1
|
Song Y, Wang J, Yang Z, He Q, Bao C, Xie Y, Sun Y, Li S, Quan Y, Yang H, Li C. Heterologous booster vaccination enhances antibody responses to SARS-CoV-2 by improving Tfh function and increasing B-cell clonotype SHM frequency. Front Immunol 2024; 15:1406138. [PMID: 38975334 PMCID: PMC11224535 DOI: 10.3389/fimmu.2024.1406138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Heterologous prime-boost has broken the protective immune response bottleneck of the COVID-19 vaccines. however, the underlying mechanisms have not been fully elucidated. Here, we investigated antibody responses and explored the response of germinal center (GC) to priming with inactivated vaccines and boosting with heterologous adenoviral-vectored vaccines or homologous inactivated vaccines in mice. Antibody responses were dramatically enhanced by both boosting regimens. Heterologous immunization induced more robust GC activation, characterized by increased Tfh cell populations and enhanced helper function. Additionally, increased B-cell activation and antibody production were observed in a heterologous regimen. Libra-seq was used to compare the differences of S1-, S2- and NTD-specific B cells between homologous and heterologous vaccination, respectively. S2-specific CD19+ B cells presented increased somatic hypermutations (SHMs), which were mainly enriched in plasma cells. Moreover, a heterologous booster dose promoted the clonal expansion of B cells specific to S2 and NTD regions. In conclusion, the functional role of Tfh and B cells following SARS-CoV-2 heterologous vaccination may be important for modulating antibody responses. These findings provide new insights for the development of SARS-CoV-2 vaccines that induce more robust antibody response.
Collapse
Affiliation(s)
- Yanli Song
- Division of the Second Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Jiaolei Wang
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Zhihui Yang
- Division of the Second Vaccines, Wuhan Institute of Biological Products Co. Ltd., Wuhan, China
| | - Qian He
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Chunting Bao
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Xie
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yufang Sun
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Shuyan Li
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yaru Quan
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Huijie Yang
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Changgui Li
- Divsion of Respiratory Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
2
|
Jin P, Duan X, Li L, Zhou P, Zou C, Xie K. Cellular senescence in cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e542. [PMID: 38660685 PMCID: PMC11042538 DOI: 10.1002/mco2.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/26/2024] Open
Abstract
Aging exhibits several hallmarks in common with cancer, such as cellular senescence, dysbiosis, inflammation, genomic instability, and epigenetic changes. In recent decades, research into the role of cellular senescence on tumor progression has received widespread attention. While how senescence limits the course of cancer is well established, senescence has also been found to promote certain malignant phenotypes. The tumor-promoting effect of senescence is mainly elicited by a senescence-associated secretory phenotype, which facilitates the interaction of senescent tumor cells with their surroundings. Targeting senescent cells therefore offers a promising technique for cancer therapy. Drugs that pharmacologically restore the normal function of senescent cells or eliminate them would assist in reestablishing homeostasis of cell signaling. Here, we describe cell senescence, its occurrence, phenotype, and impact on tumor biology. A "one-two-punch" therapeutic strategy in which cancer cell senescence is first induced, followed by the use of senotherapeutics for eliminating the senescent cells is introduced. The advances in the application of senotherapeutics for targeting senescent cells to assist cancer treatment are outlined, with an emphasis on drug categories, and the strategies for their screening, design, and efficient targeting. This work will foster a thorough comprehension and encourage additional research within this field.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Xirui Duan
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Lei Li
- Department of Anorectal SurgeryHospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese MedicineChengduChina
| | - Ping Zhou
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Cheng‐Gang Zou
- State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, School of Life SciencesYunnan UniversityKunmingYunnanChina
| | - Ke Xie
- Department of OncologySchool of MedicineSichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
3
|
Hou Y, Chen M, Bian Y, Hu Y, Chuan J, Zhong L, Zhu Y, Tong R. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines 2024; 9:77. [PMID: 38600250 PMCID: PMC11006855 DOI: 10.1038/s41541-024-00874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Immunosenescence increases the risk and severity of diseases in elderly individuals and leads to impaired vaccine-induced immunity. With aging of the global population and the emerging risk of epidemics, developing adjuvants and vaccines for elderly individuals to improve their immune protection is pivotal for healthy aging worldwide. Deepening our understanding of the role of immunosenescence in vaccine efficacy could accelerate research focused on optimizing vaccine delivery for elderly individuals. In this review, we analyzed the characteristics of immunosenescence at the cellular and molecular levels. Strategies to improve vaccination potency in elderly individuals are summarized, including increasing the antigen dose, preparing multivalent antigen vaccines, adding appropriate adjuvants, inhibiting chronic inflammation, and inhibiting immunosenescence. We hope that this review can provide a review of new findings with regards to the impacts of immunosenescence on vaccine-mediated protection and inspire the development of individualized vaccines for elderly individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Hu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Junlan Chuan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
4
|
Kasmani MY, Topchyan P, Brown AK, Brown RJ, Wu X, Chen Y, Khatun A, Alson D, Wu Y, Burns R, Lin CW, Kudek MR, Sun J, Cui W. A spatial sequencing atlas of age-induced changes in the lung during influenza infection. Nat Commun 2023; 14:6597. [PMID: 37852965 PMCID: PMC10584893 DOI: 10.1038/s41467-023-42021-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
Influenza virus infection causes increased morbidity and mortality in the elderly. Aging impairs the immune response to influenza, both intrinsically and because of altered interactions with endothelial and pulmonary epithelial cells. To characterize these changes, we performed single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and bulk RNA sequencing (bulk RNA-seq) on lung tissue from young and aged female mice at days 0, 3, and 9 post-influenza infection. Our analyses identified dozens of key genes differentially expressed in kinetic, age-dependent, and cell type-specific manners. Aged immune cells exhibited altered inflammatory, memory, and chemotactic profiles. Aged endothelial cells demonstrated characteristics of reduced vascular wound healing and a prothrombotic state. Spatial transcriptomics identified novel profibrotic and antifibrotic markers expressed by epithelial and non-epithelial cells, highlighting the complex networks that promote fibrosis in aged lungs. Bulk RNA-seq generated a timeline of global transcriptional activity, showing increased expression of genes involved in inflammation and coagulation in aged lungs. Our work provides an atlas of high-throughput sequencing methodologies that can be used to investigate age-related changes in the response to influenza virus, identify novel cell-cell interactions for further study, and ultimately uncover potential therapeutic targets to improve health outcomes in the elderly following influenza infection.
Collapse
Affiliation(s)
- Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Paytsar Topchyan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Ashley K Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Ryan J Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Donia Alson
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Chien-Wei Lin
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Matthew R Kudek
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Vallet H, Guidet B, Boumendil A, De Lange DW, Leaver S, Szczeklik W, Jung C, Sviri S, Beil M, Flaatten H. The impact of age-related syndromes on ICU process and outcomes in very old patients. Ann Intensive Care 2023; 13:68. [PMID: 37542186 PMCID: PMC10403479 DOI: 10.1186/s13613-023-01160-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/28/2023] [Indexed: 08/06/2023] Open
Abstract
In this narrative review, we describe the most important age-related "syndromes" found in the old ICU patients. The syndromes are frailty, comorbidity, cognitive decline, malnutrition, sarcopenia, loss of functional autonomy, immunosenescence and inflam-ageing. The underlying geriatric condition, together with the admission diagnosis and the acute severity contribute to the short-term, but also to the long-term prognosis. Besides mortality, functional status and quality of life are major outcome variables. The geriatric assessment is a key tool for long-term qualitative outcome, while immediate severity accounts for acute mortality. A poor functional baseline reduces the chances of a successful outcome following ICU. This review emphasises the importance of using a geriatric assessment and considering the older patient as a whole, rather than the acute illness in isolation, when making decisions regarding intensive care treatment.
Collapse
Affiliation(s)
- Hélène Vallet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS 1135, Centre d'immunologie et de Maladies Infectieuses (CIMI), Department of Geriatrics, Saint Antoine, Assistance Publique Hôpitaux de Paris (AP-HP), Sorbonne Université, F75012, Paris, France
| | - Bertrand Guidet
- Institut Pierre Louis d'Epidémiologie et de Santé Publique, Hôpital Saint-Antoine, service de réanimation, Sorbonne Université, INSERM, AP-HP, 75012, Paris, France.
| | - Ariane Boumendil
- service de réanimation, AP-HP, Hôpital Saint-Antoine, F75012, Paris, France
| | - Dylan W De Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, The Netherlands
| | - Susannah Leaver
- Department of Critical Care Medicine, St George's Hospital London, London, England
| | - Wojciech Szczeklik
- Intensive Care and Perioperative Medicine Division, Jagiellonian University Medical College, Kraków, Poland
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sigal Sviri
- Department of Medical Intensive Care, Faculty of Medicine, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Michael Beil
- Department of Medical Intensive Care, Faculty of Medicine, Hebrew University and Hadassah University Medical Center, Jerusalem, Israel
| | - Hans Flaatten
- Department of Clinical Medicine, Department of Research and Developement, Haukeland University Hospital, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Chen J, Deng JC, Goldstein DR. How aging impacts vaccine efficacy: known molecular and cellular mechanisms and future directions. Trends Mol Med 2022; 28:1100-1111. [PMID: 36216643 PMCID: PMC9691569 DOI: 10.1016/j.molmed.2022.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 01/26/2023]
Abstract
Aging leads to a gradual dysregulation of immune functions, one consequence of which is reduced vaccine efficacy. In this review, we discuss several key contributing factors to the age-related decline in vaccine efficacy, such as alterations within the lymph nodes where germinal center (GC) reactions take place, alterations in the B cell compartment, alterations in the T cell compartment, and dysregulation of innate immune pathways. Additionally, we discuss several methods currently used in vaccine development to bolster vaccine efficacy in older adults. This review highlights the multifactorial defects that impair vaccine responses with aging.
