1
|
Veronese P, Dodi I. Campylobacter jejuni/ coli Infection: Is It Still a Concern? Microorganisms 2024; 12:2669. [PMID: 39770871 PMCID: PMC11728820 DOI: 10.3390/microorganisms12122669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Campylobacteriosis is a leading cause of infectious diarrhea and foodborne illness worldwide. Campylobacter infection is primarily transmitted through the consumption of contaminated food, especially uncooked meat, or untreated water; contact with infected animals or contaminated environments; poultry is the primary reservoir and source of human transmission. The clinical spectrum of Campylobacter jejuni/coli infection can be classified into two distinct categories: gastrointestinal and extraintestinal manifestations. Late complications are reactive arthritis, Guillain-Barré syndrome, and Miller Fisher syndrome. In the pediatric population, the 0-4 age group has the highest incidence of campylobacteriosis. Regarding the use of specific antimicrobial therapy, international guidelines agree in recommending it for severe intestinal infections. Host factors, including malnutrition, immunodeficiency, and malignancy, can also influence the decision to treat. The Centers for Disease Control and Prevention (CDC) has identified antibiotic resistance in Campylobacter as a 'significant public health threat' due to increasing resistance to FQs or macrolides. Although numerous vaccines have been proposed in recent years to reduce the intestinal colonization of poultry, none have shown sufficient efficacy to provide a definitive solution.
Collapse
Affiliation(s)
- Piero Veronese
- Pediatric Infectious Disease Unit, Barilla Children’s Hospital of Parma, 43126 Parma, Italy;
| | | |
Collapse
|
2
|
Chinivasagam HN, Estella W, Finn D, Mayer DG, Rodrigues H, Diallo I. Broiler farming practices using new or re-used bedding, inclusive of free-range, have no impact on Campylobacter levels, species diversity, Campylobacter community profiles and Campylobacter bacteriophages. AIMS Microbiol 2024; 10:12-40. [PMID: 38525040 PMCID: PMC10955168 DOI: 10.3934/microbiol.2024002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 03/26/2024] Open
Abstract
A multi-stage option to address food-safety can be produced by a clearer understanding of Campylobacter's persistence through the broiler production chain, its environmental niche and its interaction with bacteriophages. This study addressed Campylobacter levels, species, genotype, bacteriophage composition/ levels in caeca, litter, soil and carcasses across commercial broiler farming practices to inform on-farm management, including interventions. Broilers were sequentially collected as per company slaughter schedules over two-years from 17 farms, which represented four commercially adopted farming practices, prior to the final bird removal (days 39-53). The practices were conventional full clean-out, conventional litter re-use, free-range-full cleanout and free-range-litter re-use. Caeca, litter and soil collected on-farm, and representative carcases collected at the processing plant, were tested for Campylobacter levels, species dominance and Campylobacter bacteriophages. General community profiling via denaturing gradient gel electrophoresis of the flaA gene was used to establish the population relationships between various farming practices on representative Campylobacter isolates. The farming practice choices did not influence the high caeca Campylobacter levels (log 7.5 to log 8.5 CFU/g), the carcass levels (log 2.5 to log 3.2 CFU/carcass), the C. jejuni/C. coli dominance and the on-farm bacteriophage presence/levels. A principal coordinate analysis of the flaA distribution for farm and litter practices showed strong separation but no obvious farming practice related grouping of Campylobacter. Bacteriophages originated from select farms, were not practice-dependent, and were detected in the environment (litter) only if present in the birds (caeca). This multifaceted study showed no influence of farming practices on on-farm Campylobacter dynamics. The significance of this study means that a unified on-farm risk-management could be adopted irrespective of commercial practice choices to collectively address caeca Campylobacter levels, as well as the potential to include Campylobacter bacteriophage biocontrol. The impact of this study means that there are no constraints in re-using bedding or adopting free-range farming, thus contributing to environmentally sustainable (re-use) and emerging (free-range) broiler farming choices.
Collapse
Affiliation(s)
| | - Wiyada Estella
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - Damien Finn
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - David G. Mayer
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - Hugh Rodrigues
- Department of Agriculture and Fisheries, Eco Sciences Precinct, Dutton Park QLD 4102, Australia
| | - Ibrahim Diallo
- Department of Agriculture and Fisheries, Biosecurity Sciences Laboratory, Coopers Plains QLD 4108
| |
Collapse
|
3
|
Mahmud MR, Tamanna SK, Akter S, Mazumder L, Akter S, Hasan MR, Acharjee M, Esti IZ, Islam MS, Shihab MMR, Nahian M, Gulshan R, Naser S, Pirttilä AM. Role of bacteriophages in shaping gut microbial community. Gut Microbes 2024; 16:2390720. [PMID: 39167701 PMCID: PMC11340752 DOI: 10.1080/19490976.2024.2390720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Phages are the most diversified and dominant members of the gut virobiota. They play a crucial role in shaping the structure and function of the gut microbial community and consequently the health of humans and animals. Phages are found mainly in the mucus, from where they can translocate to the intestinal organs and act as a modulator of gut microbiota. Understanding the vital role of phages in regulating the composition of intestinal microbiota and influencing human and animal health is an emerging area of research. The relevance of phages in the gut ecosystem is supported by substantial evidence, but the importance of phages in shaping the gut microbiota remains unclear. Although information regarding general phage ecology and development has accumulated, detailed knowledge on phage-gut microbe and phage-human interactions is lacking, and the information on the effects of phage therapy in humans remains ambiguous. In this review, we systematically assess the existing data on the structure and ecology of phages in the human and animal gut environments, their development, possible interaction, and subsequent impact on the gut ecosystem dynamics. We discuss the potential mechanisms of prophage activation and the subsequent modulation of gut bacteria. We also review the link between phages and the immune system to collect evidence on the effect of phages on shaping the gut microbial composition. Our review will improve understanding on the influence of phages in regulating the gut microbiota and the immune system and facilitate the development of phage-based therapies for maintaining a healthy and balanced gut microbiota.
Collapse
Affiliation(s)
- Md. Rayhan Mahmud
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sharmin Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Sumona Akter
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Israt Zahan Esti
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
- Department of Molecular Systems Biology, Faculty of Technology, University of Turku, Turku, Finland
| | - Md. Saidul Islam
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | | - Md. Nahian
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Rubaiya Gulshan
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Naser
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | | |
Collapse
|
4
|
Jordá J, Lorenzo-Rebenaque L, Montoro-Dasi L, Marco-Fuertes A, Vega S, Marin C. Phage-Based Biosanitation Strategies for Minimizing Persistent Salmonella and Campylobacter Bacteria in Poultry. Animals (Basel) 2023; 13:3826. [PMID: 38136863 PMCID: PMC10740442 DOI: 10.3390/ani13243826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Control strategies to minimize pathogenic bacteria in food animal production are one of the key components in ensuring safer food for consumers. The most significant challenges confronting the food industry, particularly in the major poultry and swine sectors, are antibiotic resistance and resistance to cleaning and disinfection in zoonotic bacteria. In this context, bacteriophages have emerged as a promising tool for zoonotic bacteria control in the food industry, from animals and farm facilities to the final product. Phages are viruses that infect bacteria, with several advantages as a biocontrol agent such as high specificity, self-replication, self-limitation, continuous adaptation, low inherent toxicity and easy isolation. Their development as a biocontrol agent is of particular interest, as it would allow the application of a promising and even necessary "green" technology to combat pathogenic bacteria in the environment. However, bacteriophage applications have limitations, including selecting appropriate phages, legal restrictions, purification, dosage determination and bacterial resistance. Overcoming these limitations is crucial to enhance phage therapy's effectiveness against zoonotic bacteria in poultry. Thus, this review aims to provide a comprehensive view of the phage-biosanitation strategies for minimizing persistent Salmonella and Campylobacter bacteria in poultry.
Collapse
Affiliation(s)
- Jaume Jordá
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Laura Lorenzo-Rebenaque
- Institute of Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Laura Montoro-Dasi
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Ana Marco-Fuertes
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Santiago Vega
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| | - Clara Marin
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Santiago Ramón y Cajal 20, 46115 Alfara del Patriarca, Spain; (J.J.); (L.M.-D.); (A.M.-F.); (S.V.)
| |
Collapse
|
5
|
Qin S, Liu Y, Chen Y, Hu J, Xiao W, Tang X, Li G, Lin P, Pu Q, Wu Q, Zhou C, Wang B, Gao P, Wang Z, Yan A, Nadeem K, Xia Z, Wu M. Engineered Bacteriophages Containing Anti-CRISPR Suppress Infection of Antibiotic-Resistant P. aeruginosa. Microbiol Spectr 2022; 10:e0160222. [PMID: 35972246 PMCID: PMC9602763 DOI: 10.1128/spectrum.01602-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022] Open
Abstract
The therapeutic use of bacteriophages (phages) provides great promise for treating multidrug-resistant (MDR) bacterial infections. However, an incomplete understanding of the interactions between phages and bacteria has negatively impacted the application of phage therapy. Here, we explored engineered anti-CRISPR (Acr) gene-containing phages (EATPs, eat Pseudomonas) by introducing Type I anti-CRISPR (AcrIF1, AcrIF2, and AcrIF3) genes into the P. aeruginosa bacteriophage DMS3/DMS3m to render the potential for blocking P. aeruginosa replication and infection. In order to achieve effective antibacterial activities along with high safety against clinically isolated MDR P. aeruginosa through an anti-CRISPR immunity mechanism in vitro and in vivo, the inhibitory concentration for EATPs was 1 × 108 PFU/mL with a multiplicity of infection value of 0.2. In addition, the EATPs significantly suppressed the antibiotic resistance caused by a highly antibiotic-resistant PA14 infection. Collectively, these findings provide evidence that engineered phages may be an alternative, viable approach by which to treat patients with an intractable bacterial infection, especially an infection by clinically MDR bacteria that are unresponsive to conventional antibiotic therapy. IMPORTANCE Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic Gram-negative bacterium that causes severe infection in immune-weakened individuals, especially patients with cystic fibrosis, burn wounds, cancer, or chronic obstructive pulmonary disease (COPD). Treating P. aeruginosa infection with conventional antibiotics is difficult due to its intrinsic multidrug resistance. Engineered bacteriophage therapeutics, acting as highly viable alternative treatments of multidrug-resistant (MDR) bacterial infections, have great potential to break through the evolutionary constraints of bacteriophages to create next-generation antimicrobials. Here, we found that engineered anti-CRISPR (Acr) gene-containing phages (EATPs, eat Pseudomonas) display effective antibacterial activities along with high safety against clinically isolated MDR P. aeruginosa through an anti-CRISPR immunity mechanism in vitro and in vivo. EATPs also significantly suppressed the antibiotic resistance caused by a highly antibiotic-resistant PA14 infection, which may provide novel insight toward developing bacteriophages to treat patients with intractable bacterial infections, especially infections by clinically MDR bacteria that are unresponsive to conventional antibiotic therapy.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yongan Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinrong Hu
- West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qun Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Chuanmin Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Biao Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Pan Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, Shatin, Hong Kong SAR
| | - Khan Nadeem
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
6
|
Phage resistance-mediated trade-offs with antibiotic resistance in Salmonella Typhimurium. Microb Pathog 2022; 171:105732. [PMID: 36002113 DOI: 10.1016/j.micpath.2022.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
This study was designed to evaluate the trade-offs between phage resistance and antibiotic resistance of Salmonella Typhimurium (STKCCM) exposed to bacteriophage PBST10 and antibiotics (ampicillin and ciprofloxacin). STKCCM was serially exposed to control (no PBST10/antibiotic added), phage alone, ampicillin alone, ampicillin with phage, ciprofloxacin alone, and ciprofloxacin with phage for 8 days at 37 °C. The treated cells were used to evaluate the antibiotic susceptibility, β-lactamase activity, relative fitness, gene expression, and phage-resistance frequency. The antibiotic susceptibility of STKCCM to ampicillin was increased in the presence of phages. The β-lactamase activity was significantly increased in the phage alone and ampicillin with phage. The combination treatments of phages and antibiotics resulted in a greater fitness cost. The efflux pump-associated tolC was suppressed in STKCCM exposed to phage alone. The highest phage-resistance frequencies were observed at phage alone, followed by ampicillin with phage and ciprofloxacin with phage. The tolC-suppressed cells showed the enhanced antibiotic susceptibility. This study provides useful information for designing effective phage-antibiotic combination treatments. The evolutionary trade-offs of phage-resistant bacteria with antibiotic resistance might be good targets for controlling antibiotic-resistant bacteria.
