1
|
Li R, Lei Z, Wen Z, Zhou Y, Ma Y, Qin J, Huang X, Huang S, Peng S, Liang S, Zhong Y. Mendelian randomization study on the causal relationships among fasting blood glucose, plasma proteins, and squamous cell lung cancer. Discov Oncol 2025; 16:588. [PMID: 40263141 PMCID: PMC12014989 DOI: 10.1007/s12672-025-02237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Squamous cell lung cancer (SQCLC) represents the second most common subtype of lung cancer (LC) with characteristics of treatment resistance. Plasma proteins often influence levels of fasting blood glucose (FBG), consequently impacting LC. However, the precise role of FBG in this association remains unclear. OBJECTIVE To investigate the causal relationships of FBG with LC and its subtypes, plasma proteins, and SQCLC, as well as the mediating role of FBG. METHODS Mendelian randomization (MR) analysis was employed to assess the causal associations of FBG with LC and its subtypes, plasma proteins and SQCLC, and plasma proteins and FBG, using the two-step MR approach with the primary method being Inverse Variance Weighted (IVW). Protein-Protein Interaction (PPI) network was utilized to identify hub genes of plasma proteins causally linked to SQCLC. RESULTS FBG was a risk factor for SQCLC (OR: 1.376, 95% CI 1.017-1.862, P = 0.038) but had no significant causal associations with LC and other subtypes (P > 0.05). Furthermore, 54 plasma proteins had significant causal associations with SQCLC (P < 0.05). EEF2 K (OR: 1.111, 95% CI 1.015-1.216, P = 0.023) and SSR1 (OR: 0.546, 95% CI 0.487-0.613, P < 0.001) were identified as a risk and protective factor for FBG, respectively. Mediation analysis indicated a significant negative mediating effect of FBG in the causal relationship between SSR1 and SQCLC (B = - 0.193, 95% CI - 0.312-0.074, P = 0.001), with a mediation proportion of 44.4%. CONCLUSION Our study revealed FBG as a risk factor for SQCLC and demonstrated the mediating role of FBG in the causal association between SSR1 and SQCLC.
Collapse
Affiliation(s)
- Ronglin Li
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhenniu Lei
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhaoke Wen
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yifan Zhou
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yunzhi Ma
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Junqi Qin
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiaoyan Huang
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Shuping Huang
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Shucong Peng
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Shengjing Liang
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| | - Yonglong Zhong
- Department of Thoracic Surgery, the People'S Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
2
|
Rivas MA, Chang C. Efficient storage and regression computation for population-scale genome sequencing studies. Bioinformatics 2025; 41:btaf067. [PMID: 39932865 PMCID: PMC11893150 DOI: 10.1093/bioinformatics/btaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/07/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
MOTIVATION The growing availability of large-scale population biobanks has the potential to significantly advance our understanding of human health and disease. However, the massive computational and storage demands of whole genome sequencing (WGS) data pose serious challenges, particularly for underfunded institutions or researchers in developing countries. This disparity in resources can limit equitable access to cutting-edge genetic research. RESULTS We present novel algorithms and regression methods that dramatically reduce both computation time and storage requirements for WGS studies, with particular attention to rare variant representation. By integrating these approaches into PLINK 2.0, we demonstrate substantial gains in efficiency without compromising analytical accuracy. In an exome-wide association analysis of 19.4 million variants for the body mass index phenotype in 125 077 individuals (AllofUs project data), we reduced runtime from 695.35 min (11.5 h) on a single machine to 1.57 min with 30 GB of memory and 50 threads (or 8.67 min with 4 threads). Additionally, the framework supports multi-phenotype analyses, further enhancing its flexibility. AVAILABILITY AND IMPLEMENTATION Our optimized methods are fully integrated into PLINK 2.0 and can be accessed at: https://www.cog-genomics.org/plink/2.0/.
Collapse
Affiliation(s)
- Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, United States
| | | |
Collapse
|
3
|
Tan LS, Lau HH, Abdelalim EM, Khoo CM, O'Brien RM, Tai ES, Teo AKK. The role of glucose-6-phosphatase activity in glucose homeostasis and its potential for diabetes therapy. Trends Mol Med 2025; 31:152-164. [PMID: 39426930 DOI: 10.1016/j.molmed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Glucose-6-phosphatase catalytic subunit (G6PC)1 and G6PC2 are crucial for glucose metabolism, regulating processes like glycolysis, gluconeogenesis, and glycogenolysis. Despite their structural and functional similarities, G6PC1 and G6PC2 exhibit distinct tissue-specific expression patterns, G6P hydrolysis kinetics, and physiological functions. This review provides a comprehensive overview of their enzymology and distinct roles in glucose homeostasis. We examine how inactivating mutations in G6PC1 lead to glycogen storage disease, and how elevated G6PC1 and G6PC2 expression can affect the incidence of diabetic complications, risk for type 2 diabetes mellitus (T2DM) and various cancers. We also discuss the potential of inhibiting G6PC1 and G6PC2 to protect against complications from elevated blood glucose levels, and highlight drug development efforts targeting G6PC1 and G6PC2, and the therapeutic potential of inhibitors for disease prevention.
Collapse
Affiliation(s)
- Lay Shuen Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; Dean's Office, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hwee Hui Lau
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Program (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Program (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Program (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Tan WX, Lim LY, Afsha N, Chan GME, Ching C, Oguz G, Neo SP, Mohamed Ali S, Ramasamy A, Gunaratne J, Hunziker W, Khoo CM, Teo AKK. ZHX3 interacts with CEBPB to repress hepatic gluconeogenic gene expression and uric acid secretion. PNAS NEXUS 2025; 4:pgae568. [PMID: 39990763 PMCID: PMC11843648 DOI: 10.1093/pnasnexus/pgae568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/11/2024] [Indexed: 02/25/2025]
Abstract
ZHX3, which encodes for a transcriptional repressor, is associated with fasting blood glucose (FBG) levels and increased type 2 diabetes (T2D) risk but its role in cell types involved in glucose metabolism is not well understood. Here, we show that the deletion of ZHX3 in the human pancreatic β-cell line EndoC-βH1 did not impair glucose-stimulated insulin secretion (GSIS) nor perturb its transcriptome. On the other hand, we found that ZHX3 represses the expression of gluconeogenic genes PCK1 and G6PC1 in the human hepatoma line HepG2. Transcriptomic analysis of ZHX3-deficient HepG2 cells revealed that the uric acid transporter gene SLC17A1 was up-regulated, which consequentially led to increased uric acid secretion. High levels of uric acid could then impair GSIS in EndoC-βH1 cells. Subsequently, in-depth co-immunoprecipitation followed by mass spectrometry analysis of ZHX3 in HepG2 cells identified transcription factor CEBPB as its binding partner, required to repress the transcription of PCK1, G6PC1, and partially SLC17A1 in HepG2 cells. Overall, our study uncovered the role of ZHX3 in regulating glucose metabolism in hepatocytes, thereby influencing FBG levels and their association with T2D risk.
Collapse
Affiliation(s)
- Wei Xuan Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Lillian Yuxian Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Nesha Afsha
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Gloria Mei En Chan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Carmen Ching
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Gokce Oguz
- Bioinformatics Consulting and Training Platform, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Suat Peng Neo
- Translational Biomedical Proteomics Laboratory, IMCB, A*STAR, Singapore 138673, Singapore
| | - Safiah Mohamed Ali
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Adaikalavan Ramasamy
- Bioinformatics Consulting and Training Platform, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Jayantha Gunaratne
- Translational Biomedical Proteomics Laboratory, IMCB, A*STAR, Singapore 138673, Singapore
| | - Walter Hunziker
- Epithelial Polarity in Disease and Tissue Regeneration Laboratory; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
5
|
Rivas MA, Chang C. Efficient storage and regression computation for population-scale genome sequencing studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.11.589062. [PMID: 38659813 PMCID: PMC11042230 DOI: 10.1101/2024.04.11.589062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In the era of big data in human genetics, large-scale biobanks aggregating genetic data from diverse populations have emerged as important for advancing our understanding of human health and disease. However, the computational and storage demands of whole genome sequencing (WGS) studies pose significant challenges, especially for researchers from underfunded institutions or developing countries, creating a disparity in research capabilities. We introduce new approaches that significantly enhance computational efficiency and reduce data storage requirements for WGS studies. By developing algorithms for compressed storage of genetic data, focusing particularly on optimizing the representation of rare variants, and designing regression methods tailored for the scale and complexity of WGS data, we significantly lower computational and storage costs. We integrate our approach into PLINK 2.0. The implementation demonstrates considerable reductions in storage space and computational time without compromising analytical accuracy, as evidenced by the application to the AllofUs project data. We optimized the runtime of an exome-wide association analysis involving 19.4 million variants and the body mass index phenotype of 125,077 individuals, reducing it from 695.35 minutes (approximately 11.5 hours) on a single machine to just 1.57 minutes using 30 GB of memory and 50 threads (or 8.67 minutes with 4 threads). Additionally, we extended this approach to support multi-phenotype analyses. We anticipate that our approach will enable researchers across the globe to unlock the potential of population biobanks, accelerating the pace of discoveries that can improve our understanding of human health and disease.
Collapse
Affiliation(s)
- Manuel A. Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA 94305
| | | |
Collapse
|
6
|
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen GH. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024; 14:508. [PMID: 39330515 PMCID: PMC11434570 DOI: 10.3390/metabo14090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
7
|
Li K, Leng Y, Lei D, Zhang H, Ding M, Lo WLA. Causal link between metabolic related factors and osteoarthritis: a Mendelian randomization investigation. Front Nutr 2024; 11:1424286. [PMID: 39206315 PMCID: PMC11349640 DOI: 10.3389/fnut.2024.1424286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Metabolic syndrome (MetS) is significantly associated with osteoarthritis (OA), especially in MetS patients with blood glucose abnormalities, such as elevated fasting blood glucose (FG), which may increase OA risk. Dietary modifications, especially the intake of polyunsaturated fatty acids (PUFAs), are regarded as a potential means of preventing MetS and its complications. However, regarding the effects of FG, Omega-3s, and Omega-6s on OA, the research conclusions are conflicting, which is attributed to the complexity of the pathogenesis of OA. Therefore, it is imperative to thoroughly evaluate multiple factors to fully understand their role in OA, which needs further exploration and clarification. Methods Two-sample univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) were employed to examine the causal effect of metabolic related factors on hip OA (HOA) or knee OA (KOA). The exposure and outcome datasets were obtained from Open GWAS IEU. All cases were independent European ancestry data. Three MR methods were performed to estimate the causal effect: inverse-variance weighting (IVW), weighted median method (WMM), and MR-Egger regression. Additionally, the intercept analysis in MR-Egger regression is used to estimate pleiotropy, and the IVW method and MR-Egger regression are used to test the heterogeneity. Results The UVMR analysis revealed a causal relationship between FG and HOA. By MVMR analysis, the study discovered a significant link between FG (OR = 0.79, 95%CI: 0.64∼0.99, p = 0.036) and KOA after accounting for body mass index (BMI), age, and sex hormone-binding globulin (SHBG). However, no causal effects of FG on HOA were seen. Omega-3s and Omega-6s did not have a causal influence on HOA or KOA. No significant evidence of pleiotropy was identified. Discussion The MR investigation showed a protective effect of FG on KOA development but no causal relationship between FG and HOA. No causal effect of Omega-3s and Omega-6s on HOA and KOA was observed. Shared genetic overlaps might also exist between BMI and age, SHBG and PUFAs for OA development. This finding offers a novel insight into the treatment and prevention of KOA from glucose metabolism perspective. The FG cutoff value should be explored in the future, and consideration should be given to demonstrating the study in populations other than Europeans.
Collapse
Affiliation(s)
- Kai Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Leng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Lei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haojie Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Centre for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Hawes EM, Rahim M, Haratipour Z, Orun AR, O'Rourke ML, Oeser JK, Kim K, Claxton DP, Blind RD, Young JD, O'Brien RM. Biochemical and metabolic characterization of a G6PC2 inhibitor. Biochimie 2024; 222:109-122. [PMID: 38431189 PMCID: PMC11661470 DOI: 10.1016/j.biochi.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Three glucose-6-phosphatase catalytic subunits, that hydrolyze glucose-6-phosphate (G6P) to glucose and inorganic phosphate, have been identified, designated G6PC1-3, but only G6PC1 and G6PC2 have been implicated in the regulation of fasting blood glucose (FBG). Elevated FBG has been associated with multiple adverse clinical outcomes, including increased risk for type 2 diabetes and various cancers. Therefore, G6PC1 and G6PC2 inhibitors that lower FBG may be of prophylactic value for the prevention of multiple conditions. The studies described here characterize a G6PC2 inhibitor, designated VU0945627, previously identified as Compound 3. We show that VU0945627 preferentially inhibits human G6PC2 versus human G6PC1 but activates human G6PC3. VU0945627 is a mixed G6PC2 inhibitor, increasing the Km but reducing the Vmax for G6P hydrolysis. PyRx virtual docking to an AlphaFold2-derived G6PC2 structural model suggests VU0945627 binds two sites in human G6PC2. Mutation of residues in these sites reduces the inhibitory effect of VU0945627. VU0945627 does not inhibit mouse G6PC2 despite its 84% sequence identity with human G6PC2. Mutagenesis studies suggest this lack of inhibition of mouse G6PC2 is due, in part, to a change in residue 318 from histidine in human G6PC2 to proline in mouse G6PC2. Surprisingly, VU0945627 still inhibited glucose cycling in the mouse islet-derived βTC-3 cell line. Studies using intact mouse liver microsomes and PyRx docking suggest that this observation can be explained by an ability of VU0945627 to also inhibit the G6P transporter SLC37A4. These data will inform future computational modeling studies designed to identify G6PC isoform-specific inhibitors.
Collapse
Affiliation(s)
- Emily M Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt School of Engineering, Nashville, TN, 37232, USA
| | - Zeinab Haratipour
- Austin Peay State University, 601 College St, Clarksville, TN 37044, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Abigail R Orun
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Margaret L O'Rourke
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - James K Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kwangho Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ray D Blind
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt School of Engineering, Nashville, TN, 37232, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
9
|
Rossen J, Shi H, Strober BJ, Zhang MJ, Kanai M, McCaw ZR, Liang L, Weissbrod O, Price AL. MultiSuSiE improves multi-ancestry fine-mapping in All of Us whole-genome sequencing data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.13.24307291. [PMID: 38798542 PMCID: PMC11118590 DOI: 10.1101/2024.05.13.24307291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Leveraging data from multiple ancestries can greatly improve fine-mapping power due to differences in linkage disequilibrium and allele frequencies. We propose MultiSuSiE, an extension of the sum of single effects model (SuSiE) to multiple ancestries that allows causal effect sizes to vary across ancestries based on a multivariate normal prior informed by empirical data. We evaluated MultiSuSiE via simulations and analyses of 14 quantitative traits leveraging whole-genome sequencing data in 47k African-ancestry and 94k European-ancestry individuals from All of Us. In simulations, MultiSuSiE applied to Afr47k+Eur47k was well-calibrated and attained higher power than SuSiE applied to Eur94k; interestingly, higher causal variant PIPs in Afr47k compared to Eur47k were entirely explained by differences in the extent of LD quantified by LD 4th moments. Compared to very recently proposed multi-ancestry fine-mapping methods, MultiSuSiE attained higher power and/or much lower computational costs, making the analysis of large-scale All of Us data feasible. In real trait analyses, MultiSuSiE applied to Afr47k+Eur94k identified 579 fine-mapped variants with PIP > 0.5, and MultiSuSiE applied to Afr47k+Eur47k identified 44% more fine-mapped variants with PIP > 0.5 than SuSiE applied to Eur94k. We validated MultiSuSiE results for real traits via functional enrichment of fine-mapped variants. We highlight several examples where MultiSuSiE implicates well-studied or biologically plausible fine-mapped variants that were not implicated by other methods.
Collapse
|
10
|
Hawes E, Claxton D, Oeser J, O’Brien R. Identification of structural motifs critical for human G6PC2 function informed by sequence analysis and an AlphaFold2-predicted model. Biosci Rep 2024; 44:BSR20231851. [PMID: 38095063 PMCID: PMC10776900 DOI: 10.1042/bsr20231851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
G6PC2 encodes a glucose-6-phosphatase (G6Pase) catalytic subunit, primarily expressed in pancreatic islet β cells, which modulates the sensitivity of insulin secretion to glucose and thereby regulates fasting blood glucose (FBG). Mutational analyses were conducted to validate an AlphaFold2 (AF2)-predicted structure of human G6PC2 in conjunction with a novel method to solubilize and purify human G6PC2 from a heterologous expression system. These analyses show that residues forming a predicted intramolecular disulfide bond are essential for G6PC2 expression and that residues forming part of a type 2 phosphatidic acid phosphatase (PAP2) motif are critical for enzyme activity. Additional mutagenesis shows that residues forming a predicted substrate cavity modulate enzyme activity and substrate specificity and residues forming a putative cholesterol recognition amino acid consensus (CRAC) motif influence protein expression or enzyme activity. This CRAC motif begins at residue 219, the site of a common G6PC2 non-synonymous single-nucleotide polymorphism (SNP), rs492594 (Val219Leu), though the functional impact of this SNP is disputed. In microsomal membrane preparations, the L219 variant has greater activity than the V219 variant, but this difference disappears when G6PC2 is purified in detergent micelles. We hypothesize that this was due to a differential association of the two variants with cholesterol. This concept was supported by the observation that the addition of cholesteryl hemi-succinate to the purified enzymes decreased the Vmax of the V219 and L219 variants ∼8-fold and ∼3 fold, respectively. We anticipate that these observations should support the rational development of G6PC2 inhibitors designed to lower FBG.
