1
|
Molinos-Albert LM, Baquero E, Planchais C, Doceul V, El Costa H, Mottez E, Mallet V, Pol S, Albert ML, Pavio N, Alanio C, Dimitrov JD, Mouquet H. Structural basis for hepatitis E virus neutralization by potent human antibodies. SCIENCE ADVANCES 2025; 11:eadu8811. [PMID: 40333967 PMCID: PMC12057666 DOI: 10.1126/sciadv.adu8811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
Antibodies targeting the hepatitis E virus (HEV) surface capsid protein (CA) are essential for infection control and resolution, yet their molecular and functional attributes remain largely elusive. We characterized 144 human HEV-CA-specific monoclonal antibodies cloned from the memory B cells of HEV-exposed individuals. Most human anti-CA antibodies cross-reacted with all HEV genotype variants, and a subset also recognized the zoonotic rat hepatitis E virus. HEV antibody repertoire was diverse and contained highly potent neutralizing antibodies binding to the CA protruding (P) domain. Structural analyses of CA protein complexed with three potent and broad HEV antibodies uncovered a neutralizing site located on monomeric P domain loops at the apex of the viral spike. These findings provide valuable insights into the protective humoral response to HEV and offer a framework for the rational design of HEV vaccines and immunotherapies.
Collapse
Affiliation(s)
| | - Eduard Baquero
- NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Virginie Doceul
- UMR Virology, École Nationale Vétérinaire d'Alfort, INRAE, ANSES, 94704 Maisons-Alfort, France
| | - Hicham El Costa
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM-CNRS-University Toulouse III, 31024 Toulouse, France
| | - Estelle Mottez
- Human Immunology Center, Immunobiology of Dendritic Cells Unit, Institut Pasteur, 75015 Paris, France
| | - Vincent Mallet
- Groupe Hospitalier Cochin Port Royal, DMU Cancérologie et Spécialités Médico-Chirurgicales, Service d'Hépatologie, AP-HP Centre, Université Paris Cité, 75014 Paris, France
| | - Stanislas Pol
- Groupe Hospitalier Cochin Port Royal, DMU Cancérologie et Spécialités Médico-Chirurgicales, Service d'Hépatologie, AP-HP Centre, Université Paris Cité, 75014 Paris, France
| | - Matthew L. Albert
- Human Immunology Center, Immunobiology of Dendritic Cells Unit, Institut Pasteur, 75015 Paris, France
| | - Nicole Pavio
- UMR Virology, École Nationale Vétérinaire d'Alfort, INRAE, ANSES, 94704 Maisons-Alfort, France
| | - Cécile Alanio
- Human Immunology Center, Immunobiology of Dendritic Cells Unit, Institut Pasteur, 75015 Paris, France
| | - Jordan D. Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
2
|
Coppola J, Parren M, Bastidas R, Saye-Francisco K, Malvin J, Jardine JG, Gilbride RM, Ojha S, Feltham S, Morrow D, Barber-Axthelm A, Bochart R, Fast R, Oswald K, Shoemaker R, Lifson JD, Picker LJ, Burton DR, Hansen SG. Combining a rhesus cytomegalovirus/SIV vaccine with neutralizing antibody to protect against SIV challenge in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644395. [PMID: 40196580 PMCID: PMC11974736 DOI: 10.1101/2025.03.20.644395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
A vaccine is widely regarded as necessary for the control of the HIV pandemic and eventual eradication of AIDS. Neutralizing antibodies and MHC-E-restricted CD8+ T cells have both been shown capable of vaccine protection against the simian counterpart of HIV, SIV, in rhesus macaques. Here we provide preliminary evidence that combining these orthogonal antiviral mechanisms can provide increased protection against SIV challenge such that replication arrest observed following vaccination with a rhesus cytomegalovirus (RhCMV/SIV)-based vaccine was enhanced in the presence of passively administered incompletely protective levels of neutralizing antibody. The report invites studies involving larger cohorts of macaques and alternate routes of providing neutralizing antibody.
Collapse
|
3
|
Lembo A, Molinaro A, De Castro C, Berti F, Biagini M. Impact of glycosylation on viral vaccines. Carbohydr Polym 2024; 342:122402. [PMID: 39048237 DOI: 10.1016/j.carbpol.2024.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Glycosylation is the most prominent modification important for vaccines and its specific pattern depends on several factors that need to be considered when developing a new biopharmaceutical. Tailor-made glycosylation can be exploited to develop more effective and safer vaccines; for this reason, a deep understanding of both glycoengineering strategies and glycans structures and functions is required. In this review we discuss the recent advances concerning glycoprotein expression systems and the explanation of glycans immunomodulation mechanisms. Furthermore, we highlight how glycans tune the immunological properties among different vaccines platforms (whole virus, recombinant protein, nucleic acid), also comparing commercially available formulations and describing the state-of-the-art analytical technologies for glycosylation analysis. The whole review stresses the aspect of glycoprotein glycans as a potential tool to overcome nowadays medical needs in vaccine field.
Collapse
Affiliation(s)
- Antonio Lembo
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy; GSK, Siena, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Cristina De Castro
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
4
|
Hsiao YC, Wallweber HA, Alberstein RG, Lin Z, Du C, Etxeberria A, Aung T, Shang Y, Seshasayee D, Seeger F, Watkins AM, Hansen DV, Bohlen CJ, Hsu PL, Hötzel I. Rapid affinity optimization of an anti-TREM2 clinical lead antibody by cross-lineage immune repertoire mining. Nat Commun 2024; 15:8382. [PMID: 39333507 PMCID: PMC11437124 DOI: 10.1038/s41467-024-52442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/07/2024] [Indexed: 09/29/2024] Open
Abstract
We describe a process for rapid antibody affinity optimization by repertoire mining to identify clones across B cell clonal lineages based on convergent immune responses where antigen-specific clones with the same heavy (VH) and light chain germline segment pairs, or parallel lineages, bind a single epitope on the antigen. We use this convergence framework to mine unique and distinct VH lineages from rat anti-triggering receptor on myeloid cells 2 (TREM2) antibody repertoire datasets with high diversity in the third complementarity-determining loop region (CDR H3) to further affinity-optimize a high-affinity agonistic anti-TREM2 antibody while retaining critical functional properties. Structural analyses confirm a nearly identical binding mode of anti-TREM2 variants with subtle but significant structural differences in the binding interface. Parallel lineage repertoire mining is uniquely tailored to rationally explore the large CDR H3 sequence space in antibody repertoires and can be easily and generally applied to antibodies discovered in vivo.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | | | | | - Zhonghua Lin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | - Changchun Du
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | | | - Theint Aung
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | - Yonglei Shang
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
- Amberstone Biosciences, Irvine, CA, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | - Franziska Seeger
- Prescient Design, a Genentech Accelerator, South San Francisco, CA, USA
| | - Andrew M Watkins
- Prescient Design, a Genentech Accelerator, South San Francisco, CA, USA
| | - David V Hansen
- Department of Neuroscience, Genentech, South San Francisco, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | - Peter L Hsu
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Isidro Hötzel
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA.
| |
Collapse
|
5
|
Mandolesi M, Das H, de Vries L, Yang Y, Kim C, Dhinakaran M, Castro Dopico X, Fischbach J, Kim S, Guryleva MV, Àdori M, Chernyshev M, Stålmarck A, Hanke L, McInerney GM, Sheward DJ, Corcoran M, Hällberg BM, Murrell B, Karlsson Hedestam GB. Multi-compartmental diversification of neutralizing antibody lineages dissected in SARS-CoV-2 spike-immunized macaques. Nat Commun 2024; 15:6338. [PMID: 39068149 PMCID: PMC11283548 DOI: 10.1038/s41467-024-50286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The continued evolution of SARS-CoV-2 underscores the need to understand qualitative aspects of the humoral immune response elicited by spike immunization. Here, we combine monoclonal antibody (mAb) isolation with deep B cell receptor (BCR) repertoire sequencing of rhesus macaques immunized with prefusion-stabilized spike glycoprotein. Longitudinal tracing of spike-sorted B cell lineages in multiple immune compartments demonstrates increasing somatic hypermutation and broad dissemination of vaccine-elicited B cells in draining and non-draining lymphoid compartments, including the bone marrow, spleen and, most notably, periaortic lymph nodes. Phylogenetic analysis of spike-specific monoclonal antibody lineages identified through deep repertoire sequencing delineates extensive intra-clonal diversification that shaped neutralizing activity. Structural analysis of the spike in complex with a broadly neutralizing mAb provides a molecular basis for the observed differences in neutralization breadth between clonally related antibodies. Our findings highlight that immunization leads to extensive intra-clonal B cell evolution where members of the same lineage can both retain the original epitope specificity and evolve to recognize additional spike variants not previously encountered.
Collapse
MESH Headings
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Macaca mulatta
- Antibodies, Neutralizing/immunology
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- B-Lymphocytes/immunology
- Antibodies, Viral/immunology
- Phylogeny
- Antibodies, Monoclonal/immunology
- Epitopes/immunology
- COVID-19/immunology
- COVID-19/virology
- Humans
- COVID-19 Vaccines/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- Somatic Hypermutation, Immunoglobulin
- Immunization
Collapse
Affiliation(s)
- Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Liset de Vries
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yiqiu Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manojj Dhinakaran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julian Fischbach
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sungyong Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mariia V Guryleva
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Àdori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aron Stålmarck
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
6
|
Libera M, Caputo V, Laterza G, Moudoud L, Soggiu A, Bonizzi L, Diotti RA. The Question of HIV Vaccine: Why Is a Solution Not Yet Available? J Immunol Res 2024; 2024:2147912. [PMID: 38628675 PMCID: PMC11019575 DOI: 10.1155/2024/2147912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 02/24/2024] [Indexed: 04/19/2024] Open
Abstract
Ever since its discovery, human immunodeficiency virus type 1 (HIV-1) infection has remained a significant public health concern. The number of HIV-1 seropositive individuals currently stands at 40.1 million, yet definitive treatment for the virus is still unavailable on the market. Vaccination has proven to be a potent tool in combating infectious diseases, as evidenced by its success against other pathogens. However, despite ongoing efforts and research, the unique viral characteristics have prevented the development of an effective anti-HIV-1 vaccine. In this review, we aim to provide an historical overview of the various approaches attempted to create an effective anti-HIV-1 vaccine. Our objective is to explore the reasons why specific methods have failed to induce a protective immune response and to analyze the different modalities of immunogen presentation. This trial is registered with NCT05414786, NCT05471076, NCT04224701, and NCT01937455.
