1
|
Stern L, Emanuel Z, Traves R, Willis K, Purohit SK, Samer C, Mak JYW, Fairlie DP, Tscharke DC, Corbett AJ, Abendroth A, Slobedman B. Herpes simplex virus type 1 impairs mucosal-associated invariant T cells. mBio 2025; 16:e0388724. [PMID: 40135871 PMCID: PMC12077205 DOI: 10.1128/mbio.03887-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 03/27/2025] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that infects mucosal sites and adopts an arsenal of strategies to manipulate host immunity. Mucosal-associated invariant T (MAIT) cells are abundant innate-like T lymphocytes that recognize bacterial and fungal-derived vitamin B-related metabolites presented by major histocompatibility complex class I-related protein 1 (MR1). MAIT cells can also be activated in an MR1-independent manner via cytokine stimulation, predominantly by IL-12 and IL-18. MAIT cell alterations have been identified as being associated with a number of viral infections, but direct interactions between viruses and MAIT cells are poorly understood. It is unknown whether HSV-1 can infect MAIT cells and modulate their functions. Here, we show that HSV-1 can infect primary human MAIT cells, including CD4±/CD8± and CD56± MAIT cell subpopulations. Furthermore, HSV-1 infection profoundly inhibits the functional capacity of MAIT cells to respond to T cell receptor (TCR)-dependent stimulation by the MAIT cell activating ligand 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and to cytokine stimulation by IL-12/IL-18. HSV-1-infected MAIT cells display reduced cytotoxic potential, diminished synthesis of effector cytokines, and decreased expression of key cytokine receptors including IL-18R. In addition, MAIT cells exposed to HSV-1-infected fibroblasts but which remained uninfected (viral GFP-negative) also exhibit a suppressed effector response to TCR-dependent stimulation. The functional suppression of HSV-1-exposed MAIT cells was not mediated by a soluble factor within the supernatant, suggesting direct contact of MAIT cells with HSV-1-infected fibroblasts is required. Overall, this study reveals that HSV-1 can infect MAIT cells and substantially impair MAIT cell effector functions. IMPORTANCE Mucosal-associated invariant T cells (MAIT cells) are "unconventional" immune cells that are becoming increasingly appreciated to play important roles in a variety of viral infections. Herpes simplex virus (HSV) causes significant human disease and is a master manipulator of multiple immune functions, but how this virus may control MAIT cells is poorly understood. We discovered that HSV can infect human MAIT cells and impair their functional capacity and also show that MAIT cells exposed to HSV, but which do not show evidence of infection, are similarly impaired. This study therefore identifies an additional immunomodulatory function of HSV.
Collapse
Affiliation(s)
- Lauren Stern
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Zoe Emanuel
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Renee Traves
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Willis
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Shivam K. Purohit
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn Samer
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Jeffrey Y. W. Mak
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Allison Abendroth
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Barry Slobedman
- Infection, Immunity, and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Roy-Biswas S, Hibma M. The Epithelial Immune Response to Human Papillomavirus Infection. Pathogens 2025; 14:464. [PMID: 40430784 PMCID: PMC12114228 DOI: 10.3390/pathogens14050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
The skin is a complex organ, containing an intricate network of immune cells that are crucial for host barrier function and defence against pathogens. Human papillomavirus (HPV) exclusively infects the skin, and its lifecycle is intimately associated with epithelial cell division and differentiation. There are over 450 HPV types, 12 of which are classified as carcinogenic. The primary focus of this review is the epithelial immune response to HPV infection of the cervix during the initial stages of infection, productive infection, and disease progression. During the early stages of infection, cells are HPV-positive; however, there are no attributable histological changes to the epithelium. The HPV-infected cells have the capacity for innate sensing and signalling through toll-like receptors in response to viral nucleic acids. However, HPV has evolved multiple mechanisms to evade the innate response. During productive infection, all viral antigens are expressed and there are visible histological changes to the epithelium, including koilocytosis. Disease regression is associated with Tbet positive cells in the infected epithelium and the presence of CD4 and CD8 T cells in the lamina propria. Disease progression is associated with the overexpression of the E6 and E7 oncoproteins after integration of viral genomes into the host chromosomal DNA. Histologically, the epithelium is less differentiated, and changes to cells include a higher nuclear-to-cytoplasmic ratio and an increased mitotic index. Immune changes associated with disease progression include increased numbers of cells expressing suppressor molecules, such as FoxP3, Blimp-1, and HMGB1, and myeloid cell infiltrates with an M2-like phenotype. This review highlights the gaps in the understanding of the immune response in HPV-positive cervical neoplasia, and in regression and progression of disease. This knowledge is critical for the development of effective immunotherapies that reliably cause HPV-positive cervical neoplasia to regress.
Collapse
Affiliation(s)
| | - Merilyn Hibma
- Department of Pathology, Dunedin School of Medicine, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| |
Collapse
|
3
|
Jaiswal S, Fatima S, Velarde de la Cruz E, Kumar S. Unraveling the role of the immune landscape in tuberculosis granuloma. Tuberculosis (Edinb) 2025; 152:102615. [PMID: 40020281 DOI: 10.1016/j.tube.2025.102615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
Despite significant advances in research over the past century, Tuberculosis (TB) remains a formidable global health concern. TB granulomas are organized structures composed of immune cells, that serve as the body's primary defense against the spread of Mycobacterium tuberculosis (Mtb). The immune landscape of TB granulomas involves a complex array of immune cells, including CD4+ and CD8+ T cells, B cells, NK cells, and others, which collectively influence the fate of the granuloma. B cells contribute to the formation of the granuloma's germinal center, while the functional state of T cells-particularly their ability to control infection-dictates whether the granuloma is controlling or proliferative. The intricate interplay between T cells and the dynamic microenvironment of the granuloma plays a pivotal role in determining the outcome of the infection. However, several aspects of the immunological basis of tuberculosis are still unknown. This review delves into the immunological landscape of TB granuloma, focusing on the dynamic cellular interplay within the granuloma and its profound influence on disease pathogenesis.
Collapse
|
4
|
Wang H, Kc P, Zhang K, Materne C, Lhomme M, Galier S, Ichou F, Neves C, Lehuen A, Haas JT, Salem JE, Guerin M, Lesnik P. MAIT Cells Promote Cholesterol Excretion Pathways Mitigating Atherosclerosis. Circ Res 2025; 136:968-981. [PMID: 40135347 DOI: 10.1161/circresaha.124.325841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Previous clinical studies have indicated reduced circulating mucosal-associated invariant T (MAIT) cells in individuals with coronary artery disease. However, the precise role and underlying mechanisms of MAIT cells in this context remain unclear. Immune homeostasis plays a pivotal role in the development of atherosclerosis. This study explores the impact of MAIT cells on atherosclerosis. METHODS Vα19+/- Ldlr-/- mice, characterized by a high MAIT cell frequency, and MAIT cell deficient MR1-/- (major histocompatibility complex-related molecule 1) Ldlr-/- mice and their respective controls were used. Starting at 6 weeks of age, mice were subjected to a 1% cholesterol diet for 16 weeks. Additionally, the study analyzed circulating MAIT cell frequency and cholesterol levels in 68 patients with hypercholesterolemia. RESULTS In Vα19+/- Ldlr-/- mice, increased MAIT cells demonstrated a protective effect against atherosclerosis by reducing VLDL-C (very-low-density lipoprotein cholesterol) levels through heightened cholesterol excretion. This effect was accompanied by elevated jejunal ABCB1a, ABCG5, and ABCG8 expression, mediated by augmented levels of Liver X receptor transcription and activation, likely through intestinal IL-22 (interleukin-22) signaling. Conversely, cholesterol reduction mediated by intestinal cholesterol excretion was blocked by inhibition of MAIT cells. Moreover, MAIT cell-deficient MR1-/- Ldlr-/- mice exhibited elevated total cholesterol levels and increased atherosclerotic lesions. In patients with hypercholesterolemia, circulating MAIT cell frequency displayed negative correlations with VLDL-C levels and positive correlations with HDL-C (high-density lipoprotein cholesterol) levels. CONCLUSIONS Our findings demonstrate a new mechanism for plasma VLDL-C clearance by MAIT cell-mediated cholesterol excretion. The results provide further evidence that immunity is involved in cholesterol homeostasis. Targeting intestinal immunity to regulate cholesterol homeostasis holds promise as a new cholesterol-lowering modality to prevent atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Hua Wang
- Sorbonne Université, National Institute of Health and Medical Research (INSERM) U1166, Paris, France (H.W., P.K.C., K.Z., C.M., S.G., C.N., M.G., P.L.)
| | - Pukar Kc
- Sorbonne Université, National Institute of Health and Medical Research (INSERM) U1166, Paris, France (H.W., P.K.C., K.Z., C.M., S.G., C.N., M.G., P.L.)
| | - Kaidi Zhang
- Sorbonne Université, National Institute of Health and Medical Research (INSERM) U1166, Paris, France (H.W., P.K.C., K.Z., C.M., S.G., C.N., M.G., P.L.)
| | - Clément Materne
- Sorbonne Université, National Institute of Health and Medical Research (INSERM) U1166, Paris, France (H.W., P.K.C., K.Z., C.M., S.G., C.N., M.G., P.L.)
| | - Marie Lhomme
- Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), ICAN OMICS, Paris, France (M.L., F.I.)
| | - Sophie Galier
- Sorbonne Université, National Institute of Health and Medical Research (INSERM) U1166, Paris, France (H.W., P.K.C., K.Z., C.M., S.G., C.N., M.G., P.L.)
| | - Farid Ichou
- Foundation for Innovation in Cardiometabolism and Nutrition (ICAN), ICAN OMICS, Paris, France (M.L., F.I.)
| | - Carolina Neves
- Sorbonne Université, National Institute of Health and Medical Research (INSERM) U1166, Paris, France (H.W., P.K.C., K.Z., C.M., S.G., C.N., M.G., P.L.)
| | - Agnès Lehuen
- Université Paris Cité, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France (A.L.)
| | - Joel T Haas
- Université de Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Lille, France (J.T.H.)
| | - Joe-Elie Salem
- INSERM, CIC-1901 Paris-Est, Assistance Publique - Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Pharmacology, Paris, France (J.-E.S.)
| | - Maryse Guerin
- Sorbonne Université, National Institute of Health and Medical Research (INSERM) U1166, Paris, France (H.W., P.K.C., K.Z., C.M., S.G., C.N., M.G., P.L.)
| | - Philippe Lesnik
- Sorbonne Université, National Institute of Health and Medical Research (INSERM) U1166, Paris, France (H.W., P.K.C., K.Z., C.M., S.G., C.N., M.G., P.L.)
| |
Collapse
|
5
|
Li YR, Shen X, Zhu Y, Lyu Z, Yang L. The microbiota shapes the life trajectory of mucosal-associated invariant T cells. Trends Microbiol 2025:S0966-842X(25)00107-6. [PMID: 40280795 DOI: 10.1016/j.tim.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells predominantly located in barrier tissues such as the lung, liver, skin, and colon. These cells recognize metabolites derived from the riboflavin biosynthetic pathway, which can rapidly traverse epithelial barriers and be presented during MAIT cell differentiation in the thymus and maturation in peripheral tissues. Furthermore, microbial metabolites significantly influence MAIT cell functions in various conditions, including cancer. This review summarizes how the microbiota shapes the life trajectory of MAIT cells and their antitumor reactivity. Additionally, we discuss the therapeutic implications of manipulating the microbiota as a 'bug-drug' strategy to enhance MAIT cell antitumor immunity, particularly in mucosal cancers, while emphasizing challenges and future directions for integrating microbiota considerations into MAIT cell-based therapies.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xinyuan Shen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA; Goodman-Luskin Microbiome Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Salou M, Paiva RA, Lantz O. Development and Functions of MAIT Cells. Annu Rev Immunol 2025; 43:253-283. [PMID: 39879553 DOI: 10.1146/annurev-immunol-082323-025943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved T cells that recognize microbial metabolites. They are abundant in humans and conserved during mammalian evolution, which suggests that they have important nonredundant functions. In this article, we discuss the evolutionary conservation of MAIT cells and describe their original developmental process. MAIT cells exert a wide variety of effector functions, from killing infected cells and promoting inflammation to repairing tissues. We provide insights into these functions and discuss how they result from the context of stimulation encountered by MAIT cells in different tissues and pathological settings. We describe how MAIT cell numbers and features are modified in disease states, focusing mainly on in vivo models. Lastly, we discuss emerging strategies to manipulate MAIT cells for therapeutic purposes.