Collapse
Affiliation(s)
- Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jane C Deng
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Daniel R Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Bell MR, Kutzler MA. An old problem with new solutions: Strategies to improve vaccine efficacy in the elderly. Adv Drug Deliv Rev 2022; 183:114175. [PMID: 35202770 DOI: 10.1016/j.addr.2022.114175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
Vaccination is the most effective measure to protect against infections. However, with increasing age, there is a progressive decline in the ability of the immune system to both protect against infection and develop protective immunity from vaccination. This age-related decline of the immune system is due to age-related changes in both the innate and adaptive immune systems. With an aging world population and increased risk of pandemics, there is a need to continue to develop strategies to increase vaccine responses in the elderly. Here, the major age-related changes that occur in both the innate and adaptive immune responses that impair the response to vaccination in the elderly will be highlighted. Existing and future strategies to improve vaccine efficacy in the elderly will then be discussed, including adjuvants, delivery methods, and formulation. These strategies provide mechanisms to improve the efficacy of existing vaccines and develop novel vaccines for the elderly.
Collapse
|
8
|
Crofts KF, Holbrook BC, D'Agostino RB, Alexander-Miller MA. Analysis of R848 as an Adjuvant to Improve Inactivated Influenza Vaccine Immunogenicity in Elderly Nonhuman Primates. Vaccines (Basel) 2022; 10:494. [PMID: 35455242 PMCID: PMC9032612 DOI: 10.3390/vaccines10040494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/13/2023] Open
Abstract
Elderly individuals are highly susceptible to developing severe outcomes as a result of influenza A virus (IAV) infection. This can be attributed to alterations that span the aged immune system, which also result in reduced responsiveness to the seasonal inactivated vaccine. Given the rapidly increasing number of individuals in this age group, it is imperative that we develop strategies that can better protect this population from IAV-associated disease. Based on our previous findings that the TLR7/8 agonist resiquimod (R848) could efficiently boost responses in the newborn, another population with decreased vaccine responsiveness, we evaluated this adjuvant in an elderly African green monkey (AGM) model. AGM aged 16-24 years old (equivalent to 64-96 in human years) were primed and boosted with inactivated A/PuertoRico/8/1934 (H1N1) (IPR8) alone or directly linked to R848 (IPR8-R848). We observed increases in the level of circulating virus-specific IgM antibody 10 days following primary vaccination in AGM that were vaccinated with IPR8-R848, but not IPR8 alone. In addition, there were significant increases in virus-specific IgG after boosting selectively in the IPR8-R848 vaccinated animals. These findings provide insights into the ability of R848 to modulate the aged immune system in the context of IAV vaccination.
Collapse
Affiliation(s)
- Kali F Crofts
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| |
Collapse
|
9
|
USP10 regulates B cell response to SARS-CoV-2 or HIV-1 nanoparticle vaccines through deubiquitinating AID. Signal Transduct Target Ther 2022; 7:7. [PMID: 34983926 PMCID: PMC8724756 DOI: 10.1038/s41392-021-00858-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates class-switch recombination and somatic hypermutation (SHM) in antibody genes. Protein expression and activity are tightly controlled by various mechanisms. However, it remains unknown whether a signal from the extracellular environment directly affects the AID activity in the nucleus where it works. Here, we demonstrated that a deubiquitinase USP10, which specifically stabilizes nuclear AID protein, can translocate into the nucleus after AKT-mediated phosphorylation at its T674 within the NLS domain. Interestingly, the signals from BCR and TLR1/2 synergistically promoted this phosphorylation. The deficiency of USP10 in B cells significantly decreased AID protein levels, subsequently reducing neutralizing antibody production after immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or human immunodeficiency virus type 1 (HIV-1) nanoparticle vaccines. Collectively, we demonstrated that USP10 functions as an integrator for both BCR and TLR signals and directly regulates nuclear AID activity. Its manipulation could be used for the development of vaccines and adjuvants.
Collapse
|
10
|
Tang J, Grubbs G, Lee Y, Huang C, Ravichandran S, Forgacs D, Golding H, Ross TM, Khurana S. Antibody affinity maturation and cross-variant activity following SARS-CoV-2 mRNA vaccination: Impact of prior exposure and sex. EBioMedicine 2021; 74:103748. [PMID: 34902788 PMCID: PMC8662368 DOI: 10.1016/j.ebiom.2021.103748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Limited knowledge exists regarding antibody affinity maturation following mRNA vaccination in naïve vs. COVID-19 recovered individuals and potential sex differences. METHODS We elucidated post-vaccination antibody profiles of 69 naïve and 17 COVID-19 convalescent adults using pseudovirus neutralization assay (PsVNA) covering SARS-CoV-2 WA-1, variants of concern (VOCs) and variants of interest (VOIs). Surface Plasmon Resonance (SPR) was used to measure antibody affinity against prefusion spike and receptor binding domain (RBD) and RBD mutants. FINDINGS Higher neutralizing antibodies were observed in convalescent vs. naïve adults against, WA-1, VOCs, and VOIs. Antibody binding to RBD and RBD mutants showed lower binding of post-vaccination sera from naïve compared with convalescent individuals. Moreover, we observed early antibody affinity maturation in convalescent individuals after one vaccine dose and higher antibody affinity after two doses compared with the naïve group. Among the naïve participants, antibody affinity against the SARS-CoV-2 prefusion spike was significantly higher for males than females even though there were no difference in neutralization titers between sexes. INTERPRETATION This study demonstrates the impact of prior infection on vaccine-induced antibody affinity maturation and difference in antibody affinity between males and females. Further studies are needed to determine whether antibody affinity may contribute to correlates of protection against SARS-CoV-2 and its variants. FUNDING The antibody characterization work described in this manuscript was supported by FDA's Medical Countermeasures Initiative (MCMi) grant #OCET 2021-1565 to S.K and intramural FDA-CBER COVID-19 supplemental funds. The SPARTA program was supported by the National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Department of Health and Human Services contract 75N93019C00052, and the University of Georgia (US) grant UGA-001. T.M.R is also supported by the Georgia Research Alliance (US) grant GRA-001. The CTRU was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR002378.
Collapse
Affiliation(s)
- Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20993
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20993
| | - Youri Lee
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20993
| | - Chang Huang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20993
| | - Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20993
| | - David Forgacs
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA, 30602
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20993
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA, 30602; Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA, 30602
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA, 20993.
| |
Collapse
|
11
|
Cakala-Jakimowicz M, Kolodziej-Wojnar P, Puzianowska-Kuznicka M. Aging-Related Cellular, Structural and Functional Changes in the Lymph Nodes: A Significant Component of Immunosenescence? An Overview. Cells 2021; 10:cells10113148. [PMID: 34831371 PMCID: PMC8621398 DOI: 10.3390/cells10113148] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aging affects all tissues and organs. Aging of the immune system results in the severe disruption of its functions, leading to an increased susceptibility to infections, an increase in autoimmune disorders and cancer incidence, and a decreased response to vaccines. Lymph nodes are precisely organized structures of the peripheral lymphoid organs and are the key sites coordinating innate and long-term adaptive immune responses to external antigens and vaccines. They are also involved in immune tolerance. The aging of lymph nodes results in decreased cell transport to and within the nodes, a disturbance in the structure and organization of nodal zones, incorrect location of individual immune cell types and impaired intercellular interactions, as well as changes in the production of adequate amounts of chemokines and cytokines necessary for immune cell proliferation, survival and function, impaired naïve T- and B-cell homeostasis, and a diminished long-term humoral response. Understanding the causes of these stromal and lymphoid microenvironment changes in the lymph nodes that cause the aging-related dysfunction of the immune system can help to improve long-term immune responses and the effectiveness of vaccines in the elderly.