Collapse
Affiliation(s)
- Martina Libera
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Valeria Caputo
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Giulia Laterza
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Department of Clinical and Community Sciences, School of Medicine, University of Milan, Via Celoria 22, 20133 Milan, Italy
| | - Louiza Moudoud
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| | - Alessio Soggiu
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- SC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20133 Milan, Italy
| | - Luigi Bonizzi
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Roberta A. Diotti
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, School of Medicine, University of Milan, Via Pascal 36, 20133 Milan, Italy
- Pomona Ricerca S.r.l, Via Assarotti 7, 10122 Turin, Italy
| |
Collapse
|
7
|
Maliqi L, Friedrich N, Glögl M, Schmutz S, Schmidt D, Rusert P, Schanz M, Zaheri M, Pasin C, Niklaus C, Foulkes C, Reinberg T, Dreier B, Abela I, Peterhoff D, Hauser A, Kouyos RD, Günthard HF, van Gils MJ, Sanders RW, Wagner R, Plückthun A, Trkola A. Assessing immunogenicity barriers of the HIV-1 envelope trimer. NPJ Vaccines 2023; 8:148. [PMID: 37777519 PMCID: PMC10542815 DOI: 10.1038/s41541-023-00746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Understanding the balance between epitope shielding and accessibility on HIV-1 envelope (Env) trimers is essential to guide immunogen selection for broadly neutralizing antibody (bnAb) based vaccines. To investigate the antigenic space of Env immunogens, we created a strategy based on synthetic, high diversity, Designed Ankyrin Repeat Protein (DARPin) libraries. We show that DARPin Antigenicity Analysis (DANA), a purely in vitro screening tool, has the capability to extrapolate relevant information of antigenic properties of Env immunogens. DANA screens of stabilized, soluble Env trimers revealed that stronger trimer stabilization led to the selection of highly mutated DARPins with length variations and framework mutations mirroring observations made for bnAbs. By mimicking heterotypic prime-boost immunization regimens, DANA may be used to select immunogen combinations that favor the selection of trimer-reactive binders. This positions DANA as a versatile strategy for distilling fundamental antigenic features of immunogens, complementary to preclinical immunogenicity testing.
Collapse
Affiliation(s)
- Liridona Maliqi
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Matthias Glögl
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Stefan Schmutz
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Daniel Schmidt
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Merle Schanz
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Cyrille Niklaus
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Caio Foulkes
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
| | - Thomas Reinberg
- Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Birgit Dreier
- Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Irene Abela
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - David Peterhoff
- Institute of Clinical Microbiology and Hygiene, University Hospital, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Alexandra Hauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| | - Ralf Wagner
- Institute of Clinical Microbiology and Hygiene, University Hospital, Regensburg, Germany
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich (UZH), Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
8
|
Kumar S, Singh S, Chatterjee A, Bajpai P, Sharma S, Katpara S, Lodha R, Dutta S, Luthra K. Recognition determinants of improved HIV-1 neutralization by a heavy chain matured pediatric antibody. iScience 2023; 26:107579. [PMID: 37649696 PMCID: PMC10462834 DOI: 10.1016/j.isci.2023.107579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
The structural and characteristic features of HIV-1 broadly neutralizing antibodies (bnAbs) from chronically infected pediatric donors are currently unknown. Herein, we characterized a heavy chain matured HIV-1 bnAb 44m, identified from a pediatric elite-neutralizer. Interestingly, in comparison to its wild-type AIIMS-P01 bnAb, 44m exhibited moderately higher level of somatic hypermutations of 15.2%. The 44m neutralized 79% of HIV-1 heterologous viruses (n = 58) tested, with a geometric mean IC50 titer of 0.36 μg/mL. The cryo-EM structure of 44m Fab in complex with fully cleaved glycosylated native-like BG505.SOSIP.664.T332N gp140 envelope trimer at 4.4 Å resolution revealed that 44m targets the V3-glycan N332-supersite and GDIR motif to neutralize HIV-1 with improved potency and breadth, plausibly attributed by a matured heavy chain as compared to that of wild-type AIIMS-P01. This study further improves our understanding on pediatric HIV-1 bnAbs and structural basis of broad HIV-1 neutralization by 44m may be useful blueprint for vaccine design in future.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Shaifali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanket Katpara
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
9
|
Zhang YN, Paynter J, Antanasijevic A, Allen JD, Eldad M, Lee YZ, Copps J, Newby ML, He L, Chavez D, Frost P, Goodroe A, Dutton J, Lanford R, Chen C, Wilson IA, Crispin M, Ward AB, Zhu J. Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimmers as HIV-1 vaccine candidates. Nat Commun 2023; 14:1985. [PMID: 37031217 PMCID: PMC10082823 DOI: 10.1038/s41467-023-37742-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Uncleaved prefusion-optimized (UFO) design can stabilize diverse HIV-1 envelope glycoproteins (Envs). Single-component, self-assembling protein nanoparticles (1c-SApNP) can display 8 or 20 native-like Env trimers as vaccine candidates. We characterize the biophysical, structural, and antigenic properties of 1c-SApNPs that present the BG505 UFO trimer with wildtype and modified glycans. For 1c-SApNPs, glycan trimming improves recognition of the CD4 binding site without affecting broadly neutralizing antibodies (bNAbs) to major glycan epitopes. In mice, rabbits, and nonhuman primates, glycan trimming increases the frequency of vaccine responders (FVR) and steers antibody responses away from immunodominant glycan holes and glycan patches. The mechanism of vaccine-induced immunity is examined in mice. Compared with the UFO trimer, the multilayered E2p and I3-01v9 1c-SApNPs show 420 times longer retention in lymph node follicles, 20-32 times greater presentation on follicular dendritic cell dendrites, and up-to-4 times stronger germinal center reactions. These findings can inform future HIV-1 vaccine development.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jennifer Paynter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mor Eldad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deborah Chavez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Pat Frost
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Anna Goodroe
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - John Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Christopher Chen
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Max Crispin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
10
|
Zhang C, Bzikadze AV, Safonova Y, Mirarab S. A scalable model for simulating multi-round antibody evolution and benchmarking of clonal tree reconstruction methods. Front Immunol 2022; 13:1014439. [PMID: 36618367 PMCID: PMC9815712 DOI: 10.3389/fimmu.2022.1014439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Affinity maturation (AM) of B cells through somatic hypermutations (SHMs) enables the immune system to evolve to recognize diverse pathogens. The accumulation of SHMs leads to the formation of clonal lineages of antibody-secreting b cells that have evolved from a common naïve B cell. Advances in high-throughput sequencing have enabled deep scans of B cell receptor repertoires, paving the way for reconstructing clonal trees. However, it is not clear if clonal trees, which capture microevolutionary time scales, can be reconstructed using traditional phylogenetic reconstruction methods with adequate accuracy. In fact, several clonal tree reconstruction methods have been developed to fix supposed shortcomings of phylogenetic methods. Nevertheless, no consensus has been reached regarding the relative accuracy of these methods, partially because evaluation is challenging. Benchmarking the performance of existing methods and developing better methods would both benefit from realistic models of clonal lineage evolution specifically designed for emulating B cell evolution. In this paper, we propose a model for modeling B cell clonal lineage evolution and use this model to benchmark several existing clonal tree reconstruction methods. Our model, designed to be extensible, has several features: by evolving the clonal tree and sequences simultaneously, it allows modeling selective pressure due to changes in affinity binding; it enables scalable simulations of large numbers of cells; it enables several rounds of infection by an evolving pathogen; and, it models building of memory. In addition, we also suggest a set of metrics for comparing clonal trees and measuring their properties. Our results show that while maximum likelihood phylogenetic reconstruction methods can fail to capture key features of clonal tree expansion if applied naively, a simple post-processing of their results, where short branches are contracted, leads to inferences that are better than alternative methods.
Collapse
Affiliation(s)
- Chao Zhang
- Bioinformatics and Systems Biology, University of California, San Diego, San Diego, CA, United States
| | - Andrey V. Bzikadze
- Bioinformatics and Systems Biology, University of California, San Diego, San Diego, CA, United States
| | - Yana Safonova
- Computer Science and Engineering Department, University of California, San Diego, San Diego, CA, United States
| | - Siavash Mirarab
- Electrical and Computer Engineering Department, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
11
|
Li X, Liao D, Li Z, Li J, Diaz M, Verkoczy L, Gao F. Autoreactivity and broad neutralization of antibodies against HIV-1 are governed by distinct mutations: Implications for vaccine design strategies. Front Immunol 2022; 13:977630. [PMID: 36479128 PMCID: PMC9720396 DOI: 10.3389/fimmu.2022.977630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Many of the best HIV-1 broadly neutralizing antibodies (bnAbs) known have poly-/autoreactive features that disfavor normal B cell development and maturation, posing a major hurdle in developing an effective HIV-1 vaccine. Key to resolving this problem is to understand if, and to what extent, neutralization breadth-conferring mutations acquired by bnAbs contribute to their autoreactivity. Here, we back-mutated all known changes made by a prototype CD4 binding site-directed bnAb lineage, CH103-106, during its later maturation steps. Strikingly, of 29 mutations examined, only four were crucial for increased autoreactivity, with minimal or no impact on neutralization. Furthermore, three of these residues were clustered in the heavy chain complementarity-determining region 2 (HCDR2). Our results demonstrate that broad neutralization activity and autoreactivity in the CH103-106 bnAb lineage can be governed by a few, distinct mutations during maturation. This provides strong rationale for developing immunogens that favor bnAb lineages bearing "neutralization-only" mutations into current HIV-1 vaccine designs.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Dongmei Liao
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Zhengyang Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jixi Li
- School of Life Sciences, Fudan University, Shanghai, China
| | - Marilyn Diaz
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Laurent Verkoczy
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdongg, China
| |
Collapse
|
12
|
Melzi E, Willis JR, Ma KM, Lin YC, Kratochvil S, Berndsen ZT, Landais EA, Kalyuzhniy O, Nair U, Warner J, Steichen JM, Kalyuzhniy A, Le A, Pecetta S, Perez M, Kirsch K, Weldon SR, Falcone S, Himansu S, Carfi A, Sok D, Ward AB, Schief WR, Batista FD. Membrane-bound mRNA immunogens lower the threshold to activate HIV Env V2 apex-directed broadly neutralizing B cell precursors in humanized mice. Immunity 2022; 55:2168-2186.e6. [PMID: 36179690 PMCID: PMC9671093 DOI: 10.1016/j.immuni.2022.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
Eliciting broadly neutralizing antibodies (bnAbs) is the core of HIV vaccine design. bnAbs specific to the V2-apex region of the HIV envelope acquire breadth and potency with modest somatic hypermutation, making them attractive vaccination targets. To evaluate Apex germline-targeting (ApexGT) vaccine candidates, we engineered knockin (KI) mouse models expressing the germline B cell receptor (BCR) of the bnAb PCT64. We found that high affinity of the ApexGT immunogen for PCT64-germline BCRs was necessary to specifically activate KI B cells at human physiological frequencies, recruit them to germinal centers, and select for mature bnAb mutations. Relative to protein, mRNA-encoded membrane-bound ApexGT immunization significantly increased activation and recruitment of PCT64 precursors to germinal centers and lowered their affinity threshold. We have thus developed additional models for HIV vaccine research, validated ApexGT immunogens for priming V2-apex bnAb precursors, and identified mRNA-LNP as a suitable approach to substantially improve the B cell response.
Collapse
Affiliation(s)
- Eleonora Melzi
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jordan R Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Krystal M Ma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying-Cing Lin
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sven Kratochvil
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zachary T Berndsen
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elise A Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Usha Nair
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - John Warner
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anton Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amber Le
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Simone Pecetta
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Manfredo Perez
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kathrin Kirsch
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | | | | | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R Schief
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Facundo D Batista
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Zhao F, Berndsen ZT, Pedreño-Lopez N, Burns A, Allen JD, Barman S, Lee WH, Chakraborty S, Gnanakaran S, Sewall LM, Ozorowski G, Limbo O, Song G, Yong P, Callaghan S, Coppola J, Weisgrau KL, Lifson JD, Nedellec R, Voigt TB, Laurino F, Louw J, Rosen BC, Ricciardi M, Crispin M, Desrosiers RC, Rakasz EG, Watkins DI, Andrabi R, Ward AB, Burton DR, Sok D. Molecular insights into antibody-mediated protection against the prototypic simian immunodeficiency virus. Nat Commun 2022; 13:5236. [PMID: 36068229 PMCID: PMC9446601 DOI: 10.1038/s41467-022-32783-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
SIVmac239 infection of macaques is a favored model of human HIV infection. However, the SIVmac239 envelope (Env) trimer structure, glycan occupancy, and the targets and ability of neutralizing antibodies (nAbs) to protect against SIVmac239 remain unknown. Here, we report the isolation of SIVmac239 nAbs that recognize a glycan hole and the V1/V4 loop. A high-resolution structure of a SIVmac239 Env trimer-nAb complex shows many similarities to HIV and SIVcpz Envs, but with distinct V4 features and an extended V1 loop. Moreover, SIVmac239 Env has a higher glycan shield density than HIV Env that may contribute to poor or delayed nAb responses in SIVmac239-infected macaques. Passive transfer of a nAb protects macaques from repeated intravenous SIVmac239 challenge at serum titers comparable to those described for protection of humans against HIV infection. Our results provide structural insights for vaccine design and shed light on antibody-mediated protection in the SIV model.
