1
|
Li TW, Park Y, Watters EG, Wang X, Zhou D, Fiches GN, Wu Z, Badley AD, Sacha JB, Ho WZ, Santoso NG, Qi J, Zhu J. KDM5A/B contribute to HIV-1 latent infection and survival of HIV-1 infected cells. Antiviral Res 2024; 228:105947. [PMID: 38925368 PMCID: PMC11927087 DOI: 10.1016/j.antiviral.2024.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Combinational antiretroviral therapy (cART) suppresses human immunodeficiency virus type 1 (HIV-1) viral replication and pathogenesis in acquired immunodeficiency syndrome (AIDS) patients. However, HIV-1 remains in the latent stage of infection by suppressing viral transcription, which hinders an HIV-1 cure. One approach for an HIV-1 cure is the "shock and kill" strategy. The strategy focuses on reactivating latent HIV-1, inducing the viral cytopathic effect and facilitating the immune clearance for the elimination of latent HIV-1 reservoirs. Here, we reported that the H3K4 trimethylation (H3K4me3)-specific demethylase KDM5A/B play a role in suppressing HIV-1 Tat/LTR-mediated viral transcription in HIV-1 latent cells. Furthermore, we evaluated the potential of KDM5-specific inhibitor JQKD82 as an HIV-1 "shock and kill" agent. Our results showed that JQKD82 increases the H3K4me3 level at HIV-1 5' LTR promoter regions, HIV-1 reactivation, and the cytopathic effects in an HIV-1-latent T cell model. In addition, we identified that the combination of JQKD82 and AZD5582, a non-canonical NF-κB activator, generates a synergistic impact on inducing HIV-1 lytic reactivation and cell death in the T cell. The latency-reversing potency of the JQKD82 and AZD5582 pair was also confirmed in peripheral blood mononuclear cells (PBMCs) isolated from HIV-1 aviremic patients and in an HIV-1 latent monocyte. In latently infected microglia (HC69) of the brain, either deletion or inhibition of KDM5A/B results in a reversal of the HIV-1 latency. Overall, we concluded that KDM5A/B function as a host repressor of the HIV-1 lytic reactivation and thus promote the latency and the survival of HIV-1 infected reservoirs.
Collapse
Affiliation(s)
- Tai-Wei Li
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Youngmin Park
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Emily G Watters
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Dawei Zhou
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Guillaume N Fiches
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhenyu Wu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, 55902, USA
| | - Jonah B Sacha
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Netty G Santoso
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jun Qi
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Jian Zhu
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA; Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Song J, Zhang Y, Zhou C, Zhan J, Cheng X, Huang H, Mao S, Zong Z. The dawn of a new Era: mRNA vaccines in colorectal cancer immunotherapy. Int Immunopharmacol 2024; 132:112037. [PMID: 38599100 DOI: 10.1016/j.intimp.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a typical cancer that accounts for 10% of all new cancer cases annually and nearly 10% of all cancer deaths. Despite significant progress in current classical interventions for CRC, these traditional strategies could be invasive and with numerous adverse effects. The poor prognosis of CRC patients highlights the evident and pressing need for more efficient and targeted treatment. Novel strategies regarding mRNA vaccines for anti-tumor therapy have also been well-developed since the successful application for the prevention of COVID-19. mRNA vaccine technology won the 2023 Nobel Prize in Physiology or Medicine, signaling a new direction in human anti-cancer treatment: mRNA medicine. As a promising new immunotherapy in CRC and other multiple cancer treatments, the mRNA vaccine has higher specificity, better efficacy, and fewer side effects than traditional strategies. The present review outlines the basics of mRNA vaccines and their advantages over other vaccines and informs an available strategy for developing efficient mRNA vaccines for CRC precise treatment. In the future, more exploration of mRNA vaccines for CRC shall be attached, fostering innovation to address existing limitations.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chulin Zhou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China; The Second Clinical Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jianhao Zhan
- Huankui Academy, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No.1 MinDe Road, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
3
|
Karakoese Z, Ingola M, Sitek B, Dittmer U, Sutter K. IFNα Subtypes in HIV Infection and Immunity. Viruses 2024; 16:364. [PMID: 38543729 PMCID: PMC10975235 DOI: 10.3390/v16030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Type I interferons (IFN), immediately triggered following most viral infections, play a pivotal role in direct antiviral immunity and act as a bridge between innate and adaptive immune responses. However, numerous viruses have evolved evasion strategies against IFN responses, prompting the exploration of therapeutic alternatives for viral infections. Within the type I IFN family, 12 IFNα subtypes exist, all binding to the same receptor but displaying significant variations in their biological activities. Currently, clinical treatments for chronic virus infections predominantly rely on a single IFNα subtype (IFNα2a/b). However, the efficacy of this therapeutic treatment is relatively limited, particularly in the context of Human Immunodeficiency Virus (HIV) infection. Recent investigations have delved into alternative IFNα subtypes, identifying certain subtypes as highly potent, and their antiviral and immunomodulatory properties have been extensively characterized. This review consolidates recent findings on the roles of individual IFNα subtypes during HIV and Simian Immunodeficiency Virus (SIV) infections. It encompasses their induction in the context of HIV/SIV infection, their antiretroviral activity, and the diverse regulation of the immune response against HIV by distinct IFNα subtypes. These insights may pave the way for innovative strategies in HIV cure or functional cure studies.
Collapse
Affiliation(s)
- Zehra Karakoese
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martha Ingola
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; (M.I.); (B.S.)
| | - Barbara Sitek
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; (M.I.); (B.S.)
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
4
|
Pallikkuth S, Kvistad D, Sirupangi T, Kizhner A, Pahwa R, Cameron MJ, Richardson B, Williams S, Ayupe A, Brooks M, Petrovas C, Villinger F, Pahwa S. IL-21-IgFc immunotherapy alters transcriptional landscape of lymph node cells leading to enhanced flu vaccine response in aging and SIV infection. Aging Cell 2023; 22:e13984. [PMID: 37712598 PMCID: PMC10652303 DOI: 10.1111/acel.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023] Open
Abstract
Aging people living with HIV (PWH) frequently manifest impaired antibody (Ab) responses to seasonal flu vaccination which has been attributed to ongoing inflammation and immune activation. We have recently reported a similar scenario in old simian immunodeficiency virus (SIV) infected rhesus macaques (RM) with controlled viremia and have been able to compensate for this deficiency by immunotherapy with interleukin (IL)-21-IgFc. To understand the underlying mechanisms of IL-21-induced immunomodulation leading to enhanced flu vaccine response in aging and SIV, we have investigated draining lymph node (LN) cells of IL-21-treated and -untreated animals at postvaccination. We observed IL-21-induced proliferation of flu-specific LN memory CD4 T cells, expansion of B cells expressing IL-21 receptor (IL-21R), and modest expansion of T follicular helper cells (Tfh) co-expressing T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and DNAX accessory molecule (DNAM-1). Transcriptional analysis of LN cells of IL-21-treated animals revealed significant inhibition of germinal center (GC) Tfh and B-cell interferon signaling pathways along with enhanced B-cell development and antigen presentation pathways. We conclude that IL-21 treatment at the time of flu vaccination in aging SIV-infected animals modulates the inductive LN GC activity, to reverse SIV-associated LN Tfh and B-cell dysfunction. IL-21 is a potential candidate molecule for immunotherapy to enhance flu vaccine responses in aging PWH who have deficient antibody responses.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology and ImmunologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Daniel Kvistad
- Department of Microbiology and ImmunologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Tirupataiah Sirupangi
- New Iberia Research Center and Department of BiologyUniversity of Louisiana at LafayetteNew IberiaLouisianaUSA
| | - Alexander Kizhner
- Department of Microbiology and ImmunologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Rajendra Pahwa
- Department of Microbiology and ImmunologyUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Mark J. Cameron
- Department of Quantitative and Population Health SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Brian Richardson
- Department of Quantitative and Population Health SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Sion Williams
- Department of Neurology, Onco‐Genomics Shared Resource, Sylvester Comprehensive Cancer CenterUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Ana Ayupe
- Onco‐Genomics Shared Resource, Sylvester Comprehensive Cancer CenterUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Marissa Brooks
- Onco‐Genomics Shared Resource, Sylvester Comprehensive Cancer CenterUniversity of Miami School of MedicineMiamiFloridaUSA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research CenterNIAID, NIHBethesdaMarylandUSA
- Department of Laboratory Medicine and PathologyInstitute of Pathology, Lausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - Francois Villinger
- New Iberia Research Center and Department of BiologyUniversity of Louisiana at LafayetteNew IberiaLouisianaUSA
| | - Savita Pahwa
- Department of Microbiology and ImmunologyUniversity of Miami School of MedicineMiamiFloridaUSA
| |
Collapse
|
5
|
Zheng H, Wu P, Bonnet PA. Recent Advances on Small-Molecule Antagonists Targeting TLR7. Molecules 2023; 28:molecules28020634. [PMID: 36677692 PMCID: PMC9865772 DOI: 10.3390/molecules28020634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is a class of pattern recognition receptors (PRRs) recognizing the pathogen-associated elements and damage and as such is a major player in the innate immune system. TLR7 triggers the release of pro-inflammatory cytokines or type-I interferons (IFN), which is essential for immunoregulation. Increasing reports also highlight that the abnormal activation of endosomal TLR7 is implicated in various immune-related diseases, carcinogenesis as well as the proliferation of human immunodeficiency virus (HIV). Hence, the design and development of potent and selective TLR7 antagonists based on small molecules or oligonucleotides may offer new tools for the prevention and management of such diseases. In this review, we offer an updated overview of the main structural features and therapeutic potential of small-molecule antagonists of TLR7. Various heterocyclic scaffolds targeting TLR7 binding sites are presented: pyrazoloquinoxaline, quinazoline, purine, imidazopyridine, pyridone, benzanilide, pyrazolopyrimidine/pyridine, benzoxazole, indazole, indole, and quinoline. Additionally, their structure-activity relationships (SAR) studies associated with biological activities and protein binding modes are introduced.
Collapse
Affiliation(s)
- Haoyang Zheng
- Faculty of Pharmacy, Montpellier University, 34093 Montpellier, France
| | - Peiyang Wu
- School of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Pierre-Antoine Bonnet
- Institut des Biomolécules Max Mousseron IBMM, Ecole Nationale Supérieure de Chimie de Montpellier ENSCM, Montpellier University, Centre National de La Recherche Scientifique CNRS, 34093 Montpellier, France
- Correspondence:
| |
Collapse
|
6
|
Muraduzzaman AKM, Islam NM, Tabassum S, Munshi SU. Intrinsic Apoptotic Pathway Genes of Circulating Blood Neutrophils Triggered during HIV Infection and Remained Stimulated in ART Patients. Curr HIV Res 2023; 21:122-127. [PMID: 37211847 DOI: 10.2174/1570162x21666230519164239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND The intrinsic apoptotic pathway of neutrophils in Human Immunodeficiency Virus (HIV) infection results in spontaneous neutrophil death. There is a scarcity of data regarding the gene expression of an intrinsic apoptotic pathway of neutrophils in HIV patients. OBJECTIVE The objective of this study was to observe the differential expression of some important genes involved in the intrinsic apoptotic pathway of HIV patients, including those who were receiving antiretroviral therapy (ART). METHODS Blood samples were collected from asymptomatic, symptomatic, ART receiver HIV patients, and healthy individuals. Total RNA was extracted from neutrophils and subjected to quantitative real-time PCR assay. CD4+T cells and an automated complete blood count were performed. RESULTS Among the asymptomatic, symptomatic, and ART receiver HIV patients (n=20 in each group), median CD4+T counts were 633, 98, and 565 cells/ml, and the length of HIV infection in months (± SD) was 24.06 ± 21.36, 62.05 ± 25.51, and 69.2 ± 39.67, respectively. Compared with healthy controls, intrinsic apoptotic pathway genes, i.e., BAX, BIM, Caspase-3, Caspase-9, MCL-1, and Calpain-1, were upregulated to 1.21 ± 0.33, 1.8 ± 0.25, 1.24 ± 0.46, 1.54 ± 0.21, 1.88 ± 0.30, and 5.85 ± 1.34 fold in the asymptomatic group, and even more significantly, i.e., 1.51 ± 0.43, 2.09 ± 1.13, 1.85 ± 1.22, 1.72 ± 0.85, 2.26 ± 1.34, and 7.88 ± 3.31 fold in symptomatic patients, respectively. Despite CD4+ T-cell levels increased in the ART receiver group, these genes did not approach the level of healthy or asymptomatic and remained significantly upregulated. CONCLUSION The genes involved in the intrinsic apoptotic pathway in circulating neutrophils during HIV infection were stimulated in vivo, and ART reduced the expression of those upregulated genes but did not return to the level of asymptomatic or healthy individuals.
