1
|
Happe M, Lynch RM, Fichtenbaum CJ, Heath SL, Koletar SL, Landovitz RJ, Presti RM, Santana-Bagur JL, Tressler RL, Holman LA, Novik L, Roa JC, Rothwell RS, Strom L, Wang J, Hu Z, Conan-Cibotti M, Bhatnagar AM, Dwyer B, Ko SH, Belinky F, Namboodiri AM, Pandey JP, Carroll R, Basappa M, Serebryannyy L, Narpala SR, Lin BC, McDermott AB, Boritz EA, Capparelli EV, Coates EE, Koup RA, Ledgerwood JE, Mascola JR, Chen GL, Tebas P, the VRC 607/A5378 Study Team. Virologic effects of broadly neutralizing antibodies VRC01LS and VRC07-523LS on chronic HIV-1 infection. JCI Insight 2025; 10:e181496. [PMID: 39989458 PMCID: PMC11949028 DOI: 10.1172/jci.insight.181496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUNDHIV-1-specific broadly neutralizing monoclonal antibodies (bNAbs) have emerged as promising interventions with the potential to effectively treat and prevent HIV-1 infections. We conducted a phase I clinical trial evaluating the potent CD4-binding site-specific (CD4bs-specific) bNAbs VRC01LS and VRC07-523LS in people with HIV-1 (PWH) not receiving antiretroviral therapy (ART).METHODSParticipants received a single intravenous 40 mg/kg dose of either VRC01LS (n = 7) or VRC07-523LS (n = 9) and did not initiate ART for a minimum of 14 days. The primary study objective was to evaluate safety and tolerability; the secondary study objectives were to evaluate pharmacokinetics (PK) and the impact of administered bNAbs on viral loads (VL) and CD4+ T cell counts in the absence of ART.RESULTSThis trial enrolled 16 PWH aged 20 to 57 years. Both bNAbs were safe and well tolerated. Mild local reactogenicity was only reported in participants who received VRC07-523LS, while both bNAbs were associated with mild systemic symptoms. Maximum serum concentrations (Cmax) following VRC01LS or VRC07-523LS were 1,566 ± 316 and 1,295 ± 376 μg/mL, respectively. VRC07-523LS administration significantly decreased VL in 8 out of 9 participants, with an average decline of 1.7 ± 0.8 log10 copies/mL within 14 days after administration. In contrast, VRC01LS administration resulted in a smaller average decline (0.8 ± 0.8 log10 copies/mL), and 3 out of 7 participants showedno change in VL. Postinfusion maximum decline in VL correlated with post hoc baseline in vitro viral susceptibility results for both bNAbs.CONCLUSIONThe results of this trial support inclusion of potent CD4bs-specific bNAbs, such as VRC07-523LS, into next-generation treatment regimens for HIV-1.TRIAL REGISTRATIONClinicalTrials.gov NCT02840474.FUNDINGNational Institute of Allergy and Infectious Diseases (NIAID)/NIH (grants UM1 AI068634, UM1 AI068636, UM1 AI106701, UM1AI069424, UM1AI069501, UM1AI69415, UM1AI069534, UM1AI69494); the Intramural Research Program of the NIAID/NIH; National Center for Advancing Translational Sciences/NIH (grants UM1TR004548, UL1TR001881, and UL1TR001878); and the National Cancer Institute/NIH (contract 75N91019D00024).