Collapse
Affiliation(s)
- Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Zachary T Berndsen
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nuria Pedreño-Lopez
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Alison Burns
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Shawn Barman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Wen-Hsin Lee
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Srirupa Chakraborty
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Leigh M Sewall
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel Ozorowski
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI, New York, NY, 10004, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jessica Coppola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kim L Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Thomas B Voigt
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Fernanda Laurino
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Johan Louw
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Brandon C Rosen
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Michael Ricciardi
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - David I Watkins
- Department of Pathology, George Washington University, Washington, DC, 20037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, 02139, USA.
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA.
- IAVI, New York, NY, 10004, USA.
| |
Collapse
|
14
|
Tsuji I, Vang F, Dominguez D, Karwal L, Sanjali A, Livengood JA, Davidson E, Fouch ME, Doranz BJ, Das SC, Dean HJ. Somatic Hypermutation and Framework Mutations of Variable Region Contribute to Anti-Zika Virus-Specific Monoclonal Antibody Binding and Function. J Virol 2022; 96:e0007122. [PMID: 35575481 PMCID: PMC9175631 DOI: 10.1128/jvi.00071-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is a global public health concern due to its ability to cause congenital Zika syndrome and lack of approved vaccine, therapeutic, or other control measures. We discovered eight novel rabbit monoclonal antibodies (MAbs) that bind to distinct ZIKV envelope protein epitopes. The majority of the MAbs were ZIKV specific and targeted the lateral ridge of the envelope (E) protein domain III, while the MAb with the highest neutralizing activity recognized a putative quaternary epitope spanning E protein domains I and III. One of the non-neutralizing MAbs specifically recognized ZIKV precursor membrane protein (prM). Somatic hypermutation of immunoglobulin variable regions increases antibody affinity maturation and triggers antibody class switching. Negative correlations were observed between the somatic hypermutation rate of the immunoglobulin heavy-chain variable region and antibody binding parameters such as equilibrium dissociation constant, dissociation constant, and half-maximal effective concentration value of MAb binding to ZIKV virus-like particles. Complementarity-determining regions recognize the antigen epitopes and are scaffolded by canonical framework regions. Reversion of framework region amino acids to the rabbit germ line sequence decreased anti-ZIKV MAb binding activity of some MAbs. Thus, antibody affinity maturation, including somatic hypermutation and framework region mutations, contributed to the binding and function of these anti-ZIKV MAbs. IMPORTANCE ZIKV is a global health concern against which no vaccine or therapeutics are available. We characterized eight novel rabbit monoclonal antibodies recognizing ZIKV envelope and prM proteins and studied the relationship between somatic hypermutation of complementarity-determining regions, framework regions, mutations, antibody specificity, binding, and neutralizing activity. The results contribute to understanding structural features and somatic mutation pathways by which potent Zika virus-neutralizing antibodies can evolve, including the role of antibody framework regions.
Collapse
Affiliation(s)
- Isamu Tsuji
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Fue Vang
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - David Dominguez
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Ankita Sanjali
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Jill A. Livengood
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | | | | | | | - Subash C. Das
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Hansi J. Dean
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Complementary Roles of Antibody Heavy and Light Chain Somatic Hypermutation in Conferring Breadth and Potency to the HIV-1-Specific CAP256-VRC26 bNAb Lineage. J Virol 2022; 96:e0027022. [PMID: 35510865 DOI: 10.1128/jvi.00270-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some HIV-infected people develop broadly neutralizing antibodies (bNAbs) that block many diverse, unrelated strains of HIV from infecting target cells and, through passive immunization, protect animals and humans from infection. Therefore, understanding the development of bNAbs and their neutralization can inform the design of an HIV vaccine. Here, we extend our previous studies of the ontogeny of the CAP256-VRC26 V2-targeting bNAb lineage by defining the mutations that confer neutralization to the unmutated common ancestor (CAP256.UCA). Analysis of the sequence of the CAP256.UCA showed that many improbable mutations were located in the third complementarity-determining region of the heavy chain (CDRH3) and the heavy chain framework 3 (FR3). Transferring the CDRH3 from bNAb CAP256.25 (63% breadth and 0.003 μg/mL potency) into the CAP256.UCA introduced breadth and the ability to neutralize emerging viral variants. In addition, we showed that the framework and light chain contributed to potency and that the second CDR of the light chain forms part of the paratope of CAP256.25. Notably, a minimally mutated CAP256 antibody, with 41% of the mutations compared to bNAb CAP256.25, was broader (64% breadth) and more potent (0.39 μg/mL geometric potency) than many unrelated bNAbs. Together, we have identified key regions and mutations that confer breadth and potency in a V2-specific bNAb lineage. These data indicate that immunogens that target affinity maturation to key sites in CAP256-VRC26-like precursors, including the CDRHs and light chain, could rapidly elicit breadth through vaccination. IMPORTANCE A major focus in the search for an HIV vaccine is elucidating the ontogeny of broadly neutralizing antibodies (bNAbs), which prevent HIV infection in vitro and in vivo. The unmutated common ancestors (UCAs) of bNAbs are generally strain specific and acquire breadth through extensive, and sometimes redundant, somatic hypermutation during affinity maturation. We investigated which mutations in the CAP256-VRC26 bNAb lineage conferred neutralization capacity to the UCA. We found that mutations in the antibody heavy and light chains had complementary roles in neutralization breadth and potency, respectively. The heavy chain, particularly the third complementarity-determining region, was responsible for conferring breadth. In addition, previously uninvestigated mutations in the framework also contributed to breadth. Together, approximately half of the mutations in CAP256.25 were necessary for broader and more potent neutralization than many unrelated neutralizing antibodies. Vaccine approaches that promote affinity maturation at key sites could therefore more rapidly produce antibodies with neutralization breadth.
Collapse
|
16
|
Duggan NN, Weisgrau KL, Magnani DM, Rakasz EG, Desrosiers RC, Martinez-Navio JM. SOSIP Trimer-Specific Antibodies Isolated from a Simian-Human Immunodeficiency Virus-Infected Monkey with versus without a Pre-blocking Step with gp41. J Virol 2022; 96:e0158221. [PMID: 34730398 PMCID: PMC8791287 DOI: 10.1128/jvi.01582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
BG505 SOSIP.664 (hereafter referred to as SOSIP), a stabilized trimeric mimic of the HIV-1 envelope spike resembling the native viral spike, is a useful tool for isolating anti-HIV-1 neutralizing antibodies. We screened long-term SHIV-AD8 infected rhesus monkeys for potency and breadth of serum neutralizing activity against autologous and heterologous viruses: SHIV-AD8, HIV-1 YU2, HIV-1 JR-CSF, and HIV-1 NL4-3. Monkey rh2436 neutralized all viruses tested and showed strong reactivity to the SOSIP trimer, suggesting this was a promising candidate for attempts at monoclonal antibody (MAb) isolation. MAbs were isolated by performing single B-cell sorts from peripheral blood mononuclear cells (PBMC) by FACS using the SOSIP trimer as a probe. An initial round of sorted cells revealed the majority of isolated MAbs were directed to the gp41 external domain portion of the SOSIP trimer and were mostly non-neutralizing against tested isolates. A second sort was performed, introducing a gp41 blocking step prior to PBMC staining and FACS sorting. These isolated MAbs bound SOSIP trimer but were no longer directed to the gp41 external domain portion. A significantly higher proportion of MAbs with neutralizing activity were obtained with this strategy. Our data show this pre-blocking step with gp41 greatly increases the yield of non-gp41-reactive, SOSIP-specific MAbs and increases the likelihood of isolating MAbs with neutralizing activity. IMPORTANCE Recent advancements in the field have focused on the isolation and use of broadly neutralizing antibodies for both prophylaxis and therapy. Finding a useful probe to isolate broad potent neutralizing antibodies while avoiding non-neutralizing antibodies is important. The SOSIP trimer has been shown to be a great tool for this purpose because it binds known broadly neutralizing antibodies. However, the SOSIP trimer can isolate non-neutralizing antibodies as well, including gp41-specific MAbs. Introducing a pre-blocking step with gp41 recombinant protein decreased the percent of gp41-specific antibodies isolated with SOSIP probe, as well as increased the number of neutralizing antibodies isolated. This method can be used as a tool to increase the chances of isolating neutralizing antibodies.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diogo M. Magnani
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ronald C. Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jose M. Martinez-Navio
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
17
|
USP10 regulates B cell response to SARS-CoV-2 or HIV-1 nanoparticle vaccines through deubiquitinating AID. Signal Transduct Target Ther 2022; 7:7. [PMID: 34983926 PMCID: PMC8724756 DOI: 10.1038/s41392-021-00858-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) initiates class-switch recombination and somatic hypermutation (SHM) in antibody genes. Protein expression and activity are tightly controlled by various mechanisms. However, it remains unknown whether a signal from the extracellular environment directly affects the AID activity in the nucleus where it works. Here, we demonstrated that a deubiquitinase USP10, which specifically stabilizes nuclear AID protein, can translocate into the nucleus after AKT-mediated phosphorylation at its T674 within the NLS domain. Interestingly, the signals from BCR and TLR1/2 synergistically promoted this phosphorylation. The deficiency of USP10 in B cells significantly decreased AID protein levels, subsequently reducing neutralizing antibody production after immunization with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or human immunodeficiency virus type 1 (HIV-1) nanoparticle vaccines. Collectively, we demonstrated that USP10 functions as an integrator for both BCR and TLR signals and directly regulates nuclear AID activity. Its manipulation could be used for the development of vaccines and adjuvants.
Collapse
|
18
|
Alameh MG, Tombácz I, Bettini E, Lederer K, Sittplangkoon C, Wilmore JR, Gaudette BT, Soliman OY, Pine M, Hicks P, Manzoni TB, Knox JJ, Johnson JL, Laczkó D, Muramatsu H, Davis B, Meng W, Rosenfeld AM, Strohmeier S, Lin PJC, Mui BL, Tam YK, Karikó K, Jacquet A, Krammer F, Bates P, Cancro MP, Weissman D, Luning Prak ET, Allman D, Locci M, Pardi N. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021; 54:2877-2892.e7. [PMID: 34852217 PMCID: PMC8566475 DOI: 10.1016/j.immuni.2021.11.001] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
Adjuvants are critical for improving the quality and magnitude of adaptive immune responses to vaccination. Lipid nanoparticle (LNP)-encapsulated nucleoside-modified mRNA vaccines have shown great efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the mechanism of action of this vaccine platform is not well-characterized. Using influenza virus and SARS-CoV-2 mRNA and protein subunit vaccines, we demonstrated that our LNP formulation has intrinsic adjuvant activity that promotes induction of strong T follicular helper cell, germinal center B cell, long-lived plasma cell, and memory B cell responses that are associated with durable and protective antibodies in mice. Comparative experiments demonstrated that this LNP formulation outperformed a widely used MF59-like adjuvant, AddaVax. The adjuvant activity of the LNP relies on the ionizable lipid component and on IL-6 cytokine induction but not on MyD88- or MAVS-dependent sensing of LNPs. Our study identified LNPs as a versatile adjuvant that enhances the efficacy of traditional and next-generation vaccine platforms.