Collapse
Affiliation(s)
- Marta Cakala-Jakimowicz
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: (M.C.-J.); (M.P.-K.)
| | - Paulina Kolodziej-Wojnar
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
- Correspondence: (M.C.-J.); (M.P.-K.)
| |
Collapse
|
12
|
Abstract
Innate and adaptive immune responses decline with age, leading to greater susceptibility to infectious diseases and reduced responses to vaccines. Diseases are more severe in old than in young individuals and have a greater impact on health outcomes such as morbidity, disability, and mortality. Aging is characterized by increased low-grade chronic inflammation, so-called inflammaging, that represents a link between changes in immune cells and a number of diseases and syndromes typical of old age. In this review we summarize current knowledge on age-associated changes in immune cells with special emphasis on B cells, which are more inflammatory and less responsive to infections and vaccines in the elderly. We highlight recent findings on factors and pathways contributing to inflammaging and how these lead to dysfunctional immune responses. We summarize recent published studies showing that adipose tissue, which increases in size with aging, contributes to inflammaging and dysregulated B cell function.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA; .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.,Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA; .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
13
|
Lin X, Lin F, Liang T, Ducatez MF, Zanin M, Wong SS. Antibody Responsiveness to Influenza: What Drives It? Viruses 2021; 13:v13071400. [PMID: 34372607 PMCID: PMC8310379 DOI: 10.3390/v13071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.
Collapse
Affiliation(s)
- Xia Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Fangmei Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Tingting Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | | | - Mark Zanin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
14
|
Jung J, Mundle ST, Ustyugova IV, Horton AP, Boutz DR, Pougatcheva S, Prabakaran P, McDaniel JR, King GR, Park D, Person MD, Ye C, Tan B, Tanno Y, Kim JE, Curtis NC, DiNapoli J, Delagrave S, Ross TM, Ippolito GC, Kleanthous H, Lee J, Georgiou G. Influenza vaccination in the elderly boosts antibodies against conserved viral proteins and egg-produced glycans. J Clin Invest 2021; 131:148763. [PMID: 34196304 PMCID: PMC8245176 DOI: 10.1172/jci148763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Seasonal influenza vaccination elicits a diminished adaptive immune response in the elderly, and the mechanisms of immunosenescence are not fully understood. Using Ig-Seq, we found a marked increase with age in the prevalence of cross-reactive (CR) serum antibodies that recognize both the H1N1 (vaccine-H1) and H3N2 (vaccine-H3) components of an egg-produced split influenza vaccine. CR antibodies accounted for 73% ± 18% of the serum vaccine responses in a cohort of elderly donors, 65% ± 15% in late middle-aged donors, and only 13% ± 5% in persons under 35 years of age. The antibody response to non-HA antigens was boosted by vaccination. Recombinant expression of 19 vaccine-H1+H3 CR serum monoclonal antibodies (s-mAbs) revealed that they predominantly bound to non-HA influenza proteins. A sizable fraction of vaccine-H1+H3 CR s-mAbs recognized with high affinity the sulfated glycans, in particular sulfated type 2 N-acetyllactosamine (Galβ1-4GalNAcβ), which is found on egg-produced proteins and thus unlikely to contribute to protection against influenza infection in humans. Antibodies against sulfated glycans in egg-produced vaccine had been identified in animals but were not previously characterized in humans. Collectively, our results provide a quantitative basis for how repeated exposure to split influenza vaccine correlates with unintended focusing of serum antibody responses to non-HA antigens that may result in suboptimal immunity against influenza.
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Sophia T. Mundle
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Irina V. Ustyugova
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | | | | | | | - Ponraj Prabakaran
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | | | | | - Daechan Park
- Institute for Cellular and Molecular Biology, and
| | - Maria D. Person
- Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, Texas, USA
| | - Congxi Ye
- Department of Molecular Biosciences
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Bing Tan
- Department of Chemical Engineering
| | | | - Jin Eyun Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Nicholas C. Curtis
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Joshua DiNapoli
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Simon Delagrave
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Gregory C. Ippolito
- Department of Molecular Biosciences
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| | - Harry Kleanthous
- Sanofi Pasteur Inc., Research North America, Cambridge, Massachusetts, USA
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - George Georgiou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, USA
- Department of Chemical Engineering
- Department of Molecular Biosciences
- Institute for Cellular and Molecular Biology, and
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
15
|
Stephens LM, Varga SM. Considerations for a Respiratory Syncytial Virus Vaccine Targeting an Elderly Population. Vaccines (Basel) 2021; 9:vaccines9060624. [PMID: 34207770 PMCID: PMC8228432 DOI: 10.3390/vaccines9060624] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is most commonly associated with acute lower respiratory tract infections in infants and children. However, RSV also causes a high disease burden in the elderly that is often under recognized. Adults >65 years of age account for an estimated 80,000 RSV-associated hospitalizations and 14,000 deaths in the United States annually. RSV infection in aged individuals can result in more severe disease symptoms including pneumonia and bronchiolitis. Given the large disease burden caused by RSV in the aged, this population remains an important target for vaccine development. Aging results in lowered immune responsiveness characterized by impairments in both innate and adaptive immunity. This immune senescence poses a challenge when developing a vaccine targeting elderly individuals. An RSV vaccine tailored towards an elderly population will need to maximize the immune response elicited in order to overcome age-related defects in the immune system. In this article, we review the hurdles that must be overcome to successfully develop an RSV vaccine for use in the elderly, and discuss the vaccine candidates currently being tested in this highly susceptible population.
Collapse
Affiliation(s)
- Laura M. Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
16
|
Budroni S, Buricchi F, Cavallone A, Bourguignon P, Caubet M, Dewar V, D'Oro U, Finco O, Garçon N, El Idrissi M, Janssens M, Leroux-Roels G, Marchant A, Schwarz T, Van Damme P, Volpini G, van der Most R, Didierlaurent AM, Burny W. Antibody avidity, persistence, and response to antigen recall: comparison of vaccine adjuvants. NPJ Vaccines 2021; 6:78. [PMID: 34021167 PMCID: PMC8140094 DOI: 10.1038/s41541-021-00337-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Differences in innate immune ‘imprinting’ between vaccine adjuvants may mediate dissimilar effects on the quantity/quality of persisting adaptive responses. We compared antibody avidity maturation, antibody/memory B cell/CD4+ T cell response durability, and recall responses to non-adjuvanted fractional-dose antigen administered 1-year post-immunization (Day [D]360), between hepatitis B vaccines containing Adjuvant System (AS)01B, AS01E, AS03, AS04, or Alum (NCT00805389). Both the antibody and B cell levels ranked similarly (AS01B/E/AS03 > AS04 > Alum) at peak response, at D360, and following their increases post-antigen recall (D390). Proportions of high-avidity antibodies increased post-dose 2 across all groups and persisted at D360, but avidity maturation appeared to be more strongly promoted by AS vs. Alum. Post-antigen recall, frequencies of subjects with high-avidity antibodies increased only markedly in the AS groups. Among the AS, total antibody responses were lowest for AS04. However, proportions of high-avidity antibodies were similar between groups, suggesting that MPL in AS04 contributes to avidity maturation. Specific combinations of immunoenhancers in the AS, regardless of their individual nature, increase antibody persistence and avidity maturation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Brussels, Belgium
| | - Tino Schwarz
- Institute of Laboratory Medicine and Vaccination Center, Klinikum Wuerzburg Mitte, Standort Juliusspital, Academic Teaching Hospital of the University of Wuerzburg, Wuerzburg, Germany
| | - Pierre Van Damme
- Center for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
17
|
Frasca D, Diaz A, Romero M, Blomberg BB. Phenotypic and Functional Characterization of Double Negative B Cells in the Blood of Individuals With Obesity. Front Immunol 2021; 12:616650. [PMID: 33708209 PMCID: PMC7940530 DOI: 10.3389/fimmu.2021.616650] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
We have previously shown that obesity is associated with increased secretion of IgG antibodies with anti-self-reactivity. In this paper, we confirm and extend our previous findings. We show that the plasma of individuals with obesity is enriched in autoimmune antibodies whose levels are positively associated with blood frequencies of the subset of Double Negative (DN) B cells, which is the most pro-inflammatory B cell subset. We also show that DN B cells, significantly increased in the blood of obese versus lean individuals, are characterized by higher expression of immune activation markers and of the transcription factor T-bet, both associated with autoimmunity. The removal of DN B cells from the peripheral B cell pool significantly decreases in vitro secretion of anti-self IgG antibodies. These results altogether confirm the crucial role of DN B cells in the secretion of anti-self IgG antibodies in individuals with obesity.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
18
|
Frasca D, Romero M, Diaz A, Garcia D, Thaller S, Blomberg BB. B Cells with a Senescent-Associated Secretory Phenotype Accumulate in the Adipose Tissue of Individuals with Obesity. Int J Mol Sci 2021; 22:ijms22041839. [PMID: 33673271 PMCID: PMC7917792 DOI: 10.3390/ijms22041839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Senescent cells accumulate in the adipose tissue (AT) of individuals with obesity and secrete multiple factors that constitute the senescence-associated secretory phenotype (SASP). This paper aimed at the identification of B cells with a SASP phenotype in the AT, as compared to the peripheral blood, of individuals with obesity. Our results show increased expression of SASP markers in AT versus blood B cells, a phenotype associated with a hyper-metabolic profile necessary to support the increased immune activation of AT-derived B cells as compared to blood-derived B cells. This hyper-metabolic profile is needed for the secretion of the pro-inflammatory mediators (cytokines, chemokines, micro-RNAs) that fuel local and systemic inflammation.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.R.); (A.D.); (D.G.); (B.B.B.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Correspondence:
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.R.); (A.D.); (D.G.); (B.B.B.)
