1
|
Sim MJW, Li B, Long EO. Peptide-specific natural killer cell receptors. OXFORD OPEN IMMUNOLOGY 2025; 6:iqaf003. [PMID: 40297637 PMCID: PMC12036969 DOI: 10.1093/oxfimm/iqaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Class I and II human leukocyte antigens (HLA-I and HLA-II) present peptide antigens for immunosurveillance by T cells. HLA molecules also form ligands for a plethora of innate, germline-encoded receptors. Many of these receptors engage HLA molecules in a peptide sequence independent manner, with binding sites outside the peptide binding groove. However, some receptors, typically expressed on natural killer (NK) cells, engage the HLA presented peptide directly. Remarkably, some of these receptors display exquisite specificity for peptide sequences, with the capacity to detect sequences conserved in pathogens. Here, we review evidence for peptide-specific NK cell receptors (PSNKRs) and discuss their potential roles in immunity.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Beining Li
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, United States of America
| |
Collapse
|
2
|
Voogd L, van den Broek RL, van Wolfswinkel M, Franken KLMC, Ruibal P, Jespers W, Leitner J, Steinberger P, van Westen GJP, Ottenhoff THM, Joosten SA. HLA-E/peptide complexes differentially interact with NKG2A/CD94 and T cell receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:595-605. [PMID: 40085431 PMCID: PMC12041767 DOI: 10.1093/jimmun/vkae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/17/2024] [Indexed: 03/16/2025]
Abstract
The virtually monomorphic antigen presentation molecule HLA-E can present self- and non-self peptides to the NKG2A/CD94 co-receptor inhibitory complex expressed on natural killer (NK) cells and to T cell receptors (TCRs) expressed on T cells. HLA-E presents self-peptides to NKG2A/CD94 to regulate tissue homeostasis, whereas HLA-E restricted T cells mediate regulatory and cytotoxic responses toward pathogen-infected cells. In this study, we directly compared HLA-E/peptide recognition and signaling between NKG2A/CD94 and 2 HLA-E restricted TCRs that can recognize self-peptides or identical peptide mimics from the viral UL40 protein of cytomegalovirus using position substituted peptide variants. We show that position 7 is critical for interaction with NKG2A/CD94, whereas position 8 is important for interaction with the TCRs. The Arginine at position 5 of these peptides is an essential residue for recognition by both receptors. Thus, NKG2A/CD94 and TCRs have different requirements for recognition of peptides presented in HLA-E.
Collapse
Affiliation(s)
- Linda Voogd
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco L van den Broek
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marjolein van Wolfswinkel
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees L M C Franken
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Paula Ruibal
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Willem Jespers
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Judith Leitner
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerard J P van Westen
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Zumwinkel M, Chirambo A, Zähnle M, Bürger M, Grieshober M, Romahn V, Mwandumba H, Stenger S. Polycytotoxic T cells mediate antimicrobial activity against intracellular Mycobacterium tuberculosis. Infect Immun 2025; 93:e0029724. [PMID: 39660897 PMCID: PMC11784352 DOI: 10.1128/iai.00297-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Protection against infections with intracellular bacteria requires the interaction of macrophages and T-lymphocytes, including CD8+ T cells. Recently, the expression of natural killer cell receptors NKG2A and NKG2C was introduced as markers of CD8+ T-cell subsets. The goal of this study was to functionally characterize human NKG2A and NKG2C-expressing T cells using the major pathogen Mycobacterium tuberculosis (Mtb) as a model organism. Sorted NKG2 populations were analyzed for their capacity to proliferate and degranulate and their intracellular expression of cytotoxic molecules. Cytokine release and the effect on bacterial growth were assessed after coculture of NKG2 populations with Mtb-infected macrophages. NKG2A+ T cells released higher levels of IFN-γ and IL-10, whereas NKG2C+ T cells released higher levels of IL-2, contained the greatest reservoir of intracellular granzyme B and showed a remarkable constitutive level of degranulation. Both subsets inhibited the intracellular growth of Mtb more efficiently than NKG2-negative CD8+ T cells. Antimicrobial activity of NKG2+ T cells was not associated with the release of cytokines or cytotoxic molecules. However, the frequency of polycytotoxic T cells (P-CTL), defined as CD8+ T cells co-expressing granzyme B, perforin, and granulysin, positively correlated with the ability of NKG2-expressing T cells to control Mtb-growth in macrophages. Our results highlight the potential of NKG2-expressing P-CTL to trigger the antibacterial activity of human macrophages. Targeting this population by preventive or therapeutic immune interventions could provide a novel strategy to combat severe infectious diseases such as tuberculosis.
Collapse
Affiliation(s)
- Marc Zumwinkel
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Aaron Chirambo
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Markus Zähnle
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Max Bürger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Mark Grieshober
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Vincent Romahn
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Henry Mwandumba
- Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
4
|
Bruton J, Hanke T. Exploitation of Unconventional CD8 T-Cell Responses Induced by Engineered Cytomegaloviruses for the Development of an HIV-1 Vaccine. Vaccines (Basel) 2025; 13:72. [PMID: 39852851 PMCID: PMC11769474 DOI: 10.3390/vaccines13010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/26/2025] Open
Abstract
After four decades of intensive research, traditional vaccination strategies for HIV-1 remain ineffective due to HIV-1's extraordinary genetic diversity and complex immune evasion mechanisms. Cytomegaloviruses (CMV) have emerged as a novel type of vaccine vector with unique advantages due to CMV persistence and immunogenicity. Rhesus macaques vaccinated with molecular clone 68-1 of RhCMV (RhCMV68-1) engineered to express simian immunodeficiency virus (SIV) immunogens elicited an unconventional major histocompatibility complex class Ib allele E (MHC-E)-restricted CD8+ T-cell response, which consistently protected over half of the animals against a highly pathogenic SIV challenge. The RhCMV68-1.SIV-induced responses mediated a post-infection replication arrest of the challenge virus and eventually cleared it from the body. These observations in rhesus macaques opened a possibility that MHC-E-restricted CD8+ T-cells could achieve similar control of HIV-1 in humans. The potentially game-changing advantage of the human CMV (HCMV)-based vaccines is that they would induce protective CD8+ T-cells persisting at the sites of entry that would be insensitive to HIV-1 evasion. In the RhCMV68-1-protected rhesus macaques, MHC-E molecules and their peptide cargo utilise complex regulatory mechanisms and unique transport patterns, and researchers study these to guide human vaccine development. However, CMVs are highly species-adapted viruses and it is yet to be shown whether the success of RhCMV68-1 can be translated into an HCMV ortholog for humans. Despite some safety concerns regarding using HCMV as a vaccine vector in humans, there is a vision of immune programming of HCMV to induce pathogen-tailored CD8+ T-cells effective against HIV-1 and other life-threatening diseases.
Collapse
Affiliation(s)
- Joseph Bruton
- Hertford College, University of Oxford, Oxford OX1 3BW, UK;
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
5
|
Gillespie GM, Quastel MN, McMichael AJ. HLA-E: Immune Receptor Functional Mechanisms Revealed by Structural Studies. Immunol Rev 2025; 329:e13434. [PMID: 39753525 PMCID: PMC11698700 DOI: 10.1111/imr.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
HLA-E is a nonclassical, nonpolymorphic, class Ib HLA molecule. Its primary function is to present a conserved nonamer peptide, termed VL9, derived from the signal sequence of classical MHC molecules to the NKG2x-CD94 receptors on NK cells and a subset of T lymphocytes. These receptors regulate the function of NK cells, and the importance of this role, which is conserved across mammalian species, probably accounts for the lack of genetic polymorphism. A second minor function is to present other, weaker binding, pathogen-derived peptides to T lymphocytes. Most of these peptides bind suboptimally to HLA-E, but this binding appears to be enabled by the relative stability of peptide-free, but receptive, HLA-E-β2m complexes. This, in turn, may favor nonclassical antigen processing that may be associated with bacteria infected cells. This review explores how the structure of HLA-E, bound to different peptides and then to NKG2-CD94 or T-cell receptors, relates to HLA-E cell biology and immunology. A detailed understanding of this molecule could open up opportunities for development of universal T-cell and NK-cell-based immunotherapies.
Collapse
MESH Headings
- Humans
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/chemistry
- Animals
- HLA-E Antigens
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Protein Binding
- Antigen Presentation
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/chemistry
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- Structure-Activity Relationship
- Peptides/chemistry
- Peptides/immunology
- Peptides/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/metabolism
- NK Cell Lectin-Like Receptor Subfamily D/chemistry
- NK Cell Lectin-Like Receptor Subfamily D/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/chemistry
- Protein Conformation
Collapse
Affiliation(s)
| | - Max N. Quastel
- Nuffield Department of Medicine, Center for Immuno‐OncologyUniversity of OxfordOxfordUK
| | - Andrew J. McMichael
- Nuffield Department of Medicine, Center for Immuno‐OncologyUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Joshi R, Sheth D, Beladiya J, Patel C, Solanki N, Dalal M, Kyada A, Patel SB. Novel Targets for the Development of Tuberculosis Vaccine. Curr Drug Discov Technol 2025; 22:e070624230860. [PMID: 38859789 DOI: 10.2174/0115701638285518240601075811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024]
Abstract
In underdeveloped nations, tuberculosis (TB) continues to be a major source of morbidity and mortality. The currently available vaccine against tuberculosis in endemic areas is mainly ineffective, which triggers the need for a clinically effective vaccine against tuberculosis. In the present review, we emphasized the impact of genetic variations in the BCG strains, which influence the efficacy of BCG vaccines. We also discussed the current status of BCG vaccines and their potential mechanisms on the modulation of B cells and, thereby, humoral immunity, which trigger immune responses against various intracellular pathogens. Further, we also elaborated upon the pre-clinical and clinical studies demonstrating the efficacy and safety of the vaccines. Moreover, we also presented the putative novel targets such as polysaccharide-induced antibodies for the protection against Mtb, PGRS domain as an important target for Humoral immunity, HLA-E pathway-Target strategy for new TB vaccine, Coronin-1a - Novel player for Mycobacterial survival, IRGM, IFN-I3, an autophagy inducer with Irgm1 serving as a core part in the Tuberculosis vaccine development.