Collapse
Affiliation(s)
- A K M Muraduzzaman
- Department of Virology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Nabeela Mahboob Islam
- Department of Virology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Shahina Tabassum
- Department of Virology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Saif Ullah Munshi
- Department of Virology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| |
Collapse
|
7
|
Kapaata A, Balinda SN, Hare J, Leonova O, Kikaire B, Egesa M, Lubyayi L, Macharia GN, Kamali A, Gilmour J, Bagaya B, Salazar-Gonzalez JF, Kaleebu P. Infection with HIV-1 subtype D among acutely infected Ugandans is associated with higher median concentration of cytokines compared to subtype A. IJID REGIONS 2022; 3:89-95. [PMID: 35755471 PMCID: PMC9205166 DOI: 10.1016/j.ijregi.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
Abstract
HIV-1 subtype D exhibited significantly higher median concentrations of cytokines IL-12/23p40 and IL-1α were associated with faster CD4+T cell count decline bFGF was associated with maintenance of CD4+ counts above 350 cells/microliter
Objective The observation that HIV-1 subtype D progresses faster to disease than subtype A prompted us to examine cytokine levels early after infection within the predominant viral subtypes that circulate in Uganda and address the following research questions: (1) Do cytokine levels vary between subtypes A1 and D? (2) Do cytokine profiles correlate with disease outcomes? Methods To address these questions, HIV-1 subtypes were determined by population sequencing of the HIV-1 pol gene and 37 plasma cytokine concentrations were evaluated using V-Plex kits on Meso Scale Discovery platform in 65 recent sero-converters. Results HIV-1 subtype D (pol) infections exhibited significantly higher median plasma concentrations of IL-5, IL-16, IL-1α, IL-7, IL-17A, CCL11 (Eotaxin-1), CXCL10 (IP-10), CCL13 (MCP-4) and VEGF-D compared to subtype A1 (pol) infections. We also found that IL-12/23p40 and IL-1α were associated with faster CD4+T cell count decline, while bFGF was associated with maintenance of CD4+ counts above 350 cells/microliter. Conclusion Our results suggest that increased production of cytokines in early HIV infection may trigger a disruption of the immune environment and contribute to pathogenic mechanisms underlying the accelerated disease progression seen in individuals infected with HIV-1 subtype D in Uganda.
Collapse
Affiliation(s)
- Anne Kapaata
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
- Corresponding author:
| | - Sheila N. Balinda
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Jonathan Hare
- International AIDS Vaccine Initiative (IAVI), Imperial College London, London, UK
| | - Olga Leonova
- International AIDS Vaccine Initiative (IAVI), Imperial College London, London, UK
| | - Bernard Kikaire
- Uganda Virus Research Institute
- Department of Paediatrics, College of Health sciences, Makerere university
| | - Moses Egesa
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Lawrence Lubyayi
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Gladys N. Macharia
- International AIDS Vaccine Initiative (IAVI), Imperial College London, London, UK
| | | | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI), Imperial College London, London, UK
| | - Bernard Bagaya
- Department of Microbiology, College of Health Sciences, Makerere university
| | - Jesus F. Salazar-Gonzalez
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine, Uganda Research Unit, Entebbe, Uganda
| |
Collapse
|
8
|
Therapeutic efficacy of an Ad26/MVA vaccine with SIV gp140 protein and vesatolimod in ART-suppressed rhesus macaques. NPJ Vaccines 2022; 7:53. [PMID: 35585080 PMCID: PMC9117189 DOI: 10.1038/s41541-022-00477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Developing an intervention that results in virologic control following discontinuation of antiretroviral therapy (ART) is a major objective of HIV-1 cure research. In this study, we investigated the therapeutic efficacy of a vaccine consisting of adenovirus serotype 26 (Ad26) and modified vaccinia Ankara (MVA) with or without an SIV Envelope (Env) gp140 protein with alum adjuvant in combination with the TLR7 agonist vesatolimod (GS-9620) in 36 ART-suppressed, SIVmac251-infected rhesus macaques. Ad26/MVA therapeutic vaccination led to robust humoral and cellular immune responses, and the Env protein boost increased antibody responses. Following discontinuation of ART, virologic control was observed in 5/12 animals in each vaccine group, compared with 0/12 animals in the sham control group. These data demonstrate therapeutic efficacy of Ad26/MVA vaccination with vesatolimod but no clear additional benefit of adding an Env protein boost. SIV-specific cellular immune responses correlated with virologic control. Our findings show partial efficacy of therapeutic vaccination following ART discontinuation in SIV-infected rhesus macaques.
Collapse
|
9
|
Swainson LA, Sharma AA, Ghneim K, Ribeiro SP, Wilkinson P, Dunham RM, Albright RG, Wong S, Estes JD, Piatak M, Deeks SG, Hunt PW, Sekaly RP, McCune JM. IFN-α blockade during ART-treated SIV infection lowers tissue vDNA, rescues immune function, and improves overall health. JCI Insight 2022; 7:153046. [PMID: 35104248 PMCID: PMC8983135 DOI: 10.1172/jci.insight.153046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Type I IFNs (TI-IFNs) drive immune effector functions during acute viral infections and regulate cell cycling and systemic metabolism. That said, chronic TI-IFN signaling in the context of HIV infection treated with antiretroviral therapy (ART) also facilitates viral persistence, in part by promoting immunosuppressive responses and CD8+ T cell exhaustion. To determine whether inhibition of IFN-α might provide benefit in the setting of chronic, ART-treated SIV infection of rhesus macaques, we administered an anti-IFN-α antibody followed by an analytical treatment interruption (ATI). IFN-α blockade was well-tolerated and associated with lower expression of TI-IFN-inducible genes (including those that are antiviral) and reduced tissue viral DNA (vDNA). The reduction in vDNA was further accompanied by higher innate proinflammatory plasma cytokines, expression of monocyte activation genes, IL-12-induced effector CD8+ T cell genes, increased heme/metabolic activity, and lower plasma TGF-β levels. Upon ATI, SIV-infected, ART-suppressed nonhuman primates treated with anti-IFN-α displayed lower levels of weight loss and improved erythroid function relative to untreated controls. Overall, these data demonstrated that IFN-α blockade during ART-treated SIV infection was safe and associated with the induction of immune/erythroid pathways that reduced viral persistence during ART while mitigating the weight loss and anemia that typically ensue after ART interruption.
Collapse
Affiliation(s)
- Louise A. Swainson
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Ashish Arunkumar Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Khader Ghneim
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Susan Pereira Ribeiro
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Peter Wilkinson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Richard M. Dunham
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA.,ViiV Healthcare, Research Triangle, North Carolina, USA
| | - Rebecca G. Albright
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Samson Wong
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA.,Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Steven G. Deeks
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Joseph M. McCune
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, California, USA.,HIV Frontiers/Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
10
|
Rout SS, Di Y, Dittmer U, Sutter K, Lavender KJ. Distinct effects of treatment with two different interferon-alpha subtypes on HIV-1-associated T-cell activation and dysfunction in humanized mice. AIDS 2022; 36:325-336. [PMID: 35084382 DOI: 10.1097/qad.0000000000003111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Interferon-alpha (IFN-α) has been associated with excessive immune activation and dysfunction during HIV-1 infection. However, evidence suggests specific IFN-α subtypes may be beneficial rather than detrimental. This study compared the effects of treatment with two different IFN-α subtypes on indicators of T-cell activation and dysfunction during HIV-1 infection. DESIGN Humanized mice were infected with HIV-1 for 5 weeks and then treated with two different IFN-α subtypes for an additional 3 weeks. Splenic T cells were assessed both immediately posttreatment and again 6 weeks after treatment cessation. METHODS HIV-1 infected triple-knockout bone marrow-liver-thymus mice received daily intraperitoneal injections of either IFN-α14 or the clinically approved subtype, IFN-α2. T cells were analysed directly ex vivo for indicators of activation and dysfunction or stimulated to determine their proliferative capacity and ability to produce functional mediators. RESULTS Unlike IFN-α2, IFN-α14 treatment reduced viremia and resulted in less activated CD4+ T cells and a lower naïve to effector CD8+ T-cell ratio. Despite exhibiting a reduced proliferative response, the frequency of CD8+ T cells from IFN-α14 treated mice that produced functional mediators and expressed markers of dysfunction was more similar to healthy controls than untreated and IFN-α2 treated mice. Frequencies of exhaustion marker expression remained higher in untreated and IFN-α2 treated mice 6 weeks posttreatment despite similar viral loads between groups at this timepoint. CONCLUSIONS Treatment with different IFN-α subtypes had distinctive effects on T cells during HIV-1 infection. IFN-α14 was associated with fewer indicators of T-cell dysfunction whereas IFN-α2 treatment had little impact.
Collapse
Affiliation(s)
- Saurav S Rout
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yunyun Di
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kerry J Lavender
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Mueller YM, Schrama TJ, Ruijten R, Schreurs MWJ, Grashof DGB, van de Werken HJG, Lasinio GJ, Álvarez-Sierra D, Kiernan CH, Castro Eiro MD, van Meurs M, Brouwers-Haspels I, Zhao M, Li L, de Wit H, Ouzounis CA, Wilmsen MEP, Alofs TM, Laport DA, van Wees T, Kraker G, Jaimes MC, Van Bockstael S, Hernández-González M, Rokx C, Rijnders BJA, Pujol-Borrell R, Katsikis PD. Stratification of hospitalized COVID-19 patients into clinical severity progression groups by immuno-phenotyping and machine learning. Nat Commun 2022; 13:915. [PMID: 35177626 PMCID: PMC8854670 DOI: 10.1038/s41467-022-28621-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient's immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy.