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.R.); (A.D.); (D.G.); (B.B.B.)
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.R.); (A.D.); (D.G.); (B.B.B.)
| | - Seth Thaller
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Bonnie B. Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.R.); (A.D.); (D.G.); (B.B.B.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
19
|
Booth JS, Toapanta FR. B and T Cell Immunity in Tissues and Across the Ages. Vaccines (Basel) 2021; 9:vaccines9010024. [PMID: 33419014 PMCID: PMC7825307 DOI: 10.3390/vaccines9010024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023] Open
Abstract
B and T cells are key components of the adaptive immune system and coordinate multiple facets of immunity including responses to infection, vaccines, allergens, and the environment. In humans, B- and T-cell immunity has been determined using primarily peripheral blood specimens. Conversely, human tissues have scarcely been studied but they host multiple adaptive immune cells capable of mounting immune responses to pathogens and participate in tissue homeostasis. Mucosal tissues, such as the intestines and respiratory track, are constantly bombarded by foreign antigens and contain tissue-resident memory T (TRM) cells that exhibit superior protective capacity to pathogens. Also, tissue-resident memory B (BRM) cells have been identified in mice but whether humans have a similar population remains to be confirmed. Moreover, the immune system evolves throughout the lifespan of humans and undergoes multiple changes in its immunobiology. Recent studies have shown that age-related changes in tissues are not necessarily reflected in peripheral blood specimens, highlighting the importance of tissue localization and subset delineation as essential determinants of functional B and T cells at different life stages. This review describes our current knowledge of the main B- and T-cell subsets in peripheral blood and tissues across age groups.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Franklin R. Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21075, USA;
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
20
|
Allen JC, Toapanta FR, Chen W, Tennant SM. Understanding immunosenescence and its impact on vaccination of older adults. Vaccine 2020; 38:8264-8272. [PMID: 33229108 DOI: 10.1016/j.vaccine.2020.11.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Older adults are more susceptible to viral and bacterial infection, and experience higher incidence and severity of infectious diseases. Although vaccination is the most logical solution in preventing infectious diseases, primary vaccine responses in individuals aged ≥65 years-old fail to generate complete protection. This is presumably attributed to immunosenescence, a term that describes functional differences associated with the immune system and natural age advancement. Both the innate and adaptive immune systems experience age-related impairments that contribute to insufficient protection following vaccination. This review addresses current knowledge of age-related changes that affect vaccine responsiveness; including the deficits in innate cell functions, dampened humoral and cell-mediated immune responses, current vaccination schedules for older adults, and concludes with potential strategies for improving vaccine efficacy specifically for this age group. Due to an age-related decline in immunity and poor vaccine responses, infectious diseases remain a burden among the aged population.
Collapse
Affiliation(s)
- Jessica C Allen
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Franklin R Toapanta
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wilbur Chen
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Frasca D, Blomberg BB. Aging induces B cell defects and decreased antibody responses to influenza infection and vaccination. IMMUNITY & AGEING 2020; 17:37. [PMID: 33292323 PMCID: PMC7674578 DOI: 10.1186/s12979-020-00210-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Background Aging is characterized by a progressive decline in the capacity of the immune system to fight influenza virus infection and to respond to vaccination. Among the several factors involved, in addition to increased frailty and high-risk conditions, the age-associated decrease in cellular and humoral immune responses plays a relevant role. This is in large part due to inflammaging, the chronic low-grade inflammatory status of the elderly, associated with intrinsic inflammation of the immune cells and decreased immune function. Results Aging is usually associated with reduced influenza virus-specific and influenza vaccine-specific antibody responses but some elderly individuals with higher pre-exposure antibody titers, due to a previous infection or vaccination, have less probability to get infected. Examples of this exception are the elderly individuals infected during the 2009 pandemic season who made antibodies with broader epitope recognition and higher avidity than those made by younger individuals. Several studies have allowed the identification of B cell intrinsic defects accounting for sub-optimal antibody responses of elderly individuals. These defects include 1) reduced class switch recombination, responsible for the generation of a secondary response of class switched antibodies, 2) reduced de novo somatic hypermutation of the antibody variable region, 3) reduced binding and neutralization capacity, as well as binding specificity, of the secreted antibodies, 4) increased epigenetic modifications that are associated with lower antibody responses, 5) increased frequencies of inflammatory B cell subsets, and 6) shorter telomeres. Conclusions Although influenza vaccination represents the most effective way to prevent influenza infection, vaccines with greater immunogenicity are needed to improve the response of elderly individuals. Recent advances in technology have made possible a broad approach to better understand the age-associated changes in immune cells, needed to design tailored vaccines and effective therapeutic strategies that will be able to improve the immune response of vulnerable individuals.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, RMSB 3146A, 1600 NW 10th Ave, Miami, FL, 33136, USA
| |
Collapse
|
22
|
Elrashdy F, Redwan EM, Uversky VN. Why COVID-19 Transmission Is More Efficient and Aggressive Than Viral Transmission in Previous Coronavirus Epidemics? Biomolecules 2020; 10:E1312. [PMID: 32933047 PMCID: PMC7565143 DOI: 10.3390/biom10091312] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing a pandemic of coronavirus disease 2019 (COVID-19). The worldwide transmission of COVID-19 from human to human is spreading like wildfire, affecting almost every country in the world. In the past 100 years, the globe did not face a microbial pandemic similar in scale to COVID-19. Taken together, both previous outbreaks of other members of the coronavirus family (severe acute respiratory syndrome (SARS-CoV) and middle east respiratory syndrome (MERS-CoV)) did not produce even 1% of the global harm already inflicted by COVID-19. There are also four other CoVs capable of infecting humans (HCoVs), which circulate continuously in the human population, but their phenotypes are generally mild, and these HCoVs received relatively little attention. These dramatic differences between infection with HCoVs, SARS-CoV, MERS-CoV, and SARS-CoV-2 raise many questions, such as: Why is COVID-19 transmitted so quickly? Is it due to some specific features of the viral structure? Are there some specific human (host) factors? Are there some environmental factors? The aim of this review is to collect and concisely summarize the possible and logical answers to these questions.
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
| |
Collapse
|
23
|
Frasca D, Blomberg BB, Garcia D, Keilich SR, Haynes L. Age-related factors that affect B cell responses to vaccination in mice and humans. Immunol Rev 2020; 296:142-154. [PMID: 32484934 DOI: 10.1111/imr.12864] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
Aging significantly changes the ability to respond to vaccinations and infections. In this review, we summarize published results on age-related changes in response to infection with the influenza virus and on the factors known to increase influenza risk infection leading to organ failure and death. We also summarize how aging affects the response to the influenza vaccine with a special focus on B cells, which have been shown to be less responsive in the elderly. We show the cellular and molecular mechanisms contributing to the dysfunctional immune response of the elderly to the vaccine against influenza. These include a defective interaction of helper T cells (CD4+) with B cells in germinal centers, changes in the microenvironment, and the generation of immune cells with a senescence-associated phenotype. Finally, we discuss the effects of aging on metabolic pathways and we show how metabolic complications associated with aging lead to immune dysfunction.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Spencer R Keilich
- UConn Center on Aging, Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Laura Haynes
- UConn Center on Aging, Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
24
|
Dhakal S, Klein SL. Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019; 93:e00797-19. [PMID: 31391269 PMCID: PMC6803252 DOI: 10.1128/jvi.00797-19] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
Affiliation(s)
- Santosh Dhakal
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Host Factors Impact Vaccine Efficacy: Implications for Seasonal and Universal Influenza Vaccine Programs. J Virol 2019. [PMID: 31391269 DOI: 10.1128/jvi.00797‐19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza is a global public health problem. Current seasonal influenza vaccines have highly variable efficacy, and thus attempts to develop broadly protective universal influenza vaccines with durable protection are under way. While much attention is given to the virus-related factors contributing to inconsistent vaccine responses, host-associated factors are often neglected. Growing evidences suggest that host factors including age, biological sex, pregnancy, and immune history play important roles as modifiers of influenza virus vaccine efficacy. We hypothesize that host genetics, the hormonal milieu, and gut microbiota contribute to host-related differences in influenza virus vaccine efficacy. This review highlights the current insights and future perspectives into host-specific factors that impact influenza vaccine-induced immunity and protection. Consideration of the host factors that affect influenza vaccine-induced immunity might improve influenza vaccines by providing empirical evidence for optimizing or even personalizing vaccine type, dose, and use of adjuvants for current seasonal and future universal influenza vaccines.