Collapse
Affiliation(s)
- Emily M. Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Derek P. Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, U.S.A
| |
Collapse
|
11
|
Keller MP, Hawes EM, Schueler KL, Stapleton DS, Mitok KA, Simonett SP, Oeser JK, Sampson LL, Attie AD, Magnuson MA, O’Brien RM. An Enhancer Within Abcb11 Regulates G6pc2 in C57BL/6 Mouse Pancreatic Islets. Diabetes 2023; 72:1621-1628. [PMID: 37552875 PMCID: PMC10588275 DOI: 10.2337/db23-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
G6PC2 is predominantly expressed in pancreatic islet β-cells where it encodes a glucose-6-phosphatase catalytic subunit that modulates the sensitivity of insulin secretion to glucose by opposing the action of glucokinase, thereby regulating fasting blood glucose (FBG). Prior studies have shown that the G6pc2 promoter alone is unable to confer sustained islet-specific gene expression in mice, suggesting the existence of distal enhancers that regulate G6pc2 expression. Using information from both mice and humans and knowledge that single nucleotide polymorphisms (SNPs) both within and near G6PC2 are associated with variations in FBG in humans, we identified several putative enhancers 3' of G6pc2. One region, herein referred to as enhancer I, resides in the 25th intron of Abcb11 and binds multiple islet-enriched transcription factors. CRISPR-mediated deletion of enhancer I in C57BL/6 mice had selective effects on the expression of genes near the G6pc2 locus. In isolated islets, G6pc2 and Spc25 expression were reduced ∼50%, and Gm13613 expression was abolished, whereas Cers6 and nostrin expression were unaffected. This partial reduction in G6pc2 expression enhanced islet insulin secretion at basal glucose concentrations but did not affect FBG or glucose tolerance in vivo, consistent with the absence of a phenotype in G6pc2 heterozygous C57BL/6 mice. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
| | - Emily M. Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | | | | | - Kelly A. Mitok
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
| | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
| | - James K. Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Leesa L. Sampson
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI
- Department of Medicine, University of Wisconsin–Madison, Madison, WI
| | - Mark A. Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Richard M. O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
12
|
Willems SM, Ng NHJ, Fernandez J, Fine RS, Wheeler E, Wessel J, Kitajima H, Marenne G, Sim X, Yaghootkar H, Wang S, Chen S, Chen Y, Chen YDI, Grarup N, Li-Gao R, Varga TV, Asimit JL, Feng S, Strawbridge RJ, Kleinbrink EL, Ahluwalia TS, An P, Appel EV, Arking DE, Auvinen J, Bielak LF, Bihlmeyer NA, Bork-Jensen J, Brody JA, Campbell A, Chu AY, Davies G, Demirkan A, Floyd JS, Giulianini F, Guo X, Gustafsson S, Jackson AU, Jakobsdottir J, Järvelin MR, Jensen RA, Kanoni S, Keinanen-Kiukaanniemi S, Li M, Lu Y, Luan J, Manning AK, Marten J, Meidtner K, Mook-Kanamori DO, Muka T, Pistis G, Prins B, Rice KM, Sanna S, Smith AV, Smith JA, Southam L, Stringham HM, Tragante V, van der Laan SW, Warren HR, Yao J, Yiorkas AM, Zhang W, Zhao W, Graff M, Highland HM, Justice AE, Marouli E, Medina-Gomez C, Afaq S, Alhejily WA, Amin N, Asselbergs FW, Bonnycastle LL, Bots ML, Brandslund I, Chen J, Danesh J, de Mutsert R, Dehghan A, Ebeling T, Elliott P, EPIC-Interact Consortium, Farmaki AE, Faul JD, Franks PW, Franks S, Fritsche A, Gjesing AP, Goodarzi MO, Gudnason V, Hallmans G, Harris TB, Herzig KH, Hivert MF, Jørgensen T, Jørgensen ME, et alWillems SM, Ng NHJ, Fernandez J, Fine RS, Wheeler E, Wessel J, Kitajima H, Marenne G, Sim X, Yaghootkar H, Wang S, Chen S, Chen Y, Chen YDI, Grarup N, Li-Gao R, Varga TV, Asimit JL, Feng S, Strawbridge RJ, Kleinbrink EL, Ahluwalia TS, An P, Appel EV, Arking DE, Auvinen J, Bielak LF, Bihlmeyer NA, Bork-Jensen J, Brody JA, Campbell A, Chu AY, Davies G, Demirkan A, Floyd JS, Giulianini F, Guo X, Gustafsson S, Jackson AU, Jakobsdottir J, Järvelin MR, Jensen RA, Kanoni S, Keinanen-Kiukaanniemi S, Li M, Lu Y, Luan J, Manning AK, Marten J, Meidtner K, Mook-Kanamori DO, Muka T, Pistis G, Prins B, Rice KM, Sanna S, Smith AV, Smith JA, Southam L, Stringham HM, Tragante V, van der Laan SW, Warren HR, Yao J, Yiorkas AM, Zhang W, Zhao W, Graff M, Highland HM, Justice AE, Marouli E, Medina-Gomez C, Afaq S, Alhejily WA, Amin N, Asselbergs FW, Bonnycastle LL, Bots ML, Brandslund I, Chen J, Danesh J, de Mutsert R, Dehghan A, Ebeling T, Elliott P, EPIC-Interact Consortium, Farmaki AE, Faul JD, Franks PW, Franks S, Fritsche A, Gjesing AP, Goodarzi MO, Gudnason V, Hallmans G, Harris TB, Herzig KH, Hivert MF, Jørgensen T, Jørgensen ME, Jousilahti P, Kajantie E, Karaleftheri M, Kardia SL, Kinnunen L, Koistinen HA, Komulainen P, Kovacs P, Kuusisto J, Laakso M, Lange LA, Launer LJ, Leong A, Lindström J, Manning Fox JE, Männistö S, Maruthur NM, Moilanen L, Mulas A, Nalls MA, Neville M, Pankow JS, Pattie A, Petersen ER, Puolijoki H, Rasheed A, Redmond P, Renström F, Roden M, Saleheen D, Saltevo J, Savonen K, Sebert S, Skaaby T, Small KS, Stančáková A, Stokholm J, Strauch K, Tai ES, Taylor KD, Thuesen BH, Tönjes A, Tsafantakis E, Tuomi T, Tuomilehto J, Understanding Society Scientific Group, Uusitupa M, Vääräsmäki M, Vaartjes I, Zoledziewska M, Abecasis G, Balkau B, Bisgaard H, Blakemore AI, Blüher M, Boeing H, Boerwinkle E, Bønnelykke K, Bottinger EP, Caulfield MJ, Chambers JC, Chasman DI, Cheng CY, Collins FS, Coresh J, Cucca F, de Borst GJ, Deary IJ, Dedoussis G, Deloukas P, den Ruijter HM, Dupuis J, Evans MK, Ferrannini E, Franco OH, Grallert H, Hansen T, Hattersley AT, Hayward C, Hirschhorn JN, Ikram A, Ingelsson E, Karpe F, Kaw KT, Kiess W, Kooner JS, Körner A, Lakka T, Langenberg C, Lind L, Lindgren CM, Linneberg A, Lipovich L, Liu CT, Liu J, Liu Y, Loos RJ, MacDonald PE, Mohlke KL, Morris AD, Munroe PB, Murray A, Padmanabhan S, Palmer CNA., Pasterkamp G, Pedersen O, Peyser PA, Polasek O, Porteous D, Province MA, Psaty BM, Rauramaa R, Ridker PM, Rolandsson O, Rorsman P, Rosendaal FR, Rudan I, Salomaa V, Schulze MB, Sladek R, Smith BH, Spector TD, Starr JM, Stumvoll M, van Duijn CM, Walker M, Wareham NJ, Weir DR, Wilson JG, Wong TY, Zeggini E, Zonderman AB, Rotter JI, Morris AP, Boehnke M, Florez JC, McCarthy MI, Meigs JB, Mahajan A, Scott RA, Gloyn AL, Barroso I. Large-scale exome array summary statistics resources for glycemic traits to aid effector gene prioritization. Wellcome Open Res 2023; 8:483. [PMID: 39280063 PMCID: PMC11399760 DOI: 10.12688/wellcomeopenres.18754.1] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 09/18/2024] Open
Abstract
Background Genome-wide association studies for glycemic traits have identified hundreds of loci associated with these biomarkers of glucose homeostasis. Despite this success, the challenge remains to link variant associations to genes, and underlying biological pathways. Methods To identify coding variant associations which may pinpoint effector genes at both novel and previously established genome-wide association loci, we performed meta-analyses of exome-array studies for four glycemic traits: glycated hemoglobin (HbA1c, up to 144,060 participants), fasting glucose (FG, up to 129,665 participants), fasting insulin (FI, up to 104,140) and 2hr glucose post-oral glucose challenge (2hGlu, up to 57,878). In addition, we performed network and pathway analyses. Results Single-variant and gene-based association analyses identified coding variant associations at more than 60 genes, which when combined with other datasets may be useful to nominate effector genes. Network and pathway analyses identified pathways related to insulin secretion, zinc transport and fatty acid metabolism. HbA1c associations were strongly enriched in pathways related to blood cell biology. Conclusions Our results provided novel glycemic trait associations and highlighted pathways implicated in glycemic regulation. Exome-array summary statistic results are being made available to the scientific community to enable further discoveries.
Collapse
Affiliation(s)
- Sara M. Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- General Medicine Center, Saarland University Faculty of Medicine, Homburg, 66421, Germany
| | - Natasha H. J. Ng
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Juan Fernandez
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Rebecca S. Fine
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Current address: Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Jennifer Wessel
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Departments of Epidemiology & Medicine, Schools of Public Health & Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Diabetes Translational Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- General Medicine Division, Massachusetts General Hospital, Boston, MA, USA
| | - Hidetoshi Kitajima
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Gaelle Marenne
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, 117549, Singapore
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sai Chen
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuning Chen
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Tibor V. Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, SE-205 02, Sweden
| | - Jennifer L. Asimit
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Shuang Feng
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Rona J. Strawbridge
- Mental Health and Wellbeing, School of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8RZ, UK
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, 171 76, Sweden
| | - Erica L. Kleinbrink
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201-1928, USA
| | - Tarunveer S. Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
| | - Ping An
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, 63108, USA
| | - Emil V. Appel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juha Auvinen
- Center for Life Course Health Research, University of Oulu, Oulu, 90014, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Lawrence F. Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nathan A. Bihlmeyer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Audrey Y. Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - James S. Floyd
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, 75237, Sweden
| | - Anne U. Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, University of Oulu, Oulu, 90014, Finland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Richard A. Jensen
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sirkka Keinanen-Kiukaanniemi
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- MRC and Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Man Li
- Division of Nephrology, Internal Medicine, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Alisa K. Manning
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Karina Meidtner
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
| | - Dennis O. Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Taulant Muka
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Giorgio Pistis
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bram Prins
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kenneth M. Rice
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Serena Sanna
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Albert Vernon Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Lorraine Southam
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Heather M. Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vinicius Tragante
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Sander W. van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Helen R. Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Cardiovascular Research Unit, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, EC1M 6BQ, UK
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Andrianos M. Yiorkas
- Section of Investigative Medicine, Department of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Heather M. Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Human Genetics Center, The University of Texas School of Public Health; The University of Texas Graduate School of Biomedical Sciences at Houston;, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Anne E. Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - Saima Afaq
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Wesam A. Alhejily
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - Folkert W. Asselbergs
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Lori L. Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Michiel L. Bots
- Center for Circulatory Health, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital Vejle, Vejle, 7100, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, 5000, Denmark
| | - Ji Chen
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB18RN, UK
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | | | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- Imperial College NIHR Biomedical Research Centre, London, UK
- Health Data Research UK, Imperial College London, London, UK
| | - EPIC-Interact Consortium
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- General Medicine Center, Saarland University Faculty of Medicine, Homburg, 66421, Germany
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Current address: Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Departments of Epidemiology & Medicine, Schools of Public Health & Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Diabetes Translational Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- General Medicine Division, Massachusetts General Hospital, Boston, MA, USA
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, 117549, Singapore
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, SE-205 02, Sweden
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Mental Health and Wellbeing, School of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8RZ, UK
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, 171 76, Sweden
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201-1928, USA
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, 63108, USA
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Life Course Health Research, University of Oulu, Oulu, 90014, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, 75237, Sweden
- Icelandic Heart Association, Kopavogur, Iceland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- Biocenter Oulu, University of Oulu, Oulu, Finland
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- MRC and Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Division of Nephrology, Internal Medicine, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, 9700 RB, The Netherlands
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Barts Cardiovascular Research Unit, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, EC1M 6BQ, UK
- Section of Investigative Medicine, Department of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Life Sciences, Brunel University London, London, UB8 3PH, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Human Genetics Center, The University of Texas School of Public Health; The University of Texas Graduate School of Biomedical Sciences at Houston;, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Department of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Center for Circulatory Health, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
- Department of Clinical Biochemistry, Lillebaelt Hospital Vejle, Vejle, 7100, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, 5000, Denmark
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB18RN, UK
- UK Dementia Research Institute, Imperial College London, London, UK
- Oulu University Hospital, Oulu, 90220, Finland
- Imperial College NIHR Biomedical Research Centre, London, UK
- Health Data Research UK, Imperial College London, London, UK
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, 17671, Greece
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology, and Clinical Chemistry, University Hospital of Tübingen, Tübingen, Germany
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biobank Research, Umeå University, Umeå, SE-901 87, Sweden
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine, Medical Research Center Oulu and Oulu University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, 60-572, Poland
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, 2000, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Faculty of Medicine, University of Aalborg, Aalborg, 9100, Denmark
- National Institute of Public Health, Southern Denmark University, Odense, 5000, Denmark
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Echinos Medical Centre, Echinos, Greece
- University of Helsinki and Department of Medicine, Helsinki University Hospital, Helsinki, FI-00029, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U Helsinki, Helsinki, FI-00290, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
- Integrated Research and Treatment (IFB) Center Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
- Department of Medicine, Division of Bioinformatics and Personalized Medicine, University of Colorado Denver, Denver, CO, USA
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Alberta Diabetes Institute IsletCore, University of Alberta, Edmonton, T6G 2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, T6G 2E1, Canada
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- Kuopio University Hospital, Kuopio, 70210, Finland
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, 07100, Italy
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, 20892, USA
- Data Tecnica International LLC, Glen Echo, MD, 20812, USA
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
- South Ostobothnia Central Hospital, Seinajoki, 60220, Finland
- Center for Non-Communicable Diseases, Karachi, Pakistan
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Biostatistics and Epidemiology, University of Pennsylvania, 19104, USA
- Central Finland Central Hospital, Jyvaskyla, 40620, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70029, Finland
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- Institute of Genetic Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Medicine, University of Leipzig, Leipzig, 04103, Germany
- Anogia Medical Centre, Anogia, Greece
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70210, Finland
- Department of Welfare, Children, Adolescents and Families Unit, National Institute for Health and Welfare, Oulu, Finland
- INSERM U1018, Centre de recherche en Épidémiologie et Santé des Populations (CESP), Villejuif, France
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, 14558, Germany
- The Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, 77030, USA
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- Harvard School of Medicine, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- CNR Institute of Clinical Physiology, Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Epidemiology II, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Munich, Germany
- Faculty of Health Sciences, University of Southern Denmark, Odense, 5000, Denmark
- University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, 94305, USA
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, CB1 8RN, UK
- Pediatric Research Center, Department of Women & Child Health, University of Leipzig, Leipzig, Germany
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, 70211, Finland
- Department of Medical Sciences, Molecular Epidemiology; EpiHealth, Uppsala University, Uppsala, 75185, Sweden
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC, 27157, USA
- The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH16 4UX, UK
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Foresterhill Health Campus, Aberdeen, AB25 2ZD, UK
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
- Faculty of Medicine, University of Split, Split, Croatia
- Departments of Epidemiology, Health Systems and Population Health, University of Washington, Seattle, Seattle, WA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Public Health & Clinical Medicine, Section for Family Medicine, Umeå University, Umeå, SE-901 85, Sweden
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, NE2 4HH, UK
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Current address: Genentech, South San Francisco, CA, 94080, USA
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
- Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter, UK
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, 17671, Greece
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Paul W. Franks
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, SE-205 02, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Steve Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology, and Clinical Chemistry, University Hospital of Tübingen, Tübingen, Germany
| | - Anette P. Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Göran Hallmans
- Department of Biobank Research, Umeå University, Umeå, SE-901 87, Sweden
| | | | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine, Medical Research Center Oulu and Oulu University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, 60-572, Poland
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Torben Jørgensen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, 2000, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Faculty of Medicine, University of Aalborg, Aalborg, 9100, Denmark
| | - Marit E. Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
- National Institute of Public Health, Southern Denmark University, Odense, 5000, Denmark
| | - Pekka Jousilahti
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Eero Kajantie
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sharon L.R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Leena Kinnunen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Heikki A. Koistinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
- University of Helsinki and Department of Medicine, Helsinki University Hospital, Helsinki, FI-00029, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U Helsinki, Helsinki, FI-00290, Finland
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Peter Kovacs
- Integrated Research and Treatment (IFB) Center Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Leslie A. Lange
- Department of Medicine, Division of Bioinformatics and Personalized Medicine, University of Colorado Denver, Denver, CO, USA
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Aaron Leong
- Division of General Internal Medicine, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jaana Lindström
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Jocelyn E. Manning Fox
- Alberta Diabetes Institute IsletCore, University of Alberta, Edmonton, T6G 2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Satu Männistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Nisa M. Maruthur
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | | | - Antonella Mulas
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, 07100, Italy
| | - Mike A. Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, 20892, USA
- Data Tecnica International LLC, Glen Echo, MD, 20812, USA
| | - Matthew Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alison Pattie
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Eva R.B. Petersen
- Department of Clinical Biochemistry, Lillebaelt Hospital Vejle, Vejle, 7100, Denmark
| | - Hannu Puolijoki
- South Ostobothnia Central Hospital, Seinajoki, 60220, Finland
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Paul Redmond
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, SE-205 02, Sweden
- Department of Biobank Research, Umeå University, Umeå, SE-901 87, Sweden
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Danish Saleheen
- Center for Non-Communicable Diseases, Karachi, Pakistan
- Department of Biostatistics and Epidemiology, University of Pennsylvania, 19104, USA
| | - Juha Saltevo
- Central Finland Central Hospital, Jyvaskyla, 40620, Finland
| | - Kai Savonen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70029, Finland
| | - Sylvain Sebert
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Tea Skaaby
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, 2000, Denmark
| | - Kerrin S. Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Alena Stančáková
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Betina H. Thuesen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, 2000, Denmark
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, 04103, Germany
| | | | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Understanding Society Scientific Group
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- General Medicine Center, Saarland University Faculty of Medicine, Homburg, 66421, Germany
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Current address: Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, 02210, USA
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Departments of Epidemiology & Medicine, Schools of Public Health & Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Diabetes Translational Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- General Medicine Division, Massachusetts General Hospital, Boston, MA, USA
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, 117549, Singapore
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö, SE-205 02, Sweden
- MRC Biostatistics Unit, University of Cambridge, Cambridge, CB2 0SR, UK
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Mental Health and Wellbeing, School of Health and Wellbeing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8RZ, UK
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, 171 76, Sweden
- Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201-1928, USA
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, 2820, Denmark
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, 63108, USA
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Life Course Health Research, University of Oulu, Oulu, 90014, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, 75237, Sweden
- Icelandic Heart Association, Kopavogur, Iceland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- Biocenter Oulu, University of Oulu, Oulu, Finland
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Faculty of Medicine, Center for Life Course Health Research, University of Oulu, Oulu, Finland
- MRC and Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Division of Nephrology, Internal Medicine, School of Medicine, University of Utah, Salt Lake City, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37203, USA
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- University Medical Center Groningen, Department of Genetics, University of Groningen, Groningen, 9700 RB, The Netherlands
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Barts Cardiovascular Research Unit, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, EC1M 6BQ, UK
- Section of Investigative Medicine, Department of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Life Sciences, Brunel University London, London, UB8 3PH, UK
- Department of Epidemiology and Biostatistics, Imperial College London, London, W2 1PG, UK
- Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
- Human Genetics Center, The University of Texas School of Public Health; The University of Texas Graduate School of Biomedical Sciences at Houston;, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Department of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
- Center for Circulatory Health, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
- Department of Clinical Biochemistry, Lillebaelt Hospital Vejle, Vejle, 7100, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, 5000, Denmark
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB18RN, UK
- UK Dementia Research Institute, Imperial College London, London, UK
- Oulu University Hospital, Oulu, 90220, Finland
- Imperial College NIHR Biomedical Research Centre, London, UK
- Health Data Research UK, Imperial College London, London, UK
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, 17671, Greece
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Vascular Medicine, Nephrology, and Clinical Chemistry, University Hospital of Tübingen, Tübingen, Germany
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biobank Research, Umeå University, Umeå, SE-901 87, Sweden
- Institute of Biomedicine and Biocenter of Oulu, Faculty of Medicine, Medical Research Center Oulu and Oulu University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, 60-572, Poland
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, 2000, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Faculty of Medicine, University of Aalborg, Aalborg, 9100, Denmark
- National Institute of Public Health, Southern Denmark University, Odense, 5000, Denmark
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Echinos Medical Centre, Echinos, Greece
- University of Helsinki and Department of Medicine, Helsinki University Hospital, Helsinki, FI-00029, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum 2U Helsinki, Helsinki, FI-00290, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
- Integrated Research and Treatment (IFB) Center Adiposity Diseases, University of Leipzig, Leipzig, 04103, Germany
- Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, 70210, Finland
- Department of Medicine, Division of Bioinformatics and Personalized Medicine, University of Colorado Denver, Denver, CO, USA
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Alberta Diabetes Institute IsletCore, University of Alberta, Edmonton, T6G 2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, T6G 2E1, Canada
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
- Kuopio University Hospital, Kuopio, 70210, Finland
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, 07100, Italy
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, 20892, USA
- Data Tecnica International LLC, Glen Echo, MD, 20812, USA
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
- South Ostobothnia Central Hospital, Seinajoki, 60220, Finland
- Center for Non-Communicable Diseases, Karachi, Pakistan
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Biostatistics and Epidemiology, University of Pennsylvania, 19104, USA
- Central Finland Central Hospital, Jyvaskyla, 40620, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70029, Finland
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- Institute of Genetic Epidemiology, Helmholtz Center Munich, German Research Center for Environmental Health, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Medicine, University of Leipzig, Leipzig, 04103, Germany
- Anogia Medical Centre, Anogia, Greece
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70210, Finland
- Department of Welfare, Children, Adolescents and Families Unit, National Institute for Health and Welfare, Oulu, Finland
- INSERM U1018, Centre de recherche en Épidémiologie et Santé des Populations (CESP), Villejuif, France
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, 14558, Germany
- The Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, 77030, USA
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- Harvard School of Medicine, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
- Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
- CNR Institute of Clinical Physiology, Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Epidemiology II, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Munich, Germany
- Faculty of Health Sciences, University of Southern Denmark, Odense, 5000, Denmark
- University of Exeter Medical School, University of Exeter, Exeter, EX2 5DW, UK
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, 94305, USA
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, CB1 8RN, UK
- Pediatric Research Center, Department of Women & Child Health, University of Leipzig, Leipzig, Germany
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, 70211, Finland
- Department of Medical Sciences, Molecular Epidemiology; EpiHealth, Uppsala University, Uppsala, 75185, Sweden
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC, 27157, USA
- The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH16 4UX, UK
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Foresterhill Health Campus, Aberdeen, AB25 2ZD, UK
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
- Faculty of Medicine, University of Split, Split, Croatia
- Departments of Epidemiology, Health Systems and Population Health, University of Washington, Seattle, Seattle, WA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Public Health & Clinical Medicine, Section for Family Medicine, Umeå University, Umeå, SE-901 85, Sweden
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1B1, Canada
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, NE2 4HH, UK
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Current address: Genentech, South San Francisco, CA, 94080, USA
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
- Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter, UK
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, 70210, Finland
| | - Marja Vääräsmäki
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Welfare, Children, Adolescents and Families Unit, National Institute for Health and Welfare, Oulu, Finland
| | - Ilonca Vaartjes
- Center for Circulatory Health, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Magdalena Zoledziewska
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
| | - Goncalo Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Beverley Balkau
- INSERM U1018, Centre de recherche en Épidémiologie et Santé des Populations (CESP), Villejuif, France
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra I. Blakemore
- Section of Investigative Medicine, Department of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, 04103, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, 14558, Germany
| | - Eric Boerwinkle
- The Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, 77030, USA
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Erwin P. Bottinger
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
| | - Mark J. Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Cardiovascular Research Unit, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, EC1M 6BQ, UK
| | - John C. Chambers
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK
- Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Daniel I. Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard School of Medicine, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Francis S. Collins
- Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Francesco Cucca
- Italian National Research Council, Institute of Genetics and Biomedic Research, Cittadella Universitaria, Monserrato, 09042, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, 07100, Italy
| | - Gert J. de Borst
- Department of Vascular Surgery, Division of Surgical Specialties, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, 17671, Greece
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hester M. den Ruijter
- Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ele Ferrannini
- CNR Institute of Clinical Physiology, Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Harald Grallert
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
- Institute of Epidemiology II, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Munich, Germany
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, 5000, Denmark
| | | | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Joel N. Hirschhorn
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, 94305, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Kay-Tee Kaw
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Wieland Kiess
- Pediatric Research Center, Department of Women & Child Health, University of Leipzig, Leipzig, Germany
| | - Jaspal S. Kooner
- Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Antje Körner
- Pediatric Research Center, Department of Women & Child Health, University of Leipzig, Leipzig, Germany
| | - Timo Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, 70029, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, 70211, Finland
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Lars Lind
- Department of Medical Sciences, Molecular Epidemiology; EpiHealth, Uppsala University, Uppsala, 75185, Sweden
| | - Cecilia M. Lindgren
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, OX3 7BN, UK
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, 2000, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201-1928, USA
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jun Liu
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - Yongmei Liu
- Department of Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC, 27157, USA
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
- The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10069, USA
| | - Patrick E. MacDonald
- Alberta Diabetes Institute IsletCore, University of Alberta, Edmonton, T6G 2E1, Canada
- Department of Pharmacology, University of Alberta, Edmonton, T6G 2E1, Canada
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew D. Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Patricia B. Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Barts Cardiovascular Research Unit, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, EC1M 6BQ, UK
| | - Alison Murray
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Foresterhill Health Campus, Aberdeen, AB25 2ZD, UK
| | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Colin N. A . Palmer
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK
| | - Gerard Pasterkamp
- Experimental Cardiology Laboratory, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Patricia A. Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - David Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael A. Province
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, 63108, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Departments of Epidemiology, Health Systems and Population Health, University of Washington, Seattle, Seattle, WA, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, 70100, Finland
| | - Paul M. Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
- Harvard School of Medicine, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Olov Rolandsson
- Department of Public Health & Clinical Medicine, Section for Family Medicine, Umeå University, Umeå, SE-901 85, Sweden
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Frits R. Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Igor Rudan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, FI-00271, Finland
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, 14558, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, 85764, Germany
| | - Robert Sladek
- Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1B1, Canada
| | - Blair H. Smith
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Michael Stumvoll
- Department of Medicine, University of Leipzig, Leipzig, 04103, Germany
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, 3015 GE, The Netherlands
| | - Mark Walker
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, NE2 4HH, UK
| | - Nick J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - David R. Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48104, USA
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich, Germany
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jose C. Florez
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Mark I. McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
- Current address: Genentech, South San Francisco, CA, 94080, USA
| | - James B. Meigs
- Division of General Internal Medicine, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Current address: Genentech, South San Francisco, CA, 94080, USA
| | - Robert A. Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Anna L. Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, OX3 7LE, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA
| | - Inês Barroso
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter, UK
| |
Collapse
|
13
|
Melchiorsen JU, Sørensen KV, Bork-Jensen J, Kizilkaya HS, Gasbjerg LS, Hauser AS, Rungby J, Sørensen HT, Vaag A, Nielsen JS, Pedersen O, Linneberg A, Hartmann B, Gjesing AP, Holst JJ, Hansen T, Rosenkilde MM, Grarup N. Rare Heterozygous Loss-of-Function Variants in the Human GLP-1 Receptor Are Not Associated With Cardiometabolic Phenotypes. J Clin Endocrinol Metab 2023; 108:2821-2833. [PMID: 37235780 PMCID: PMC10584003 DOI: 10.1210/clinem/dgad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
CONTEXT Lost glucagon-like peptide 1 receptor (GLP-1R) function affects human physiology. OBJECTIVE This work aimed to identify coding nonsynonymous GLP1R variants in Danish individuals to link their in vitro phenotypes and clinical phenotypic associations. METHODS We sequenced GLP1R in 8642 Danish individuals with type 2 diabetes or normal glucose tolerance and examined the ability of nonsynonymous variants to bind GLP-1 and to signal in transfected cells via cyclic adenosine monophosphate (cAMP) formation and β-arrestin recruitment. We performed a cross-sectional study between the burden of loss-of-signaling (LoS) variants and cardiometabolic phenotypes in 2930 patients with type 2 diabetes and 5712 participants in a population-based cohort. Furthermore, we studied the association between cardiometabolic phenotypes and the burden of the LoS variants and 60 partly overlapping predicted loss-of-function (pLoF) GLP1R variants found in 330 566 unrelated White exome-sequenced participants in the UK Biobank cohort. RESULTS We identified 36 nonsynonymous variants in GLP1R, of which 10 had a statistically significant loss in GLP-1-induced cAMP signaling compared to wild-type. However, no association was observed between the LoS variants and type 2 diabetes, although LoS variant carriers had a minor increased fasting plasma glucose level. Moreover, pLoF variants from the UK Biobank also did not reveal substantial cardiometabolic associations, despite a small effect on glycated hemoglobin A1c. CONCLUSION Since no homozygous LoS nor pLoF variants were identified and heterozygous carriers had similar cardiometabolic phenotype as noncarriers, we conclude that GLP-1R may be of particular importance in human physiology, due to a potential evolutionary intolerance of harmful homozygous GLP1R variants.