Collapse
|
7
|
Comparative Genomics of Escherichia coli Serotype O55:H7 Using Complete Closed Genomes. Microorganisms 2022; 10:microorganisms10081545. [PMID: 36013963 PMCID: PMC9413875 DOI: 10.3390/microorganisms10081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli O55:H7 is a human foodborne pathogen and is recognized as the progenitor strain of E. coli O157:H7. While this strain is important from a food safety and genomic evolution standpoint, much of the genomic diversity of E. coli O55:H7 has been demonstrated using draft genomes. Here, we combine the four publicly available E. coli O55:H7 closed genomes with six newly sequenced closed genomes to provide context to this strain’s genomic diversity. We found significant diversity within the 10 E. coli O55:H7 strains that belonged to three different sequence types. The prophage content was about 10% of the genome, with three prophages common to all strains and seven unique to one strain. Overall, there were 492 insertion sequences identified within the six new sequence strains, with each strain on average containing 75 insertions (range 55 to 114). A total of 31 plasmids were identified between all isolates (range 1 to 6), with one plasmid (pO55) having an identical phylogenetic tree as the chromosome. The release and comparison of these closed genomes provides new insight into E. coli O55:H7 diversity and its ability to cause disease in humans.
Collapse
|
8
|
Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11070915. [PMID: 35884169 PMCID: PMC9311878 DOI: 10.3390/antibiotics11070915] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
With the increasing global threat of antibiotic resistance, there is an urgent need to develop new effective therapies to tackle antibiotic-resistant bacterial infections. Bacteriophage therapy is considered as a possible alternative over antibiotics to treat antibiotic-resistant bacteria. However, bacteria can evolve resistance towards bacteriophages through antiphage defense mechanisms, which is a major limitation of phage therapy. The antiphage mechanisms target the phage life cycle, including adsorption, the injection of DNA, synthesis, the assembly of phage particles, and the release of progeny virions. The non-specific bacterial defense mechanisms include adsorption inhibition, superinfection exclusion, restriction-modification, and abortive infection systems. The antiphage defense mechanism includes a clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system. At the same time, phages can execute a counterstrategy against antiphage defense mechanisms. However, the antibiotic susceptibility and antibiotic resistance in bacteriophage-resistant bacteria still remain unclear in terms of evolutionary trade-offs and trade-ups between phages and bacteria. Since phage resistance has been a major barrier in phage therapy, the trade-offs can be a possible approach to design effective bacteriophage-mediated intervention strategies. Specifically, the trade-offs between phage resistance and antibiotic resistance can be used as therapeutic models for promoting antibiotic susceptibility and reducing virulence traits, known as bacteriophage steering or evolutionary medicine. Therefore, this review highlights the synergistic application of bacteriophages and antibiotics in association with the pleiotropic trade-offs of bacteriophage resistance.
Collapse
|
9
|
de Sousa KCM, Gutiérrez R, Yahalomi D, Shalit T, Markus B, Nachum-Biala Y, Hawlena H, Marcos-Hadad E, Hazkani-Covo E, de Rezende Neves HH, Covo S, Harrus S. Genomic structural plasticity of rodent-associated Bartonella in nature. Mol Ecol 2022; 31:3784-3797. [PMID: 35620948 PMCID: PMC9540758 DOI: 10.1111/mec.16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
Rodent‐associated Bartonella species have shown a remarkable genetic diversity and pathogenic potential. To further explore the extent of the natural intraspecific genomic variation and its potential role as an evolutionary driver, we focused on a single genetically diverse Bartonella species, Bartonella krasnovii, which circulates among gerbils and their associated fleas. Twenty genomes from 16 different B. krasnovii genotypes were fully characterized through a genome sequencing assay (using short and long read sequencing), pulse field gel electrophoresis (PFGE), and PCR validation. Genomic analyses were performed in comparison to the B. krasnovii strain OE 1–1. While, single nucleotide polymorphism represented only a 0.3% of the genome variation, structural diversity was identified in these genomes, with an average of 51 ± 24 structural variation (SV) events per genome. Interestingly, a large proportion of the SVs (>40%) was associated with prophages. Further analyses revealed that most of the SVs, and prophage insertions were found at the chromosome replication termination site (ter), suggesting this site as a plastic zone of the B. krasnovii chromosome. Accordingly, six genomes were found to be unbalanced, and essential genes near the ter showed a shift between the leading and lagging strands, revealing the SV effect on these genomes. In summary, our findings demonstrate the extensive genomic diversity harbored by wild B. krasnovii strains and suggests that its diversification is initially promoted by structural changes, probably driven by phages. These events may constantly feed the system with novel genotypes that ultimately lead to inter‐ and intraspecies competition and adaptation.
Collapse
Affiliation(s)
| | - Ricardo Gutiérrez
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel.,National Reference Center for Bacteriology. Costa Rican Institute for Research and Teaching in Nutrition and Health (INCIENSA)
| | - Dayana Yahalomi
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Shalit
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Barak Markus
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yaarit Nachum-Biala
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Evgeniya Marcos-Hadad
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, Open University of Israel, Raanana, Israel
| | | | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shimon Harrus
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel.,National Reference Center for Bacteriology. Costa Rican Institute for Research and Teaching in Nutrition and Health (INCIENSA)
| |
Collapse
|
10
|
Campylobacter jejuni Developed the Resistance to Bacteriophage CP39 by Phase Variable Expression of 06875 Encoding the CGPTase. Viruses 2022; 14:v14030485. [PMID: 35336892 PMCID: PMC8949473 DOI: 10.3390/v14030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Bacteriophage (phage) is regarded as an antimicrobial alternative for Campylobacter in food production. However, the development of phage resistance to the host is a main concern for the phage application. This study characterized the phage CP39 and investigated the phage resistance of CP39 in Campylobacter jejuni NCTC12662. We determined that phage CP39 belonged to the Myoviridae family by the WGS and phylogenetic analysis. Phage CP39 was confirmed as a capsular polysaccharide (CPS)-dependent phage by primary C. jejuni phage typing. It was further confirmed that the phage could not be adsorbed by the acapsular mutant ΔkpsM but showed the same lytic ability in both the wild-type strain NCTC 12662 and the ΔmotA mutant lacking motile flagella filaments. We further determined that the 06875 gene encoding CDP-glycerol:poly (glycerophosphate) glycerophosphotransferase (CGPTase) in the CPS loci was related to phage CP39 adsorption by SNP analysis and observed a rapid development of phage resistance in NCTC 12662 during the phage infection. Furthermore, we observed a high mutation frequency of 06875 (32%), which randomly occurred in nine different sites in the gene according to colony PCR sequencing. The mutation of the 06875 gene could cause the phase variable expression of non-functional protein and allow the bacteria against the phage infection by modifying the CPS. Our study confirmed the 06875 gene responsible for the CPS-phage adsorption for the first time and demonstrated the phase variable expression as a main mechanism for the bacteria to defend phage CP39. Our study provided knowledge for the evolutionary adaption of bacteria against the bacteriophage, which could add more information to understand the phage resistance mechanism before applying in the industry.
Collapse
|
11
|
Schmidt AK, Fitzpatrick AD, Schwartzkopf CM, Faith DR, Jennings LK, Coluccio A, Hunt DJ, Michaels LA, Hargil A, Chen Q, Bollyky PL, Dorward DW, Wachter J, Rosa PA, Maxwell KL, Secor PR. A Filamentous Bacteriophage Protein Inhibits Type IV Pili To Prevent Superinfection of Pseudomonas aeruginosa. mBio 2022; 13:e0244121. [PMID: 35038902 PMCID: PMC8764522 DOI: 10.1128/mbio.02441-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in a variety of settings. Many P. aeruginosa isolates are infected by filamentous Pf bacteriophage integrated into the bacterial chromosome as a prophage. Pf virions can be produced without lysing P. aeruginosa. However, cell lysis can occur during superinfection, which occurs when Pf virions successfully infect a host lysogenized by a Pf prophage. Temperate phages typically encode superinfection exclusion mechanisms to prevent host lysis by virions of the same or similar species. In this study, we sought to elucidate the superinfection exclusion mechanism of Pf phage. Initially, we observed that P. aeruginosa that survive Pf superinfection are transiently resistant to Pf-induced plaquing and are deficient in twitching motility, which is mediated by type IV pili (T4P). Pf utilize T4P as a cell surface receptor, suggesting that T4P are suppressed in bacteria that survive superinfection. We tested the hypothesis that a Pf-encoded protein suppresses T4P to mediate superinfection exclusion by expressing Pf proteins in P. aeruginosa and measuring plaquing and twitching motility. We found that the Pf protein PA0721, which we termed Pf superinfection exclusion (PfsE), promoted resistance to Pf infection and suppressed twitching motility by binding the T4P protein PilC. Because T4P play key roles in biofilm formation and virulence, the ability of Pf phage to modulate T4P via PfsE has implications in the ability of P. aeruginosa to persist at sites of infection. IMPORTANCE Pf bacteriophage (phage) are filamentous viruses that infect Pseudomonas aeruginosa and enhance its virulence potential. Pf virions can lyse and kill P. aeruginosa through superinfection, which occurs when an already infected cell is infected by the same or similar phage. Here, we show that a small, highly conserved Pf phage protein (PA0721, PfsE) provides resistance to superinfection by phages that use the type IV pilus as a cell surface receptor. PfsE does this by inhibiting assembly of the type IV pilus via an interaction with PilC. As the type IV pilus plays important roles in virulence, the ability of Pf phage to modulate its assembly has implications for P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Amelia K. Schmidt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | | | | | - Dominick R. Faith
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Laura K. Jennings
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Alison Coluccio
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Devin J. Hunt
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Lia A. Michaels
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - David W. Dorward
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jenny Wachter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Patricia A. Rosa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
12
|
Olson EG, Micciche AC, Rothrock MJ, Yang Y, Ricke SC. Application of Bacteriophages to Limit Campylobacter in Poultry Production. Front Microbiol 2022; 12:458721. [PMID: 35069459 PMCID: PMC8766974 DOI: 10.3389/fmicb.2021.458721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Campylobacter is a major foodborne pathogen with over a million United States cases a year and is typically acquired through the consumption of poultry products. The common occurrence of Campylobacter as a member of the poultry gastrointestinal tract microbial community remains a challenge for optimizing intervention strategies. Simultaneously, increasing demand for antibiotic-free products has led to the development of several alternative control measures both at the farm and in processing operations. Bacteriophages administered to reduce foodborne pathogens are one of the alternatives that have received renewed interest. Campylobacter phages have been isolated from both conventionally and organically raised poultry. Isolated and cultivated Campylobacter bacteriophages have been used as an intervention in live birds to target colonized Campylobacter in the gastrointestinal tract. Application of Campylobacter phages to poultry carcasses has also been explored as a strategy to reduce Campylobacter levels during poultry processing. This review will focus on the biology and ecology of Campylobacter bacteriophages in poultry production followed by discussion on current and potential applications as an intervention strategy to reduce Campylobacter occurrence in poultry production.