Collapse
Affiliation(s)
- Marion Salou
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
| | - Rafael A Paiva
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
| | - Olivier Lantz
- Immunity and Cancer, INSERM U932, PSL University, Institut Curie, Paris, France; , ,
- Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France
- Centre d'Investigation Clinique en Biothérapie, Gustave-Roussy and Institut Curie (CIC-BT1428), Paris, France
| |
Collapse
|
7
|
Burns BA, Chandra M, Konduri V, Decker WK. High tumor CD161 expression predicts a survival advantage and marks a Th1-skewed microenvironment. Front Immunol 2025; 16:1522755. [PMID: 40165951 PMCID: PMC11955640 DOI: 10.3389/fimmu.2025.1522755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
CD8+CD161+ T-cells exhibit augmented memory and cytolytic properties, mediating enhanced immunity in murine tumor models and improved survival in human non-small cell lung cancer. This T-cell subset might serve as a biomarker of positive response to therapy or even be isolated to augment current immunotherapeutic approaches yet limited knowledge of CD161 expression in human cancers restricts practical application. Here we bioinformatically tested the hypothesis that CD161 expression may be associated with positive outcomes in human cancers and investigated mechanisms underlying any observed advantages. Using TCGA-PANCAN dataset, we analyzed expression of CD161 in over 10,000 human tumors, correlating expression levels with survival. CD161 expression was highly correlated and largely co-expressed with CD8, indicating that observed benefits could be attributed to CD8+CD161+ T-cells. While patients with high CD161 expression exhibited a clear survival advantage over those with low expression, this survival advantage was highly dependent on co-expression of CD11c, indicating a reliance on dendritic cells (DC). To further explore the mechanism by which high CD161 expression confers a survival advantage in cancer, we analyzed available scRNA-sequencing data derived from 31 melanoma tumors. Tumors exhibiting high CD8+CD161+ infiltration also exhibited greater expression of cDC1 and TH1 transcription factors along with higher levels of inflammatory cytokine transcripts. CD8+CD161+ cells themselves displayed enhanced cytotoxicity markers and reduced exhaustion markers compared to CD8+CD161neg T-cells. The data suggest that CD161 could serve as a biomarker for positive outcomes and that DC play a critical in vivo role in the propagation of CD161+ T-cell responses.
Collapse
Affiliation(s)
- Briana Amicarella Burns
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Manasvi Chandra
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - William K. Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Fang Y, Chen Y, Niu S, Lyu Z, Tian Y, Shen X, Li YR, Yang L. Biological functions and therapeutic applications of human mucosal-associated invariant T cells. J Biomed Sci 2025; 32:32. [PMID: 40025566 PMCID: PMC11871619 DOI: 10.1186/s12929-025-01125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a unique subset of innate-like T lymphocytes that bridge innate and adaptive immunity. Characterized by their semi-invariant T cell receptor (TCR) and abundant localization in mucosal tissues, MAIT cells recognize microbial metabolites, primarily derived from the riboflavin biosynthesis pathway, presented by the major histocompatibility complex (MHC)-related protein 1 (MR1). This interaction, along with co-stimulatory signals, triggers rapid immune responses, including cytokine secretion and cytotoxic activity, highlighting their importance in maintaining immune homeostasis and combating infections. This review provides an in-depth overview of MAIT cell biology, including development, activation pathways, and functional diversity, highlighting their protective roles in immunity, contributions to diseases like cancer and inflammatory bowel disease (IBD), and context-dependent dual functions in health and pathology. This review also highlights the emerging therapeutic potential of MAIT cells in immunotherapy. Their unique TCR specificity, abundance, and tissue-homing properties make them ideal candidates for engineering novel therapies, such as chimeric antigen receptor (CAR)-MAIT cells, targeting infections, cancers, and autoimmune diseases. Challenges like antigen escape, T cell exhaustion, and CAR design optimization must be addressed to enhance clinical efficacy. In summary, MAIT cells are integral to immune function, and their therapeutic potential presents exciting opportunities for the treatment of a wide range of diseases. Further research is essential to unlock the full potential of these versatile immune cells.
Collapse
Affiliation(s)
- Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Siyue Niu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinyuan Shen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Gong Z, Xu H, Zhang Q, Wang G, Fan L, Wang Z, Fan L, Liu C, Yu Y, Liu Z, Zhou Q, Xiao H, Hou R, Zhao Y, Chen Y, Xie J. Unveiling the immunological landscape of disseminated tuberculosis: a single-cell transcriptome perspective. Front Immunol 2025; 16:1527592. [PMID: 40092995 PMCID: PMC11906432 DOI: 10.3389/fimmu.2025.1527592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Hematogenous disseminated tuberculosis (DTB) has an unclear etiology that likely involves multiple factors. Understanding the underlying immunological characteristics of DTB is crucial for elucidating its pathogenesis. Methods We conducted single-cell RNA transcriptome and T cell receptor (TCR) sequencing on samples from seven DTB patients. Additionally, we integrated and analyzed data from two published profiles of latent TB infection, three active TB cases, and two healthy controls. Results Our analysis revealed a significantly higher proportion of inflammatory immune cells (e.g., monocytes and macrophages) in DTB patients, along with a notably lower abundance of various lymphocytes (including T cells, B cells, and plasma cells), suggesting that lymphopenia is a prominent feature of the disease. T cell pseudotime analysis indicated a decrease in the expression of most hypervariable genes over time, pointing to T cell functional exhaustion. Furthermore, a marked absence of mucosal-associated invariant T (MAIT) cells was observed in the peripheral blood of DTB patients. In the TCR repertoire, specific polymorphisms (TRAV9-2, TRAV13-1, TRBV20-1, and TRBV5-1) and dominant clones (TRAJ49, TRBJ2-7, and TRBJ2-1) were identified. Analysis of the complementarity determining region 3 (CDR3) showed that the most frequent combination was TRAV1-2/TRAJ33, with the motif "CAAMD" being significantly reduced in DTB patients. Discussion These findings suggest that lymphopenia and T cell exhaustion, along with unique TCR signatures, may play critical roles in DTB pathogenesis. The reduced "CAAMD" motif and altered TCR clonotypes provide novel insights into the complex cellular dynamics associated with the disease, potentially offering new avenues for targeted immunological interventions.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongxiang Xu
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | - Qiao Zhang
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | - Guirong Wang
- Department of Clinical Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lin Fan
- Shanghai Clinical Research Center for Tuberculosis, Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zilu Wang
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | - Lichao Fan
- Shenyang Tenth People’s Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Chang Liu
- Shenyang Tenth People’s Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Yanhong Yu
- Shenyang Tenth People’s Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Zhou Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | | | - Rui Hou
- Shanghai Biotechnology Corporation, Shanghai, China
| | - Ying Zhao
- Shanghai Biotechnology Corporation, Shanghai, China
| | - Yu Chen
- Shenyang Tenth People’s Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Pasha MA, Alnabulsi R, Wan A, Hopp RJ, Yang Q. Dual role of mucosal-associated invariant T cells (MAIT) in asthma. J Asthma 2025:1-6. [PMID: 39969254 DOI: 10.1080/02770903.2025.2469319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/04/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
OBJECTIVE Mucosal-associated invariant T cells (MAIT) are the predominant type of innate-like T cells in humans, and they represent a unique subset of microbiota-dependent invariant T cells. This Commentary reviews recent clinical studies and animal model research elucidating the multifaceted roles of MAIT cells in asthma. METHOD A literature search was performed using PubMed and Google Scholar, and covered the period from 1960 to 2024. The search yielded more than 50 articles, and only essential original research articles and selected review articles were evaluated. RESULTS Recent studies indicate that MAIT cell-derived effector molecules may play dual roles in asthma and allergic airway inflammation. While MAIT cells can produce the anti-inflammatory enzyme IL4I1 and the Th1 cytokine IFN-γ to repress allergic airway inflammation and airway hyperresponsiveness (AHR), they may also secrete IL-17. Which induces neutrophil infiltration and exacerbates AHR. In addition, some clinical studies from the literature search revealed a negative association between MAIT cell abundance and asthma. Regarding allergic airway inflammation, mouse model studies suggested that MAIT cells may play a protective role. CONCLUSION These findings raise critical questions as to whether MAIT cells are friend or foe in asthma, and whether distinct subsets of MAIT cells play different roles in allergic airway inflammation. Further studies are needed to better understand the implication of MAIT cells in asthma pathogenesis, particularly in patients with severe asthma.
Collapse
Affiliation(s)
- M Asghar Pasha
- Division of Allergy and Immunology, Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Rawaa Alnabulsi
- Division of Allergy and Immunology, Department of Medicine, Albany Medical College, Albany, NY, USA
| | - Aiden Wan
- Department of Pediatrics, Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Russell J Hopp
- Department of Pediatrics, University of NE Medical Center and Children's Hospital and Medical Center, Omaha, NE, USA
| | - Qi Yang
- Department of Pediatrics, Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Wu Z, Chen X, Han F, Leeansyah E. MAIT cell homing in intestinal homeostasis and inflammation. SCIENCE ADVANCES 2025; 11:eadu4172. [PMID: 39919191 PMCID: PMC11804934 DOI: 10.1126/sciadv.adu4172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Mucosa-associated invariant T (MAIT) cells are a large population of unconventional T cells widely distributed in the human gastrointestinal tract. Their homing to the gut is central to maintaining mucosal homeostasis and immunity. This review discusses the potential mechanisms that guide MAIT cells to the intestinal mucosa during homeostasis and inflammation, emphasizing the roles of chemokines, chemokine receptors, and tissue adhesion molecules. The potential influence of the gut microbiota on MAIT cell homing to different regions of the human gut is also discussed. Last, we introduce how organoid technology offers a potentially valuable approach to advance our understanding of MAIT cell tissue homing by providing a more physiologically relevant model that mimics the human gut tissue. These models may enable a detailed investigation of the gut-specific homing mechanisms of MAIT cells. By understanding the regulation of MAIT cell homing to the human gut, potential avenues for therapeutic interventions targeting gut inflammatory conditions such as inflammatory bowel diseases (IBD) may emerge.