Collapse
Affiliation(s)
- Josefine U Melchiorsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kimmie V Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hüsün S Kizilkaya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Lærke S Gasbjerg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jørgen Rungby
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Henrik T Sørensen
- Department of Clinical Epidemiology, Aarhus University, Aarhus 8800, Denmark
- Department of Epidemiology, Boston University, Boston, MA 02118, USA
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev 2730, Denmark
| | - Jens S Nielsen
- Steno Diabetes Center Odense, Odense University Hospital, Odense 5000, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup 2900, Denmark
| | - Allan Linneberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Center for Clinical Research and Prevention, Copenhagen University Hospital—Bispebjerg and Frederiksberg, Frederiksberg 2000, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
14
|
Lagou V, Jiang L, Ulrich A, Zudina L, González KSG, Balkhiyarova Z, Faggian A, Maina JG, Chen S, Todorov PV, Sharapov S, David A, Marullo L, Mägi R, Rujan RM, Ahlqvist E, Thorleifsson G, Gao Η, Εvangelou Ε, Benyamin B, Scott RA, Isaacs A, Zhao JH, Willems SM, Johnson T, Gieger C, Grallert H, Meisinger C, Müller-Nurasyid M, Strawbridge RJ, Goel A, Rybin D, Albrecht E, Jackson AU, Stringham HM, Corrêa IR, Farber-Eger E, Steinthorsdottir V, Uitterlinden AG, Munroe PB, Brown MJ, Schmidberger J, Holmen O, Thorand B, Hveem K, Wilsgaard T, Mohlke KL, Wang Z, Shmeliov A, den Hoed M, Loos RJF, Kratzer W, Haenle M, Koenig W, Boehm BO, Tan TM, Tomas A, Salem V, Barroso I, Tuomilehto J, Boehnke M, Florez JC, Hamsten A, Watkins H, Njølstad I, Wichmann HE, Caulfield MJ, Khaw KT, van Duijn CM, Hofman A, Wareham NJ, Langenberg C, Whitfield JB, Martin NG, Montgomery G, Scapoli C, Tzoulaki I, Elliott P, Thorsteinsdottir U, Stefansson K, Brittain EL, McCarthy MI, Froguel P, Sexton PM, Wootten D, Groop L, Dupuis J, Meigs JB, Deganutti G, Demirkan A, Pers TH, Reynolds CA, Aulchenko YS, Kaakinen MA, Jones B, Prokopenko I. GWAS of random glucose in 476,326 individuals provide insights into diabetes pathophysiology, complications and treatment stratification. Nat Genet 2023; 55:1448-1461. [PMID: 37679419 PMCID: PMC10484788 DOI: 10.1038/s41588-023-01462-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 06/27/2023] [Indexed: 09/09/2023]
Abstract
Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on 'around the clock' glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification.
Collapse
Affiliation(s)
- Vasiliki Lagou
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Human Genetics, Wellcome Sanger Institute, Hinxton, UK
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Longda Jiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Ulrich
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Liudmila Zudina
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Karla Sofia Gutiérrez González
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Molecular Diagnostics, Clinical Laboratory, Clinica Biblica Hospital, San José, Costa Rica
| | - Zhanna Balkhiyarova
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
| | - Alessia Faggian
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- Laboratory for Artificial Biology, Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Jared G Maina
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France
| | - Shiqian Chen
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Petar V Todorov
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sodbo Sharapov
- Laboratory of Glycogenomics, Institute of Cytology and Genetics SD RAS, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Alessia David
- Centre for Bioinformatics and System Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Letizia Marullo
- Department of Evolutionary Biology, Genetic Section, University of Ferrara, Ferrara, Italy
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Roxana-Maria Rujan
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
| | - Emma Ahlqvist
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | | | - Ηe Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Εvangelos Εvangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Beben Benyamin
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
- Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Aaron Isaacs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- CARIM School for Cardiovascular Diseases and Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, the Netherlands
| | - Jing Hua Zhao
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Sara M Willems
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Toby Johnson
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christa Meisinger
- Epidemiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Rona J Strawbridge
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Denis Rybin
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Eva Albrecht
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Eric Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research and Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, USA
| | | | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Morris J Brown
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julian Schmidberger
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Oddgeir Holmen
- Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kristian Hveem
- K G Jebsen Centre for Genetic Epdiemiology, Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Zhe Wang
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Aleksey Shmeliov
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Marcel den Hoed
- The Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Wolfgang Kratzer
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Mark Haenle
- Department of Internal Medicine I, Ulm University Medical Centre, Ulm, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Bernhard O Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore and Department of Endocrinology, Tan Tock Seng Hospital, Singapore City, Singapore
| | - Tricia M Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, London, UK
| | - Victoria Salem
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter Medical School, Exeter, UK
| | - Jaakko Tuomilehto
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anders Hamsten
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Inger Njølstad
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - H-Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Centre for Medical Systems Biology, Leiden, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Consortium for Healthy Ageing, the Hague, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - John B Whitfield
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant Montgomery
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute for Health Research Imperial College London Biomedical Research Centre, Imperial College London, London, UK
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Evan L Brittain
- Vanderbilt University Medical Center and the Vanderbilt Translational and Clinical Cardiovascular Research Center, Nashville, TN, USA
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Leif Groop
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Finnish Institute for Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - James B Meigs
- Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Giuseppe Deganutti
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
| | - Ayse Demirkan
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Christopher A Reynolds
- Centre for Sports, Exercise and Life Sciences, Coventry University, Conventry, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Yurii S Aulchenko
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Laboratory of Glycogenomics, Institute of Cytology and Genetics SD RAS, Novosibirsk, Russia
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia
| | - Marika A Kaakinen
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK.
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK.
| | - Ben Jones
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK.
| | - Inga Prokopenko
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, UK.
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK.
- UMR 8199-EGID, Institut Pasteur de Lille, CNRS, University of Lille, Lille, France.
| |
Collapse
|
15
|
Keijer J, Escoté X, Galmés S, Palou-March A, Serra F, Aldubayan MA, Pigsborg K, Magkos F, Baker EJ, Calder PC, Góralska J, Razny U, Malczewska-Malec M, Suñol D, Galofré M, Rodríguez MA, Canela N, Malcic RG, Bosch M, Favari C, Mena P, Del Rio D, Caimari A, Gutierrez B, Del Bas JM. Omics biomarkers and an approach for their practical implementation to delineate health status for personalized nutrition strategies. Crit Rev Food Sci Nutr 2023; 64:8279-8307. [PMID: 37077157 DOI: 10.1080/10408398.2023.2198605] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Personalized nutrition (PN) has gained much attention as a tool for empowerment of consumers to promote changes in dietary behavior, optimizing health status and preventing diet related diseases. Generalized implementation of PN faces different obstacles, one of the most relevant being metabolic characterization of the individual. Although omics technologies allow for assessment the dynamics of metabolism with unprecedented detail, its translatability as affordable and simple PN protocols is still difficult due to the complexity of metabolic regulation and to different technical and economical constrains. In this work, we propose a conceptual framework that considers the dysregulation of a few overarching processes, namely Carbohydrate metabolism, lipid metabolism, inflammation, oxidative stress and microbiota-derived metabolites, as the basis of the onset of several non-communicable diseases. These processes can be assessed and characterized by specific sets of proteomic, metabolomic and genetic markers that minimize operational constrains and maximize the information obtained at the individual level. Current machine learning and data analysis methodologies allow the development of algorithms to integrate omics and genetic markers. Reduction of dimensionality of variables facilitates the implementation of omics and genetic information in digital tools. This framework is exemplified by presenting the EU-Funded project PREVENTOMICS as a use case.
Collapse
Affiliation(s)
- Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Xavier Escoté
- EURECAT, Centre Tecnològic de Catalunya, Nutrition and Health, Reus, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Andreu Palou-March
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation - NuBE), University of the Balearic Islands, Palma, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mona Adnan Aldubayan
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ella J Baker
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Razny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - David Suñol
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Mar Galofré
- Digital Health, Eurecat, Centre Tecnològic de Catalunya, Barcelona, Spain
| | - Miguel A Rodríguez
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Reus, Spain
| | - Radu G Malcic
- Health and Biomedicine, LEITAT Technological Centre, Barcelona, Spain
| | - Montserrat Bosch
- Applied Microbiology and Biotechnologies, LEITAT Technological Centre, Terrassa, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| | | | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology area, Reus, Spain
| |
Collapse
|
16
|
Mattis KK, Krentz NAJ, Metzendorf C, Abaitua F, Spigelman AF, Sun H, Ikle JM, Thaman S, Rottner AK, Bautista A, Mazzaferro E, Perez-Alcantara M, Manning Fox JE, Torres JM, Wesolowska-Andersen A, Yu GZ, Mahajan A, Larsson A, MacDonald PE, Davies B, den Hoed M, Gloyn AL. Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression. Diabetologia 2023; 66:674-694. [PMID: 36633628 PMCID: PMC9947029 DOI: 10.1007/s00125-022-05856-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk. METHODS A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo. Using transcriptomic and cellular phenotyping of a human beta cell model (EndoC-βH1) and human induced pluripotent stem cell (hiPSC)-derived beta-like cells, we investigated how loss of RREB1 expression and activity affects pancreatic endocrine cell development and function. Ex vivo measurements of human islet function were performed in donor islets from carriers of RREB1 type 2 diabetes risk alleles. RESULTS CRISPR/Cas9-mediated loss of rreb1a and rreb1b function in zebrafish supports an in vivo role for the transcription factor in beta cell mass, beta cell insulin expression and glucose levels. Loss of RREB1 also reduced insulin gene expression and cellular insulin content in EndoC-βH1 cells and impaired insulin secretion under prolonged stimulation. Transcriptomic analysis of RREB1 knockdown and knockout EndoC-βH1 cells supports RREB1 as a novel regulator of genes involved in insulin secretion. In vitro differentiation of RREB1KO/KO hiPSCs revealed dysregulation of pro-endocrine cell genes, including RFX family members, suggesting that RREB1 also regulates genes involved in endocrine cell development. Human donor islets from carriers of type 2 diabetes risk alleles in RREB1 have altered glucose-stimulated insulin secretion ex vivo, consistent with a role for RREB1 in regulating islet cell function. CONCLUSIONS/INTERPRETATION Together, our results indicate that RREB1 regulates beta cell function by transcriptionally regulating the expression of genes involved in beta cell development and function.
Collapse
Affiliation(s)
- Katia K Mattis
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicole A J Krentz
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Christoph Metzendorf
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Fernando Abaitua
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Aliya F Spigelman
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Han Sun
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Jennifer M Ikle
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Swaraj Thaman
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Antje K Rottner
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Austin Bautista
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Eugenia Mazzaferro
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | | | - Jocelyn E Manning Fox
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Jason M Torres
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Grace Z Yu
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Patrick E MacDonald
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marcel den Hoed
- Beijer Laboratory and Department of Immunology, Genetics and Pathology, Uppsala University and SciLifeLab, Uppsala, Sweden
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Division of Endocrinology, Department of Pediatrics, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|
17
|
Wang X, Sun J, Li J, Cai L, Chen Q, Wang Y, Yang Z, Liu W, Lv H, Wang Z. Bidirectional Mendelian randomization study of insulin-related traits and risk of ovarian cancer. Front Endocrinol (Lausanne) 2023; 14:1131767. [PMID: 36936171 PMCID: PMC10014907 DOI: 10.3389/fendo.2023.1131767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND It is well known that the occurrence and development of ovarian cancer are closely related to the patient's weight and various endocrine factors in the body. AIM Mendelian randomization (MR) was used to analyze the bidirectional relationship between insulin related characteristics and ovarian cancer. METHODS The data on insulin related characteristics are from up to 5567 diabetes free patients from 10 studies, mainly including fasting insulin level, insulin secretion rate, peak insulin response, etc. For ovarian cancer, UK Biobank data just updated in 2021 was selected, of which the relevant gene data was from 199741 Europeans. Mendelian randomization method was selected, with inverse variance weighting (IVW) as the main estimation, while MR Pleiotropy, MR Egger, weighted median and other methods were used to detect the heterogeneity of data and whether there was multi validity affecting conclusions. RESULTS Among all insulin related indicators (fasting insulin level, insulin secretion rate, peak insulin response), the insulin secretion rate was selected to have a causal relationship with the occurrence of ovarian cancer (IVW, P < 0.05), that is, the risk of ovarian cancer increased with the decrease of insulin secretion rate. At the same time, we tested the heterogeneity and polymorphism of this indicator, and the results were non-existent, which ensured the accuracy of the analysis results. Reverse causal analysis showed that there was no causal effect between the two (P>0.05). CONCLUSION The impairment of the insulin secretion rate has a causal effect on the risk of ovarian cancer, which was confirmed by Mendel randomization. This suggests that the human glucose metabolism cycle represented by insulin secretion plays an important role in the pathogenesis of ovarian cancer, which provides a new idea for preventing the release of ovarian cancer.
Collapse
Affiliation(s)
- Xinghao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Sun
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Linkun Cai
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yiling Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenjuan Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Han Lv, ; Zhenchang Wang,
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Han Lv, ; Zhenchang Wang,
| |
Collapse
|
18
|
Identification of Drought-Tolerance Genes in the Germination Stage of Soybean. BIOLOGY 2022; 11:biology11121812. [PMID: 36552318 PMCID: PMC9775293 DOI: 10.3390/biology11121812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Drought stress influences the vigor of plant seeds and inhibits seed germination, making it one of the primary environmental factors adversely affecting food security. The seed germination stage is critical to ensuring the growth and productivity of soybeans in soils prone to drought conditions. We here examined the genetic diversity and drought-tolerance phenotypes of 410 accessions of a germplasm diversity panel for soybean and conducted quantitative genetics analyses to identify loci associated with drought tolerance of seed germination. We uncovered significant differences among the diverse genotypes for four growth indices and five drought-tolerance indices, which revealed abundant variation among genotypes, upon drought stress, and for genotype × treatment effects. We also used 158,327 SNP markers and performed GWAS for the drought-related traits. Our data met the conditions (PCA + K) for using a mixed linear model in TASSEL, and we thus identified 26 SNPs associated with drought tolerance indices for germination stage distributed across 10 chromosomes. Nine SNP sites, including, for example, Gm20_34956219 and Gm20_36902659, were associated with two or more phenotypic indices, and there were nine SNP markers located in or adjacent to (within 500 kb) previously reported drought tolerance QTLs. These SNPs led to our identification of 41 candidate genes related to drought tolerance in the germination stage. The results of our study contribute to a deeper understanding of the genetic mechanisms underlying drought tolerance in soybeans at the germination stage, thereby providing a molecular basis for identifying useful soybean germplasm for breeding new drought-tolerant varieties.
Collapse
|
19
|
Han H, McGivney BA, Allen L, Bai D, Corduff LR, Davaakhuu G, Davaasambuu J, Dorjgotov D, Hall TJ, Hemmings AJ, Holtby AR, Jambal T, Jargalsaikhan B, Jargalsaikhan U, Kadri NK, MacHugh DE, Pausch H, Readhead C, Warburton D, Dugarjaviin M, Hill EW. Common protein-coding variants influence the racing phenotype in galloping racehorse breeds. Commun Biol 2022; 5:1320. [PMID: 36513809 PMCID: PMC9748125 DOI: 10.1038/s42003-022-04206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Selection for system-wide morphological, physiological, and metabolic adaptations has led to extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify genes contributing to exercise adaptation in racehorses by applying genomics approaches for racing performance, an end-point athletic phenotype. Using an integrative genomics strategy to first combine population genomics results with skeletal muscle exercise and training transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mongolian and Thoroughbred). A core set of genes, G6PC2, HDAC9, KTN1, MYLK2, NTM, SLC16A1 and SYNDIG1, with central roles in muscle, metabolism, and neurobiology, are key drivers of the racing phenotype. Although racing potential is a multifactorial trait, the genomic architecture shaping the common athletic phenotype in horse populations bred for racing provides evidence for the influence of protein-coding variants in fundamental exercise-relevant genes. Variation in these genes may therefore be exploited for genetic improvement of horse populations towards specific types of racing.