Collapse
Affiliation(s)
- Rushika Joshi
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Devang Sheth
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Jayesh Beladiya
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Chirag Patel
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nilay Solanki
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Petlad, Anand, Gujarat, 388421, India
| | - Mittal Dalal
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Ashish Kyada
- Department of Pharmaceutical Sciences, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Sandip B Patel
- Department of Pharmacology, L.M. College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
7
|
Voogd L, Riou C, Scriba TJ, van Wolfswinkel M, van Meijgaarden KE, Franken KLMC, Wilkinson RJ, Ottenhoff THM, Joosten SA. HLA-E/ Mtb specific CD4 + and CD8 + T cells have a memory phenotype in individuals with TB infection. Front Immunol 2024; 15:1505329. [PMID: 39790998 PMCID: PMC11714851 DOI: 10.3389/fimmu.2024.1505329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025] Open
Abstract
Introduction Tuberculosis (TB) is the deadliest infectious disease worldwide and novel vaccines are urgently needed. HLA-E is a virtually monomorphic antigen presentation molecule and is not downregulated upon HIV co-infection. HLA-E restricted Mtb specific CD8+ T cells are present in the circulation of individuals with active TB (aTB) and Mtb infection (TBI) with or without HIV co-infection, making HLA-E restricted T cells interesting vaccination targets for TB. Methods Here, we performed in-depth phenotyping of HLA-E/Mtb specific and total T cell populations in individuals with TBI and in individuals with aTB or TBI and HIV using HLA-E/Mtb tetramers. Results and Discussion We show that HIV co-infection is the main driver in changing the memory distribution of HLA-E/Mtb specific CD4+ and CD8+ T cell subsets. HLA-E/Mtb specific CD4+ and CD8+ T cells were found to circulate with comparable frequencies in all individuals and displayed expression of KLRG1, PD-1 and 2B4 similar to that of total T cells. The presence of HLA-E/Mtb specific T cells in individuals with aTB and TBI highlights the potential of HLA-E as a vaccine target for TB.
Collapse
Affiliation(s)
- Linda Voogd
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Riou
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Marjolein van Wolfswinkel
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Krista E. van Meijgaarden
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kees L. M. C. Franken
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Robert J. Wilkinson
- Division of Medical Virology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
- Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Tom H. M. Ottenhoff
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Simone A. Joosten
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Murugesan G, Paterson RL, Kulkarni R, Ilkow V, Suckling RJ, Connolly MM, Karuppiah V, Pengelly R, Jadhav A, Donoso J, Heunis T, Bunjobpol W, Philips G, Ololade K, Kay D, Sarkar A, Barber C, Raj R, Perot C, Grant T, Treveil A, Walker A, Dembek M, Gibbs-Howe D, Hock M, Carreira RJ, Atkin KE, Dorrell L, Knox A, Leonard S, Salio M, Godinho LF. Viral sequence determines HLA-E-restricted T cell recognition of hepatitis B surface antigen. Nat Commun 2024; 15:10126. [PMID: 39578466 PMCID: PMC11584656 DOI: 10.1038/s41467-024-54378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
The non-polymorphic HLA-E molecule offers opportunities for new universal immunotherapeutic approaches to chronic infectious diseases. Chronic Hepatitis B virus (HBV) infection is driven in part by T cell dysfunction due to elevated levels of the HBV envelope (Env) protein hepatitis B surface antigen (HBsAg). Here we report the characterization of three genotypic variants of an HLA-E-binding HBsAg peptide, Env371-379, identified through bioinformatic predictions and verified by biochemical and cellular assays. Using a soluble affinity-enhanced T cell receptor (TCR) (a09b08)-anti-CD3 bispecific molecule to probe HLA-E presentation of the Env371-379 peptides, we demonstrate that only the most stable Env371-379 variant, L6I, elicits functional responses to a09b08-anti-CD3-redirected polyclonal T cells co-cultured with targets expressing endogenous HBsAg. Furthermore, HLA-E-Env371-379 L6I-specific CD8+ T cells are detectable in HBV-naïve donors and people with chronic HBV after in vitro priming. In conclusion, we provide evidence for HLA-E-mediated HBV Env peptide presentation, and highlight the effect of viral mutations on the stability and targetability of pHLA-E molecules.
Collapse
Affiliation(s)
| | | | - Rakesh Kulkarni
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Veronica Ilkow
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Mary M Connolly
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Robert Pengelly
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Archana Jadhav
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Jose Donoso
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Tiaan Heunis
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Gwilym Philips
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Kafayat Ololade
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Daniel Kay
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Anshuk Sarkar
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Claire Barber
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Ritu Raj
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Carole Perot
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Tressan Grant
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Agatha Treveil
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Andrew Walker
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Marcin Dembek
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Dawn Gibbs-Howe
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Miriam Hock
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Kate E Atkin
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Lucy Dorrell
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Andrew Knox
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Sarah Leonard
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Mariolina Salio
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Luis F Godinho
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK.
| |
Collapse
|
9
|
Weitzen M, Shahbazy M, Kapoor S, Caron E. Deciphering the HLA-E immunopeptidome with mass spectrometry: an opportunity for universal mRNA vaccines and T-cell-directed immunotherapies. Front Immunol 2024; 15:1442783. [PMID: 39301027 PMCID: PMC11410602 DOI: 10.3389/fimmu.2024.1442783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024] Open
Abstract
Advances in immunotherapy rely on targeting novel cell surface antigens, including therapeutically relevant peptide fragments presented by HLA molecules, collectively known as the actionable immunopeptidome. Although the immunopeptidome of classical HLA molecules is extensively studied, exploration of the peptide repertoire presented by non-classical HLA-E remains limited. Growing evidence suggests that HLA-E molecules present pathogen-derived and tumor-associated peptides to CD8+ T cells, positioning them as promising targets for universal immunotherapies due to their minimal polymorphism. This mini-review highlights recent developments in mass spectrometry (MS) technologies for profiling the HLA-E immunopeptidome in various diseases. We discuss the unique features of HLA-E, its expression patterns, stability, and the potential for identifying new therapeutic targets. Understanding the broad repertoire of actionable peptides presented by HLA-E can lead to innovative treatments for viral and pathogen infections and cancer, leveraging its monomorphic nature for broad therapeutic efficacy.
Collapse
Affiliation(s)
- Maya Weitzen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Mohammad Shahbazy
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Saketh Kapoor
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Etienne Caron
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Immuno-Oncology, Yale Center for Systems and Engineering Immunology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
10
|
Voogd L, van Wolfswinkel M, Satti I, White AD, Dijkman K, Gela A, van Meijgaarden KE, Franken KL, Marshall JL, Ottenhoff TH, Scriba TJ, McShane H, Sharpe SA, Verreck FA, Joosten SA. Mtb specific HLA-E restricted T cells are induced during Mtb infection but not after BCG administration in non-human primates and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609630. [PMID: 39253433 PMCID: PMC11383316 DOI: 10.1101/2024.08.26.609630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Novel vaccines targeting the world's deadliest pathogen Mycobacterium tuberculosis (Mtb) are urgently needed as the efficacy of the Bacillus Calmette-Guérin (BCG) vaccine in its current use is limited. HLA-E is a virtually monomorphic unconventional antigen presentation molecule and HLA-E restricted Mtb specific CD8+ T cells can control intracellular Mtb growth, making HLA-E a promising vaccine target for Mtb. In this study, we evaluated the frequency and phenotype of HLA-E restricted Mtb specific CD4+/CD8+ T cells in the circulation and bronchoalveolar lavage fluid of two independent non-human primate (NHP) studies and from humans receiving BCG either intradermally or mucosally. BCG vaccination followed by Mtb challenge in NHPs did not affect the frequency of circulating and local HLA-E/Mtb CD4+ and CD8+ T cells, and we saw the same in humans receiving BCG. HLA-E/Mtb T cell frequencies were significantly increased after Mtb challenge in unvaccinated NHPs, which was correlated with higher TB pathology. Together, HLA-E/Mtb restricted T cells are minimally induced by BCG in humans and rhesus macaques (RMs) but can be elicited after Mtb infection in unvaccinated RMs. These results give new insights into targeting HLA-E as a potential immune mechanism against TB.
Collapse
Affiliation(s)
- Linda Voogd
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein van Wolfswinkel
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Iman Satti
- The Jenner Institute, University of Oxford, Oxford, United Kingdom (UK)
| | | | - Karin Dijkman
- Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Anele Gela
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Krista E. van Meijgaarden
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees L.M.C. Franken
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Julia L. Marshall
- The Jenner Institute, University of Oxford, Oxford, United Kingdom (UK)
| | - Tom H.M. Ottenhoff
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Diseases and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, United Kingdom (UK)
| | | | | | - Simone A. Joosten
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Hwang JK, Marston DJ, Wrapp D, Li D, Tuyishime M, Brackenridge S, Rhodes B, Quastel M, Kapingidza AB, Gater J, Harner A, Wang Y, Rountree W, Ferrari G, Borrow P, McMichael AJ, Gillespie GM, Haynes BF, Azoitei ML. A high affinity monoclonal antibody against HLA-E-VL9 enhances natural killer cell anti-tumor killing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602401. [PMID: 39026709 PMCID: PMC11257447 DOI: 10.1101/2024.07.08.602401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Natural killer (NK) cells kill target cells following triggering via germline-encoded receptors interacting with target cell-expressed ligands (direct killing), or via antibody-dependent cellular cytotoxicity (ADCC) mediated by FcγRIIIa. NK cytotoxicity is modulated by signaling through activating or inhibitory receptors. A major checkpoint is mediated by the NK inhibitory receptor NKG2A/CD94 and its target cell ligand, HLA-E, which is complexed with HLA signal sequence-derived peptides termed VL9 (HLA-E-VL9). We have previously reported the isolation of a murine HLA-E-VL9-specific IgM antibody 3H4 and the generation of a higher affinity IgG version (3H4v3). Here we have used phage display library selection to generate a high affinity version of 3H4v3, called 3H4v31, with an ∼700 fold increase in binding affinity. We show using an HLA-E-VL9+ K562 tumor model that, in vitro, the addition of 3H4v31 to target cells increased direct killing of targets by CD16-negative NK cell line NK-92 and also mediated ADCC by NK-92 cells transfected with CD16. Moreover, ADCC by primary NK cells was also enhanced in vitro by 3H4v31. 3H4v31 was also able to bind and enhance target cell lysis of endogenously expressed HLA-E-VL9 on human cervical cancer and human pancreatic cancer cell lines. In vivo, 3H4v31 slowed the growth rate of HLA-E-VL9+ K562 tumors implanted into NOD/SCID/IL2rγ null mice compared to isotype control when injected with NK-92 cells intratumorally. Together, these data demonstrate that mAb 3H4v31 can enhance NK cell killing of HLA-E-VL9-expressing tumor cells in vitro by both direct killing activity and by ADCC. Moreover, mAb 3H4v31 can enhance NK cell control of tumor growth in vivo. We thus identify HLA-E-VL9 monoclonal antibodies as a promising novel anti-tumor immunotherapy. One Sentence Summary A high affinity monoclonal antibody against HLA-E-VL9 enhances natural killer cell anti-tumor killing by checkpoint inhibition and antibody dependent cellular cytotoxicity.