Collapse
Affiliation(s)
- Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
12
|
Sugimoto C, Wakao H. The Role of Mucosal-Associated Invariant T Cells in Viral Infections and Their Function in Vaccine Development. Vaccines (Basel) 2025; 13:155. [PMID: 40006702 PMCID: PMC11860804 DOI: 10.3390/vaccines13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Mucosal-Associated Invariant T (MAIT) cells, which bridge innate and adaptive immunity, have emerged as an important player in viral infections despite their inability to directly recognize viral antigens. This review provides a comprehensive analysis of MAIT cell responses across different viral infections, revealing consistent patterns in their behavior and function. We discuss the dynamics of MAIT cells during various viral infections, including changes in their frequency, activation status, and functional characteristics. Particular attention is given to emerging strategies for MAIT-cell-targeted vaccine development, including the use of MR1 ligands as mucosal adjuvants and the activation of MAIT cells through viral vectors and mRNA vaccines. Current knowledge of MAIT cell biology in viral infections provides promising approaches for harnessing their functions in vaccine development.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu 321-0293, Japan;
| | | |
Collapse
|
13
|
Lagattuta KA, Kohlgruber AC, Abdelfattah NS, Nathan A, Rumker L, Birnbaum ME, Elledge SJ, Raychaudhuri S. The T cell receptor sequence influences the likelihood of T cell memory formation. Cell Rep 2025; 44:115098. [PMID: 39731734 PMCID: PMC11785489 DOI: 10.1016/j.celrep.2024.115098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024] Open
Abstract
The amino acid sequence of the T cell receptor (TCR) varies between T cells of an individual's immune system. Particular TCR residues nearly guarantee mucosal-associated invariant T (MAIT) and natural killer T (NKT) cell transcriptional fates. To define how the TCR sequence affects T cell fates, we analyze the paired αβTCR sequence and transcriptome of 961,531 single cells. We find that hydrophobic complementarity-determining region (CDR)3 residues promote regulatory T cell fates in both the CD8 and CD4 lineages. Most strikingly, we find a set of TCR sequence features that promote the T cell transition from naive to memory. We quantify the extent of these features through our TCR scoring function "TCR-mem." Using TCR transduction experiments, we demonstrate that increased TCR-mem promotes T cell activation, even among T cells that recognize the same antigen. Our results reveal a common set of TCR sequence features that enable T cell activation and immunological memory.
Collapse
MESH Headings
- Immunologic Memory/immunology
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Mice
- Memory T Cells/immunology
- Amino Acid Sequence
- Lymphocyte Activation/immunology
- Complementarity Determining Regions/immunology
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta
- CD8-Positive T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Kaitlyn A Lagattuta
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Nouran S Abdelfattah
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Germain L, Veloso P, Lantz O, Legoux F. MAIT cells: Conserved watchers on the wall. J Exp Med 2025; 222:e20232298. [PMID: 39446132 PMCID: PMC11514058 DOI: 10.1084/jem.20232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
MAIT cells are innate-like T cells residing in barrier tissues such as the lung, skin, and intestine. Both the semi-invariant T cell receptor of MAIT cells and the restricting element MR1 are deeply conserved across mammals, indicating non-redundant functions linked to antigenic specificity. MAIT cells across species concomitantly express cytotoxicity and tissue-repair genes, suggesting versatile functions. Accordingly, MAIT cells contribute to antibacterial responses as well as to the repair of damaged barrier tissues. MAIT cells recognize riboflavin biosynthetic pathway-derived metabolites, which rapidly cross epithelial barriers to be presented by antigen-presenting cells. Changes in gut ecology during intestinal inflammation drive the expansion of strong riboflavin and MAIT ligand producers. Thus, MAIT cells may enable real-time surveillance of microbiota dysbiosis across intact epithelia and provide rapid and context-dependent responses. Here, we discuss recent findings regarding the origin and regulation of MAIT ligands and the role of MAIT cells in barrier tissues. We speculate on the potential reasons for MAIT cell conservation during evolution.
Collapse
Affiliation(s)
- Lilou Germain
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Pablo Veloso
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie Clinique, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- INSERM ERL1305, CNRS UMR6290, Institut de Génétique and Développement de Rennes, Université de Rennes, Rennes, France
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| |
Collapse
|
15
|
Dolton G, Thomas H, Tan LR, Rius Rafael C, Doetsch S, Ionescu GA, Cardo LF, Crowther MD, Behiry E, Morin T, Caillaud ME, Srai D, Parolini L, Hasan MS, Fuller A, Topley K, Wall A, Hopkins JR, Omidvar N, Alvares C, Zabkiewicz J, Frater J, Szomolay B, Sewell AK. MHC-related protein 1-restricted recognition of cancer via a semi-invariant TCR-α chain. J Clin Invest 2025; 135:e181895. [PMID: 39744940 PMCID: PMC11684821 DOI: 10.1172/jci181895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025] Open
Abstract
The T cell antigen presentation platform MR1 consists of 6 allomorphs in humans that differ by no more than 5 amino acids. The principal function of this highly conserved molecule involves presenting microbial metabolites to the abundant mucosal-associated invariant T (MAIT) cell subset. Recent developments suggest that the role of MR1 extends to presenting antigens from cancer cells, a function dependent on the K43 residue in the MR1 antigen binding cleft. Here, we successfully cultured cancer-activated, MR1-restricted T cells from multiple donors and confirmed that they recognized a wide range of cancer types expressing the most common MR1*01 and/or MR1*02 allomorphs (over 95% of the population), while remaining inert to healthy cells including healthy B cells and monocytes. Curiously, in all but one donor these T cells were found to incorporate a conserved TCR-α chain motif, CAXYGGSQGNLIF (where X represents 3-5 amino acids), because of pairing between 10 different TRAV genes and the TRAJ42 gene segment. This semi-invariance in the TCR-α chain is reminiscent of MAIT cells and suggests recognition of a conserved antigen bound to K43.
Collapse
MESH Headings
- Humans
- Minor Histocompatibility Antigens/genetics
- Minor Histocompatibility Antigens/immunology
- Minor Histocompatibility Antigens/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Mucosal-Associated Invariant T Cells/immunology
- Mucosal-Associated Invariant T Cells/metabolism
- Antigen Presentation
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Amino Acid Motifs
- Cell Line, Tumor
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Hannah Thomas
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Li Rong Tan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Cristina Rius Rafael
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Stephanie Doetsch
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Giulia-Andreea Ionescu
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lucia F. Cardo
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael D. Crowther
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Enas Behiry
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Marine E. Caillaud
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Devinder Srai
- Nuffield Department of Medicine and Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Lucia Parolini
- Nuffield Department of Medicine and Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Md Samiul Hasan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Katie Topley
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jade R. Hopkins
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Nader Omidvar
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Caroline Alvares
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Joanna Zabkiewicz
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - John Frater
- Nuffield Department of Medicine and NIHR Biomedical Research Centre University of Oxford, Oxford, United Kingdom
| | - Barbara Szomolay
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunology Research Institute, Cardiff University Cardiff, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunology Research Institute, Cardiff University Cardiff, United Kingdom
- Division of Infection and Immunity, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
16
|
Jiang Q, Lindelauf C, van Unen V, van der Meulen-de Jong AE, Koning F, Pascutti MF. OMIP-110: A 37-Color Spectral Flow Cytometric Panel to Assess Transcription Factors and Chemokine Receptors in Human Intestinal Lymphoid Cells. Cytometry A 2025; 107:9-35. [PMID: 39838760 DOI: 10.1002/cyto.a.24914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/10/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025]
Abstract
We have developed a 37-color spectral flow cytometry panel to assess the phenotypical differentiation of innate and adaptive immune lymphoid subsets within human intestinal tissue. In addition to lineage markers for identifying innate lymphoid cells (ILC), TCRγδ, MAIT (mucosal-associated invariant T), natural killer (NK), CD4+ and CD8+ T cells, we incorporated markers of differentiation and activation (CD45RA, CD45RO, CD25, CD27, CD38, CD39, CD69, CD103, CD127, CD161, HLA-DR, CTLA-4 [CD152]), alongside transcription factors (Bcl-6, FoxP3, GATA-3, Helios, T-bet, PU.1 and RORγt) and chemokine receptors (CCR4, CCR6, CCR7, CXCR3, and CXCR5). Additionally, Granzyme B and Ki-67 were included to assess cytotoxicity and proliferation potential of the different subsets. This panel is currently used for in-depth immunophenotyping in endoscopic biopsies and peripheral blood mononuclear cells (PBMC) from inflammatory bowel disease (IBD) patients. Distinguished from other OMIP papers, the comprehensive detection of both transcription factors and chemokine receptors facilitates the efficient assessment of several subsets, particularly CD4+ T helper cells, and its potential application extends to both tissue and circulation.
Collapse
Affiliation(s)
- Qinyue Jiang
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ciska Lindelauf
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent van Unen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - M Fernanda Pascutti
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
17
|
Golzari-Sorkheh M, Yoganathan K, Chen ELY, Singh J, Zúñiga-Pflücker JC. T Cell Development: From T-Lineage Specification to Intrathymic Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:81-137. [PMID: 40067585 DOI: 10.1007/978-3-031-77921-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
T cell development occurs in the thymus in both mice and humans. Upon entry into the thymus, bone marrow-derived blood-borne progenitors receive instructive signals, including Notch signaling, to eliminate their potential to develop into alternative immune lineages while committing to the T cell fate. Upon T-lineage commitment, developing T cells receive further instructional cues to generate different T cell sublineages, which together possess diverse immunological functions to provide host immunity. Over the years, numerous studies have contributed to a greater understanding of key thymic signals that govern T cell differentiation and subset generation. Here, we review these critical signaling factors that govern the different stages of both mouse and human T cell development, while also focusing on the transcriptional changes that mediate T cell identity and diversity.
Collapse
Affiliation(s)
- Mahdieh Golzari-Sorkheh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kogulan Yoganathan
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
18
|
Wang H, Souter MNT, de Lima Moreira M, Li S, Zhou Y, Nelson AG, Yu J, Meehan LJ, Meehan BS, Eckle SBG, Lee HJ, Schröder J, Haque A, Mak JYW, Fairlie DP, McCluskey J, Wang Z, Chen Z, Corbett AJ. MAIT cell plasticity enables functional adaptation that drives antibacterial immune protection. Sci Immunol 2024; 9:eadp9841. [PMID: 39642244 DOI: 10.1126/sciimmunol.adp9841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are known for their rapid effector functions and antibacterial immune protection. Here, we define the plasticity of interferon-γ (IFN-γ)-producing MAIT1 and interleukin-17A (IL-17A)-producing MAIT17 cell subsets in vivo. Whereas T-bet+ MAIT1 cells remained stable in all experimental settings, after adoptive transfer or acute Legionella or Francisella infection, RORγt+ MAIT17 cells could undergo phenotypic and functional conversion into both RORγt+T-bet+ MAIT1/17 and RORγt-T-bet+ MAIT1 cells. This plasticity ensured that MAIT17 cells played a dominant role in generating antibacterial MAIT1 responses in mucosal tissues. Single-cell transcriptomics revealed that MAIT17-derived MAIT1 cells were distinct from canonical MAIT1 cells yet could migrate out of mucosal tissues to contribute to the global MAIT1 pool in subsequent systemic infections. Human IL-17A-secreting MAIT cells also showed similar functional plasticity. Our findings have broad implications for understanding the role of MAIT cells in combatting infections and their potential utility in MAIT cell-targeted vaccines.