Collapse
Affiliation(s)
- Elena G. Olson
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrew C. Micciche
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael J. Rothrock
- Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
13
|
Sørensen MCH, Gencay YE, Fanger F, Chichkova MAT, Mazúrová M, Klumpp J, Nielsen EM, Brøndsted L. Identification of Novel Phage Resistance Mechanisms in Campylobacter jejuni by Comparative Genomics. Front Microbiol 2022; 12:780559. [PMID: 34970240 PMCID: PMC8713573 DOI: 10.3389/fmicb.2021.780559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
Phages infecting Campylobacter jejuni are considered a promising intervention strategy at broiler farms, yet phage sensitivity of naturally occurring poultry isolates is not well studied. Here, we investigated phage sensitivity and identified resistance mechanisms of C. jejuni strains originating from Danish broilers belonging to the most prevalent MLST (ST) types. Determining plaque formation of 51 phages belonging to Fletchervirus or Firehammervirus showed that 21 out of 31 C. jejuni strains were susceptible to at least one phage. While C. jejuni ST-21 strains encoded the common phase variable O-methyl phosphoramidate (MeOPN) receptor of the Fletchervirus and were only infected by these phages, ST-45 strains did not encode this receptor and were exclusively infected by Firehammervirus phages. To identify internal phage resistance mechanism in ST-21 strains, we performed comparative genomics of two strains, CAMSA2002 sensitive to almost all Fletchervirus phages and CAMSA2038, resistant to all 51 phages. The strains encoded diverse clustered regularly interspaced short palindromic repeats (CRISPR) spacers but none matched the tested phages. Sequence divergence was also observed in a predicted SspE homolog and putative restriction modification systems including a methyl-specific McrBC endonuclease. Furthermore, when mcrB was deleted, CAMSA2038 became sensitive to 17 out of 43 phages, three being Firehammervirus phages that otherwise did not infect any ST-21 strains. Yet, 16 phages demonstrated significantly lower efficiencies of plating on the mcrB mutant suggesting additional resistance mechanism still restricting phage propagation in CAMSA2038. Thus, our work demonstrates that C. jejuni isolates originating from broilers may have acquired several resistance mechanisms to successfully prevent phage infection in their natural habitat.
Collapse
Affiliation(s)
- Martine C H Sørensen
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yilmaz Emre Gencay
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Florian Fanger
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mariana A T Chichkova
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mária Mazúrová
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jochen Klumpp
- Institute for Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Eva M Nielsen
- Foodborne Infections, Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lone Brøndsted
- Food Safety and Zoonoses, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
14
|
Fitzgerald SF, Lupolova N, Shaaban S, Dallman TJ, Greig D, Allison L, Tongue SC, Evans J, Henry MK, McNeilly TN, Bono JL, Gally DL. Genome structural variation in Escherichia coli O157:H7. Microb Genom 2021; 7. [PMID: 34751643 PMCID: PMC8743559 DOI: 10.1099/mgen.0.000682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human zoonotic pathogen Escherichia coli O157:H7 is defined by its extensive prophage repertoire including those that encode Shiga toxin, the factor responsible for inducing life-threatening pathology in humans. As well as introducing genes that can contribute to the virulence of a strain, prophage can enable the generation of large-chromosomal rearrangements (LCRs) by homologous recombination. This work examines the types and frequencies of LCRs across the major lineages of the O157:H7 serotype. We demonstrate that LCRs are a major source of genomic variation across all lineages of E. coli O157:H7 and by using both optical mapping and Oxford Nanopore long-read sequencing prove that LCRs are generated in laboratory cultures started from a single colony and that these variants can be recovered from colonized cattle. LCRs are biased towards the terminus region of the genome and are bounded by specific prophages that share large regions of sequence homology associated with the recombinational activity. RNA transcriptional profiling and phenotyping of specific structural variants indicated that important virulence phenotypes such as Shiga-toxin production, type-3 secretion and motility can be affected by LCRs. In summary, E. coli O157:H7 has acquired multiple prophage regions over time that act to continually produce structural variants of the genome. These findings raise important questions about the significance of this prophage-mediated genome contingency to enhance adaptability between environments.
Collapse
Affiliation(s)
- Stephen F Fitzgerald
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Nadejda Lupolova
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Sharif Shaaban
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Timothy J Dallman
- Gastrointestinal Bacterial Reference Unit, 61 Colindale Avenue, Public Health England, NW9 5EQ London, UK
| | - David Greig
- Gastrointestinal Bacterial Reference Unit, 61 Colindale Avenue, Public Health England, NW9 5EQ London, UK
| | - Lesley Allison
- Scottish E. coli O157/VTEC Reference Laboratory, Department of Laboratory Medicine, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4SA, UK
| | - Sue C Tongue
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Judith Evans
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Madeleine K Henry
- Epidemiology Research Unit (Inverness), Department of Veterinary and Animal Science, Northern Faculty, Scotland's Rural College (SRUC), Scotland, IV2 5NA, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 OPZ, UK
| | - James L Bono
- United States Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, Nebraska, USA
| | - David L Gally
- Division of Infection and Immunity, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
15
|
Low CX, Tan LTH, Ab Mutalib NS, Pusparajah P, Goh BH, Chan KG, Letchumanan V, Lee LH. Unveiling the Impact of Antibiotics and Alternative Methods for Animal Husbandry: A Review. Antibiotics (Basel) 2021; 10:578. [PMID: 34068272 PMCID: PMC8153128 DOI: 10.3390/antibiotics10050578] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Since the 1950s, antibiotics have been used in the field of animal husbandry for growth promotion, therapy and disease prophylaxis. It is estimated that up to 80% of the antibiotics produced by the pharmaceutical industries are used in food production. Most of the antibiotics are used as feed additives at sub-therapeutic levels to promote growth. However, studies show the indiscriminate use of antibiotics has led to the emergence of multidrug-resistant pathogens that threaten both animal health and human health, including vancomycin-resistant Enterococcus (VRE), Methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae (CRE). This scenario is further complicated by the slow progress in achieving scientific breakthroughs in uncovering novel antibiotics following the 1960s. Most of the pharmaceutical industries have long diverted research funds away from the field of antibiotic discovery to more lucrative areas of drug development. If this situation is allowed to continue, humans will return to the pre-antibiotics era and potentially succumb to huge health and economic consequences. Fortunately, studies investigating various alternatives to antibiotics use in livestock show promising results. These alternatives include the application of bacteriophages and phage derived peptidoglycan degrading enzymes, engineered peptides, egg yolk antibodies, probiotics, prebiotics and synbiotics, as well as quorum quenching molecules. Therefore, this review aims to discuss the use of growth-promoting antibiotics and their impact on livestock and provide insights on the alternative approaches for animal husbandry.
Collapse
Affiliation(s)
- Chuen Xian Low
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 50603, Malaysia
| | - Priyia Pusparajah
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhenjiang University, Hangzhou 310058, China
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| |
Collapse
|
16
|
Kittler S, Steffan S, Peh E, Plötz M. Phage Biocontrol of Campylobacter: A One Health Approach. Curr Top Microbiol Immunol 2021; 431:127-168. [PMID: 33620651 DOI: 10.1007/978-3-030-65481-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human infections by Campylobacter species are among the most reported bacterial gastrointestinal diseases in the European Union and worldwide with severe outcomes in rare cases. Considering the transmission routes and farm animal reservoirs of these zoonotic pathogens, a comprehensive One Health approach will be necessary to reduce human infection rates. Bacteriophages are viruses that specifically infect certain bacterial genera, species, strains or isolates. Multiple studies have demonstrated the general capacity of phage treatments to reduce Campylobacter loads in the chicken intestine. However, phage treatments are not yet approved for extensive use in the agro-food industry in Europe. Technical inconvenience is mainly related to the efficacy of phages, depending on the optimal choice of phages and their combination, as well as application route, concentration and timing. Additionally, regulatory uncertainties have been a major concern for investment in commercial phage-based products. This review addresses the question as to how phages can be put into practice and can help to solve the issue of human campylobacteriosis in a sustainable One Health approach. By compiling the reported findings from the literature in a standardized manner, we enabled inter-experimental comparisons to increase our understanding of phage infection in Campylobacter spp. and practical on-farm studies. Further, we address some of the hurdles that still must be overcome before this new methodology can be adapted on an industrial scale. We envisage that phage treatment can become an integrated and standardized part of a multi-hurdle anti-bacterial strategy in food production. The last part of this chapter deals with some of the issues raised by legal authorities, bringing together current knowledge on Campylobacter-specific phages and the biosafety requirements for approval of phage treatment in the food industry.
Collapse
Affiliation(s)
- Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - Severin Steffan
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| |
Collapse
|
17
|
Zampara A, Sørensen MCH, Gencay YE, Grimon D, Kristiansen SH, Jørgensen LS, Kristensen JR, Briers Y, Elsser-Gravesen A, Brøndsted L. Developing Innolysins Against Campylobacter jejuni Using a Novel Prophage Receptor-Binding Protein. Front Microbiol 2021; 12:619028. [PMID: 33597938 PMCID: PMC7882524 DOI: 10.3389/fmicb.2021.619028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Campylobacter contaminated poultry remains the major cause of foodborne gastroenteritis worldwide, calling for novel antibacterials. We previously developed the concept of Innolysin composed of an endolysin fused to a phage receptor binding protein (RBP) and provided the proof-of-concept that Innolysins exert bactericidal activity against Escherichia coli. Here, we have expanded the Innolysin concept to target Campylobacter jejuni. As no C. jejuni phage RBP had been identified so far, we first showed that the H-fiber originating from a CJIE1-like prophage of C. jejuni CAMSA2147 functions as a novel RBP. By fusing this H-fiber to phage T5 endolysin, we constructed Innolysins targeting C. jejuni (Innolysins Cj). Innolysin Cj1 exerts antibacterial activity against diverse C. jejuni strains after in vitro exposure for 45 min at 20°C, reaching up to 1.30 ± 0.21 log reduction in CAMSA2147 cell counts. Screening of a library of Innolysins Cj composed of distinct endolysins for growth inhibition, allowed us to select Innolysin Cj5 as an additional promising antibacterial candidate. Application of either Innolysin Cj1 or Innolysin Cj5 on chicken skin refrigerated to 5°C and contaminated with C. jejuni CAMSA2147 led to 1.63 ± 0.46 and 1.18 ± 0.10 log reduction of cells, respectively, confirming that Innolysins Cj can kill C. jejuni in situ. The receptor of Innolysins Cj remains to be identified, however, the RBP component (H-fiber) recognizes a novel receptor compared to lytic phages binding to capsular polysaccharide or flagella. Identification of other unexplored Campylobacter phage RBPs may further increase the repertoire of new Innolysins Cj targeting distinct receptors and working as antibacterials against Campylobacter.
Collapse
Affiliation(s)
- Athina Zampara
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Grimon
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | | | | | | | - Yves Briers
- Department of Biotechnology, Ghent University, Ghent, Belgium
| | | | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Pereira C, Costa P, Pinheiro L, Balcão VM, Almeida A. Kiwifruit bacterial canker: an integrative view focused on biocontrol strategies. PLANTA 2021; 253:49. [PMID: 33502587 DOI: 10.1007/s00425-020-03549-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Phage-based biocontrol strategies can be an effective alternative to control Psa-induced bacterial canker of kiwifruit. The global production of kiwifruit has been seriously affected by Pseudomonas syringae pv. actinidiae (Psa) over the last decade. Psa damages both Actinidia chinensis var. deliciosa (green kiwifruit) but specially the susceptible Actinidia chinensis var. chinensis (gold kiwifruit), resulting in severe economic losses. Treatments for Psa infections currently available are scarce, involving frequent spraying of the kiwifruit plant orchards with copper products. However, copper products should be avoided since they are highly toxic and lead to the development of bacterial resistance to this metal. Antibiotics are also used in some countries, but bacterial resistance to antibiotics is a serious worldwide problem. Therefore, it is essential to develop new approaches for sustainable agriculture production, avoiding the emergence of resistant Psa bacterial strains. Attempts to develop and establish highly accurate approaches to combat and prevent the occurrence of bacterial canker in kiwifruit plants are currently under study, using specific viruses of bacteria (bacteriophages, or phages) to eliminate the Psa. This review discusses the characteristics of Psa-induced kiwifruit canker, Psa transmission pathways, prevention and control, phage-based biocontrol strategies as a new approach to control Psa in kiwifruit orchards and its advantages over other therapies, together with potential ways to bypass phage inactivation by abiotic factors.
