananarivo, Madagascar.,University of Antananarivo, Antananarivo, Madagascar.,Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel J Weiss
- Malaria Atlas Project, Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ewan Cameron
- Malaria Atlas Project, Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter W Gething
- Malaria Atlas Project, Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rosalind E Howes
- Malaria Atlas Project, Oxford Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
34
|
Swana EK, Yav TI, Ngwej LM, Mupemba BN, Suprianto, Mukeng CK, Hattingh I, Luboya ON, Kakoma JBS, Bangs MJ. School-based malaria prevalence: informative systematic surveillance measure to assess epidemiological impact of malaria control interventions in the Democratic Republic of the Congo. Malar J 2018; 17:141. [PMID: 29615041 PMCID: PMC5883584 DOI: 10.1186/s12936-018-2297-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 03/24/2018] [Indexed: 11/28/2022] Open
Abstract
Background In southern Democratic Republic of the Congo, malaria transmission is stable with seasonal fluctuations. Different measurements can be used to monitor disease burden and estimate the performance of control programmes. Repeated school-based malaria prevalence surveys (SMPS) were conducted from 2007 to 2014 to generate up-to-date surveillance data and evaluate the impact of an integrated vector control programme. Methods Biannual SMPS used a stratified, randomized and proportional sampling method. Schools were randomly selected from the entire pool of facilities within each Health Area (HA). Subsequently, school-children from 6 to 12 years of age were randomly selected in a proportional manner. Initial point-of-care malaria diagnosis was made using a rapid detection test. A matching stained blood film was later examined by expert microscopy and used in the final analysis. Data was stratified and analysed based on age, survey time and location. Results The baseline SMPS (pre-control in 2007) prevalence was approximately 77%. From 2009 to 2014, 11,628 school-children were randomly screened. The mean age was 8.7 years with a near equal sex ratio. After exclusion, analysis of 10,493 students showed an overall malaria prevalence ratio of 1.92 in rural compared to urbanized areas. The distribution of Plasmodium falciparum malaria was significantly different between rural and urban HAs and between end of wet season and end of dry season surveys. The combined prevalence of single P. falciparum, Plasmodium malariae and Plasmodium ovale infections were 29.9, 1.8 and 0.3% of those examined, respectively. Only 1.8% were mixed Plasmodium species infections. From all microscopically detected infections (3545 of 10,493 samples examined), P. falciparum represented 88.5%, followed by P. malariae (5.4%) and P. ovale (0.8%). Cases with multiple species represented 5.3% of patent infections. Malaria prevalence was independent of age and gender. Control programme performance contributed to a significant decrease in mean P. falciparum infection density in urban compared to rural locations. Some rural areas remained highly refractory to control measures (insecticide-treated bed nets, periodic indoor residual spraying). Conclusion The SMPS is a useful longitudinal measurement for estimating population malaria prevalence and demonstrating disease burden and impact of control interventions. SMPS can identify refractory areas of transmission and thus prioritize control strategies accordingly.
Collapse
Affiliation(s)
- Edouard K Swana
- China Molybdenum Company International, Ltd/International SOS, Public Health Programme, Tenke Fungurume Mining Project, Lualaba, Democratic Republic of the Congo. .,Faculty of Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo. .,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.