Collapse
Affiliation(s)
- Huimeng Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Michael N T Souter
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Marcela de Lima Moreira
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Shihan Li
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Computational Sciences Initiative, Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yuchen Zhou
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Tsinghua Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Adam G Nelson
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jinhan Yu
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lucy J Meehan
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S Meehan
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sidonia B G Eckle
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hyun Jae Lee
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jan Schröder
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Computational Sciences Initiative, Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ashraful Haque
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - James McCluskey
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Chen
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J Corbett
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
19
|
Sen Chaudhuri A, Sun J. Lung-resident lymphocytes and their roles in respiratory infections and chronic respiratory diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:214-223. [PMID: 39834580 PMCID: PMC11742555 DOI: 10.1016/j.pccm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 01/22/2025]
Abstract
Recent scientific breakthroughs have blurred traditional boundaries between innate and adaptive immunity, revealing a sophisticated network of tissue-resident cells that deliver immediate, localized immune responses. These lymphocytes not only provide rapid frontline defense but also present a paradoxical role in the pathogenesis of respiratory diseases such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and the long-term tissue consequences of viral infections including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This review traverses the intricate landscape of lung-resident lymphocytes, delving into their origins, diverse functions, and their dualistic impact on pulmonary health. We dissect their interactions with the microenvironment and the regulatory mechanisms guiding their activity, with an emphasis on their contribution to both immune protection and immunopathology. This review aims to elucidate the complex narrative of these cells, enhancing our understanding of the development of precise therapeutic strategies to combat acute and chronic pulmonary diseases. Through this exploration, the review aspires to shed light on the potential of harnessing lung-resident lymphocytes for the treatment of respiratory conditions.
Collapse
Affiliation(s)
- Arka Sen Chaudhuri
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
20
|
Weerakoon H, Miles JJ, Hill MM, Lepletier A. A shotgun proteomic dataset of human mucosal-associated invariant T cells. Data Brief 2024; 56:110786. [PMID: 39224509 PMCID: PMC11367653 DOI: 10.1016/j.dib.2024.110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells represent a unique unconventional T cell population important in eliciting immunomodulatory responses in a range of diseases, including infectious diseases, autoimmunity and cancer. This innate-like T cell subset predominantly express CD8 in humans. Unlike conventional CD8+ T cells, which recognize peptide antigen presented by polymorphic major histocompatibility complex (MHC) molecules, MAIT cells are restricted by MR1, a non-polymorphic antigen-presenting molecule widely expressed in multiple tissues. Thus, identification of proteomic signature of MAIT cells in relation to conventional T cells is pivotal in understanding it's specific functional characteristics. The high-resolution dataset presents here comprehensively describes and compare the whole cell proteomes of MAIT (TCRVα7.2+CD161+) and conventional/non-MAIT T cells (TCR Vα7.2-CD161-) in humans. The dataset was generated using the proteomic samples prepared from matched T cell subsets sorted from peripheral blood mononuclear cells (PBMC) of three healthy volunteers. Peptides obtained from trypsin-digested cell lysates were analysed using Data-Dependent Mass Spectrometry (DDA-MS). Label-free quantitation of DDA-MS data using MaxQuant and MaxLFQ software identified 4,442 proteins at a 1 % false discovery rate. Of them, 3680 proteins that were detected with single UniProt accession and a minimum of 2 unique or razor peptides were assessed to identify differentially abundant proteins between MAIT cells and conventional T cells, including total T cells and CD8+ T cells. The dataset comprises high-quality label-free quantitative proteomic data that can be used to compare the expression pattern of whole cell proteomes between the above-mentioned T cell populations. Further, this can be used as a reference proteome of human MAIT cells for the in-depth understanding of the MAIT cell behaviour among T cells and to discover potential therapeutic targets to modulate MAIT cell function.
Collapse
Affiliation(s)
- Harshi Weerakoon
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - John J. Miles
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Michelle M. Hill
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Ailin Lepletier
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- Institute for Biomedicine and Glycomics, Southport, QLD, Australia
| |
Collapse
|
21
|
Galaverna F, Flamini S, De Luca CD, Pili I, Boccieri E, Benini F, Quagliarella F, Rosignoli C, Rosichini M, Genah S, Catanoso M, Cardinale A, Volpe G, Coccetti M, Pitisci A, Li Pira G, Carta R, Lucarelli B, Del Bufalo F, Bertaina V, Becilli M, Pagliara D, Algeri M, Merli P, Locatelli F, Velardi E. Mucosal-associated invariant T cells are functionally impaired in pediatric and young adult patients following allogeneic hematopoietic stem cell transplantation and their recovery correlates with clinical outcomes. Haematologica 2024; 109:3222-3236. [PMID: 38813718 PMCID: PMC11443409 DOI: 10.3324/haematol.2023.284649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells implicated in the response to fungal and bacterial infections. Their contribution to restoring T-cell immunity and influencing hematopoietic stem cell transplant (HSCT) outcomes remains poorly understood. We retrospectively studied MAIT-cell recovery in 145 consecutive children and young adults with hematologic malignancies undergoing allogeneic (allo)-HSCT between April 2019 and May 2022, from unrelated matched donor (MUD, N=52), with standard graft-versus-host-disease (GvHD) prophylaxis, or HLA-haploidentical (Haplo, N=93) donor after in vitro αβT/CD19-cell depletion, without post-HSCT pharmacological prophylaxis. With a median follow-up of 33 months (range, 12-49 months), overall survival (OS), disease-free survival (DFS), and non-relapse mortality (NRM) were 79.5%, 72%, and 7%, respectively; GvHD-free relapse-free survival (GRFS) was 63%, while cumulative incidence of relapse was 23%. While αβT cells were reconstituted 1-2 years post HSCT, MAIT cells showed delayed recovery and prolonged functional impairment, characterized by expression of activation (CD25, CD38), exhaustion (PD1, TIM3) and senescence (CD57) markers, and suboptimal ex vivo response. OS, DFS, and NRM were not affected by MAIT cells. Interestingly, higher MAIT cells at day +30 correlated with higher incidence of grade II-IV acute GvHD (19% vs. 7%, P=0.06). Furthermore, a greater MAIT-cell count tended to be associated with a higher incidence of chronic GvHD (cGvHD) (17% vs. 6%, P=0.07) resulting in lower GRFS (55% vs. 73%, P=0.05). Higher MAIT cells also correlated with greater cytomegalovirus (CMV) reactivation and lower late blood stream infections (BSI) (44% vs. 24%, P=0.02 and 9% vs. 18%, P=0.08, respectively). Future studies are needed to confirm the impact of early MAIT-cell recovery on cGvHD, CMV reactivation, and late BSI.
Collapse
Affiliation(s)
- Federica Galaverna
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Sara Flamini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Carmen Dolores De Luca
- Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome
| | - Ilaria Pili
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Emilia Boccieri
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Francesca Benini
- Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome
| | - Francesco Quagliarella
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Chiara Rosignoli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marco Rosichini
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome
| | - Shirley Genah
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marialuigia Catanoso
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Antonella Cardinale
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Gabriele Volpe
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marianna Coccetti
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Angela Pitisci
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Giuseppina Li Pira
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Roberto Carta
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Barbarella Lucarelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Francesca Del Bufalo
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Valentina Bertaina
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marco Becilli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Daria Pagliara
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Mattia Algeri
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Health Sciences, Magna Graecia University, Catanzaro
| | - Pietro Merli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Franco Locatelli
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Maternal and Child Health, Catholic University of the Sacred Heart, Largo Francesco Vito, 1, 00168 Rome.
| | - Enrico Velardi
- Research Area of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome.
| |
Collapse
|
22
|
Borges-Fernandes LO, de Lima Moreira M, Pereira VHS, Pascoal-Xavier MA, Lopes Ribeiro Á, da Costa-Rocha IA, Lopes LR, Moreira GTC, Araújo MSDS, Teixeira-Carvalho A, Brito-de-Sousa JP, de Carvalho AL, Mourão MVA, Campos FA, Borges M, Carneiro M, Tsuji M, Martins-Filho OA, Coelho-dos-Reis JGA, Peruhype-Magalhães V. MR1 blockade drives differential impact on integrative signatures based on circuits of circulating immune cells and soluble mediators in visceral leishmaniasis. Front Immunol 2024; 15:1373498. [PMID: 39192975 PMCID: PMC11347828 DOI: 10.3389/fimmu.2024.1373498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Visceral leishmaniasis (VL) is an important tropical and neglected disease and represents a serious global health problem. The initial interaction between the phagocytes and the parasite is crucial to determine the pathogen's capacity to initiate infection and it shapes the subsequent immune response that will develop. While type-1 T-cells induce IL-6, IL-1β, TNF-α, and IL-12 production by monocytes/macrophages to fight the infection, type-2 T-cells are associated with a regulatory phenotype (IL-10 and TGF-β) and successful infection establishment. Recently, our group demonstrated the role of an important Th1/Th17 T-cell population, the mucosal-associated invariant T (MAIT) cells, in VL. MAIT cells can respond to L. infantum by producing TNF-α and IFN-γ upon MR1-dependent activation. Objective and methods Here, we describe the impact of the MR1-blockage on L. infantum internalization on the functional profile of circulating neutrophils and monocytes as well as the impact of the MR1-blockage on the soluble mediator signatures of in vitro whole blood cultures. Results Overall, our data showed that VL patients presents higher percentage of activated neutrophils than asymptomatic and non-infected controls. In addition, MR1 blockade led to lower TNF-α and TGF-β production by non-activated neutrophils from asymptomatic individuals. Moreover, TNF-α and IL-10 production by monocytes was higher in VL patients. In the analysis of soluble mediators produced in vitro, MR1-blockade induced a decrease of IFN-γ and an increase of IL-10, IL-27 and IL-33 in the cell cultures of AS group, a cytokine pattern associated with type 2 deleterious response. Discussion and conclusion These data corroborate the hypothesis that MR1-restricted responses are associated to a protective role during Leishmania infection.
Collapse
Affiliation(s)
| | - Marcela de Lima Moreira
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
| | | | - Marcelo Antônio Pascoal-Xavier
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ágata Lopes Ribeiro
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ludmila Rosa Lopes
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Andréa Teixeira-Carvalho
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
| | | | - Andrea Lucchesi de Carvalho
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Flávia Alves Campos
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marineide Borges
- João Paulo II Children’s Hospital, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariângela Carneiro
- Parasitology Department, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
- Division of Infectious Disease, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | | | - Jordana Grazziela Alves Coelho-dos-Reis
- René Rachou Institute, Oswaldo Cruz Foundation (FIOCRUZ-MINAS), Belo Horizonte, Minas Gerais, Brazil
- Basic and Applied Virology Laboratory, Department of Microbiology, Institute for Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
23
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Gao M, Zhao X. Insights into the tissue repair features of MAIT cells. Front Immunol 2024; 15:1432651. [PMID: 39086492 PMCID: PMC11289772 DOI: 10.3389/fimmu.2024.1432651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are a subset of innate-like non-conventional T cells characterized by multifunctionality. In addition to their well-recognized antimicrobial activity, increasing attention is being drawn towards their roles in tissue homeostasis and repair. However, the precise mechanisms underlying these functions remain incompletely understood and are still subject to ongoing exploration. Currently, it appears that the tissue localization of MAIT cells and the nature of the diseases or stimuli, whether acute or chronic, may induce a dynamic interplay between their pro-inflammatory and anti-inflammatory, or pathogenic and reparative functions. Therefore, elucidating the conditions and mechanisms of MAIT cells' reparative functions is crucial for fully maximizing their protective effects and advancing future MAIT-related therapies. In this review, we will comprehensively discuss the establishment and potential mechanisms of their tissue repair functions as well as the translational application prospects and current challenges in this field.