Collapse
Affiliation(s)
- Yvonne M Mueller
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thijs J Schrama
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rik Ruijten
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marco W J Schreurs
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dwin G B Grashof
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Daniel Álvarez-Sierra
- Immunology Division, Hospital Universitari Vall d'Hebron, Campus Vall d'Hebron, Barcelona, Spain
| | - Caoimhe H Kiernan
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melisa D Castro Eiro
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marjan van Meurs
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Inge Brouwers-Haspels
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manzhi Zhao
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ling Li
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Harm de Wit
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Christos A Ouzounis
- School of Informatics, Faculty of Sciences, Aristotle University of Thessaloniki, Thessalonica, Greece
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, Thermi, Thessalonica, Greece
| | - Merel E P Wilmsen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tessa M Alofs
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danique A Laport
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tamara van Wees
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | - Manuel Hernández-González
- Immunology Division, Hospital Universitari Vall d'Hebron, Campus Vall d'Hebron, Barcelona, Spain
- Cell Biology, Physiology and Immunology Department, Universitat Autònoma de Barcelona, Barcelona, Spain
- Translational Immunology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Campus Vall d'Hebron, Barcelona, Spain
| | - Casper Rokx
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine, Section Infectious Diseases, and Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ricardo Pujol-Borrell
- Immunology Division, Hospital Universitari Vall d'Hebron, Campus Vall d'Hebron, Barcelona, Spain
- Cell Biology, Physiology and Immunology Department, Universitat Autònoma de Barcelona, Barcelona, Spain
- Translational Immunology Research Group, Vall d'Hebron Institut de Recerca (VHIR), Campus Vall d'Hebron, Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
T cell apoptosis characterizes severe Covid-19 disease. Cell Death Differ 2022; 29:1486-1499. [PMID: 35066575 PMCID: PMC8782710 DOI: 10.1038/s41418-022-00936-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/02/2023] Open
Abstract
Severe SARS-CoV-2 infections are characterized by lymphopenia, but the mechanisms involved are still elusive. Based on our knowledge of HIV pathophysiology, we hypothesized that SARS-CoV-2 infection-mediated lymphopenia could also be related to T cell apoptosis. By comparing intensive care unit (ICU) and non-ICU COVID-19 patients with age-matched healthy donors, we found a strong positive correlation between plasma levels of soluble FasL (sFasL) and T cell surface expression of Fas/CD95 with the propensity of T cells to die and CD4 T cell counts. Plasma levels of sFasL and T cell death are correlated with CXCL10 which is part of the signature of 4 biomarkers of disease severity (ROC, 0.98). We also found that members of the Bcl-2 family had modulated in the T cells of COVID-19 patients. More importantly, we demonstrated that the pan-caspase inhibitor, Q-VD, prevents T cell death by apoptosis and enhances Th1 transcripts. Altogether, our results are compatible with a model in which T-cell apoptosis accounts for T lymphopenia in individuals with severe COVID-19. Therefore, a strategy aimed at blocking caspase activation could be beneficial for preventing immunodeficiency in COVID-19 patients.
Collapse
|
13
|
Lee MYH, Upadhyay AA, Walum H, Chan CN, Dawoud RA, Grech C, Harper JL, Karunakaran KA, Nelson SA, Mahar EA, Goss KL, Carnathan DG, Cervasi B, Gill K, Tharp GK, Wonderlich ER, Velu V, Barratt-Boyes SM, Paiardini M, Silvestri G, Estes JD, Bosinger SE. Tissue-specific transcriptional profiling of plasmacytoid dendritic cells reveals a hyperactivated state in chronic SIV infection. PLoS Pathog 2021; 17:e1009674. [PMID: 34181694 PMCID: PMC8270445 DOI: 10.1371/journal.ppat.1009674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/09/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
HIV associated immune activation (IA) is associated with increased morbidity in people living with HIV (PLWH) on antiretroviral therapy, and remains a barrier for strategies aimed at reducing the HIV reservoir. The underlying mechanisms of IA have not been definitively elucidated, however, persistent production of Type I IFNs and expression of ISGs is considered to be one of the primary factors. Plasmacytoid DCs (pDCs) are a major producer of Type I IFN during viral infections, and are highly immunomodulatory in acute HIV and SIV infection, however their role in chronic HIV/SIV infection has not been firmly established. Here, we performed a detailed transcriptomic characterization of pDCs in chronic SIV infection in rhesus macaques, and in sooty mangabeys, a natural host non-human primate (NHP) species that undergoes non-pathogenic SIV infection. We also investigated the immunostimulatory capacity of lymph node homing pDCs in chronic SIV infection by contrasting gene expression of pDCs isolated from lymph nodes with those from blood. We observed that pDCs in LNs, but not blood, produced high levels of IFNα transcripts, and upregulated gene expression programs consistent with T cell activation and exhaustion. We apply a novel strategy to catalogue uncharacterized surface molecules on pDCs, and identified the lymphoid exhaustion markers TIGIT and LAIR1 as highly expressed in SIV infection. pDCs from SIV-infected sooty mangabeys lacked the activation profile of ISG signatures observed in infected macaques. These data demonstrate that pDCs are a primary producer of Type I IFN in chronic SIV infection. Further, this study demonstrated that pDCs trafficking to LNs persist in a highly activated state well into chronic infection. Collectively, these data identify pDCs as a highly immunomodulatory cell population in chronic SIV infection, and a putative therapeutic target to reduce immune activation.
Collapse
Affiliation(s)
- Michelle Y.-H. Lee
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Hasse Walum
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Chi N. Chan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Reem A. Dawoud
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Christine Grech
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Justin L. Harper
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Kirti A. Karunakaran
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Sydney A. Nelson
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Ernestine A. Mahar
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Kyndal L. Goss
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Diane G. Carnathan
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Barbara Cervasi
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Kiran Gill
- Flow Cytometry Core, Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
| | - Gregory K. Tharp
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | | | - Vijayakumar Velu
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mirko Paiardini
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Guido Silvestri
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Steven E. Bosinger
- Division of Microbiology & Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Yerkes NHP Genomics Core Laboratory, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Yu L, Chen Q, Chu X, Luo Y, Feng Z, Lu L, Zhang Y, Xu D. Expression and regulation of ccBAX by miR-124 in the caudal fin cell of C. auratus gibelio upon cyprinid herpesvirus 2 infection. JOURNAL OF FISH DISEASES 2021; 44:837-845. [PMID: 33400351 DOI: 10.1111/jfd.13313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Bcl2 family proteins play a critical role in cell death or survival. BAX, the death-promoting protein of bcl2 family, mediated mitochondrial pathway inducing cells' apoptosis in mammal. MiRNAs have been implicated as negative regulators down-regulating genes' expression after post-transcriptional level. At present, little is known about the regulatory mechanism of miRNA on the Bcl2 family proteins during CyHV-2 infection in silver crucian carp (Carassius auratus gibelio). In this study, the ccBAX (silver crucian carp BAX) gene was cloned and expressed, and polyclonal antibodies were raised in mouse against the purified ccBAX-GST fusion protein. The structure analysis indicated that ccBAX protein included four conserve domains (BH1, BH2, BH3 and transmembrane domains) and the expression of ccBAX protein occurred throughout the cells. Furthermore, two miRNAs (miR-124 and miRNA-29b) were identified to negatively regulate ccBAX gene expression in GiCF cell. miR-124 was found to suppress the expression of WT-ccBAX (wild type), but not the MT-ccBAX (mutant). Overall, the results demonstrated that the expression of the ccBAX gene was significantly down-regulated by miR-124 in silver crucian carp (Carassius auratus gibelio) during CyHV-2 infection.
Collapse
Affiliation(s)
- Lu Yu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Qikang Chen
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Xin Chu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Yang Luo
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Zizhao Feng
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Ye Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
15
|
Wood MP, Jones CI, Lippy A, Oliver BG, Walund B, Fancher KA, Fisher BS, Wright PJ, Fuller JT, Murapa P, Habib J, Mavigner M, Chahroudi A, Sather DN, Fuller DH, Sodora DL. Rapid progression is associated with lymphoid follicle dysfunction in SIV-infected infant rhesus macaques. PLoS Pathog 2021; 17:e1009575. [PMID: 33961680 PMCID: PMC8133453 DOI: 10.1371/journal.ppat.1009575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
HIV-infected infants are at an increased risk of progressing rapidly to AIDS in the first weeks of life. Here, we evaluated immunological and virological parameters in 25 SIV-infected infant rhesus macaques to understand the factors influencing a rapid disease outcome. Infant macaques were infected with SIVmac251 and monitored for 10 to 17 weeks post-infection. SIV-infected infants were divided into either typical (TypP) or rapid (RP) progressor groups based on levels of plasma anti-SIV antibody and viral load, with RP infants having low SIV-specific antibodies and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype. Interestingly, TypP had lower levels of total CD4 T cells, similar reductions in CD4/CD8 ratios and elevated activation of CD8 T cells, as measured by the levels of HLA-DR, compared to RP. Differences between the two groups were identified in other immune cell populations, including a failure to expand activated memory (CD21-CD27+) B cells in peripheral blood in RP infant macaques, as well as reduced levels of germinal center (GC) B cells and T follicular helper (Tfh) cells in spleens (4- and 10-weeks post-SIV). Reduced B cell proliferation in splenic germinal GCs was associated with increased SIV+ cell density and follicular type 1 interferon (IFN)-induced immune activation. Further analyses determined that at 2-weeks post SIV infection TypP infants exhibited elevated levels of the GC-inducing chemokine CXCL13 in plasma, as well as significantly lower levels of viral envelope diversity compared to RP infants. Our findings provide evidence that early viral and immunologic events following SIV infection contributes to impairment of B cells, Tfh cells and germinal center formation, ultimately impeding the development of SIV-specific antibody responses in rapidly progressing infant macaques. Despite significant reductions in vertical HIV transmission, nearly 100,000 children succumb to AIDS-related illnesses each year. Indeed, infants face a disproportionately higher risk of progressing to AIDS, with roughly half of HIV+ infants exhibiting a rapid progression to AIDS-associated morbidity and mortality. Here, we evaluated immunological and virological parameters in 25 simian immunodeficiency virus (SIV)-infected infant rhesus macaques to assess the factors that influence a rapid disease outcome. Infant macaques were infected with simian immunodeficiency virus (SIV) and divided into either typical (TypP) or rapid (RP) progressor groups. RP infants exhibited low levels of plasma anti-SIV antibody and high viral loads. Following SIV infection, 11 out of 25 infant macaques exhibited an RP phenotype with some exhibiting AIDS-related symptoms. This study provides evidence that the low levels of anti-SIV antibodies are associated with impairments to both B and T cells in both blood and lymphoid tissues. These changes are associated with the prolonged expression of type 1 interferons which may be impeding development of a healthy humoral immune response in these rapidly progressing SIV-infected infant macaques. These findings have implications regarding potential therapeutic approaches to prevent rapid progression in HIV infected infants.
Collapse
Affiliation(s)
- Matthew P. Wood
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Chloe I. Jones
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Adriana Lippy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brian G. Oliver
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Brynn Walund
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Katherine A. Fancher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Bridget S. Fisher
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Piper J. Wright
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - James T. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
| | - Patience Murapa
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Jakob Habib
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Maud Mavigner
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - Ann Chahroudi
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, Georgia United States of America
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Deborah H. Fuller
- University of Washington Department of Microbiology, Seattle, Washington, United States of America
- Washington National Primate Research Center, Seattle Washington, United States of America
| | - Donald L. Sodora
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
de Armas LR, George V, Filali-Mouhim A, Steel C, Parmigiani A, Cunningham CK, Weinberg A, Trautmann L, Sekaly RP, Cameron MJ, Pahwa S. Transcriptional and Immunologic Correlates of Response to Pandemic Influenza Vaccine in Aviremic, HIV-Infected Children. Front Immunol 2021; 12:639358. [PMID: 33868267 PMCID: PMC8044856 DOI: 10.3389/fimmu.2021.639358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
People living with HIV (PWH) often exhibit poor responses to influenza vaccination despite effective combination anti-retroviral (ART) mediated viral suppression. There exists a paucity of data in identifying immune correlates of influenza vaccine response in context of HIV infection that would be useful in improving its efficacy in PWH, especially in younger individuals. Transcriptomic data were obtained by microarray from whole blood isolated from aviremic pediatric and adolescent HIV-infected individuals (4-25 yrs) given two doses of Novartis/H1N1 09 vaccine during the pandemic H1N1 influenza outbreak. Supervised clustering and gene set enrichment identified contrasts between individuals exhibiting high and low antibody responses to vaccination. High responders exhibited hemagglutination inhibition antibody titers >1:40 post-first dose and 4-fold increase over baseline. Baseline molecular profiles indicated increased gene expression in metabolic stress pathways in low responders compared to high responders. Inflammation-related and interferon-inducible gene expression pathways were higher in low responders 3 wks post-vaccination. The broad age range and developmental stage of participants in this study prompted additional analysis by age group (e.g. <13yrs and ≥13yrs). This analysis revealed differential enrichment of gene pathways before and after vaccination in the two age groups. Notably, CXCR5, a homing marker expressed on T follicular helper (Tfh) cells, was enriched in high responders (>13yrs) following vaccination which was accompanied by peripheral Tfh expansion. Our results comprise a valuable resource of immune correlates of vaccine response to pandemic influenza in HIV infected children that may be used to identify favorable targets for improved vaccine design in different age groups.