Collapse
|
12
|
Felgueres MJ, Esteso G, García-Jiménez ÁF, Dopazo A, Aguiló N, Mestre-Durán C, Martínez-Piñeiro L, Pérez-Martínez A, Reyburn HT, Valés-Gómez M. BCG priming followed by a novel interleukin combination activates Natural Killer cells to selectively proliferate and become anti-tumour long-lived effectors. Sci Rep 2024; 14:13133. [PMID: 38849432 PMCID: PMC11161620 DOI: 10.1038/s41598-024-62968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The short-lived nature and heterogeneity of Natural Killer (NK) cells limit the development of NK cell-based therapies, despite their proven safety and efficacy against cancer. Here, we describe the biological basis, detailed phenotype and function of long-lived anti-tumour human NK cells (CD56highCD16+), obtained without cell sorting or feeder cells, after priming of peripheral blood cells with Bacillus Calmette-Guérin (BCG). Further, we demonstrate that survival doses of a cytokine combination, excluding IL18, administered just weekly to BCG-primed NK cells avoids innate lymphocyte exhaustion and leads to specific long-term proliferation of innate cells that exert potent cytotoxic function against a broad range of solid tumours, mainly through NKG2D. Strikingly, a NKG2C+CD57-FcεRIγ+ NK cell population expands after BCG and cytokine stimulation, independently of HCMV serology. This strategy was exploited to rescue anti-tumour NK cells even from the suppressor environment of cancer patients' bone marrow, demonstrating that BCG confers durable anti-tumour features to NK cells.
Collapse
Affiliation(s)
- María-José Felgueres
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Gloria Esteso
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Álvaro F García-Jiménez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Nacho Aguiló
- Department of Microbiology, Pediatrics, Radiology and Public Health of the University of Zaragoza, IIS Aragon, CIBER de Enfermedades Respiratorias, Zaragoza, Spain
| | - Carmen Mestre-Durán
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, and Pediatric Hemato-Oncology, Hospital Universitario La Paz, Madrid, Spain
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049, Madrid, Spain
| | - Luis Martínez-Piñeiro
- Urology Department and Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, and Pediatric Hemato-Oncology, Hospital Universitario La Paz, Madrid, Spain
- IdiPAZ-CNIO Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28049, Madrid, Spain
- Pediatric Department, Autonomous University of Madrid, Madrid, Spain
| | - Hugh T Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain
| | - Mar Valés-Gómez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council (CNB-CSIC), Darwin, 3, 28049, Madrid, Spain.
| |
Collapse
|
13
|
Cohen SB, Urdahl KB. Weaponizing the bystander T cell army to fight tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2407559121. [PMID: 38814874 PMCID: PMC11161741 DOI: 10.1073/pnas.2407559121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Affiliation(s)
- Sara B. Cohen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
| | - Kevin B. Urdahl
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA98109
- Department of Pediatrics, University of Washington, Seattle, WA98195
| |
Collapse
|
14
|
Rohn H, Rebmann V. Is HLA-E with its receptors an immune checkpoint or an antigenic determinant in allo-HCT? Best Pract Res Clin Haematol 2024; 37:101560. [PMID: 39098806 DOI: 10.1016/j.beha.2024.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
Hematopoietic cell transplantation (HCT) represents a potentially curative therapeutic approach for various hematologic and non-hematologic malignancies. Human leukocyte antigen (HLA) matching is still the central selection criterion for HCT donors. Nevertheless, post-transplant complications, in particular graft-versus-host disease (GvHD), relapse of disease and infectious complications, represent a major challenge and contribute significantly to morbidity and mortality. Recently, non-classical HLA class I molecules, especially HLA-E, have gained increasing attention in the context of allogeneic HCT. This review aims to summarize the latest findings on the immunomodulatory role of HLA-E, which serves as a ligand for receptors of the innate and adaptive immune system. In particular, we aim to elucidate how (i) polymorphisms within HLA-E, (ii) the NKG2A/C axis and (iii) the repertoire of peptides presented by HLA-E jointly influence the functionality of immune effector cells. Understanding this intricate network of interactions is crucial as it significantly affects NK and T cell responses and thus clinical outcomes after HCT.
Collapse
Affiliation(s)
- Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
15
|
Paterson RL, La Manna MP, Arena De Souza V, Walker A, Gibbs-Howe D, Kulkarni R, Fergusson JR, Mulakkal NC, Monteiro M, Bunjobpol W, Dembek M, Martin-Urdiroz M, Grant T, Barber C, Garay-Baquero DJ, Tezera LB, Lowne D, Britton-Rivet C, Pengelly R, Chepisiuk N, Singh PK, Woon AP, Powlesland AS, McCully ML, Caccamo N, Salio M, Badami GD, Dorrell L, Knox A, Robinson R, Elkington P, Dieli F, Lepore M, Leonard S, Godinho LF. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2318003121. [PMID: 38691588 PMCID: PMC11087797 DOI: 10.1073/pnas.2318003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/08/2024] [Indexed: 05/03/2024] Open
Abstract
Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.
Collapse
Affiliation(s)
| | - Marco P. La Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | | | - Andrew Walker
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Dawn Gibbs-Howe
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Rakesh Kulkarni
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Mauro Monteiro
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Marcin Dembek
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Tressan Grant
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Claire Barber
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Diana J. Garay-Baquero
- National Institute for Health and Care Research, Biomedical Research Centre and Institute for Life Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Liku Bekele Tezera
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
| | - David Lowne
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Robert Pengelly
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Amanda P. Woon
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Mariolina Salio
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Giusto Davide Badami
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Lucy Dorrell
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Andrew Knox
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Ross Robinson
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Paul Elkington
- National Institute for Health and Care Research, Biomedical Research Centre and Institute for Life Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Marco Lepore
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Sarah Leonard
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Luis F. Godinho
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| |
Collapse
|
16
|
Voogd L, Drittij AM, Dingenouts CK, Franken KL, Unen VV, van Meijgaarden KE, Ruibal P, Hagedoorn RS, Leitner JA, Steinberger P, Heemskerk MH, Davis MM, Scriba TJ, Ottenhoff TH, Joosten SA. Mtb HLA-E-tetramer-sorted CD8 + T cells have a diverse TCR repertoire. iScience 2024; 27:109233. [PMID: 38439958 PMCID: PMC10909886 DOI: 10.1016/j.isci.2024.109233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
HLA-E molecules can present self- and pathogen-derived peptides to both natural killer (NK) cells and T cells. T cells that recognize HLA-E peptides via their T cell receptor (TCR) are termed donor-unrestricted T cells due to restricted allelic variation of HLA-E. The composition and repertoire of HLA-E TCRs is not known so far. We performed TCR sequencing on CD8+ T cells from 21 individuals recognizing HLA-E tetramers (TMs) folded with two Mtb-HLA-E-restricted peptides. We sorted HLA-E Mtb TM+ and TM- CD8+ T cells directly ex vivo and performed bulk RNA-sequencing and single-cell TCR sequencing. The identified TCR repertoire was diverse and showed no conservation between and within individuals. TCRs selected from our single-cell TCR sequencing data could be activated upon HLA-E/peptide stimulation, although not robust, reflecting potentially weak interactions between HLA-E peptide complexes and TCRs. Thus, HLA-E-Mtb-specific T cells have a highly diverse TCR repertoire.
Collapse
Affiliation(s)
- Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne M.H.F. Drittij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Calinda K.E. Dingenouts
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Kees L.M.C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent van Unen
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Judith A. Leitner
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Mark M. Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Palo Alto, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Tom H.M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
17
|
Chugh S, Bahal RK, Dhiman R, Singh R. Antigen identification strategies and preclinical evaluation models for advancing tuberculosis vaccine development. NPJ Vaccines 2024; 9:57. [PMID: 38461350 PMCID: PMC10924964 DOI: 10.1038/s41541-024-00834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024] Open
Abstract
In its myriad devastating forms, Tuberculosis (TB) has existed for centuries, and humanity is still affected by it. Mycobacterium tuberculosis (M. tuberculosis), the causative agent of TB, was the foremost killer among infectious agents until the COVID-19 pandemic. One of the key healthcare strategies available to reduce the risk of TB is immunization with bacilli Calmette-Guerin (BCG). Although BCG has been widely used to protect against TB, reports show that BCG confers highly variable efficacy (0-80%) against adult pulmonary TB. Unwavering efforts have been made over the past 20 years to develop and evaluate new TB vaccine candidates. The failure of conventional preclinical animal models to fully recapitulate human response to TB, as also seen for the failure of MVA85A in clinical trials, signifies the need to develop better preclinical models for TB vaccine evaluation. In the present review article, we outline various approaches used to identify protective mycobacterial antigens and recent advancements in preclinical models for assessing the efficacy of candidate TB vaccines.
Collapse
Affiliation(s)
- Saurabh Chugh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India
| | - Ritika Kar Bahal
- Marshall Centre, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ramandeep Singh
- Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, 121001, Haryana, India.
| |
Collapse
|
18
|
Wallace Z, Heunis T, Paterson RL, Suckling RJ, Grant T, Dembek M, Donoso J, Brener J, Long J, Bunjobpol W, Gibbs-Howe D, Kay DP, Leneghan DB, Godinho LF, Walker A, Singh PK, Knox A, Leonard S, Dorrell L. Instability of the HLA-E peptidome of HIV presents a major barrier to therapeutic targeting. Mol Ther 2024; 32:678-688. [PMID: 38219014 PMCID: PMC10928138 DOI: 10.1016/j.ymthe.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
Naturally occurring T cells that recognize microbial peptides via HLA-E, a nonpolymorphic HLA class Ib molecule, could provide the foundation for new universal immunotherapeutics. However, confidence in the biological relevance of putative ligands is crucial, given that the mechanisms by which pathogen-derived peptides can access the HLA-E presentation pathway are poorly understood. We systematically interrogated the HIV proteome using immunopeptidomic and bioinformatic approaches, coupled with biochemical and cellular assays. No HIV HLA-E peptides were identified by tandem mass spectrometry analysis of HIV-infected cells. In addition, all bioinformatically predicted HIV peptide ligands (>80) were characterized by poor complex stability. Furthermore, infected cell elimination assays using an affinity-enhanced T cell receptor bispecific targeted to a previously reported HIV Gag HLA-E epitope demonstrated inconsistent presentation of the peptide, despite normal HLA-E expression on HIV-infected cells. This work highlights the instability of the HIV HLA-E peptidome as a major challenge for drug development.