Collapse
|
26
|
Dugan HL, Henry C, Wilson PC. Aging and influenza vaccine-induced immunity. Cell Immunol 2019; 348:103998. [PMID: 31733824 DOI: 10.1016/j.cellimm.2019.103998] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Immunosenescence is defined as the progressive deterioration of the immune system with aging. Immunosenescence stifles the generation of protective B and T cell-mediated adaptive immunity in response to various pathogens, resulting in increased disease susceptibility and severity in the elderly population. In particular, immunosenescence has major impacts on the phenotype, function, and receptor repertoire of B and T cells in the elderly, hindering protective responses induced by seasonal influenza virus vaccination. In order to overcome the detrimental impacts of immunosenescence on protective immunity to influenza viruses, we review our current understanding of the effects of aging on adaptive immune responses to influenza and discuss current and future avenues of vaccine research for eliciting more potent anti-influenza immunity in the elderly.
Collapse
Affiliation(s)
- Haley L Dugan
- University of Chicago, Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Carole Henry
- University of Chicago, Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA.
| | - Patrick C Wilson
- University of Chicago, Department of Medicine, Section of Rheumatology, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
27
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. IMMUNITY & AGEING 2019; 16:25. [PMID: 31528180 PMCID: PMC6743147 DOI: 10.1186/s12979-019-0164-9] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
The age-related dysregulation and decline of the immune system-collectively termed "immunosenescence"-has been generally associated with an increased susceptibility to infectious pathogens and poor vaccine responses in older adults. While numerous studies have reported on the clinical outcomes of infected or vaccinated individuals, our understanding of the mechanisms governing the onset of immunosenescence and its effects on adaptive immunity remains incomplete. Age-dependent differences in T and B lymphocyte populations and functions have been well-defined, yet studies that demonstrate direct associations between immune cell function and clinical outcomes in older individuals are lacking. Despite these knowledge gaps, research has progressed in the development of vaccine and adjuvant formulations tailored for older adults in order to boost protective immunity and overcome immunosenescence. In this review, we will discuss the development of vaccines for older adults in light of our current understanding-or lack thereof-of the aging immune system. We highlight the functional changes that are known to occur in the adaptive immune system with age, followed by a discussion of current, clinically relevant pathogens that disproportionately affect older adults and are the central focus of vaccine research efforts for the aging population. We conclude with an outlook on personalized vaccine development for older adults and areas in need of further study in order to improve our fundamental understanding of adaptive immunosenescence.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
28
|
Older Human B Cells and Antibodies. HANDBOOK OF IMMUNOSENESCENCE 2019. [PMCID: PMC7121151 DOI: 10.1007/978-3-319-99375-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
B cells have a number of different roles in the immune response. Their excellent antigen presentation potential can contribute to the activation of other cells of the immune system, and evidence is emerging that specialized subsets of these cells, that may be increased with age, can influence the cell-mediated immune system in antitumor responses. They can also regulate immune responses, to avoid autoreactivity and excessive inflammation. Deficiencies in regulatory B cells may be beneficial in cancer but will only exacerbate the inflammatory environment that is a hallmark of aging. The B cell role as antibody producers is particularly important, since antibodies perform numerous different functions in different environments. Although studying tissue responses in humans is not as easy as in mice, we do know that certain classes of antibodies are more suited to protecting the mucosal tissues (IgA) or responding to T-independent bacterial polysaccharide antigens (IgG2) so we can make some inference with respect to tissue-specific immunity from a study of peripheral blood. We can also make inferences about changes in B cell development with age by looking at the repertoire of different B cell populations to see how age affects the selection events that would normally occur to avoid autoreactivity, or increase specificity, to antigen.
Collapse
|
29
|
Davydov AN, Obraztsova AS, Lebedin MY, Turchaninova MA, Staroverov DB, Merzlyak EM, Sharonov GV, Kladova O, Shugay M, Britanova OV, Chudakov DM. Comparative Analysis of B-Cell Receptor Repertoires Induced by Live Yellow Fever Vaccine in Young and Middle-Age Donors. Front Immunol 2018; 9:2309. [PMID: 30356675 PMCID: PMC6189279 DOI: 10.3389/fimmu.2018.02309] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/17/2018] [Indexed: 12/25/2022] Open
Abstract
Age-related changes can significantly alter the state of adaptive immune system and often lead to attenuated response to novel pathogens and vaccination. In present study we employed 5′RACE UMI-based full length and nearly error-free immunoglobulin profiling to compare plasma cell antibody repertoires in young (19–26 years) and middle-age (45–58 years) individuals vaccinated with a live yellow fever vaccine, modeling a newly encountered pathogen. Our analysis has revealed age-related differences in the responding antibody repertoire ranging from distinct IGH CDR3 repertoire properties to differences in somatic hypermutation intensity and efficiency and antibody lineage tree structure. Overall, our findings suggest that younger individuals respond with a more diverse antibody repertoire and employ a more efficient somatic hypermutation process than elder individuals in response to a newly encountered pathogen.
Collapse
Affiliation(s)
- Alexey N Davydov
- Adaptive Immunity Group, Central European Institute of Technology, Brno, Czechia
| | - Anna S Obraztsova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Mikhail Y Lebedin
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria A Turchaninova
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Dmitriy B Staroverov
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ekaterina M Merzlyak
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia
| | - George V Sharonov
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Olga Kladova
- Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail Shugay
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Olga V Britanova
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Dmitriy M Chudakov
- Adaptive Immunity Group, Central European Institute of Technology, Brno, Czechia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Department of Molecular Technologies, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
30
|
Sadighi Akha AA. Aging and the immune system: An overview. J Immunol Methods 2018; 463:21-26. [PMID: 30114401 DOI: 10.1016/j.jim.2018.08.005] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/17/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022]
Abstract
The world is witnessing a rapid demographic shift towards an older population, a trend with major medical, social, economic and political implications. Aging is a multifaceted process, involving numerous molecular and cellular mechanisms in the context of different organ systems. A crucial component of aging is a set of functional and structural alterations in the immune system that can manifest as a decreased ability to fight infection, diminished response to vaccination, increased incidence of cancer, higher prevalence of autoimmunity and constitutive low-grade inflammation, among others. In addition to cell-intrinsic changes in both innate and adaptive immune cells, alterations in the stromal microenvironment in primary and secondary lymphoid organs play an important role in age-associated immune dysfunction. This article will provide a broad overview of these phenomena and point out some of their clinical and therapeutic implications.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, United States.
| |
Collapse
|
31
|
Impact of stress on aged immune system compartments: Overview from fundamental to clinical data. Exp Gerontol 2018; 105:19-26. [DOI: 10.1016/j.exger.2018.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
|
32
|
Ikushima H, Mitsutake A, Hideyama T, Sato T, Katsumata J, Seki T, Maekawa R, Kishida Y, Shiio Y. Severe pleuritis and pericarditis associated with very-late-onset systemic lupus erythematosus. J Gen Fam Med 2018; 19:53-56. [PMID: 29600129 PMCID: PMC5867069 DOI: 10.1002/jgf2.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/15/2018] [Indexed: 11/10/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystem disorder, which occurs mostly in young women. However, late-onset SLE does exist and sometimes presents with an atypical, diversified course. We describe an 85-year-old woman who was admitted to our hospital for lower extremity edema and hand grip weakness. Chest computed tomography scan 4 days after admission demonstrated rapid accumulation of pleural and pericardial effusions, which did not exist on admission. She was diagnosed with pleuritis and pericarditis associated with very-late-onset SLE. Methylprednisolone pulse therapy resulted in a drastic improvement in serositis. Our case exemplifies the fact that patients with late-onset SLE sometimes follow an atypical course, which makes the clinical diagnosis difficult.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Sato
- Department of Neurology Tokyo Teishin Hospital Tokyo Japan
| | | | - Tomonari Seki
- Department of Neurology Tokyo Teishin Hospital Tokyo Japan
| | - Risa Maekawa
- Department of Neurology Tokyo Teishin Hospital Tokyo Japan
| | - Yukiko Kishida
- Department of Pathology Tokyo Teishin Hospital Tokyo Japan
| | - Yasushi Shiio
- Department of Neurology Tokyo Teishin Hospital Tokyo Japan
| |
Collapse
|
33
|
Fighting against a protean enemy: immunosenescence, vaccines, and healthy aging. NPJ Aging Mech Dis 2017; 4:1. [PMID: 29285399 PMCID: PMC5740164 DOI: 10.1038/s41514-017-0020-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/09/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
The progressive increase of the aged population worldwide mandates new strategies to ensure sustained health and well-being with age. The development of better and/or new vaccines against pathogens that affect older adults is one pivotal intervention in approaching this goal. However, the functional decline of various physiological systems, including the immune system, requires novel approaches to counteract immunosenescence. Although important progress has been made in understanding the mechanisms underlying the age-related decline of the immune response to infections and vaccinations, knowledge gaps remain, both in the areas of basic and translational research. In particular, it will be important to better understand how environmental factors, such as diet, physical activity, co-morbidities, and pharmacological treatments, delay or contribute to the decline of the capability of the aging immune system to appropriately respond to infectious diseases and vaccination. Recent findings suggest that successful approaches specifically targeted to the older population can be developed, such as the high-dose and adjuvanted vaccines against seasonal influenza, the adjuvanted subunit vaccine against herpes zoster, as well as experimental interventions with immune-potentiators or immunostimulants. Learning from these first successes may pave the way to developing novel and improved vaccines for the older adults and immunocompromised. With an integrated, holistic vaccination strategy, society will offer the opportunity for an improved quality of life to the segment of the population that is going to increase most significantly in numbers and proportion over future decades.