| | - Thierry I Yav
- China Molybdenum Company International, Ltd/International SOS, Public Health Programme, Tenke Fungurume Mining Project, Lualaba, Democratic Republic of the Congo.,Faculty of Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Leonard M Ngwej
- China Molybdenum Company International, Ltd/International SOS, Public Health Programme, Tenke Fungurume Mining Project, Lualaba, Democratic Republic of the Congo.,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Betty N Mupemba
- Public Health Referral Laboratory, Lubumbashi, Haut Katanga Province, Democratic Republic of the Congo
| | - Suprianto
- Public Health & Malaria Control, International SOS, P.T. Freeport Indonesia, Kuala Kencana, Papua, 99920, Indonesia
| | - Clarence K Mukeng
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Izak Hattingh
- China Molybdenum Company International, Ltd/International SOS, Public Health Programme, Tenke Fungurume Mining Project, Lualaba, Democratic Republic of the Congo
| | - Oscar N Luboya
- Faculty of Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Jean-Baptiste S Kakoma
- Faculty of Medicine, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.,School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Michael J Bangs
- School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo.,Public Health & Malaria Control, International SOS, P.T. Freeport Indonesia, Kuala Kencana, Papua, 99920, Indonesia
| |
Collapse
|
35
|
Nyunt MH, Soe TN, Shein T, Zaw NN, Han SS, Muh F, Lee SK, Han JH, Park JH, Ha KS, Park WS, Hong SH, Kyaw MP, Han ET. Estimation on local transmission of malaria by serological approach under low transmission setting in Myanmar. Malar J 2018; 17:6. [PMID: 29304809 PMCID: PMC5755288 DOI: 10.1186/s12936-017-2170-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/29/2017] [Indexed: 12/05/2022] Open
Abstract
Background As the prevalence of the malaria has been decreasing in many endemic countries including Myanmar, malaria elimination in Greater Mekong Region was targeted not later than 2030. The relevance of molecular and serological tools to identify residual transmission remains to be established in this setting. Methods One-year cohort study was conducted and sera samples were collected in every 3 months with active and passive case detection for clinical malaria episodes by RDT, microscopy and molecular method. The sera were used to detect the malaria antibody against PfMSP1-19, PvAMA1, PvDBPII and PvMSP1-19 by protein microarray. Results Among the recruited 1182 participants, there was no RDT positive case for malaria infection although two vivax infections were detected by microscopy in initial collection. Molecular methods detected the asymptomatic cases of 28/1182 (2.37%) in first, 5/894 (0.42%) in second, 12/944 (1.02%) in third, 6/889 (0.51%) in fourth collection, respectively. Seropositivity rates against the PfMSP1-19, PvMSP1-19, PvAMA1 and PvDBPII were 73/270 (27.0%), 85/270 (31.5%), 65/270 (24.1%) and 160/270 (59.3%), respectively. PfMSP1-19 and PvMSP1-19 showed high and stable antigenicity in acute and subacute samples but declining in 1-year history samples. No cross reactivity of PfMSP1-19 and PvMSP1-19 between the two species and higher seropositivity among the asymptomatic carriers were observed. Mapping data indicated serological surveillance can detect the geographical pattern of malaria infection under low transmission setting. Conclusions These findings support that PfMSP1-19 and PvMSP1-19 are suggested for serosurveillance of the malaria especially in low transmission setting for further necessary actions have to be carried out to eliminate the malaria.
Collapse
Affiliation(s)
- Myat Htut Nyunt
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.,Department of Medical Research, Yangon, Myanmar
| | | | | | - Ni Ni Zaw
- Department of Medical Research, Yangon, Myanmar
| | - Soe Soe Han
- Department of Medical Research, Yangon, Myanmar
| | - Fauzi Muh
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Kwon-Soo Ha
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.,Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Won Sun Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.,Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seok-Ho Hong
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kangwon national University, Chuncheon, Gangwon-do, Republic of Korea
| | | | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
36
|
Mugyenyi CK, Elliott SR, Yap XZ, Feng G, Boeuf P, Fegan G, Osier FFH, Fowkes FJI, Avril M, Williams TN, Marsh K, Beeson JG. Declining Malaria Transmission Differentially Impacts the Maintenance of Humoral Immunity to Plasmodium falciparum in Children. J Infect Dis 2017; 216:887-898. [PMID: 28973483 DOI: 10.1093/infdis/jix370] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022] Open
Abstract
Background We investigated the poorly understood impact of declining malaria transmission on maintenance of antibodies to Plasmodium falciparum merozoite antigens and infected erythrocytes (IEs), including functional immunity. Methods In a 3-year longitudinal cohort of 300 Kenyan children, antibodies to different AMA1 and MSP2 alleles of merozoites, IE surface antigens, and antibody functional activities were quantified. Results Over a period in which malaria transmission declined markedly, AMA1 and MSP2 antibodies decreased substantially; estimated half-lives of antibody duration were 0.8 year and 1-3 years, respectively. However, 69%-74% of children maintained their seropositivity to AMA1 alleles and 42%-52% to MSP2 alleles. Levels and prevalence of antimerozoite antibodies were consistently associated with increasing age and concurrent parasitemia. Antibodies promoting opsonic phagocytosis of merozoites declined rapidly (half-life, 0.15 years). In contrast, complement-fixing antibodies to merozoites did not decline and antibodies to IE surface antigens expressing virulent phenotypes were much better maintained (half-life, 4-10 years). Conclusions A decline in malaria transmission is associated with reduction in naturally acquired immunity. However, loss of immunity is not universal; some key functional responses and antibodies to IEs were better maintained and these may continue to provide some protection. Findings have implications for malaria surveillance and control measures and informing vaccine development.