Collapse
Affiliation(s)
- Myra Happe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | | | - Sonya L. Heath
- Division of Infectious Diseases, University of Alabama, Birmingham, Alabama, USA
| | - Susan L. Koletar
- Division of Infectious Diseases, The Ohio State University, Columbus, Ohio, USA
| | - Raphael J. Landovitz
- Division of Infectious Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Rachel M. Presti
- Division of Infectious Diseases, Washington University, St. Louis, Missouri, USA
| | | | - Randall L. Tressler
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - LaSonji A. Holman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jhoanna C. Roa
- AIDS Network Coordinating Center, DLH Corporation, Bethesda, Maryland, USA
| | - Ro Shauna Rothwell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Larisa Strom
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jing Wang
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Zonghui Hu
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Michelle Conan-Cibotti
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Anjali M. Bhatnagar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Bridget Dwyer
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Aryan M. Namboodiri
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Janardan P. Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Manjula Basappa
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sandeep R. Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Edmund V. Capparelli
- School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Emily E. Coates
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Julie E. Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Grace L. Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Pablo Tebas
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
2
|
Kanekiyo M, Gillespie RA, Cooper K, Canedo VG, Castanha PMS, Pegu A, Yang ES, Treaster L, Yun G, Wallace M, Kettenburg G, Williams C, Lundy J, Barrick S, O'Malley K, Midgett M, Martí MM, Chavva H, Corry J, Treat BR, Lipinski A, Batsche LO, Creanga A, Ritter I, Walker R, Olsen E, Laughlin A, Perez DR, Mascola JR, Boritz EA, Loo YM, Blair W, Esser M, Graham BS, Reed DS, Barratt-Boyes SM. Pre-exposure antibody prophylaxis protects macaques from severe influenza. Science 2025; 387:534-541. [PMID: 39883776 DOI: 10.1126/science.ado6481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
Influenza virus pandemics and seasonal epidemics have claimed countless lives. Recurrent zoonotic spillovers of influenza viruses with pandemic potential underscore the need for effective countermeasures. In this study, we show that pre-exposure prophylaxis with broadly neutralizing antibody (bnAb) MEDI8852 is highly effective in protecting cynomolgus macaques from severe disease caused by aerosolized highly pathogenic avian influenza H5N1 virus infection. Protection was antibody dose-dependent yet independent of Fc-mediated effector functions at the dose tested. Macaques receiving MEDI8852 at 10 milligrams per kilogram or higher had negligible impairment of respiratory function after infection, whereas control animals were not protected from severe disease and fatality. Given the breadth of MEDI8852 and other bnAbs, we anticipate that protection from unforeseen pandemic influenza A viruses is achievable.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Broadly Neutralizing Antibodies
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Lung/virology
- Macaca fascicularis
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- Pre-Exposure Prophylaxis
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
Collapse
Affiliation(s)
- Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristine Cooper
- Biostatistics Facility, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Priscila M S Castanha
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luke Treaster
- Department of Diagnostic Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Gabin Yun
- Department of Diagnostic Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Megan Wallace
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gwenddolen Kettenburg
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Connor Williams
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeneveve Lundy
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacey Barrick
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine O'Malley
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan Midgett
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michelle M Martí
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hasitha Chavva
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacqueline Corry
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin R Treat
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abby Lipinski
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Isabella Ritter
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | - Reagan Walker
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Olsen
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Laughlin
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel R Perez
- Department of Population Health, University of Georgia, Athens, GA, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yueh-Ming Loo
- Vaccine and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Wade Blair
- Vaccine and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Mark Esser
- Vaccine and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Douglas S Reed
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon M Barratt-Boyes
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Misasi J, Wei RR, Wang L, Pegu A, Wei CJ, Oloniniyi OK, Zhou T, Moliva JI, Zhao B, Choe M, Yang ES, Zhang Y, Boruszczak M, Chen M, Leung K, Li J, Yang ZY, Andersen H, Carlton K, Godbole S, Harris DR, Henry AR, Ivleva VB, Lei QP, Liu C, Longobardi L, Merriam JS, Nase D, Olia AS, Pessaint L, Porto M, Shi W, Wallace SM, Wolff JJ, Douek DC, Suthar MS, Gall JG, Koup RA, Kwong PD, Mascola JR, Nabel GJ, Sullivan NJ. A multispecific antibody against SARS-CoV-2 prevents immune escape in vitro and confers prophylactic protection in vivo. Sci Transl Med 2024; 16:eado9026. [PMID: 39383243 DOI: 10.1126/scitranslmed.ado9026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Despite effective countermeasures, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) persists worldwide because of its ability to diversify and evade human immunity. This evasion stems from amino acid substitutions, particularly in the receptor binding domain (RBD) of the spike protein that confers resistance to vaccine-induced antibodies and antibody therapeutics. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different RBD sites into multispecific antibodies. Here, we describe multispecific antibodies, including a trivalent trispecific antibody that potently neutralized diverse SARS-CoV-2 variants and prevented virus escape more effectively than single antibodies or mixtures of the parental antibodies. Despite being generated before the appearance of Omicron, this trispecific antibody neutralized all major Omicron variants through BA.4/BA.5 at nanomolar concentrations. Negative stain electron microscopy suggested that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated binding across more than one spike protein. Moreover, a tetravalent trispecific antibody containing the same variable regions as the trivalent trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2, and BA.5 challenge, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. These results demonstrated that multispecific antibodies have the potential to provide broad SARS-CoV-2 coverage, decrease the likelihood of escape, simplify treatment, and provide a strategy for antibody therapies that could help eliminate pandemic spread for this and other pathogens.