Collapse
|
34
|
Wilkins AL, Kazmin D, Napolitani G, Clutterbuck EA, Pulendran B, Siegrist CA, Pollard AJ. AS03- and MF59-Adjuvanted Influenza Vaccines in Children. Front Immunol 2017; 8:1760. [PMID: 29326687 PMCID: PMC5733358 DOI: 10.3389/fimmu.2017.01760] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Influenza is a major cause of respiratory disease leading to hospitalization in young children. However, seasonal trivalent influenza vaccines (TIVs) have been shown to be ineffective and poorly immunogenic in this population. The development of live-attenuated influenza vaccines and adjuvanted vaccines are important advances in the prevention of influenza in young children. The oil-in-water emulsions MF59 and adjuvant systems 03 (AS03) have been used as adjuvants in both seasonal adjuvanted trivalent influenza vaccines (ATIVs) and pandemic monovalent influenza vaccines. Compared with non-adjuvanted vaccine responses, these vaccines induce a more robust and persistent antibody response for both homologous and heterologous influenza strains in infants and young children. Evidence of a significant improvement in vaccine efficacy with these adjuvanted vaccines resulted in the use of the monovalent (A/H1N1) AS03-adjuvanted vaccine in children in the 2009 influenza pandemic and the licensure of the seasonal MF59 ATIV for children aged 6 months to 2 years in Canada. The mechanism of action of MF59 and AS03 remains unclear. Adjuvants such as MF59 induce proinflammatory cytokines and chemokines, including CXCL10, but independently of type-1 interferon. This proinflammatory response is associated with improved recruitment, activation and maturation of antigen presenting cells at the injection site. In young children MF59 ATIV produced more homogenous and robust transcriptional responses, more similar to adult-like patterns, than did TIV. Early gene signatures characteristic of the innate immune response, which correlated with antibody titers were also identified. Differences were detected when comparing child and adult responses including opposite trends in gene set enrichment at day 3 postvaccination and, unlike adult data, a lack of correlation between magnitude of plasmablast response at day 7 and antibody titers at day 28 in children. These insights show the utility of novel approaches in understanding new adjuvants and their importance for developing improved influenza vaccines for children.
Collapse
Affiliation(s)
| | - Dmitri Kazmin
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Giorgio Napolitani
- Medical Research Council (MRC), Human Immunology Unit, University of Oxford, Oxford, United Kingdom
| | - Elizabeth A. Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Bali Pulendran
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pathology, and Microbiology & Immunology, Stanford University, Stanford, CA, United States
- Institute for Immunology, Transplantation and Infection, Stanford University, Stanford, CA, United States
| | | | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
35
|
Pallikkuth S, de Armas L, Rinaldi S, Pahwa S. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection. Front Immunol 2017; 8:1380. [PMID: 29109730 PMCID: PMC5660291 DOI: 10.3389/fimmu.2017.01380] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lesley de Armas
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stefano Rinaldi
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Savita Pahwa
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
36
|
Mameli C, D’auria E, Erba P, Nannini P, Zuccotti GV. Influenza vaccine response: future perspectives. Expert Opin Biol Ther 2017; 18:1-5. [DOI: 10.1080/14712598.2018.1391786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chiara Mameli
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, University of Milan, Milan, Italy
| | - Enza D’auria
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, University of Milan, Milan, Italy
| | - Paola Erba
- Department of Pediatrics, L. Sacco Hospital, University of Milan, Milan, Italy
| | - Pilar Nannini
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, University of Milan, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Ospedale dei Bambini V. Buzzi, University of Milan, Milan, Italy
| |
Collapse
|
37
|
Frasca D, Blomberg BB. Aging, cytomegalovirus (CMV) and influenza vaccine responses. Hum Vaccin Immunother 2017; 12:682-90. [PMID: 26588038 DOI: 10.1080/21645515.2015.1105413] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Influenza vaccination is less effective in elderly as compared to young individuals. Several studies have identified immune biomarkers able to predict a protective humoral immune response to the vaccine. In this review, we summarize current knowledge on the effects of aging on influenza vaccine responses and on biomarkers so far identified, and we discuss the relevance of latent cytomegalovirus (CMV) infection on these vaccine responses.
Collapse
Affiliation(s)
- Daniela Frasca
- a Department of Microbiology and Immunology , University of Miami Miller School of Medicine , Miami , FL , USA
| | - Bonnie B Blomberg
- a Department of Microbiology and Immunology , University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|
38
|
Frasca D, Blomberg BB. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging. Front Immunol 2017; 8:1003. [PMID: 28894445 PMCID: PMC5581329 DOI: 10.3389/fimmu.2017.01003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the age-related increase in low-grade chronic inflammation, may be a common link in age-related diseases. This review summarizes recent published data on potential cellular and molecular mechanisms of the age-related increase in inflammation, and how these contribute to decreased humoral immune responses in aged mice and humans. Briefly, we cover how aging and related inflammation decrease antibody responses in mice and humans, and how obesity contributes to the mechanisms for aging through increased inflammation. We also report data in the literature showing adipose tissue infiltration with immune cells and how these cells are recruited and contribute to local and systemic inflammation. We show that several types of immune cells infiltrate the adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue affects immune responses, in particular B cell responses and antibody production. The role of leptin in generating inflammation and decreased B cell responses is also discussed. We report data published by us and by other groups showing that the adipose tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, promote insulin resistance, and secrete pathogenic autoimmune antibodies.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
39
|
Merani S, Pawelec G, Kuchel GA, McElhaney JE. Impact of Aging and Cytomegalovirus on Immunological Response to Influenza Vaccination and Infection. Front Immunol 2017; 8:784. [PMID: 28769922 PMCID: PMC5512344 DOI: 10.3389/fimmu.2017.00784] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/21/2017] [Indexed: 12/13/2022] Open
Abstract
The number of people over the age of 60 is expected to double by 2050 according to the WHO. This emphasizes the need to ensure optimized resilience to health stressors in late life. In older adults, influenza is one of the leading causes of catastrophic disability (defined as the loss of independence in daily living and self-care activities). Influenza vaccination is generally perceived to be less protective in older adults, with some studies suggesting that the humoral immune response to the vaccine is further impaired in cytomegalovirus (CMV)-seropositive older people. CMV is a β-herpes virus infection that is generally asymptomatic in healthy individuals. The majority of older adults possess serum antibodies against the virus indicating latent infection. Age-related changes in T-cell-mediated immunity are augmented by CMV infection and may be associated with more serious complications of influenza infection. This review focuses on the impact of aging and CMV on immune cell function, the response to influenza infection and vaccination, and how the current understanding of aging and CMV can be used to design a more effective influenza vaccine for older adults. It is anticipated that efforts in this field will address the public health need for improved protection against influenza in older adults, particularly with regard to the serious complications leading to loss of independence.