Collapse
Affiliation(s)
| | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Bettini
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katlyn Lederer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chutamath Sittplangkoon
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Joel R Wilmore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ousamah Y Soliman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Pine
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Hicks
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomaz B Manzoni
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James J Knox
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John L Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dorottya Laczkó
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Davis
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Katalin Karikó
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; BioNTech RNA Pharmaceuticals, Mainz, Germany
| | - Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Shivatare SS, Rachel Cheng TJ, Cheng YY, Shivatare VS, Tsai TI, Chuang HY, Wu CY, Wong CH. Immunogenicity Evaluation of N-Glycans Recognized by HIV Broadly Neutralizing Antibodies. ACS Chem Biol 2021; 16:2016-2025. [PMID: 34649433 PMCID: PMC8526942 DOI: 10.1021/acschembio.1c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While the improved treatment of human immunodeficiency virus type 1 (HIV-1) infection is available, the development of an effective and safe prophylactic vaccine against HIV-1 is still an unrealized goal. Encouragingly, the discovery of broadly neutralizing antibodies (bNAbs) from HIV-1 positive patients that are capable of neutralizing a broad spectrum of HIV-1 isolates of various clades has accelerated the progress of vaccine development in the past few years. Some of these bNAbs recognize the N-glycans on the viral surface gp120 glycoprotein. We have been interested in using the glycan epitopes recognized by bNAbs for the development of vaccines to elicit bNAb-like antibodies with broadly neutralizing activities. Toward this goal, we have identified novel hybrid-type structures with subnanomolar avidity toward several bNAbs including PG16, PGT121, PGT128-3C, 2G12, VRC13, VRC-PG05, VRC26.25, VRC26.09, PGDM1400, 35O22, and 10-1074. Here, we report the immunogenicity evaluation of a novel hybrid glycan conjugated to carrier DTCRM197, a nontoxic mutant of the diphtheria toxin, for immunization in mice. Our results indicated that the IgG response was mainly against the chitobiose motif with nonspecific binding to a panel of N-glycans with reducing end GlcNAc-GlcNAc (chitobiose) printed on the glass slides. However, the IgM response was mainly toward the reducing end GlcNAc moiety. We further used the glycoconjugates of Man3GlcNAc2, Man5GlcNAc2, and Man9GlcNAc2 glycans for immunization, and a similar specificity pattern was observed. These findings suggest that the immunogenicity of chitobiose may interfere with the outcome of N-glycan-based vaccines, and modification may be necessary to increase the immunogenicity of the entire N-glycan epitope.
Collapse
Affiliation(s)
- Sachin S. Shivatare
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Ting-Jen Rachel Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Yang-Yu Cheng
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Vidya S. Shivatare
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Tsung-I Tsai
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Hong-Yang Chuang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | - Chi-Huey Wong
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| |
Collapse
|
20
|
Swanson O, Rhodes B, Wang A, Xia SM, Parks R, Chen H, Sanzone A, Cooper M, Louder MK, Lin BC, Doria-Rose NA, Bonsignori M, Saunders KO, Wiehe K, Haynes BF, Azoitei ML. Rapid selection of HIV envelopes that bind to neutralizing antibody B cell lineage members with functional improbable mutations. Cell Rep 2021; 36:109561. [PMID: 34407396 PMCID: PMC8493474 DOI: 10.1016/j.celrep.2021.109561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/25/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Elicitation of broadly neutralizing antibodies (bnAbs) by an HIV vaccine will involve priming the immune system to activate antibody precursors, followed by boosting immunizations to select for antibodies with functional features required for neutralization breadth. The higher the number of acquired mutations necessary for function, the more convoluted are the antibody developmental pathways. HIV bnAbs acquire a large number of somatic mutations, but not all mutations are functionally important. In this study, we identify a minimal subset of mutations sufficient for the function of the naturally occurring V3-glycan bnAb DH270.6. Using antibody library screening, candidate envelope immunogens that interact with DH270.6-like antibodies containing this set of key mutations are identified and selected in vitro. Our results demonstrate that less complex B cell evolutionary pathways than those naturally observed exist for the induction of HIV bnAbs by vaccination, and they establish rational approaches to identify boosting candidate immunogens.
Collapse
Affiliation(s)
- Olivia Swanson
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Brianna Rhodes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Avivah Wang
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Haiyan Chen
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Aja Sanzone
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Melissa Cooper
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA
| | - Mark K. Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA,Department of Medicine, Duke University, Durham, NC 27610, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA,Department of Surgery, Duke University, Durham, NC 27610, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA,Department of Medicine, Duke University, Durham, NC 27610, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA,Department of Medicine, Duke University, Durham, NC 27610, USA,Department of Immunology, Duke University, Durham, NC 27610, USA
| | - Mihai L. Azoitei
- Duke Human Vaccine Institute, Duke University, Durham, NC 27610, USA,Department of Medicine, Duke University, Durham, NC 27610, USA,Lead contact,Correspondence:
| |
Collapse
|
21
|
Large-scale analysis of 2,152 Ig-seq datasets reveals key features of B cell biology and the antibody repertoire. Cell Rep 2021; 35:109110. [PMID: 33979623 DOI: 10.1016/j.celrep.2021.109110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/09/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Antibody repertoire sequencing enables researchers to acquire millions of B cell receptors and investigate these molecules at the single-nucleotide level. This power and resolution in studying humoral responses have led to its wide applications. However, most of these studies were conducted with a limited number of samples. Given the extraordinary diversity, assessment of these key features with a large sample set is demanded. Thus, we collect and systematically analyze 2,152 high-quality heavy-chain antibody repertoires. Our study reveals that 52 core variable genes universally contribute to more than 99% of each individual's repertoire; a distal interspersed preferences characterize V gene recombination; the number of public clones between two repertoires follows a linear model, and the positive selection dominates at RGYW motif in somatic hypermutations. Thus, this population-level analysis resolves some critical features of the antibody repertoire and may have significant value to the large cadre of scientists.
Collapse
|
22
|
A single donor is sufficient to produce a highly functional in vitro antibody library. Commun Biol 2021; 4:350. [PMID: 33742103 PMCID: PMC7979914 DOI: 10.1038/s42003-021-01881-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Antibody complementarity determining region diversity has been considered to be the most important metric for the production of a functional antibody library. Generally, the greater the antibody library diversity, the greater the probability of selecting a diverse array of high affinity leads. According to this paradigm, the primary means of elevating library diversity has been by increasing the number of donors. In the present study we explored the possibility of creating an in vitro antibody library from a single healthy individual, showing that the number of lymphocytes, rather than the number of donors, is the key criterion in the production of a diverse and functional antibody library. We describe the construction of a high-quality phage display library comprising 5 × 109 human antibodies by applying an efficient B cell extraction protocol from a single donor and a targeted V-gene amplification strategy favoring specific antibody families for their improved developability profiles. Each step of the library generation process was followed and validated by next generation sequencing to monitor the library quality and diversity. The functionality of the library was tested using several therapeutically relevant targets for which a vast number of different antibodies with desired biophysical properties were obtained.
Collapse
|
23
|
Wang Z, Barnes CO, Gautam R, Cetrulo Lorenzi JC, Mayer CT, Oliveira TY, Ramos V, Cipolla M, Gordon KM, Gristick HB, West AP, Nishimura Y, Raina H, Seaman MS, Gazumyan A, Martin M, Bjorkman PJ, Nussenzweig MC, Escolano A. A broadly neutralizing macaque monoclonal antibody against the HIV-1 V3-Glycan patch. eLife 2020; 9:e61991. [PMID: 33084569 PMCID: PMC7577740 DOI: 10.7554/elife.61991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
A small fraction of HIV-1- infected humans develop broadly neutralizing antibodies (bNAbs) against HIV-1 that protect macaques from simian immunodeficiency HIV chimeric virus (SHIV). Similarly, a small number of macaques infected with SHIVs develop broadly neutralizing serologic activity, but less is known about the nature of simian antibodies. Here, we report on a monoclonal antibody, Ab1485, isolated from a macaque infected with SHIVAD8 that developed broadly neutralizing serologic activity targeting the V3-glycan region of HIV-1 Env. Ab1485 neutralizes 38.1% of HIV-1 isolates in a 42-pseudovirus panel with a geometric mean IC50 of 0.055 µg/mLl and SHIVAD8 with an IC50 of 0.028 µg/mLl. Ab1485 binds the V3-glycan epitope in a glycan-dependent manner. A 3.5 Å cryo-electron microscopy structure of Ab1485 in complex with a native-like SOSIP Env trimer showed conserved contacts with the N332gp120 glycan and gp120 GDIR peptide motif, but in a distinct Env-binding orientation relative to human V3/N332gp120 glycan-targeting bNAbs. Intravenous infusion of Ab1485 protected macaques from a high dose challenge with SHIVAD8. We conclude that macaques can develop bNAbs against the V3-glycan patch that resemble human V3-glycan bNAbs.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Rajeev Gautam
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | | | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Kristie M Gordon
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Henna Raina
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical CenterBostonUnited States
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| | - Malcolm Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaUnited States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute. The Rockefeller UniversityNew YorkUnited States
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
24
|
Yang X, Tipton CM, Woodruff MC, Zhou E, Lee FEH, Sanz I, Qiu P. GLaMST: grow lineages along minimum spanning tree for b cell receptor sequencing data. BMC Genomics 2020; 21:583. [PMID: 32900378 PMCID: PMC7488003 DOI: 10.1186/s12864-020-06936-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background B cell affinity maturation enables B cells to generate high-affinity antibodies. This process involves somatic hypermutation of B cell immunoglobulin receptor (BCR) genes and selection by their ability to bind antigens. Lineage trees are used to describe this microevolution of B cell immunoglobulin genes. In a lineage tree, each node is one BCR sequence that mutated from the germinal center and each directed edge represents a single base mutation, insertion or deletion. In BCR sequencing data, the observed data only contains a subset of BCR sequences in this microevolution process. Therefore, reconstructing the lineage tree from experimental data requires algorithms to build the tree based on partially observed tree nodes. Results We developed a new algorithm named Grow Lineages along Minimum Spanning Tree (GLaMST), which efficiently reconstruct the lineage tree given observed BCR sequences that correspond to a subset of the tree nodes. Through comparison using simulated and real data, GLaMST outperforms existing algorithms in simulations with high rates of mutation, insertion and deletion, and generates lineage trees with smaller size and closer to ground truth according to tree features that highly correlated with selection pressure. Conclusions GLaMST outperforms state-of-art in reconstruction of the BCR lineage tree in both efficiency and accuracy. Integrating it into existing BCR sequencing analysis frameworks can significant improve lineage tree reconstruction aspect of the analysis.