Collapse
Affiliation(s)
- John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronnie R Wei
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chih-Jen Wei
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Olamide K Oloniniyi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marika Boruszczak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan Li
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Zhi-Yong Yang
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | | | - Kevin Carlton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vera B Ivleva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Q Paula Lei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lindsay Longobardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Jeremy J Wolff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason G Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gary J Nabel
- ModeX Therapeutics Inc., an OPKO Health Company, Weston, MA 02493, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Dias J, Fabozzi G, Fourati S, Chen X, Liu C, Ambrozak DR, Ransier A, Laboune F, Hu J, Shi W, March K, Maximova AA, Schmidt SD, Samsel J, Talana CA, Ernste K, Ko SH, Lucas ME, Radecki PE, Boswell KL, Nishimura Y, Todd JP, Martin MA, Petrovas C, Boritz EA, Doria-Rose NA, Douek DC, Sékaly RP, Lifson JD, Asokan M, Gama L, Mascola JR, Pegu A, Koup RA. Administration of anti-HIV-1 broadly neutralizing monoclonal antibodies with increased affinity to Fcγ receptors during acute SHIV AD8-EO infection. Nat Commun 2024; 15:7461. [PMID: 39198422 PMCID: PMC11358508 DOI: 10.1038/s41467-024-51848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Anti-HIV-1 broadly neutralizing antibodies (bNAbs) have the dual potential of mediating virus neutralization and antiviral effector functions through their Fab and Fc domains, respectively. So far, bNAbs with enhanced Fc effector functions in vitro have only been tested in NHPs during chronic simian-HIV (SHIV) infection. Here, we investigate the effects of administering in acute SHIVAD8-EO infection either wild-type (WT) bNAbs or bNAbs carrying the S239D/I332E/A330L (DEL) mutation, which increases binding to FcγRs. Emergence of virus in plasma and lymph nodes (LNs) was delayed by bNAb treatment and occurred earlier in monkeys given DEL bNAbs than in those given WT bNAbs, consistent with faster clearance of DEL bNAbs from plasma. DEL bNAb-treated monkeys had higher levels of circulating virus-specific IFNγ single-producing CD8+ CD69+ T cells than the other groups. In LNs, WT bNAbs were evenly distributed between follicular and extrafollicular areas, but DEL bNAbs predominated in the latter. At week 8 post-challenge, LN monocytes and NK cells from DEL bNAb-treated monkeys upregulated proinflammatory signaling pathways and LN T cells downregulated TNF signaling via NF-κB. Overall, bNAbs with increased affinity to FcγRs shape innate and adaptive cellular immunity, which may be important to consider in future strategies of passive bNAb therapy.
Collapse
Affiliation(s)
- Joana Dias
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Giulia Fabozzi
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Slim Fourati
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Xuejun Chen
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cuiping Liu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David R Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jianfei Hu
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wei Shi
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kylie March
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna A Maximova
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephen D Schmidt
- Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jakob Samsel
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Institute for Biomedical Sciences, George Washington University, Washington, D.C., USA
| | - Chloe A Talana
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keenan Ernste
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sung Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margaret E Lucas
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierce E Radecki
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kristin L Boswell
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John-Paul Todd
- Translational Research Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Humoral Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rafick-Pierre Sékaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mangaiarkarasi Asokan
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lucio Gama
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Amarendra Pegu
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid intra-host diversification and evolution of SARS-CoV-2 in advanced HIV infection. Nat Commun 2024; 15:7240. [PMID: 39174553 PMCID: PMC11341811 DOI: 10.1038/s41467-024-51539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions, but the processes responsible for these observations are incompletely understood. Here we use high-throughput, single-genome amplification and sequencing (HT-SGS) to sequence SARS-CoV-2 spike genes from people with HIV (PWH, n = 22) and people without HIV (PWOH, n = 25). In PWOH and PWH with CD4 T cell counts (i.e., CD4 counts) ≥ 200 cells/μL, we find that most SARS-CoV-2 genomes sampled in each person share one spike sequence. By contrast, in people with advanced HIV infection (i.e., CD4 counts < 200 cells/μL), HT-SGS reveals a median of 46 distinct linked groupings of spike mutations per person. Elevated intra-host spike diversity in people with advanced HIV infection is detected immediately after COVID-19 symptom onset, and early intra-host spike diversity predicts SARS-CoV-2 shedding duration among PWH. Analysis of longitudinal timepoints reveals rapid fluctuations in spike sequence populations, replacement of founder sequences by groups of new haplotypes, and positive selection at functionally important residues. These findings demonstrate remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern.