Collapse
Affiliation(s)
- Mengge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiaosu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
25
|
Yang AYP, Wistuba-Hamprecht K, Greten TF, Ruf B. Innate-like T cells in liver disease. Trends Immunol 2024; 45:535-548. [PMID: 38879436 DOI: 10.1016/j.it.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 07/14/2024]
Abstract
Mammalian innate-like T cells (ILTCs), including mucosal-associated invariant T (MAIT), natural killer T (NKT), and γδ T cells, are abundant tissue-resident lymphocytes that have recently emerged as orchestrators of hepatic inflammation, tissue repair, and immune homeostasis. This review explores the involvement of different ILTC subsets in liver diseases. We explore the mechanisms underlying the pro- and anti-inflammatory effector functions of ILTCs in a context-dependent manner. We highlight latest findings regarding the dynamic interplay between ILTC functional subsets and other immune and parenchymal cells which may inform candidate immunomodulatory strategies to achieve improved clinical outcomes in liver diseases. We present new insights into how distinct gene expression programs in hepatic ILTCs are induced, maintained, and reprogrammed in a context- and disease stage-dependent manner.
Collapse
Affiliation(s)
- Albert Ying-Po Yang
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany; Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology, and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Center for Cancer Research (CCR) Liver Cancer Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Ruf
- Department of Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany; M3 Research Center for Malignome, Metabolome, and Microbiome, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) - Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
El Morr Y, Fürstenheim M, Mestdagh M, Franciszkiewicz K, Salou M, Morvan C, Dupré T, Vorobev A, Jneid B, Premel V, Darbois A, Perrin L, Mondot S, Colombeau L, Bugaut H, du Halgouet A, Richon S, Procopio E, Maurin M, Philippe C, Rodriguez R, Lantz O, Legoux F. MAIT cells monitor intestinal dysbiosis and contribute to host protection during colitis. Sci Immunol 2024; 9:eadi8954. [PMID: 38905325 PMCID: PMC7616241 DOI: 10.1126/sciimmunol.adi8954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Intestinal inflammation shifts microbiota composition and metabolism. How the host monitors and responds to such changes remains unclear. Here, we describe a protective mechanism by which mucosal-associated invariant T (MAIT) cells detect microbiota metabolites produced upon intestinal inflammation and promote tissue repair. At steady state, MAIT ligands derived from the riboflavin biosynthesis pathway were produced by aerotolerant bacteria residing in the colonic mucosa. Experimental colitis triggered luminal expansion of riboflavin-producing bacteria, leading to increased production of MAIT ligands. Modulation of intestinal oxygen levels suggested a role for oxygen in inducing MAIT ligand production. MAIT ligands produced in the colon rapidly crossed the intestinal barrier and activated MAIT cells, which expressed tissue-repair genes and produced barrier-promoting mediators during colitis. Mice lacking MAIT cells were more susceptible to colitis and colitis-driven colorectal cancer. Thus, MAIT cells are sensitive to a bacterial metabolic pathway indicative of intestinal inflammation.
Collapse
Affiliation(s)
- Yara El Morr
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mariela Fürstenheim
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Martin Mestdagh
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Marion Salou
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015Paris, France
| | - Thierry Dupré
- Laboratoire de Biochimie, Hôpital Bichat AP-HP, Université de Paris, Paris, France
| | - Alexey Vorobev
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Bakhos Jneid
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Virginie Premel
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Aurélie Darbois
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Laetitia Perrin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Stanislas Mondot
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ludovic Colombeau
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Hélène Bugaut
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | | | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Emanuele Procopio
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
| | - Catherine Philippe
- Institut Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Raphael Rodriguez
- CNRS UMR 3666, INSERM U1143, Chemical Biology of Cancer Laboratory, PSL University, Institut Curie, 75005Paris, France
| | - Olivier Lantz
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- Laboratoire d’immunologie clinique, Institut Curie, 75005Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - François Legoux
- Institut Curie, PSL University, Inserm U932, Immunity and Cancer, Paris, France
- INSERM ERL1305, CNRS UMR6290, Université de Rennes, Institut de Génétique & Développement de Rennes, Rennes, France
| |
Collapse
|
27
|
Zheng Y, Han F, Wu Z, Wang B, Chen X, Boulouis C, Jiang Y, Ho A, He D, Sia WR, Mak JYW, Fairlie DP, Wang LF, Sandberg JK, Lobie PE, Ma S, Leeansyah E. MAIT cell activation and recruitment in inflammation and tissue damage in acute appendicitis. SCIENCE ADVANCES 2024; 10:eadn6331. [PMID: 38865451 PMCID: PMC11168461 DOI: 10.1126/sciadv.adn6331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are antimicrobial T cells abundant in the gut, but mechanisms for their migration into tissues during inflammation are poorly understood. Here, we used acute pediatric appendicitis (APA), a model of acute intestinal inflammation, to examine these migration mechanisms. MAIT cells were lower in numbers in circulation of patients with APA but were enriched in the inflamed appendix with increased production of proinflammatory cytokines. Using the patient-derived appendix organoid (PDAO) model, we found that circulating MAIT cells treated with inflammatory cytokines elevated in APA up-regulated chemokine receptors, including CCR1, CCR3, and CCR4. They exhibited enhanced infiltration of Escherichia coli-pulsed PDAO in a CCR1-, CCR2-, and CCR4-dependent manner. Close interactions of MAIT cells with infected organoids led to the PDAO structural destruction and death. These findings reveal a previously unidentified mechanism of MAIT cell tissue homing, their participation in tissue damage in APA, and their intricate relationship with mucosal tissues during acute intestinal inflammation in humans.
Collapse
Affiliation(s)
- Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bingjie Wang
- Department of Pediatric Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Yuebin Jiang
- Department of Pathology, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou 363000, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Dan He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jeffrey Y. W. Mak
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - David P. Fairlie
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Peter E. Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
28
|
Ignacio A, Czyz S, McCoy KD. Early life microbiome influences on development of the mucosal innate immune system. Semin Immunol 2024; 73:101885. [PMID: 38788491 DOI: 10.1016/j.smim.2024.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
The gut microbiota is well known to possess immunomodulatory capacities, influencing a multitude of cellular signalling pathways to maintain host homeostasis. Although the formation of the immune system initiates before birth in a sterile environment, an emerging body of literature indicates that the neonatal immune system is influenced by a first wave of external stimuli that includes signals from the maternal microbiota. A second wave of stimulus begins after birth and must be tightly regulated during the neonatal period when colonization of the host occurs concomitantly with the maturation of the immune system, requiring a fine adjustment between establishing tolerance towards the commensal microbiota and preserving inflammatory responses against pathogenic invaders. Besides integrating cues from commensal microbes, the neonatal immune system must also regulate responses triggered by other environmental signals, such as dietary antigens, which become more complex with the introduction of solid food during the weaning period. This "window of opportunity" in early life is thought to be crucial for the proper development of the immune system, setting the tone of subsequent immune responses in adulthood and modulating the risk of developing chronic and metabolic inflammatory diseases. Here we review the importance of host-microbiota interactions for the development and maturation of the immune system, particularly in the early-life period, highlighting the known mechanisms involved in such communication. This discussion is focused on recent data demonstrating microbiota-mediated education of innate immune cells and its role in the development of lymphoid tissues.
Collapse
Affiliation(s)
- Aline Ignacio
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sonia Czyz
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
29
|
Konecny AJ, Huang Y, Setty M, Prlic M. Signals that control MAIT cell function in healthy and inflamed human tissues. Immunol Rev 2024; 323:138-149. [PMID: 38520075 PMCID: PMC12045158 DOI: 10.1111/imr.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.
Collapse
Affiliation(s)
- Andrew J. Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Yin Huang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
30
|
Karnaukhov VK, Le Gac AL, Bilonda Mutala L, Darbois A, Perrin L, Legoux F, Walczak AM, Mora T, Lantz O. Innate-like T cell subset commitment in the murine thymus is independent of TCR characteristics and occurs during proliferation. Proc Natl Acad Sci U S A 2024; 121:e2311348121. [PMID: 38530897 PMCID: PMC10998581 DOI: 10.1073/pnas.2311348121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
How T-cell receptor (TCR) characteristics determine subset commitment during T-cell development is still unclear. Here, we addressed this question for innate-like T cells, mucosal-associated invariant T (MAIT) cells, and invariant natural killer T (iNKT) cells. MAIT and iNKT cells have similar developmental paths, leading in mice to two effector subsets, cytotoxic (MAIT1/iNKT1) and IL17-secreting (MAIT17/iNKT17). For iNKT1 vs iNKT17 fate choice, an instructive role for TCR affinity was proposed but recent data argue against this model. Herein, we examined TCR role in MAIT and iNKT subset commitment through scRNAseq and TCR repertoire analysis. In our dataset of thymic MAIT cells, we found pairs of T-cell clones with identical amino acid TCR sequences originating from distinct precursors, one of which committed to MAIT1 and the other to MAIT17 fates. Quantitative in silico simulations indicated that the number of such cases is best explained by lineage choice being independent of TCR characteristics. Comparison of TCR features of MAIT1 and MAIT17 clonotypes demonstrated that the subsets cannot be distinguished based on TCR sequence. To pinpoint the developmental stage associated with MAIT sublineage choice, we demonstrated that proliferation takes place both before and after MAIT fate commitment. Altogether, we propose a model of MAIT cell development in which noncommitted, intermediate-stage MAIT cells undergo a first round of proliferation, followed by TCR characteristics-independent commitment to MAIT1 or MAIT17 lineage, followed by an additional round of proliferation. Reanalyzing a published iNKT TCR dataset, we showed that this model is also relevant for iNKT cell development.
Collapse
Affiliation(s)
- Vadim K. Karnaukhov
- Institut Curie, Paris Sciences & Lettres University, Inserm U932, Immunity and Cancer, Paris75005, France
- Laboratoire de Physique de l’École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, Paris75005, France
| | - Anne-Laure Le Gac
- Institut Curie, Paris Sciences & Lettres University, Inserm U932, Immunity and Cancer, Paris75005, France
| | - Linda Bilonda Mutala
- Institut Curie, Paris Sciences & Lettres University, Inserm U932, Immunity and Cancer, Paris75005, France
| | - Aurélie Darbois
- Institut Curie, Paris Sciences & Lettres University, Inserm U932, Immunity and Cancer, Paris75005, France
| | - Laetitia Perrin
- Institut Curie, Paris Sciences & Lettres University, Inserm U932, Immunity and Cancer, Paris75005, France
| | - Francois Legoux
- Institut Curie, Paris Sciences & Lettres University, Inserm U932, Immunity and Cancer, Paris75005, France
- INSERM Equipe de Recherche Labellisée 1305, CNRSUMR6290, Université de Rennes, Institut de Génétique & Développement de Rennes35000, France
| | - Aleksandra M. Walczak
- Laboratoire de Physique de l’École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, Paris75005, France
| | - Thierry Mora
- Laboratoire de Physique de l’École Normale Supérieure, Paris Sciences & Lettres University, CNRS, Sorbonne Université and Université Paris Cité, Paris75005, France
| | - Olivier Lantz
- Institut Curie, Paris Sciences & Lettres University, Inserm U932, Immunity and Cancer, Paris75005, France
- Laboratoire d’Immunologie Clinique, Département de médecine diagnostique et théranostique, Institut Curie, Paris75005, France
- Centre d’Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris75005, France
| |
Collapse
|
31
|
Wyatt-Johnson SK, Afify R, Brutkiewicz RR. The immune system in neurological diseases: What innate-like T cells have to say. J Allergy Clin Immunol 2024; 153:913-923. [PMID: 38365015 PMCID: PMC10999338 DOI: 10.1016/j.jaci.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The immune system classically consists of 2 lines of defense, innate and adaptive, both of which interact with one another effectively to protect us against any pathogenic threats. Importantly, there is a diverse subset of cells known as innate-like T cells that act as a bridge between the innate and adaptive immune systems and are pivotal players in eliciting inflammatory immune responses. A growing body of evidence has demonstrated the regulatory impact of these innate-like T cells in central nervous system (CNS) diseases and that such immune cells can traffic into the brain in multiple pathological conditions, which can be typically attributed to the breakdown of the blood-brain barrier. However, until now, it has been poorly understood whether innate-like T cells have direct protective or causative properties, particularly in CNS diseases. Therefore, in this review, our attention is focused on discussing the critical roles of 3 unique subsets of unconventional T cells, namely, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells, in the context of CNS diseases, disorders, and injuries and how the interplay of these immune cells modulates CNS pathology, in an attempt to gain a better understanding of their complex functions.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Reham Afify
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind.