Collapse
Affiliation(s)
- Xingyu Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, USA
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, USA
| | - Enlu Zhou
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, USA
| | | | - Inãki Sanz
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA.
| |
Collapse
|
25
|
Zhao F, Joyce C, Burns A, Nogal B, Cottrell CA, Ramos A, Biddle T, Pauthner M, Nedellec R, Qureshi H, Mason R, Landais E, Briney B, Ward AB, Burton DR, Sok D. Mapping Neutralizing Antibody Epitope Specificities to an HIV Env Trimer in Immunized and in Infected Rhesus Macaques. Cell Rep 2020; 32:108122. [PMID: 32905766 PMCID: PMC7487785 DOI: 10.1016/j.celrep.2020.108122] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/29/2020] [Accepted: 08/18/2020] [Indexed: 01/25/2023] Open
Abstract
BG505 SOSIP is a well-characterized near-native recombinant HIV Envelope (Env) trimer that holds promise as part of a sequential HIV immunogen regimen to induce broadly neutralizing antibodies (bnAbs). Rhesus macaques are considered the most appropriate pre-clinical animal model for monitoring antibody (Ab) responses. Accordingly, we report here the isolation of 45 BG505 autologous neutralizing antibodies (nAbs) with multiple specificities from SOSIP-immunized and BG505 SHIV-infected rhesus macaques. We associate the most potent neutralization with two epitopes: the C3/V5 and V1/V3 regions. We show that all of the nAbs bind in close proximity to known bnAb epitopes and might therefore sterically hinder elicitation of bnAbs. We also identify a "public clonotype" that targets the immunodominant C3/V5 nAb epitope, which suggests that common antibody rearrangements might help determine humoral responses to Env immunogens. The results highlight important considerations for vaccine design in anticipation of results of the BG505 SOSIP trimer in clinical trials.
Collapse
Affiliation(s)
- Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Collin Joyce
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alison Burns
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bartek Nogal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alejandra Ramos
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI, New York, NY 10004, USA
| | - Trevor Biddle
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthias Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Huma Qureshi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI, New York, NY 10004, USA
| | - Rosemarie Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elise Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI, New York, NY 10004, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02114, USA.
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI, New York, NY 10004, USA.
| |
Collapse
|
26
|
Zhou JO, Zaidi HA, Ton T, Fera D. The Effects of Framework Mutations at the Variable Domain Interface on Antibody Affinity Maturation in an HIV-1 Broadly Neutralizing Antibody Lineage. Front Immunol 2020; 11:1529. [PMID: 32765530 PMCID: PMC7379371 DOI: 10.3389/fimmu.2020.01529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022] Open
Abstract
Understanding affinity maturation of antibodies that can target many variants of HIV-1 is important for vaccine development. While the antigen-binding site of antibodies is known to mutate throughout the co-evolution of antibodies and viruses in infected individuals, the roles of the mutations in the antibody framework region are not well understood. Throughout affinity maturation, the CH103 broadly neutralizing antibody lineage, from an individual designated CH505, altered the orientation of one of its antibody variable domains. The change in orientation was a response to insertions in the variable loop 5 (V5) of the HIV envelope. In this study, we generated CH103 lineage antibody variants in which residues in the variable domain interface were mutated, and measured the binding to both autologous and heterologous HIV-1 envelopes. Our data show that very few mutations in an early intermediate antibody of the lineage can improve binding toward both autologous and heterologous HIV-1 envelopes. We also crystallized an antibody mutant to show that framework mutations alone can result in a shift in relative orientations of the variable domains. Taken together, our results demonstrate the functional importance of residues located outside the antigen-binding site in affinity maturation.
Collapse
Affiliation(s)
- Jeffrey O Zhou
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, United States
| | - Hussain A Zaidi
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, United States
| | - Therese Ton
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
| | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, United States
| |
Collapse
|
27
|
Pittala S, Bailey-Kellogg C. Learning context-aware structural representations to predict antigen and antibody binding interfaces. Bioinformatics 2020; 36:3996-4003. [PMID: 32321157 PMCID: PMC7332568 DOI: 10.1093/bioinformatics/btaa263] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 01/19/2023] Open
Abstract
MOTIVATION Understanding how antibodies specifically interact with their antigens can enable better drug and vaccine design, as well as provide insights into natural immunity. Experimental structural characterization can detail the 'ground truth' of antibody-antigen interactions, but computational methods are required to efficiently scale to large-scale studies. To increase prediction accuracy as well as to provide a means to gain new biological insights into these interactions, we have developed a unified deep learning-based framework to predict binding interfaces on both antibodies and antigens. RESULTS Our framework leverages three key aspects of antibody-antigen interactions to learn predictive structural representations: (i) since interfaces are formed from multiple residues in spatial proximity, we employ graph convolutions to aggregate properties across local regions in a protein; (ii) since interactions are specific between antibody-antigen pairs, we employ an attention layer to explicitly encode the context of the partner; (iii) since more data are available for general protein-protein interactions, we employ transfer learning to leverage this data as a prior for the specific case of antibody-antigen interactions. We show that this single framework achieves state-of-the-art performance at predicting binding interfaces on both antibodies and antigens, and that each of its three aspects drives additional improvement in the performance. We further show that the attention layer not only improves performance, but also provides a biologically interpretable perspective into the mode of interaction. AVAILABILITY AND IMPLEMENTATION The source code is freely available on github at https://github.com/vamships/PECAN.git.
Collapse
Affiliation(s)
- Srivamshi Pittala
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
28
|
Targeting broadly neutralizing antibody precursors: a naïve approach to vaccine design. Curr Opin HIV AIDS 2020; 14:294-301. [PMID: 30946041 DOI: 10.1097/coh.0000000000000548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW It is believed that broadly neutralizing antibodies (bNAbs) will be an important component of an effective HIV-1 vaccine. Several immunogens have been designed that can target specific precursor B cells as a first step in a vaccine strategy to elicit bNAbs. RECENT FINDINGS Germline-targeting immunogens have been developed that specifically engage precursors of reproducible classes of anti-HIV antibodies, such as VRC01-class and apex-directed bNAbs. However, these precursors represent only a small portion of the immune repertoire and any antigen will inherently present off-target epitopes to the immune system that may confound bNAb development. Novel animal models are being utilized to understand the competitive fitness of bNAb precursors in the context of immunization with germline-targeting immunogens. In parallel, immunogen design efforts are being pursued to favor the development of bNAb responses over off-target responses following immunization. New studies of bNAb precursor interactions with glycosylated Env variants can inform prime-boost regimens geared towards accelerating bNAb development. SUMMARY Germline-targeting immunogens hold promise as a first step in eliciting a bNAb response through vaccination. A better understating of how efficiently germline-targeting immunogens can specifically target rare bNAb precursors is emerging. In addition, a more comprehensive structure-based understanding of critical barriers to bNAb elicitation, as well as commonalities between bNAb classes can further inform vaccine design.
Collapse
|
29
|
Envelope-Specific IgG3 and IgG1 Responses Are Associated with Clearance of Acute Hepatitis C Virus Infection. Viruses 2020; 12:v12010075. [PMID: 31936235 PMCID: PMC7019651 DOI: 10.3390/v12010075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) can be cleared naturally in a subset of individuals. However, the asymptomatic nature of acute HCV infection makes the study of the early immune response and defining the correlates of protection challenging. Despite this, there is now strong evidence implicating the humoral immune response, specifically neutralising antibodies, in determining the clearance or chronicity outcomes of primary HCV infection. In general, immunoglobulin G (IgG) plays the major role in viral neutralisation. However, there are limited investigations of anti-HCV envelope protein 2 (E2) isotypes (IgM, IgG, IgA) and IgG subclasses (IgG1-4) in early HCV infection. In this study, using a rare cohort of 14 very recently HCV-infected individuals (4-45 days) with varying disease outcome (n = 7 clearers), the timing and potency of anti-HCV E2 isotypes and IgG subclasses were examined longitudinally, in relation to neutralising antibody activity. Clearance was associated with anti-E2 IgG, specifically IgG1 and IgG3, and appeared essential to prevent the emergence of new HCV variants and the chronic infection outcome. Interestingly, these IgG responses were accompanied by IgM antibodies and were associated with neutralising antibody activity in the subjects who cleared infection. These findings provide novel insights into the early humoral immune response characteristics associated with HCV disease outcome.
Collapse
|
30
|
Kusumoto M, Ueno-Noto K, Takano K. Systematic Interaction Analysis of Anti-Human Immunodeficiency Virus Type-1 Neutralizing Antibodies with High Mannose Glycans Using Fragment Molecular Orbital and Molecular Dynamics Methods. J Comput Chem 2020; 41:31-42. [PMID: 31565801 DOI: 10.1002/jcc.26073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/18/2019] [Accepted: 09/01/2019] [Indexed: 11/10/2022]
Abstract
A series of broadly neutralizing antibodies called PGT have been shown to be bound directly to human immunodeficiency virus type-1 via high mannose glycans on glycoprotein gp120. Despite the sequence similarities of amino acids of the antibodies, their affinities to the glycan differ. Glycan-antibody interactions among these antibodies are systematically compared with quantum chemical fragment molecular orbital calculations and molecular dynamics simulations. The differences among structural stability of the glycan in the active site of the complexes and total interaction energies as well as binding free energies between the glycan and antibodies agree well with the experimentally shown affinities of the glycan to the antibodies. The terminal saccharide, Man D3, is structurally stable and responsible for the glycan-antibody binding through electrostatic and dispersion interactions. The structural stability of nonterminal saccharides such as Man 4 or Man C plays substantial roles in the interaction via direct hydrogen bonds. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miyu Kusumoto
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Kaori Ueno-Noto
- Center for Natural Sciences, College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Keiko Takano
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| |
Collapse
|
31
|
Kreer C, Gruell H, Mora T, Walczak AM, Klein F. Exploiting B Cell Receptor Analyses to Inform on HIV-1 Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010013. [PMID: 31906351 PMCID: PMC7157687 DOI: 10.3390/vaccines8010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022] Open
Abstract
The human antibody repertoire is generated by the recombination of different gene segments as well as by processes of somatic mutation. Together these mechanisms result in a tremendous diversity of antibodies that are able to combat various pathogens including viruses and bacteria, or malignant cells. In this review, we summarize the opportunities and challenges that are associated with the analyses of the B cell receptor repertoire and the antigen-specific B cell response. We will discuss how recent advances have increased our understanding of the antibody response and how repertoire analyses can be exploited to inform on vaccine strategies, particularly against HIV-1.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Thierry Mora
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Aleksandra M. Walczak
- Laboratoire de Physique de l’École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; (T.M.); (A.M.W.)
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; (C.K.); (H.G.)
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
32
|
Dosenovic P, Pettersson AK, Wall A, Thientosapol ES, Feng J, Weidle C, Bhullar K, Kara EE, Hartweger H, Pai JA, Gray MD, Parks KR, Taylor JJ, Pancera M, Stamatatos L, Nussenzweig MC, McGuire AT. Anti-idiotypic antibodies elicit anti-HIV-1-specific B cell responses. J Exp Med 2019; 216:2316-2330. [PMID: 31345931 PMCID: PMC6780999 DOI: 10.1084/jem.20190446] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
Human anti-HIV-1 broadly neutralizing antibodies (bNAbs) protect against infection in animal models. However, bNAbs have not been elicited by vaccination in diverse wild-type animals or humans, in part because B cells expressing the precursors of these antibodies do not recognize most HIV-1 envelopes (Envs). Immunogens have been designed that activate these B cell precursors in vivo, but they also activate competing off-target responses. Here we report on a complementary approach to expand specific B cells using an anti-idiotypic antibody, iv8, that selects for naive human B cells expressing immunoglobulin light chains with 5-amino acid complementarity determining region 3s, a key feature of anti-CD4 binding site (CD4bs)-specific VRC01-class antibodies. In mice, iv8 induced target cells to expand and mature in the context of a polyclonal immune system and produced serologic responses targeting the CD4bs on Env. In summary, the results demonstrate that an anti-idiotypic antibody can specifically recognize and expand rare B cells that express VRC01-class antibodies against HIV-1.