Collapse
Affiliation(s)
- Haige Han
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Beatrice A. McGivney
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Lucy Allen
- grid.417905.e0000 0001 2186 5933Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS UK
| | - Dongyi Bai
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Leanne R. Corduff
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Gantulga Davaakhuu
- grid.425564.40000 0004 0587 3863Institute of Biology, Mongolian Academy of Sciences, Peace Avenue 54B, Ulaanbaatar, 13330 Mongolia
| | - Jargalsaikhan Davaasambuu
- Ajnai Sharga Horse Racing Team, Encanto Town 210-11, Ikh Mongol State Street, 26th Khoroo, Bayanzurkh district Ulaanbaatar, 13312 Mongolia
| | - Dulguun Dorjgotov
- grid.440461.30000 0001 2191 7895School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, 661 Mongolia
| | - Thomas J. Hall
- grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| | - Andrew J. Hemmings
- grid.417905.e0000 0001 2186 5933Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS UK
| | - Amy R. Holtby
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Tuyatsetseg Jambal
- grid.440461.30000 0001 2191 7895School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, 661 Mongolia
| | - Badarch Jargalsaikhan
- grid.444534.60000 0000 8485 883XDepartment of Obstetrics and Gynecology, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
| | - Uyasakh Jargalsaikhan
- Ajnai Sharga Horse Racing Team, Encanto Town 210-11, Ikh Mongol State Street, 26th Khoroo, Bayanzurkh district Ulaanbaatar, 13312 Mongolia
| | - Naveen K. Kadri
- grid.5801.c0000 0001 2156 2780Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - David E. MacHugh
- grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland ,grid.7886.10000 0001 0768 2743UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| | - Hubert Pausch
- grid.5801.c0000 0001 2156 2780Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Carol Readhead
- grid.20861.3d0000000107068890Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - David Warburton
- grid.42505.360000 0001 2156 6853The Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Manglai Dugarjaviin
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Emmeline W. Hill
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland ,grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| |
Collapse
|
20
|
The contribution of common and rare genetic variants to variation in metabolic traits in 288,137 East Asians. Nat Commun 2022; 13:6642. [PMID: 36333282 PMCID: PMC9636136 DOI: 10.1038/s41467-022-34163-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Metabolic traits are heritable phenotypes widely-used in assessing the risk of various diseases. We conduct a genome-wide association analysis (GWAS) of nine metabolic traits (including glycemic, lipid, liver enzyme levels) in 125,872 Korean subjects genotyped with the Korea Biobank Array. Following meta-analysis with GWAS from Biobank Japan identify 144 novel signals (MAF ≥ 1%), of which 57.0% are replicated in UK Biobank. Additionally, we discover 66 rare (MAF < 1%) variants, 94.4% of them co-incident to common loci, adding to allelic series. Although rare variants have limited contribution to overall trait variance, these lead, in carriers, substantial loss of predictive accuracy from polygenic predictions of disease risk from common variant alone. We capture groups with up to 16-fold variation in type 2 diabetes (T2D) prevalence by integration of genetic risk scores of fasting plasma glucose and T2D and the I349F rare protective variant. This study highlights the need to consider the joint contribution of both common and rare variants on inherited risk of metabolic traits and related diseases.
Collapse
|
21
|
Nguyen A, Khafagy R, Meerasa A, Roshandel D, Paterson AD, Dash S. Insulin Response to Oral Glucose and Cardiometabolic Disease: A Mendelian Randomization Study to Assess Potential Causality. Diabetes 2022; 71:1880-1890. [PMID: 35748295 DOI: 10.2337/db22-0138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022]
Abstract
Mendelian randomization (MR) suggests that postprandial hyperinsulinemia (unadjusted for plasma glucose) increases BMI, but its impact on cardiometabolic disease, a leading cause for mortality and morbidity in people with obesity, is not established. Fat distribution i.e., increased centripetal and/or reduced femoro-gluteal adiposity, is causally associated with and better predicts cardiometabolic disease than BMI. We therefore undertook bidirectional MR to assess the effect of corrected insulin response (CIR) (insulin 30 min after a glucose challenge adjusted for plasma glucose) on BMI, waist-to-hip ratio (WHR), leg fat, type 2 diabetes (T2D), triglyceride (TG), HDL, liver fat, hypertension (HTN), and coronary artery disease (CAD) in people of European descent. Inverse variance-weighted MR suggests a potential causal association between increased CIR and increased BMI (b = 0.048 ± 0.02, P = 0.03), increased leg fat (b = 0.029 ± 0.012, P = 0.01), reduced T2D (b = -0.73 ± 0.15, P = 6 × 10-7, odds ratio [OR] 0.48 [95% CI 0.36-0.64]), reduced TG (b = -0.07 ± 0.02, P = 0.003), and increased HDL (b = 0.04 ± 0.01, P = 0.006) with some evidence of horizontal pleiotropy. CIR had neutral effects on WHR (b = 0.009 ± 0.02, P = 0.69), liver fat (b = -0.08 ± 0.04, P = 0.06), HTN (b = -0.001 ± 0.004, P = 0.7, OR 1.00 [95% CI 0.99-1.01]), and CAD (b = -0.002 ± 0.002, P = 0.48, OR 0.99 [95% CI 0.81-1.21]). T2D decreased CIR (b -0.22 ± 0.04, P = 1.3 × 10-7), with no evidence that BMI, TG, HDL, liver fat, HTN, and CAD modulate CIR. In conclusion, we did not find evidence that increased CIR increases cardiometabolic disease. It might increase BMI with favorable fat distribution, reduce T2D, and improve lipids.
Collapse
Affiliation(s)
- Anthony Nguyen
- Department of Medicine, University Health Network, and University of Toronto, Toronto, Canada
| | - Rana Khafagy
- Department of Medicine, University Health Network, and University of Toronto, Toronto, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
- Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Ameena Meerasa
- Department of Medicine, University Health Network, and University of Toronto, Toronto, Canada
| | - Delnaz Roshandel
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Andrew D Paterson
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Canada
- Divisions of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Satya Dash
- Department of Medicine, University Health Network, and University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
DiCorpo D, Gaynor SM, Russell EM, Westerman KE, Raffield LM, Majarian TD, Wu P, Sarnowski C, Highland HM, Jackson A, Hasbani NR, de Vries PS, Brody JA, Hidalgo B, Guo X, Perry JA, O'Connell JR, Lent S, Montasser ME, Cade BE, Jain D, Wang H, D'Oliveira Albanus R, Varshney A, Yanek LR, Lange L, Palmer ND, Almeida M, Peralta JM, Aslibekyan S, Baldridge AS, Bertoni AG, Bielak LF, Chen CS, Chen YDI, Choi WJ, Goodarzi MO, Floyd JS, Irvin MR, Kalyani RR, Kelly TN, Lee S, Liu CT, Loesch D, Manson JE, Minster RL, Naseri T, Pankow JS, Rasmussen-Torvik LJ, Reiner AP, Reupena MS, Selvin E, Smith JA, Weeks DE, Xu H, Yao J, Zhao W, Parker S, Alonso A, Arnett DK, Blangero J, Boerwinkle E, Correa A, Cupples LA, Curran JE, Duggirala R, He J, Heckbert SR, Kardia SLR, Kim RW, Kooperberg C, Liu S, Mathias RA, McGarvey ST, Mitchell BD, Morrison AC, Peyser PA, Psaty BM, Redline S, Shuldiner AR, Taylor KD, Vasan RS, Viaud-Martinez KA, Florez JC, Wilson JG, Sladek R, Rich SS, Rotter JI, Lin X, Dupuis J, Meigs JB, Wessel J, Manning AK. Whole genome sequence association analysis of fasting glucose and fasting insulin levels in diverse cohorts from the NHLBI TOPMed program. Commun Biol 2022; 5:756. [PMID: 35902682 PMCID: PMC9334637 DOI: 10.1038/s42003-022-03702-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/12/2022] [Indexed: 01/04/2023] Open
Abstract
The genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI's Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.
Collapse
Affiliation(s)
- Daniel DiCorpo
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Sheila M Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Emily M Russell
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kenneth E Westerman
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, 02114, USA
- Metabolism Program, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Timothy D Majarian
- Metabolism Program, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Anne Jackson
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Natalie R Hasbani
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98101, USA
- Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | - Bertha Hidalgo
- Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - James A Perry
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Samantha Lent
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA
| | - Deepti Jain
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA
| | - Ricardo D'Oliveira Albanus
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arushi Varshney
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Leslie Lange
- Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Marcio Almeida
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville and Edinburg, TX, 78539, USA
| | - Juan M Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville and Edinburg, TX, 78539, USA
| | | | - Abigail S Baldridge
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alain G Bertoni
- Department of Epidemiology & Prevention, Wake Forest School of Medicine, Winston-, Salem, NC, 27157, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chung-Shiuan Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | | | - Mark O Goodarzi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - James S Floyd
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Marguerite R Irvin
- Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rita R Kalyani
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Tanika N Kelly
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | | | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Douglas Loesch
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - JoAnn E Manson
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Ryan L Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | | | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21287, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Daniel E Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Huichun Xu
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen Parker
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, 40506, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville and Edinburg, TX, 78539, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39211, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
- National Heart Lung and Blood Institute and Boston University's Framingham Heart Study, Framingham, MA, 01702, USA
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville and Edinburg, TX, 78539, USA
| | - Ravindranath Duggirala
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville and Edinburg, TX, 78539, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan W Kim
- Psomagen, Inc, Rockville, MD, 20850, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Simin Liu
- Center for Global Cardiometabolic Health (CGCH), Boston, MA, 02215, USA
| | - Rasika A Mathias
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen T McGarvey
- International Health Institute and Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Geriatrics Research and Education Clinical Center, Baltimore VA Medical Center, Baltimore, MD, 21201, USA
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, 98101, USA
- Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
- Department of Health Services, University of Washington, Seattle, WA, 98101, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Alan R Shuldiner
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, 21231, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Ramachandran S Vasan
- National Heart Lung and Blood Institute and Boston University's Framingham Heart Study, Framingham, MA, 01702, USA
- Evans Department of Medicine, Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, 02118, USA
- Evans Department of Medicine, Whitaker Cardiovascular Institute and Cardiology Section, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Jose C Florez
- Metabolism Program, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - James G Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Robert Sladek
- Department of Human Genetics, McGill University, Montreal, Montreal, Quebec, H3A 0G1, Canada
- Department of Medicine, McGill University, Montreal, Montreal, Quebec, H3A 0G1, Canada
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - James B Meigs
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jennifer Wessel
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, IN, 46202, USA.
- Department of Medicine, School of Medicine, Indiana University, IN, 46202, USA.
- Diabetes Translational Research Center, Indiana University, IN, 46202, USA.
| | - Alisa K Manning
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Metabolism Program, The Broad Institute of MIT and Harvard, Cambridge, MA, 02124, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Udhaya Kumar S, Kamaraj B, Varghese RP, Preethi VA, Bithia R, George Priya Doss C. Mutations in G6PC2 gene with increased risk for development of type 2 diabetes: Understanding via computational approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:351-373. [PMID: 35534112 DOI: 10.1016/bs.apcsb.2022.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
An increase in the fast blood glucose (FBG) levels has been linked to an increased risk of developing a chronic condition, type 2 diabetes (T2D). The mutation in the G6PC2 gene was identified to have a lead role in the modulation of FBG levels. The abnormal regulation of this enzyme influences glucose-stimulated insulin secretion (GSIS), which controls the insulin levels corresponding to the system's glucose level. This study focuses on the mutations at the G6PC2 gene, which cause the variation from normal expression levels and increase the risk of T2D. We examined the non-synonymous single nucleotide polymorphisms (nsSNPs) present in the G6PC2 and subjected them to pathogenicity, stability, residue conservation, and membrane simulation. The individual representation of surrounding amino acids in the mutant (I63T) model showed the loss of hydrophobic interactions compared to the native G6PC2. In addition, the trajectory results from the membrane simulation exhibited reduced stability, and the least compactness was identified for the I63T mutant model. Our study shed light on the structural and conformational changes at the transmembrane region due to the I63T mutation in G6PC2. Additionally, the Gibbs free energy landscape analysis against the two principal components showed structural differences and decreased the conformational stability of the I63T mutant model compared to the native. Like those presented in this study, dynamical simulations may indeed be crucial to comprehending the structural insights of G6PC2 mutations in cardiovascular-associated mortality and T2D.
Collapse
Affiliation(s)
- S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Rinku Polachirakkal Varghese
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - V Anu Preethi
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - R Bithia
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
24
|
Aldubayan MA, Pigsborg K, Gormsen SMO, Serra F, Palou M, Mena P, Wetzels M, Calleja A, Caimari A, Del Bas J, Gutierrez B, Magkos F, Hjorth MF. Empowering consumers to PREVENT diet-related diseases through OMICS sciences (PREVENTOMICS): protocol for a parallel double-blinded randomised intervention trial to investigate biomarker-based nutrition plans for weight loss. BMJ Open 2022; 12:e051285. [PMID: 35351696 PMCID: PMC8966553 DOI: 10.1136/bmjopen-2021-051285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Personalised nutrition holds immense potential over conventional one-size-fits-all approaches for preventing and treating diet-related diseases, such as obesity. The current study aims to examine whether a personalised nutritional plan produces more favourable health outcomes than a standard approach based on general dietary recommendations in subjects with overweight or obesity and elevated waist circumference. METHODS AND ANALYSIS This project is a 10-week parallel, double-blinded randomised intervention trial. We plan to include 100 adults aged 18-65 years interested in losing weight, with body mass index ≥27 but<40 kg/m2 and elevated waist circumference (males >94 cm; females >80 cm). Participants will be categorised into one of five predefined 'clusters' based on their individual metabolic biomarker profile and genetic background, and will be randomised in a 1:1 ratio to one of two groups: (1) personalised plan group that will receive cluster-specific meals every day for 6 days a week, in conjunction with a personalised behavioural change programme via electronic push notifications; or (2) control group that will receive meals following the general dietary recommendations in conjunction with generic health behaviour prompts. The primary outcome is the difference between groups (personalised vs control) in the change in fat mass from baseline. Secondary outcomes include changes in weight and body composition, fasting blood glucose and insulin, lipid profile, adipokines, inflammatory biomarkers, and blood pressure. Other outcomes involve measures of physical activity and sleep patterns, health-related quality of life, dietary intake, eating behaviour, and biomarkers of food intake. The effect of the intervention on the primary outcome will be analysed by means of linear mixed models. ETHICS AND DISSEMINATION The protocol has been approved by the Ethics Committee of the Capital Region, Copenhagen, Denmark. Study findings will be disseminated through peer-reviewed publications, conference presentations and media outlets. TRIAL REGISTRATION NUMBER NCT04590989.
Collapse
Affiliation(s)
- Mona Adnan Aldubayan
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Nutrition, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Kristina Pigsborg
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Francisca Serra
- Laboratory of Molecular Biology, Nutrition and Biotechnology - NUO group, University of the Balearic Islands, Palma, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology - NUO group, University of the Balearic Islands, Palma, Spain
- Spin-off n.1 of the University of the Balearic Islands, Alimentómica S.L, Palma, Spain
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Antoni Caimari
- Biotechnology Area, Nutrition and Health Unit, Eurecat Centre Tecnològic de Catalunya, Reus, Spain
| | - Josep Del Bas
- Biotechnology Area, Nutrition and Health Unit, Eurecat Centre Tecnològic de Catalunya, Reus, Spain
| | - Biotza Gutierrez
- Biotechnology Area, Nutrition and Health Unit, Eurecat Centre Tecnològic de Catalunya, Reus, Spain
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mads Fiil Hjorth
- Healthy Weight Center, Novo Nordisk Foundation, Hellerup, Denmark
| |
Collapse
|
25
|
Mahmoud O, Dudbridge F, Davey Smith G, Munafo M, Tilling K. A robust method for collider bias correction in conditional genome-wide association studies. Nat Commun 2022; 13:619. [PMID: 35110547 PMCID: PMC8810923 DOI: 10.1038/s41467-022-28119-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/04/2022] [Indexed: 11/26/2022] Open
Abstract
Estimated genetic associations with prognosis, or conditional on a phenotype (e.g. disease incidence), may be affected by collider bias, whereby conditioning on the phenotype induces associations between causes of the phenotype and prognosis. We propose a method, 'Slope-Hunter', that uses model-based clustering to identify and utilise the class of variants only affecting the phenotype to estimate the adjustment factor, assuming this class explains more variation in the phenotype than any other variant classes. Simulation studies show that our approach eliminates the bias and outperforms alternatives even in the presence of genetic correlation. In a study of fasting blood insulin levels (FI) conditional on body mass index, we eliminate paradoxical associations of the underweight loci: COBLLI; PPARG with increased FI, and reveal an association for the locus rs1421085 (FTO). In an analysis of a case-only study for breast cancer mortality, a single region remains associated with more pronounced results.
Collapse
Affiliation(s)
- Osama Mahmoud
- Department of Mathematical Sciences, University of Essex, Colchester, UK.
- Department of Applied Statistics, Helwan University, Helwan, Egypt.
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marcus Munafo
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Kate Tilling
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
26
|
Overway EM, Bosma KJ, Claxton DP, Oeser JK, Singh K, Breidenbach LB, Mchaourab HS, Davis LK, O'Brien RM. Nonsynonymous single-nucleotide polymorphisms in the G6PC2 gene affect protein expression, enzyme activity, and fasting blood glucose. J Biol Chem 2022; 298:101534. [PMID: 34954144 PMCID: PMC8800118 DOI: 10.1016/j.jbc.2021.101534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
G6PC2 encodes a glucose-6-phosphatase (G6Pase) catalytic subunit that modulates the sensitivity of insulin secretion to glucose and thereby regulates fasting blood glucose (FBG). A common single-nucleotide polymorphism (SNP) in G6PC2, rs560887 is an important determinant of human FBG variability. This SNP has a subtle effect on G6PC2 RNA splicing, which raises the question as to whether nonsynonymous SNPs with a major impact on G6PC2 stability or enzyme activity might have a broader disease/metabolic impact. Previous attempts to characterize such SNPs were limited by the very low inherent G6Pase activity and expression of G6PC2 protein in islet-derived cell lines. In this study, we describe the use of a plasmid vector that confers high G6PC2 protein expression in islet cells, allowing for a functional analysis of 22 nonsynonymous G6PC2 SNPs, 19 of which alter amino acids that are conserved in mouse G6PC2 and the human and mouse variants of the related G6PC1 isoform. We show that 16 of these SNPs markedly impair G6PC2 protein expression (>50% decrease). These SNPs have variable effects on the stability of human and mouse G6PC1, despite the high sequence homology between these isoforms. Four of the remaining six SNPs impaired G6PC2 enzyme activity. Electronic health record-derived phenotype analyses showed an association between high-impact SNPs and FBG, but not other diseases/metabolites. While homozygous G6pc2 deletion in mice increases the risk of hypoglycemia, these human data reveal no evidence that the beneficial use of partial G6PC2 inhibitors to lower FBG would be associated with unintended negative consequences.
Collapse
Affiliation(s)
- Emily M Overway
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Karin J Bosma
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - James K Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kritika Singh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lindsay B Breidenbach
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lea K Davis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
27
|
Cupido AJ, Asselbergs FW, Natarajan P, Ridker PM, Hovingh GK, Schmidt AF. Dissecting the IL-6 pathway in cardiometabolic disease: a Mendelian randomization study on both IL6 and IL6R. Br J Clin Pharmacol 2021; 88:2875-2884. [PMID: 34931349 PMCID: PMC9303316 DOI: 10.1111/bcp.15191] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Chronic inflammation is a risk factor for cardiovascular disease. IL-6 signaling perturbation through IL-6 or IL-6R blockade may have potential benefit on cardiovascular risk. It is unknown whether targeting either IL-6 or IL-6 receptor may result in similar effects on CVD and adverse events. We compared the anticipated effects of targeting IL-6 and IL-6 receptor on cardiometabolic risk and potential side effects. METHODS We constructed four instruments: two main instruments with genetic variants in the IL6 and IL6R loci weighted for their association with CRP, and two after firstly filtering variants for their association with IL-6 or IL-6R expression. Analyses were performed for coronary artery disease (CAD), ischemic stroke, atrial fibrillation (AF), heart failure, type 2 diabetes (T2D), rheumatoid arthritis (RA), infection endpoints, and quantitative hematological, metabolic, and anthropometric parameters. RESULTS A 1 mg/L lower CRP by the IL6 instrument was associated with lower CAD (OR 0.86, 95% CI 0.77;0.96), AF, and T2D risk. A 1mg/L lower CRP by the IL6R instrument was associated with lower CAD (OR 0.90, 95% CI 0.86;0.95), any stroke and ischemic stroke, AF, RA risk and higher pneumonia risk. The eQTL filtered results were in concordance with the main results, but with wider confidence intervals. CONCLUSIONS IL-6 signalling perturbation by either IL6 or IL6R genetic instruments is associated with a similar risk reduction for multiple cardiometabolic diseases, suggesting that both IL-6 and IL-6R are potential therapeutic targets to lower CVD. Moreover, IL-6 rather than IL-6R inhibition might have a more favorable pneumonia risk.