Collapse
Affiliation(s)
- Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Costa
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Larindja Pinheiro
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- PhageLab - Laboratory of Biofilms and Bacteriophages, University of Sorocaba, Sorocaba, SP, CEP 18023-000, Brazil.
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
19
|
Abstract
Thermophilic Campylobacter, in particular Campylobacter jejuni, C. coli and C. lari are the main relevant Campylobacter species for human infections. Due to their high capacity of genetic exchange by horizontal gene transfer (HGT), rapid adaptation to changing environmental and host conditions contribute to successful spreading and persistence of these foodborne pathogens. However, extensive HGT can exert dangerous side effects for the bacterium, such as the incorporation of gene fragments leading to disturbed gene functions. Here we discuss mechanisms of HGT, notably natural transformation, conjugation and bacteriophage transduction and limiting regulatory strategies of gene transfer. In particular, we summarize the current knowledge on how the DNA macromolecule is exchanged between single cells. Mechanisms to stimulate and to limit HGT obviously coevolved and maintained an optimal balance. Chromosomal rearrangements and incorporation of harmful mutations are risk factors for survival and can result in drastic loss of fitness. In Campylobacter, the restricted recognition and preferential uptake of free DNA from relatives are mediated by a short methylated DNA pattern and not by a classical DNA uptake sequence as found in other bacteria. A class two CRISPR-Cas system is present but also other DNases and restriction-modification systems appear to be important for Campylobacter genome integrity. Several lytic and integrated bacteriophages have been identified, which contribute to genome diversity. Furthermore, we focus on the impact of gene transfer on the spread of antibiotic resistance genes (resistome) and persistence factors. We discuss remaining open questions in the HGT field, supposed to be answered in the future by current technologies like whole-genome sequencing and single-cell approaches.
Collapse
Affiliation(s)
- Julia Carolin Golz
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| |
Collapse
|
20
|
Premaratne A, Zhang H, Wang R, Chinivasagam N, Billington C. Phage Biotechnology to Mitigate Antimicrobial Resistance in Agriculture. SUSTAINABLE AGRICULTURE REVIEWS 2021. [DOI: 10.1007/978-3-030-58259-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Thomas C, Nothaft H, Yadav R, Fodor C, Alemka A, Oni O, Bell M, Rada B, Szymanski CM. Characterization of ecotin homologs from Campylobacter rectus and Campylobacter showae. PLoS One 2020; 15:e0244031. [PMID: 33378351 PMCID: PMC7773321 DOI: 10.1371/journal.pone.0244031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ecotin, first described in Escherichia coli, is a potent
inhibitor of a broad range of serine proteases including those typically
released by the innate immune system such as neutrophil elastase (NE). Here we
describe the identification of ecotin orthologs in various
Campylobacter species, including Campylobacter
rectus and Campylobacter showae residing in the
oral cavity and implicated in the development and progression of periodontal
disease in humans. To investigate the function of these ecotins in
vitro, the orthologs from C.
rectus and C. showae were
recombinantly expressed and purified from E.
coli. Using CmeA degradation/protection assays,
fluorescence resonance energy transfer and NE activity assays, we found that
ecotins from C. rectus and C.
showae inhibit NE, factor Xa and trypsin, but not the
Campylobacter jejuni serine protease HtrA or its ortholog
in E. coli, DegP. To further evaluate ecotin
function in vivo, an E. coli
ecotin-deficient mutant was complemented with the C.
rectus and C. showae
homologs. Using a neutrophil killing assay, we demonstrate that the low survival
rate of the E. coli ecotin-deficient mutant
can be rescued upon expression of ecotins from C.
rectus and C. showae. In
addition, the C. rectus and
C. showae ecotins partially compensate for
loss of N-glycosylation and increased protease susceptibility in the related
pathogen, Campylobacter jejuni, thus implicating a similar role
for these proteins in the native host to cope with the protease-rich environment
of the oral cavity.
Collapse
Affiliation(s)
- Cody Thomas
- Department of Microbiology and Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of
America
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Ruchi Yadav
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Christopher Fodor
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Abofu Alemka
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
| | - Oluwadamilola Oni
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Michael Bell
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Balázs Rada
- Department of Infectious Diseases, University of Georgia, Athens,
Georgia, United States of America
| | - Christine M. Szymanski
- Department of Microbiology and Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of
America
- Department of Biological Sciences, University of Alberta, Edmonton,
Alberta, Canada
- * E-mail:
| |
Collapse
|
22
|
Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, Maltese PE, Cristofoli F, De Antoni L, Beccari T, Dundar M, Bertelli M. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020024. [PMID: 33170167 PMCID: PMC8023132 DOI: 10.23750/abm.v91i13-s.10819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/21/2023]
Abstract
Phages are the obligate parasite of bacteria and have complex interactions with their hosts. Phages can live in, modify, and shape bacterial communities by bringing about changes in their abundance, diversity, physiology, and virulence. In addition, phages mediate lateral gene transfer, modify host metabolism and reallocate bacterially-derived biochemical compounds through cell lysis, thus playing an important role in ecosystem. Phages coexist and coevolve with bacteria and have developed several antidefense mechanisms in response to bacterial defense strategies against them. Phages owe their existence to their bacterial hosts, therefore they bring about alterations in their host genomes by transferring resistance genes and genes encoding toxins in order to improve the fitness of the hosts. Application of phages in biotechnology, environment, agriculture and medicines demands a deep insight into the myriad of phage-bacteria interactions. However, to understand their complex interactions, we need to know how unique phages are to their bacterial hosts and how they exert a selective pressure on the microbial communities in nature. Consequently, the present review focuses on phage biology with respect to natural selection of bacterial populations.
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | | | | | | | | | | | | | | | | | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy.
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Matteo Bertelli
- EBTNA-LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy; MAGI'S LAB, Rovereto (TN), Italy.
| |
Collapse
|
23
|
First Report of aacC5-aadA7Δ4 Gene Cassette Array and Phage Tail Tape Measure Protein on Class 1 Integrons of Campylobacter Species Isolated from Animal and Human Sources in Egypt. Animals (Basel) 2020; 10:ani10112067. [PMID: 33171625 PMCID: PMC7695199 DOI: 10.3390/ani10112067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Campylobacter species are among the major causes of bacterial foodborne infections. Here, we investigate, for the first time, class 1 integrons and associated gene cassettes among pan drug-resistant (PDR), extensively drug-resistant (XDR), and multidrug-resistant (MDR) Campylobacter species isolated from livestock animals and humans in Egypt. Our results revealed alarming PDR (2.55%) and inordinate XDR (68.94%) and MDR (28.5%) Campylobacter isolates. None of the examined isolates were pan-susceptible. The existence of a novel gene cassette array, namely aacC5-aadA7Δ4 and a putative phage tail tape measure protein on class 1 integrons of Campylobacter species is the most highlighted novelty of the current study. Evidence from this study showed the possibility of Campylobacter–bacteriophage interactions as well as treatment failure in animals and humans due to horizontal gene transfer mediated by class 1 integrons. Abstract Campylobacter species are common commensals in the gastrointestinal tract of livestock animals; thus, animal-to-human transmission occurs frequently. We investigated for the first time, class 1 integrons and associated gene cassettes among pan drug-resistant (PDR), extensively drug-resistant (XDR), and multidrug-resistant (MDR) Campylobacter species isolated from livestock animals and humans in Egypt. Campylobacter species were detected in 58.11% of the analyzed chicken samples represented as 67.53% Campylobacter jejuni(C. jejuni) and 32.47% Campylobacter coli (C. coli). C. jejuni isolates were reported in 51.42%, 74.28%, and 66.67% of examined minced meat, raw milk, and human stool samples, respectively. Variable antimicrobial resistance phenotypes; PDR (2.55%), XDR (68.94%), and MDR (28.5%) campylobacters were reported. Molecular analysis revealed that 97.36% of examined campylobacters were integrase gene-positive; all harbored the class 1 integrons, except one possessed an empty integron structure. DNA sequence analysis revealed the predominance of aadA (81.08%) and dfrA (67.56%) alleles accounting for resistance to aminoglycosides and trimethoprim, respectively. This is the first report of aacC5-aadA7Δ4 gene cassette array and a putative phage tail tape measure protein on class 1 integrons of Campylobacter isolates. Evidence from this study showed the possibility of Campylobacter–bacteriophage interactions and treatment failure in animals and humans due to horizontal gene transfer mediated by class 1 integrons.
Collapse
|
24
|
Sher AA, Jerome JP, Bell JA, Yu J, Kim HY, Barrick JE, Mansfield LS. Experimental Evolution of Campylobacter jejuni Leads to Loss of Motility, rpoN (σ54) Deletion and Genome Reduction. Front Microbiol 2020; 11:579989. [PMID: 33240235 PMCID: PMC7677240 DOI: 10.3389/fmicb.2020.579989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Evolution experiments in the laboratory have focused heavily on model organisms, often to the exclusion of clinically relevant pathogens. The foodborne bacterial pathogen Campylobacter jejuni belongs to a genus whose genomes are small compared to those of its closest genomic relative, the free-living genus Sulfurospirillum, suggesting genome reduction during the course of evolution to host association. In an in vitro experiment, C. jejuni serially passaged in rich medium in the laboratory exhibited loss of flagellar motility-an essential function for host colonization. At early time points the motility defect was often reversible, but after 35 days of serial culture, motility was irreversibly lost in most cells in 5 independently evolved populations. Population re-sequencing revealed disruptive mutations to genes in the flagellar transcriptional cascade, rpoN (σ54)-therefore disrupting the expression of the genes σ54 regulates-coupled with deletion of rpoN in all evolved lines. Additional mutations were detected in virulence-related loci. In separate in vivo experiments, we demonstrate that a phase variable (reversible) motility mutant carrying an adenine deletion within a homopolymeric tract resulting in truncation of the flagellar biosynthesis gene fliR was deficient for colonization in a C57BL/6 IL-10-/- mouse disease model. Re-insertion of an adenine residue partially restored motility and ability to colonize mice. Thus, a pathogenic C. jejuni strain was rapidly attenuated by experimental laboratory evolution and demonstrated genomic instability during this evolutionary process. The changes observed suggest C. jejuni is able to evolve in a novel environment through genome reduction as well as transition, transversion, and slip-strand mutations.
Collapse
Affiliation(s)
- Azam A. Sher
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
| | - John P. Jerome
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Julia A. Bell
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Julian Yu
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Hahyung Y. Kim
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Jeffrey E. Barrick
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Linda S. Mansfield
- Comparative Enteric Diseases Laboratory, East Lansing, MI, United States
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
25
|
Dai L, Sahin O, Grover M, Zhang Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl Res 2020; 223:76-88. [PMID: 32438073 PMCID: PMC7423705 DOI: 10.1016/j.trsl.2020.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022]
Abstract
Campylobacter is an enteric pathogen and a leading bacterial cause of diarrhea worldwide. It is widely distributed in food animal species and is transmitted to humans primarily through the foodborne route. While generally causing self-limited diarrhea in humans, Campylobacter may induce severe or systemic infections in immunocompromised or young/elderly patients, which often requires antibiotic therapy with the first-line antibiotics including fluoroquinolones and macrolides. Over the past decades, Campylobacter has acquired resistance to these clinically significant antibiotics, compromising the effectiveness of antibiotic treatments. To address this concern, many studies have been conducted to advance novel and alternative measures to control antibiotic-resistant Campylobacter in animal reservoirs and in the human host. Although some of these undertakings have yielded promising results, efficacious and reliable alternative approaches are yet to be developed. In this review article, we will describe Campylobacter-associated disease spectrums and current treatment options, discuss the state of antibiotic resistance and alternative therapies, and provide an evaluation of various approaches that are being developed to control Campylobacter infections in animal reservoirs and the human host.