Collapse
Affiliation(s)
- Pia Dosenovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | | | - Abigail Wall
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Eddy S Thientosapol
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Junli Feng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Connor Weidle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Komal Bhullar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Ervin E Kara
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Joy A Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Matthew D Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - K Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
- University of Washington University of Washington, Department of Immunology, Seattle, WA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
| |
Collapse
|
33
|
Sacks D, Bhiman JN, Wiehe K, Gorman J, Kwong PD, Morris L, Moore PL. Somatic hypermutation to counter a globally rare viral immunotype drove off-track antibodies in the CAP256-VRC26 HIV-1 V2-directed bNAb lineage. PLoS Pathog 2019; 15:e1008005. [PMID: 31479499 PMCID: PMC6743783 DOI: 10.1371/journal.ppat.1008005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/13/2019] [Accepted: 07/29/2019] [Indexed: 11/18/2022] Open
Abstract
Previously we have described the V2-directed CAP256-VRC26 lineage that includes broadly neutralizing antibodies (bNAbs) that neutralize globally diverse strains of HIV. We also identified highly mutated "off-track" lineage members that share high sequence identity to broad members but lack breadth. Here, we defined the mutations that limit the breadth of these antibodies and the probability of their emergence. Mutants and chimeras between two pairs of closely related antibodies were generated: CAP256.04 and CAP256.25 (30% and 63% breadth, respectively) and CAP256.20 and CAP256.27 (2% and 59% breadth). Antibodies were tested against 14 heterologous HIV-1 viruses and select mutants to assess breadth and epitope specificity. A single R100rA mutation in the third heavy chain complementarity-determining region (CDRH3) introduced breadth into CAP256.04, but all three CAP256.25 heavy chain CDRs were required for potency. In contrast, in the CAP256.20/27 chimeras, replacing only the CDRH3 of CAP256.20 with that of CAP256.27 completely recapitulated breadth and potency, likely through the introduction of three charge-reducing mutations. In this individual, the mutations that limited the breadth of the off-track antibodies were predicted to occur with a higher probability than those in the naturally paired bNAbs, suggesting a low barrier to the evolution of the off-track phenotype. Mapping studies to determine the viral immunotypes (or epitope variants) that selected off-track antibodies indicated that unlike broader lineage members, CAP256.20 preferentially neutralized viruses containing 169Q. This suggests that this globally rare immunotype, which was common in donor CAP256, drove the off-track phenotype. These data show that affinity maturation to counter globally rare viral immunotypes can drive antibodies within a broad lineage along multiple pathways towards strain-specificity. Defining developmental pathways towards and away from breadth may facilitate the selection of immunogens that elicit bNAbs and minimize off-track antibodies.
Collapse
Affiliation(s)
- David Sacks
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jinal N. Bhiman
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
34
|
King HAD, Gonelli CA, Tullett KM, Lahoud MH, Purcell DFJ, Drummer HE, Poumbourios P, Center RJ. Conjugation of an scFab domain to the oligomeric HIV envelope protein for use in immune targeting. PLoS One 2019; 14:e0220986. [PMID: 31430333 PMCID: PMC6701830 DOI: 10.1371/journal.pone.0220986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/28/2019] [Indexed: 11/19/2022] Open
Abstract
A promising strategy for the enhancement of vaccine-mediated immune responses is by directly targeting protein antigens to immune cells. Targeting of antigens to the dendritic cell (DC) molecule Clec9A has been shown to enhance antibody affinity and titers for model antigens, and influenza and enterovirus antigens, and may be advantageous for immunogens that otherwise fail to elicit antibodies with sufficient titers and breadth for broad protection, such as the envelope protein (Env) of HIV. Previously employed targeting strategies often utilize receptor-specific antibodies, however it is impractical to conjugate a bivalent IgG antibody to oligomeric antigens, including HIV Env trimers. Here we designed single chain variable fragment (scFv) and single chain Fab (scFab) constructs of a Clec9A-targeting antibody, expressed as genetically fused conjugates with the soluble ectodomain of Env, gp140. This conjugation did not affect the presentation of Env neutralising antibody epitopes. The scFab moiety was shown to be more stable than scFv, and in the context of gp140 fusions, was able to mediate better binding to recombinant and cell surface-expressed Clec9A, although the level of binding to cell-surface Clec9A was lower than that of the anti-Clec9A IgG. However, binding to Clec9A on the surface of DCs was not detected. Mouse immunization experiments suggested that the Clec9A-binding activity of the scFab-gp140 conjugate was insufficient to enhance Env-specific antibody responses. This is an important first proof of principle study demonstrating the conjugation of a scFab to an oligomeric protein antigen, and that an scFab displays better antigen binding than the corresponding scFv. Future developments of this technique that increase the scFab affinity will provide a valuable means to target oligomeric proteins to cell surface antigens of interest, improving vaccine-generated immune responses.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/immunology
- Antibody Affinity
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Epitopes/immunology
- Female
- HEK293 Cells
- HIV Antibodies/immunology
- HIV Infections/immunology
- HIV Infections/therapy
- HIV Infections/virology
- Humans
- Immunogenicity, Vaccine
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mice
- Proof of Concept Study
- Protein Domains/genetics
- Protein Domains/immunology
- Receptors, Mitogen/immunology
- Receptors, Mitogen/metabolism
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Single-Chain Antibodies/administration & dosage
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- env Gene Products, Human Immunodeficiency Virus/administration & dosage
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Hannah A. D. King
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A. Gonelli
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirsteen M. Tullett
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Mireille H. Lahoud
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Heidi E. Drummer
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Pantelis Poumbourios
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Rob J. Center
- Disease Elimination, Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
35
|
Immunogenicity of RNA Replicons Encoding HIV Env Immunogens Designed for Self-Assembly into Nanoparticles. Mol Ther 2019; 27:2080-2090. [PMID: 31515132 DOI: 10.1016/j.ymthe.2019.08.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 11/22/2022] Open
Abstract
RNA replicons are a promising platform technology for vaccines. To evaluate the potential of lipid nanoparticle-formulated replicons for delivery of HIV immunogens, we designed and tested an alphavirus replicon expressing a self-assembling protein nanoparticle immunogen, the glycoprotein 120 (gp120) germline-targeting engineered outer domain (eOD-GT8) 60-mer. The eOD-GT8 immunogen is a germline-targeting antigen designed to prime human B cells capable of evolving toward VRC01-class broadly neutralizing antibodies. Replicon RNA was encapsulated with high efficiency in 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-based lipid nanoparticles, which provided effective delivery in the muscle and expression of luciferase lasting ∼30 days in normal mice, contrasting with very brief and low levels of expression obtained by delivery of equivalent modified mRNA (modRNA). eOD-GT8 60-mer-encoding replicons elicited high titers of gp120-specific antibodies following a single injection in mice, and increased levels of antigen-specific germinal center B cells compared with protein immunization. Immunization of transgenic mice expressing human inferred-germline VRC01 heavy chain B cell receptors that are the targets of the eOD antigen led to priming of B cells and somatic hypermutation consistent with VRC01-class antibody development. Altogether, these data suggest replicon delivery of Env immunogens may be a promising avenue for HIV vaccine development.
Collapse
|
36
|
Yuan M, Cottrell CA, Ozorowski G, van Gils MJ, Kumar S, Wu NC, Sarkar A, Torres JL, de Val N, Copps J, Moore JP, Sanders RW, Ward AB, Wilson IA. Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host Microbe 2019; 25:873-883.e5. [PMID: 31194940 PMCID: PMC6579543 DOI: 10.1016/j.chom.2019.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/02/2019] [Accepted: 04/19/2019] [Indexed: 11/25/2022]
Abstract
The fusion peptide (FP) of HIV-1 envelope glycoprotein (Env) is essential for mediating viral entry. Detection of broadly neutralizing antibodies (bnAbs) that interact with the FP has revealed it as a site of vulnerability. We delineate X-ray and cryo-electron microscopy (cryo-EM) structures of bnAb ACS202, from an HIV-infected elite neutralizer, with an FP and with a soluble Env trimer (AMC011 SOSIP.v4.2) derived from the same patient. We show that ACS202 CDRH3 forms a "β strand" interaction with the exposed hydrophobic FP and recognizes a continuous region of gp120, including a conserved N-linked glycan at N88. A cryo-EM structure of another previously identified bnAb VRC34.01 with AMC011 SOSIP.v4.2 shows that it also penetrates through glycans to target the FP. We further demonstrate that the FP can twist and present different conformations for recognition by bnAbs, which enables approach to Env from diverse angles. The variable recognition of FP by bnAbs thus provides insights for vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anita Sarkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
37
|
Seabright GE, Doores KJ, Burton DR, Crispin M. Protein and Glycan Mimicry in HIV Vaccine Design. J Mol Biol 2019; 431:2223-2247. [PMID: 31028779 PMCID: PMC6556556 DOI: 10.1016/j.jmb.2019.04.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/30/2023]
Abstract
Antigenic mimicry is a fundamental tenet of structure-based vaccinology. Vaccine strategies for the human immunodeficiency virus type 1 (HIV-1) focus on the mimicry of its envelope spike (Env) due to its exposed location on the viral membrane and role in mediating infection. However, the virus has evolved to minimize the immunogenicity of conserved epitopes on the envelope spike. This principle is starkly illustrated by the presence of an extensive array of host-derived glycans, which act to shield the underlying protein from antibody recognition. Despite these hurdles, a subset of HIV-infected individuals eventually develop broadly neutralizing antibodies that recognize these virally presented glycans. Effective HIV-1 immunogens are therefore likely to involve some degree of mimicry of both the protein and glycan components of Env. As such, considerable efforts have been made to characterize the structure of the envelope spike and its glycan shield. This review summarizes the recent progress made in this field, with an emphasis on our growing understanding of the factors shaping the glycan shield of Env derived from both virus and soluble immunogens. We argue that recombinant mimics of the envelope spike are currently capable of capturing many features of the native viral glycan shield. Finally, we explore strategies through which the immunogenicity of Env glycans may be enhanced in the development of future immunogens.
Collapse
Affiliation(s)
- Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Katie J Doores
- Department of Infectious Diseases, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, the Scripps Centre for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), International AIDS Vaccine Initiative Neutralizing Antibody Centre, Scripps Research, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK; Department of Immunology and Microbiology, the Scripps Centre for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), International AIDS Vaccine Initiative Neutralizing Antibody Centre, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature 2019; 570:468-473. [PMID: 31142836 PMCID: PMC6657810 DOI: 10.1038/s41586-019-1250-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/01/2019] [Indexed: 12/16/2022]
Abstract
Broadly neutralizing monoclonal antibodies protect against HIV-1
infection in animal models, suggesting that a vaccine that elicits them in
humans would be effective. However, it has not yet been possible to elicit
adequate serologic responses by vaccination. To activate B-cells expressing
precursors of broadly neutralizing antibodies within polyclonal repertoires, we
developed a new immunogen, RC1, which facilitates recognition of the V3-glycan
patch on HIV-1 envelope while concealing non-conserved immunodominant regions by
addition of glycans and/or multimerization on virus-like particles. Mouse,
rabbit and rhesus macaque immunizations with RC1 elicited serologic responses
targeting the V3-glycan patch. Antibody cloning and cryo-electron microscopy
structures of antibody-envelope complexes confirmed that RC1 immunization
expands clones of B-cells carrying anti-V3-glycan patch antibodies that resemble
precursors of human broadly neutralizing antibodies. Thus, RC1 may be a suitable
priming immunogen for sequential vaccination strategies to elicit V3-glycan
antibodies in the context of polyclonal repertoires.