Collapse
Affiliation(s)
- Lesley R de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Varghese George
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Courtney Steel
- Collaborative Genomics Center, Vaccine and Gene Therapy Institute, Port St. Lucie, FL, United States
| | - Anita Parmigiani
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Coleen K Cunningham
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Adriana Weinberg
- Departments of Medicine, Pathology, and Pediatric Infectious Diseases, University of Colorado School of Medicine, Aurora, CO, United States
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Rafick-Pierre Sekaly
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
17
|
Sun S, Yang Q, Sheng Y, Fu Y, Sun C, Deng C. Investigational drugs with dual activity against HBV and HIV (Review). Exp Ther Med 2020; 21:35. [PMID: 33262821 PMCID: PMC7690342 DOI: 10.3892/etm.2020.9467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis B (CHB) and acquired immunodeficiency syndrome (AIDS) are global public health problems that pose a significant health burden. Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) coinfection is common, as these viruses have similar transmission routes, such as blood transmission, sexual transmission and mother-to-child transmission. Coinfection frequently leads to accelerated disease progression. For individuals coinfected with HIV/HBV, combination antiretroviral therapy containing dual anti-HBV drugs is recommended. Certain studies have also indicated the benefits of antiretroviral drugs with anti-HBV activity in patients with coinfection. A total of four Food and Drug Administration-approved HIV drugs also have anti-HBV activity; namely, emtricitabine, lamivudine, tenofovir disoproxil fumarate and tenofovir alafenamide, which are all nucleoside reverse transcriptase inhibitors. However, various issues, including drug resistance and side effects, limit their application. Therefore, it is necessary to develop more drugs with dual activity against HBV and HIV. The present review outlines the mechanisms, safety and efficacy of certain drugs that have been investigated for this purpose.
Collapse
Affiliation(s)
- Shiyu Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qing Yang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yi Fu
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Department of Infection and Immunity Laboratory, Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
18
|
Posch W, Bermejo-Jambrina M, Lass-Flörl C, Wilflingseder D. Role of Complement Receptors (CRs) on DCs in Anti-HIV-1 Immunity. Front Immunol 2020; 11:572114. [PMID: 33224139 PMCID: PMC7670068 DOI: 10.3389/fimmu.2020.572114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Upon entry of human immunodeficiency virus 1 (HIV-1) into the host, innate immune mechanisms are acting as a first line of defense, that considerably also modify adaptive immunity by the provision of specific signals. Innate and adaptive immune responses are intimately linked and dendritic cells (DCs) together with complement (C) play an important role in regulation of adaptive immunity. Initially, the role of complement was considered to primarily support – or COMPLEMENT - cytolytic actions of antibodies or antibody-complexed antigens (immune complexes, ICs) or directly kill the pathogens by complement-mediated lysis. Recently, the role of complement was revised and found to significantly augmenting and modulating adaptive immunity, in particular against viruses. Complement and DCs are therefore predestined to open novel avenues for antiviral research and potential therapeutic interventions. Recent studies on interactions of complement-opsonized HIV-1 with DCs demonstrated a high potential of such primed DCs to initiate efficient antiviral and cytotoxic anti-HIV-1 immunity and complement-coated viral particles shift DCs functions via CR3 and CR4 in an antithetic manner. This review will focus on our current knowledge of CR3 and CR4 actions on DCs during HIV-1 binding and the outcome of infection influenced by entry and signaling pathways.
Collapse
Affiliation(s)
- Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marta Bermejo-Jambrina
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
19
|
Zhao S, Xu W, Tu B, Hong WG, Zhang Z, Chen WW, Zhao M. Alterations of the frequency and functions of follicular regulatory T cells and related mechanisms in HIV infection. J Infect 2020; 81:776-784. [PMID: 32956725 DOI: 10.1016/j.jinf.2020.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus (HIV) infection impairs both cellular and humoral immune system. Follicular regulatory T (Tfr) cells are a recently characterised subset of CD4+T cells. Tfr also exerts an immunosuppressive effect on humoral immune system through interaction with follicular helper T (Tfh) cells, but the role of Tfr in HIV infection needs to be further elucidated. 20 treatment-naïve and 20 antiretroviral therapy (ART)-treated HIV-infected individuals were enrolled for cross-sectional study and nine complete responders (CRs) and eight immune non-responders (INRs) after ART were collected for retrospective cohort study. Tfr phenotypes, cytokine secretions, and apoptosis of those subjects were evaluated by flow cytometry. HIV DNA was measured by reverse transcription-quantitative PCR (RT-qPCR). Significantly increased circulating Tfr was observed in chronic HIV+ patients and the imbalance between Tfr and Tfh17 was associated with CD4+T counts. In addition, an elevated proportion of Tfr was associated with immune reconstruction failure of patients after ART. The IL-10 and CTLA-4 expressions of Tfr cells were up-regulated in treatment-naïve HIV+ patients. Ex vivo experiments showed IL-10 and CTLA-4 expressed by Tfr inhibited IL-21 secretion of Tfh. Tfr harboured a comparable HIV-1 DNA level with Tfh in HIV+ patients. Compared to Tfr of HCs, Tfr cells of HIV+ patients were more insensitive to CD95 and IFN-α induced apoptosis, had a higher proliferation rate, and had more stem-like T cell (Tscm) phenotype. The anti-apoptosis feature, higher proliferation rate, and Tscm-like features of Tfr in HIV+ patients, led to the expansion of Tfr which in turn resulted in dysfunction of Tfh. Tfr cells were also involved in immune reconstruction failure and latent infection of HIV. Tfr cells were a novel, and potentially therapeutic, target for the cure of HIV infection, especially for HIV vaccine development and HIV reservoir elimination.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Xu
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China
| | - Bo Tu
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China
| | - Wei-Guo Hong
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China
| | - Zheng Zhang
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China; Institute of Hepatology, Shenzhen 3rd People's Hospital, NO. 29, Bulan Road, Shenzhen City, Guangdong 518100, China.
| | - Wei-Wei Chen
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China.
| | - Min Zhao
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China.
| |
Collapse
|
20
|
Rapid in vitro generation of bona fide exhausted CD8+ T cells is accompanied by Tcf7 promotor methylation. PLoS Pathog 2020; 16:e1008555. [PMID: 32579593 PMCID: PMC7340326 DOI: 10.1371/journal.ppat.1008555] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/07/2020] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
Exhaustion is a dysfunctional state of cytotoxic CD8+ T cells (CTL) observed in chronic infection and cancer. Current in vivo models of CTL exhaustion using chronic viral infections or cancer yield very few exhausted CTL, limiting the analysis that can be done on these cells. Establishing an in vitro system that rapidly induces CTL exhaustion would therefore greatly facilitate the study of this phenotype, identify the truly exhaustion-associated changes and allow the testing of novel approaches to reverse or prevent exhaustion. Here we show that repeat stimulation of purified TCR transgenic OT-I CTL with their specific peptide induces all the functional (reduced cytokine production and polyfunctionality, decreased in vivo expansion capacity) and phenotypic (increased inhibitory receptors expression and transcription factor changes) characteristics of exhaustion. Importantly, in vitro exhausted cells shared the transcriptomic characteristics of the gold standard of exhaustion, CTL from LCMV cl13 infections. Gene expression of both in vitro and in vivo exhausted CTL was distinct from T cell anergy. Using this system, we show that Tcf7 promoter DNA methylation contributes to TCF1 downregulation in exhausted CTL. Thus this novel in vitro system can be used to identify genes and signaling pathways involved in exhaustion and will facilitate the screening of reagents that prevent/reverse CTL exhaustion.
Collapse
|
21
|
Ma L, Ainsworth HC, Snipes JA, Murea M, Choi YA, Langefeld CD, Parks JS, Bharadwaj MS, Chou JW, Hemal AK, Petrovic S, Craddock AL, Cheng D, Hawkins GA, Miller LD, Hicks PJ, Saleem MA, Divers J, Molina AJ, Freedman BI. APOL1 Kidney-Risk Variants Induce Mitochondrial Fission. Kidney Int Rep 2020; 5:891-904. [PMID: 32518871 PMCID: PMC7271005 DOI: 10.1016/j.ekir.2020.03.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION APOL1 G1 and G2 nephropathy-risk variants cause mitochondrial dysfunction and contribute to kidney disease. Analyses were performed to determine the genetic regulation of APOL1 and elucidate potential mechanisms in APOL1-nephropathy. METHODS A global gene expression analysis was performed in human primary renal tubule cell lines derived from 50 African American individuals. Follow-up gene knock out, cell-based rescue, and microscopy experiments were performed. RESULTS APOL1 genotypes did not alter APOL1 expression levels in the global gene expression analysis. Expression quantitative trait locus (eQTL) analysis in polyinosinic-polycytidylic acid (poly IC)-stimulated renal tubule cells revealed that single nucleotide polymorphism (SNP) rs513349 adjacent to BAK1 was a trans eQTL for APOL1 and a cis eQTL for BAK1; APOL1 and BAK1 were co-expressed in cells. BAK1 knockout in a human podocyte cell line resulted in diminished APOL1 protein, supporting a pivotal effect for BAK1 on APOL1 expression. Because BAK1 is involved in mitochondrial dynamics, mitochondrial morphology was examined in primary renal tubule cells and HEK293 Tet-on cells of various APOL1 genotypes. Mitochondria in APOL1 wild-type (G0G0) tubule cells maintained elongated morphology when stimulated by low-dose poly IC, whereas those with G1G1, G2G2, and G1G2 genotypes appeared to fragment. HEK293 Tet-on cells overexpressing APOL1 G0, G1, and G2 were created; G0 cells appeared to promote mitochondrial fusion, whereas G1 and G2 induced mitochondrial fission. The mitochondrial dynamic regulator Mdivi-1 significantly preserved cell viability and mitochondrial cristae structure and reversed mitochondrial fission induced by overexpression of G1 and G2. CONCLUSION Results suggest the mitochondrial fusion/fission pathway may be a therapeutic target in APOL1-nephropathy.