| |
Collapse
|
32
|
Wisnewski AV, Liu J. Lung Gene Expression Suggests Roles for Interferon-Stimulated Genes and Adenosine Deaminase Acting against RNA-1 in Pathologic Responses to Diisocyanate. Chem Res Toxicol 2024; 37:476-485. [PMID: 38494904 PMCID: PMC11748834 DOI: 10.1021/acs.chemrestox.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Mechanisms underlying methylene diphenyl diisocyanate (MDI) and other low molecular weight chemical-induced asthma are unclear and appear distinct from those of high molecular weight (HMW) allergen-induced asthma. We sought to elucidate molecular pathways that differentiate asthma-like pathogenic vs nonpathogenic responses to respiratory tract MDI exposure in a murine model. Lung gene expression differences in MDI exposed immune-sensitized and nonsensitized mice vs unexposed controls were measured by microarrays, and associated molecular pathways were identified through bioinformatic analyses and further compared with published studies of a prototypic HMW asthmagen (ovalbumin). Respiratory tract MDI exposure significantly altered lung gene expression in both nonsensitized and immune-sensitized mice, vs controls. Fifty-three gene transcripts were altered in all MDI exposed lung tissue vs controls, with levels up to 10-fold higher in immune-sensitized vs nonsensitized mice. Gene transcripts selectively increased in MDI exposed immune-sensitized animals were dominated by chitinases and chemokines and showed substantial overlap with those increased in ovalbumin-induced asthma. In contrast, MDI exposure of nonsensitized mice increased type I interferon stimulated genes (ISGs) in a pattern reflecting deficiency in adenosine deaminase acting against RNA (ADAR-1), an important regulator of innate, as well as "sterile" or autoimmunity triggered by tissue damage. Thus, MDI-induced changes in lung gene expression were identified that differentiate nonpathogenic innate responses in nonsensitized hosts from pathologic adaptive responses in immune-sensitized hosts. The data suggest that MDI alters unique biological pathways involving ISGs and ADAR-1, potentially explaining its unique immunogenicity/allergenicity.
Collapse
Affiliation(s)
- Adam V Wisnewski
- Department of Internal Medicine, Yale University School of Medicine, New Haven, 06520, Connecticut United States
| | - Jian Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, 06520, Connecticut United States
| |
Collapse
|
33
|
Yigit M, Basoglu OF, Unutmaz D. Mucosal-associated invariant T cells in cancer: dual roles, complex interactions and therapeutic potential. Front Immunol 2024; 15:1369236. [PMID: 38545100 PMCID: PMC10965779 DOI: 10.3389/fimmu.2024.1369236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells play diverse roles in cancer, infectious diseases, and immunotherapy. This review explores their intricate involvement in cancer, from early detection to their dual functions in promoting inflammation and mediating anti-tumor responses. Within the solid tumor microenvironment (TME), MAIT cells can acquire an 'exhausted' state and secrete tumor-promoting cytokines. On the other hand, MAIT cells are highly cytotoxic, and there is evidence that they may have an anti-tumor immune response. The frequency of MAIT cells and their subsets has also been shown to have prognostic value in several cancer types. Recent innovative approaches, such as programming MAIT cells with chimeric antigen receptors (CARs), provide a novel and exciting approach to utilizing these cells in cell-based cancer immunotherapy. Because MAIT cells have a restricted T cell receptor (TCR) and recognize a common antigen, this also mitigates potential graft-versus-host disease (GVHD) and opens the possibility of using allogeneic MAIT cells as off-the-shelf cell therapies in cancer. Additionally, we outline the interactions of MAIT cells with the microbiome and their critical role in infectious diseases and how this may impact the tumor responses of these cells. Understanding these complex roles can lead to novel therapeutic strategies harnessing the targeting capabilities of MAIT cells.
Collapse
Affiliation(s)
- Mesut Yigit
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Omer Faruk Basoglu
- Human Immunology Laboratory, Acibadem University School of Medicine, Istanbul, Türkiye
| | - Derya Unutmaz
- Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|
34
|
Santacroce E, D’Angerio M, Ciobanu AL, Masini L, Lo Tartaro D, Coloretti I, Busani S, Rubio I, Meschiari M, Franceschini E, Mussini C, Girardis M, Gibellini L, Cossarizza A, De Biasi S. Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells 2024; 13:439. [PMID: 38474403 PMCID: PMC10931424 DOI: 10.3390/cells13050439] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Sepsis, a critical condition marked by systemic inflammation, profoundly impacts both innate and adaptive immunity, often resulting in lymphopenia. This immune alteration can spare regulatory T cells (Tregs) but significantly affects other lymphocyte subsets, leading to diminished effector functions, altered cytokine profiles, and metabolic changes. The complexity of sepsis stems not only from its pathophysiology but also from the heterogeneity of patient responses, posing significant challenges in developing universally effective therapies. This review emphasizes the importance of phenotyping in sepsis to enhance patient-specific diagnostic and therapeutic strategies. Phenotyping immune cells, which categorizes patients based on clinical and immunological characteristics, is pivotal for tailoring treatment approaches. Flow cytometry emerges as a crucial tool in this endeavor, offering rapid, low cost and detailed analysis of immune cell populations and their functional states. Indeed, this technology facilitates the understanding of immune dysfunctions in sepsis and contributes to the identification of novel biomarkers. Our review underscores the potential of integrating flow cytometry with omics data, machine learning and clinical observations to refine sepsis management, highlighting the shift towards personalized medicine in critical care. This approach could lead to more precise interventions, improving outcomes in this heterogeneously affected patient population.
Collapse
Affiliation(s)
- Elena Santacroce
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Miriam D’Angerio
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Linda Masini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Irene Coloretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany;
| | - Marianna Meschiari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Erica Franceschini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Cristina Mussini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| |
Collapse
|
35
|
McWilliam HEG, Villadangos JA. MR1 antigen presentation to MAIT cells and other MR1-restricted T cells. Nat Rev Immunol 2024; 24:178-192. [PMID: 37773272 PMCID: PMC11108705 DOI: 10.1038/s41577-023-00934-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 10/01/2023]
Abstract
MHC antigen presentation plays a fundamental role in adaptive and semi-invariant T cell immunity. Distinct MHC molecules bind antigens that differ in chemical structure, origin and location and present them to specialized T cells. MHC class I-related protein 1 (MR1) presents a range of small molecule antigens to MR1-restricted T (MR1T) lymphocytes. The best studied MR1 ligands are derived from microbial metabolism and are recognized by a major class of MR1T cells known as mucosal-associated invariant T (MAIT) cells. Here, we describe the MR1 antigen presentation pathway: the known types of antigens presented by MR1, the location where MR1-antigen complexes form, the route followed by the complexes to the cell surface, the mechanisms involved in termination of MR1 antigen presentation and the accessory cellular proteins that comprise the MR1 antigen presentation machinery. The current road map of the MR1 antigen presentation pathway reveals potential strategies for therapeutic manipulation of MR1T cell function and provides a foundation for further studies that will lead to a deeper understanding of MR1-mediated immunity.
Collapse
Affiliation(s)
- Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
36
|
Bugaut H, El Morr Y, Mestdagh M, Darbois A, Paiva RA, Salou M, Perrin L, Fürstenheim M, du Halgouet A, Bilonda-Mutala L, Le Gac AL, Arnaud M, El Marjou A, Guerin C, Chaiyasitdhi A, Piquet J, Smadja DM, Cieslak A, Ryffel B, Maciulyte V, Turner JM, Bernardeau K, Montagutelli X, Lantz O, Legoux F. A conserved transcriptional program for MAIT cells across mammalian evolution. J Exp Med 2024; 221:e20231487. [PMID: 38117256 PMCID: PMC10733631 DOI: 10.1084/jem.20231487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells harbor evolutionarily conserved TCRs, suggesting important functions. As human and mouse MAIT functional programs appear distinct, the evolutionarily conserved MAIT functional features remain unidentified. Using species-specific tetramers coupled to single-cell RNA sequencing, we characterized MAIT cell development in six species spanning 110 million years of evolution. Cross-species analyses revealed conserved transcriptional events underlying MAIT cell maturation, marked by ZBTB16 induction in all species. MAIT cells in human, sheep, cattle, and opossum acquired a shared type-1/17 transcriptional program, reflecting ancestral features. This program was also acquired by human iNKT cells, indicating common differentiation for innate-like T cells. Distinct type-1 and type-17 MAIT subsets developed in rodents, including pet mice and genetically diverse mouse strains. However, MAIT cells further matured in mouse intestines to acquire a remarkably conserved program characterized by concomitant expression of type-1, type-17, cytotoxicity, and tissue-repair genes. Altogether, the study provides a unifying view of the transcriptional features of innate-like T cells across evolution.
Collapse
Affiliation(s)
- Hélène Bugaut
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Yara El Morr
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Martin Mestdagh
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Aurélie Darbois
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Rafael A. Paiva
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Marion Salou
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Laetitia Perrin
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Mariela Fürstenheim
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Anastasia du Halgouet
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Linda Bilonda-Mutala
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Anne-Laure Le Gac
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Manon Arnaud
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | | | - Coralie Guerin
- Cytometry Platform, CurieCoreTech, Institut Curie, Paris, France
- Innovative Therapies in Haemostasis, Institut National de La Santé et de La Recherche Médicale, Université de Paris, Paris, France
| | - Atitheb Chaiyasitdhi
- Laboratoire Physico-Chimie Curie, Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR168, Paris, France
- Sorbonne Université, Paris, France
| | - Julie Piquet
- Biosurgical Research Laboratory, Carpentier Foundation, Paris, France
| | - David M. Smadja
- Innovative Therapies in Haemostasis, Institut National de La Santé et de La Recherche Médicale, Université de Paris, Paris, France
- Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris-Centre-Université de Paris, Paris, France
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de La Santé et de La Recherche Médicale U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Bernhard Ryffel
- Université D’Orléans, Centre national de la recherche scientifique UMR7355, Orléans, France
| | - Valdone Maciulyte
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - James M.A. Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Karine Bernardeau
- Nantes Université, Centre hospitalier universitaire de Nantes, Centre national de la recherche scientifique, Institut National de La Santé et de La Recherche Médicale, BioCore, US16, Plateforme P2R, Structure Fédérative de Recherche François Bonamy, Nantes, France
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Olivier Lantz
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
- Laboratoire D’immunologie Clinique, Institut Curie, Paris, France
- Centre D’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie, Paris, France
| | - François Legoux
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
- Institut de Génétique et Développement de Rennes, Université de Rennes, Institut National de La Santé et de La Recherche Médicale ERL1305, Centre national de la recherche scientifique UMR6290, Rennes, France
| |
Collapse
|
37
|
Talvard-Balland N, Lambert M, Chevalier MF, Minet N, Salou M, Tourret M, Bohineust A, Milo I, Parietti V, Yvorra T, Socié G, Lantz O, Caillat-Zucman S. Human MAIT cells inhibit alloreactive T cell responses and protect against acute graft-versus-host disease. JCI Insight 2024; 9:e166310. [PMID: 38300704 PMCID: PMC11143928 DOI: 10.1172/jci.insight.166310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Adoptive transfer of immunoregulatory cells can prevent or ameliorate graft-versus-host disease (GVHD), which remains the main cause of nonrelapse mortality after allogeneic hematopoietic stem cell transplantation. Mucosal-associated invariant T (MAIT) cells were recently associated with tissue repair capacities and with lower rates of GVHD in humans. Here, we analyzed the immunosuppressive effect of MAIT cells in an in vitro model of alloreactivity and explored their adoptive transfer in a preclinical xenogeneic GVHD model. We found that MAIT cells, whether freshly purified or short-term expanded, dose-dependently inhibited proliferation and activation of alloreactive T cells. In immunodeficient mice injected with human PBMCs, MAIT cells greatly delayed GVHD onset and decreased severity when transferred early after PBMC injection but could also control ongoing GVHD when transferred at delayed time points. This effect was associated with decreased proliferation and effector function of human T cells infiltrating tissues of diseased mice and was correlated with lower circulating IFN-γ and TNF-α levels and increased IL-10 levels. MAIT cells acted partly in a contact-dependent manner, which likely required direct interaction of their T cell receptor with MHC class I-related molecule (MR1) induced on host-reactive T cells. These results support the setup of clinical trials using MAIT cells as universal therapeutic tools to control severe GVHD or mucosal inflammatory disorders.