Collapse
|
39
|
Qiu X, Duvvuri VR, Bahl J. Computational Approaches and Challenges to Developing Universal Influenza Vaccines. Vaccines (Basel) 2019; 7:E45. [PMID: 31141933 PMCID: PMC6631137 DOI: 10.3390/vaccines7020045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
The traditional design of effective vaccines for rapidly-evolving pathogens, such as influenza A virus, has failed to provide broad spectrum and long-lasting protection. With low cost whole genome sequencing technology and powerful computing capabilities, novel computational approaches have demonstrated the potential to facilitate the design of a universal influenza vaccine. However, few studies have integrated computational optimization in the design and discovery of new vaccines. Understanding the potential of computational vaccine design is necessary before these approaches can be implemented on a broad scale. This review summarizes some promising computational approaches under current development, including computationally optimized broadly reactive antigens with consensus sequences, phylogenetic model-based ancestral sequence reconstruction, and immunomics to compute conserved cross-reactive T-cell epitopes. Interactions between virus-host-environment determine the evolvability of the influenza population. We propose that with the development of novel technologies that allow the integration of data sources such as protein structural modeling, host antibody repertoire analysis and advanced phylodynamic modeling, computational approaches will be crucial for the development of a long-lasting universal influenza vaccine. Taken together, computational approaches are powerful and promising tools for the development of a universal influenza vaccine with durable and broad protection.
Collapse
Affiliation(s)
- Xueting Qiu
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Venkata R Duvvuri
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA 30606, USA.
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| |
Collapse
|
40
|
Simonich CA, Doepker L, Ralph D, Williams JA, Dhar A, Yaffe Z, Gentles L, Small CT, Oliver B, Vigdorovich V, Mangala Prasad V, Nduati R, Sather DN, Lee KK, Matsen Iv FA, Overbaugh J. Kappa chain maturation helps drive rapid development of an infant HIV-1 broadly neutralizing antibody lineage. Nat Commun 2019; 10:2190. [PMID: 31097697 PMCID: PMC6522554 DOI: 10.1038/s41467-019-09481-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
HIV-infected infants develop broadly neutralizing plasma responses with more rapid kinetics than adults, suggesting the ontogeny of infant responses could better inform a path to achievable vaccine targets. Here we reconstruct the developmental lineage of BF520.1, an infant-derived HIV-specific broadly neutralizing antibody (bnAb), using computational methods developed specifically for this purpose. We find that the BF520.1 inferred naive precursor binds HIV Env. We also show that heterologous cross-clade neutralizing activity evolved in the infant within six months of infection and that, ultimately, only 2% SHM is needed to achieve the full breadth of the mature antibody. Mutagenesis and structural analyses reveal that, for this infant bnAb, substitutions in the kappa chain were critical for activity, particularly in CDRL1. Overall, the developmental pathway of this infant antibody includes features distinct from adult antibodies, including several that may be amenable to better vaccine responses.
Collapse
Affiliation(s)
- Cassandra A Simonich
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Laura Doepker
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - James A Williams
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Amrit Dhar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Statistics, University of Washington, Seattle, WA, 98195, USA
| | - Zak Yaffe
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Lauren Gentles
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Christopher T Small
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Brian Oliver
- Center for Infectious Disease Research, Seattle, WA, 98109, USA
| | | | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Ruth Nduati
- Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - D Noah Sather
- Center for Infectious Disease Research, Seattle, WA, 98109, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Frederick A Matsen Iv
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
41
|
Pardi N, LaBranche CC, Ferrari G, Cain DW, Tombácz I, Parks RJ, Muramatsu H, Mui BL, Tam YK, Karikó K, Polacino P, Barbosa CJ, Madden TD, Hope MJ, Haynes BF, Montefiori DC, Hu SL, Weissman D. Characterization of HIV-1 Nucleoside-Modified mRNA Vaccines in Rabbits and Rhesus Macaques. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 15:36-47. [PMID: 30974332 PMCID: PMC6454128 DOI: 10.1016/j.omtn.2019.03.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/10/2023]
Abstract
Despite the enormous effort in the development of effective vaccines against HIV-1, no vaccine candidate has elicited broadly neutralizing antibodies in humans. Thus, generation of more effective anti-HIV vaccines is critically needed. Here we characterize the immune responses induced by nucleoside-modified and purified mRNA-lipid nanoparticle (mRNA-LNP) vaccines encoding the clade C transmitted/founder HIV-1 envelope (Env) 1086C. Intradermal vaccination with nucleoside-modified 1086C Env mRNA-LNPs elicited high levels of gp120-specific antibodies in rabbits and rhesus macaques. Antibodies generated in rabbits neutralized a tier 1 virus, but no tier 2 neutralization activity could be measured. Importantly, three of six non-human primates developed antibodies that neutralized the autologous tier 2 strain. Despite stable anti-gp120 immunoglobulin G (IgG) levels, tier 2 neutralization titers started to drop 4 weeks after booster immunizations. Serum from both immunized rabbits and non-human primates demonstrated antibody-dependent cellular cytotoxicity activity. Collectively, these results are supportive of continued development of nucleoside-modified and purified mRNA-LNP vaccines for HIV. Optimization of Env immunogens and vaccination protocols are needed to increase antibody neutralization breadth and durability.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Katalin Karikó
- BioNTech RNA Pharmaceuticals, An der Goldgrube 12, 55131 Mainz, Germany
| | - Patricia Polacino
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shiu-Lok Hu
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Hsiao YC, Shang Y, DiCara DM, Yee A, Lai J, Kim SH, Ellerman D, Corpuz R, Chen Y, Rajan S, Cai H, Wu Y, Seshasayee D, Hötzel I. Immune repertoire mining for rapid affinity optimization of mouse monoclonal antibodies. MAbs 2019; 11:735-746. [PMID: 30900945 DOI: 10.1080/19420862.2019.1584517] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Traditional hybridoma and B cell cloning antibody discovery platforms have inherent limits in immune repertoire sampling depth. One consequence is that monoclonal antibody (mAb) leads often lack the necessary affinity for therapeutic applications, thus requiring labor-intensive and time-consuming affinity in vitro engineering optimization steps. Here, we show that high-affinity variants of mouse-derived mAbs can be rapidly obtained by testing of somatic sequence variants obtained by deep sequencing of antibody variable regions in immune repertories from immunized mice, even with a relatively sparse sampling of sequence variants from large sequence datasets. Affinity improvements can be achieved for mAbs with a wide range of affinities. The optimized antibody variants derived from immune repertoire mining have no detectable in vitro off-target binding and have in vivo clearance comparable to the parental mAbs, essential properties in therapeutic antibody leads. As generation of antibody variants in vitro is replaced by mining of variants generated in vivo, the procedure can be applied to rapidly identify affinity-optimized mAb variants.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Yonglei Shang
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Danielle M DiCara
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Angie Yee
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Joyce Lai
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Si Hyun Kim
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Diego Ellerman
- b Department of Structural Biology and Protein Chemistry , Genentech , South San Francisco , CA , USA
| | - Racquel Corpuz
- b Department of Structural Biology and Protein Chemistry , Genentech , South San Francisco , CA , USA
| | - Yongmei Chen
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Sharmila Rajan
- c Department of Preclinical and Translational Pharmacokinetics , Genentech , South San Francisco , CA , USA
| | - Hao Cai
- c Department of Preclinical and Translational Pharmacokinetics , Genentech , South San Francisco , CA , USA
| | - Yan Wu
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Dhaya Seshasayee
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| | - Isidro Hötzel
- a Department of Antibody Engineering , Genentech , South San Francisco , CA , USA
| |
Collapse
|
43
|
DeWitt WS, Mesin L, Victora GD, Minin VN, Matsen FA. Using Genotype Abundance to Improve Phylogenetic Inference. Mol Biol Evol 2019; 35:1253-1265. [PMID: 29474671 PMCID: PMC5913685 DOI: 10.1093/molbev/msy020] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modern biological techniques enable very dense genetic sampling of unfolding evolutionary histories, and thus frequently sample some genotypes multiple times. This motivates strategies to incorporate genotype abundance information in phylogenetic inference. In this article, we synthesize a stochastic process model with standard sequence-based phylogenetic optimality, and show that tree estimation is substantially improved by doing so. Our method is validated with extensive simulations and an experimental single-cell lineage tracing study of germinal center B cell receptor affinity maturation.
Collapse
Affiliation(s)
- William S DeWitt
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA.,Department of Genome Sciences, University of Washington, Seattle, WA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY
| | | | - Frederick A Matsen
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
44
|
Heger E, Schuetz A, Vasan S. HIV Vaccine Efficacy Trials: RV144 and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:3-30. [PMID: 30030787 DOI: 10.1007/978-981-13-0484-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Despite progress in antiretroviral therapy, pre-exposure prophylaxis, microbicides, and other preventive strategies, a vaccine to prevent HIV-1 infection remains desperately needed. Development of an effective vaccine is challenged by several immunologic features of HIV-1 evidenced by the failure of five of the six HIV-1 candidate vaccine efficacy trials to date. This chapter reviews these efficacy trials with a focus on the Phase 3 RV144 trial in Thailand, the only HIV-1 vaccine efficacy trial to show a moderate protective effect of 31% with respect to placebo administration. Although modest, this protection has allowed for the study of potential immunologic correlates of protection to improve development of future HIV-1 pox-protein and other vaccine strategies. Trials in Thailand and South Africa have built upon the RV144 framework to provide additional immunologic insights which enable current and future efficacy testing of related vaccine candidates.
Collapse
Affiliation(s)
- Elizabeth Heger
- US Army Medical Materiel Development Activity, Fort Detrick, MD, USA
| | - Alexandra Schuetz
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Sandhya Vasan
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Henry M. Jackson Foundation, Bethesda, MD, USA.
| |
Collapse
|
45
|
Gidoni M, Snir O, Peres A, Polak P, Lindeman I, Mikocziova I, Sarna VK, Lundin KEA, Clouser C, Vigneault F, Collins AM, Sollid LM, Yaari G. Mosaic deletion patterns of the human antibody heavy chain gene locus shown by Bayesian haplotyping. Nat Commun 2019; 10:628. [PMID: 30733445 PMCID: PMC6367474 DOI: 10.1038/s41467-019-08489-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Analysis of antibody repertoires by high-throughput sequencing is of major importance in understanding adaptive immune responses. Our knowledge of variations in the genomic loci encoding immunoglobulin genes is incomplete, resulting in conflicting VDJ gene assignments and biased genotype and haplotype inference. Haplotypes can be inferred using IGHJ6 heterozygosity, observed in one third of the people. Here, we propose a robust novel method for determining VDJ haplotypes by adapting a Bayesian framework. Our method extends haplotype inference to IGHD- and IGHV-based analysis, enabling inference of deletions and copy number variations in the entire population. To test this method, we generated a multi-individual data set of naive B-cell repertoires, and found allele usage bias, as well as a mosaic, tiled pattern of deleted IGHD and IGHV genes. The inferred haplotypes may have clinical implications for genetic disease predispositions. Our findings expand the knowledge that can be extracted from antibody repertoire sequencing data.