Collapse
Affiliation(s)
- Arjen J Cupido
- Department of Vascular Medicine, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom.,Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, US.,Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, US
| | | | - Paul M Ridker
- Divisions of Preventive Medicine and Cardiovascular Medicine, Department of Medicine, Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam University Medical Centers, location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - A Floriaan Schmidt
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| |
Collapse
|
28
|
Zusi C, Rinaldi E, Bonetti S, Boselli ML, Trabetti E, Malerba G, Bonora E, Bonadonna RC, Trombetta M. Haplotypes of the genes (GCK and G6PC2) underlying the glucose/glucose-6-phosphate cycle are associated with pancreatic beta cell glucose sensitivity in patients with newly diagnosed type 2 diabetes from the VNDS study (VNDS 11). J Endocrinol Invest 2021; 44:2567-2574. [PMID: 34128214 DOI: 10.1007/s40618-020-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND Elevated fasting plasma glucose has been associated with increased risk for development of type 2 diabetes (T2D). The balance between glucokinase (GCK) and glucose-6-phosphate catalytic subunit 2 (G6PC2) activity are involved in glucose homeostasis through glycolytic flux, and subsequent insulin secretion. AIM In this study, we evaluated the association between the genetic variability of G6PC2 and GCK genes and T2D-related quantitative traits. METHODS In 794 drug-naïve, GADA-negative, newly diagnosed T2D patients (VNDS; NTC01526720) we performed: genotyping of 6 independent tag-SNPs within GCK gene and 5 tag-SNPs within G6PC2 gene; euglycaemic insulin clamp to assess insulin sensitivity; OGTT to estimate beta-cell function (derivative and proportional control; DC, PC) by mathematical modeling. Genetic association analysis has been conducted using Plink software. RESULTS Two SNPs within GCK gene (rs882019 and rs1303722) were associated to DC in opposite way (both p < 0.004). Two G6PC2 variants (rs13387347 and rs560887) were associated to both parameters of insulin secretion (DC and PC) and to fasting C-peptide levels (all p < 0.038). Moreover, subjects carrying the A allele of rs560887 showed higher values of 2h-plasma glucose (2hPG) (p = 0.033). Haplotype analysis revealed that GCK (AACAAA) haplotype was associated to decreased fasting C-peptide levels, whereas, the most frequent haplotype of G6PC2 (GGAAG) was associated with higher fasting C-peptide levels (p = 0.001), higher PC (β = 6.87, p = 0.022) and the lower 2hPG (p = 0.012). CONCLUSION Our findings confirmed the role of GCK and G6PC2 in regulating the pulsatility in insulin secretion thereby influencing insulin-signaling and leading to a gradual modulation in glucose levels in Italian patients with newly diagnosed T2D.
Collapse
Affiliation(s)
- C Zusi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - E Rinaldi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - S Bonetti
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - M L Boselli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - E Trabetti
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - G Malerba
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - E Bonora
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy
| | - R C Bonadonna
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - M Trombetta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Piazzale Stefani 1, 37126, Verona, Italy.
| |
Collapse
|
29
|
Buchanan VL, Wang Y, Blanco E, Graff M, Albala C, Burrows R, Santos JL, Angel B, Lozoff B, Voruganti VS, Guo X, Taylor KD, Chen YDI, Yao J, Tan J, Downie C, Highland HM, Justice AE, Gahagan S, North KE. Genome-wide association study identifying novel variant for fasting insulin and allelic heterogeneity in known glycemic loci in Chilean adolescents: The Santiago Longitudinal Study. Pediatr Obes 2021; 16:e12765. [PMID: 33381925 PMCID: PMC8711702 DOI: 10.1111/ijpo.12765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/25/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND The genetic underpinnings of glycemic traits have been understudied in adolescent and Hispanic/Latino (H/L) populations in comparison to adults and populations of European ancestry. OBJECTIVE To identify genetic factors underlying glycemic traits in an adolescent H/L population. METHODS We conducted a genome-wide association study (GWAS) of fasting glucose (FG) and fasting insulin (FI) in H/L adolescents from the Santiago Longitudinal Study. RESULTS We identified one novel variant positioned in the CSMD1 gene on chromosome 8 (rs77465890, effect allele frequency = 0.10) that was associated with FI (β = -0.299, SE = 0.054, p = 2.72×10-8 ) and was only slightly attenuated after adjusting for body mass index z-scores (β = -0.252, SE = 0.047, p = 1.03×10-7 ). We demonstrated directionally consistent, but not statistically significant results in African and Hispanic adults of the Population Architecture Using Genomics and Epidemiology Consortium. We also identified secondary signals for two FG loci after conditioning on known variants, which demonstrate allelic heterogeneity in well-known glucose loci. CONCLUSION Our results exemplify the importance of including populations with diverse ancestral origin and adolescent participants in GWAS of glycemic traits to uncover novel risk loci and expand our understanding of disease aetiology.
Collapse
Affiliation(s)
- Victoria L Buchanan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yujie Wang
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Estela Blanco
- Division of Academic General Pediatrics, Child Development and Community Health, University of California at San Diego, San Diego, California, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cecilia Albala
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Raquel Burrows
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - José L Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara Angel
- Department of Public Health Nutrition, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Betsy Lozoff
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Venkata Saroja Voruganti
- Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Carolina Downie
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Population Health Sciences, Geisinger, Danville, Pennsylvania, USA
| | - Sheila Gahagan
- Division of Academic General Pediatrics, Child Development and Community Health, University of California at San Diego, San Diego, California, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
30
|
Chung RH, Chiu YF, Wang WC, Hwu CM, Hung YJ, Lee IT, Chuang LM, Quertermous T, Rotter JI, Chen YDI, Chang IS, Hsiung CA. Multi-omics analysis identifies CpGs near G6PC2 mediating the effects of genetic variants on fasting glucose. Diabetologia 2021; 64:1613-1625. [PMID: 33842983 DOI: 10.1007/s00125-021-05449-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/08/2021] [Indexed: 10/21/2022]
Abstract
AIMS/HYPOTHESIS An elevated fasting glucose level in non-diabetic individuals is a key predictor of type 2 diabetes. Genome-wide association studies (GWAS) have identified hundreds of SNPs for fasting glucose but most of their functional roles in influencing the trait are unclear. This study aimed to identify the mediation effects of DNA methylation between SNPs identified as significant from GWAS and fasting glucose using Mendelian randomisation (MR) analyses. METHODS We first performed GWAS analyses for three cohorts (Taiwan Biobank with 18,122 individuals, the Healthy Aging Longitudinal Study in Taiwan with 1989 individuals and the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance with 416 individuals) with individuals of Han Chinese ancestry in Taiwan, followed by a meta-analysis for combining the three GWAS analysis results to identify significant and independent SNPs for fasting glucose. We determined whether these SNPs were methylation quantitative trait loci (meQTLs) by testing their associations with DNA methylation levels at nearby CpG sites using a subsample of 1775 individuals from the Taiwan Biobank. The MR analysis was performed to identify DNA methylation with causal effects on fasting glucose using meQTLs as instrumental variables based on the 1775 individuals. We also used a two-sample MR strategy to perform replication analysis for CpG sites with significant MR effects based on literature data. RESULTS Our meta-analysis identified 18 significant (p < 5 × 10-8) and independent SNPs for fasting glucose. Interestingly, all 18 SNPs were meQTLs. The MR analysis identified seven CpGs near the G6PC2 gene that mediated the effects of a significant SNP (rs2232326) in the gene on fasting glucose. The MR effects for two CpGs were replicated using summary data based on the European population, using an exonic SNP rs2232328 in G6PC2 as the instrument. CONCLUSIONS/INTERPRETATION Our analysis results suggest that rs2232326 and rs2232328 in G6PC2 may affect DNA methylation at CpGs near the gene and that the methylation may have downstream effects on fasting glucose. Therefore, SNPs in G6PC2 and CpGs near G6PC2 may reside along the pathway that influences fasting glucose levels. This is the first study to report CpGs near G6PC2, an important gene for regulating insulin secretion, mediating the effects of GWAS-significant SNPs on fasting glucose.
Collapse
Affiliation(s)
- Ren-Hua Chung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| | - Yen-Feng Chiu
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Chang Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jen Hung
- Division of Endocrine and Metabolism, Tri-Service General Hospital, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - I-Te Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institutes of Molecular Medicine, Collage of Medicine, National Taiwan University, Taipei, Taiwan
| | - Thomas Quertermous
- Division of Cardiovascular Medicine and Stanford Cardiovascular Institute, Falk Cardiovascular Research Center, Stanford University, Stanford, CA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, the Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, the Lundquist Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chao A Hsiung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
31
|
Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, Willems SM, Wu Y, Zhang X, Horikoshi M, Boutin TS, Mägi R, Waage J, Li-Gao R, Chan KHK, Yao J, Anasanti MD, Chu AY, Claringbould A, Heikkinen J, Hong J, Hottenga JJ, Huo S, Kaakinen MA, Louie T, März W, Moreno-Macias H, Ndungu A, Nelson SC, Nolte IM, North KE, Raulerson CK, Ray D, Rohde R, Rybin D, Schurmann C, Sim X, Southam L, Stewart ID, Wang CA, Wang Y, Wu P, Zhang W, Ahluwalia TS, Appel EVR, Bielak LF, Brody JA, Burtt NP, Cabrera CP, Cade BE, Chai JF, Chai X, Chang LC, Chen CH, Chen BH, Chitrala KN, Chiu YF, de Haan HG, Delgado GE, Demirkan A, Duan Q, Engmann J, Fatumo SA, Gayán J, Giulianini F, Gong JH, Gustafsson S, Hai Y, Hartwig FP, He J, Heianza Y, Huang T, Huerta-Chagoya A, Hwang MY, Jensen RA, Kawaguchi T, Kentistou KA, Kim YJ, Kleber ME, Kooner IK, Lai S, Lange LA, Langefeld CD, Lauzon M, Li M, Ligthart S, Liu J, Loh M, Long J, Lyssenko V, Mangino M, Marzi C, Montasser ME, Nag A, Nakatochi M, Noce D, Noordam R, Pistis G, Preuss M, Raffield L, et alChen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J, Willems SM, Wu Y, Zhang X, Horikoshi M, Boutin TS, Mägi R, Waage J, Li-Gao R, Chan KHK, Yao J, Anasanti MD, Chu AY, Claringbould A, Heikkinen J, Hong J, Hottenga JJ, Huo S, Kaakinen MA, Louie T, März W, Moreno-Macias H, Ndungu A, Nelson SC, Nolte IM, North KE, Raulerson CK, Ray D, Rohde R, Rybin D, Schurmann C, Sim X, Southam L, Stewart ID, Wang CA, Wang Y, Wu P, Zhang W, Ahluwalia TS, Appel EVR, Bielak LF, Brody JA, Burtt NP, Cabrera CP, Cade BE, Chai JF, Chai X, Chang LC, Chen CH, Chen BH, Chitrala KN, Chiu YF, de Haan HG, Delgado GE, Demirkan A, Duan Q, Engmann J, Fatumo SA, Gayán J, Giulianini F, Gong JH, Gustafsson S, Hai Y, Hartwig FP, He J, Heianza Y, Huang T, Huerta-Chagoya A, Hwang MY, Jensen RA, Kawaguchi T, Kentistou KA, Kim YJ, Kleber ME, Kooner IK, Lai S, Lange LA, Langefeld CD, Lauzon M, Li M, Ligthart S, Liu J, Loh M, Long J, Lyssenko V, Mangino M, Marzi C, Montasser ME, Nag A, Nakatochi M, Noce D, Noordam R, Pistis G, Preuss M, Raffield L, Rasmussen-Torvik LJ, Rich SS, Robertson NR, Rueedi R, Ryan K, Sanna S, Saxena R, Schraut KE, Sennblad B, Setoh K, Smith AV, Sparsø T, Strawbridge RJ, Takeuchi F, Tan J, Trompet S, van den Akker E, van der Most PJ, Verweij N, Vogel M, Wang H, Wang C, Wang N, Warren HR, Wen W, Wilsgaard T, Wong A, Wood AR, Xie T, Zafarmand MH, Zhao JH, Zhao W, Amin N, Arzumanyan Z, Astrup A, Bakker SJL, Baldassarre D, Beekman M, Bergman RN, Bertoni A, Blüher M, Bonnycastle LL, Bornstein SR, Bowden DW, Cai Q, Campbell A, Campbell H, Chang YC, de Geus EJC, Dehghan A, Du S, Eiriksdottir G, Farmaki AE, Frånberg M, Fuchsberger C, Gao Y, Gjesing AP, Goel A, Han S, Hartman CA, Herder C, Hicks AA, Hsieh CH, Hsueh WA, Ichihara S, Igase M, Ikram MA, Johnson WC, Jørgensen ME, Joshi PK, Kalyani RR, Kandeel FR, Katsuya T, Khor CC, Kiess W, Kolcic I, Kuulasmaa T, Kuusisto J, Läll K, Lam K, Lawlor DA, Lee NR, Lemaitre RN, Li H, Lin SY, Lindström J, Linneberg A, Liu J, Lorenzo C, Matsubara T, Matsuda F, Mingrone G, Mooijaart S, Moon S, Nabika T, Nadkarni GN, Nadler JL, Nelis M, Neville MJ, Norris JM, Ohyagi Y, Peters A, Peyser PA, Polasek O, Qi Q, Raven D, Reilly DF, Reiner A, Rivideneira F, Roll K, Rudan I, Sabanayagam C, Sandow K, Sattar N, Schürmann A, Shi J, Stringham HM, Taylor KD, Teslovich TM, Thuesen B, Timmers PRHJ, Tremoli E, Tsai MY, Uitterlinden A, van Dam RM, van Heemst D, van Hylckama Vlieg A, van Vliet-Ostaptchouk JV, Vangipurapu J, Vestergaard H, Wang T, Willems van Dijk K, Zemunik T, Abecasis GR, Adair LS, Aguilar-Salinas CA, Alarcón-Riquelme ME, An P, Aviles-Santa L, Becker DM, Beilin LJ, Bergmann S, Bisgaard H, Black C, Boehnke M, Boerwinkle E, Böhm BO, Bønnelykke K, Boomsma DI, Bottinger EP, Buchanan TA, Canouil M, Caulfield MJ, Chambers JC, Chasman DI, Chen YDI, Cheng CY, Collins FS, Correa A, Cucca F, de Silva HJ, Dedoussis G, Elmståhl S, Evans MK, Ferrannini E, Ferrucci L, Florez JC, Franks PW, Frayling TM, Froguel P, Gigante B, Goodarzi MO, Gordon-Larsen P, Grallert H, Grarup N, Grimsgaard S, Groop L, Gudnason V, Guo X, Hamsten A, Hansen T, Hayward C, Heckbert SR, Horta BL, Huang W, Ingelsson E, James PS, Jarvelin MR, Jonas JB, Jukema JW, Kaleebu P, Kaplan R, Kardia SLR, Kato N, Keinanen-Kiukaanniemi SM, Kim BJ, Kivimaki M, Koistinen HA, Kooner JS, Körner A, Kovacs P, Kuh D, Kumari M, Kutalik Z, Laakso M, Lakka TA, Launer LJ, Leander K, Li H, Lin X, Lind L, Lindgren C, Liu S, Loos RJF, Magnusson PKE, Mahajan A, Metspalu A, Mook-Kanamori DO, Mori TA, Munroe PB, Njølstad I, O'Connell JR, Oldehinkel AJ, Ong KK, Padmanabhan S, Palmer CNA, Palmer ND, Pedersen O, Pennell CE, Porteous DJ, Pramstaller PP, Province MA, Psaty BM, Qi L, Raffel LJ, Rauramaa R, Redline S, Ridker PM, Rosendaal FR, Saaristo TE, Sandhu M, Saramies J, Schneiderman N, Schwarz P, Scott LJ, Selvin E, Sever P, Shu XO, Slagboom PE, Small KS, Smith BH, Snieder H, Sofer T, Sørensen TIA, Spector TD, Stanton A, Steves CJ, Stumvoll M, Sun L, Tabara Y, Tai ES, Timpson NJ, Tönjes A, Tuomilehto J, Tusie T, Uusitupa M, van der Harst P, van Duijn C, Vitart V, Vollenweider P, Vrijkotte TGM, Wagenknecht LE, Walker M, Wang YX, Wareham NJ, Watanabe RM, Watkins H, Wei WB, Wickremasinghe AR, Willemsen G, Wilson JF, Wong TY, Wu JY, Xiang AH, Yanek LR, Yengo L, Yokota M, Zeggini E, Zheng W, Zonderman AB, Rotter JI, Gloyn AL, McCarthy MI, Dupuis J, Meigs JB, Scott RA, Prokopenko I, Leong A, Liu CT, Parker SCJ, Mohlke KL, Langenberg C, Wheeler E, Morris AP, Barroso I. The trans-ancestral genomic architecture of glycemic traits. Nat Genet 2021; 53:840-860. [PMID: 34059833 PMCID: PMC7610958 DOI: 10.1038/s41588-021-00852-9] [Show More Authors] [Citation(s) in RCA: 433] [Impact Index Per Article: 108.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
Collapse
Affiliation(s)
- Ji Chen
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Cassandra N Spracklen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, MA, USA
| | - Gaëlle Marenne
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
- Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
| | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Laura J Corbin
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sara M Willems
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Xiaoshuai Zhang
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
| | - Momoko Horikoshi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Thibaud S Boutin
- Medical Research Council Human Genetics Unit, Institute for Genetics and Molecular Medicine, Edinburgh, UK
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Johannes Waage
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kei Hang Katie Chan
- Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, RI, USA
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mila D Anasanti
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Annique Claringbould
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jani Heikkinen
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jaeyoung Hong
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Shaofeng Huo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Marika A Kaakinen
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Statistical Multi-omics, Department of Clinical and Experimental Research, University of Surrey, Guildford, UK
| | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Winfried März
- SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | | | - Anne Ndungu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sarah C Nelson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kari E North
- CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Debashree Ray
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca Rohde
- CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Denis Rybin
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- HPI Digital Health Center, Digital Health and Personalized Medicine, Hasso Plattner Institute, Potsdam, Germany
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National Univeristy of Singapore and National University Health System, Singapore, Singapore
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lorraine Southam
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Isobel D Stewart
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Carol A Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Yujie Wang
- CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
| | - Tarunveer S Ahluwalia
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Emil V R Appel
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Brody
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Noël P Burtt
- Metabolism Program, Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Claudia P Cabrera
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Brian E Cade
- Department of Medicine, Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Jin Fang Chai
- Saw Swee Hock School of Public Health, National Univeristy of Singapore and National University Health System, Singapore, Singapore
| | - Xiaoran Chai
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
| | - Li-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Brian H Chen
- Department of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Kumaraswamy Naidu Chitrala
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yen-Feng Chiu
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hugoline G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Graciela E Delgado
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Ayse Demirkan
- Section of Statistical Multi-omics, Department of Clinical and Experimental Research, University of Surrey, Guildford, UK
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Qing Duan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Statistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jorgen Engmann
- Institute of Cardiovascular Science, University College London, London, UK
| | - Segun A Fatumo
- Uganda Medical Informatics Centre (UMIC), MRC/UVRI and London School of Hygiene & Tropical Medicine (Uganda Research Unit), Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
- H3Africa Bioinformatics Network (H3ABioNet) Node, Centre for Genomics Research and Innovation, NABDA/FMST, Abuja, Nigeria
| | | | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jung Ho Gong
- Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, RI, USA
| | - Stefan Gustafsson
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Yang Hai
- Department of Statistics, The University of Auckland, Science Center, Auckland, New Zealand
| | - Fernando P Hartwig
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Jing He
- Department of Medicine, Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yoriko Heianza
- Department of Epidemiology, Tulane University Obesity Research Center, Tulane University, New Orleans, LA, USA
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Alicia Huerta-Chagoya
- Molecular Biology and Genomic Medicine Unit, National Council for Science and Technology, Mexico City, Mexico
- Molecular Biology and Genomic Medicine Unit, National Institute of Medical Sciences and Nutrition, Mexico City, Mexico
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, South Korea
| | - Richard A Jensen
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Katherine A Kentistou
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, South Korea
| | - Marcus E Kleber
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, Germany
| | - Ishminder K Kooner
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
| | - Shuiqing Lai
- Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, RI, USA
| | - Leslie A Lange
- Department of Medicine, Divison of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marie Lauzon
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Man Li
- Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT, USA
| | - Symen Ligthart
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jun Liu
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Marie Loh
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valeriya Lyssenko
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmo, Sweden
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Carola Marzi
- Institute of Epidemiology, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - May E Montasser
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abhishek Nag
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Damia Noce
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Giorgio Pistis
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Michael Preuss
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Neil R Robertson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Serena Sanna
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Richa Saxena
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Katharina E Schraut
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Bengt Sennblad
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kazuya Setoh
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Icelandic Heart Association, Kopavogur, Iceland
| | - Thomas Sparsø
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Department of Medicine Solna, Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Erik van den Akker
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, the Netherlands
- Department of Biomedical Data Sciences, Leiden Computational Biology Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Genomics PLC, Oxford, UK
| | - Mandy Vogel
- Center of Pediatric Research, University Children's Hospital Leipzig, University of Leipzig Medical Center, Leipzig, Germany
| | - Heming Wang
- Department of Medicine, Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Chaolong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Nan Wang
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
- University of Southern California Diabetes and Obesity Research Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Helen R Warren
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tom Wilsgaard
- Department of Community Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway, Tromsø, Norway
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at University College London, London, UK
| | - Andrew R Wood
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Tian Xie
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mohammad Hadi Zafarmand
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Clinical Epidemiology, Biostatistics, and Bioinformatics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jing-Hua Zhao
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zorayr Arzumanyan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Arne Astrup
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stephan J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Damiano Baldassarre
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Marian Beekman
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alain Bertoni
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institues of Health, Bethesda, MD, USA
| | - Stefan R Bornstein
- Department for Prevention and Care of Diabetes, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Qiuyin Cai
- Department of Medicine, Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Yi Cheng Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Eco J C de Geus
- Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Shufa Du
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Aliki Eleni Farmaki
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Athens, Greece
| | - Mattias Frånberg
- Department of Medicine Solna, Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Yutang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Anette P Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anuj Goel
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sohee Han
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, South Korea
| | - Catharina A Hartman
- Department of Psychiatry, Interdisciplinary Center Psychopathy and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Düsseldorf, Germany
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - Chang-Hsun Hsieh
- Internal Medicine, Endocrine and Metabolism, Tri-Service General Hospital, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Willa A Hsueh
- Internal Medicine, Endocrinology, Diabetes and Metabolism, Diabetes and Metabolism Research Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Michiya Igase
- Department of Anti-aging Medicine, Ehime University Graduate School of Medicine, Toon, Japan
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Rita R Kalyani
- Department of Medicine, Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fouad R Kandeel
- Clinical Diabetes, Endocrinology and Metabolism, Translational Research and Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Tomohiro Katsuya
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wieland Kiess
- Center of Pediatric Research, University Children's Hospital Leipzig, University of Leipzig Medical Center, Leipzig, Germany
| | - Ivana Kolcic
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - Teemu Kuulasmaa
- Institute of Biomedicine, Bioinformatics Center, Univeristy of Eastern Finland, Kuopio, Finland
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Kristi Läll
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Kelvin Lam
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, University of San Carlos, Cebu City, the Philippines
- Department of Anthropology, Sociology and History, University of San Carlos, Cebu City, the Philippines
| | - Rozenn N Lemaitre
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Honglan Li
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
- National Defense Medical Center, National Yang-Ming University, Taipei, Taiwan
| | - Jaana Lindström
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Carlos Lorenzo
- Department of Medicine, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Tatsuaki Matsubara
- Department of Internal Medicine, Aichi Gakuin University School of Dentistry, Nagoya, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Geltrude Mingrone
- Department of Diabetes, Diabetes, and Nutritional Sciences, James Black Centre, King's College London, London, UK
| | - Simon Mooijaart
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sanghoon Moon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, South Korea
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerry L Nadler
- Department of Medicine and Pharmacology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Mari Nelis
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jill M Norris
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yasumasa Ohyagi
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Annette Peters
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ozren Polasek
- Department of Public Health, University of Split School of Medicine, Split, Croatia
- Gen-Info, Zagreb, Croatia
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Dennis Raven
- Department of Psychiatry, Interdisciplinary Center Psychopathy and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck Sharp & Dohme, Kenilworth, NJ, USA
| | - Alex Reiner
- Department of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Fernando Rivideneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kathryn Roll
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Igor Rudan
- Centre for Global Health, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Charumathi Sabanayagam
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Kevin Sandow
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Annette Schürmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Jinxiu Shi
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Academy of Science & Technology (SAST), Shanghai, China
| | - Heather M Stringham
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Betina Thuesen
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Paul R H J Timmers
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Andre Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National Univeristy of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jana V van Vliet-Ostaptchouk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Tatijana Zemunik
- Department of Human Biology, University of Split School of Medicine, Split, Croatia
| | - Gonçalo R Abecasis
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Carlos Alberto Aguilar-Salinas
- Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición and Tec Salud, Mexico City, Mexico
- Instituto Tecnológico y de Estudios Superiores de Monterrey Tec Salud, Monterrey, Mexico