Collapse
Affiliation(s)
- Lei Dai
- Departments of Veterinary Microbiology and Preventive Medicine
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States 50011
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota, United States 55902
| | - Qijing Zhang
- Departments of Veterinary Microbiology and Preventive Medicine.
| |
Collapse
|
26
|
Sieiro C, Areal-Hermida L, Pichardo-Gallardo Á, Almuiña-González R, de Miguel T, Sánchez S, Sánchez-Pérez Á, Villa TG. A Hundred Years of Bacteriophages: Can Phages Replace Antibiotics in Agriculture and Aquaculture? Antibiotics (Basel) 2020; 9:E493. [PMID: 32784768 PMCID: PMC7460141 DOI: 10.3390/antibiotics9080493] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Agriculture, together with aquaculture, supplies most of the foodstuffs required by the world human population to survive. Hence, bacterial diseases affecting either agricultural crops, fish, or shellfish not only cause large economic losses to producers but can even create food shortages, resulting in malnutrition, or even famine, in vulnerable populations. Years of antibiotic use in the prevention and the treatment of these infections have greatly contributed to the emergence and the proliferation of multidrug-resistant bacteria. This review addresses the urgent need for alternative strategies for the use of antibiotics, focusing on the use of bacteriophages (phages) as biocontrol agents. Phages are viruses that specifically infect bacteria; they are highly host-specific and represent an environmentally-friendly alternative to antibiotics to control and kill pathogenic bacteria. The information evaluated here highlights the effectiveness of phages in the control of numerous major pathogens that affect both agriculture and aquaculture, with special emphasis on scientific and technological aspects still requiring further development to establish phagotherapy as a real universal alternative to antibiotic treatment.
Collapse
Affiliation(s)
- Carmen Sieiro
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Lara Areal-Hermida
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Ángeles Pichardo-Gallardo
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Raquel Almuiña-González
- Department of Functional Biology and Health Sciences, Microbiology Area, University of Vigo, Lagoas-Marcosende, 36310 Vigo, Spain; (L.A.-H.); (Á.P.-G.); (R.A.-G.)
| | - Trinidad de Miguel
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| | - Sandra Sánchez
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydnay NSN 2006, Australia;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, University of Santiago de Compostela, 5706 Santiago de Compostela, Spain; (T.d.M.); (S.S.)
| |
Collapse
|
27
|
Abstract
Bacteriophages are the most abundant form of life on earth and are present everywhere. The total number of bacteriophages has been estimated to be 1032 virions. The main division of bacteriophages is based on the type of nucleic acid (DNA or RNA) and on the structure of the capsid. Due to the significant increase in the number of multi-drug-resistant bacteria, bacteriophages could be a useful tool as an alternative to antibiotics in experimental therapies to prevent and to control bacterial infections in people and animals. The aim of this review was to discuss the history of phage therapy as a replacement for antibiotics, in response to EU regulations prohibiting the use of antibiotics in livestock, and to present current examples and results of experimental phage treatments in comparison to antibiotics. The use of bacteriophages to control human infections has had a high success rate, especially in mixed infections caused mainly by Staphylococcus, Pseudomonas, Enterobacter, and Enterococcus. Bacteriophages have also proven to be an effective tool in experimental treatments for combating diseases in livestock.
Collapse
|
28
|
Hooton S, D'Angelantonio D, Hu Y, Connerton PL, Aprea G, Connerton IF. Campylobacter bacteriophage DA10: an excised temperate bacteriophage targeted by CRISPR-cas. BMC Genomics 2020; 21:400. [PMID: 32532247 PMCID: PMC7291426 DOI: 10.1186/s12864-020-06808-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Background Lytic bacteriophages that infect Campylobacter spp. have been utilized to develop therapeutic/decontamination techniques. However, the association of Campylobacter spp. and bacteriophages has been the focus of several strands of research aimed at understanding the complex relationships that have developed between predators and prey over evolutionary time. The activities of endogenous temperate bacteriophages have been used to evaluate genomic rearrangements and differential protein expression in host cells, and mechanisms of resistance to bacteriophage infection in campylobacters such as phase variation and CRISPR-mediated immunity. Results Temperate bacteriophage DA10 represents a novel excised and infective virus capable of replication in a restricted set of C. jejuni and C. coli hosts. Whole genome sequencing reveals that DA10 (35,379 bp) forms part of a novel group of temperate bacteriophages that have limited distribution among database host genome sequences. Analysis of potential host genomes reveals a robust response against DA10 and DA10-like bacteriophages is driven by CRISPR-mediated immunity with 75% of DA10 ORFs represented as ~ 30 bp spacer sequences in numerous Campylobacter Type II-C CRISPR arrays. Several DA10-like homologues have been identified in a small sub-set of C. jejuni and C. coli genome sequences (ranging from near complete integrated prophage sequences to fragments recognisable in the sequence read archive). Conclusions A complete intact DA10-like prophage in C. jejuni CJ677CC520 provides evidence that the associations between host and DA10-like bacteriophages are long-standing in evolutionary timescales. Extensive nucleotide substitution and loss can be observed in the integrated DA10-like prophage of CJ677CC520 compared to other relatives as observed through pairwise genome comparisons. Examining factors that have limited the population expansion of the prophage, while others appear to have thrived and prospered (Mu-like, CJIE-like, and lytic Campylobacter bacteriophages) will assist in identifying the underlying evolutionary processes in the natural environment.
Collapse
Affiliation(s)
- Steven Hooton
- School of Biosciences, Division of Microbiology Brewing and Biotechnology, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Daniela D'Angelantonio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Yang Hu
- School of Biosciences, Division of Microbiology Brewing and Biotechnology, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Phillippa L Connerton
- School of Biosciences, Division of Microbiology Brewing and Biotechnology, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Ian F Connerton
- School of Biosciences, Division of Microbiology Brewing and Biotechnology, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
29
|
Yu H, Elbediwi M, Zhou X, Shuai H, Lou X, Wang H, Li Y, Yue M. Epidemiological and Genomic Characterization of Campylobacter jejuni Isolates from a Foodborne Outbreak at Hangzhou, China. Int J Mol Sci 2020; 21:E3001. [PMID: 32344510 PMCID: PMC7215453 DOI: 10.3390/ijms21083001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Foodborne outbreaks caused by Campylobacter jejuni have become a significant public health problem worldwide. Applying genomic sequencing as a routine part of foodborne outbreak investigation remains in its infancy in China. We applied both traditional PFGE profiling and genomic investigation to understand the cause of a foodborne outbreak in Hangzhou in December 2018. METHOD A total of 43 fecal samples, including 27 sick patients and 16 canteen employees from a high school in Hangzhou city in Zhejiang province, were recruited. Routine real-time fluorescent PCR assays were used for scanning the potential infectious agents, including viral pathogens (norovirus, rotavirus, adenovirus, and astrovirus), and bacterial pathogens (Salmonella, Shigella, Campylobacter jejuni, Vibrio parahaemolyticus and Vibrio cholerae). Bacterial selection medium was used to isolate and identify the positive bacteria identified by molecular test. Pulsed field gel electrophoresis (PFGE), and next generation sequencing (NGS) were applied to fifteen recovered C. jejuni isolates to further understand the case linkage of this particular outbreak. Additionally, we retrieved reference genomes from the NCBI database and performed a comparative genomics analysis with the examined genomes produced in this study. RESULTS The analyzed samples were found to be negative for the queried viruses. Additionally, Salmonella, Shigella, Vibrio parahaemolyticus and Vibrio cholera were not detected. Fifteen C. jejuni strains were identified by the real-time PCR assay and bacterial selection medium. These C. jejuni strains were classified into two genetic profiles defined by the PFGE. Out of fifteen C. jejuni strains, fourteen have a unified consistent genotype belonging to ST2988, and the other strain belongs to ST8149, with a 66.7% similarity in comparison with the rest of the strains. Moreover, all fifteen strains harbored blaOXA-61 and tet(O), in addition to a chromosomal mutation in gyrA (T86I). The examined fourteen strains of ST2988 from CC354 clone group have very minimal genetic difference (3~66 SNPs), demonstrated by the phylogenomic investigation. CONCLUSION Both genomic investigation and PFGE profiling confirmed that C. jejuni ST2988, a new derivative from CC354, was responsible for the foodborne outbreak Illustrated in this study.
Collapse
Affiliation(s)
- Hua Yu
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China; (H.Y.); (X.L.); (H.W.)
| | - Mohammed Elbediwi
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; (M.E.); (Y.L.)
- Animal Health Research Institute, Agriculture Research Centre, Cairo 11865, Egypt
| | - Xiaohong Zhou
- Xiacheng Center for Disease Control and Prevention, Hangzhou 310003, China; (X.Z.); (H.S.)
| | - Huiqun Shuai
- Xiacheng Center for Disease Control and Prevention, Hangzhou 310003, China; (X.Z.); (H.S.)
| | - Xiuqin Lou
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China; (H.Y.); (X.L.); (H.W.)
| | - Haoqiu Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China; (H.Y.); (X.L.); (H.W.)
| | - Yan Li
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; (M.E.); (Y.L.)
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
30
|
The UCSC repeat browser allows discovery and visualization of evolutionary conflict across repeat families. Mob DNA 2020; 11:13. [PMID: 32266012 PMCID: PMC7110667 DOI: 10.1186/s13100-020-00208-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/10/2020] [Indexed: 01/12/2023] Open
Abstract
Background Nearly half the human genome consists of repeat elements, most of which are retrotransposons, and many of which play important biological roles. However repeat elements pose several unique challenges to current bioinformatic analyses and visualization tools, as short repeat sequences can map to multiple genomic loci resulting in their misclassification and misinterpretation. In fact, sequence data mapping to repeat elements are often discarded from analysis pipelines. Therefore, there is a continued need for standardized tools and techniques to interpret genomic data of repeats. Results We present the UCSC Repeat Browser, which consists of a complete set of human repeat reference sequences derived from annotations made by the commonly used program RepeatMasker. The UCSC Repeat Browser also provides an alignment from the human genome to these references, uses it to map the standard human genome annotation tracks, and presents all of them as a comprehensive interface to facilitate work with repetitive elements. It also provides processed tracks of multiple publicly available datasets of particular interest to the repeat community, including ChIP-seq datasets for KRAB Zinc Finger Proteins (KZNFs) – a family of proteins known to bind and repress certain classes of repeats. We used the UCSC Repeat Browser in combination with these datasets, as well as RepeatMasker annotations in several non-human primates, to trace the independent trajectories of species-specific evolutionary battles between LINE 1 retroelements and their repressors. Furthermore, we document at https://repeatbrowser.ucsc.edu how researchers can map their own human genome annotations to these reference repeat sequences. Conclusions The UCSC Repeat Browser allows easy and intuitive visualization of genomic data on consensus repeat elements, circumventing the problem of multi-mapping, in which sequencing reads of repeat elements map to multiple locations on the human genome. By developing a reference consensus, multiple datasets and annotation tracks can easily be overlaid to reveal complex evolutionary histories of repeats in a single interactive window. Specifically, we use this approach to retrace the history of several primate specific LINE-1 families across apes, and discover several species-specific routes of evolution that correlate with the emergence and binding of KZNFs.