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinal N Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Moysi E, Sharma AA, O’Dell S, Georgakis S, Del Rio Estrada PM, Torres-Ruiz F, Navarro MG, Villalobos YAL, Rios SA, Reyes-Teran G, Beddall MH, Ko SH, Belinky F, Orfanakis M, de Leval L, Enriquez AB, Buckner CM, Moir S, Doria-Rose N, Boritz E, Mascola JR, Sekaly RP, Koup RA, Petrovas C. Neutralization activity in chronic HIV infection is characterized by a distinct programming of follicular helper CD4 T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605954. [PMID: 39131331 PMCID: PMC11312598 DOI: 10.1101/2024.07.31.605954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A subset of people living with HIV (PLWH) can produce broadly neutralizing antibodies (bNAbs) against HIV, but the lymph node (LN) dynamics that promote the generation of these antibodies are poorly understood. Here, we explored LN-associated histological, immunological, and virological mechanisms of bNAb generation in a cohort of anti-retroviral therapy (ART)-naïve PLWH. We found that participants who produce bNAbs, termed neutralizers, have a superior LN-associated B cell follicle architecture compared with PLWH who do not. The latter was associated with a significantly higher in situ prevalence of Bcl-6hi follicular helper CD4 T cells (TFH), expressing a molecular program that favors their differentiation and stemness, and significantly reduced IL-10 follicular suppressor CD4 T cells. Furthermore, our data reveal possible molecular targets mediating TFH- B cell interactions in neutralizers. Together, we identify cellular and molecular mechanisms that contribute to the development of bNAbs in PLWH.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Ashish A. Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sijy O’Dell
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Spiros Georgakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Perla Mariana Del Rio Estrada
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Mauricio González Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico, Subdireccion de Otorrinolaringologia, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”
| | - Yara Andrea Luna Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Santiago Avila Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud de México, Mexico City, Mexico
| | - Margaret H. Beddall
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Sung-Hee Ko
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Frida Belinky
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ana B. Enriquez
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Susan Moir
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Nicole Doria-Rose
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Eli Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- ModeX Therapeutics, Weston, MA, USA
| | - Rafick-Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard A. Koup
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
8
|
Andersson D, Kebede FT, Escobar M, Österlund T, Ståhlberg A. Principles of digital sequencing using unique molecular identifiers. Mol Aspects Med 2024; 96:101253. [PMID: 38367531 DOI: 10.1016/j.mam.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
Massively parallel sequencing technologies have long been used in both basic research and clinical routine. The recent introduction of digital sequencing has made previously challenging applications possible by significantly improving sensitivity and specificity to now allow detection of rare sequence variants, even at single molecule level. Digital sequencing utilizes unique molecular identifiers (UMIs) to minimize sequencing-induced errors and quantification biases. Here, we discuss the principles of UMIs and how they are used in digital sequencing. We outline the properties of different UMI types and the consequences of various UMI approaches in relation to experimental protocols and bioinformatics. Finally, we describe how digital sequencing can be applied in specific research fields, focusing on cancer management where it can be used in screening of asymptomatic individuals, diagnosis, treatment prediction, prognostication, monitoring treatment efficacy and early detection of treatment resistance as well as relapse.