Collapse
Affiliation(s)
- Lijun Ma
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hannah C. Ainsworth
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James A. Snipes
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mariana Murea
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Young A Choi
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Carl D. Langefeld
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - John S. Parks
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Manish S. Bharadwaj
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jeff W. Chou
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ashok K. Hemal
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Snezana Petrovic
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ann L. Craddock
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Dongmei Cheng
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gregory A. Hawkins
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Pamela J. Hicks
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Moin A. Saleem
- Children’s Renal Unit, Bristol Royal Hospital for Children, University of Bristol, Bristol, United Kingdom
| | - Jasmin Divers
- Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anthony J.A. Molina
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Barry I. Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
22
|
Muema DM, Akilimali NA, Ndumnego OC, Rasehlo SS, Durgiah R, Ojwach DBA, Ismail N, Dong M, Moodley A, Dong KL, Ndhlovu ZM, Mabuka JM, Walker BD, Mann JK, Ndung'u T. Association between the cytokine storm, immune cell dynamics, and viral replicative capacity in hyperacute HIV infection. BMC Med 2020; 18:81. [PMID: 32209092 PMCID: PMC7093991 DOI: 10.1186/s12916-020-01529-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Immunological damage in acute HIV infection (AHI) may predispose to detrimental clinical sequela. However, studies on the earliest HIV-induced immunological changes are limited, particularly in sub-Saharan Africa. We assessed the plasma cytokines kinetics, and their associations with virological and immunological parameters, in a well-characterized AHI cohort where participants were diagnosed before peak viremia. METHODS Blood cytokine levels were measured using Luminex and ELISA assays pre-infection, during the hyperacute infection phase (before or at peak viremia, 1-11 days after the first detection of viremia), after peak viremia (24-32 days), and during the early chronic phase (77-263 days). Gag-protease-driven replicative capacities of the transmitted/founder viruses were determined using a green fluorescent reporter T cell assay. Complete blood counts were determined before and immediately following AHI detection before ART initiation. RESULTS Untreated AHI was associated with a cytokine storm of 12 out of the 33 cytokines analyzed. Initiation of ART during Fiebig stages I-II abrogated the cytokine storm. In untreated AHI, virus replicative capacity correlated positively with IP-10 (rho = 0.84, P < 0.001) and IFN-alpha (rho = 0.59, P = 0.045) and inversely with nadir CD4+ T cell counts (rho = - 0.58, P = 0.048). Hyperacute HIV infection before the initiation of ART was associated with a transient increase in monocytes (P < 0.001), decreased lymphocytes (P = 0.011) and eosinophils (P = 0.003) at Fiebig stages I-II, and decreased eosinophils (P < 0.001) and basophils (P = 0.007) at Fiebig stages III-V. Levels of CXCL13 during the untreated hyperacute phase correlated inversely with blood eosinophils (rho = - 0.89, P < 0.001), basophils (rho = - 0.87, P = 0.001) and lymphocytes (rho = - 0.81, P = 0.005), suggesting their trafficking into tissues. In early treated individuals, time to viral load suppression correlated positively with plasma CXCL13 at the early chronic phase (rho = 0.83, P = 0.042). CONCLUSION While commencement of ART during Fiebig stages I-II of AHI abrogated the HIV-induced cytokine storm, significant depletions of eosinophils, basophils, and lymphocytes, as well as transient expansions of monocytes, were still observed in these individuals in the hyperacute phase before the initiation of ART, suggesting that even ART initiated during the onset of viremia does not abrogate all HIV-induced immune changes.
Collapse
Affiliation(s)
- Daniel M Muema
- Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | | | | | - Doty B A Ojwach
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Ismail
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Mary Dong
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Amber Moodley
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Krista L Dong
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Zaza M Ndhlovu
- Africa Health Research Institute, Durban, South Africa.,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | | | - Bruce D Walker
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
| | - Jaclyn K Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thumbi Ndung'u
- Africa Health Research Institute, Durban, South Africa. .,HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa. .,Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA. .,Max Planck Institute for Infection Biology, Berlin, Germany. .,Division of Infection and Immunity, University College London, London, UK.
| |
Collapse
|
23
|
Linares-Fernández S, Lacroix C, Exposito JY, Verrier B. Tailoring mRNA Vaccine to Balance Innate/Adaptive Immune Response. Trends Mol Med 2020; 26:311-323. [PMID: 31699497 DOI: 10.1016/j.molmed.2019.10.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
mRNA vaccine platforms present numerous advantages, such as versatility, rapid production, and induction of cellular and humoral responses. Moreover, mRNAs have inherent adjuvant properties due to their complex interaction with pattern recognition receptors (PRRs). This recognition can be either beneficial in activating antigen-presenting cells (APCs) or detrimental by indirectly blocking mRNA translation. To decipher this Janus effect, we describe the different innate response mechanisms triggered by mRNA molecules and how each element from the 5' cap to the poly-A tail interferes with innate/adaptive immune responses. Then, we emphasize the importance of some critical steps such as production, purification, and formulation as key events to further improve the quality of immune responses and balance innate and adaptive immunity.
Collapse
Affiliation(s)
- Sergio Linares-Fernández
- Université Claude Bernard Lyon 1 - Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Céline Lacroix
- Université Claude Bernard Lyon 1 - Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Jean-Yves Exposito
- Université Claude Bernard Lyon 1 - Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France
| | - Bernard Verrier
- Université Claude Bernard Lyon 1 - Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, UMR 5305, Université Lyon 1, CNRS, IBCP, Lyon, France.
| |
Collapse
|
24
|
In vitro replicative fitness of early Transmitted founder HIV-1 variants and sensitivity to Interferon alpha. Sci Rep 2020; 10:2747. [PMID: 32066770 PMCID: PMC7026412 DOI: 10.1038/s41598-020-59596-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
Type I interferons, particularly interferon-alpha (IFN-α), play a vital role in the host's anti-viral defenses by interfering with viral replication. However, the virus rapidly evolves to exploit the IFN-α response for its replication, spread, and pathogenic function. In this study, we attempted to determine IFN-α susceptibility and productivity of infectious transmitted/founder (TF) (n = 8) and non-transmitted (NT) viruses (n = 8) derived from HIV-1 infected infants. Independent experiments were carried out to determine IFN-α resistance, replication fitness, and viral productivity in CD4+ T cells over a short period. In vitro studies showed that TF viruses were resistant to IFN-α during the very near moment of transmission, but in the subsequent time points, they became susceptible to IFN-α. We did not observe much difference in replicative fitness of the TF viruses in cultures treated with and without IFN-α, but the difference was significant in the case of NT viruses obtained from the same individual. Despite increased susceptibility to IFN-α, NT viruses produced more viral particles than TF viruses. Similar results were also obtained in cultures treated with maraviroc (MVC). The study identified unique characteristics of TF viruses thus prompting further investigation into virus-host interaction occurring during the early stages of HIV infection.
Collapse
|
25
|
Hope JL, Spantidea PI, Kiernan CH, Stairiker CJ, Rijsbergen LC, van Meurs M, Brouwers-Haspels I, Mueller YM, Nelson DJ, Bradley LM, Aerts JGJV, Katsikis PD. Microenvironment-Dependent Gradient of CTL Exhaustion in the AE17sOVA Murine Mesothelioma Tumor Model. Front Immunol 2020; 10:3074. [PMID: 31998326 PMCID: PMC6968785 DOI: 10.3389/fimmu.2019.03074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/16/2019] [Indexed: 01/26/2023] Open
Abstract
The immune system, and in particular, cytotoxic CD8+ T cells (CTLs), plays a vital part in the prevention and elimination of tumors. In many patients, however, CTL-mediated tumor killing ultimately fails in the clearance of cancer cells resulting in disease progression, in large part due to the progression of effector CTL into exhausted CTL. While there have been major breakthroughs in the development of CTL-mediated “reinvigoration”-driven immunotherapies such as checkpoint blockade therapy, there remains a need to better understand the drivers behind the development of T cell exhaustion. Our study highlights the unique differences in T cell exhaustion development in tumor-specific CTL which arises over time in a mouse model of mesothelioma. Importantly, we also show that peripheral tumor-specific T cells have a unique expression profile compared to exhausted tumor-infiltrating CTL at a late-stage of tumor progression in mice. Together, these data suggest that greater emphasis should be placed on understanding contributions of individual microenvironments in the development of T cell exhaustion.
Collapse
Affiliation(s)
- Jennifer L Hope
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands.,Cancer Immunology and Tumor Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Panagiota I Spantidea
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Caoimhe H Kiernan
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | | | - Laurine C Rijsbergen
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Marjan van Meurs
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Inge Brouwers-Haspels
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Delia J Nelson
- Immunology and Cancer Group, School of Biomedical Sciences, Curtin University, Perth, WA, Australia
| | - Linda M Bradley
- Cancer Immunology and Tumor Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
26
|
Muraki M. Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review. AIMS MEDICAL SCIENCE 2020. [DOI: 10.3934/medsci.2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
27
|
Chandrasekar AP, Cummins NW, Badley AD. The Role of the BCL-2 Family of Proteins in HIV-1 Pathogenesis and Persistence. Clin Microbiol Rev 2019; 33:e00107-19. [PMID: 31666279 PMCID: PMC6822993 DOI: 10.1128/cmr.00107-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Advances in HIV-1 therapy have transformed the once fatal infection into a manageable, chronic condition, yet the search for a widely applicable approach to cure remains elusive. The ineffectiveness of antiretroviral therapy (ART) in reducing the size of the HIV-1 latent reservoir has prompted investigation into the mechanisms of HIV-1 latency and immune escape. One of the major regulators of apoptosis, the BCL-2 protein, alongside its homologous family members, is a major target of HIV-1-induced change. Recent studies have now demonstrated the association of this protein with cells that support proviral forms in the setting of latency and have helped identify BCL-2 as a novel and promising therapeutic target for HIV-1 therapy directed at possible cure. This review aims to systematically review the interactions of HIV-1 with BCL-2 and its homologs and to examine the possibility of using BCL-2 inhibitors in the study and elimination of the latent reservoir.
Collapse
Affiliation(s)
| | - Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
28
|
Dagenais-Lussier X, Loucif H, Cadorel H, Blumberger J, Isnard S, Bego MG, Cohen ÉA, Routy JP, van Grevenynghe J. USP18 is a significant driver of memory CD4 T-cell reduced viability caused by type I IFN signaling during primary HIV-1 infection. PLoS Pathog 2019; 15:e1008060. [PMID: 31658294 PMCID: PMC6837632 DOI: 10.1371/journal.ppat.1008060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/07/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
The loss of Memory CD4 T-cells (Mem) is a major hallmark of HIV-1 immuno-pathogenesis and occurs early during the first months of primary infection. A lot of effort has been put into understanding the molecular mechanisms behind this loss, yet they still have not been fully identified. In this study, we unveil the unreported role of USP18 in the deleterious effects of sustained type I IFN signaling on Mem, including HIV-1-specific CD4 T-cells. We find that interfering with IFN-I signaling pathway in infected patients, notably by targeting the interferon-stimulated gene USP18, resulted in reduced PTEN expression similar to those observed in uninfected control donors. We show that AKT activation in response to cytokine treatment, T-cell receptor (TcR) triggering, as well as HIV-1 Gag stimulation was significantly improved in infected patients when PTEN or USP18 were inhibited. Finally, our data demonstrate that higher USP18 in Mem from infected patients prevent proper cell survival and long-lasting maintenance in an AKT-dependent manner. Altogether, we establish a direct role for type I IFN/USP18 signaling in the maintenance of total and virus-specific Mem and provide a new mechanism for the reduced survival of these populations during primary HIV-1 infection. In this study, we expend our knowledge of how type I interferons (IFN-I) leads to memory CD4 T-cell defective survival by unveiling the molecular mechanism behind such impairments, placing USP18 at its center. Our data further deciphers the specific USP18-related mechanism that is responsible for such impairments by implicating AKT inhibition in a PTEN-dependent manner. Our findings also point to a potential use of neutralizing anti-interferon α/β receptor antibodies to rescue the defective memory CD4 T-cell survival during HIV-1 infection, even in HIV-1 specific CD4 T-cell. To conclude, our findings provide the characterization of the molecular pathway leading to disturbances caused by sustained IFN-I signaling which occurs early during primary HIV-1 infection, complementing current knowledge which placed sustained IFN-I signaling as detrimental to the host during this infection.
Collapse
Affiliation(s)
- Xavier Dagenais-Lussier
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hamza Loucif
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hugo Cadorel
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Juliette Blumberger
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Stéphane Isnard
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Mariana Gé Bego
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Éric A. Cohen
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Julien van Grevenynghe
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
- * E-mail:
| | | |
Collapse
|
29
|
Type I interferon signaling, regulation and gene stimulation in chronic virus infection. Semin Immunol 2019; 43:101277. [PMID: 31155227 DOI: 10.1016/j.smim.2019.05.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
Type I Interferons (IFN-I) mediate numerous immune interactions during viral infections, from the establishment of an antiviral state to invoking and regulating innate and adaptive immune cells that eliminate infection. While continuous IFN-I signaling plays critical roles in limiting virus replication during both acute and chronic infections, sustained IFN-I signaling also leads to chronic immune activation, inflammation and, consequently, immune exhaustion and dysfunction. Thus, an understanding of the balance between the desirable and deleterious effects of chronic IFN-I signaling will inform our quest for IFN-based therapies for chronic viral infections as well as other chronic diseases, including cancer. As such the factors involved in induction, propagation and regulation of IFN-I signaling, from the initial sensing of viral nucleotides within the cell to regulatory downstream signaling factors and resulting IFN-stimulated genes (ISGs) have received significant research attention. This review summarizes recent work on IFN-I signaling in chronic infections, and provides an update on therapeutic approaches being considered to counter such infections.