Collapse
Affiliation(s)
- Zoë Wallace
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK.
| | - Tiaan Heunis
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | | | | | - Jose Donoso
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | - Joshua Long
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | - Daniel P Kay
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | | | | | | | - Andrew Knox
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| | | | - Lucy Dorrell
- Immunocore Ltd., Abingdon, Oxfordshire OX14 4RY, UK
| |
Collapse
|
19
|
Jackson S, McShane H. Challenges in Developing a Controlled Human Tuberculosis Challenge Model. Curr Top Microbiol Immunol 2024; 445:229-255. [PMID: 35332386 DOI: 10.1007/82_2022_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Controlled human infection models (CHIMs) have provided pivotal scientific advancements, contributing to the licensure of new vaccines for many pathogens. Despite being one of the world's oldest known pathogens, there are still significant gaps in our knowledge surrounding the immunobiology of Mycobacterium tuberculosis (M. tb). Furthermore, the only licensed vaccine, BCG, is a century old and demonstrates limited efficacy in adults from endemic areas. Despite good global uptake of BCG, tuberculosis (TB) remains a silent epidemic killing 1.4 million in 2019 (WHO, Global tuberculosis report 2020). A mycobacterial CHIM could expedite the development pipeline of novel TB vaccines and provide critical understanding on the immune response to TB. However, developing a CHIM for such a complex organism is a challenging process. The first hurdle to address is which challenge agent to use, as it would not be ethical to use virulent M. tb. This chapter describes the current progress and outstanding issues in the development of a TB CHIM. Previous and current human studies include both aerosol and intradermal models using either BCG or purified protein derivative (PPD) as a surrogate agent. Future work investigating the use of attenuated M. tb is underway.
Collapse
Affiliation(s)
- Susan Jackson
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK
| | - Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine, Jenner Institute, Oxford University, Oxford, UK.
| |
Collapse
|
20
|
Middelburg J, Ghaffari S, Schoufour TAW, Sluijter M, Schaap G, Göynük B, Sala BM, Al-Tamimi L, Scheeren F, Franken KLMC, Akkermans JJLL, Cabukusta B, Joosten SA, Derksen I, Neefjes J, van der Burg SH, Achour A, Wijdeven RHM, Weidanz J, van Hall T. The MHC-E peptide ligands for checkpoint CD94/NKG2A are governed by inflammatory signals, whereas LILRB1/2 receptors are peptide indifferent. Cell Rep 2023; 42:113516. [PMID: 38048225 DOI: 10.1016/j.celrep.2023.113516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
The immune checkpoint NKG2A/CD94 is a promising target for cancer immunotherapy, and its ligand major histocompatibility complex E (MHC-E) is frequently upregulated in cancer. NKG2A/CD94-mediated inhibition of lymphocytes depends on the presence of specific leader peptides in MHC-E, but when and where they are presented in situ is unknown. We apply a nanobody specific for the Qdm/Qa-1b complex, the NKG2A/CD94 ligand in mouse, and find that presentation of Qdm peptide depends on every member of the endoplasmic reticulum-resident peptide loading complex. With a turnover rate of 30 min, the Qdm peptide reflects antigen processing capacity in real time. Remarkably, Qdm/Qa-1b complexes require inflammatory signals for surface expression in situ, despite the broad presence of Qa-1b molecules in homeostasis. Furthermore, we identify LILRB1 as a functional inhibition receptor for MHC-E in steady state. These data provide a molecular understanding of NKG2A blockade in immunotherapy and assign MHC-E as a convergent ligand for multiple immune checkpoints.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Soroush Ghaffari
- Department of Biology, College of Science, The University of Texas at Arlington, Arlington, TX, USA
| | - Tom A W Schoufour
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Gaby Schaap
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Büsra Göynük
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Benedetta M Sala
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Lejla Al-Tamimi
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Ferenc Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Jimmy J L L Akkermans
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Birol Cabukusta
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ian Derksen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Ruud H M Wijdeven
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jon Weidanz
- Abexxa Biologics, Inc., Arlington, TX, USA; College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
21
|
He W, Gea-Mallorquí E, Colin-York H, Fritzsche M, Gillespie GM, Brackenridge S, Borrow P, McMichael AJ. Intracellular trafficking of HLA-E and its regulation. J Exp Med 2023; 220:214089. [PMID: 37140910 PMCID: PMC10165540 DOI: 10.1084/jem.20221941] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
Interest in MHC-E-restricted CD8+ T cell responses has been aroused by the discovery of their efficacy in controlling simian immunodeficiency virus (SIV) infection in a vaccine model. The development of vaccines and immunotherapies utilizing human MHC-E (HLA-E)-restricted CD8+ T cell response requires an understanding of the pathway(s) of HLA-E transport and antigen presentation, which have not been clearly defined previously. We show here that, unlike classical HLA class I, which rapidly exits the endoplasmic reticulum (ER) after synthesis, HLA-E is largely retained because of a limited supply of high-affinity peptides, with further fine-tuning by its cytoplasmic tail. Once at the cell surface, HLA-E is unstable and is rapidly internalized. The cytoplasmic tail plays a crucial role in facilitating HLA-E internalization, which results in its enrichment in late and recycling endosomes. Our data reveal distinctive transport patterns and delicate regulatory mechanisms of HLA-E, which help to explain its unusual immunological functions.
Collapse
Affiliation(s)
- Wanlin He
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Ester Gea-Mallorquí
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Huw Colin-York
- Kennedy Institute of Rheumatology, University of Oxford , Oxford, UK
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford , Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Simon Brackenridge
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
van Wolfswinkel M, van Meijgaarden KE, Ottenhoff THM, Niewold P, Joosten SA. Extensive flow cytometric immunophenotyping of human PBMC incorporating detection of chemokine receptors, cytokines and tetramers. Cytometry A 2023; 103:600-610. [PMID: 36898852 DOI: 10.1002/cyto.a.24727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/19/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Characterization of immune cells is essential to advance our understanding of immunology and flow cytometry is an important tool in this context. Addressing both cellular phenotype and antigen-specific functional responses of the same cells is valuable to achieve a more integrated understanding of immune cell behavior and maximizes information obtained from precious samples. Until recently, panel size was limiting, resulting in panels generally focused on either deep immunophenotyping or functional readouts. Ongoing developments in the field of (spectral) flow cytometry have made panels of 30+ markers more accessible, opening up possibilities for advanced integrated analyses. Here, we optimized immune phenotyping by co-detection of markers covering chemokine receptors, cytokines and specific T cell/peptide tetramer interaction using a 32-color panel. Such panels enable integrated analysis of cellular phenotypes and markers assessing the quality of immune responses and will contribute to our understanding of the immune system.
Collapse
Affiliation(s)
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Paula Niewold
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, The Netherlands
| |
Collapse
|
23
|
Yang H, Sun H, Brackenridge S, Zhuang X, Wing PAC, Quastel M, Walters L, Garner L, Wang B, Yao X, Felce SL, Peng Y, Moore S, Peeters BWA, Rei M, Canto Gomes J, Tomas A, Davidson A, Semple MG, Turtle LCW, Openshaw PJM, Baillie JK, Mentzer AJ, Klenerman P, Borrow P, Dong T, McKeating JA, Gillespie GM, McMichael AJ. HLA-E-restricted SARS-CoV-2-specific T cells from convalescent COVID-19 patients suppress virus replication despite HLA class Ia down-regulation. Sci Immunol 2023; 8:eabl8881. [PMID: 37390223 DOI: 10.1126/sciimmunol.abl8881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Pathogen-specific CD8+ T cell responses restricted by the nonpolymorphic nonclassical class Ib molecule human leukocyte antigen E (HLA-E) are rarely reported in viral infections. The natural HLA-E ligand is a signal peptide derived from classical class Ia HLA molecules that interact with the NKG2/CD94 receptors to regulate natural killer cell functions, but pathogen-derived peptides can also be presented by HLA-E. Here, we describe five peptides from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that elicited HLA-E-restricted CD8+ T cell responses in convalescent patients with coronavirus disease 2019. These T cell responses were identified in the blood at frequencies similar to those reported for classical HLA-Ia-restricted anti-SARS-CoV-2 CD8+ T cells. HLA-E peptide-specific CD8+ T cell clones, which expressed diverse T cell receptors, suppressed SARS-CoV-2 replication in Calu-3 human lung epithelial cells. SARS-CoV-2 infection markedly down-regulated classical HLA class I expression in Calu-3 cells and primary reconstituted human airway epithelial cells, whereas HLA-E expression was not affected, enabling T cell recognition. Thus, HLA-E-restricted T cells could contribute to the control of SARS-CoV-2 infection alongside classical T cells.
Collapse
Affiliation(s)
- Hongbing Yang
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
| | - Hong Sun
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Simon Brackenridge
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Peter A C Wing
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Max Quastel
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Lucy Walters
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Lee Garner
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Beibei Wang
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Shona Moore
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Bas W A Peeters
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Margarida Rei
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Oxford, UK
| | - Joao Canto Gomes
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Ana Tomas
- Unidada de Investigacao em Patobiologia Molecular, Instituto Portugues de Oncologia de Lisboa Francisco Gentil, EPE Lisbon, Portugal
- Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Malcolm G Semple
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Unit, Alder Hey Children's Hospital, Eaton Road, Liverpool L12 2AP, UK
| | - Lance C W Turtle
- Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust (member of Liverpool Health Partners), Liverpool, UK
| | | | | | - Alexander J Mentzer
- Welcome Centre for Human Genetics, University of Oxford, Old Road Campus, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research and Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Persephone Borrow
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jane A McKeating
- Chinese Academy of Medical Sciences Oxford Institute, Old Road Campus, Oxford, UK
- Nuffield Depertment of Clinical Medicine, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Geraldine M Gillespie
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| | - Andrew J McMichael
- Centre for Immuno-Oncology, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Oxford, UK
| |
Collapse
|
24
|
Witt KD. Role of MHC class I pathways in Mycobacterium tuberculosis antigen presentation. Front Cell Infect Microbiol 2023; 13:1107884. [PMID: 37009503 PMCID: PMC10050577 DOI: 10.3389/fcimb.2023.1107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
MHC class I antigen processing is an underappreciated area of nonviral host–pathogen interactions, bridging both immunology and cell biology, where the pathogen’s natural life cycle involves little presence in the cytoplasm. The effective response to MHC-I foreign antigen presentation is not only cell death but also phenotypic changes in other cells and stimulation of the memory cells ready for the next antigen reoccurrence. This review looks at the MHC-I antigen processing pathway and potential alternative sources of the antigens, focusing on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-evolved with humans and developed an array of decoy strategies to survive in a hostile environment by manipulating host immunity to its own advantage. As that happens via the selective antigen presentation process, reinforcement of the effective antigen recognition on MHC-I molecules may stimulate subsets of effector cells that act earlier and more locally. Vaccines against tuberculosis (TB) could potentially eliminate this disease, yet their development has been slow, and success is limited in the context of this global disease’s spread. This review’s conclusions set out potential directions for MHC-I-focused approaches for the next generation of vaccines.