Collapse
Affiliation(s)
- Daniel Andersson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Firaol Tamiru Kebede
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Mandy Escobar
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden
| | - Tobias Österlund
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 90, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 90, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden.
| |
Collapse
|
9
|
Sena J, Karwal L, Bell C, Devitt N, Schilkey F, Huang C, Livengood J, Das S, Dean HJ. Identification and quantitation of multiple variants in RNA virus genomes. Biol Methods Protoc 2024; 9:bpae004. [PMID: 38414646 PMCID: PMC10898329 DOI: 10.1093/biomethods/bpae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
The goal of the study was to identify and characterize RNA virus variants containing mutations spread over genomic distances >5 kb. As proof of concept, high-quality viral RNA of the Dengue 2 component of Takeda's tetravalent dengue vaccine candidate (TDV-2) was used to develop a reverse transcription-polymerase chain reaction protocol to amplify a ∼5.3 kb cDNA segment that contains the three genetic determinants of TDV-2 attenuation. Unique molecular identifiers were incorporated into each viral cDNA molecule for PacBio library preparation to improve the quantitative precision of the observed variants at the attenuation loci. Following assay optimization, PacBio long-read sequencing was validated with multiple clone-derived TDV-2 revertant variants and four complex revertant mixtures containing various compositions of TDV-2 and revertant viruses. PacBio sequencing analysis correctly identified and quantified variant composition in all tested samples, demonstrating that TDV-2 revertants could be identified and characterized and supporting the use of this method in the differentiation and quantification of complex variants of other RNA viruses. Long-read sequencing can identify complex RNA virus variants containing multiple mutations on a single-genome molecule, which is useful for in-depth genetic stability and revertant detection of live-attenuated viral vaccines, as well as research in virus evolution to reveal mechanisms of immune evasion and host cell adaption.
Collapse
Affiliation(s)
- Johnny Sena
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Callum Bell
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Nicholas Devitt
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Claire Huang
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Jill Livengood
- Vaccine Business Unit, Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Subash Das
- Vaccine Business Unit, Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Hansi J Dean
- Vaccine Business Unit, Takeda Pharmaceuticals, Cambridge, MA, United States
| |
Collapse
|
10
|
Li K, Verma A, Li P, Ortiz ME, Hawkins GM, Schnicker NJ, Szachowicz PJ, Pezzulo AA, Wohlford-Lenane CL, Kicmal T, Meyerholz DK, Gallagher T, Perlman S, McCray PB. Adaptation of SARS-CoV-2 to ACE2 H353K mice reveals new spike residues that drive mouse infection. J Virol 2024; 98:e0151023. [PMID: 38168680 PMCID: PMC10804960 DOI: 10.1128/jvi.01510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic continues to cause extraordinary loss of life and economic damage. Animal models of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection are needed to better understand disease pathogenesis and evaluate preventive measures and therapies. While mice are widely used to model human disease, mouse angiotensin converting enzyme 2 (ACE2) does not bind the ancestral SARS-CoV-2 spike protein to mediate viral entry. To overcome this limitation, we "humanized" mouse Ace2 using CRISPR gene editing to introduce a single amino acid substitution, H353K, predicted to facilitate S protein binding. While H353K knockin Ace2 (mACE2H353K) mice supported SARS-CoV-2 infection and replication, they exhibited minimal disease manifestations. Following 30 serial passages of ancestral SARS-CoV-2 in mACE2H353K mice, we generated and cloned a more virulent virus. A single isolate (SARS2MA-H353K) was prepared for detailed studies. In 7-11-month-old mACE2H353K mice, a 104 PFU inocula resulted in diffuse alveolar disease manifested as edema, hyaline membrane formation, and interstitial cellular infiltration/thickening. Unexpectedly, the mouse-adapted virus also infected standard BALB/c and C57BL/6 mice and caused severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.IMPORTANCEWe developed a new mouse model with a humanized angiotensin converting enzyme 2 (ACE2) locus that preserves native regulatory elements. A single point mutation in mouse ACE2 (H353K) was sufficient to confer in vivo infection with ancestral severe acute respiratory syndrome-coronavirus-2 virus. Through in vivo serial passage, a virulent mouse-adapted strain was obtained. In aged mACE2H353K mice, the mouse-adapted strain caused diffuse alveolar disease. The mouse-adapted virus also infected standard BALB/c and C57BL/6 mice, causing severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| | - Abhishek Verma