Collapse
|
30
|
Zhang Y, Ozono S, Yao W, Tobiume M, Yamaoka S, Kishigami S, Fujita H, Tokunaga K. CRISPR-mediated activation of endogenous BST-2/tetherin expression inhibits wild-type HIV-1 production. Sci Rep 2019; 9:3134. [PMID: 30816279 PMCID: PMC6395588 DOI: 10.1038/s41598-019-40003-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022] Open
Abstract
The CRISPR technology not only can knock out target genes by using the RNA-guided Cas9 nuclease but also can activate their expression when a nuclease-deficient Cas9 (dCas9) is employed. Using the latter function, we here show the effect of the CRISPR-mediated pinpoint activation of endogenous expression of BST-2 (also known as tetherin), a virus restriction factor with a broad antiviral spectrum. Single-guide RNA (sgRNA) sequences targeting the BST-2 promoter were selected by promoter assays. Potential sgRNAs and dCas9 fused to the VP64 transactivation domain, along with an accessory transcriptional activator complex, were introduced into cells by lentiviral transduction. Increased expression of BST-2 mRNA in transduced cells was confirmed by real-time RT-PCR. Cells in which BST-2 expression was highly enhanced showed the effective inhibition of HIV-1 production and replication even in the presence of the viral antagonist Vpu against BST-2. These findings confirm that the physiological stoichiometry between host restriction factors and viral antagonists may determine the outcome of the battle with viruses.
Collapse
Affiliation(s)
- Yanzhao Zhang
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Seiya Ozono
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Weitong Yao
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, 400-8510, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 859-3298, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
31
|
Zhao M, De Crignis E, Rokx C, Verbon A, van Gelder T, Mahmoudi T, Katsikis PD, Mueller YM. T cell toxicity of HIV latency reversing agents. Pharmacol Res 2018; 139:524-534. [PMID: 30366100 DOI: 10.1016/j.phrs.2018.10.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 01/07/2023]
Abstract
Combination antiretroviral therapy reduces morbidity and mortality in HIV infected patients. However, the cure of HIV infection is hindered by the persistence of the latent HIV reservoir. Latency reversing agents (LRAs) are developed to target the HIV latently infected cells for HIV reactivation. In addition to reversal of HIV latency, the eradication of HIV latently infected cells will require effector HIV-specific CD8+ T cells. Therefore it is imperative we understand how LRAs affect immune cells. We have performed a comparative in depth analysis of the cytotoxicity of several compounds belonging to four LRA classes on T cells, B cells, and NK cells. In addition, the effect of these LRAs on activation and inhibitory receptor expression of CD8+ T cells was examined. We show that the HDAC inhibitors romidepsin and panobinostat are highly cytotoxic for CD4+ and CD8+ T cells, whereas the PKC agonists bryostatin and prostratin and BET inhibitors JQ1 and OXT-015 were less cytotoxic. The BAF inhibitors CAPE and pyrimethamine exhibit no cytotoxicity. Drug-specific cytotoxicity on CD8+ T cells was comparable between healthy controls and cART-treated HIV-infected patients. Bryostatin and both BET inhibitors downregulated the expression of CD279 on CD8+ T cells without affecting their activation. Our comparison of LRAs identified differences in cytotoxicity between LRA classes and members within a class and suggests that some LRAs such as bryostatin and BET inhibitors may also downregulate inhibitory receptors on activated HIV-specific CD8+ T cells. These findings may guide the use of LRAs that have the capacity to preserve or restore CD8+ T cell immunity.
Collapse
Affiliation(s)
- Manzhi Zhao
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Elisa De Crignis
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
32
|
Mesquita EC, Hottz ED, Amancio RT, Carneiro AB, Palhinha L, Coelho LE, Grinsztejn B, Zimmerman GA, Rondina MT, Weyrich AS, Bozza PT, Bozza FA. Persistent platelet activation and apoptosis in virologically suppressed HIV-infected individuals. Sci Rep 2018; 8:14999. [PMID: 30301959 PMCID: PMC6178345 DOI: 10.1038/s41598-018-33403-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/26/2018] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases and thrombotic events became major clinical problems in the combined antiretroviral therapy (cART) era. Although the precise mechanisms behind these clinical problems have not been fully elucidated, a persistent pro-inflammatory state plays a central role. As platelets play important roles on both, thrombus formation and inflammatory/immune response, we aimed at investigating platelet function in HIV-infected subjects virologically controlled through cART. We evaluate parameters of activation, mitochondrial function and activation of apoptosis pathways in platelets from 30 HIV-infected individuals under stable cART and 36 healthy volunteers. Despite viral control achieved through cART, HIV-infected individuals exhibited increased platelet activation as indicated by P-selectin expression and platelet spreading when adhered on fibrinogen-coated surfaces. Platelets from HIV-infected subjects also exhibited mitochondrial dysfunction and activation of apoptosis pathways. Finally, thrombin stimuli induced lower levels of P-selectin translocation and RANTES secretion, but not TXA2 synthesis, in platelets from HIV-infected individuals compared to control; and labeling of platelet alpha granules showed reduced granule content in platelets from HIV-infected individuals when compared to healthy subjects. In summary, platelets derived from HIV-infected individuals under stable cART exhibit a phenotype of increased activation, activation of the intrinsic pathway of apoptosis and undermined granule secretion in response to thrombin.
Collapse
Affiliation(s)
- Emersom C Mesquita
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Eugenio D Hottz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Ciências Biológicas - Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Rodrigo T Amancio
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Alan B Carneiro
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Lohanna Palhinha
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Lara E Coelho
- Laboratório de HIV, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Laboratório de HIV, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Guy A Zimmerman
- Molecular Medicine Program and Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Matthew T Rondina
- Molecular Medicine Program and Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Andrew S Weyrich
- Molecular Medicine Program and Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Fernando A Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Johnson JS, Lucas SY, Amon LM, Skelton S, Nazitto R, Carbonetti S, Sather DN, Littman DR, Aderem A. Reshaping of the Dendritic Cell Chromatin Landscape and Interferon Pathways during HIV Infection. Cell Host Microbe 2018; 23:366-381.e9. [PMID: 29544097 DOI: 10.1016/j.chom.2018.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/29/2017] [Accepted: 01/23/2018] [Indexed: 02/07/2023]
Abstract
Myeloid dendritic cells (DCs) have the innate capacity to sense pathogens and orchestrate immune responses. However, DCs do not mount efficient immune responses to HIV-1, primarily due to restriction of virus reverse transcription, which prevents accumulation of viral cDNA and limits its detection through the cGAS-STING pathway. By allowing reverse transcription to proceed, we find that DCs detect HIV-1 in distinct phases, before and after virus integration. Blocking integration suppresses, but does not abolish, activation of the transcription factor IRF3, downstream interferon (IFN) responses, and DC maturation. Consistent with two stages of detection, HIV-1 "primes" chromatin accessibility of innate immune genes before and after integration. Once primed, robust IFN responses can be unmasked by agonists of the innate adaptor protein, MyD88, through a process that requires cGAS, STING, IRF3, and nuclear factor κB. Thus, HIV-1 replication increases material available for sensing, and discrete inflammatory inputs tune cGAS signaling to drive DC maturation.
Collapse
Affiliation(s)
| | - Sasha Y Lucas
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Lynn M Amon
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Rodolfo Nazitto
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Sara Carbonetti
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - D Noah Sather
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Dan R Littman
- Molecular Pathogenesis Program, The Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Alan Aderem
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| |
Collapse
|
34
|
A compartmentalized type I interferon response in the gut during chronic HIV-1 infection is associated with immunopathogenesis. AIDS 2018; 32:1599-1611. [PMID: 29762170 DOI: 10.1097/qad.0000000000001863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE(S) Type I interferon (IFN-I) responses confer both protective and pathogenic effects in persistent virus infections. IFN-I diversity, stage of infection and tissue compartment may account for this dichotomy. The gut is a major site of early HIV-1 replication and microbial translocation, but the nature of the IFN-I response in this compartment remains unclear. DESIGN Samples were obtained from two IRB-approved cross-sectional studies. The first study included individuals with chronic, untreated HIV-1 infection (n = 24) and age/sex-balanced uninfected controls (n = 14). The second study included antiretroviral-treated, HIV-1-infected individuals (n = 15) and uninfected controls (n = 15). METHODS The expression of 12 IFNα subtypes, IFNβ and antiviral IFN-stimulated genes (ISGs) were quantified in peripheral blood mononuclear cells (PBMCs) and colon biopsies using real-time PCR and next-generation sequencing. In untreated HIV-1-infected individuals, associations between IFN-I responses and gut HIV-1 RNA levels as well as previously established measures of colonic and systemic immunological indices were determined. RESULTS IFNα1, IFNα2, IFNα4, IFNα5 and IFNα8 were upregulated in PBMCs during untreated chronic HIV-1 infection, but IFNβ was undetectable. By contrast, IFNβ was upregulated and all IFNα subtypes were downregulated in gut tissue. Gut ISG levels positively correlated with gut HIV-1 RNA and immune activation, microbial translocation and inflammation markers. Gut IFN-I responses were not significantly different between HIV-1-infected individuals on antiretroviral treatment and uninfected controls. CONCLUSION The IFN-I response is compartmentalized during chronic untreated HIV-1 infection, with IFNβ being more predominant in the gut. Gut IFN-I responses are associated with immunopathogenesis, and viral replication is likely a major driver of this response.
Collapse
|
35
|
Short-Term Pegylated Interferon α2a Treatment Does Not Significantly Reduce the Viral Reservoir of Simian Immunodeficiency Virus-Infected, Antiretroviral Therapy-Treated Rhesus Macaques. J Virol 2018; 92:JVI.00279-18. [PMID: 29720521 DOI: 10.1128/jvi.00279-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
The major obstacle to human immunodeficiency type 1 (HIV-1) eradication is a reservoir of latently infected cells that persists despite long-term antiretroviral therapy (ART) and causes rapid viral rebound if treatment is interrupted. Type I interferons are immunomodulatory cytokines that induce antiviral factors and have been evaluated for the treatment of HIV-infected individuals, resulting in moderate reduction of viremia and inconclusive data about their effect on reservoir size. Here, we assessed the potential of pegylated IFN-α2a (pIFN-α2a) to reduce the viral reservoir in simian immunodeficiency virus (SIV)-infected, ART-treated rhesus macaques (RMs). We found that pIFN-α2a treatment of animals in which virus replication is effectively suppressed with ART is safe and well tolerated, as no major clinical side effects were observed. By monitoring the cellular immune response during this intervention, we established that pIFN-α2a administration is not associated with either CD4+ T cell depletion or increased immune activation. Importantly, we found that interferon-stimulated genes (ISGs) were significantly upregulated in IFN-treated RMs compared to control animals, confirming that pIFN-α2a is bioactive in vivo To evaluate the effect of pIFN-α2a administration on the viral reservoir in CD4+ T cells, we performed cell-associated proviral SIV DNA measurements in multiple tissues and assessed levels of replication-competent virus by a quantitative viral outgrowth assay (QVOA). These analyses failed to reveal any significant difference in reservoir size between IFN-treated and control animals. In summary, our data suggest that short-term type I interferon treatment in combination with suppressive ART is not sufficient to induce a significant reduction of the viral reservoir in SIV-infected RMs.IMPORTANCE The potential of type I interferons to reduce the viral reservoir has been recently studied in clinical trials in HIV-infected humans. However, given the lack of mechanistic data and the potential for safety concerns, a more comprehensive testing of IFN treatment in vivo in SIV-infected RMs is critical to provide rationale for further development of this intervention in humans. Utilizing the SIV/RM model in which virus replication is suppressed with ART, we addressed experimental limitations of previous human studies, in particular the lack of a control group and specimen sampling limited to blood. Here, we show by rigorous testing of blood and lymphoid tissues that virus replication and reservoir size were not significantly affected by pIFN-α2a treatment in SIV-infected, ART-treated RMs. This suggests that intensified and/or prolonged IFN treatment regimens, possibly in combination with other antilatency agents, are necessary to effectively purge the HIV/SIV reservoir under ART.