Collapse
Affiliation(s)
- Nana Talvard-Balland
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Marion Lambert
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Mathieu F. Chevalier
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Norbert Minet
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Marion Salou
- Institut Curie, Université PSL, INSERM U932, Immunity and Cancer, Paris, France
| | - Marie Tourret
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Armelle Bohineust
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Idan Milo
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
| | - Véronique Parietti
- Université Paris Cité, INSERM, CNRS, UMS Saint-Louis (US53/UAR2030), Paris, France
| | - Thomas Yvorra
- Institut Curie, Université PSL, CNRS UMR3666, INSERM U1143, Paris, France
| | - Gérard Socié
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
- Hematology Transplantation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Olivier Lantz
- Institut Curie, Université PSL, INSERM U932, Immunity and Cancer, Paris, France
- Clinical Immunology Laboratory, Institut Curie, Paris, France
- Centre d’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Paris, France
| | - Sophie Caillat-Zucman
- INSERM UMR-976 HIPI, Saint Louis Research Institute, Université Paris Cité, Paris, France
- Immunology Laboratory, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Paris, France
| |
Collapse
|
38
|
Ito E, Inuki S, Izumi Y, Takahashi M, Dambayashi Y, Ciacchi L, Awad W, Takeyama A, Shibata K, Mori S, Mak JYW, Fairlie DP, Bamba T, Ishikawa E, Nagae M, Rossjohn J, Yamasaki S. Sulfated bile acid is a host-derived ligand for MAIT cells. Sci Immunol 2024; 9:eade6924. [PMID: 38277465 PMCID: PMC11147531 DOI: 10.1126/sciimmunol.ade6924] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize bacterial riboflavin-based metabolites as activating antigens. Although MAIT cells are found in tissues, it is unknown whether any host tissue-derived antigens exist. Here, we report that a sulfated bile acid, cholic acid 7-sulfate (CA7S), binds the nonclassical MHC class I protein MR1 and is recognized by MAIT cells. CA7S is a host-derived metabolite whose levels were reduced by more than 98% in germ-free mice. Deletion of the sulfotransferase 2a family of enzymes (Sult2a1-8) responsible for CA7S synthesis reduced the number of thymic MAIT cells in mice. Moreover, recognition of CA7S induced MAIT cell survival and the expression of a homeostatic gene signature. By contrast, recognition of a previously described foreign antigen, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), drove MAIT cell proliferation and the expression of inflammatory genes. Thus, CA7S is an endogenous antigen for MAIT cells, which promotes their development and function.
Collapse
Affiliation(s)
- Emi Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yuki Dambayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Lisa Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ami Takeyama
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kensuke Shibata
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Shotaro Mori
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
39
|
Lonez C, Breman E. Allogeneic CAR-T Therapy Technologies: Has the Promise Been Met? Cells 2024; 13:146. [PMID: 38247837 PMCID: PMC10814647 DOI: 10.3390/cells13020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
This last decade, chimeric antigen receptor (CAR) T-cell therapy has become a real treatment option for patients with B-cell malignancies, while multiple efforts are being made to extend this therapy to other malignancies and broader patient populations. However, several limitations remain, including those associated with the time-consuming and highly personalized manufacturing of autologous CAR-Ts. Technologies to establish "off-the-shelf" allogeneic CAR-Ts with low alloreactivity are currently being developed, with a strong focus on gene-editing technologies. Although these technologies have many advantages, they have also strong limitations, including double-strand breaks in the DNA with multiple associated safety risks as well as the lack of modulation. As an alternative, non-gene-editing technologies provide an interesting approach to support the development of allogeneic CAR-Ts in the future, with possibilities of fine-tuning gene expression and easy development. Here, we will review the different ways allogeneic CAR-Ts can be manufactured and discuss which technologies are currently used. The biggest hurdles for successful therapy of allogeneic CAR-Ts will be summarized, and finally, an overview of the current clinical evidence for allogeneic CAR-Ts in comparison to its autologous counterpart will be given.
Collapse
|
40
|
Sugimoto C, Fujita H, Wakao H. Mice Generated with Induced Pluripotent Stem Cells Derived from Mucosal-Associated Invariant T Cells. Biomedicines 2024; 12:137. [PMID: 38255242 PMCID: PMC10813358 DOI: 10.3390/biomedicines12010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/28/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024] Open
Abstract
The function of mucosal-associated invariant T (MAIT) cells, a burgeoning member of innate-like T cells abundant in humans and implicated in many diseases, remains obscure. To explore this, mice with a rearranged T cell receptor (TCR) α or β locus, specific for MAIT cells, were generated via induced pluripotent stem cells derived from MAIT cells and were designated Vα19 and Vβ8 mice, respectively. Both groups of mice expressed large numbers of MAIT cells. The MAIT cells from these mice were activated by cytokines and an agonist to produce IFN-γ and IL-17. While Vβ8 mice showed resistance in a cancer metastasis model, Vα19 mice did not. Adoptive transfer of MAIT cells from the latter into the control mice, however, recapitulated the resistance. These mice present an implication for understanding the role of MAIT cells in health and disease and in developing treatments for the plethora of diseases in which MAIT cells are implicated.
Collapse
Affiliation(s)
| | | | - Hiroshi Wakao
- Host Defense Division, Research Centre for Advanced Medical Science, Dokkyo Medical University, Mibu 321-0293, Japan; (C.S.)
| |
Collapse
|
41
|
Liu M, Yang Z, Wu Q, Yang Y, Zhao D, Cheng Q, Li Y, Liu G, Zhao C, Pan J, Zhang Y, Deng F, Jin T. IL-4-secreting CD40L + MAIT cells support antibody production in the peripheral blood of Heonch-Schönlein purpura patients. Inflamm Res 2024; 73:35-46. [PMID: 38147125 DOI: 10.1007/s00011-023-01816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVE Here, we explored the phenotype and function of MAIT cells in the peripheral blood of patients with HSP. METHODS Blood samples from HSP patients and HDs were assessed by flow cytometry and single-cell RNA sequencing to analyze the proportion, phenotype, and function of MAIT cells. Th-cytokines in the serum of HSP patients were analyzed by CBA. IgA in cocultured supernatant was detected by CBA to analyze antibody production by B cells. RESULTS The percentage of MAIT cells in HSP patients was significantly reduced compared with that in HDs. Genes related to T cell activation and effector were up-regulated in HSP MAIT cells, indicating a more activated phenotype. In addition, HSP MAIT cells displayed a Th2-like profile with the capacity to produce more IL-4 and IL-5, and IL-4 was correlated with IgA levels in the serum of HSP patients. Furthermore, CD40L was up-regulated in HSP MAIT cells, and CD40L+ MAIT cells showed an increased ability to produce IL-4 and to enhance IgA production by B cells. CONCLUSION Our data demonstrate that MAIT cells in HSP patients exhibit an activated phenotype. The enhanced IL-4 production and CD40L expression of MAIT cells in HSP patients could take part in the pathogenesis of HSP.
Collapse
Affiliation(s)
- Muziying Liu
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, 230051, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Ziqiang Yang
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, 230051, China
| | - Qielan Wu
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230071, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yunru Yang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230071, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Dan Zhao
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230071, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Qingyu Cheng
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China
| | - Yajuan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gengyuan Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Changfeng Zhao
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jun Pan
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yuwei Zhang
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Fang Deng
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, 230051, China.
| | - Tengchuan Jin
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230071, China.
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Department of Medical Oncology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
42
|
Sasano H, Harada N, Harada S, Takeshige T, Sandhu Y, Tanabe Y, Ishimori A, Matsuno K, Nagaoka T, Ito J, Chiba A, Akiba H, Atsuta R, Izuhara K, Miyake S, Takahashi K. Pretreatment circulating MAIT cells, neutrophils, and periostin predicted the real-world response after 1-year mepolizumab treatment in asthmatics. Allergol Int 2024; 73:94-106. [PMID: 37336695 DOI: 10.1016/j.alit.2023.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Mepolizumab treatment improves symptom control and quality of life and reduces exacerbations in patients with severe eosinophilic asthma. However, biomarkers that predict therapeutic effectiveness must be determined for use in precision medicine. Herein, we elucidated the dynamics of various parameters before and after treatment as well as patient characteristics predictive of clinical responsiveness to mepolizumab after 1-year treatment. METHODS Twenty-seven patients with severe asthma were treated with mepolizumab for one year. Asthma control test scores, pulmonary function tests, fractional exhaled nitric oxide levels, and blood samples were evaluated. Additionally, we explored the role of CD69-positive mucosal-associated invariant T (MAIT) cells as a candidate biomarker for predicting treatment effectiveness by evaluating an OVA-induced asthma murine model using MR1 knockout mice, where MAIT cells were absent. RESULTS The frequencies of CD69-positive group 1 innate lymphoid cells, group 3 innate lymphoid cells, natural killer cells, and MAIT cells decreased after mepolizumab treatment. The frequency of CD69-positive MAIT cells and neutrophils was lower and serum periostin levels were higher in responders than in non-responders. In the OVA-induced asthma murine model, CD69-positive MAIT cell count in the whole mouse lung was significantly higher than that in the control mice. Moreover, OVA-induced eosinophilic airway inflammation was exacerbated in the MAIT cell-deficient MR1 knockout mice. CONCLUSIONS This study shows that circulating CD69-positive MAIT cells, neutrophils, and serum periostin might predict the real-world response after 1-year mepolizumab treatment. Furthermore, MAIT cells potentially have a protective role against type 2 airway inflammation.