Collapse
|
31
|
Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 2020; 46:78-99. [DOI: 10.1080/1040841x.2020.1729695] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Luís D. R. Melo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hugo Oliveira
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Diana P. Pires
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Krystyna Dabrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Joana Azeredo
- CEB – Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
32
|
Ghatak S, He Y, Reed S, Irwin P. Comparative Genomic Analysis of a Multidrug-Resistant Campylobacter jejuni Strain YH002 Isolated from Retail Beef Liver. Foodborne Pathog Dis 2020; 17:576-584. [PMID: 32077758 DOI: 10.1089/fpd.2019.2770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide. In this study, we report the comparative genomic and functional characteristics of C. jejuni YH002 recently isolated from retail beef liver. Whole-genome sequencing and annotation of the strain revealed novel genetic features, including an integrated intact phage element, multiple antimicrobial resistance (AMR) genes, virulence factors, and a Phd-Doc type toxin-antitoxin (TA) system. Phenotypic tests of AMR showed that C. jejuni YH002 was resistant to amoxicillin and tetracycline, which correlates with the AMR genes found in the strain. Comparative analysis of cell motility at genotypic and phenotypic levels identified discernible patterns of amino acid changes, which could explain the variations of motility among C. jejuni strains. Together, these results provide important clues to the genetic mechanisms of AMR and cell motility in C. jejuni. The finding of a Phd-Doc TA system in the genome of C. jejuni YH002 is the first report of this TA system in Campylobacter spp.
Collapse
Affiliation(s)
- Sandeep Ghatak
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, India
| | - Yiping He
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania
| | - Sue Reed
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania
| | - Peter Irwin
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania
| |
Collapse
|
33
|
Flaujac Lafontaine GM, Richards PJ, Connerton PL, O’Kane PM, Ghaffar NM, Cummings NJ, Fish NM, Connerton IF. Prebiotic Driven Increases in IL-17A Do Not Prevent Campylobacter jejuni Colonization of Chickens. Front Microbiol 2020; 10:3030. [PMID: 32010094 PMCID: PMC6972505 DOI: 10.3389/fmicb.2019.03030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 01/13/2023] Open
Abstract
Worldwide Campylobacter jejuni is a leading cause of foodborne disease. Contamination of chicken meat with digesta from C. jejuni-positive birds during slaughter and processing is a key route of transmission to humans through the food chain. Colonization of chickens with C. jejuni elicits host innate immune responses that may be modulated by dietary additives to provide a reduction in the number of campylobacters colonizing the gastrointestinal tract and thereby reduce the likelihood of human exposure to an infectious dose. Here we report the effects of prebiotic galacto-oligosaccharide (GOS) on broiler chickens colonized with C. jejuni when challenged at either an early stage in development at 6 days of age or 20 days old when campylobacters are frequently detected in commercial flocks. GOS-fed birds had increased growth performance, but the levels of C. jejuni colonizing the cecal pouches were unchanged irrespective of the age of challenge. Dietary GOS modulated the immune response to C. jejuni by increasing cytokine IL-17A expression at colonization. Correspondingly, reduced diversity of the cecal microbiota was associated with Campylobacter colonization in GOS-fed birds. In birds challenged at 6 days-old the reduction in microbial diversity was accompanied by an increase in the relative abundance of Escherichia spp. Whilst immuno-modulation of the Th17 pro-inflammatory response did not prevent C. jejuni colonization of the intestinal tract of broiler chickens, the study highlights the potential for combinations of prebiotics, and specific competitors (synbiotics) to engage with the host innate immunity to reduce pathogen burdens.
Collapse
Affiliation(s)
- Geraldine M. Flaujac Lafontaine
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Philip J. Richards
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Phillippa L. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Peter M. O’Kane
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Nacheervan M. Ghaffar
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Nicola J. Cummings
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Neville M. Fish
- Saputo Dairy UK, Dairy Crest Innovation Centre, Harper Adams University, Newport, United Kingdom
| | - Ian F. Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
34
|
|
35
|
Pinheiro LAM, Pereira C, Frazão C, Balcão VM, Almeida A. Efficiency of Phage φ6 for Biocontrol of Pseudomonas syringae pv. syringae: An in Vitro Preliminary Study. Microorganisms 2019; 7:E286. [PMID: 31450735 PMCID: PMC6780397 DOI: 10.3390/microorganisms7090286] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas syringae is a plant-associated bacterial species that has been divided into more than 60 pathovars, with the Pseudomonas syringae pv. syringae being the main causative agent of diseases in a wide variety of fruit trees. The most common treatments for biocontrol of P. syringae pv. syringae infections has involved copper derivatives and/or antibiotics. However, these treatments should be avoided due to their high toxicity to the environment and promotion of bacterial resistance. Therefore, it is essential to search for new approaches for controlling P. syringae pv. syringae. Phage therapy can be a useful alternative tool to the conventional treatments to control P. syringae pv. syringae infections in plants. In the present study, the efficacy of bacteriophage (or phage) φ6 (a commercially available phage) was evaluated in the control of P. syringae pv. syringae. As the plants are exposed to the natural variability of physical and chemical parameters, the influence of pH, temperature, solar radiation and UV-B irradiation on phage φ6 viability was also evaluated in order to develop an effective phage therapy protocol. The host range analysis revealed that the phage, besides its host (P. syringae pv. syringae), also infects the Pseudomonas syringae pv. actinidiae CRA-FRU 12.54 and P. syringae pv. actinidiae CRA-FRU 14.10 strains, not infecting strains from the other tested species. Both multiplicities of infection (MOIs) tested, 1 and 100, were effective to inactivate the bacterium, but the MOI 1 (maximum reduction of 3.9 log CFU/mL) was more effective than MOI 100 (maximum reduction of 2.6 log CFU/mL). The viability of phage φ6 was mostly affected by exposure to UV-B irradiation (decrease of 7.3 log PFU/mL after 8 h), exposure to solar radiation (maximum reduction of 2.1 PFU/mL after 6 h), and high temperatures (decrease of 8.5 PFU/mL after 6 days at 37 °C, but a decrease of only 2.0 log PFU/mL after 67 days at 15 °C and 25 °C). The host range, high bacterial control and low rates of development of phage-resistant bacterial clones (1.20 × 10-3) suggest that this phage can be used to control P. syringae pv. syringae infections in plants, but also to control infections by P. syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit. Although the stability of phage φ6 was affected by UV-B and solar radiation, this can be overcome by the application of phage suspensions at the end of the day or at night.
Collapse
Affiliation(s)
- Larindja A M Pinheiro
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carolina Frazão
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Victor M Balcão
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- PhageLab-Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, São Paulo, Brazil
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
36
|
Carrigy NB, Liang L, Wang H, Kariuki S, Nagel TE, Connerton IF, Vehring R. Spray-dried anti-Campylobacter bacteriophage CP30A powder suitable for global distribution without cold chain infrastructure. Int J Pharm 2019; 569:118601. [PMID: 31394183 DOI: 10.1016/j.ijpharm.2019.118601] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 11/17/2022]
Abstract
Campylobacter jejuni is a leading cause of foodborne illness globally. In this study, a spray drying and packaging process was developed to produce a thermally-stable dry powder containing bacteriophages that retains biological activity against C. jejuni after long distance shipping at ambient temperature. Spray drying using a twin-fluid atomizer resulted in significantly less (p < 0.05) titer reduction than spray drying using a vibrating mesh nebulizer. The use of centrifugation and dilution of filtered bacteriophage lysate in the formulation step resulted in a significantly greater (p < 0.05) proportion of bacteriophages remaining active relative to use of no centrifugation and dilution. The spray-dried bacteriophage powder generated using leucine and trehalose as excipients was flowable, non-cohesive, and exhibited a high manufacturing yield. The powder retained its titer with no significant differences (p > 0.05) in biological activity after storage in suitable packaging for at least 3 weeks at room temperature and after ambient temperature shipping a total distance of approximately 19,800 km, including with a 38 °C temperature excursion. The bacteriophage powder therefore appears suitable for global distribution without the need for cold chain infrastructure.
Collapse
Affiliation(s)
- Nicholas B Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Lu Liang
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenyan Medical Research Institute, Nairobi, Kenya
| | | | - Ian F Connerton
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada.
| |
Collapse
|
37
|
Effects of antibiotic resistance (AR) and microbiota shifts on Campylobacter jejuni-mediated diseases. Anim Health Res Rev 2019; 18:99-111. [PMID: 29665882 DOI: 10.1017/s1466252318000014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Campylobacter jejuni is an important zoonotic pathogen recently designated a serious antimicrobial resistant (AR) threat. While most patients with C. jejuni experience hemorrhagic colitis, serious autoimmune conditions can follow including inflammatory bowel disease (IBD) and the acute neuropathy Guillain Barré Syndrome (GBS). This review examines inter-relationships among factors mediating C. jejuni diarrheal versus autoimmune disease especially AR C. jejuni and microbiome shifts. Because both susceptible and AR C. jejuni are acquired from animals or their products, we consider their role in harboring strains. Inter-relationships among factors mediating C. jejuni colonization, diarrheal and autoimmune disease include C. jejuni virulence factors and AR, the enteric microbiome, and host responses. Because AR C. jejuni have been suggested to affect the severity of disease, length of infections and propensity to develop GBS, it is important to understand how these interactions occur when strains are under selection by antimicrobials. More work is needed to elucidate host-pathogen interactions of AR C. jejuni compared with susceptible strains and how AR C. jejuni are maintained and evolve in animal reservoirs and the extent of transmission to humans. These knowledge gaps impair the development of effective strategies to prevent the emergence of AR C. jejuni in reservoir species and human populations.
Collapse
|
38
|
Clark C, Berry C, Demczuk W. Diversity of transducer-like proteins (Tlps) in Campylobacter. PLoS One 2019; 14:e0214228. [PMID: 30908544 PMCID: PMC6433261 DOI: 10.1371/journal.pone.0214228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/09/2019] [Indexed: 12/12/2022] Open
Abstract
Campylobacter transducer-like proteins (Tlps), also known as methyl-accepting chemotaxis proteins (MCPs), are associated with virulence as well as niche and host adaptation. While functional attributes of these proteins are being elucidated, little has been published regarding their sequence diversity or chromosomal locations and context, although they appear to define invertible regions within Campylobacter jejuni genomes. Genome assemblies for several species of Campylobacter were obtained from the publicly available NCBI repositories. Genomes from all isolates were obtained from GenBank and assessed for Tlp content, while data from isolates with complete, finished genomes were used to determine the identity of Tlps as well as the gene content of putative invertible elements (IEs) in C. jejuni (Cj) and C. coli (Cc). Tlps from several Campylobacter species were organized into a nomenclature system and novel Tlps were defined and named for Cj and Cc. The content of Tlps appears to be species-specific, though diverse within species. Cj and Cc carried overlapping, related Tlp content, as did the three C. fetus subspecies. Tlp1 was detected in 88% of Cj isolates and approximately 43% of Cc, and was found in a different conserved chromosomal location and genetic context in each species. Tlp1 and Tlp 3 predominated in genomes from Cj whereas other Tlps were detected less frequently. Tlp13 and Tlp20 predominated in genomes from Cc while some Cj/Cc Tlps were not detected at all. Tlps 2–4 and 11–20 were less frequently detected and many showed sequence heterogeneity that could affect substrate binding, signal transduction, or both. Tlps other than Tlp1, 7, and 10 had substantial sequence identity in the C-terminal half of the protein, creating chromosomal repeats potentially capable of mediating the inversion of large chromosomal DNA. Cj and Cc Tlps were both found in association with only 14 different genes, indicating a limited genomic context. In Cj these Tlps defined IEs that were for the most part found at a single chromosomal location and comprised of a conserved set of genes. Cc IEs were situated at very different chromosomal locations, had different structures than Cj IEs, and were occasionally incomplete, therefore not capable of inversion. Tlps may have a role in Campylobacter genome structure and dynamics as well as acting as chemoreceptors mediating chemotactic responses.