Collapse
Affiliation(s)
- Cleopatra K Mugyenyi
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi.,Burnet Institute, Melbourne
| | | | - Xi Zen Yap
- Burnet Institute, Melbourne.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | | | - Philippe Boeuf
- Burnet Institute, Melbourne.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia
| | - Gregory Fegan
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi
| | - Faith F H Osier
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi.,Burnet Institute, Melbourne.,Department of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Germany
| | - Freya J I Fowkes
- Burnet Institute, Melbourne.,Department of Epidemiology and Preventive Medicine, Monash University.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Marion Avril
- Centre for Infectious Disease Research, Seattle, Washington
| | - Thomas N Williams
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi.,Imperial College, London, United Kingdom
| | - Kevin Marsh
- Kenya Medical Research Institute (KEMRI), Centre for Geographic Medicine, Coast, KEMRI-Wellcome Trust Research Programme, Kilifi
| | - James G Beeson
- Burnet Institute, Melbourne.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia.,Central Clinical School and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Chan JA, Stanisic DI, Duffy MF, Robinson LJ, Lin E, Kazura JW, King CL, Siba PM, Fowkes FJ, Mueller I, Beeson JG. Patterns of protective associations differ for antibodies to P. falciparum-infected erythrocytes and merozoites in immunity against malaria in children. Eur J Immunol 2017; 47:2124-2136. [PMID: 28833064 DOI: 10.1002/eji.201747032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/09/2017] [Accepted: 08/16/2017] [Indexed: 11/10/2022]
Abstract
Acquired antibodies play an important role in immunity to P. falciparum malaria and are typically directed towards surface antigens expressed by merozoites and infected erythrocytes (IEs). The importance of specific IE surface antigens as immune targets remains unclear. We evaluated antibodies and protective associations in two cohorts of children in Papua New Guinea. We used genetically-modified P. falciparum to evaluate the importance of PfEMP1 and a P. falciparum isolate with a virulent phenotype. Our findings suggested that PfEMP1 was the dominant target of antibodies to the IE surface, including functional antibodies that promoted opsonic phagocytosis by monocytes. Antibodies were associated with increasing age and concurrent parasitemia, and were higher among children exposed to a higher force-of-infection as determined using molecular detection. Antibodies to IE surface antigens were consistently associated with reduced risk of malaria in both younger and older children. However, protective associations for antibodies to merozoite surface antigens were only observed in older children. This suggests that antibodies to IE surface antigens, particularly PfEMP1, play an earlier role in acquired immunity to malaria, whereas greater exposure is required for protective antibodies to merozoite antigens. These findings have implications for vaccine design and serosurveillance of malaria transmission and immunity.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Danielle I Stanisic
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Michael F Duffy
- Department of Medicine and Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia
| | - Leanne J Robinson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Enmoore Lin
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - James W Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Freya Ji Fowkes
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - James G Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia.,Department of Medicine and Melbourne School of Public Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
McLean ARD, Boel M, McGready R, Ataide R, Drew D, Tsuboi T, Beeson JG, Nosten F, Simpson JA, Fowkes FJI. Antibody Responses to Plasmodium falciparum and Plasmodium vivax and Prospective Risk of Plasmodium spp. Infection Postpartum. Am J Trop Med Hyg 2017; 96:1197-1204. [PMID: 28500806 PMCID: PMC5417217 DOI: 10.4269/ajtmh.16-0690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Postpartum women may have an altered susceptibility to Plasmodium falciparum and Plasmodium vivax. The relationship between naturally acquired malarial immunity and susceptibility to malaria postpartum is yet to be determined. IgG levels were measured against P. falciparum and P. vivax antigens from delivery in 201 postpartum and 201 nonpregnant controls over 12 weeks. Associations between time-varying antibody levels and time to first microscopically confirmed species-specific infection were determined by Cox regression. Associations between antibody levels and prospective risk of Plasmodium infection were similar in postpartum and control women. A 2-fold increase in P. falciparum antibody levels was associated with increased prospective risk of P. falciparum infection (hazard ratio [HR] range = 1.37–1.94). Antibody levels against most P. vivax antigens displayed no association with prospective risk of P. vivax infection (HR range = 1.02–1.05) with the exception of PvMSP119 antibodies that were weakly associated with prospective risk of P. vivax infection (HR = 1.14 (95% confidence interval = 1.02, 1.28) per 2-fold increase in levels). Associations between antibody levels and prospective risk of infection attenuated when adjusted for documented retrospective exposure. Serology may be a useful tool to predict and monitor women at increased risk of P. falciparum infection postpartum, particularly in the absence of a detailed history of retrospective infections.