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Pengfei Li
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Miguel E. Ortiz
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| | - Grant M. Hawkins
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | | | - Peter J. Szachowicz
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA
| | | | | | - Tom Kicmal
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | | | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Stanley Perlman
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B. McCray
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
11
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid Emergence and Evolution of SARS-CoV-2 Variants in Advanced HIV Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574420. [PMID: 38313289 PMCID: PMC10836083 DOI: 10.1101/2024.01.05.574420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions1-4, but the evolutionary processes underlying these observations are incompletely understood. Here we used high-throughput, single-genome amplification and sequencing (HT-SGS) to obtain up to ~103 SARS-CoV-2 spike gene sequences in each of 184 respiratory samples from 22 people with HIV (PWH) and 25 people without HIV (PWOH). Twelve of 22 PWH had advanced HIV infection, defined by peripheral blood CD4 T cell counts (i.e., CD4 counts) <200 cells/μL. In PWOH and PWH with CD4 counts ≥200 cells/μL, most single-genome spike sequences in each person matched one haplotype that predominated throughout the infection. By contrast, people with advanced HIV showed elevated intra-host spike diversity with a median of 46 haplotypes per person (IQR 14-114). Higher intra-host spike diversity immediately after COVID-19 symptom onset predicted longer SARS-CoV-2 RNA shedding among PWH, and intra-host spike diversity at this timepoint was significantly higher in people with advanced HIV than in PWOH. Composition of spike sequence populations in people with advanced HIV fluctuated rapidly over time, with founder sequences often replaced by groups of new haplotypes. These population-level changes were associated with a high total burden of intra-host mutations and positive selection at functionally important residues. In several cases, delayed emergence of detectable serum binding to spike was associated with positive selection for presumptive antibody-escape mutations. Taken together, our findings show remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern (VOCs).
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinal N. Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD 21218, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Nicot F, Trémeaux P, Latour J, Carcenac R, Demmou S, Jeanne N, Ranger N, De Smet C, Raymond S, Dimeglio C, Izopet J. Whole-genome single molecule real-time sequencing of SARS-CoV-2 Omicron. J Med Virol 2023; 95:e28564. [PMID: 36756931 DOI: 10.1002/jmv.28564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
New variants and genetic mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome can only be identified using accurate sequencing methods. Single molecule real-time (SMRT) sequencing has been used to characterize Alpha and Delta variants, but not Omicron variants harboring numerous mutations in the SARS-CoV-2 genome. This study assesses the performance of a target capture SMRT sequencing protocol for whole genome sequencing (WGS) of SARS-CoV-2 Omicron variants and compared it to that of an amplicon SMRT sequencing protocol optimized for Omicron variants. The failure rate of the target capture protocol (6%) was lower than that of the amplicon protocol (34%, p < 0.001) on our data set, and the median genome coverage with the target capture protocol (98.6% [interquartile range (IQR): 86-99.4]) was greater than that with the amplicon protocol (76.6% [IQR: 66-89.6], [p < 0.001]). The percentages of samples with >95% whole genome coverage were 64% with the target capture protocol and 19% with the amplicon protocol (p < 0.05). The clades of 96 samples determined with both protocols were 93% concordant and the lineages of 59 samples were 100% concordant. Thus, target capture SMRT sequencing appears to be an efficient method for WGS, genotyping and detecting mutations of SARS-CoV-2 Omicron variants.