Collapse
Affiliation(s)
- Clifford Clark
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- * E-mail:
| | - Chrystal Berry
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Walter Demczuk
- Streptococci and STI Unit, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
39
|
Richards PJ, Connerton PL, Connerton IF. Phage Biocontrol of Campylobacter jejuni in Chickens Does Not Produce Collateral Effects on the Gut Microbiota. Front Microbiol 2019; 10:476. [PMID: 30930877 PMCID: PMC6423408 DOI: 10.3389/fmicb.2019.00476] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/25/2019] [Indexed: 02/02/2023] Open
Abstract
Bacteriophage biocontrol to reduce Campylobacter jejuni levels in chickens can reduce human exposure and disease acquired through the consumption of contaminated poultry products. Investigating changes in the chicken microbiota during phage treatment has not previously been undertaken but is crucial to understanding the system-wide effects of such treatments to establish a sustainable application. A phage cocktail containing two virulent Campylobacter phages was used to treat broiler chickens colonized with C. jejuni HPC5. Campylobacter counts from cecal contents were significantly reduced throughout the experimental period but were most effective 2 days post-treatment showing a reduction of 2.4 log10 CFU g-1 relative to mock-treated Campylobacter colonized controls. The administered phages replicated in vivo to establish stable populations. Bacteriophage predation of C. jejuni was not found to affect the microbiota structure but selectively reduced the relative abundance of C. jejuni without affecting other bacteria.
Collapse
Affiliation(s)
| | | | - Ian F. Connerton
- Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
40
|
Role of phage ϕ1 in two strains of Salmonella Rissen, sensitive and resistant to phage ϕ1. BMC Microbiol 2018; 18:208. [PMID: 30526475 PMCID: PMC6286511 DOI: 10.1186/s12866-018-1360-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
Background The study describes the Salmonella Rissen phage ϕ1 isolated from the ϕ1-sensitive Salmonella Rissen strain RW. The same phage was then used to select the resistant strain RRϕ1+, which can harbour or not ϕ1. Results Following this approach, we found that ϕ1, upon excision from RW cells with mitomycin, behaves as a temperate phage: lyses host cells and generates phage particles; instead, upon spontaneous excision from RRϕ1+ cells, it does not generate phage particles; causes loss of phage resistance; switches the O-antigen from the smooth to the rough phenotype, and favors the transition of Salmonella Rissen from the planktonic to the biofilm growth. The RW and RRϕ1+ strains differ by 10 genes; of these, only two (phosphomannomutase_1 and phosphomannomutase_2; both involved in the mannose synthesis pathway) display significant differences at the expression levels. This result suggests that phage resistance is associated with these two genes. Conclusions Phage ϕ1 displays the unusual property of behaving as template as well as lytic phage. This feature was used by the phage to modulate several phases of Salmonella Rissen lifestyle. Electronic supplementary material The online version of this article (10.1186/s12866-018-1360-z) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Liang L, Connerton IF. FlhF(T368A) modulates motility in the bacteriophage carrier state of Campylobacter jejuni. Mol Microbiol 2018; 110:616-633. [PMID: 30230632 PMCID: PMC6282759 DOI: 10.1111/mmi.14120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022]
Abstract
The carrier state is an alternative bacteriophage life cycle by which virulent bacteriophage can persist in association with host bacteria. Campylobacter jejuni carrier state strains exhibit growth phase dependent motility due to a truncated flagella phenotype. Genome sequencing identified a T368A substitution in the G3 domain of the SRP-like GTPase FlhF from C. jejuni PT14CP30A carrier state strains, which we hypothesized to be the cause of the complex motility phenotype. We have analyzed the role of this mutation in C. jejuni PT14 and demonstrated that flhF(T368A) leads to a large proportion of cells unable to synthesize flagella, while the remaining cells form a single flagellum at one pole leading to significantly reduced motility. The flhF(T368A) mutation causes a reduction in the phage adsorption constant, which leads to a decrease in infection efficiency. Down-regulation of σ28 and σ54 dependent flagellar genes were observed as responses to the flhF(T368A) mutation. FlhF(T368A) protein is impaired in GTPase activity and exhibits reduced stability. C. jejuni carrying flhF(T368A) are less sensitive to bacteriophage infection and formation of the carrier state. The acquisition of flhF(T368A) in carrier state strains acts to prevent super-infection and maintain association with the bacteriophage that provoked the interaction.
Collapse
Affiliation(s)
- Lu Liang
- Division of Food Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicestershireLE12 5RDUK
| | - Ian F. Connerton
- Division of Food Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicestershireLE12 5RDUK
| |
Collapse
|
42
|
Oechslin F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses 2018; 10:E351. [PMID: 29966329 PMCID: PMC6070868 DOI: 10.3390/v10070351] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/29/2022] Open
Abstract
Bacteriophage (phage) therapy, i.e., the use of viruses that infect bacteria as antimicrobial agents, is a promising alternative to conventional antibiotics. Indeed, resistance to antibiotics has become a major public health problem after decades of extensive usage. However, one of the main questions regarding phage therapy is the possible rapid emergence of phage-resistant bacterial variants, which could impede favourable treatment outcomes. Experimental data has shown that phage-resistant variants occurred in up to 80% of studies targeting the intestinal milieu and 50% of studies using sepsis models. Phage-resistant variants have also been observed in human studies, as described in three out of four clinical trials that recorded the emergence of phage resistance. On the other hand, recent animal studies suggest that bacterial mutations that confer phage-resistance may result in fitness costs in the resistant bacterium, which, in turn, could benefit the host. Thus, phage resistance should not be underestimated and efforts should be made to develop methodologies for monitoring and preventing it. Moreover, understanding and taking advantage of the resistance-induced fitness costs in bacterial pathogens is a potentially promising avenue.
Collapse
Affiliation(s)
- Frank Oechslin
- Department of Fundamental Microbiology (DMF), University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
43
|
Connerton PL, Richards PJ, Lafontaine GM, O'Kane PM, Ghaffar N, Cummings NJ, Smith DL, Fish NM, Connerton IF. The effect of the timing of exposure to Campylobacter jejuni on the gut microbiome and inflammatory responses of broiler chickens. MICROBIOME 2018; 6:88. [PMID: 29753324 PMCID: PMC5948730 DOI: 10.1186/s40168-018-0477-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/06/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Campylobacters are an unwelcome member of the poultry gut microbiota in terms of food safety. The objective of this study was to compare the microbiota, inflammatory responses, and zootechnical parameters of broiler chickens not exposed to Campylobacter jejuni with those exposed either early at 6 days old or at the age commercial broiler chicken flocks are frequently observed to become colonized at 20 days old. RESULTS Birds infected with Campylobacter at 20 days became cecal colonized within 2 days of exposure, whereas birds infected at 6 days of age did not show complete colonization of the sample cohort until 9 days post-infection. All birds sampled thereafter were colonized until the end of the study at 35 days (mean 6.1 log10 CFU per g of cecal contents). The cecal microbiota of birds infected with Campylobacter were significantly different to age-matched non-infected controls at 2 days post-infection, but generally, the composition of the cecal microbiota were more affected by bird age as the time post infection increased. The effects of Campylobacter colonization on the cecal microbiota were associated with reductions in the relative abundance of OTUs within the taxonomic family Lactobacillaceae and the Clostridium cluster XIVa. Specific members of the Lachnospiraceae and Ruminococcaceae families exhibit transient shifts in microbial community populations dependent upon the age at which the birds become colonized by C. jejuni. Analysis of ileal and cecal chemokine/cytokine gene expression revealed increases in IL-6, IL-17A, and Il-17F consistent with a Th17 response, but the persistence of the response was dependent on the stage/time of C. jejuni colonization that coincide with significant reductions in the abundance of Clostridium cluster XIVa. CONCLUSIONS This study combines microbiome data, cytokine/chemokine gene expression with intestinal villus, and crypt measurements to compare chickens colonized early or late in the rearing cycle to provide insights into the process and outcomes of Campylobacter colonization. Early colonization results in a transient growth rate reduction and pro-inflammatory response but persistent modification of the cecal microbiota. Late colonization produces pro-inflammatory responses with changes in the cecal microbiota that will endure in market-ready chickens.
Collapse
Affiliation(s)
- Phillippa L Connerton
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, LE12 5RD, UK
| | - Philip J Richards
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, LE12 5RD, UK
| | - Geraldine M Lafontaine
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, LE12 5RD, UK
| | - Peter M O'Kane
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, LE12 5RD, UK
| | - Nacheervan Ghaffar
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, LE12 5RD, UK
| | - Nicola J Cummings
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, LE12 5RD, UK
| | - Darren L Smith
- Applied Sciences, University of Northumbria, Newcastle upon Tyne, Nothumbria, NE1 8ST, UK
| | - Neville M Fish
- Dairy Crest Ltd, Claygate House, Littleworth Road, Esher, Surrey, KT10 9PN, UK
| | - Ian F Connerton
- Division of Food Sciences, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
44
|
Fernández L, Rodríguez A, García P. Phage or foe: an insight into the impact of viral predation on microbial communities. THE ISME JOURNAL 2018; 12:1171-1179. [PMID: 29371652 PMCID: PMC5932045 DOI: 10.1038/s41396-018-0049-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/24/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022]
Abstract
Since their discovery, bacteriophages have been traditionally regarded as the natural enemies of bacteria. However, recent advances in molecular biology techniques, especially data from "omics" analyses, have revealed that the interplay between bacterial viruses and their hosts is far more intricate than initially thought. On the one hand, we have become more aware of the impact of viral predation on the composition and genetic makeup of microbial communities thanks to genomic and metagenomic approaches. Moreover, data obtained from transcriptomic, proteomic, and metabolomic studies have shown that responses to phage predation are complex and diverse, varying greatly depending on the bacterial host, phage, and multiplicity of infection. Interestingly, phage exposure may alter different phenotypes, including virulence and biofilm formation. The complexity of the interactions between microbes and their viral predators is also evidenced by the link between quorum-sensing signaling pathways and bacteriophage resistance. Overall, new data increasingly suggests that both temperate and virulent phages have a positive effect on the evolution and adaptation of microbial populations. From this perspective, further research is still necessary to fully understand the interactions between phage and host under conditions that allow co-existence of both populations, reflecting more accurately the dynamics in natural microbial communities.
Collapse
Affiliation(s)
- Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
| |
Collapse
|
45
|
Khalifa L, Gelman D, Shlezinger M, Dessal AL, Coppenhagen-Glazer S, Beyth N, Hazan R. Defeating Antibiotic- and Phage-Resistant Enterococcus faecalis Using a Phage Cocktail in Vitro and in a Clot Model. Front Microbiol 2018. [PMID: 29541067 PMCID: PMC5835721 DOI: 10.3389/fmicb.2018.00326] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The deteriorating effectiveness of antibiotics is propelling researchers worldwide towards alternative techniques such as phage therapy: curing infectious diseases using viruses of bacteria called bacteriophages. In a previous paper, we isolated phage EFDG1, highly effective against both planktonic and biofilm cultures of one of the most challenging pathogenic species, the vancomycin-resistant Enterococcus (VRE). Thus, it is a promising phage to be used in phage therapy. Further experimentation revealed the emergence of a mutant resistant to EFDG1 phage: EFDG1r. This kind of spontaneous resistance to antibiotics would be disastrous occurrence, however for phage-therapy it is only a minor hindrance. We quickly and successfully isolated a new phage, EFLK1, which proved effective against both the resistant mutant EFDG1r and its parental VRE, Enterococcus faecalis V583. Furthermore, combining both phages in a cocktail produced an additive effect against E. faecalis V583 strains regardless of their antibiotic or phage-resistance profile. An analysis of the differences in genome sequence, genes, mutations, and tRNA content of both phages is presented. This work is a proof-of-concept of one of the most significant advantages of phage therapy, namely the ability to easily overcome emerging resistant bacteria.