Collapse
Affiliation(s)
- Karolina D. Witt
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Karolina D. Witt,
| |
Collapse
|
25
|
Ruibal P, Derksen I, van Wolfswinkel M, Voogd L, Franken KLMC, El Hebieshy AF, van Hall T, Schoufour TAW, Wijdeven RH, Ottenhoff THM, Scheeren FA, Joosten SA. Thermal-exchange HLA-E multimers reveal specificity in HLA-E and NKG2A/CD94 complex interactions. Immunology 2023; 168:526-537. [PMID: 36217755 DOI: 10.1111/imm.13591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
There is growing interest in HLA-E-restricted T-cell responses as a possible novel, highly conserved, vaccination targets in the context of infectious and malignant diseases. The developing field of HLA multimers for the detection and study of peptide-specific T cells has allowed the in-depth study of TCR repertoires and molecular requirements for efficient antigen presentation and T-cell activation. In this study, we developed a method for efficient peptide thermal exchange on HLA-E monomers and multimers allowing the high-throughput production of HLA-E multimers. We optimized the thermal-mediated peptide exchange, and flow cytometry staining conditions for the detection of TCR and NKG2A/CD94 receptors, showing that this novel approach can be used for high-throughput identification and analysis of HLA-E-binding peptides which could be involved in T-cell and NK cell-mediated immune responses. Importantly, our analysis of NKG2A/CD94 interaction in the presence of modified peptides led to new molecular insights governing the interaction of HLA-E with this receptor. In particular, our results reveal that interactions of HLA-E with NKG2A/CD94 and the TCR involve different residues. Altogether, we present a novel HLA-E multimer technology based on thermal-mediated peptide exchange allowing us to investigate the molecular requirements for HLA-E/peptide interaction with its receptors.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian Derksen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Angela F El Hebieshy
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom A W Schoufour
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ruud H Wijdeven
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Meeting report: 6th Global Forum on Tuberculosis Vaccines, 22–25 February 2022, Toulouse, France. Vaccine X 2023. [DOI: 10.1016/j.jvacx.2023.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
27
|
Koh JY, Kim DU, Moon BH, Shin EC. Human CD8 + T-Cell Populations That Express Natural Killer Receptors. Immune Netw 2023; 23:e8. [PMID: 36911797 PMCID: PMC9995994 DOI: 10.4110/in.2023.23.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Genome Insight, Inc., Daejeon 34051, Korea
| | - Dong-Uk Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Bae-Hyeon Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
28
|
Usharani N, Kanth SV, Saravanan N. Current nanotechnological strategies using lipids, carbohydrates, proteins and metal conjugates-based carrier systems for diagnosis and treatment of tuberculosis - A review. Int J Biol Macromol 2023; 227:262-272. [PMID: 36521715 DOI: 10.1016/j.ijbiomac.2022.12.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis is a fatal disease caused by Mycobacterium tuberculosis with highest morbidity and mortality every year. The evolution of anti-TB drugs is promising in controlling and treating TB. Yet, the drug response varies depending on the bacterial load and host immunological profiles. The prolonged anti-TB treatment regimen and high pill burden leads to poor adherence to treatment and acquired drug resistance. In the clinical arena, sustainable nanotechnology improves the targeted strategies leading to enhance therapeutic recovery with minimum treatment duration and virtuous drug adherence. Determinants of nanosystems are the size, nature, formulation techniques, stable dosing patterns, bioavailability and toxicity. In the treatment of chronic illness, nanomedicines inclusive of biological macromolecules such as lipids, peptides, and nucleic acids occur to be a successive alternative to synthetic carriers. Most biological nanomaterials possess antimicrobial properties with other intrinsic characteristics. Recently, the pulmonary delivery of anti-TB drugs through polymeric nanocarrier systems is shown to be effective in achieving optimal drug levels in lungs for longer duration, enhanced tissue permeation and sustained systemic clearance. This thematic review provides a holistic insight into the nanodelivery systems pertinent to the therapeutic applications in pulmonary tuberculosis describing the choice of carriers, optimized process, metabolic action and excretion processes.
Collapse
Affiliation(s)
- Nagarajan Usharani
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Swarna Vinodh Kanth
- Centre for Human and Organizational Resources Development, CSIR-Central Leather Research Institute, Chennai, India
| | - Natarajan Saravanan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai, India.
| |
Collapse
|
29
|
Kim SJ, Karamooz E. MR1- and HLA-E-Dependent Antigen Presentation of Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:14412. [PMID: 36430890 PMCID: PMC9693577 DOI: 10.3390/ijms232214412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
MR1 and HLA-E are highly conserved nonclassical antigen-presenting molecules. They can present antigens derived from Mycobacterium tuberculosis to a distinct subset of MR1-restricted or HLA-restricted CD8+ T cells. MR1 presents small microbial metabolites, and HLA-E presents peptides and glycopeptides. In this review, we will discuss the current understanding of MR1 and HLA-E antigen presentation in the context of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Se-Jin Kim
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elham Karamooz
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
30
|
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022; 13:1031924. [PMID: 36466865 PMCID: PMC9712958 DOI: 10.3389/fimmu.2022.1031924] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.
Collapse
Affiliation(s)
| | | | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
31
|
Ruibal P, Franken KLMC, van Meijgaarden KE, van Wolfswinkel M, Derksen I, Scheeren FA, Janssen GMC, van Veelen PA, Sarfas C, White AD, Sharpe SA, Palmieri F, Petrone L, Goletti D, Abeel T, Ottenhoff THM, Joosten SA. Identification of HLA-E Binding Mycobacterium tuberculosis-Derived Epitopes through Improved Prediction Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1555-1565. [PMID: 36096642 PMCID: PMC9536328 DOI: 10.4049/jimmunol.2200122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/03/2022] [Indexed: 01/04/2023]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases worldwide, posing great social and economic burden to affected countries. Novel vaccine approaches are needed to increase protective immunity against the causative agent Mycobacterium tuberculosis (Mtb) and to reduce the development of active TB disease in latently infected individuals. Donor-unrestricted T cell responses represent such novel potential vaccine targets. HLA-E-restricted T cell responses have been shown to play an important role in protection against TB and other infections, and recent studies have demonstrated that these cells can be primed in vitro. However, the identification of novel pathogen-derived HLA-E binding peptides presented by infected target cells has been limited by the lack of accurate prediction algorithms for HLA-E binding. In this study, we developed an improved HLA-E binding peptide prediction algorithm and implemented it to identify (to our knowledge) novel Mtb-derived peptides with capacity to induce CD8+ T cell activation and that were recognized by specific HLA-E-restricted T cells in Mycobacterium-exposed humans. Altogether, we present a novel algorithm for the identification of pathogen- or self-derived HLA-E-presented peptides.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Ian Derksen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ferenc A Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Charlotte Sarfas
- Research and Development Department, UK Health Security Agency, Salisbury, United Kingdom
| | - Andrew D White
- Research and Development Department, UK Health Security Agency, Salisbury, United Kingdom
| | - Sally A Sharpe
- Research and Development Department, UK Health Security Agency, Salisbury, United Kingdom
| | - Fabrizio Palmieri
- National Institute for Infectious Diseases Lazzaro Spallanzani Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Linda Petrone
- National Institute for Infectious Diseases Lazzaro Spallanzani Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Delia Goletti
- National Institute for Infectious Diseases Lazzaro Spallanzani Scientific Institute for Research, Hospitalization and Healthcare, Rome, Italy
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands; and
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands;
| |
Collapse
|
32
|
Walters LC, Rozbesky D, Harlos K, Quastel M, Sun H, Springer S, Rambo RP, Mohammed F, Jones EY, McMichael AJ, Gillespie GM. Primary and secondary functions of HLA-E are determined by stability and conformation of the peptide-bound complexes. Cell Rep 2022; 39:110959. [PMID: 35705051 PMCID: PMC9380258 DOI: 10.1016/j.celrep.2022.110959] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022] Open
Abstract
MHC-E regulates NK cells by displaying MHC class Ia signal peptides (VL9) to NKG2A:CD94 receptors. MHC-E can also present sequence-diverse, lower-affinity, pathogen-derived peptides to T cell receptors (TCRs) on CD8+ T cells. To understand these affinity differences, human MHC-E (HLA-E)-VL9 versus pathogen-derived peptide structures are compared. Small-angle X-ray scatter (SAXS) measures biophysical parameters in solution, allowing comparison with crystal structures. For HLA-E-VL9, there is concordance between SAXS and crystal parameters. In contrast, HLA-E-bound pathogen-derived peptides produce larger SAXS dimensions that reduce to their crystallographic dimensions only when excess peptide is supplied. Further crystallographic analysis demonstrates three amino acids, exclusive to MHC-E, that not only position VL9 close to the α2 helix, but also allow non-VL9 peptide binding with re-configuration of a key TCR-interacting α2 region. Thus, non-VL9-bound peptides introduce an alternative peptide-binding motif and surface recognition landscape, providing a likely basis for VL9- and non-VL9-HLA-E immune discrimination.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Daniel Rozbesky
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Max Quastel
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Hong Sun
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Robert P Rambo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| |
Collapse
|
33
|
Barber C, De Souza VA, Paterson RL, Martin‐Urdiroz M, Mulakkal NC, Srikannathasan V, Connolly M, Phillips G, Foong‐Leong T, Pengelly R, Karuppiah V, Grant T, Dembek M, Verma A, Gibbs‐Howe D, Blicher TH, Knox A, Robinson RA, Cole DK, Leonard S. Structure-guided stabilization of pathogen-derived peptide-HLA-E complexes using non-natural amino acids conserves native TCR recognition. Eur J Immunol 2022; 52:618-632. [PMID: 35108401 PMCID: PMC9306587 DOI: 10.1002/eji.202149745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 11/26/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022]
Abstract
The nonpolymorphic class Ib molecule, HLA-E, primarily presents peptides from HLA class Ia leader peptides, providing an inhibitory signal to NK cells via CD94/NKG2 interactions. Although peptides of pathogenic origin can also be presented by HLA-E to T cells, the molecular basis underpinning their role in antigen surveillance is largely unknown. Here, we solved a co-complex crystal structure of a TCR with an HLA-E presented peptide (pHLA-E) from bacterial (Mycobacterium tuberculosis) origin, and the first TCR-pHLA-E complex with a noncanonically presented peptide from viral (HIV) origin. The structures provided a molecular foundation to develop a novel method to introduce cysteine traps using non-natural amino acid chemistry that stabilized pHLA-E complexes while maintaining native interface contacts between the TCRs and different pHLA-E complexes. These pHLA-E monomers could be used to isolate pHLA-E-specific T cells, with obvious utility for studying pHLA-E restricted T cells, and for the identification of putative therapeutic TCRs.