Collapse
Affiliation(s)
- Florence Nicot
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Pauline Trémeaux
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Justine Latour
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Romain Carcenac
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Sofia Demmou
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Nicolas Jeanne
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | - Noémie Ranger
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
| | | | - Stéphanie Raymond
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
- INSERM UMR 1291-CNRS UMR 5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Toulouse, France
| | - Chloé Dimeglio
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
- INSERM UMR 1291-CNRS UMR 5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Toulouse, France
| | - Jacques Izopet
- Virology Laboratory, Toulouse University Hospital, Toulouse, France
- INSERM UMR 1291-CNRS UMR 5051, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Toulouse, France
| |
Collapse
|
13
|
Stein SR, Ramelli SC, Grazioli A, Chung JY, Singh M, Yinda CK, Winkler CW, Sun J, Dickey JM, Ylaya K, Ko SH, Platt AP, Burbelo PD, Quezado M, Pittaluga S, Purcell M, Munster VJ, Belinky F, Ramos-Benitez MJ, Boritz EA, Lach IA, Herr DL, Rabin J, Saharia KK, Madathil RJ, Tabatabai A, Soherwardi S, McCurdy MT, NIH COVID-19 Autopsy Consortium BabyakAshley L.12Perez ValenciaLuis J.12CurranShelly J.3RichertMary E.3YoungWillie J.5YoungSarah P.5GasmiBillel5Sampaio De MeloMichelly5DesarSabina5TadrosSaber5NasirNadia5JinXueting5RajanSharika5DikogluEsra5OzkayaNeval5SmithGrace5EmanuelElizabeth R.21KelsallBrian L.21OliveraJustin A.22BlawasMegan22StarRobert A.22HaysNicole10SingireddyShreya10WuJocelyn10RajaKatherine10CurtoRyan10ChungJean E.23BorthAmy J.23BowersKimberly A.23WeicholdAnne M.23MinorPaula A.23MoshrefMir Ahmad N.23KellyEmily E.23SajadiMohammad M.1415ScaleaThomas M.24TranDouglas16DahiSiamak16DeatrickKristopher B.16KrauseEric M.25HerroldJoseph A.17HochbergEric S.17CornachioneChristopher R.17LevineAndrea R.17RichardsJustin E.26ElderJohn27BurkeAllen P.27MazzeffiMichael A.28ChristensonRobert H.29ChancerZackary A.30AbdulmahdiMustafa31SophaSabrina31GoldbergTyler31SangwanYashvir32SudanoKristen19BlumeDiane19RadinBethany19ArnoukMadhat19EaganJames W.Jr33PalermoRobert34HarrisAnthony D.35PohidaThomas36Garmendia-CedillosMarcial36DoldGeorge37SaglioEric37PhamPhuoc37, Peterson KE, Cohen JI, de Wit E, Vannella KM, Hewitt SM, Kleiner DE, Chertow DS. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 2022; 612:758-763. [PMID: 36517603 PMCID: PMC9749650 DOI: 10.1038/s41586-022-05542-y] [Citation(s) in RCA: 493] [Impact Index Per Article: 164.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is known to cause multi-organ dysfunction1-3 during acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients experiencing prolonged symptoms, termed post-acute sequelae of SARS-CoV-2 (refs. 4,5). However, the burden of infection outside the respiratory tract and time to viral clearance are not well characterized, particularly in the brain3,6-14. Here we carried out complete autopsies on 44 patients who died with COVID-19, with extensive sampling of the central nervous system in 11 of these patients, to map and quantify the distribution, replication and cell-type specificity of SARS-CoV-2 across the human body, including the brain, from acute infection to more than seven months following symptom onset. We show that SARS-CoV-2 is widely distributed, predominantly among patients who died with severe COVID-19, and that virus replication is present in multiple respiratory and non-respiratory tissues, including the brain, early in infection. Further, we detected persistent SARS-CoV-2 RNA in multiple anatomic sites, including throughout the brain, as late as 230 days following symptom onset in one case. Despite extensive distribution of SARS-CoV-2 RNA throughout the body, we observed little evidence of inflammation or direct viral cytopathology outside the respiratory tract. Our data indicate that in some patients SARS-CoV-2 can cause systemic infection and persist in the body for months.