Collapse
Affiliation(s)
- Shahzma Merani
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Graham Pawelec
- Health Sciences North Research Institute, Sudbury, ON, Canada.,Second Department of Internal Medicine, University of Tübingen Medical Center, Tübingen, Germany
| | - George A Kuchel
- UConn Center on Aging, UConn Health, Farmington, CT, United States
| | | |
Collapse
|
40
|
Bulati M, Caruso C, Colonna-Romano G. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by "inflamm-ageing". Ageing Res Rev 2017; 36:125-136. [PMID: 28396185 DOI: 10.1016/j.arr.2017.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/26/2022]
Abstract
Ageing is a complex process characterized by a general decline in physiological functions with increasing morbidity and mortality. The most important aspect of ageing is the chronic inflammatory status, named "inflamm-ageing", strictly associated with the deterioration of the immune function, termed "immunosenescence". Both are causes of increased susceptibility of elderly to infectious diseases, cancer, dementia, cardiovascular diseases and autoimmunity, and of a decreased response to vaccination. It has been widely demonstrated that ageing has a strong impact on the remodelling of the B cell branch of immune system. The first evident effect is the significant decrease in circulating B cells, primarily due to the reduction of new B cell coming from bone marrow (BM) progenitors, as inflammation directly impacts on B lymphopoiesis. Besides, in aged individuals, there is a shift from naïve to memory immunoglobulins production, accompanied by the impaired ability to produce high affinity protective antibodies against newly encountered antigens. This is accompanied by the increase of expanded clones of B cells, which correlates with poor health status. Age-related modifications also occur in naïve/memory B cells subsets. Indeed, in the elderly, there is a reduction of naïve B cells, accompanied by the expansion of memory B cells that show a senescence-associated phenotype. Finally, elderly show the impaired ability of memory B cells to differentiate into plasma cells. It can be concluded that inflammation is the leading cause of the age-related impairment of B cell compartment, which play certainly a key role in the development of age-related diseases. This makes study of B cells in the aged an important tool for monitoring immunosenescence, chronic inflammatory disorders and the effectiveness of vaccines or pharmacological therapies.
Collapse
|
41
|
Abstract
: The increased prevalence of age-related comorbidities and mortality is worrisome in ageing HIV-infected patients. Here, we aim to analyse the different ageing mechanisms with regard to HIV infection. Ageing results from the time-dependent accumulation of random cellular damage. Epigenetic modifications and mitochondrial DNA haplogroups modulate ageing. In antiretroviral treatment-controlled patients, epigenetic clock appears to be advanced, and some haplogroups are associated with HIV infection severity. Telomere shortening is enhanced in HIV-infected patients because of HIV and some nucleoside analogue reverse transcriptase inhibitors. Mitochondria-related oxidative stress and mitochondrial DNA mutations are increased during ageing and also by some nucleoside analogue reverse transcriptase inhibitors. Overall, increased inflammation or 'inflammageing' is a major driver of ageing and could result from cell senescence with secreted proinflammatory mediators, altered gut microbiota, and coinfections. In HIV-infected patients, the level of inflammation and innate immunity activation is enhanced and related to most comorbidities and to mortality. This status could result, in addition to age, from the virus itself or viral protein released from reservoirs, from HIV-enhanced gut permeability and dysbiosis, from antiretroviral treatment, from frequent cytomegalovirus and hepatitis C virus coinfections, and also from personal and environmental factors, as central fat accumulation or smoking. Adaptive immune activation and immunosenescence are associated with comorbidities and mortality in the general population but are less predictive in HIV-infected patients. Biomarkers to evaluate ageing in HIV-infected patients are required. Numerous systemic or cellular inflammatory, immune activation, oxidative stress, or senescence markers can be tested in serum or peripheral blood mononuclear cells. The novel European Study to Establish Biomarkers of Human Ageing MARK-AGE algorithm, evaluating the biological age, is currently assessed in HIV-infected patients and reveals an advanced biological age. Some enhanced inflammatory or innate immune activation markers are interesting but still not validated for the patient's follow-up. To be able to assess patients' biological age is an important objective to improve their healthspan.
Collapse
|
42
|
Diaz A, Romero M, Vazquez T, Lechner S, Blomberg BB, Frasca D. Metformin improves in vivo and in vitro B cell function in individuals with obesity and Type-2 Diabetes. Vaccine 2017; 35:2694-2700. [PMID: 28392139 DOI: 10.1016/j.vaccine.2017.03.078] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/18/2022]
Abstract
Metformin (MET), the first-line medication for Type-2 Diabetes (T2D), has been shown to reduce chronic inflammation indirectly through reduction of hyperglycemia, or directly acting as anti-inflammatory drug. The effects of MET on B lymphocytes is uncharacterized. In the present study, we measured in vivo and in vitro influenza vaccine responses in 2 groups of T2D patients: recently diagnosed but not taking anti-diabetic drugs, and patients taking MET. Results show that B cell function and vaccine responses, hampered by obesity and T2D, are recovered by MET. Moreover, MET used in vitro to stimulate B cells from recently diagnosed T2D patients is also able to reduce B cell-intrinsic inflammation and increase antibody responses, similar to what we have seen in B cells from patients taking MET, who show increased responses to the influenza vaccine in vivo. These results are the first to show an effect of MET on B cells.
Collapse
Affiliation(s)
- Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Thomas Vazquez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Suzanne Lechner
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA.
| |
Collapse
|
43
|
Rinaldi S, Pallikkuth S, George VK, de Armas LR, Pahwa R, Sanchez CM, Pallin MF, Pan L, Cotugno N, Dickinson G, Rodriguez A, Fischl M, Alcaide M, Gonzalez L, Palma P, Pahwa S. Paradoxical aging in HIV: immune senescence of B Cells is most prominent in young age. Aging (Albany NY) 2017; 9:1307-1325. [PMID: 28448963 PMCID: PMC5425129 DOI: 10.18632/aging.101229] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023]
Abstract
Combination antiretroviral therapies (cART)can lead to normal life expectancy in HIV-infected persons, and people aged >50 yrs represent the fastest growing HIV group. Although HIV and aging are independently associated with impaired humoral immunity, immune status in people aging with HIV is relatively unexplored. In this study influenza vaccination was used to probe age associated perturbations in the B cell compartment of HIV-negative "healthy controls" (HC) and virologically controlled HIV-infected participants on cART (HIV) (n=124), grouped by age as young (<40 yrs), middle-aged (40-59yrs) or old (>60 yrs). H1N1 antibody response at d21 post-vaccination correlated inversely with age in both HC and HIV. Immunophenotyping of cryopreserved PBMC demonstrated increased frequencies of double negative B cells and decreased plasmablasts in old compared to young HC. Remarkably, young HIV were different from young HC but similar to old HC in B cell phenotype, influenza specific spontaneous (d7) or memory (d21) antibody secreting cells. We conclude that B cell immune senescence is a prominent phenomenon in young HIV in comparison to young HC, but distinctions between old HIV and old HC are less evident though both groups manifest age-associated B cell dysfunction.
Collapse
Affiliation(s)
- Stefano Rinaldi
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Suresh Pallikkuth
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Varghese K. George
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lesley R. de Armas
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rajendra Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Celeste M. Sanchez
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Fernanda Pallin
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Li Pan
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nicola Cotugno
- Academic Department of Pediatrics (DPUO) Research Unit in Congenital and Perinatal Infections, Bambino Gesù Children's Hospital-University of Rome Tor Vergata, Rome, Italy
| | - Gordon Dickinson
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allan Rodriguez
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Margaret Fischl
- AIDS Clinical Research Unit, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maria Alcaide
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Louis Gonzalez
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paolo Palma
- Academic Department of Pediatrics (DPUO) Research Unit in Congenital and Perinatal Infections, Bambino Gesù Children's Hospital-University of Rome Tor Vergata, Rome, Italy
| | - Savita Pahwa
- Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
44
|
Pinti M, Appay V, Campisi J, Frasca D, Fülöp T, Sauce D, Larbi A, Weinberger B, Cossarizza A. Aging of the immune system: Focus on inflammation and vaccination. Eur J Immunol 2016; 46:2286-2301. [PMID: 27595500 PMCID: PMC5156481 DOI: 10.1002/eji.201546178] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/20/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
Abstract
Major advances in preventing, delaying, or curing individual pathologies are responsible for an increasingly long life span in the developed parts of our planet, and indeed reaching eight to nine decades of life is nowadays extremely frequent. However, medical and sanitary advances have not prevented or delayed the underlying cause of the disparate pathologies occurring in the elderly: aging itself. The identification of the basis of the aging processes that drives the multiple pathologies and loss of function typical of older individuals is a major challenge in current aging research. Among the possible causes, an impairment of the immune system plays a major role, and indeed numerous studies have described immunological changes which occur with age. Far from the intention of being exhaustive, this review will focus on recent advances and views on the role that modifications of cell signalling and remodelling of the immune response play during human aging and longevity, paying particular attention to phenomena which are linked to the so called inflammaging process, such as dysregulation of innate immunity, altered T-cell or B-cell maturation and differentiation, as well as to the implications of immune aging for vaccination strategies in the elderly.
Collapse
Affiliation(s)
- Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Victor Appay
- Sorbonne Universités, UPMC Univ. Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Judith Campisi
- USA and Lawrence Berkeley National Laboratory, Buck Institute for Research on Aging, Berkeley, CA, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tamas Fülöp
- Division of Geriatrics, Department of Medicine, Research Center on Aging, University of Sherbrooke, Canada
| | - Delphine Sauce
- Sorbonne Universités, UPMC Univ. Paris 06, DHU FAST, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Aging and Immunity Program, A*STAR, Singapore
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.
| |
Collapse
|
45
|
Frasca D, Diaz A, Romero M, Blomberg BB. Ageing and obesity similarly impair antibody responses. Clin Exp Immunol 2016; 187:64-70. [PMID: 27314456 DOI: 10.1111/cei.12824] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
Ageing is characterized by increased low-grade chronic inflammation, which is a significant risk factor for morbidity and mortality of elderly individuals. Similar to ageing, obesity is considered to be an inflammatory predisposition associated with chronic activation of immune cells and consequent local and systemic inflammation. Both ageing and obesity are characterized by reduced innate and adaptive immune responses. This review focuses on B cells, how they may contribute, at least locally, to low-grade chronic inflammation in ageing and obesity and on the mechanisms involved.