Collapse
|
34
|
Li D, Brackenridge S, Walters LC, Swanson O, Harlos K, Rozbesky D, Cain DW, Wiehe K, Scearce RM, Barr M, Mu Z, Parks R, Quastel M, Edwards RJ, Wang Y, Rountree W, Saunders KO, Ferrari G, Borrow P, Jones EY, Alam SM, Azoitei ML, Gillespie GM, McMichael AJ, Haynes BF. Mouse and human antibodies bind HLA-E-leader peptide complexes and enhance NK cell cytotoxicity. Commun Biol 2022; 5:271. [PMID: 35347236 PMCID: PMC8960791 DOI: 10.1038/s42003-022-03183-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/17/2022] [Indexed: 12/16/2022] Open
Abstract
The non-classical class Ib molecule human leukocyte antigen E (HLA-E) has limited polymorphism and can bind HLA class Ia leader peptides (VL9). HLA-E-VL9 complexes interact with the natural killer (NK) cell receptors NKG2A-C/CD94 and regulate NK cell-mediated cytotoxicity. Here we report the isolation of 3H4, a murine HLA-E-VL9-specific IgM antibody that enhances killing of HLA-E-VL9-expressing cells by an NKG2A+ NK cell line. Structural analysis reveal that 3H4 acts by preventing CD94/NKG2A docking on HLA-E-VL9. Upon in vitro maturation, an affinity-optimized IgG form of 3H4 showes enhanced NK killing of HLA-E-VL9-expressing cells. HLA-E-VL9-specific IgM antibodies similar in function to 3H4 are also isolated from naïve B cells of cytomegalovirus (CMV)-negative, healthy humans. Thus, HLA-E-VL9-targeting mouse and human antibodies isolated from the naïve B cell antibody pool have the capacity to enhance NK cell cytotoxicity.
Collapse
Affiliation(s)
- Dapeng Li
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Simon Brackenridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Lucy C Walters
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Olivia Swanson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Daniel Rozbesky
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Cell Biology, Charles University, Prague, 12800, Czech Republic
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Zekun Mu
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Max Quastel
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Mihai L Azoitei
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Geraldine M Gillespie
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
35
|
Voogd L, Ruibal P, Ottenhoff TH, Joosten SA. Antigen presentation by MHC-E: a putative target for vaccination? Trends Immunol 2022; 43:355-365. [PMID: 35370095 PMCID: PMC9058203 DOI: 10.1016/j.it.2022.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/30/2022]
Abstract
The essentially monomorphic human antigen presentation molecule HLA-E is an interesting candidate target to enable vaccination irrespective of genetic diversity. Predictive HLA-E peptide-binding motifs have been refined to facilitate HLA-E peptide discovery. HLA-E can accommodate structurally divergent peptides of both self and microbial origin. Intracellular processing and presentation pathways for peptides by HLA-E for T cell receptor (TCR) recognition remain to be elucidated. Recent studies show that, unlike canonical peptides, inhibition of the transporter associated with antigen presentation (TAP) is essential to allow HLA-E antigen presentation in cytomegalovirus (CMV) infection and possibly also of other non-canonical peptides. We propose three alternative and TAP-independent MHC-E antigen-presentation pathways, including for Mycobacterium tuberculosis infections. These insights may help in designing potential HLA-E targeting vaccines against tumors and pathogens.
Collapse
|
36
|
Ruibal P, Franken KLMC, van Meijgaarden KE, Walters LC, McMichael AJ, Gillespie GM, Joosten SA, Ottenhoff THM. Discovery of HLA-E-Presented Epitopes: MHC-E/Peptide Binding and T-Cell Recognition. Methods Mol Biol 2022; 2574:15-30. [PMID: 36087196 PMCID: PMC10508831 DOI: 10.1007/978-1-0716-2712-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the interactions involved during the immunological synapse between peptide, HLA-E molecules, and TCR is crucial to effectively target protective HLA-E-restricted T-cell responses in humans. Here we describe three techniques based on the generation of MHC-E/peptide complexes (MHC-E generically includes HLA-E-like molecules in human and nonhuman species, while HLA-E specifically refers to human molecules), which allow to investigate MHC-E/peptide binding at the molecular level through binding assays and by using peptide loaded HLA-E tetramers, to detect, isolate, and study peptide-specific HLA-E-restricted human T-cells.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lucy C Walters
- Nuffield Department of Medicine Research Building, Old Road Campus, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Old Road Campus, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Old Road Campus, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
37
|
Robinson RA, McMurran C, McCully ML, Cole DK. Engineering soluble T-cell receptors for therapy. FEBS J 2021; 288:6159-6173. [PMID: 33624424 PMCID: PMC8596704 DOI: 10.1111/febs.15780] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Immunotherapy approaches that target peptide-human leukocyte antigen (pHLA) complexes are becoming highly attractive because of their potential to access virtually all foreign and cellular proteins. For this reason, there has been considerable interest in the development of the natural ligand for pHLA, the T-cell receptor (TCR), as a soluble drug to target disease-associated pHLA presented at the cell surface. However, native TCR stability is suboptimal for soluble drug development, and natural TCRs generally have weak affinities for pHLAs, limiting their potential to reach efficacious receptor occupancy levels as soluble drugs. To overcome these limitations and make full use of the TCR as a soluble drug platform, several protein engineering solutions have been applied to TCRs to enhance both their stability and affinity, with a focus on retaining target specificity and selectivity. Here, we review these advances and look to the future for the next generation of soluble TCR-based therapies that can target monomorphic HLA-like proteins presenting both peptide and nonpeptide antigens.
Collapse
|
38
|
Vaurs J, Douchin G, Echasserieau K, Oger R, Jouand N, Fortun A, Hesnard L, Croyal M, Pecorari F, Gervois N, Bernardeau K. A novel and efficient approach to high-throughput production of HLA-E/peptide monomer for T-cell epitope screening. Sci Rep 2021; 11:17234. [PMID: 34446788 PMCID: PMC8390762 DOI: 10.1038/s41598-021-96560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/10/2021] [Indexed: 12/05/2022] Open
Abstract
Over the past two decades, there has been a great interest in the study of HLA-E-restricted αβ T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells.
Collapse
Affiliation(s)
- Juliette Vaurs
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Gaël Douchin
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
| | - Klara Echasserieau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Romain Oger
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France
| | - Nicolas Jouand
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
| | - Agnès Fortun
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, CHU de Nantes, Cibles et médicaments des infections et du cancer, IICiMed, EA 1155, 44000, Nantes, France
| | - Leslie Hesnard
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Mikaël Croyal
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, 44000, Nantes, France
| | - Frédéric Pecorari
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France
| | - Nadine Gervois
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
- LabEx IGO «Immunotherapy, Graft, Oncology», Nantes, France.
| | - Karine Bernardeau
- P2R "Production de Protéines Recombinantes", Université de Nantes, CRCINA, SFR-Santé, INSERM, CNRS, CHU Nantes, Nantes, France.
- Université de Nantes, Inserm, CRCINA, 44000, Nantes, France.
| |
Collapse
|
39
|
Borah P, Deb PK, Venugopala KN, Al-Shar'i NA, Singh V, Deka S, Srivastava A, Tiwari V, Mailavaram RP. Tuberculosis: An Update on Pathophysiology, Molecular Mechanisms of Drug Resistance, Newer Anti-TB Drugs, Treatment Regimens and Host- Directed Therapies. Curr Top Med Chem 2021; 21:547-570. [PMID: 33319660 DOI: 10.2174/1568026621999201211200447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022]
Abstract
Human tuberculosis (TB) is primarily caused by Mycobacterium tuberculosis (Mtb) that inhabits inside and amidst immune cells of the host with adapted physiology to regulate interdependent cellular functions with intact pathogenic potential. The complexity of this disease is attributed to various factors such as the reactivation of latent TB form after prolonged persistence, disease progression specifically in immunocompromised patients, advent of multi- and extensivelydrug resistant (MDR and XDR) Mtb strains, adverse effects of tailor-made regimens, and drug-drug interactions among anti-TB drugs and anti-HIV therapies. Thus, there is a compelling demand for newer anti-TB drugs or regimens to overcome these obstacles. Considerable multifaceted transformations in the current TB methodologies and molecular interventions underpinning hostpathogen interactions and drug resistance mechanisms may assist to overcome the emerging drug resistance. Evidently, recent scientific and clinical advances have revolutionised the diagnosis, prevention, and treatment of all forms of the disease. This review sheds light on the current understanding of the pathogenesis of TB disease, molecular mechanisms of drug-resistance, progress on the development of novel or repurposed anti-TB drugs and regimens, host-directed therapies, with particular emphasis on underlying knowledge gaps and prospective for futuristic TB control programs.
Collapse
Affiliation(s)
- Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Pran K Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, PO Box 1, Amman 19392, Jordan
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, 7701, South Africa
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Amavya Srivastava
- Neuroscience and Pain Research Lab, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Lab, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221 005, India
| | - Raghu P Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram - 534 202, West Godavari Dist., Andhra Pradesh, India
| |
Collapse
|
40
|
High-resolution characterization of the structural features and genetic variation of six feline leukocyte antigen class I loci via single molecule, real-time (SMRT) sequencing. Immunogenetics 2021; 73:381-393. [PMID: 34175985 DOI: 10.1007/s00251-021-01221-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Of the 12 full-length feline leukocyte antigen class I (FLAI) loci, 3 are presumed to be classical: FLAI-E, FLAI-H, and FLAI-K. As diversity is a class Ia hallmark, multi-allelism is an important surrogate supporting a classical designation, in the absence of direct demonstration of T-cell restriction. Conversely, limited polymorphism at an expressed locus suggests regulation of immune effectors with invariant receptors, and non-classical status. FLAI-A, FLAI-J, FLAI-L, and FLAI-O are putative class Ib genes in cats. For both classes, identifying prevalent variants across outbred populations can illuminate specific genotypes to be prioritized for immune studies, as shared alleles direct shared responses. Since variation is concentrated in exons 2 and 3, which encode the antigen-binding domains, partial-length cloning/sequencing can be used for allele discovery, but is laborious and occasionally ambiguous. Here we develop a targeted approach to FLAI genotyping, using the single-molecule real-time (SMRT) platform, which allows full-length (3.4-kb) reads without assembly. Consensus sequences matched full-length Sanger references. Thirty-one new class Ia genes were found in 17 cats. Alleles segregated strongly by loci, and the origins of formerly difficult-to-assign sequences were resolved. Although not targeted, FLAI-L and FLAI-J, and the pseudogene FLAI-F, were also returned. Eighteen class Ib alleles were identified. Diversity was restricted and outside hypervariable regions. Both class Ib genes were transcriptionally active. Novel alternative splicing of FLAI-L was observed. SMRT sequencing of FLAI amplicons is useful for full-length genotyping at feline class Ia loci. High-throughput sequencing could allow highly accurate allele surveys in large cat cohorts.