| | - Marta E Alarcón-Riquelme
- Department of Medical Genomics, Pfizer/University of Granada/Andalusian Government Center for Genomics and Oncological Research (GENYO), Granada, Spain
- Institute for Environmental Medicine, Chronic Inflammatory Diseases, Karolinska Institutet, Solna, Sweden
| | - Ping An
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Larissa Aviles-Santa
- Clinical and Health Services Research, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - Diane M Becker
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lawrence J Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Corri Black
- Aberdeen Centre for Health Data Science, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Michael Boehnke
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Bernhard O Böhm
- Division of Endocrinology and Diabetes, Graduate School of Molecular Endocrinology and Diabetes, University of Ulm, Ulm, Germany
- LKC School of Medicine, Nanyang Technological University, Singapore and Imperial College London, UK, Singapore, Singapore
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - D I Boomsma
- Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Digital Health Center, Hasso Plattner Institut, University Potsdam, Potsdam, Germany
| | - Thomas A Buchanan
- University of Southern California Diabetes and Obesity Research Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Mickaël Canouil
- INSERM UMR 1283/CNRS UMR 8199, European Institute for Diabetes (EGID), Université de Lille, Lille, France
- INSERM UMR 1283/CNRS UMR 8199, European Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
| | - Mark J Caulfield
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ching-Yu Cheng
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institues of Health, Bethesda, MD, USA
| | - Adolfo Correa
- Department of Medicine, Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - H Janaka de Silva
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Kallithea, Greece
| | - Sölve Elmståhl
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Luigi Ferrucci
- Intramural Research Program, National Institute of Aging, Baltimore, MD, USA
| | - Jose C Florez
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul W Franks
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Malmo, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Timothy M Frayling
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Philippe Froguel
- INSERM UMR 1283/CNRS UMR 8199, European Institute for Diabetes (EGID), Université de Lille, Lille, France
- INSERM UMR 1283/CNRS UMR 8199, European Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Department of Genomics of Common Disease, Imperial College London, London, UK
| | - Bruna Gigante
- Department of Medicine, Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mark O Goodarzi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Penny Gordon-Larsen
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | - Harald Grallert
- Institute of Epidemiology, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sameline Grimsgaard
- Department of Community Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway, Tromsø, Norway
| | - Leif Groop
- Diabetes Centre, Lund University, Lund, Sweden
- Finnish Institute of Molecular Medicine, Helsinki University, Helsinki, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Anders Hamsten
- Department of Medicine Solna, Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susan R Heckbert
- Department of Epidemiology, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Bernardo L Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Academy of Science & Technology (SAST), Shanghai, China
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Pankow S James
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Marjo-Ritta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu Univerisity Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Institute of Molecular and Clinical Ophthalmology Basel IOB, Basel, Switzerland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | | | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
- Department of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Norihiro Kato
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Sirkka M Keinanen-Kiukaanniemi
- Faculty of Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
- Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju, South Korea
| | - Mika Kivimaki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Antje Körner
- Center of Pediatric Research, University Children's Hospital Leipzig, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Diana Kuh
- MRC Unit for Lifelong Health and Ageing at University College London, London, UK
| | - Meena Kumari
- Institute for Social and Economic Research, University of Essex, Colchester, UK
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Institute of Primary Care and Public Health, Division of Biostatistics, University of Lausanne, Lausanne, Switzerland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Karin Leander
- Institute of Environmental Medicine, Cardiovascular and Nutritional Epidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Huaixing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Cecilia Lindgren
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Simin Liu
- Department of Epidemiology, Brown University School of Public Health, Brown University, Providence, RI, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Patricia B Munroe
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Inger Njølstad
- Department of Community Medicine, Faculty of Health Sciences, UIT the Arctic University of Norway, Tromsø, Norway
| | - Jeffrey R O'Connell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Albertine J Oldehinkel
- Department of Psychiatry, Interdisciplinary Center Psychopathy and Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Colin N A Palmer
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Craig E Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, New South Wales, Australia
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | | | - Michael A Province
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St Louis, MO, USA
| | - Bruce M Psaty
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Epidemiology, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Health Services, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Lu Qi
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Leslie J Raffel
- Department of Pediatrics, Genetic and Genomic Medicine, University of California, Irvine, Irvine, CA, USA
| | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Susan Redline
- Department of Medicine, Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Havard Medical School, Boston, MA, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Timo E Saaristo
- Tampere, Finnish Diabetes Association, Tampere, Finland
- Pirkanmaa Hospital District, Tampere, Finland
| | | | | | | | - Peter Schwarz
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department for Prevention and Care of Diabetes, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, Dresden, Germany
| | - Laura J Scott
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P Eline Slagboom
- Department of Biomedical Data Sciences, Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Tamar Sofer
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Thorkild I A Sørensen
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Alice Stanton
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Department of Ageing and Health, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National Univeristy of Singapore and National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Cardiovascular and Metabolic Disease Signature Research Program, Duke-NUS Medical School, Singapore, Singapore
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Anke Tönjes
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Teresa Tusie
- Molecular Biology and Genomic Medicine Unit, National Institute of Medical Sciences and Nutrition, Mexico City, Mexico
- Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pim van der Harst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cornelia van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Peter Vollenweider
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Tanja G M Vrijkotte
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Lynne E Wagenknecht
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Walker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ya X Wang
- Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Nick J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Richard M Watanabe
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
- University of Southern California Diabetes and Obesity Research Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Hugh Watkins
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Wen B Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | - Gonneke Willemsen
- Department of Biological Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - James F Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
- Medical Research Council Human Genetics Unit, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Tien-Yin Wong
- Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Anny H Xiang
- Department of Research and Evaluation, Kaiser Permanente of Southern California, Pasadena, CA, USA
| | - Lisa R Yanek
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Loïc Yengo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Mark I McCarthy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert A Scott
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Inga Prokopenko
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Statistical Multi-omics, Department of Clinical and Experimental Research, University of Surrey, Guildford, UK
| | - Aaron Leong
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Diabetes Unit and Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eleanor Wheeler
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Andrew P Morris
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK.
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK.
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| |
Collapse
|
32
|
Spracklen CN, Sim X. Progress in Defining the Genetic Contribution to Type 2 Diabetes in Individuals of East Asian Ancestry. Curr Diab Rep 2021; 21:17. [PMID: 33846905 DOI: 10.1007/s11892-021-01388-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Prevalence of type 2 diabetes (T2D) and progression of complications differ between worldwide populations. While obesity is a major contributing risk factor, variations in physiological manifestations, e.g., developing T2D at lower body mass index in some populations, suggest other contributing factors. Early T2D genetic associations were mostly discovered in European ancestry populations. This review describes the progression of genetic discoveries associated with T2D in individuals of East Asian ancestry in the last 10 years and highlights the shared genetic susceptibility between the population groups and additional insights into genetic contributions to T2D. RECENT FINDINGS Through increased sample size and power, new genetic associations with T2D were discovered in East Asian ancestry populations, often with higher allele frequencies than European ancestry populations. As we continue to generate maps of T2D-associated variants across diverse populations, there will be a critical need to expand and diversify other omics resources to enable integration for clinical translation.
Collapse
Affiliation(s)
- Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, 715 North Pleasant Street, 429 Arnold House, Amherst, MA, 01002, USA.
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Tahir Foundation Building, Singapore, 117549, Singapore.
| |
Collapse
|
33
|
Balboa D, Iworima DG, Kieffer TJ. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Front Endocrinol (Lausanne) 2021; 12:642152. [PMID: 33828531 PMCID: PMC8020750 DOI: 10.3389/fendo.2021.642152] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.
Collapse
Affiliation(s)
- Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Diego Balboa,
| | - Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Surendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, et alSurendran P, Feofanova EV, Lahrouchi N, Ntalla I, Karthikeyan S, Cook J, Chen L, Mifsud B, Yao C, Kraja AT, Cartwright JH, Hellwege JN, Giri A, Tragante V, Thorleifsson G, Liu DJ, Prins BP, Stewart ID, Cabrera CP, Eales JM, Akbarov A, Auer PL, Bielak LF, Bis JC, Braithwaite VS, Brody JA, Daw EW, Warren HR, Drenos F, Nielsen SF, Faul JD, Fauman EB, Fava C, Ferreira T, Foley CN, Franceschini N, Gao H, Giannakopoulou O, Giulianini F, Gudbjartsson DF, Guo X, Harris SE, Havulinna AS, Helgadottir A, Huffman JE, Hwang SJ, Kanoni S, Kontto J, Larson MG, Li-Gao R, Lindström J, Lotta LA, Lu Y, Luan J, Mahajan A, Malerba G, Masca NGD, Mei H, Menni C, Mook-Kanamori DO, Mosen-Ansorena D, Müller-Nurasyid M, Paré G, Paul DS, Perola M, Poveda A, Rauramaa R, Richard M, Richardson TG, Sepúlveda N, Sim X, Smith AV, Smith JA, Staley JR, Stanáková A, Sulem P, Thériault S, Thorsteinsdottir U, Trompet S, Varga TV, Velez Edwards DR, Veronesi G, Weiss S, Willems SM, Yao J, Young R, Yu B, Zhang W, Zhao JH, Zhao W, Zhao W, Evangelou E, Aeschbacher S, Asllanaj E, Blankenberg S, Bonnycastle LL, Bork-Jensen J, Brandslund I, Braund PS, Burgess S, Cho K, Christensen C, Connell J, Mutsert RD, Dominiczak AF, Dörr M, Eiriksdottir G, Farmaki AE, Gaziano JM, Grarup N, Grove ML, Hallmans G, Hansen T, Have CT, Heiss G, Jørgensen ME, Jousilahti P, Kajantie E, Kamat M, Käräjämäki A, Karpe F, Koistinen HA, Kovesdy CP, Kuulasmaa K, Laatikainen T, Lannfelt L, Lee IT, Lee WJ, Linneberg A, Martin LW, Moitry M, Nadkarni G, Neville MJ, Palmer CNA, Papanicolaou GJ, Pedersen O, Peters J, Poulter N, Rasheed A, Rasmussen KL, Rayner NW, Mägi R, Renström F, Rettig R, Rossouw J, Schreiner PJ, Sever PS, Sigurdsson EL, Skaaby T, Sun YV, Sundstrom J, Thorgeirsson G, Esko T, Trabetti E, Tsao PS, Tuomi T, Turner ST, Tzoulaki I, Vaartjes I, Vergnaud AC, Willer CJ, Wilson PWF, Witte DR, Yonova-Doing E, Zhang H, Aliya N, Almgren P, Amouyel P, Asselbergs FW, Barnes MR, Blakemore AI, Boehnke M, Bots ML, Bottinger EP, Buring JE, Chambers JC, Chen YDI, Chowdhury R, Conen D, Correa A, Davey Smith G, Boer RAD, Deary IJ, Dedoussis G, Deloukas P, Di Angelantonio E, Elliott P, Felix SB, Ferrières J, Ford I, Fornage M, Franks PW, Franks S, Frossard P, Gambaro G, Gaunt TR, Groop L, Gudnason V, Harris TB, Hayward C, Hennig BJ, Herzig KH, Ingelsson E, Tuomilehto J, Järvelin MR, Jukema JW, Kardia SLR, Kee F, Kooner JS, Kooperberg C, Launer LJ, Lind L, Loos RJF, Majumder AAS, Laakso M, McCarthy MI, Melander O, Mohlke KL, Murray AD, Nordestgaard BG, Orho-Melander M, Packard CJ, Padmanabhan S, Palmas W, Polasek O, Porteous DJ, Prentice AM, Province MA, Relton CL, Rice K, Ridker PM, Rolandsson O, Rosendaal FR, Rotter JI, Rudan I, Salomaa V, Samani NJ, Sattar N, Sheu WHH, Smith BH, Soranzo N, Spector TD, Starr JM, Sebert S, Taylor KD, Lakka TA, Timpson NJ, Tobin MD, van der Harst P, van der Meer P, Ramachandran VS, Verweij N, Virtamo J, Völker U, Weir DR, Zeggini E, Charchar FJ, Wareham NJ, Langenberg C, Tomaszewski M, Butterworth AS, Caulfield MJ, Danesh J, Edwards TL, Holm H, Hung AM, Lindgren CM, Liu C, Manning AK, Morris AP, Morrison AC, O'Donnell CJ, Psaty BM, Saleheen D, Stefansson K, Boerwinkle E, Chasman DI, Levy D, Newton-Cheh C, Munroe PB, Howson JMM. Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nat Genet 2020; 52:1314-1332. [PMID: 33230300 PMCID: PMC7610439 DOI: 10.1038/s41588-020-00713-x] [Show More Authors] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/08/2020] [Indexed: 01/14/2023]
Abstract
Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10-8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elena V Feofanova
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Najim Lahrouchi
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences Amsterdam, Amsterdam, the Netherlands
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Savita Karthikeyan
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - James Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Lingyan Chen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Chen Yao
- Framingham Heart Study, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - James H Cartwright
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jacklyn N Hellwege
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Ayush Giri
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Vinicius Tragante
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
| | | | - Dajiang J Liu
- Institute of Personalized Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Bram P Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Isobel D Stewart
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Paul L Auer
- Joseph J Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, USA
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Vickie S Braithwaite
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- MRC Nutrition and Bone Health Group, University of Cambridge, Cambridge, UK
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Fotios Drenos
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Sune Fallgaard Nielsen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer, Cambridge, MA, USA
| | - Cristiano Fava
- Department of Medicine, University of Verona, Verona, Italy
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Teresa Ferreira
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Christopher N Foley
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - He Gao
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Olga Giannakopoulou
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Genomic Health, Queen Mary University of London, London, UK
- Division of Psychiatry, University College of London, London, UK
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Aki S Havulinna
- Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Jennifer E Huffman
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, UK
| | - Jukka Kontto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Martin G Larson
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Biostatistics Department, Boston University School of Public Health, Boston, MA, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaana Lindström
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Yingchang Lu
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Hao Mei
- Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, MS, USA
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - David Mosen-Ansorena
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU, Munich, Germany
| | - Guillaume Paré
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Markus Perola
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Clinical and Molecular Metabolism Research Program (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alaitz Poveda
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Rainer Rauramaa
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Melissa Richard
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nuno Sepúlveda
- Department of Infection Biology, Faculty of Tropical and Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre of Statistics and Applications of University of Lisbon, Lisbon, Portugal
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Saw Swee Hock School of Public Health, National University of, Singapore, Singapore
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - James R Staley
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alena Stanáková
- University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Sébastien Thériault
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec City, Quebec, Canada
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tibor V Varga
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Tennessee Valley Health Systems VA, Nashville, TN, USA
| | - Giovanni Veronesi
- Research Center in Epidemiology and Preventive Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Robin Young
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Bing Yu
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
| | - Jing-Hua Zhao
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | | | - Eralda Asllanaj
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands
| | - Stefan Blankenberg
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- University Medical Center Hamburg Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Jette Bork-Jensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Peter S Braund
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - John Connell
- University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anna F Dominiczak
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | | | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, University College London, London, UK
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Göran Hallmans
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian T Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | - Pekka Jousilahti
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eero Kajantie
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Mihir Kamat
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
| | - AnneMari Käräjämäki
- Department of Primary Health Care, Vaasa Central Hospital, Vaasa, Finland
- Diabetes Center, Vaasa Health Care Center, Vaasa, Finland
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Heikki A Koistinen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Csaba P Kovesdy
- Nephrology Section, Memphis VA Medical Center, Memphis, TN, USA
| | - Kari Kuulasmaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tiina Laatikainen
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, , Chung Shan Medical University, Taichung, Taiwan
- College of Science, Tunghai University, Taichung, Taiwan
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisa W Martin
- George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Marie Moitry
- Department of Public health, Strasbourg University Hospital, University of Strasbourg, Strasbourg, France
| | - Girish Nadkarni
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Colin N A Palmer
- Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | | | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James Peters
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, London, UK
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | - Katrine L Rasmussen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - N William Rayner
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Reedik Mägi
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Frida Renström
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Rainer Rettig
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Jacques Rossouw
- Division of Cardiovascular Sciences, NHLBI, Bethesda, MD, USA
| | - Pamela J Schreiner
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Peter S Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Emil L Sigurdsson
- Department of Family Medicine, University of Iceland, Reykjavik, Iceland
- Development Centre for Primary Health Care in Iceland, Reykjavik, Iceland
| | - Tea Skaaby
- Center for Clinical Research and Disease Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Johan Sundstrom
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Internal Medicine, Division of Cardiology, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Tõnu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Elisabetta Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Philip S Tsao
- VA Palo Alto Health Care System, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiinamaija Tuomi
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden Institute for Molecular Medicine Helsinki (FIMM), Helsinki University, Helsinki, Finland
| | - Stephen T Turner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Ilonca Vaartjes
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, University of Utrecht, Utrecht, the Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Anne-Claire Vergnaud
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Peter W F Wilson
- Atlanta VAMC and Emory Clinical Cardiovascular Research Institute, Atlanta, GA, USA
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - He Zhang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Naheed Aliya
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Peter Almgren
- Department of Medicine, Lund University, Malmö, Sweden
| | - Philippe Amouyel
- Univ Lille, U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
- INSERM, U1167, Lille, France
- CHU Lille, U1167, Lille, France
- Institut Pasteur de Lille, U1167, Lille, France
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK, Institute of Health Informatics, University College London, London, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - Alexandra I Blakemore
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, UK
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, University of Utrecht, Utrecht, the Netherlands
- Center for Circulatory Health, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie E Buring
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, London, UK
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rajiv Chowdhury
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Non-communicable Disease Research (CNCR), Dhaka, Bangladesh
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Cardiovascular Research Institute Basel, Basel, Switzerland
| | - Adolfo Correa
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rudolf A de Boer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
- Centre for Genomic Health, Life Sciences, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Health Data Research UK-London at Imperial College London, London, UK
- UKDRI, Dementia Research Institute at Imperial College London, London, UK
- British Heart Foundation (BHF) Centre of Research Excellence, Imperial College London, London, UK
| | - Stephan B Felix
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Jean Ferrières
- Department of Cardiology and Department of Epidemiology, INSERM UMR 1027, Toulouse University Hospital, Toulouse, France
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
- Oxford Center for Diabetes, Endocrinology & Metabolism, Radcliff Department of Medicine, University of Oxford, Oxford, UK
| | - Stephen Franks
- Institute of Reproductive & Developmental Biology, Imperial College London, London, UK
| | | | - Giovanni Gambaro
- Division of Nephrology, Department of Medicine, University of Verona, Verona, Italy
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Medicine Helsinki (FIMM), Helsinki University, Helsinki, Finland
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, UK
| | - Branwen J Hennig
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
- Wellcome Trust, London, UK
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center (MRC), University of Oulu, and University Hospital Oulu, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jaakko Tuomilehto
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- National Institute of Public Health, Madrid, Spain
| | - Marjo-Riitta Järvelin
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Unit of Primary Care, Oulu University Hospital, Kajaanintie, Oulu, Finland
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Netherlands Heart Institute, Utrecht, the Netherlands
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Frank Kee
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - Jaspal S Kooner
- National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
- Genentech, South San Francisco, San Francisco, CA, USA
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Alison D Murray
- The Institute of Medical Sciences, Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Walter Palmas
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ozren Polasek
- Department of Public Health, University of Split School of Medicine, Split, Croatia
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, Gambia
- MRC International Nutrition Group at London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Olov Rolandsson
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Scotland, UK
| | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Wayne H-H Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Institute of Medical Technology, National Chung-Hsing University, Taichung, Taiwan
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Nicole Soranzo
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, UK
| | - Sylvain Sebert
- Center for Life-Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Timo A Lakka
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio, Finland
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Martin D Tobin
- National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Peter van der Meer
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Vasan S Ramachandran
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Niek Verweij
- University Medical Center Groningen, Groningen, the Netherlands
| | - Jarmo Virtamo
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Eleftheria Zeggini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- TUM School of Medicine, Technical University of Munich and Klinikum Rechts der Isar, Munich, Germany
| | - Fadi J Charchar
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Health Innovation and Transformation Center, Federation University Australia, Ballarat, Victoria, Australia
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK
- National Institute for Health Research (NIHR) Blood and Transplant Research Unit (BTRU) in Donor Health and Genomics at the University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Hilma Holm
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
| | - Adriana M Hung
- VA Tennessee Valley Healthcare System, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- The Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chunyu Liu
- Boston University School of Public Health, Boston, MA, USA
| | - Alisa K Manning
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Mongan Institute, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare, Section of Cardiology and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Danish Saleheen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel Levy
- Boston University and National Heart, Lung and Blood Institute Framingham Heart Study, Framingham, MA, USA
- Population Sciences, Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD, USA
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cardiovascular Research Center, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
- National Institute for Health Research Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, UK.