Collapse
Affiliation(s)
- D Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - A Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - M Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - B B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
46
|
Dissecting the hemagglutinin head and stalk-specific IgG antibody response in healthcare workers following pandemic H1N1 vaccination. NPJ Vaccines 2016; 1. [PMID: 29250435 PMCID: PMC5707877 DOI: 10.1038/npjvaccines.2016.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Traditionally, neutralising antibodies that are directed to the major surface glycoprotein hemagglutinin (HA) head domain are measured as surrogate correlates of protection against influenza. In addition to neutralization, hemagglutinin-specific antibodies may provide protection by mediating antibody-dependent cellular cytotoxicity (ADCC). During the 2009 pandemic, vaccination induced HA-specific antibodies that were mostly directed to the conserved HA stalk domain. However, the protective role of these antibodies has not been investigated in detail. We quantified the HA head and stalk-specific antibodies, their avidity, ability to neutralise virus and activate natural killer cells in an ADCC assay. We analyzed sera obtained from 14 healthcare workers who had low hemagglutination inhibition (HI) antibody titres at 3 months after pandemic H1N1 vaccination as well as from 22 controls. Vaccination resulted in a HA stalk dominant antibody response in both low responders and controls. Revaccination of low responders, 5 months later, resulted in a boost in antibodies, with HA head-specific antibodies dominating the response. Comparative analysis of head and stalk antibody avidities revealed that stalk-specific antibodies were qualitatively superior. Furthermore, stalk-specific antibodies mediated virus neutralization and had significantly higher ADCC activity than head-specific antibodies. Despite the head and stalk-specific antibodies being lower in low responders, they had comparable antibody avidity, ADCC functionality and neutralising capacity to those of controls who had high HI titres post-vaccination. Thus, our study has demonstrated that HA stalk-specific antibodies may have an important role in protection through neutralization and ADCC in low responders who do not maintain seroprotective HI antibodies.
Collapse
|
47
|
The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine 2016; 34:2834-40. [PMID: 27108193 DOI: 10.1016/j.vaccine.2016.04.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/21/2016] [Accepted: 04/07/2016] [Indexed: 01/01/2023]
Abstract
The success of a vaccine in inducing a protective antibody response depends on the longevity of both long-lived plasma cells (PC) and memory B cells. We have previously shown that the in vivo antibody response to a new influenza vaccine, the ex vivo plasmablast response, the in vitro B cell function, measured by AID (activation-induced cytidine deaminase), and the transcription factor E47, are significantly associated and decreased in elderly individuals. We hypothesized that because AID is decreased in the elderly, the ability to generate memory B cells would also be decreased, but our findings here show that memory B cells are maintained in the elderly probably due to further amplification in response to repeated vaccination. We recruited young and elderly individuals immunized in at least two consecutive influenza vaccine seasons in which the influenza A viral strains H1N1 and H3N2 in the vaccine were the same as in the previous year. PBMC were cultured with CpG/IL2 to measure the frequency of IgG vaccine-specific memory B cells. Serum antibody response was measured by hemagglutination inhibition assay. Blood plasmablasts were measured by flow cytometry. Surprisingly, the frequencies of influenza vaccine-specific memory B cells and plasmablasts were similar in young and elderly individuals, but the fold-increase in serum titers after vaccination was lower in the elderly although most of the elderly were seroprotected. We then measured the transcription factor Blimp-1, considered the master regulator of PC differentiation, and found it significantly reduced in cultures of B cells from elderly versus young individuals, as well as E47/AID and IgG secretion. Taken together, these results suggest an impaired memory B cell to PC differentiation in the elderly.
Collapse
|
48
|
Jacobson RM, Grill DE, Oberg AL, Tosh PK, Ovsyannikova IG, Poland GA. Profiles of influenza A/H1N1 vaccine response using hemagglutination-inhibition titers. Hum Vaccin Immunother 2016; 11:961-9. [PMID: 25835513 DOI: 10.1080/21645515.2015.1011990] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To identify distinct antibody profiles among adults 50-to-74 years old using influenza A/H1N1 HI titers up to 75 days after vaccination. Healthy subjects 50 to 74 years old received the 2010-2011 trivalent inactivated influenza vaccine. We measured venous samples from Days 0, 28, and 75 for HI and VNA and B-cell ELISPOTs. Of 106 subjects, HI titers demonstrated a ceiling effect for 11 or 10% for those with a pre-vaccination HI titer of 1:640 where no subject post-vaccination had an increase in titer. Of the remaining 95 subjects, only 37 or 35% overall had at least a 4-fold increase by Day 28. Of these 37, 3 waned at least 4-fold, and 13 others 2-fold. Thus 15% of the subjects showed waning antibody titers by Day 75. More than half failed to respond at all. The profiles populated by these subjects as defined by HI did not vary with age or gender. The VNA results mimicked the HI profiles, but the profiles for B-cell ELISPOT did not. HI titers at Days 0, 28, and 75 populate 4 biologically plausible profiles. Limitations include lack of consensus for operationally defining waning as well as for the apparent ceiling. Furthermore, though well accepted as a marker for vaccine response, assigning thresholds with HI has limitations. However, VNA closely matches HI in populating these profiles. Thus, we hold that these profiles, having face- and content-validity, may provide a basis for understanding variation in genomic and transcriptomic response to influenza vaccination in this age group.
Collapse
Key Words
- ASC, Antibody-Secreting Cells
- ELISPOT, Enzyme-Linked ImmunoSpot
- Et al., Et alia (and others)
- H1N1 subtype
- HI, Hemagglutination-Inhibition
- IQR, Interquartile Range
- IgG, Immunoglobulin G
- MDCK, Madin-Darby Canine Kidney
- PFU, Plaque-Forming Units
- RBC, Red Blood Cells
- TCID50, Tissue Culture Infectious Dose 50
- VNA, Virus Neutralization Assay
- WHO, World Health Organization
- aging
- antibodies
- hemagglutination inhibition tests
- hemagglutinin glycoproteins
- influenza a virus
- influenza vaccines
- influenza virus
- p, p-value
- viral
- μl, Microliters
Collapse
|
49
|
Frasca D, Blomberg BB. Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology 2016; 17:7-19. [PMID: 25921609 PMCID: PMC4626429 DOI: 10.1007/s10522-015-9578-8] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/16/2015] [Indexed: 01/30/2023]
Abstract
Both the innate and adaptive immune systems decline with age, causing greater susceptibility to infectious diseases and reduced responses to vaccination. Diseases are more severe in elderly than in young individuals and have a greater impact on health outcomes such as morbidity, disability and mortality. Aging is characterized by increased low-grade chronic inflammation, called "inflammaging", measured by circulating levels of TNF-α, IL-6 and CRP, as well as by latent infections with viruses such as cytomegalovirus. Inflammaging has received considerable attention because it proposes a link between changes in immune cells and a number of diseases and syndromes typical of old age. In this review we aim at summarizing the current knowledge on pathways contributing to inflammaging, on immune responses down-regulated by inflammation and mechanisms proposed. The defects in the immune response of elderly individuals presented in this review should help to discover avenues for effective intervention to promote healthy aging.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, P.O. Box 016960 (R-138), Miami, FL, 33101, USA.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, P.O. Box 016960 (R-138), Miami, FL, 33101, USA
| |
Collapse
|
50
|
Frasca D, Blomberg BB. B Cell-Specific Biomarkers for Optimal Antibody Responses to Influenza Vaccination and Molecular Pathways That Reduce B Cell Function with Aging. Crit Rev Immunol 2016; 36:523-537. [PMID: 28845758 DOI: 10.1615/critrevimmunol.2017020113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review highlights recent findings on the effects of aging on influenza vaccine responses, with major emphasis on T and B cells, which are significantly impaired by aging. We discuss changes in T cell production and thymic output; T cell subsets; and TCR repertoire, function, and response to latent persistent infection. We also discuss changes in B cell subsets, repertoire, and function, and how function is impaired by increased intrinsic B cell inflammation and reduced signal transduction. This review presents age-related effects on antigen-presenting cells, summarizes recent studies, including our own, aimed at the identification of biomarkers of protective vaccine responses, and provides examples of recent technical advances and insights into human vaccine responses that are helping to define the features associated with successful vaccination and that may enable a more predictive vaccinology in the future.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| |
Collapse
|