Collapse
|
41
|
Geluk A. All mycobacteria are inventive, but some are more Daedalean than others. Immunol Rev 2021; 301:5-9. [PMID: 33987855 DOI: 10.1111/imr.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
Vogel AB, Kanevsky I, Che Y, Swanson KA, Muik A, Vormehr M, Kranz LM, Walzer KC, Hein S, Güler A, Loschko J, Maddur MS, Ota-Setlik A, Tompkins K, Cole J, Lui BG, Ziegenhals T, Plaschke A, Eisel D, Dany SC, Fesser S, Erbar S, Bates F, Schneider D, Jesionek B, Sänger B, Wallisch AK, Feuchter Y, Junginger H, Krumm SA, Heinen AP, Adams-Quack P, Schlereth J, Schille S, Kröner C, de la Caridad Güimil Garcia R, Hiller T, Fischer L, Sellers RS, Choudhary S, Gonzalez O, Vascotto F, Gutman MR, Fontenot JA, Hall-Ursone S, Brasky K, Griffor MC, Han S, Su AAH, Lees JA, Nedoma NL, Mashalidis EH, Sahasrabudhe PV, Tan CY, Pavliakova D, Singh G, Fontes-Garfias C, Pride M, Scully IL, Ciolino T, Obregon J, Gazi M, Carrion R, Alfson KJ, Kalina WV, Kaushal D, Shi PY, Klamp T, Rosenbaum C, Kuhn AN, Türeci Ö, Dormitzer PR, Jansen KU, Sahin U. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 2021; 592:283-289. [PMID: 33524990 DOI: 10.1038/s41586-021-03275-y] [Citation(s) in RCA: 486] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/20/2021] [Indexed: 01/16/2023]
Abstract
A safe and effective vaccine against COVID-19 is urgently needed in quantities that are sufficient to immunize large populations. Here we report the preclinical development of two vaccine candidates (BNT162b1 and BNT162b2) that contain nucleoside-modified messenger RNA that encodes immunogens derived from the spike glycoprotein (S) of SARS-CoV-2, formulated in lipid nanoparticles. BNT162b1 encodes a soluble, secreted trimerized receptor-binding domain (known as the RBD-foldon). BNT162b2 encodes the full-length transmembrane S glycoprotein, locked in its prefusion conformation by the substitution of two residues with proline (S(K986P/V987P); hereafter, S(P2) (also known as P2 S)). The flexibly tethered RBDs of the RBD-foldon bind to human ACE2 with high avidity. Approximately 20% of the S(P2) trimers are in the two-RBD 'down', one-RBD 'up' state. In mice, one intramuscular dose of either candidate vaccine elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong T-helper-1 CD4+ and IFNγ+CD8+ T cell responses. Prime-boost vaccination of rhesus macaques (Macaca mulatta) with the BNT162b candidates elicits SARS-CoV-2-neutralizing geometric mean titres that are 8.2-18.2× that of a panel of SARS-CoV-2-convalescent human sera. The vaccine candidates protect macaques against challenge with SARS-CoV-2; in particular, BNT162b2 protects the lower respiratory tract against the presence of viral RNA and shows no evidence of disease enhancement. Both candidates are being evaluated in phase I trials in Germany and the USA1-3, and BNT162b2 is being evaluated in an ongoing global phase II/III trial (NCT04380701 and NCT04368728).
Collapse
MESH Headings
- Aging/immunology
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- BNT162 Vaccine
- COVID-19/blood
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/therapy
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/genetics
- COVID-19 Vaccines/immunology
- Cell Line
- Clinical Trials as Topic
- Disease Models, Animal
- Female
- Humans
- Immunization, Passive
- Internationality
- Macaca mulatta/immunology
- Macaca mulatta/virology
- Male
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Protein Multimerization
- RNA, Viral/analysis
- Respiratory System/immunology
- Respiratory System/virology
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Solubility
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- T-Lymphocytes/immunology
- Vaccination
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- COVID-19 Serotherapy
- mRNA Vaccines
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Olga Gonzalez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Fulvia Vascotto
- TRON-Translational Oncology at the University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Matthew R Gutman
- VCA SouthPaws Veterinary Specialists and Emergency Center, Fairfax, VA, USA
| | | | - Shannan Hall-Ursone
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kathleen Brasky
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michal Gazi
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ricardo Carrion
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Pei-Yong Shi
- University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | - Ugur Sahin
- BioNTech, Mainz, Germany.
- TRON-Translational Oncology at the University Medical Centre of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
43
|
Yang H, Rei M, Brackenridge S, Brenna E, Sun H, Abdulhaqq S, Liu MKP, Ma W, Kurupati P, Xu X, Cerundolo V, Jenkins E, Davis SJ, Sacha JB, Früh K, Picker LJ, Borrow P, Gillespie GM, McMichael AJ. HLA-E-restricted, Gag-specific CD8 + T cells can suppress HIV-1 infection, offering vaccine opportunities. Sci Immunol 2021; 6:eabg1703. [PMID: 33766848 PMCID: PMC8258078 DOI: 10.1126/sciimmunol.abg1703] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/18/2021] [Indexed: 12/26/2022]
Abstract
Human leukocyte antigen-E (HLA-E) normally presents an HLA class Ia signal peptide to the NKG2A/C-CD94 regulatory receptors on natural killer (NK) cells and T cell subsets. Rhesus macaques immunized with a cytomegalovirus-vectored simian immunodeficiency virus (SIV) vaccine generated Mamu-E (HLA-E homolog)-restricted T cell responses that mediated post-challenge SIV replication arrest in >50% of animals. However, HIV-1-specific, HLA-E-restricted T cells have not been observed in HIV-1-infected individuals. Here, HLA-E-restricted, HIV-1-specific CD8 + T cells were primed in vitro. These T cell clones and allogeneic CD8 + T cells transduced with their T cell receptors suppressed HIV-1 replication in CD4 + T cells in vitro. Vaccine induction of efficacious HLA-E-restricted HIV-1-specific T cells should therefore be possible.
Collapse
MESH Headings
- Amino Acid Sequence
- Biomarkers
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- HIV Infections/immunology
- HIV Infections/metabolism
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/immunology
- Histocompatibility Antigens Class I/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunophenotyping
- Jurkat Cells
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Peptides/chemistry
- Peptides/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Cell Antigen Receptor Specificity/immunology
- gag Gene Products, Human Immunodeficiency Virus/immunology
- HLA-E Antigens
Collapse
Affiliation(s)
- Hongbing Yang
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
| | - Margarida Rei
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Simon Brackenridge
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
| | - Elena Brenna
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
| | - Hong Sun
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
- Key Laboratory of AIDS Immunology, Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Oxford Institute, NDM, Oxford University, Oxford, UK
| | - Shaheed Abdulhaqq
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Michael K P Liu
- Centre For Immunology and Vaccinology, Chelsea and Westminster Hospital, Imperial College, London, UK
| | - Weiwei Ma
- Centre For Immunology and Vaccinology, Chelsea and Westminster Hospital, Imperial College, London, UK
| | - Prathiba Kurupati
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Xiaoning Xu
- Centre For Immunology and Vaccinology, Chelsea and Westminster Hospital, Imperial College, London, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Edward Jenkins
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Simon J Davis
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Jonah B Sacha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Persephone Borrow
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
| | - Geraldine M Gillespie
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK
| | - Andrew J McMichael
- NDM Research Building, Nuffield Department of Medicine, Oxford University, Oxford OX3 7FZ, UK.
| |
Collapse
|
44
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
Singh DK, Singh B, Ganatra SR, Gazi M, Cole J, Thippeshappa R, Alfson KJ, Clemmons E, Gonzalez O, Escobedo R, Lee TH, Chatterjee A, Goez-Gazi Y, Sharan R, Gough M, Alvarez C, Blakley A, Ferdin J, Bartley C, Staples H, Parodi L, Callery J, Mannino A, Klaffke B, Escareno P, Platt RN, Hodara V, Scordo J, Gautam S, Vilanova AG, Olmo-Fontanez A, Schami A, Oyejide A, Ajithdoss DK, Copin R, Baum A, Kyratsous C, Alvarez X, Ahmed M, Rosa B, Goodroe A, Dutton J, Hall-Ursone S, Frost PA, Voges AK, Ross CN, Sayers K, Chen C, Hallam C, Khader SA, Mitreva M, Anderson TJC, Martinez-Sobrido L, Patterson JL, Turner J, Torrelles JB, Dick EJ, Brasky K, Schlesinger LS, Giavedoni LD, Carrion R, Kaushal D. Responses to acute infection with SARS-CoV-2 in the lungs of rhesus macaques, baboons and marmosets. Nat Microbiol 2021; 6:73-86. [PMID: 33340034 PMCID: PMC7890948 DOI: 10.1038/s41564-020-00841-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022]
Abstract
Non-human primate models will expedite therapeutics and vaccines for coronavirus disease 2019 (COVID-19) to clinical trials. Here, we compare acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in young and old rhesus macaques, baboons and old marmosets. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies, and both age groups recovered in two weeks. Baboons had prolonged viral RNA shedding and substantially more lung inflammation compared with macaques. Inflammation in bronchoalveolar lavage was increased in old versus young baboons. Using techniques including computed tomography imaging, immunophenotyping, and alveolar/peripheral cytokine response and immunohistochemical analyses, we delineated cellular immune responses to SARS-CoV-2 infection in macaque and baboon lungs, including innate and adaptive immune cells and a prominent type-I interferon response. Macaques developed T-cell memory phenotypes/responses and bystander cytokine production. Old macaques had lower titres of SARS-CoV-2-specific IgG antibody levels compared with young macaques. Acute respiratory distress in macaques and baboons recapitulates the progression of COVID-19 in humans, making them suitable as models to test vaccines and therapies.