Collapse
Affiliation(s)
- Alistair R D McLean
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.,Macfarlane Burnet Institute of Medical Research, Melbourne, Australia
| | - Machteld Boel
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Rose McGready
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ricardo Ataide
- Macfarlane Burnet Institute of Medical Research, Melbourne, Australia
| | - Damien Drew
- Macfarlane Burnet Institute of Medical Research, Melbourne, Australia
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Ehime, Japan
| | - James G Beeson
- Department of Microbiology, Monash University, Victoria, Australia.,Macfarlane Burnet Institute of Medical Research, Melbourne, Australia
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Freya J I Fowkes
- Department of Epidemiology and Preventative Medicine, Monash University, Victoria, Australia.,Macfarlane Burnet Institute of Medical Research, Melbourne, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
39
|
Longley RJ, França CT, White MT, Kumpitak C, Sa-Angchai P, Gruszczyk J, Hostetler JB, Yadava A, King CL, Fairhurst RM, Rayner JC, Tham WH, Nguitragool W, Sattabongkot J, Mueller I. Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand. Malar J 2017; 16:178. [PMID: 28454546 PMCID: PMC5410030 DOI: 10.1186/s12936-017-1826-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/19/2017] [Indexed: 11/11/2022] Open
Abstract
Background Thailand is aiming to eliminate malaria by the year 2024. Plasmodium vivax has now become the dominant species causing malaria within the country, and a high proportion of infections are asymptomatic. A better understanding of antibody dynamics to P. vivax antigens in a low-transmission setting, where acquired immune responses are poorly characterized, will be pivotal for developing new strategies for elimination, such as improved surveillance methods and vaccines. The objective of this study was to characterize total IgG antibody levels to 11 key P. vivax proteins in a village of western Thailand. Methods Plasma samples from 546 volunteers enrolled in a cross-sectional survey conducted in 2012 in Kanchanaburi Province were utilized. Total IgG levels to 11 different proteins known or predicted to be involved in reticulocyte binding or invasion (ARP, GAMA, P41, P12, PVX_081550, and five members of the PvRBP family), as well as the leading pre-erythrocytic vaccine candidate (CSP) were measured using a multiplexed bead-based assay. Associations between IgG levels and infection status, age, and spatial location were explored. Results Individuals from a low-transmission region of western Thailand reacted to all 11 P. vivax recombinant proteins. Significantly greater IgG levels were observed in the presence of a current P. vivax infection, despite all infected individuals being asymptomatic. IgG levels were also higher in adults (18 years and older) than in children. For most of the proteins, higher IgG levels were observed in individuals living closer to the Myanmar border and further away from local health services. Conclusions Robust IgG responses were observed to most proteins and IgG levels correlated with surrogates of exposure, suggesting these antigens may serve as potential biomarkers of exposure, immunity, or both. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1826-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rhea J Longley
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Camila T França
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Michael T White
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Imperial College, London, UK
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patiwat Sa-Angchai
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jakub Gruszczyk
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Jessica B Hostetler
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anjali Yadava
- Malaria Vaccine Branch, United States Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, Australia. .,ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, 08036, Barcelona, Spain. .,Institut Pasteur, Paris, France.
| |
Collapse
|
40
|
McCallum FJ, Persson KEM, Fowkes FJI, Reiling L, Mugyenyi CK, Richards JS, Simpson JA, Williams TN, Gilson PR, Hodder AN, Sanders PR, Anders RF, Narum DL, Chitnis C, Crabb BS, Marsh K, Beeson JG. Differing rates of antibody acquisition to merozoite antigens in malaria: implications for immunity and surveillance. J Leukoc Biol 2017; 101:913-925. [PMID: 27837017 PMCID: PMC5346181 DOI: 10.1189/jlb.5ma0716-294r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/28/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022] Open
Abstract
Antibodies play a key role in acquired human immunity to Plasmodium falciparum (Pf) malaria and target merozoites to reduce or prevent blood-stage replication and the development of disease. Merozoites present a complex array of antigens to the immune system, and currently, there is only a partial understanding of the targets of protective antibodies and how responses to different antigens are acquired and boosted. We hypothesized that there would be differences in the rate of acquisition of antibodies to different antigens and how well they are boosted by infection, which impacts the acquisition of immunity. We examined responses to a range of merozoite antigens in 2 different cohorts of children and adults with different age structures and levels of malaria exposure. Overall, antibodies were associated with age, exposure, and active infection, and the repertoire of responses increased with age and active infection. However, rates of antibody acquisition varied between antigens and different regions within an antigen following exposure to malaria, supporting our hypothesis. Antigen-specific responses could be broadly classified into early response types in which antibodies were acquired early in childhood exposure and late response types that appear to require substantially more exposure for the development of substantial levels. We identified antigen-specific responses that were effectively boosted after recent infection, whereas other responses were not. These findings advance our understanding of the acquisition of human immunity to malaria and are relevant to the development of malaria vaccines targeting merozoite antigens and the selection of antigens for use in malaria surveillance.