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, UK.
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK.
- Novo Nordisk Research Centre Oxford, Novo Nordisk Ltd, Oxford, UK.
| |
Collapse
|
35
|
Nishiya Y, Daimon M, Mizushiri S, Murakami H, Tanabe J, Matsuhashi Y, Yanagimachi M, Tokuda I, Sawada K, Ihara K. Nutrient consumption-dependent association of a glucagon-like peptide-1 receptor gene polymorphism with insulin secretion. Sci Rep 2020; 10:16382. [PMID: 33009421 PMCID: PMC7532183 DOI: 10.1038/s41598-020-71853-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023] Open
Abstract
Since type 2 diabetes (DM) is a life-style related disease, life-style should be considered when association between genetic factors and DM are examined. However, most studies did not examine genetic associations in consideration with lifestyle. Glucagon-like peptide-1 (GLP-1) receptor (GLP1R) mediates the insulinotropic action of GLP-1 in β-cells. We here examined the association while taking into consideration of interactions between the gene polymorphism and various nutrient factors. Participants from the population-based Iwaki study of Japanese subjects held in 2014–2017 with information on nutritional intake evaluated by self-administered dietary history questionnaire, and GLP1R genotype (rs3765467: A/G), were included (n = 1,560). Although not significant, insulin secretion indices assessed by homeostasis model assessment of β-cell function (HOMA-β) in subjects with the GG genotype tended to be lower than in those with the AA+AG genotypes in most groups stratified into tertiles based on daily nutrient consumptions (high, middle, and low). Stratification also showed that the GG genotype was a significant risk for decreased insulin secretion (HOMA-β ≤ 30) even after adjustment for multiple factors (age, body mass index, alcohol consumption), but only in the highest tertiles of energy, protein and carbohydrate consumption in men [odds ratios (95% confidence interval) 3.95 (1.03–15.1), 15.83 (1.58–158.9), and 4.23 (1.10–11.2), respectively]. A polymorphism of the GLP1R gene was associated with decreased insulin secretion in a nutrient consumption-dependent manner in Japanese men, indicating an interaction between GLP1R and nutritional factors in the pathophysiology of DM.
Collapse
Affiliation(s)
- Yuki Nishiya
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
| | - Satoru Mizushiri
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hiroshi Murakami
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Jutaro Tanabe
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yuki Matsuhashi
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Miyuki Yanagimachi
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Itoyo Tokuda
- Department of Oral Healthcare Science, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kaori Sawada
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kazushige Ihara
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| |
Collapse
|
36
|
Posner DC, Lin H, Meigs JB, Kolaczyk ED, Dupuis J. Convex combination sequence kernel association test for rare-variant studies. Genet Epidemiol 2020; 44:352-367. [PMID: 32100372 PMCID: PMC7205561 DOI: 10.1002/gepi.22287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
We propose a novel variant set test for rare-variant association studies, which leverages multiple single-nucleotide variant (SNV) annotations. Our approach optimizes a convex combination of different sequence kernel association test (SKAT) statistics, where each statistic is constructed from a different annotation and combination weights are optimized through a multiple kernel learning algorithm. The combination test statistic is evaluated empirically through data splitting. In simulations, we find our method preserves type I error at α = 2.5 × 1 0 - 6 and has greater power than SKAT(-O) when SNV weights are not misspecified and sample sizes are large ( N ≥ 5 , 000 ). We utilize our method in the Framingham Heart Study (FHS) to identify SNV sets associated with fasting glucose. While we are unable to detect any genome-wide significant associations between fasting glucose and 4-kb windows of rare variants ( p < 1 0 - 7 ) in 6,419 FHS participants, our method identifies suggestive associations between fasting glucose and rare variants near ROCK2 ( p = 2.1 × 1 0 - 5 ) and within CPLX1 ( p = 5.3 × 1 0 - 5 ). These two genes were previously reported to be involved in obesity-mediated insulin resistance and glucose-induced insulin secretion by pancreatic beta-cells, respectively. These findings will need to be replicated in other cohorts and validated by functional genomic studies.
Collapse
Affiliation(s)
- Daniel C Posner
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Honghuang Lin
- National Heart Lung and Blood Institute's, Boston University's Framingham Heart Study, Framingham, Massachusetts
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - James B Meigs
- Division of General Internal Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eric D Kolaczyk
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- National Heart Lung and Blood Institute's, Boston University's Framingham Heart Study, Framingham, Massachusetts
| |
Collapse
|
37
|
Űrgeová A, Javorský M, Klimčáková L, Židzik J, Šalagovič J, Hubáček JA, Doubravová P, Gotthardová I, Kvapil M, Pelikánová T, Tkáč I, Yaluri AS. Genetic variants associated with glycemic response to treatment with dipeptidylpeptidase 4 inhibitors. Pharmacogenomics 2020; 21:317-323. [PMID: 32308134 DOI: 10.2217/pgs-2019-0147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: We examined associations of eight SNPs in/near seven candidate genes with glycemic response to 6 month treatment with DPP4 inhibitors. Patients & methods: 206 patients with type 2 diabetes (116 men and 90 women) were treated with sitagliptin or vildagliptin (both 100 mg/day) in combination with metformin or metformin/sulphonylurea over 6 months, and the reduction in glycated hemoglobin (HbA1c) was measured. Results: Rs6923761 in GLP1R was significantly associated with a reduction in HbA1c (adjusted p = 0.006). Homozygotes for the minor A allele had smaller reduction in HbA1c by 0.4% (4 mmol/mol) than the G allele carriers (p = 0.016). Conclusion: The missense variant rs6923761 in the GLP1R gene was associated with a smaller glycemic response to 6 month gliptin therapy in diabetic patients of central European origin.
Collapse
Affiliation(s)
- Anna Űrgeová
- Pavol Jozef Šafárik University, Faculty of Medicine, Košice, Slovakia
- Louis. Pasteur University Hospital, Košice, Slovakia
| | - Martin Javorský
- Pavol Jozef Šafárik University, Faculty of Medicine, Košice, Slovakia
- Louis. Pasteur University Hospital, Košice, Slovakia
| | - Lucia Klimčáková
- Pavol Jozef Šafárik University, Faculty of Medicine, Košice, Slovakia
| | - Jozef Židzik
- Pavol Jozef Šafárik University, Faculty of Medicine, Košice, Slovakia
| | - Ján Šalagovič
- Pavol Jozef Šafárik University, Faculty of Medicine, Košice, Slovakia
| | | | - Pavlina Doubravová
- Faculty Hospital in Motol, Department of Medicine, Prague, Czech Republic
| | - Ivana Gotthardová
- Pavol Jozef Šafárik University, Faculty of Medicine, Košice, Slovakia
- Louis. Pasteur University Hospital, Košice, Slovakia
| | - Milan Kvapil
- Charles University, Faculty of Medicine 2, Prague, Czech Republic
- Faculty Hospital in Motol, Department of Medicine, Prague, Czech Republic
| | - Terezie Pelikánová
- Institute for Clinical & Experimental Medicine, Diabetes Centre, Prague, Czech Republic
| | - Ivan Tkáč
- Pavol Jozef Šafárik University, Faculty of Medicine, Košice, Slovakia
- Louis. Pasteur University Hospital, Košice, Slovakia
| | - Alena Stančáková Yaluri
- Pavol Jozef Šafárik University, Faculty of Medicine, Košice, Slovakia
- Louis. Pasteur University Hospital, Košice, Slovakia
| |
Collapse
|
38
|
Mattis KK, Gloyn AL. From Genetic Association to Molecular Mechanisms for Islet-cell Dysfunction in Type 2 Diabetes. J Mol Biol 2020; 432:1551-1578. [PMID: 31945378 DOI: 10.1016/j.jmb.2019.12.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022]
Abstract
Genome-wide association studies (GWAS) have identified over 400 signals robustly associated with risk for type 2 diabetes (T2D). At the vast majority of these loci, the lead single nucleotide polymorphisms (SNPs) reside in noncoding regions of the genome, which hampers biological inference and translation of genetic discoveries into disease mechanisms. The study of these T2D risk variants in normoglycemic individuals has revealed that a significant proportion are exerting their disease risk through islet-cell dysfunction. The central role of the islet is also demonstrated by numerous studies, which have shown an enrichment of these signals in islet-specific epigenomic annotations. In recent years the emergence of authentic human beta-cell lines, and advances in genome-editing technologies coupled with improved protocols differentiating human pluripotent stem cells into beta-like cells has opened up new opportunities for T2D disease modeling. Here we review the current understanding on the genetic basis of T2D focusing on approaches, which have facilitated the identification of causal variants and their effector transcripts in human islets. We will present examples of functional studies based on animal and conventional cellular systems and highlight the potential of novel stem cell-based T2D disease models.
Collapse
Affiliation(s)
- Katia K Mattis
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, UK; National Institute of Health Research, Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK.
| |
Collapse
|
39
|
Deng YN, Xia Z, Zhang P, Ejaz S, Liang S. Transcription Factor RREB1: from Target Genes towards Biological Functions. Int J Biol Sci 2020; 16:1463-1473. [PMID: 32210733 PMCID: PMC7085234 DOI: 10.7150/ijbs.40834] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/06/2020] [Indexed: 02/05/2023] Open
Abstract
The Ras-responsive element binding protein 1(RREB1) is a member of zinc finger transcription factors, which is widely involved in biological processes including cell proliferation, transcriptional regulation and DNA damage repair. New findings reveal RREB1 functions as both transcriptional repressors and transcriptional activators for transcriptional regulation of target genes. The activation of RREB1 is regulated by MAPK pathway. We have summarized the target genes of RREB1 and discussed RREB1 roles in the cancer development. In addition, increasing evidences suggest that RREB1 is a potential risk gene for type 2 diabetes and obesity. We also review the current clinical application of RREB1 as a biomarker for melanoma detection. In conclusion, RREB1 is a promising diagnostic biomarker or new drug target for cancers and metabolic diseases.
Collapse
Affiliation(s)
- Ya-Nan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, P.R. China
| | - Zijing Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, P.R. China
- Department of Rheumatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P. R. China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, P. R. China
| | - Samina Ejaz
- Department of Biochemistry and Biotechnology, Baghdad Campus, The Islamia University of Bahawalpur, Pakistan
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, No.17, 3rd Section of People's South Road, Chengdu, 610041, P.R. China
| |
Collapse
|
40
|
Flannick J, Mercader JM, Fuchsberger C, Udler MS, Mahajan A, Wessel J, Teslovich TM, Caulkins L, Koesterer R, Barajas-Olmos F, Blackwell TW, Boerwinkle E, Brody JA, Centeno-Cruz F, Chen L, Chen S, Contreras-Cubas C, Córdova E, Correa A, Cortes M, DeFronzo RA, Dolan L, Drews KL, Elliott A, Floyd JS, Gabriel S, Garay-Sevilla ME, García-Ortiz H, Gross M, Han S, Heard-Costa NL, Jackson AU, Jørgensen ME, Kang HM, Kelsey M, Kim BJ, Koistinen HA, Kuusisto J, Leader JB, Linneberg A, Liu CT, Liu J, Lyssenko V, Manning AK, Marcketta A, Malacara-Hernandez JM, Martínez-Hernández A, Matsuo K, Mayer-Davis E, Mendoza-Caamal E, Mohlke KL, Morrison AC, Ndungu A, Ng MCY, O'Dushlaine C, Payne AJ, Pihoker C, Post WS, Preuss M, Psaty BM, Vasan RS, Rayner NW, Reiner AP, Revilla-Monsalve C, Robertson NR, Santoro N, Schurmann C, So WY, Soberón X, Stringham HM, Strom TM, Tam CHT, Thameem F, Tomlinson B, Torres JM, Tracy RP, van Dam RM, Vujkovic M, Wang S, Welch RP, Witte DR, Wong TY, Atzmon G, Barzilai N, Blangero J, Bonnycastle LL, Bowden DW, Chambers JC, Chan E, Cheng CY, Cho YS, Collins FS, de Vries PS, Duggirala R, Glaser B, Gonzalez C, Gonzalez ME, Groop L, Kooner JS, Kwak SH, et alFlannick J, Mercader JM, Fuchsberger C, Udler MS, Mahajan A, Wessel J, Teslovich TM, Caulkins L, Koesterer R, Barajas-Olmos F, Blackwell TW, Boerwinkle E, Brody JA, Centeno-Cruz F, Chen L, Chen S, Contreras-Cubas C, Córdova E, Correa A, Cortes M, DeFronzo RA, Dolan L, Drews KL, Elliott A, Floyd JS, Gabriel S, Garay-Sevilla ME, García-Ortiz H, Gross M, Han S, Heard-Costa NL, Jackson AU, Jørgensen ME, Kang HM, Kelsey M, Kim BJ, Koistinen HA, Kuusisto J, Leader JB, Linneberg A, Liu CT, Liu J, Lyssenko V, Manning AK, Marcketta A, Malacara-Hernandez JM, Martínez-Hernández A, Matsuo K, Mayer-Davis E, Mendoza-Caamal E, Mohlke KL, Morrison AC, Ndungu A, Ng MCY, O'Dushlaine C, Payne AJ, Pihoker C, Post WS, Preuss M, Psaty BM, Vasan RS, Rayner NW, Reiner AP, Revilla-Monsalve C, Robertson NR, Santoro N, Schurmann C, So WY, Soberón X, Stringham HM, Strom TM, Tam CHT, Thameem F, Tomlinson B, Torres JM, Tracy RP, van Dam RM, Vujkovic M, Wang S, Welch RP, Witte DR, Wong TY, Atzmon G, Barzilai N, Blangero J, Bonnycastle LL, Bowden DW, Chambers JC, Chan E, Cheng CY, Cho YS, Collins FS, de Vries PS, Duggirala R, Glaser B, Gonzalez C, Gonzalez ME, Groop L, Kooner JS, Kwak SH, Laakso M, Lehman DM, Nilsson P, Spector TD, Tai ES, Tuomi T, Tuomilehto J, Wilson JG, Aguilar-Salinas CA, Bottinger E, Burke B, Carey DJ, Chan JCN, Dupuis J, Frossard P, Heckbert SR, Hwang MY, Kim YJ, Kirchner HL, Lee JY, Lee J, Loos RJF, Ma RCW, Morris AD, O'Donnell CJ, Palmer CNA, Pankow J, Park KS, Rasheed A, Saleheen D, Sim X, Small KS, Teo YY, Haiman C, Hanis CL, Henderson BE, Orozco L, Tusié-Luna T, Dewey FE, Baras A, Gieger C, Meitinger T, Strauch K, Lange L, Grarup N, Hansen T, Pedersen O, Zeitler P, Dabelea D, Abecasis G, Bell GI, Cox NJ, Seielstad M, Sladek R, Meigs JB, Rich SS, Rotter JI, Altshuler D, Burtt NP, Scott LJ, Morris AP, Florez JC, McCarthy MI, Boehnke M. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 2019; 570:71-76. [PMID: 31118516 PMCID: PMC6699738 DOI: 10.1038/s41586-019-1231-2] [Show More Authors] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
Abstract
Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10-3) and candidate genes from knockout mice (P = 5.2 × 10-3). Within our study, the strongest T2D gene-level signals for rare variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect sizes of the rare variants that we observed in established T2D drug targets will require 75,000-185,000 sequenced cases to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to incorporate these associations into future target or gene prioritization efforts.
Collapse
Affiliation(s)
- Jason Flannick
- Program in Metabolism, Broad Institute, Cambridge, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA, USA.
| | - Josep M Mercader
- Program in Metabolism, Broad Institute, Cambridge, MA, USA
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Christian Fuchsberger
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Miriam S Udler
- Program in Metabolism, Broad Institute, Cambridge, MA, USA
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anubha Mahajan
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jennifer Wessel
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, USA
- Diabetes Translational Research Center, Indiana University, Indianapolis, IN, USA
| | - Tanya M Teslovich
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Lizz Caulkins
- Program in Metabolism, Broad Institute, Cambridge, MA, USA
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Ryan Koesterer
- Program in Metabolism, Broad Institute, Cambridge, MA, USA
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
| | | | - Thomas W Blackwell
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer A Brody
- Cardiovascular Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Ling Chen
- Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Siying Chen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Emilio Córdova
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Maria Cortes
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ralph A DeFronzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lawrence Dolan
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kimberly L Drews
- Biostatistics Center, George Washington University, Rockville, MD, USA
| | - Amanda Elliott
- Program in Metabolism, Broad Institute, Cambridge, MA, USA
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James S Floyd
- Department of Medicine and Epidemiology, University of Washington, Seattle, WA, USA
| | | | - Maria Eugenia Garay-Sevilla
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | | | - Myron Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Sohee Han
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Nancy L Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Anne U Jackson
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Marit E Jørgensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Hyun Min Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Megan Kelsey
- Biostatistics Center, George Washington University, Rockville, MD, USA
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Heikki A Koistinen
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- University of Helsinki and Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicin, Kuopio University Hospital, Kuopio, Finland
| | | | - Allan Linneberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Experimental Research, Rigshospitalet, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Alisa K Manning
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Anthony Marcketta
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Juan Manuel Malacara-Hernandez
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | | | - Karen Matsuo
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Karen L Mohlke
- Department of Genetics, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anne Ndungu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maggie C Y Ng
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Colm O'Dushlaine
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Anthony J Payne
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Wendy S Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Preuss
- Charles R. Bronfman Institute of Personalized Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Preventive Medicine & Epidemiology, Medicine, Boston University School of Medicine, Boston, MA, USA
| | - N William Rayner
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | - Neil R Robertson
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Nicola Santoro
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Claudia Schurmann
- Charles R. Bronfman Institute of Personalized Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Xavier Soberón
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Heather M Stringham
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Farook Thameem
- Health Science Center, Department of Biochemistry, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason M Torres
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, The Robert Larner M.D. College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, The Robert Larner M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | - Rob M van Dam
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Marijana Vujkovic
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ryan P Welch
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Faculty of Natural Science, University of Haifa, Haifa, Israel
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley, Edinburg, TX, USA
- South Texas Diabetes and Obesity Institute, Brownsville, TX, USA
| | - Lori L Bonnycastle
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital NHS Trust, Southall, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Edmund Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Ching-Yu Cheng
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ravindranath Duggirala
- Department of Human Genetics, University of Texas Rio Grande Valley, Edinburg, TX, USA
- South Texas Diabetes and Obesity Institute, Brownsville, TX, USA
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Clicerio Gonzalez
- Unidad de Diabetes y Riesgo Cardiovascular, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | | | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
- Institute for Molecular Genetics Finland, University of Helsinki, Helsinki, Finland
| | - Jaspal Singh Kooner
- National Heart and Lung Institute, Cardiovascular Sciences, Imperial College London, London, UK
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicin, Kuopio University Hospital, Kuopio, Finland
| | - Donna M Lehman
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Peter Nilsson
- Department of Clinical Sciences, Medicine, Lund University, Malmö, Sweden
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Tiinamaija Tuomi
- Institute for Molecular Genetics Finland, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Helsinki, Finland
- Department of Endocrinology, Abdominal Centre, Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Jaakko Tuomilehto
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- Center for Vascular Prevention, Danube University Krems, Krems, Austria
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
- Instituto de Investigacion Sanitaria del Hospital Universario LaPaz (IdiPAZ), University Hospital LaPaz, Autonomous University of Madrid, Madrid, Spain
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Erwin Bottinger
- Charles R. Bronfman Institute of Personalized Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | - Brian Burke
- Biostatistics Center, George Washington University, Rockville, MD, USA
| | | | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Josée Dupuis
- National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | - Susan R Heckbert
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mi Yeong Hwang
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Young Jin Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea
| | | | - Jong-Young Lee
- Department of Business Data Convergence, Chungbuk National University, Gyeonggi-do, South Korea
| | - Juyoung Lee
- Division of Genome Research, Center for Genome Science, National Institute of Health, Chungcheongbuk-do, South Korea
| | - Ruth J F Loos
- Charles R. Bronfman Institute of Personalized Medicine, Mount Sinai School of Medicine, New York, NY, USA
- The Mindich Child Health and Development Insititute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong, China
| | - Andrew D Morris
- Clinical Research Centre, Centre for Molecular Medicine, Ninewells Hospital and Medical School, Dundee, UK
| | - Christopher J O'Donnell
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Section of Cardiology, Department of Medicine, VA Boston Healthcare, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Intramural Administration Management Branch, National Heart Lung and Blood Institute, NIH, Framingham, MA, USA
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, UK
| | - James Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Kyong Soo Park
- National Heart and Lung Institute, Cardiovascular Sciences, Imperial College London, London, UK
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Asif Rasheed
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Danish Saleheen
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
- Center for Non-Communicable Diseases, Karachi, Pakistan
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Yik Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Craig L Hanis
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Teresa Tusié-Luna
- Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Frederick E Dewey
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Deutsches Forschungszentrum für Herz-Kreislauferkrankungen (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Konstantin Strauch
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Neuherberg, Germany
| | - Leslie Lange
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Philip Zeitler
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Goncalo Abecasis
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Graeme I Bell
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Mark Seielstad
- Department of Laboratory Medicine & Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Rob Sladek
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Quebec, Canada
- McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada
| | - James B Meigs
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Steve S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jerome I Rotter
- Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David Altshuler
- Program in Metabolism, Broad Institute, Cambridge, MA, USA
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Noël P Burtt
- Program in Metabolism, Broad Institute, Cambridge, MA, USA
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Laura J Scott
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Andrew P Morris
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Jose C Florez
- Program in Metabolism, Broad Institute, Cambridge, MA, USA
- Program in Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Diabetes Research Center (Diabetes Unit), Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Michael Boehnke
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Soon after the first genome-wide association study (GWAS) for type 2 diabetes (T2D) was published, it was hypothesized that rare and low-frequency variants might explain a substantial proportion of disease risk. Rare coding variants in particular were emphasized given their large expected role in disease. This review summarizes the extent to which recent T2D genetic studies provide evidence for or against this hypothesis. RECENT FINDINGS Following a comprehensive study of T2D genetic architecture using three sequencing and genotyping technologies, four even larger studies have provided a yet higher resolution view of the role of rare and low-frequency coding variation in T2D susceptibility. Empirical evidence strongly suggests that common regulatory variants are the dominant contributor to T2D heritability. However, rare coding variants may nonetheless be pervasive across T2D-relevant genes. A strategy using common variants to map disease genes, and rare coding variants to link molecular gene perturbations to cellular and phenotypic effects, may be an effective means to investigate T2D pathogenesis and potential new therapies.