Collapse
Affiliation(s)
- Dhiraj Kumar Singh
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Bindu Singh
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Shashank R Ganatra
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Michal Gazi
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Journey Cole
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Rajesh Thippeshappa
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Elizabeth Clemmons
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Olga Gonzalez
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ruby Escobedo
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Tae-Hyung Lee
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ayan Chatterjee
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Riti Sharan
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Maya Gough
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cynthia Alvarez
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Alyssa Blakley
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Justin Ferdin
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Carmen Bartley
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Hilary Staples
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Laura Parodi
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jessica Callery
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Amanda Mannino
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | - Roy N Platt
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Vida Hodara
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Julia Scordo
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Shalini Gautam
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | - Alyssa Schami
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | | | - Alina Baum
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | | | - Xavier Alvarez
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mushtaq Ahmed
- Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Bruce Rosa
- Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Anna Goodroe
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - John Dutton
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Shannan Hall-Ursone
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Patrice A Frost
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Andra K Voges
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
- Veterinary Imaging Consulting of South Texas, San Antonio, TX, USA
| | - Corinna N Ross
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ken Sayers
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Christopher Chen
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cory Hallam
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Shabaana A Khader
- Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Makedonka Mitreva
- Washington University School of Medicine in St Louis, St Louis, MO, USA
| | | | | | | | - Joanne Turner
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Edward J Dick
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kathleen Brasky
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Larry S Schlesinger
- Southwest National Primate Research Center, San Antonio, TX, USA
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis D Giavedoni
- Southwest National Primate Research Center, San Antonio, TX, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Ricardo Carrion
- Southwest National Primate Research Center, San Antonio, TX, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Deepak Kaushal
- Southwest National Primate Research Center, San Antonio, TX, USA.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
46
|
Walters LC, McMichael AJ, Gillespie GM. Detailed and atypical HLA-E peptide binding motifs revealed by a novel peptide exchange binding assay. Eur J Immunol 2020; 50:2075-2091. [PMID: 32716529 DOI: 10.1002/eji.202048719] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 07/23/2020] [Indexed: 11/05/2022]
Abstract
Diverse SIV and HIV epitopes that bind the rhesus homolog of HLA-E, Mamu-E, have recently been identified in SIVvaccine studies using a recombinant Rhesus cytomegalovirus (RhCMV 68-1) vector, where unprecedented protection against SIV challenge was achieved. Additionally, several Mycobacterial peptides identified both algorithmically and following elution from infected cells, are presented to CD8+ T cells by HLA-E in humans. Yet, a comparative and comprehensive analysis of relative HLA-E peptide binding strength via a reliable, high throughput in vitro assay is currently lacking. To address this, we developed and optimized a novel, highly sensitive peptide exchange ELISA-based assay that relatively quantitates peptide binding to HLA-E. Using this approach, we screened multiple peptides, including peptide panels derived from HIV, SIV, and Mtb predicted to bind HLA-E. Our results indicate that although HLA-E preferentially accommodates canonical MHC class I leader peptides, many non-canonical, sequence diverse, pathogen-derived peptides also bind HLA-E, albeit generally with lower relative binding strength. Additionally, our screens demonstrate that the majority of peptides tested, including some key Mtb and SIV epitopes that have been shown to elicit strong Mamu-E-restricted T cell responses, either bind HLA-E extremely weakly or give signals that are indistinguishable from the negative, peptide-free controls.
Collapse
Affiliation(s)
- Lucy C Walters
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Geraldine M Gillespie
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Ruibal P, Franken KLMC, van Meijgaarden KE, van Loon JJF, van der Steen D, Heemskerk MHM, Ottenhoff THM, Joosten SA. Peptide Binding to HLA-E Molecules in Humans, Nonhuman Primates, and Mice Reveals Unique Binding Peptides but Remarkably Conserved Anchor Residues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2861-2872. [PMID: 33020145 PMCID: PMC7653511 DOI: 10.4049/jimmunol.2000810] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Ag presentation via the nonclassical MHC class Ib molecule HLA-E, with nearly complete identity between the two alleles expressed in humans, HLA-E*01:01 and HLA-E*01:03, can lead to the activation of unconventional T cells in humans. Despite this virtual genetic monomorphism, differences in peptide repertoires binding to the two allelic variants have been reported. To further dissect and compare peptide binding to HLA-E*01:01 and HLA-E*01:03, we used an UV-mediated peptide exchange binding assay and an HPLC-based competition binding assay. In addition, we investigated binding of these same peptides to Mamu-E, the nonhuman primate homologue of human HLA-E, and to the HLA-E-like molecule Qa-1b in mice. We next exploited the differences and homologies in the peptide binding pockets of these four molecules to identify allele specific as well as common features of peptide binding motifs across species. Our results reveal differences in peptide binding preferences and intensities for each human HLA-E variant compared with Mamu-E and Qa-1b Using extended peptide libraries, we identified and refined the peptide binding motifs for each of the four molecules and found that they share main anchor positions, evidenced by conserved amino acid preferences across the four HLA-E molecules studied. In addition, we also identified differences in peptide binding motifs, which could explain the observed variations in peptide binding preferences and affinities for each of the four HLA-E-like molecules. Our results could help with guiding the selection of candidate pathogen-derived peptides with the capacity to target HLA-E-restricted T cells that could be mobilized in vaccination and immunotherapeutic strategies.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Krista E van Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Joeri J F van Loon
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Dirk van der Steen
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| |
Collapse
|
48
|
Saubi N, Kilpeläinen A, Eto Y, Chen CW, Olvera À, Hanke T, Brander C, Joseph-Munné J. Priming with Recombinant BCG Expressing HTI Enhances the Magnitude and Breadth of the T-Cell Immune Responses Elicited by MVA.HTI in BALB/c Mice. Vaccines (Basel) 2020; 8:vaccines8040678. [PMID: 33202884 PMCID: PMC7712201 DOI: 10.3390/vaccines8040678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/04/2022] Open
Abstract
The use of Mycobacterium bovis bacillus Calmette–Guérin (BCG) as a live vaccine vehicle is a promising approach for HIV-1-specific T-cell induction. In this study, we used recombinant BCG expressing HIVACAT T-cell immunogen (HTI), BCG.HTI2auxo.int. BALB/c mice immunization with BCG.HTI2auxo.int prime and MVA.HTI boost was safe and induced HIV-1-specific T-cell responses. Two weeks after boost, T-cell responses were assessed by IFN-γ ELISpot. The highest total magnitude of IFN-γ spot-forming cells (SFC)/106 splenocytes was observed in BCG.HTI2auxo.int primed mice compared to mice receiving MVA.HTI alone or mice primed with BCGwt, although the differences between the vaccination regimens only reached trends. In order to evaluate the differences in the breadth of the T-cell immune responses, we examined the number of reactive peptide pools per mouse. Interestingly, both BCG.HTI2auxo.int and BCGwt primed mice recognized an average of four peptide pools per mouse. However, the variation was higher in BCG.HTI2auxo.int primed mice with one mouse recognizing 11 peptide pools and three mice recognizing few or no peptide pools. The recognition profile appeared to be more spread out for BCG.HTI2auxo.int primed mice and mice only receiving MVA.HTI. Here, we describe a useful vaccine platform for priming protective responses against HIV-1/TB and other prevalent infectious diseases.
Collapse
Affiliation(s)
- Narcís Saubi
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (N.S.); (A.K.); (Y.E.); (C.-W.C.)
- EAVI2020 European AIDS Vaccine Initiative H2020 Research Programme, London SW7 2BU, UK
| | - Athina Kilpeläinen
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (N.S.); (A.K.); (Y.E.); (C.-W.C.)
- EAVI2020 European AIDS Vaccine Initiative H2020 Research Programme, London SW7 2BU, UK
| | - Yoshiki Eto
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (N.S.); (A.K.); (Y.E.); (C.-W.C.)
| | - Chun-Wei Chen
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (N.S.); (A.K.); (Y.E.); (C.-W.C.)
| | - Àlex Olvera
- Irsicaixa AIDS Research Institute, 08916 Badalona, Spain; (À.O.); (C.B.)
- Biosciences Department, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK;
- International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-8555, Japan
| | - Christian Brander
- Irsicaixa AIDS Research Institute, 08916 Badalona, Spain; (À.O.); (C.B.)
- Biosciences Department, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- AELIX Therapeutics, 08028 Barcelona, Spain
| | - Joan Joseph-Munné
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain; (N.S.); (A.K.); (Y.E.); (C.-W.C.)
- EAVI2020 European AIDS Vaccine Initiative H2020 Research Programme, London SW7 2BU, UK
- Microbiology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
49
|
Shepherd FR, McLaren JE. T Cell Immunity to Bacterial Pathogens: Mechanisms of Immune Control and Bacterial Evasion. Int J Mol Sci 2020; 21:E6144. [PMID: 32858901 PMCID: PMC7504484 DOI: 10.3390/ijms21176144] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The human body frequently encounters harmful bacterial pathogens and employs immune defense mechanisms designed to counteract such pathogenic assault. In the adaptive immune system, major histocompatibility complex (MHC)-restricted αβ T cells, along with unconventional αβ or γδ T cells, respond to bacterial antigens to orchestrate persisting protective immune responses and generate immunological memory. Research in the past ten years accelerated our knowledge of how T cells recognize bacterial antigens and how many bacterial species have evolved mechanisms to evade host antimicrobial immune responses. Such escape mechanisms act to corrupt the crosstalk between innate and adaptive immunity, potentially tipping the balance of host immune responses toward pathological rather than protective. This review examines the latest developments in our knowledge of how T cell immunity responds to bacterial pathogens and evaluates some of the mechanisms that pathogenic bacteria use to evade such T cell immunosurveillance, to promote virulence and survival in the host.
Collapse
Affiliation(s)
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| |
Collapse
|
50
|
Heijmans CMC, de Groot NG, Bontrop RE. Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. Int J Immunogenet 2020; 47:243-260. [PMID: 32358905 DOI: 10.1111/iji.12490] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022]
Abstract
The major histocompatibility complex (MHC) is one of the most gene-dense regions of the mammalian genome. Multiple genes within the human MHC (HLA) show extensive polymorphism, and currently, more than 26,000 alleles divided over 39 different genes are known. Nonhuman primate (NHP) species are grouped into great and lesser apes and Old and New World monkeys, and their MHC is studied mostly because of their important role as animal models in preclinical research or in connection with conservation biology purposes. The evolutionary equivalents of many of the HLA genes are present in NHP species, and these genes may also show abundant levels of polymorphism. This review is intended to provide a comprehensive comparison relating to the organization and polymorphism of human and NHP MHC regions.
Collapse
Affiliation(s)
- Corrine M C Heijmans
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands.,Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|