Collapse
Affiliation(s)
- Fiona J McCallum
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Department of Drug Evaluation, Australian Army Malaria Institute, Brisbane, Australia
| | - Kristina E M Persson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
- Departments of Epidemiology and Preventive Medicine and Infectious Diseases, Monash University, Melbourne, Australia
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Cleopatra K Mugyenyi
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Medicine, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | - Paul R Gilson
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Anthony N Hodder
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Paul R Sanders
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Robin F Anders
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Latrobe University, Melbourne, Australia
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Brendan S Crabb
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Kevin Marsh
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia;
- Department of Microbiology, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|
41
|
Kerkhof K, Sluydts V, Willen L, Kim S, Canier L, Heng S, Tsuboi T, Sochantha T, Sovannaroth S, Ménard D, Coosemans M, Durnez L. Serological markers to measure recent changes in malaria at population level in Cambodia. Malar J 2016; 15:529. [PMID: 27809852 PMCID: PMC5096337 DOI: 10.1186/s12936-016-1576-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background Serological markers for exposure to different Plasmodium species have recently been used in multiplex immunoassays based on the Luminex technology. However, interpretation of the assay results requires consideration of the half-life of specific antibodies against these markers. Therefore, the aim of the present study was to document the half-life of malaria specific serological makers, as well as assessing the sensitivity of these markers to pick up recent changes in malaria exposure. Methods A recently developed multiplex immunoassay was used to measure the intensity of antibody (Ab) responses against 19 different Plasmodium specific antigens, covering different human malaria parasites and two vector saliva antigens. Therefore, 8439 blood samples from five cross-sectional surveys in Ratanakiri, Cambodia, were analysed. These involve a random selection from two selected surveys, and an additional set of blood samples of individuals that were randomly re-sampled three, four or five times. A generalized estimating equation model and linear regression models were fitted on log transformed antibody intensity data. Results Results showed that most (17/21) Ab-responses are higher in PCR positive than PCR negative individuals. Furthermore, these antibody-responses follow the same upward trend within each age group. Estimation of the half-lives showed differences between serological markers that reflect short- (seasonal) and long-term (year round) transmission trends. Ab levels declined significantly together with a decrease of PCR prevalence in a group of malaria endemic villages. Conclusion For Plasmodium falciparum, antibodies against LSA3.RE, GLURP and Pf.GLURP.R2 are most likely to be a reflexion of recent (range from 6 to 8 months) exposure in the Mekong Subregion. PvEBP is the only Plasmodium vivax Ag responding reasonably well, in spite of an estimated Ab half-life of more than 1 year. The use of Ab intensity data rather dichotomizing the continuous Ab-titre data (positive vs negative) will lead to an improved approach for serological surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1576-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karen Kerkhof
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Vincent Sluydts
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Laura Willen
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Saorin Kim
- Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lydie Canier
- Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Somony Heng
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Tho Sochantha
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Siv Sovannaroth
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Didier Ménard
- Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Marc Coosemans
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Lies Durnez
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| |
Collapse
|
42
|
Rosas-Aguirre A, Gamboa D, Manrique P, Conn JE, Moreno M, Lescano AG, Sanchez JF, Rodriguez H, Silva H, Llanos-Cuentas A, Vinetz JM. Epidemiology of Plasmodium vivax Malaria in Peru. Am J Trop Med Hyg 2016; 95:133-144. [PMID: 27799639 PMCID: PMC5201219 DOI: 10.4269/ajtmh.16-0268] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/29/2016] [Indexed: 01/01/2023] Open
Abstract
Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s–2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005–2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine–primaquine for P. vivax. Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax. Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination.