Collapse
Affiliation(s)
- Jason Flannick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
- Programs in Medical and Population Genetics and Metabolism, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
42
|
Barroso I, McCarthy MI. The Genetic Basis of Metabolic Disease. Cell 2019; 177:146-161. [PMID: 30901536 PMCID: PMC6432945 DOI: 10.1016/j.cell.2019.02.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Recent developments in genetics and genomics are providing a detailed and systematic characterization of the genetic underpinnings of common metabolic diseases and traits, highlighting the inherent complexity within systems for homeostatic control and the many ways in which that control can fail. The genetic architecture underlying these common metabolic phenotypes is complex, with each trait influenced by hundreds of loci spanning a range of allele frequencies and effect sizes. Here, we review the growing appreciation of this complexity and how this has fostered the implementation of genome-scale approaches that deliver robust mechanistic inference and unveil new strategies for translational exploitation.
Collapse
Affiliation(s)
- Inês Barroso
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - Mark I McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, UK
| |
Collapse
|
43
|
Hébert HL, Shepherd B, Milburn K, Veluchamy A, Meng W, Carr F, Donnelly LA, Tavendale R, Leese G, Colhoun HM, Dow E, Morris AD, Doney AS, Lang CC, Pearson ER, Smith BH, Palmer CNA. Cohort Profile: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS). Int J Epidemiol 2019; 47:380-381j. [PMID: 29025058 PMCID: PMC5913637 DOI: 10.1093/ije/dyx140] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
| | | | - Keith Milburn
- Health Informatics Centre Services, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Abirami Veluchamy
- Division of Population Health Sciences.,Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | - Fiona Carr
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | - Roger Tavendale
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Graham Leese
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Helen M Colhoun
- Division of Population Health Sciences.,Institute of Genetics & Molecular Medicine
| | - Ellie Dow
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | | | - Chim C Lang
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Ewan R Pearson
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | | |
Collapse
|
44
|
Suzuki K, Akiyama M, Ishigaki K, Kanai M, Hosoe J, Shojima N, Hozawa A, Kadota A, Kuriki K, Naito M, Tanno K, Ishigaki Y, Hirata M, Matsuda K, Iwata N, Ikeda M, Sawada N, Yamaji T, Iwasaki M, Ikegawa S, Maeda S, Murakami Y, Wakai K, Tsugane S, Sasaki M, Yamamoto M, Okada Y, Kubo M, Kamatani Y, Horikoshi M, Yamauchi T, Kadowaki T. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
45
|
Justice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, Schurmann C, Lempradl A, Marouli E, Mahajan A, Winkler TW, Locke AE, Medina-Gomez C, Esko T, Vedantam S, Giri A, Lo KS, Alfred T, Mudgal P, Ng MCY, Heard-Costa NL, Feitosa MF, Manning AK, Willems SM, Sivapalaratnam S, Abecasis G, Alam DS, Allison M, Amouyel P, Arzumanyan Z, Balkau B, Bastarache L, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bottinger EP, Bowden DW, Brandslund I, Broer L, Burt AA, Butterworth AS, Caulfield MJ, Cesana G, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Collins FS, Cook JP, Cox AJ, Crosslin DS, Danesh J, de Bakker PIW, Denus SD, Mutsert RD, Dedoussis G, Demerath EW, Dennis JG, Denny JC, Di Angelantonio E, Dörr M, Drenos F, Dubé MP, Dunning AM, Easton DF, Elliott P, Evangelou E, Farmaki AE, Feng S, Ferrannini E, Ferrieres J, Florez JC, Fornage M, Fox CS, Franks PW, Friedrich N, Gan W, Gandin I, Gasparini P, Giedraitis V, Girotto G, Gorski M, Grallert H, Grarup N, Grove ML, Gustafsson S, Haessler J, Hansen T, Hattersley AT, et alJustice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, Schurmann C, Lempradl A, Marouli E, Mahajan A, Winkler TW, Locke AE, Medina-Gomez C, Esko T, Vedantam S, Giri A, Lo KS, Alfred T, Mudgal P, Ng MCY, Heard-Costa NL, Feitosa MF, Manning AK, Willems SM, Sivapalaratnam S, Abecasis G, Alam DS, Allison M, Amouyel P, Arzumanyan Z, Balkau B, Bastarache L, Bergmann S, Bielak LF, Blüher M, Boehnke M, Boeing H, Boerwinkle E, Böger CA, Bork-Jensen J, Bottinger EP, Bowden DW, Brandslund I, Broer L, Burt AA, Butterworth AS, Caulfield MJ, Cesana G, Chambers JC, Chasman DI, Chen YDI, Chowdhury R, Christensen C, Chu AY, Collins FS, Cook JP, Cox AJ, Crosslin DS, Danesh J, de Bakker PIW, Denus SD, Mutsert RD, Dedoussis G, Demerath EW, Dennis JG, Denny JC, Di Angelantonio E, Dörr M, Drenos F, Dubé MP, Dunning AM, Easton DF, Elliott P, Evangelou E, Farmaki AE, Feng S, Ferrannini E, Ferrieres J, Florez JC, Fornage M, Fox CS, Franks PW, Friedrich N, Gan W, Gandin I, Gasparini P, Giedraitis V, Girotto G, Gorski M, Grallert H, Grarup N, Grove ML, Gustafsson S, Haessler J, Hansen T, Hattersley AT, Hayward C, Heid IM, Holmen OL, Hovingh GK, Howson JMM, Hu Y, Hung YJ, Hveem K, Ikram MA, Ingelsson E, Jackson AU, Jarvik GP, Jia Y, Jørgensen T, Jousilahti P, Justesen JM, Kahali B, Karaleftheri M, Kardia SLR, Karpe F, Kee F, Kitajima H, Komulainen P, Kooner JS, Kovacs P, Krämer BK, Kuulasmaa K, Kuusisto J, Laakso M, Lakka TA, Lamparter D, Lange LA, Langenberg C, Larson EB, Lee NR, Lee WJ, Lehtimäki T, Lewis CE, Li H, Li J, Li-Gao R, Lin LA, Lin X, Lind L, Lindström J, Linneberg A, Liu CT, Liu DJ, Luan J, Lyytikäinen LP, MacGregor S, Mägi R, Männistö S, Marenne G, Marten J, Masca NGD, McCarthy MI, Meidtner K, Mihailov E, Moilanen L, Moitry M, Mook-Kanamori DO, Morgan A, Morris AP, Müller-Nurasyid M, Munroe PB, Narisu N, Nelson CP, Neville M, Ntalla I, O'Connell JR, Owen KR, Pedersen O, Peloso GM, Pennell CE, Perola M, Perry JA, Perry JRB, Pers TH, Ewing A, Polasek O, Raitakari OT, Rasheed A, Raulerson CK, Rauramaa R, Reilly DF, Reiner AP, Ridker PM, Rivas MA, Robertson NR, Robino A, Rudan I, Ruth KS, Saleheen D, Salomaa V, Samani NJ, Schreiner PJ, Schulze MB, Scott RA, Segura-Lepe M, Sim X, Slater AJ, Small KS, Smith BH, Smith JA, Southam L, Spector TD, Speliotes EK, Stefansson K, Steinthorsdottir V, Stirrups KE, Strauch K, Stringham HM, Stumvoll M, Sun L, Surendran P, Swart KMA, Tardif JC, Taylor KD, Teumer A, Thompson DJ, Thorleifsson G, Thorsteinsdottir U, Thuesen BH, Tönjes A, Torres M, Tsafantakis E, Tuomilehto J, Uitterlinden AG, Uusitupa M, van Duijn CM, Vanhala M, Varma R, Vermeulen SH, Vestergaard H, Vitart V, Vogt TF, Vuckovic D, Wagenknecht LE, Walker M, Wallentin L, Wang F, Wang CA, Wang S, Wareham NJ, Warren HR, Waterworth DM, Wessel J, White HD, Willer CJ, Wilson JG, Wood AR, Wu Y, Yaghootkar H, Yao J, Yerges-Armstrong LM, Young R, Zeggini E, Zhan X, Zhang W, Zhao JH, Zhao W, Zheng H, Zhou W, Zillikens MC, Rivadeneira F, Borecki IB, Pospisilik JA, Deloukas P, Frayling TM, Lettre G, Mohlke KL, Rotter JI, Kutalik Z, Hirschhorn JN, Cupples LA, Loos RJF, North KE, Lindgren CM. Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution. Nat Genet 2019; 51:452-469. [PMID: 30778226 PMCID: PMC6560635 DOI: 10.1038/s41588-018-0334-2] [Show More Authors] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/17/2018] [Indexed: 02/02/2023]
Abstract
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
Collapse
Affiliation(s)
- Anne E Justice
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Weis Center for Research, Geisinger Health System, Danville, PA, USA
| | - Tugce Karaderi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, Famagusta, Cyprus
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valérie Turcot
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Rebecca S Fine
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adelheid Lempradl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eirini Marouli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Adam E Locke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carolina Medina-Gomez
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tõnu Esko
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Sailaja Vedantam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Ayush Giri
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Ken Sin Lo
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tamuno Alfred
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Poorva Mudgal
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie C Y Ng
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nancy L Heard-Costa
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alisa K Manning
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard University Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Sara M Willems
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Suthesh Sivapalaratnam
- Massachusetts General Hospital, Boston, MA, USA
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Goncalo Abecasis
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Dewan S Alam
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Canada
| | - Matthew Allison
- Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Philippe Amouyel
- INSERM U1167, Lille, France
- Institut Pasteur de Lille, U1167, Lille, France
- U1167-RID-AGE, Universite de Lille - Risk factors and molecular determinants of aging-related diseases, Lille, France
| | - Zorayr Arzumanyan
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Beverley Balkau
- INSERM U1018, Centre de recherche en Épidemiologie et Sante des Populations (CESP), Villejuif, France
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Blüher
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Jette Bork-Jensen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald W Bowden
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ivan Brandslund
- Department of Clinical Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Linda Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Amber A Burt
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Giancarlo Cesana
- Research Centre on Public Health, University of Milano-Bicocca, Monza, Italy
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Daniel I Chasman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rajiv Chowdhury
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Audrey Y Chu
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
| | - Francis S Collins
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Amanda J Cox
- Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - David S Crosslin
- Department of Biomedical Infomatics and Medical Education, University of Washington, Seattle, WA, USA
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
- British Heart Foundation Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul I W de Bakker
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Simon de Denus
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Faculty of Pharmacy, Universite de Montreal, Montreal, Quebec, Canada
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - George Dedoussis
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Ellen W Demerath
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Joe G Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Josh C Denny
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Emanuele Di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cambridge Centre of Excellence, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marcus Dörr
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Fotios Drenos
- Institute of Cardiovascular Science, University College London, London, UK
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Department of Life Sciences, Brunel University London, Uxbridge, UK
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece
| | - Shuang Feng
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ele Ferrannini
- CNR Institute of Clinical Physiology, Pisa, Italy
- Department of Clinical & Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jean Ferrieres
- Toulouse University School of Medicine, Toulouse, France
| | - Jose C Florez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard University Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmo, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
- Department of Public Health and Clinical Medicine, Unit of Medicine, Umeå University, Umeå, Sweden
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Wei Gan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ilaria Gandin
- Ilaria Gandin, Research Unit, AREA Science Park, Trieste, Italy
| | - Paolo Gasparini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Giorgia Girotto
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Harald Grallert
- German Center for Diabetes Research, München-Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Megan L Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Oddgeir L Holmen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - G Kees Hovingh
- Department of Vascular Medicine, AMC, Amsterdam, The Netherlands
| | - Joanna M M Howson
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Yao Hu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health, Norwegian University of Science and Technology, Levanger, Norway
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Radiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik Ingelsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Anne U Jackson
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Gail P Jarvik
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yucheng Jia
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Torben Jørgensen
- Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | | | - Johanne M Justesen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bratati Kahali
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | | | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health Research, Queens University Belfast, Belfast, UK
| | - Hidetoshi Kitajima
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Jaspal S Kooner
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Peter Kovacs
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Bernhard K Krämer
- University Medical Centre Mannheim, 5th Medical Department, University of Heidelberg, Mannheim, Germany
| | - Kari Kuulasmaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - David Lamparter
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Verge Genomics, San Fransico, CA, USA
| | - Leslie A Lange
- Division of Biomedical and Personalized Medicine, Department of Medicine, University of Colorado-Denver, Aurora, CO, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eric B Larson
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Nanette R Lee
- Department of Anthropology, Sociology, and History, University of San Carlos, Cebu City, Philippines
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Cora E Lewis
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huaixing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Li-An Lin
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Jaana Lindström
- National Institute for Health and Welfare, Helsinki, Finland
| | - Allan Linneberg
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Satu Männistö
- National Institute for Health and Welfare, Helsinki, Finland
| | | | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Nicholas G D Masca
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Karina Meidtner
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | | | - Leena Moilanen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Marie Moitry
- Department of Epidemiology and Public Health, University of Strasbourg, Strasbourg, France
- Department of Public Health, University Hospital of Strasbourg, Strasbourg, France
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Morgan
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Andrew P Morris
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universitat, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Narisu Narisu
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeffrey R O'Connell
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katharine R Owen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Craig E Pennell
- Division of Obstetric and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine (FIMM) and Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
| | - James A Perry
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Tune H Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ailith Ewing
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ozren Polasek
- School of Medicine, University of Split, Split, Croatia
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Asif Rasheed
- Centre for Non-Communicable Diseases, Karachi, Pakistan
| | | | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA, USA
| | - Alex P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Neil R Robertson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Danish Saleheen
- Centre for Non-Communicable Diseases, Karachi, Pakistan
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Univeristy of Leicester, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Matthias B Schulze
- German Center for Diabetes Research, München-Neuherberg, Germany
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Robert A Scott
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Marcelo Segura-Lepe
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Xueling Sim
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
| | - Andrew J Slater
- Genetics, Target Sciences, GlaxoSmithKline, Research Triangle Park, NC, USA
- OmicSoft a QIAGEN Company, Cary, NC, USA
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Blair H Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lorraine Southam
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Trust Sanger Institute, Hinxton, UK
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Elizabeth K Speliotes
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Kathleen E Stirrups
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Stumvoll
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Praveen Surendran
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Karin M A Swart
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jean-Claude Tardif
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Betina H Thuesen
- Research Center for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
| | - Anke Tönjes
- Center for Pediatric Research, Department for Women's and Child Health, University of Leipzig, Leipzig, Germany
| | - Mina Torres
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Jaakko Tuomilehto
- National Institute for Health and Welfare, Helsinki, Finland
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
- Dasman Diabetes Institute, Dasman, Kuwait
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Matti Uusitupa
- Department of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | | | - Mauno Vanhala
- Central Finland Central Hospital, Jyvaskyla, Finland
- University of Eastern Finland, Kuopio, Finland
| | - Rohit Varma
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Sita H Vermeulen
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henrik Vestergaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Thomas F Vogt
- Cardiometabolic Disease, Merck & Co., Inc., Kenilworth, NJ, USA
| | - Dragana Vuckovic
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Walker
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle, UK
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Feijie Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Carol A Wang
- Division of Obstetric and Gynaecology, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Shuai Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | | | - Jennifer Wessel
- Departments of Epidemiology & Medicine, Diabetes Translational Research Center, Fairbanks School of Public Health & School of Medicine, Indiana University, Indiana, IN, USA
| | - Harvey D White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andrew R Wood
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Hanieh Yaghootkar
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Laura M Yerges-Armstrong
- Program for Personalized and Genomic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- GlaxoSmithKline, King of Prussia, PA, USA
| | - Robin Young
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- University of Glasgow, Glasgow, UK
| | | | - Xiaowei Zhan
- Department of Clinical Sciences, Quantitative Biomedical Research Center, Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weihua Zhang
- Department of Cardiology, London North West Healthcare NHS Trust, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jing Hua Zhao
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Wei Zhao
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - He Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - M Carola Zillikens
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ingrid B Borecki
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Panos Deloukas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Guillaume Lettre
- Montreal Heart Institute, Universite de Montreal, Montreal, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Joel N Hirschhorn
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
| | - L Adrienne Cupples
- NHLBI Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Genetics of Obesity and Related Metabolic Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari E North
- Department of Epidemiology and Carolina Center of Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Li Ka Shing Centre for Health Information and Discovery, The Big Data Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
47
|
Mannino GC, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev 2019; 35:e3109. [PMID: 30515958 PMCID: PMC6590177 DOI: 10.1002/dmrr.3109] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has reached the levels of a global epidemic. In order to achieve optimal glucose control, it is often necessary to rely on combination therapy of multiple drugs or insulin because uncontrolled glucose levels result in T2DM progression and enhanced risk of complications and mortality. Several antihyperglycemic agents have been developed over time, and T2DM pharmacotherapy should be prescribed based on suitability for the individual patient's characteristics. Pharmacogenetics is the branch of genetics that investigates how our genome influences individual responses to drugs, therapeutic outcomes, and incidence of adverse effects. In this review, we evaluated the pharmacogenetic evidences currently available in the literature, and we identified the top informative genetic variants associated with response to the most common anti-diabetic drugs: metformin, DPP-4 inhibitors/GLP1R agonists, thiazolidinediones, and sulfonylureas/meglitinides. Overall, we found 40 polymorphisms for each drug class in a total of 71 loci, and we examined the possibility of encouraging genetic screening of these variants/loci in order to critically implement decision-making about the therapeutic approach through precision medicine strategies. It is possible then to anticipate that when the clinical practice will take advantage of the genetic information of the diabetic patients, this will provide a useful resource for the prevention of T2DM progression, enabling the identification of the precise drug that is most likely to be effective and safe for each patient and the reduction of the economic impact on a global scale.
Collapse
Affiliation(s)
- Gaia Chiara Mannino
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Francesco Andreozzi
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| | - Giorgio Sesti
- Department of Medical and Surgical SciencesUniversity Magna Graecia of CatanzaroCatanzaroItaly
| |
Collapse
|
48
|
Suzuki K, Akiyama M, Ishigaki K, Kanai M, Hosoe J, Shojima N, Hozawa A, Kadota A, Kuriki K, Naito M, Tanno K, Ishigaki Y, Hirata M, Matsuda K, Iwata N, Ikeda M, Sawada N, Yamaji T, Iwasaki M, Ikegawa S, Maeda S, Murakami Y, Wakai K, Tsugane S, Sasaki M, Yamamoto M, Okada Y, Kubo M, Kamatani Y, Horikoshi M, Yamauchi T, Kadowaki T. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
49
|
Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
50
|
Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet 2019. [DOI: 10.1038/s41588-018-0332-4 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|