Collapse
Affiliation(s)
- Hitoshi Sasano
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Sonoko Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomohito Takeshige
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Yuuki Sandhu
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Yuki Tanabe
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Ayako Ishimori
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Kei Matsuno
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Jun Ito
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hisaya Akiba
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Atsuta
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan; Research Institute for Diseases of Old Ages, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
43
|
Wu S, Yang X, Lou Y, Xiao X. MAIT cells in bacterial infectious diseases: heroes, villains, or both? Clin Exp Immunol 2023; 214:144-153. [PMID: 37624404 PMCID: PMC10714195 DOI: 10.1093/cei/uxad102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Due to the aggravation of bacterial drug resistance and the lag in the development of new antibiotics, it is crucial to develop novel therapeutic regimens for bacterial infectious diseases. Currently, immunotherapy is a promising regimen for the treatment of infectious diseases. Mucosal-associated invariant T (MAIT) cells, a subpopulation of innate-like T cells, are abundant in humans and can mount a rapid immune response to pathogens, thus becoming a potential target of immunotherapy for infectious diseases. At the site of infection, activated MAIT cells perform complex biological functions by secreting a variety of cytokines and cytotoxic substances. Many studies have shown that MAIT cells have immunoprotective effects because they can bridge innate and adaptive immune responses, leading to bacterial clearance, tissue repair, and homeostasis maintenance. MAIT cells also participate in cytokine storm generation, tissue fibrosis, and cancer progression, indicating that they play a role in immunopathology. In this article, we review recent studies of MAIT cells, discuss their dual roles in bacterial infectious diseases and provide some promising MAIT cell-targeting strategies for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Sihong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
44
|
Waterhölter A, Wunderlich M, Turner JE. MAIT cells in immune-mediated tissue injury and repair. Eur J Immunol 2023; 53:e2350483. [PMID: 37740567 DOI: 10.1002/eji.202350483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are T cells that express a semi-invariant αβ T-cell receptor (TCR), recognizing non-peptide antigens, such as microbial-derived vitamin B2 metabolites, presented by the nonpolymorphic MHC class I related-1 molecule. Like NKT cells and γδT cells, MAIT cells belong to the group of innate-like T cells that combine properties of the innate and adaptive immune systems. They account for up to 10% of the blood T-cell population in humans and are particularly abundant at mucosal sites. Beyond the emerging role of MAIT cells in antibacterial and antiviral defenses, increasing evidence suggests additional functions in noninfectious settings, including immune-mediated inflammatory diseases and tissue repair. Here, we discuss recent advances in the understanding of MAIT cell functions in sterile tissue inflammation, with a particular focus on autoimmunity, chronic inflammatory diseases, and tissue repair.
Collapse
Affiliation(s)
- Alex Waterhölter
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Wunderlich
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Peng Q, Huang R, Wang H, Xiao H, Wang Y, Zhai Z, Wang Z. Immune characteristics and prognostic implications of mucosal-associated invariant T cells in acute myeloid leukemia. Cancer Immunol Immunother 2023; 72:4399-4414. [PMID: 37932426 PMCID: PMC10991463 DOI: 10.1007/s00262-023-03574-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Increasing evidence suggests that mucosal-associated invariant T cells (MAITs) play a crucial role in anti-tumor responses against various cancers. In this study, we investigated the immune characteristics of MAIT cells in patients with acute myeloid leukemia (AML). Using multi-parameter flow cytometry, we performed phenotypic and functional analysis of MAITs in peripheral blood or bone marrow samples collected from 131 patients with AML including 99 newly diagnosed, 18 remission, and 14 relapsed cases, as well as 69 healthy controls. We found that MAITs exhibit signs of aging and exhaustion, particularly in CD8+ MAITs subset, at newly diagnosis. MAITs exhibit an effector memory or terminally differentiated phenotype. Frequency and number of MAITs reflect AML cell genetic features, tumor burden, disease status, and treatment responsiveness. Moreover, MAITs exhibit a highly activated or even exhausted state, as indicated by upregulation of PD-1. Furthermore, impaired production of Th1-type cytokines and increased secretion of Th17-type cytokines, granzyme B, and perforin were observed in MAITs from AML patients. Additionally, MAITs shifted toward producing cytokines that promote tumor progression, such as IL-8. Lower frequency of MAITs was associated with poorer overall survival (OS), and multivariate analysis revealed that MAITs frequency < 2.12% was an independent prognostic factor affecting OS. Collectively, our findings suggest that MAITs may play a role in immune deficiency in AML, emphasizing their potential importance in AML pathogenesis and treatment. These discoveries provide a theoretical basis for the development of novel immunotherapeutic strategies in AML.
Collapse
Affiliation(s)
- Qian Peng
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
| | - Renhua Huang
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
| | - Huiping Wang
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
| | - Hao Xiao
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China
| | - Yiping Wang
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, The University of Sydney, Sydney, Australia
| | - Zhimin Zhai
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China.
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China.
| | - Zhitao Wang
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China.
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, Anhui Province, People's Republic of China.
| |
Collapse
|
46
|
Chandra S, Ascui G, Riffelmacher T, Chawla A, Ramírez-Suástegui C, Castelan VC, Seumois G, Simon H, Murray MP, Seo GY, Premlal ALR, Schmiedel B, Verstichel G, Li Y, Lin CH, Greenbaum J, Lamberti J, Murthy R, Nigro J, Cheroutre H, Ottensmeier CH, Hedrick SM, Lu LF, Vijayanand P, Kronenberg M. Transcriptomes and metabolism define mouse and human MAIT cell populations. Sci Immunol 2023; 8:eabn8531. [PMID: 37948512 PMCID: PMC11160507 DOI: 10.1126/sciimmunol.abn8531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of T lymphocytes that respond to microbial metabolites. We defined MAIT cell populations in different organs and characterized the developmental pathway of mouse and human MAIT cells in the thymus using single-cell RNA sequencing and phenotypic and metabolic analyses. We showed that the predominant mouse subset, which produced IL-17 (MAIT17), and the subset that produced IFN-γ (MAIT1) had not only greatly different transcriptomes but also different metabolic states. MAIT17 cells in different organs exhibited increased lipid uptake, lipid storage, and mitochondrial potential compared with MAIT1 cells. All these properties were similar in the thymus and likely acquired there. Human MAIT cells in lung and blood were more homogeneous but still differed between tissues. Human MAIT cells had increased fatty acid uptake and lipid storage in blood and lung, similar to human CD8 T resident memory cells, but unlike mouse MAIT17 cells, they lacked increased mitochondrial potential. Although mouse and human MAIT cell transcriptomes showed similarities for immature cells in the thymus, they diverged more strikingly in the periphery. Analysis of pet store mice demonstrated decreased lung MAIT17 cells in these so-called "dirty" mice, indicative of an environmental influence on MAIT cell subsets and function.
Collapse
Affiliation(s)
- Shilpi Chandra
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Gabriel Ascui
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093 USA
| | - Thomas Riffelmacher
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY UK
| | - Ashu Chawla
- Bioinformatics Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Ciro Ramírez-Suástegui
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Viankail C. Castelan
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Gregory Seumois
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Hayley Simon
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Mallory P. Murray
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Goo-Young Seo
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | | | - Benjamin Schmiedel
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Greet Verstichel
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Yingcong Li
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
| | - Chia-Hao Lin
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
| | - Jason Greenbaum
- Bioinformatics Core Facility, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - John Lamberti
- Division of Cardiac Surgery, Rady Children’s Hospital, San Diego, CA 92123 USA
- Division of Pediatric Cardiac Surgery, Falk Cardiovascular Research Center, Stanford, CA 94305-5407 USA
| | - Raghav Murthy
- Division of Cardiac Surgery, Rady Children’s Hospital, San Diego, CA 92123 USA
- Division of Pediatric Cardiac Surgery, Children’s Heart Center Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - John Nigro
- Division of Cardiac Surgery, Rady Children’s Hospital, San Diego, CA 92123 USA
| | - Hilde Cheroutre
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Christian H. Ottensmeier
- Liverpool Head and Neck Center, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK, L69 7ZB
| | - Stephen M. Hedrick
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093 USA
| | - Li-Fan Lu
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093 USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093 USA
| | - Pandurangan Vijayanand
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
| | - Mitchell Kronenberg
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037 USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92037 USA
| |
Collapse
|
47
|
Brauns S, Marquardt I, Thon C, Frentzel S, Jakob J, Färber J, Philipsen L, Jänsch L, Link A, Bruder D. Mucosal-associated invariant T cells from Clostridioides difficile-infected patients exhibit a distinct proinflammatory phenotype and enhanced cytotoxic activity. Int Immunol 2023; 35:543-554. [PMID: 37549964 DOI: 10.1093/intimm/dxad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/07/2023] [Indexed: 08/09/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells mainly found in the mucosa and peripheral blood. We have recently demonstrated that Clostridioides difficile activates MAIT cells in vitro. However, their role in the pathogenesis of C. difficile infection (CDI) in human patients remains elusive to date. In this study, we performed comprehensive immunophenotyping of MAIT cells derived from CDI patients and compared their phenotype to that of patients with inflammatory bowel diseases (IBD) and healthy controls. Our study revealed that blood MAIT cells from CDI patients exhibit an interleukin 17a (IL-17a)-dominated proinflammatory phenotype and an increased readiness to synthesize the proinflammatory cytokine interferon γ (IFN-γ) following in vitro re-stimulation. Moreover, the cytotoxic activity of MAIT cells, as measured by surface CD107a and intracellular granzyme B expression, was strongly increased in CDI. Multi epitope ligand cartography (MELC) analysis of intestinal biopsies from CDI patients revealed that MAIT cells exhibit an increased production of granzyme B and increased cytotoxicity compared to the control group. Together with previously published in vitro data from our group, our findings suggest that MAIT cells are functionally involved in the immune response against C. difficile and contribute to the pathogenesis of CDI.
Collapse
Affiliation(s)
- Steffen Brauns
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Isabel Marquardt
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Cosima Thon
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Sarah Frentzel
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Josefine Jakob
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jacqueline Färber
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Multi-parametric Bioimaging and Cytometry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Hospital, Magdeburg, Germany
| | - Dunja Bruder
- Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
48
|
Wang Q, Lu Q, Jia S, Zhao M. Gut immune microenvironment and autoimmunity. Int Immunopharmacol 2023; 124:110842. [PMID: 37643491 DOI: 10.1016/j.intimp.2023.110842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
A variety of immune cells or tissues are present in the gut to form the gut immune microenvironment by interacting with gut microbiota, and to maintain the gut immune homeostasis. Accumulating evidence indicated that gut microbiota dysbiosis might break the homeostasis of the gut immune microenvironment, which was associated with many health problems including autoimmune diseases. Moreover, disturbance of the gut immune microenvironment can also induce extra-intestinal autoimmune disorders through the migration of intestinal pro-inflammatory effector cells from the intestine to peripheral inflamed sites. This review discussed the composition of the gut immune microenvironment and its association with autoimmunity. These findings are expected to provide new insights into the pathogenesis of various autoimmune disorders, as well as novel strategies for the prevention and treatment against related diseases.
Collapse
Affiliation(s)
- Qiaolin Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
49
|
Quinn KM, Vicencio DM, La Gruta NL. The paradox of aging: Aging-related shifts in T cell function and metabolism. Semin Immunol 2023; 70:101834. [PMID: 37659169 DOI: 10.1016/j.smim.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniela M Vicencio
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
50
|
Sugimoto C, Fujita H, Wakao H. A flow-cytometry-based assay to assess the cytolytic activity against tumor cells by combination of mouse MAIT cells and natural killer cells. STAR Protoc 2023; 4:102620. [PMID: 39491553 PMCID: PMC10628808 DOI: 10.1016/j.xpro.2023.102620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 11/05/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells responsible for mucosal immunity in the respiratory and intestinal tracts. Here we present a flow-cytometry-based assay to measure the cytolytic activity of murine MAIT cells and natural killer (NK) cells. We describe steps for differentiating MAIT-like cells from the induced pluripotent stem cells prepared from MAIT cells (reMAIT cells), NK cell isolation, co-culture with target tumor cells, and staining to distinguish dead cells from live cells. For complete details on the use and execution of this protocol, please refer to Sugimoto et al. (2022).1.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan.
| | - Hiroyoshi Fujita
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan
| | - Hiroshi Wakao
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu, Tochigi 321-0293, Japan.
| |
Collapse
|