Collapse
Affiliation(s)
- Angel Rosas-Aguirre
- Research Institute of Health and Society, Université Catholique de Louvain, Brussels, Belgium.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Paulo Manrique
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jan E Conn
- Wadsworth Center, New York State Department of Health, Albany, New York.,Department of Biomedical Sciences, School of Public Health, University at Albany (State University of New York), Albany, New York
| | - Marta Moreno
- Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| | - Andres G Lescano
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan F Sanchez
- Facultad de Salud Pública, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Hugo Rodriguez
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Hermann Silva
- Dirección Regional de Salud Loreto, Ministerio de Salud, Iquitos, Peru
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru.,Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.,Division of Infectious Diseases, Department of Medicine, University of California San Diego, San Diego, California
| |
Collapse
|
43
|
The association between naturally acquired IgG subclass specific antibodies to the PfRH5 invasion complex and protection from Plasmodium falciparum malaria. Sci Rep 2016; 6:33094. [PMID: 27604417 PMCID: PMC5015043 DOI: 10.1038/srep33094] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Understanding the targets and mechanisms of human immunity to malaria is important for advancing the development of highly efficacious vaccines and serological tools for malaria surveillance. The PfRH5 and PfRipr proteins form a complex on the surface of P. falciparum merozoites that is essential for invasion of erythrocytes and are vaccine candidates. We determined IgG subclass responses to these proteins among malaria-exposed individuals in Papua New Guinea and their association with protection from malaria in a longitudinal cohort of children. Cytophilic subclasses, IgG1 and IgG3, were predominant with limited IgG2 and IgG4, and IgG subclass-specific responses were higher in older children and those with active infection. High IgG3 to PfRH5 and PfRipr were significantly and strongly associated with reduced risk of malaria after adjusting for potential confounding factors, whereas associations for IgG1 responses were generally weaker and not statistically significant. Results further indicated that malaria exposure leads to the co-acquisition of IgG1 and IgG3 to PfRH5 and PfRipr, as well as to other PfRH invasion ligands, PfRH2 and PfRH4. These findings suggest that IgG3 responses to PfRH5 and PfRipr may play a significant role in mediating naturally-acquired immunity and support their potential as vaccine candidates and their use as antibody biomarkers of immunity.
Collapse
|
44
|
McLean ARD, Boel ME, McGready R, Ataide R, Drew D, Tsuboi T, Beeson JG, Nosten F, Simpson JA, Fowkes FJI. Antibody responses to Plasmodium falciparum and Plasmodium vivax blood-stage and sporozoite antigens in the postpartum period. Sci Rep 2016; 6:32159. [PMID: 27558000 PMCID: PMC4997260 DOI: 10.1038/srep32159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
During pregnancy a variety of immunological changes occur to accommodate the fetus. It is unknown whether these changes continue to affect humoral immunity postpartum or how quickly they resolve. IgG levels were measured to P. falciparum and P. vivax antigens in 201 postpartum and 201 controls over 12 weeks. Linear mixed-effects models assessed antibody maintenance over time and the effect of microscopically confirmed Plasmodium spp. infection on antibody levels, and whether this was different in postpartum women compared with control women. Postpartum women had reduced Plasmodium spp. antibody levels compared to controls at baseline. Over 12 weeks, mean antibody levels in postpartum women increased to levels observed in control women. Microscopically confirmed P. falciparum and P. vivax infections during follow-up were associated with an increase in species-specific antibodies with similar magnitudes of boosting observed in postpartum and control women. Antibodies specific for pregnancy-associated, VAR2CSA-expressing parasites did not rapidly decline postpartum and did not boost in response to infection in either postpartum or control women. After pregnancy, levels of malaria-specific antibodies were reduced, but recovered to levels seen in control women. There was no evidence of an impaired ability to mount a boosting response in postpartum women.