Collapse
|
36
|
Scagnolari C, Antonelli G. Type I interferon and HIV: Subtle balance between antiviral activity, immunopathogenesis and the microbiome. Cytokine Growth Factor Rev 2018; 40:19-31. [PMID: 29576284 PMCID: PMC7108411 DOI: 10.1016/j.cytogfr.2018.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/23/2018] [Accepted: 03/08/2018] [Indexed: 02/06/2023]
Abstract
Type I interferon (IFN) response initially limits HIV-1 spread and may delay disease progression by stimulating several immune system components. Nonetheless, persistent exposure to type I IFN in the chronic phase of HIV-1 infection is associated with desensitization and/or detrimental immune activation, thereby hindering immune recovery and fostering viral persistence. This review provides a basis for understanding the complexity and function of IFN pleiotropic activity in HIV-1 infection. In particular, the dichotomous role of the IFN response in HIV-1 immunopathogenesis will be discussed, highlighting recent advances in the dynamic modulation of IFN production in acute versus chronic infection, expression signatures of IFN subtypes, and viral and host factors affecting the magnitude of IFN response during HIV-1 infection. Lastly, the review gives a forward-looking perspective on the interplay between microbiome compositions and IFN response.
Collapse
Affiliation(s)
- Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy.
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
37
|
Abstract
HIV-1 sensors and their signaling features have been an ongoing topic of intense research over the last decade, as these mechanisms fail to establish protective immunity against HIV-1. Here, we discuss how HIV-1 infects dendritic cells (DCs) and which sensors play a role in recognizing viral DNA and RNA in these specialized immune cells. We will elaborate on the RNA helicase DDX3, which is crucial in translation initiation of HIV-1 mRNA, but also fulfills an important role as RNA sensor and inducer of antiviral immunity in DCs. As DDX3 is indispensable for HIV-1 replication, the virus cannot escape sensing by DDX3, which is an important aspect of its function. Last but not least, we will discuss how HIV-1 suppresses DDX3 sensing and how this impacts the viral load in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Melissa Stunnenberg
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sonja I Gringhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Laforge M, Silvestre R, Rodrigues V, Garibal J, Campillo-Gimenez L, Mouhamad S, Monceaux V, Cumont MC, Rabezanahary H, Pruvost A, Cordeiro-da-Silva A, Hurtrel B, Silvestri G, Senik A, Estaquier J. The anti-caspase inhibitor Q-VD-OPH prevents AIDS disease progression in SIV-infected rhesus macaques. J Clin Invest 2018; 128:1627-1640. [PMID: 29553486 DOI: 10.1172/jci95127] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/07/2018] [Indexed: 11/17/2022] Open
Abstract
Apoptosis has been proposed as a key mechanism responsible for CD4+ T cell depletion and immune dysfunction during HIV infection. We demonstrated that Q-VD-OPH, a caspase inhibitor, inhibits spontaneous and activation-induced death of T cells from SIV-infected rhesus macaques (RMs). When administered during the acute phase of infection, Q-VD-OPH was associated with (a) reduced levels of T cell death, (b) preservation of CD4+/CD8+ T cell ratio in lymphoid organs and in the gut, (c) maintenance of memory CD4+ T cells, and (d) increased specific CD4+ T cell response associated with the expression of cytotoxic molecules. Although therapy was limited to the acute phase of infection, Q-VD-OPH-treated RMs showed lower levels of both viral load and cell-associated SIV DNA as compared with control SIV-infected RMs throughout the chronic phase of infection, and prevented the development of AIDS. Overall, our data demonstrate that Q-VD-OPH injection in SIV-infected RMs may represent an adjunctive therapeutic agent to control HIV infection and delaying disease progression to AIDS.
Collapse
Affiliation(s)
| | - Ricardo Silvestre
- CNRS FR 3636, Université Paris Descartes, Paris, France.,Microbiology and Infection Research Domain, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vasco Rodrigues
- CNRS FR 3636, Université Paris Descartes, Paris, France.,i3S - Instituto de Investigação e Inovação em Saúde and.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Julie Garibal
- CNRS FR 3636, Université Paris Descartes, Paris, France
| | | | | | - Valérie Monceaux
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
| | | | | | - Alain Pruvost
- CEA, iBiTecS, SPI, Laboratoire d'Etude du Métabolisme des Médicaments, Gif-sur-Yvette, France
| | - Anabela Cordeiro-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde and.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Bruno Hurtrel
- Unité de Physiopathologie des Infections Lentivirales, Institut Pasteur, Paris, France
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Anna Senik
- CNRS FR 3636, Université Paris Descartes, Paris, France
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France.,Université Laval, Centre de Recherche du CHU de Québec, Quebec City, Quebec, Canada
| |
Collapse
|
39
|
Morphine-potentiated cognitive deficits correlate to suppressed hippocampal iNOS RNA expression and an absent type 1 interferon response in LP-BM5 murine AIDS. J Neuroimmunol 2018. [PMID: 29526406 DOI: 10.1016/j.jneuroim.2018.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Opioid use accelerates neurocognitive impairment in HIV/AIDS patients. We assessed the effect of chronic morphine treatment and LP-BM5/murine AIDS (MAIDS) infection on cognition, cytokine production, and type 1 interferon (IFN) expression in the murine CNS. Morphine treatment decreased expression of pro-inflammatory factors (CCL5, iNOS) and reduced cognitive performance in LP-BM5-infected mice, correlating to increased hippocampal viral load and a blunted type 1 IFN response. In the striatum, morphine reduced viral load while increasing IFN-α RNA expression. Our results suggest that differentially regulated type 1 IFN responses may contribute to distinct regional outcomes in the hippocampus and striatum in LP-BM5/MAIDS.
Collapse
|
40
|
George J, Mattapallil JJ. Interferon-α Subtypes As an Adjunct Therapeutic Approach for Human Immunodeficiency Virus Functional Cure. Front Immunol 2018; 9:299. [PMID: 29520278 PMCID: PMC5827157 DOI: 10.3389/fimmu.2018.00299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/02/2018] [Indexed: 01/12/2023] Open
Abstract
Human immunodeficiency virus (HIV) establishes life-long latency in infected individuals. Although highly active antiretroviral therapy (HAART) has had a significant impact on the course of HIV infection leading to a better long-term outcome, the pool of latent reservoir remains substantial even under HAART. Numerous approaches have been under development with the goal of eradicating the latent HIV reservoir though with limited success. Approaches that combine immune-mediated control of HIV to activate both the innate and the adaptive immune system under suppressive therapy along with "shock and kill" drugs may lead to a better control of the reactivated virus. Interferon-α (IFN-α) is an innate cytokine that has been shown to activate intracellular defenses capable of restricting and controlling HIV. IFN-α, however, harbors numerous functional subtypes that have been reported to display different binding affinities and potency. Recent studies have suggested that certain subtypes such as IFN-α8 and IFN-α14 have potent anti-HIV activity with little or no immune activation, whereas other subtypes such as IFN-α4, IFN-α5, and IFN-α14 activate NK cells. Could these subtypes be used in combination with other strategies to reduce the latent viral reservoir? Here, we review the role of IFN-α subtypes in HIV infection and discuss the possibility that certain subtypes could be potential adjuncts to a "shock and kill" or therapeutic vaccination strategy leading to better control of the latent reservoir and subsequent functional cure.
Collapse
Affiliation(s)
- Jeffy George
- Uniformed Services University, Bethesda, MD, United States
| | | |
Collapse
|
41
|
Interferon α subtypes in HIV infection. Cytokine Growth Factor Rev 2018; 40:13-18. [PMID: 29475588 DOI: 10.1016/j.cytogfr.2018.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
Type I interferons (IFN), which are immediately induced after most virus infections, are central for direct antiviral immunity and link innate and adaptive immune responses. However, several viruses have evolved strategies to evade the IFN response by preventing IFN induction or blocking IFN signaling pathways. Thus, therapeutic application of exogenous type I IFN or agonists inducing type I IFN responses are a considerable option for future immunotherapies against chronic viral infections. An important part of the type I IFN family are 12 IFNα subtypes, which all bind the same receptor, but significantly differ in their biological activities. Up to date only one IFNα subtype (IFNα2) is being used in clinical treatment against chronic virus infections, however its therapeutic success rate is rather limited, especially during Human Immunodeficiency Virus (HIV) infection. Recent studies addressed the important question if other IFNα subtypes would be more potent against retroviral infections in in vitro and in vivo experiments. Indeed, very potent IFNα subtypes were defined and their antiviral and immunomodulatory properties were characterized. In this review we summarize the recent findings on the role of individual IFNα subtypes during HIV and Simian Immunodeficiency Virus infection. This includes their induction during HIV/SIV infection, their antiretroviral activity and the regulation of immune response against HIV by different IFNα subtypes. The findings might facilitate novel strategies for HIV cure or functional cure studies.
Collapse
|
42
|
Sustained IFN-I Expression during Established Persistent Viral Infection: A "Bad Seed" for Protective Immunity. Viruses 2017; 10:v10010012. [PMID: 29301196 PMCID: PMC5795425 DOI: 10.3390/v10010012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022] Open
Abstract
Type I interferons (IFN-I) are one of the primary immune defenses against viruses. Similar to all other molecular mechanisms that are central to eliciting protective immune responses, IFN-I expression is subject to homeostatic controls that regulate cytokine levels upon clearing the infection. However, in the case of established persistent viral infection, sustained elevation of IFN-I expression bears deleterious effects to the host and is today considered as the major driver of inflammation and immunosuppression. In fact, numerous emerging studies place sustained IFN-I expression as a common nexus in the pathogenesis of multiple chronic diseases including persistent infections with the human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), as well as the rodent-borne lymphocytic choriomeningitis virus clone 13 (LCMV clone 13). In this review, we highlight recent studies illustrating the molecular dysregulation and resultant cellular dysfunction in both innate and adaptive immune responses driven by sustained IFN-I expression. Here, we place particular emphasis on the efficacy of IFN-I receptor (IFNR) blockade towards improving immune responses against viral infections given the emerging therapeutic approach of blocking IFNR using neutralizing antibodies (Abs) in chronically infected patients.