Collapse
Affiliation(s)
- Leron Khalifa
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Gelman
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Shlezinger
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Axel Lionel Dessal
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shunit Coppenhagen-Glazer
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nurit Beyth
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronen Hazan
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
46
|
Gencay YE, Sørensen MCH, Wenzel CQ, Szymanski CM, Brøndsted L. Phase Variable Expression of a Single Phage Receptor in Campylobacter jejuni NCTC12662 Influences Sensitivity Toward Several Diverse CPS-Dependent Phages. Front Microbiol 2018; 9:82. [PMID: 29467727 PMCID: PMC5808241 DOI: 10.3389/fmicb.2018.00082] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
Campylobacter jejuni NCTC12662 is sensitive to infection by many Campylobacter bacteriophages. Here we used this strain to investigate the molecular mechanism behind phage resistance development when exposed to a single phage and demonstrate how phase variable expression of one surface component influences phage sensitivity against many diverse C. jejuni phages. When C. jejuni NCTC12662 was exposed to phage F207 overnight, 25% of the bacterial cells were able to grow on a lawn of phage F207, suggesting that resistance develops at a high frequency. One resistant variant, 12662R, was further characterized and shown to be an adsorption mutant. Plaque assays using our large phage collection showed that seven out of 36 diverse capsular polysaccharide (CPS)-dependent phages could not infect 12662R, whereas the remaining phages formed plaques on 12662R with reduced efficiencies. Analysis of the CPS composition of 12662R by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) showed a diminished signal for O-methyl phosphoramidate (MeOPN), a phase variable modification of the CPS. This suggested that the majority of the 12662R population did not express this phase variable modification in the CPS, indicating that MeOPN serves as a phage receptor in NCTC12662. Whole genome analysis of 12662R showed a switch in the length of the phase variable homopolymeric G tract of gene 06810, encoding a putative MeOPN-transferase located in the CPS locus, resulting in a non-functional protein. To confirm the role of 06810 in phage resistance development of NCTC12662, a 06810 knockout mutant in NCTC12662 was constructed and analyzed by HR-MAS NMR demonstrating the absence of MeOPN in the CPS of the mutant. Plaque assays using NCTC12662Δ06810 demonstrated that seven of our CPS-dependent Campylobacter phages are dependent on the presence of MeOPN for successful infection of C. jejuni, whereas the remaining 29 phages infect independently of MeOPN, although with reduced efficiencies. Our data indicate that CPS-dependent phages uses diverse mechanisms for their initial interaction with their C. jejuni host.
Collapse
Affiliation(s)
- Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Martine C H Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Cory Q Wenzel
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Christine M Szymanski
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
47
|
Clark CG, Chen CY, Berry C, Walker M, McCorrister SJ, Chong PM, Westmacott GR. Comparison of genomes and proteomes of four whole genome-sequenced Campylobacter jejuni from different phylogenetic backgrounds. PLoS One 2018; 13:e0190836. [PMID: 29293692 PMCID: PMC5749857 DOI: 10.1371/journal.pone.0190836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Whole genome sequencing (WGS) has been used to assess the phylogenetic relationships, virulence and metabolic differences, and the relationship between gene carriage and host or niche differentiation among populations of C. jejuni isolates. We previously characterized the presence and expression of CJIE4 prophage proteins in four C. jejuni isolates using WGS and comparative proteomics analysis, but the isolates were not assessed further. In this study we compare the closed, finished genome sequences of these isolates to the total proteome. Genomes of the four isolates differ in phage content and location, plasmid content, capsular polysaccharide biosynthesis loci, a type VI secretion system, orientation of the ~92 kb invertible element, and allelic differences. Proteins with 99% sequence identity can be differentiated using isobaric tags for relative and absolute quantification (iTRAQ) comparative proteomic methods. GO enrichment analysis and the type of artefacts produced in comparative proteomic analysis depend on whether proteins are encoded in only one isolate or common to all isolates, whether different isolates have different alleles of the proteins analyzed, whether conserved and variable regions are both present in the protein group analyzed, and on how the analysis is done. Several proteins encoded by genes with very high levels of sequence identity in all four isolates exhibited preferentially higher protein expression in only one of the four isolates, suggesting differential regulation among the isolates. It is possible to analyze comparative protein expression in more distantly related isolates in the context of WGS data, though the results are more complex to interpret than when isolates are clonal or very closely related. Comparative proteomic analysis produced log2 fold expression data suggestive of regulatory differences among isolates, indicating that it may be useful as a hypothesis generation exercise to identify regulated proteins and regulatory pathways for more detailed analysis.
Collapse
Affiliation(s)
- Clifford G. Clark
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- * E-mail:
| | - Chih-yu Chen
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Bioinformatics Core, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Chrystal Berry
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Matthew Walker
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stuart J. McCorrister
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Patrick M. Chong
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Garrett R. Westmacott
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
48
|
O’Kane PM, Connerton IF. Characterisation of Aerotolerant Forms of a Robust Chicken Colonizing Campylobacter coli. Front Microbiol 2017; 8:513. [PMID: 28396658 PMCID: PMC5366326 DOI: 10.3389/fmicb.2017.00513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022] Open
Abstract
Campylobacter contaminated poultry meat is a major source of human foodborne illness. Campylobacter coli strain OR12 is a robust colonizer of chickens that was previously shown to outcompete and displace other Campylobacter strains from the chicken's gastrointestinal tract. This strain is capable of aerobic growth on blood agar. Serial aerobic passage increased this aerotolerance as assessed by quantitative assays for growth and survival on solid media. Aerotolerance was also associated with increased peroxide stress resistance. Aerobic passage did not alter cellular morphology or motility or hinder the microaerobic growth rate. Colonization of broiler chickens by aerotolerant C. coli OR12 was significantly lower than the wild-type strain at 3 days after challenge but not by 7 days, suggesting adaptation had occurred. Bacteria recovered from chickens had retained their aerotolerance, indicating this trait is stable. Whole genome sequencing enabled comparison with the wild-type sequence. Twenty-three point mutations were present, none of which were in genes known to affect oxidative stress resistance. Insertions or deletions caused frame shifts in several genes including, phosphoglycerate kinase and the b subunit of pyruvate carboxylase that suggest modification of central and carbohydrate metabolism in response to aerobic growth. Other genes affected include those encoding putative carbonic anhydrase, motility accessory factor, filamentous haemagglutinin, and aminoacyl dipeptidase proteins. Aerotolerance has the potential to affect environmental success and survival. Increased environmental survival outside of the host intestinal tract may allow opportunities for transmission between hosts. Resistance to oxidative stress may equate to increased virulence by virtue of reduced susceptibility to oxidative free radicals produced by host immune responses. Finally, resistance to ambient atmospheric oxygen may allow increased survival on chicken skin, and therefore constitutes an increased risk to public health.
Collapse
Affiliation(s)
| | - Ian F. Connerton
- Division of Food Sciences, School of Biosciences, University of NottinghamSutton Bonington, UK
| |
Collapse
|
49
|
Clark CG, Berry C, Walker M, Petkau A, Barker DOR, Guan C, Reimer A, Taboada EN. Genomic insights from whole genome sequencing of four clonal outbreak Campylobacter jejuni assessed within the global C. jejuni population. BMC Genomics 2016; 17:990. [PMID: 27912729 PMCID: PMC5135748 DOI: 10.1186/s12864-016-3340-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/23/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Whole genome sequencing (WGS) is useful for determining clusters of human cases, investigating outbreaks, and defining the population genetics of bacteria. It also provides information about other aspects of bacterial biology, including classical typing results, virulence, and adaptive strategies of the organism. Cell culture invasion and protein expression patterns of four related multilocus sequence type 21 (ST21) C. jejuni isolates from a significant Canadian water-borne outbreak were previously associated with the presence of a CJIE1 prophage. Whole genome sequencing was used to examine the genetic diversity among these isolates and confirm that previous observations could be attributed to differential prophage carriage. Moreover, we sought to determine the presence of genome sequences that could be used as surrogate markers to delineate outbreak-associated isolates. RESULTS Differential carriage of the CJIE1 prophage was identified as the major genetic difference among the four outbreak isolates. High quality single-nucleotide variant (hqSNV) and core genome multilocus sequence typing (cgMLST) clustered these isolates within expanded datasets consisting of additional C. jejuni strains. The number and location of homopolymeric tract regions was identical in all four outbreak isolates but differed from all other C. jejuni examined. Comparative genomics and PCR amplification enabled the identification of large chromosomal inversions of approximately 93 kb and 388 kb within the outbreak isolates associated with transducer-like proteins containing long nucleotide repeat sequences. The 93-kb inversion was characteristic of the outbreak-associated isolates, and the gene content of this inverted region displayed high synteny with the reference strain. CONCLUSIONS The four outbreak isolates were clonally derived and differed mainly in the presence of the CJIE1 prophage, validating earlier findings linking the prophage to phenotypic differences in virulence assays and protein expression. The identification of large, genetically syntenous chromosomal inversions in the genomes of outbreak-associated isolates provided a unique method for discriminating outbreak isolates from the background population. Transducer-like proteins appear to be associated with the chromosomal inversions. CgMLST and hqSNV analysis also effectively delineated the outbreak isolates within the larger C. jejuni population structure.
Collapse
Affiliation(s)
- Clifford G. Clark
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2 Canada
| | - Chrystal Berry
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2 Canada
| | - Matthew Walker
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2 Canada
| | - Aaron Petkau
- Bioinformatics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2 Canada
| | - Dillon O. R. Barker
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4 Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Cai Guan
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2 Canada
| | - Aleisha Reimer
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2 Canada
| | - Eduardo N. Taboada
- Division of Enteric Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, AB T1J 3Z4 Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| |
Collapse
|
50
|
Lis L, Connerton IF. The Minor Flagellin of Campylobacter jejuni (FlaB) Confers Defensive Properties against Bacteriophage Infection. Front Microbiol 2016; 7:1908. [PMID: 27965643 PMCID: PMC5126078 DOI: 10.3389/fmicb.2016.01908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
A screen of bacteriophages infecting a panel of Campylobacter jejuni PT14 gene knock-out mutants identified a role for the minor flagellin encoded by the flaB gene, in the defense of the host against CP8unalikevirus bacteriophage CP_F1 infection. Inactivation of the flaB gene resulted in an increase in the susceptibility of PT14 cultures to infection by CP_F1 and an increase in bacteriophage yields. Infection of wild type PT14 with CP_F1 produces turbid plaques in bacterial lawns, from which 78% of the resistant isolates recovered exhibit either attenuation or complete loss of motility. CP_F1 produces clear plaques on the flaB mutant with no regrowth in the lysis zones. Complementation of the mutant restored overgrowth and the development of resistance at the expense of motility. Further analyses revealed an increase in bacteriophage adsorption constant of nearly 2-fold and burst-size 3-fold, relative to the wild type. Motility analysis showed no major reduction in swarming motility in the flaB mutant. Thus, we propose a new role for FlaB in the defense of campylobacters against bacteriophage infection.
Collapse
Affiliation(s)
- Lukas Lis
- PTC Phage Technology Center GmbH, Im Kompetenzzentrum BioSecurityBönen, Germany
- Division of Food Sciences, School of Biosciences, University of NottinghamLoughborough, UK
| | - Ian F. Connerton
- Division of Food Sciences, School of Biosciences, University of NottinghamLoughborough, UK
| |
Collapse
|