Collapse
Affiliation(s)
- Alistair R D McLean
- Macfarlane Burnet Institute of Medical Research, Melbourne 3004, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3004, Australia
| | - Machteld E Boel
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Ricardo Ataide
- Macfarlane Burnet Institute of Medical Research, Melbourne 3004, Australia
| | - Damien Drew
- Macfarlane Burnet Institute of Medical Research, Melbourne 3004, Australia
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyuma 790-8577, Japan
| | - James G Beeson
- Macfarlane Burnet Institute of Medical Research, Melbourne 3004, Australia.,Department of Microbiology, Monash University 3800, Australia
| | - François Nosten
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3004, Australia
| | - Freya J I Fowkes
- Macfarlane Burnet Institute of Medical Research, Melbourne 3004, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne 3004, Australia.,Department of Epidemiology and Preventative Medicine, Monash University 3800, Victoria, Australia
| |
Collapse
|
45
|
Baum E, Sattabongkot J, Sirichaisinthop J, Kiattibutr K, Jain A, Taghavian O, Lee MC, Huw Davies D, Cui L, Felgner PL, Yan G. Common asymptomatic and submicroscopic malaria infections in Western Thailand revealed in longitudinal molecular and serological studies: a challenge to malaria elimination. Malar J 2016; 15:333. [PMID: 27333893 PMCID: PMC4918199 DOI: 10.1186/s12936-016-1393-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/15/2016] [Indexed: 11/27/2022] Open
Abstract
Background Despite largely successful control efforts, malaria remains a significant public health problem in Thailand. Based on microscopy, the northwestern province of Tak, once Thailand’s highest burden area, is now considered a low-transmission region. However, microscopy is insensitive to detect low-level parasitaemia, causing gross underestimation of parasite prevalence in areas where most infections are subpatent. The objective of this study was to assess the current epidemiology of malaria prevalence using molecular and serological detection methods, and to profile the antibody responses against Plasmodium as it relates to age, seasonal changes and clinical manifestations during infection. Three comprehensive cross-sectional surveys were performed in a sentinel village and from febrile hospital patients, and whole blood samples were collected from infants to elderly adults. Genomic DNA isolated from cellular fraction was screened by quantitative-PCR for the presence of Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. Plasma samples were probed on protein microarray to obtain antibody response profiles from the same individuals. Results Within the studied community, 90.2 % of Plasmodium infections were submicroscopic and asymptomatic, including a large number of mixed-species infections. Amongst febrile patients, mixed-species infections comprised 68 % of positive cases, all of which went misdiagnosed and undertreated. All samples tested showed serological reactivity to Plasmodium antigens. There were significant differences in the rates of antibody acquisition against P. falciparum and P. vivax, and age-related differences in species-specific immunodominance of response. Antibodies against Plasmodium increased along the ten-month study period. Febrile patients had stronger antibody responses than asymptomatic carriers. Conclusions Despite a great decline in malaria prevalence, transmission is still ongoing at levels undetectable by traditional methods. As current surveillance methods focus on case management, malaria transmission in Thailand will not be interrupted if asymptomatic submicroscopic infections are not detected and treated. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1393-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth Baum
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA.
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Kirakorn Kiattibutr
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aarti Jain
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Omid Taghavian
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Ming-Chieh Lee
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - D Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Philip L Felgner
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, CA, USA
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
46
|
França CT, Hostetler JB, Sharma S, White MT, Lin E, Kiniboro B, Waltmann A, Darcy AW, Li Wai Suen CSN, Siba P, King CL, Rayner JC, Fairhurst RM, Mueller I. An Antibody Screen of a Plasmodium vivax Antigen Library Identifies Novel Merozoite Proteins Associated with Clinical Protection. PLoS Negl Trop Dis 2016; 10:e0004639. [PMID: 27182597 PMCID: PMC4868274 DOI: 10.1371/journal.pntd.0004639] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/29/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Elimination of Plasmodium vivax malaria would be greatly facilitated by the development of an effective vaccine. A comprehensive and systematic characterization of antibodies to P. vivax antigens in exposed populations is useful in guiding rational vaccine design. METHODOLOGY/PRINCIPAL FINDINGS In this study, we investigated antibodies to a large library of P. vivax entire ectodomain merozoite proteins in 2 Asia-Pacific populations, analysing the relationship of antibody levels with markers of current and cumulative malaria exposure, and socioeconomic and clinical indicators. 29 antigenic targets of natural immunity were identified. Of these, 12 highly-immunogenic proteins were strongly associated with age and thus cumulative lifetime exposure in Solomon Islanders (P<0.001-0.027). A subset of 6 proteins, selected on the basis of immunogenicity and expression levels, were used to examine antibody levels in plasma samples from a population of young Papua New Guinean children with well-characterized individual differences in exposure. This analysis identified a strong association between reduced risk of clinical disease and antibody levels to P12, P41, and a novel hypothetical protein that has not previously been studied, PVX_081550 (IRR 0.46-0.74; P<0.001-0.041). CONCLUSION/SIGNIFICANCE These data emphasize the benefits of an unbiased screening approach in identifying novel vaccine candidate antigens. Functional studies are now required to establish whether PVX_081550 is a key component of the naturally-acquired protective immune response, a biomarker of immune status, or both.