Collapse
|
43
|
Garcia-Vidal E, Castellví M, Pujantell M, Badia R, Jou A, Gomez L, Puig T, Clotet B, Ballana E, Riveira-Muñoz E, Esté JA. Evaluation of the Innate Immune Modulator Acitretin as a Strategy To Clear the HIV Reservoir. Antimicrob Agents Chemother 2017; 61:e01368-17. [PMID: 28874382 PMCID: PMC5655051 DOI: 10.1128/aac.01368-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
The persistence of HIV despite suppressive antiretroviral therapy is a major roadblock to HIV eradication. Current strategies focused on inducing the expression of latent HIV fail to clear the persistent reservoir, prompting the development of new approaches for killing HIV-positive cells. Recently, acitretin was proposed as a pharmacological enhancer of the innate cellular defense network that led to virus reactivation and preferential death of infected cells. We evaluated the capacity of acitretin to reactivate and/or to facilitate immune-mediated clearance of HIV-positive cells. Acitretin did not induce HIV reactivation in latently infected cell lines (J-Lat and ACH-2). We could observe only modest induction of HIV reactivation by acitretin in latently green fluorescent protein-HIV-infected Jurkat cells, comparable to suboptimal concentrations of vorinostat, a known latency-reversing agent (LRA). Acitretin induction was insignificant, however, compared to optimal concentrations of LRAs. Acitretin failed to reactivate HIV in a model of latently infected primary CD4+ T cells but induced retinoic acid-inducible gene I (RIG-I) and mitochondrial antiviral signaling (MAVS) expression in infected and uninfected cells, confirming the role of acitretin as an innate immune modulator. However, this effect was not associated with selective killing of HIV-positive cells. In conclusion, acitretin-mediated stimulation of the RIG-I pathway for HIV reactivation is modest and thus may not meaningfully affect the HIV reservoir. Stimulation of the RIG-I-dependent interferon (IFN) cascade by acitretin may not significantly affect the selective destruction of latently infected HIV-positive cells.
Collapse
Affiliation(s)
- Edurne Garcia-Vidal
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marc Castellví
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pujantell
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Roger Badia
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Antoni Jou
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lucia Gomez
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Teresa Puig
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José A Esté
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
44
|
Ahmed A, Rakshit S, Vyakarnam A. HIV-TB co-infection: mechanisms that drive reactivation of Mycobacterium tuberculosis in HIV infection. Oral Dis 2017; 22 Suppl 1:53-60. [PMID: 27109273 DOI: 10.1111/odi.12390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV infection predisposes the host to tuberculosis by impairing the hosts' immune system principally by killing and altering CD4 T-cell function. How HIV infection disrupts CD4 T-cell function, which specifically compromises host immunity to Mycobacterium tuberculosis, is poorly understood and is a critical roadblock in developing better vaccine- or immune-based strategies to control and monitor TB in HIV-infected subjects. This review considers key pathways that are altered in HIV-infected subjects that impair anti-TB immunity.
Collapse
Affiliation(s)
- A Ahmed
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - S Rakshit
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - A Vyakarnam
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India.,Department of Infectious Diseases, King's College London, London, UK
| |
Collapse
|
45
|
Cheng L, Yu H, Li G, Li F, Ma J, Li J, Chi L, Zhang L, Su L. Type I interferons suppress viral replication but contribute to T cell depletion and dysfunction during chronic HIV-1 infection. JCI Insight 2017; 2:94366. [PMID: 28614789 PMCID: PMC5470878 DOI: 10.1172/jci.insight.94366] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/10/2017] [Indexed: 12/17/2022] Open
Abstract
The direct link between sustained type I interferon (IFN-I) signaling and HIV-1-induced immunopathogenesis during chronic infection remains unclear. Here we report studies using a monoclonal antibody to block IFN-α/β receptor 1 (IFNAR1) signaling during persistent HIV-1 infection in humanized mice (hu-mice). We discovered that, during chronic HIV-1 infection, IFNAR blockade increased viral replication, which was correlated with elevated T cell activation. Thus, IFN-Is suppress HIV-1 replication during the chronic phase but are not essential for HIV-1-induced aberrant immune activation. Surprisingly, IFNAR blockade rescued both total human T cell and HIV-specific T cell numbers despite elevated HIV-1 replication and immune activation. We showed that IFNAR blockade reduced HIV-1-induced apoptosis of CD4+ T cells. Importantly, IFNAR blockade also rescued the function of human T cells, including HIV-1-specific CD8+ and CD4+ T cells. We conclude that during persistent HIV-1 infection, IFN-Is suppress HIV-1 replication, but contribute to depletion and dysfunction of T cells.
Collapse
Affiliation(s)
- Liang Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haisheng Yu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guangming Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Feng Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianping Ma
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liqun Chi
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
46
|
Brief Report: Increased Expression of the Type I Interferon Receptor on CD4+ T Lymphocytes in HIV-1-Infected Individuals. J Acquir Immune Defic Syndr 2017; 74:473-478. [PMID: 28009639 DOI: 10.1097/qai.0000000000001280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Type I interferons (IFN1s; eg, interferon-alpha and interferon-beta) are potent cytokines that inhibit the replication of human immunodeficiency virus-1 (HIV-1) and other viruses. The antiviral and immunoregulatory activities of IFN1 are mediated through ligand-receptor interactions with the IFN1 receptor complex (IFNAR). Variation in the cell-surface density of IFNAR could play a role in HIV-1 pathogenesis. METHODS In this cross-sectional study of fresh whole blood, we used flow cytometry to evaluate the expression of IFNAR2 on lymphocyte subsets from HIV-1-infected (n = 33) and HIV-1-uninfected (n = 22) individuals. RESULTS In comparison with healthy blood bank donors, we observed that the HIV-1-infected individuals, particularly those having advanced to disease, exhibited the increased expression of IFNAR2 on CD4 T cells (relative fluorescence intensity 6.9 vs. 9.0; P = 0.027). The CD4:CD4 T-cell IFNAR2 expression-level ratio provides an internally standardized measure of this alteration. The observed increased expression of IFNAR2 was largely restricted to CD4 T cells that expressed the chemokine receptor CXCR4 and lacked the expression of CCR5. CONCLUSIONS HIV-1-infected individuals exhibit an increased expression of the IFN1 receptor on CD4 T cells. The level of IFNAR2 expression seems to increase with disease progression. These findings provide insight for the immunologic alterations associated with HIV-1 infection and possibly new therapeutic approaches.
Collapse
|
47
|
Liao Q, Wang J, Pei Z, Xu J, Zhang X. Identification of miRNA-mRNA crosstalk in CD4 + T cells during HIV-1 infection by integrating transcriptome analyses. J Transl Med 2017; 15:41. [PMID: 28222782 PMCID: PMC5319073 DOI: 10.1186/s12967-017-1130-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/03/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND HIV-1-infected long-term nonprogressors (LTNPs) are characterized by infection with HIV-1 more than 7-10 years, but keeping high CD4+ T cell counts and low viral load in the absence of antiretroviral treatment, while loss of CD4+ T cells and high viral load were observed in the most of HIV-1-infected individuals with chronic progressors (CPs) However, the mechanisms of different clinical outcomes in HIV-1 infection needs to be further resolved. METHODS To identify microRNAs (miRNAs) and their target genes related to distinct clinical outcomes in HIV-1 infection, we performed the integrative transcriptome analyses in two series GSE24022 and GSE6740 by GEO2R, R, TargetScan, miRDB, and Cytoscape softwares. The functional pathways of these differentially expressed miRNAs (DEMs) targeting genes were further analyzed with DAVID. RESULTS We identified that 7 and 19 DEMs in CD4+ T cells of LTNPs and CPs, respectively, compared with uninfected controls (UCs), but only miR-630 was higher in CPs than that in LTNPs. Further, 478 and 799 differentially expressed genes (DEGs) were identified in the group of LTNPs and CPs, respectively, compared with UCs. Compared to CPs, four hundred and twenty-four DEGs were identified in LTNPs. Functional pathway analyses revealed that a close connection with miRNA-mRNA in HIV-1 infection that DEGs were involved in response to virus and immune system process, and RIG-I-like receptor signaling pathway, whose DEMs or DEGs will be novel biomarkers for prediction of clinical outcomes and therapeutic targets for HIV-1. CONCLUSIONS Integrative transcriptome analyses showed that distinct transcriptional profiles in CD4+ T cells are associated with different clinical outcomes during HIV-1 infection, and we identified a circulating miR-630 with potential to predict disease progression, which is necessary to further confirm our findings in the future.
Collapse
Affiliation(s)
- Qibin Liao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai, China
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zenglin Pei
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nat Commun 2017; 8:14253. [PMID: 28181493 PMCID: PMC5309800 DOI: 10.1038/ncomms14253] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 12/08/2016] [Indexed: 01/07/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) are specialized in secretion of type I interferon in response to pathogens. Here we show that natural monoamines and synthetic amines inhibit pDC activation by RNA viruses. Furthermore, a synthetic analogue of histamine reduces type I interferon production in a mouse model of influenza infection. We identify CXC chemokine receptor 4 (CXCR4) as a receptor used by amines to inhibit pDC. Our study establishes a functional link between natural amines and the innate immune system and identifies CXCR4 as a potential ‘on-off' switch of pDC activity with therapeutic potential. Plasmacytoid dendritic cells produce type I interferons in response to viral sensing. Here the authors show that amines inhibit these plasmacytoid dendritic cell responses through CXCR4 engagement.
Collapse
|
49
|
De Beuckelaer A, Grooten J, De Koker S. Type I Interferons Modulate CD8 + T Cell Immunity to mRNA Vaccines. Trends Mol Med 2017; 23:216-226. [PMID: 28185789 DOI: 10.1016/j.molmed.2017.01.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/03/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Abstract
mRNA vaccines have emerged as potent tools to elicit antitumor T cell immunity. They are characterized by a strong induction of type I interferons (IFNs), potent inflammatory cytokines affecting T cell differentiation and survival. Recent reports have attributed opposing roles for type I IFNs in modulating CD8+ T cell immunity to mRNA vaccines, from profoundly stimulatory to strongly inhibitory. The mechanisms behind this duality are unclear. Disentangling the factors governing the beneficial or detrimental impact of type I IFNs on CD8+ T cell responses is vital to the design of mRNA vaccines of increased potency. In light of recent advancements regarding the complex role of type I IFNs in regulating CD8+ T cell immunity to infectious diseases, we posit that the dual outcome of type I IFNs on CD8+ T cell responses to mRNA vaccination is determined by the timing and intensity of type I IFN induction relative to T cell receptor (TCR) activation.
Collapse
Affiliation(s)
- Ans De Beuckelaer
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Johan Grooten
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Stefaan De Koker
- Laboratory of Molecular Immunology, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cytokine Receptor Laboratory, Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Gringhuis SI, Hertoghs N, Kaptein TM, Zijlstra-Willems EM, Sarrami-Forooshani R, Sprokholt JK, van Teijlingen NH, Kootstra NA, Booiman T, van Dort KA, Ribeiro CMS, Drewniak A, Geijtenbeek TBH. HIV-1 blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA by the host helicase DDX3. Nat Immunol 2016; 18:225-235. [PMID: 28024153 DOI: 10.1038/ni.3647] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023]
Abstract
The mechanisms by which human immunodeficiency virus 1 (HIV-1) avoids immune surveillance by dendritic cells (DCs), and thereby prevents protective adaptive immune responses, remain poorly understood. Here we showed that HIV-1 actively arrested antiviral immune responses by DCs, which contributed to efficient HIV-1 replication in infected individuals. We identified the RNA helicase DDX3 as an HIV-1 sensor that bound abortive HIV-1 RNA after HIV-1 infection and induced DC maturation and type I interferon responses via the signaling adaptor MAVS. Notably, HIV-1 recognition by the C-type lectin receptor DC-SIGN activated the mitotic kinase PLK1, which suppressed signaling downstream of MAVS, thereby interfering with intrinsic host defense during HIV-1 infection. Finally, we showed that PLK1-mediated suppression of DDX3-MAVS signaling was a viral strategy that accelerated HIV-1 replication in infected individuals.
Collapse
Affiliation(s)
- Sonja I Gringhuis
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina Hertoghs
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tanja M Kaptein
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Esther M Zijlstra-Willems
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ramin Sarrami-Forooshani
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris K Sprokholt
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nienke H van Teijlingen
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Thijs Booiman
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Karel A van Dort
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Carla M S Ribeiro
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Agata Drewniak
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|