Collapse
Affiliation(s)
- Moriah Gidoni
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Omri Snir
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Pazit Polak
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Ida Lindeman
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Ivana Mikocziova
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Vikas Kumar Sarna
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Knut E A Lundin
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | | | | | - Andrew M Collins
- School of Biotechnology and Biomolecular Sciences, University of NSW, Kensington, Sydney, NSW, 2052, Australia
| | - Ludvig M Sollid
- KG Jebsen Centre for Coeliac Disease Research and Department of Immunology, University of Oslo and Oslo University Hospital, 0372, Oslo, Norway
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, 5290002, Ramat Gan, Israel.
| |
Collapse
|
46
|
An HIV-1 Broadly Neutralizing Antibody from a Clade C-Infected Pediatric Elite Neutralizer Potently Neutralizes the Contemporaneous and Autologous Evolving Viruses. J Virol 2019; 93:JVI.01495-18. [PMID: 30429339 DOI: 10.1128/jvi.01495-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) have demonstrated protective effects against HIV-1 in primate studies and recent human clinical trials. Elite neutralizers are potential candidates for isolation of HIV-1 bNAbs. The coexistence of bNAbs such as BG18 with neutralization-susceptible autologous viruses in an HIV-1-infected adult elite controller has been suggested to control viremia. Disease progression is faster in HIV-1-infected children than in adults. Plasma bNAbs with multiple epitope specificities are developed in HIV-1 chronically infected children with more potency and breadth than in adults. Therefore, we evaluated the specificity of plasma neutralizing antibodies of an antiretroviral-naive HIV-1 clade C chronically infected pediatric elite neutralizer, AIIMS_330. The plasma antibodies showed broad and potent HIV-1 neutralizing activity with >87% (29/33) breadth, a median inhibitory dilution (ID50) value of 1,246, and presence of N160 and N332 supersite-dependent HIV-1 bNAbs. The sorting of BG505.SOSIP.664.C2 T332N gp140 HIV-1 antigen-specific single B cells of AIIMS_330 resulted in the isolation of an HIV-1 N332 supersite-dependent bNAb, AIIMS-P01. The AIIMS-P01 neutralized 67% of HIV-1 cross-clade viruses, exhibited substantial indels despite limited somatic hypermutations, interacted with native-like HIV-1 trimer as observed in negative stain electron microscopy, and demonstrated high binding affinity. In addition, AIIMS-P01 neutralized the coexisting and evolving autologous viruses, suggesting the coexistence of vulnerable autologous viruses and HIV-1 bNAbs in the AIIMS_330 pediatric elite neutralizer. Such pediatric elite neutralizers can serve as potential candidates for isolation of novel HIV-1 pediatric bNAbs and for understanding the coevolution of virus and host immune response.IMPORTANCE More than 50% of the HIV-1 infections globally are caused by clade C viruses. To date, there is no effective vaccine to prevent HIV-1 infection. Based on the structural information of the currently available HIV-1 bNAbs, attempts are under way to design immunogens that can elicit correlates of protection upon vaccination. Here, we report the isolation and characterization of an HIV-1 N332 supersite-dependent bNAb, AIIMS-P01, from a clade C chronically infected pediatric elite neutralizer. The N332 supersite is an important epitope and is one of the current HIV-1 vaccine targets. AIIMS-P01 potently neutralized the contemporaneous and autologous evolving viruses and exhibited substantial indels despite low somatic hypermutations. Taken together with the information on infant bNAbs, further isolation and characterization of bNAbs contributing to the plasma breadth in HIV-1 chronically infected children may help provide a better understanding of their role in controlling HIV-1 infection.
Collapse
|
47
|
Gawron MA, Duval M, Carbone C, Jaiswal S, Wallace A, Martin JC, Dauphin A, Brehm MA, Greiner DL, Shultz LD, Luban J, Cavacini LA. Human Anti-HIV-1 gp120 Monoclonal Antibodies with Neutralizing Activity Cloned from Humanized Mice Infected with HIV-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:799-804. [PMID: 30593536 PMCID: PMC6344273 DOI: 10.4049/jimmunol.1801085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
Broadly neutralizing, anti-HIV-1 gp120 mAbs have been isolated from infected individuals, and there is considerable interest in developing these reagents for Ab-based immunoprophylaxis and treatment. As a means to identify potentially new anti-HIV Abs, we exploited humanized NOD-scid IL2rγnull mice systemically infected with HIV-1 to generate a wide variety of Ag-specific human mAbs. The Abs were encoded by a diverse range of variable gene families and Ig classes, including IgA, and several showed significant levels of somatic mutation. Moreover, the isolated Abs not only bound target Ags with similar affinity as broadly neutralizing Abs, they also demonstrated neutralizing ability against multiple HIV-1 clades. The use of humanized mice will allow us to use our knowledge of HIV-1 gp120 structure and function, and the immune response targeting this protein, to generate native human prophylactic Abs to reduce the infection and spread of HIV-1.
Collapse
Affiliation(s)
- Melissa A Gawron
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126
| | - Mark Duval
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126
| | - Claudia Carbone
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Smita Jaiswal
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Aaron Wallace
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126
| | - Joseph C Martin
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126
| | - Ann Dauphin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | | | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Lisa A Cavacini
- MassBiologics of the University of Massachusetts Medical School, Boston, MA 02126;
| |
Collapse
|
48
|
Eliyahu S, Sharabi O, Elmedvi S, Timor R, Davidovich A, Vigneault F, Clouser C, Hope R, Nimer A, Braun M, Weiss YY, Polak P, Yaari G, Gal-Tanamy M. Antibody Repertoire Analysis of Hepatitis C Virus Infections Identifies Immune Signatures Associated With Spontaneous Clearance. Front Immunol 2018; 9:3004. [PMID: 30622532 PMCID: PMC6308210 DOI: 10.3389/fimmu.2018.03004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a major public health concern, with over 70 million people infected worldwide, who are at risk for developing life-threatening liver disease. No vaccine is available, and immunity against the virus is not well-understood. Following the acute stage, HCV usually causes chronic infections. However, ~30% of infected individuals spontaneously clear the virus. Therefore, using HCV as a model for comparing immune responses between spontaneous clearer (SC) and chronically infected (CI) individuals may empower the identification of mechanisms governing viral infection outcomes. Here, we provide the first in-depth analysis of adaptive immune receptor repertoires in individuals with current or past HCV infection. We demonstrate that SC individuals, in contrast to CI patients, develop clusters of antibodies with distinct properties. These antibodies' characteristics were used in a machine learning framework to accurately predict infection outcome. Using combinatorial antibody phage display library technology, we identified HCV-specific antibody sequences. By integrating these data with the repertoire analysis, we constructed two antibodies characterized by high neutralization breadth, which are associated with clearance. This study provides insight into the nature of effective immune response against HCV and demonstrates an innovative approach for constructing antibodies correlating with successful infection clearance. It may have clinical implications for prognosis of the future status of infection, and the design of effective immunotherapies and a vaccine for HCV.
Collapse
Affiliation(s)
- Sivan Eliyahu
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Oz Sharabi
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Shiri Elmedvi
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Reut Timor
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Ateret Davidovich
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | | | - Ronen Hope
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Assy Nimer
- Internal Medicine Department A, Western Galilee Medical Center, Naharyia and Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Marius Braun
- Liver Institute, Rabin Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Yaacov Y Weiss
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Pazit Polak
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Gur Yaari
- Bioengineering, Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Meital Gal-Tanamy
- Molecular Virology Lab, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
49
|
Chukwuma VU, Kose N, Sather DN, Sapparapu G, Falk R, King H, Singh V, Lampley R, Malherbe DC, Ditto NT, Sullivan JT, Barnes T, Doranz BJ, Labranche CC, Montefiori DC, Kalams SA, Haigwood NL, Crowe JE. Increased breadth of HIV-1 neutralization achieved by diverse antibody clones each with limited neutralization breadth. PLoS One 2018; 13:e0209437. [PMID: 30566528 PMCID: PMC6300260 DOI: 10.1371/journal.pone.0209437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) are rarely elicited by current human immunodeficiency virus type 1 (HIV-1) vaccine designs, but the presence of bNAbs in naturally infected individuals may be associated with high plasma viral loads, suggesting that the magnitude, duration, and diversity of viral exposure may contribute to the development of bNAbs. Here, we report the isolation and characterization of a panel of human monoclonal antibodies (mAbs) from two subjects who developed broadly neutralizing autologous antibody responses during HIV-1 infection. In both subjects, we identified collections of mAbs that exhibited specificity only to a few autologous envelopes (Envs), with some mAbs exhibiting specificity only to a subset of Envs within the quasispecies of a particular sample at one time point. Neutralizing antibodies (NAbs) isolated from these subjects mapped mostly to epitopes in the Env V3 loop region and the CD4 binding site. None of the individual neutralizing mAbs recovered exhibited the cumulative breadth of neutralization present in the serum of the subjects. Surprisingly, however, the activity of polyclonal mixtures comprising individual mAbs that each possessed limited neutralizing activity, could achieve increased breadth of neutralizing activity against autologous isolates. While a single broadly neutralizing antibody targeting one epitope can mediate neutralization breadth, the findings presented here suggest that a cooperative polyclonal process mediated by diverse antibodies with more limited breadth targeting multiple epitopes also can achieve neutralization breadth against HIV-1.
Collapse
Affiliation(s)
- Valentine U. Chukwuma
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - D. Noah Sather
- Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - Gopal Sapparapu
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rachel Falk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Hannah King
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Vidisha Singh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Rebecca Lampley
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Delphine C. Malherbe
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Noah T. Ditto
- Carterra Inc., Salt Lake City, Utah, United States of America
| | | | - Trevor Barnes
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Benjamin J. Doranz
- Integral Molecular, Inc., Philadelphia, Pennsylvania, United States of America
| | - Celia C. Labranche
- Division of Surgical Sciences, Duke University, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Division of Surgical Sciences, Duke University, Durham, North Carolina, United States of America
| | - Spyros A. Kalams
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - James E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
50
|
Sequencing HIV-neutralizing antibody exons and introns reveals detailed aspects of lineage maturation. Nat Commun 2018; 9:4136. [PMID: 30297708 PMCID: PMC6175870 DOI: 10.1038/s41467-018-06424-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/02/2018] [Indexed: 01/07/2023] Open
Abstract
The developmental pathways of broadly neutralizing antibodies (bNAbs) against HIV are of great importance for the design of immunogens that can elicit protective responses. Here we show the maturation features of the HIV-neutralizing anti-V1V2 VRC26 lineage by simultaneously sequencing the exon together with the downstream intron of VRC26 members. Using the mutational landscapes of both segments and the selection-free nature of the intron region, we identify multiple events of amino acid mutational convergence in the complementarity-determining region 3 (CDR3) of VRC26 members, and determine potential intermediates with diverse CDR3s to a late stage bNAb from 2 years prior to its isolation. Moreover, we functionally characterize the earliest neutralizing intermediates with critical CDR3 mutations, with some emerging only 14 weeks after initial lineage detection and containing only ~6% V gene mutations. Our results thus underscore the utility of analyzing exons and introns simultaneously for studying antibody maturation and repertoire selection. Knowledge on how antibody responses have evolved is critical for the induction of protective immunity. Here the authors analyse, using high-throughput sequencing of both exon and intron regions, the mutation and lineage development of an HIV-neutralizing antibody to find an unexpected early emergence of broadly neutralizing species.
Collapse
|