Collapse
Affiliation(s)
- Camila T. França
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Jessica B. Hostetler
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Sumana Sharma
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Michael T. White
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Center for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Enmoore Lin
- Vector Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Benson Kiniboro
- Vector Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Andreea Waltmann
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andrew W. Darcy
- National Health Training & Research Institute, Ministry of Health, Honiara, Solomon Islands
| | - Connie S. N. Li Wai Suen
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Peter Siba
- Vector Borne Diseases Unit, PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Christopher L. King
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
48
|
Abstract
With increasing malaria control and goals of malaria elimination, many endemic areas are transitioning from high-to-low-to-no malaria transmission. Reductions in transmission will impact on the development of naturally acquired immunity to malaria, which develops after repeated exposure to Plasmodium spp. However, it is currently unclear how declining transmission and malaria exposure will affect the development and maintenance of naturally acquired immunity. Here we review the key processes which underpin this knowledge; the amount of Plasmodium spp. exposure required to generate effective immune responses, the longevity of antibody responses and the ability to mount an effective response upon re-exposure through memory responses. Lastly we identify research priorities which will increase our understanding of how changing transmission will impact on malarial immunity.
Collapse
|
49
|
Hotspots of Malaria Transmission in the Peruvian Amazon: Rapid Assessment through a Parasitological and Serological Survey. PLoS One 2015; 10:e0137458. [PMID: 26356311 PMCID: PMC4565712 DOI: 10.1371/journal.pone.0137458] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
Background With low and markedly seasonal malaria transmission, increasingly sensitive tools for better stratifying the risk of infection and targeting control interventions are needed. A cross-sectional survey to characterize the current malaria transmission patterns, identify hotspots, and detect recent changes using parasitological and serological measures was conducted in three sites of the Peruvian Amazon. Material and Methods After full census of the study population, 651 participants were interviewed, clinically examined and had a blood sample taken for the detection of malaria parasites (microscopy and PCR) and antibodies against P. vivax (PvMSP119, PvAMA1) and P. falciparum (PfGLURP, PfAMA1) antigens by ELISA. Risk factors for malaria infection (positive PCR) and malaria exposure (seropositivity) were assessed by multivariate survey logistic regression models. Age-specific seroprevalence was analyzed using a reversible catalytic conversion model based on maximum likelihood for generating seroconversion rates (SCR, λ). SaTScan was used to detect spatial clusters of serology-positive individuals within each site. Results The overall parasite prevalence by PCR was low, i.e. 3.9% for P. vivax and 6.7% for P. falciparum, while the seroprevalence was substantially higher, 33.6% for P. vivax and 22.0% for P. falciparum, with major differences between study sites. Age and location (site) were significantly associated with P. vivax exposure; while location, age and outdoor occupation were associated with P. falciparum exposure. P. falciparum seroprevalence curves showed a stable transmission throughout time, while for P. vivax transmission was better described by a model with two SCRs. The spatial analysis identified well-defined clusters of P. falciparum seropositive individuals in two sites, while it detected only a very small cluster of P. vivax exposure. Conclusion The use of a single parasitological and serological malaria survey has proven to be an efficient and accurate method to characterize the species specific heterogeneity in malaria transmission at micro-geographical level as well as to identify recent changes in transmission.
Collapse
|
50
|
Helb DA, Tetteh KKA, Felgner PL, Skinner J, Hubbard A, Arinaitwe E, Mayanja-Kizza H, Ssewanyana I, Kamya MR, Beeson JG, Tappero J, Smith DL, Crompton PD, Rosenthal PJ, Dorsey G, Drakeley CJ, Greenhouse B. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities. Proc Natl Acad Sci U S A 2015; 112:E4438-47. [PMID: 26216993 PMCID: PMC4538641 DOI: 10.1073/pnas.1501705112] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual's recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86-0.93), whereas responses to six antigens accurately estimated an individual's malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.
Collapse
Affiliation(s)
- Danica A Helb
- Department of Medicine, University of California, San Francisco, CA 94110; Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720; Global Health Group, University of California, San Francisco, CA 94158
| | - Kevin K A Tetteh
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Philip L Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, CA 92697
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852
| | - Alan Hubbard
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720
| | | | - Harriet Mayanja-Kizza
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - James G Beeson
- Center for Biomedical Research, Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Canada 3004
| | - Jordan Tappero
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | - David L Smith
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; Sanaria Institute for Global Health and Tropical Medicine, Rockville, MD 20850
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA 94110
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, CA 94110
| | - Christopher J Drakeley
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, CA 94110;
| |
Collapse
|