Collapse
Affiliation(s)
- Sydney R. Stein
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Sabrina C. Ramelli
- grid.410305.30000 0001 2194 5650Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - Alison Grazioli
- grid.419635.c0000 0001 2203 7304Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Joon-Yong Chung
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Manmeet Singh
- grid.94365.3d0000 0001 2297 5165Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Claude Kwe Yinda
- grid.94365.3d0000 0001 2297 5165Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Clayton W. Winkler
- grid.94365.3d0000 0001 2297 5165Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Junfeng Sun
- grid.410305.30000 0001 2194 5650Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - James M. Dickey
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Kris Ylaya
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Sung Hee Ko
- grid.419681.30000 0001 2164 9667Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Andrew P. Platt
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Peter D. Burbelo
- grid.419633.a0000 0001 2205 0568National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| | - Martha Quezado
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Stefania Pittaluga
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Madeleine Purcell
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Baltimore, MD USA
| | - Vincent J. Munster
- grid.94365.3d0000 0001 2297 5165Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Frida Belinky
- grid.419681.30000 0001 2164 9667Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Marcos J. Ramos-Benitez
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA ,grid.280785.00000 0004 0533 7286Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD USA
| | - Eli A. Boritz
- grid.419681.30000 0001 2164 9667Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Izabella A. Lach
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Daniel L. Herr
- grid.411024.20000 0001 2175 4264R Adams Cowley Shock Trauma Center, Department of Medicine and Program in Trauma, University of Maryland School of Medicine, Baltimore, MD USA
| | - Joseph Rabin
- grid.411024.20000 0001 2175 4264R Adams Cowley Shock Trauma Center, Department of Surgery and Program in Trauma, University of Maryland School of Medicine, Baltimore, MD USA
| | - Kapil K. Saharia
- grid.411024.20000 0001 2175 4264Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, MD USA ,grid.411024.20000 0001 2175 4264Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Ronson J. Madathil
- grid.411024.20000 0001 2175 4264Department of Surgery, Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Ali Tabatabai
- grid.411024.20000 0001 2175 4264Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Shahabuddin Soherwardi
- grid.417209.90000 0004 0429 3816Hospitalist Department, TidalHealth Peninsula Regional, Salisbury, MD USA
| | - Michael T. McCurdy
- grid.411024.20000 0001 2175 4264Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD USA ,grid.416700.40000 0004 0440 9540Division of Critical Care Medicine, Department of Medicine, University of Maryland St. Joseph Medical Center, Towson, MD USA
| | | | - Karin E. Peterson
- grid.94365.3d0000 0001 2297 5165Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Jeffrey I. Cohen
- grid.419681.30000 0001 2164 9667Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Emmie de Wit
- grid.94365.3d0000 0001 2297 5165Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Kevin M. Vannella
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Stephen M. Hewitt
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - David E. Kleiner
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Daniel S. Chertow
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
14
|
Lustig G, Ganga Y, Rodel H, Tegally H, Jackson L, Cele S, Khan K, Jule Z, Reedoy K, Karim F, Bernstein M, Moosa MYS, Archary D, de Oliveira T, Lessells R, Abdool Karim SS, Sigal A. SARS-CoV-2 evolves increased infection elicited cell death and fusion in an immunosuppressed individual. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.23.22282673. [PMID: 36451879 PMCID: PMC9709797 DOI: 10.1101/2022.11.23.22282673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The milder clinical manifestations of Omicron infection relative to pre-Omicron SARS CoV-2 raises the possibility that extensive evolution results in reduced pathogenicity. To test this hypothesis, we quantified induction of cell fusion and cell death in SARS CoV-2 evolved from ancestral virus during long-term infection. Both cell fusion and death were reduced in Omicron BA.1 infection relative to ancestral virus. Evolved virus was isolated at different times during a 6-month infection in an immunosuppressed individual with advanced HIV disease. The virus isolated 16 days post-reported symptom onset induced fusogenicity and cell death at levels similar to BA.1. However, fusogenicity was increased in virus isolated at 6 months post-symptoms to levels intermediate between BA.1 and ancestral SARS-CoV-2. Similarly, infected cell death showed a graded increase from earlier to later isolates. These results may indicate that, at least by the cellular measures used here, evolution in long-term infection does not necessarily attenuate the virus.
Collapse
Affiliation(s)
- Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | - Hylton Rodel
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
| | | | - Sandile Cele
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Zesuliwe Jule
- Africa Health Research Institute, Durban, South Africa
| | - Kajal Reedoy
- Africa Health Research Institute, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Mahomed-Yunus S Moosa
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Global Health, University of Washington, Seattle, USA
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Alex Sigal
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Choudhary MC, Chew KW, Deo R, Flynn JP, Regan J, Crain CR, Moser C, Hughes MD, Ritz J, Ribeiro RM, Ke R, Dragavon JA, Javan AC, Nirula A, Klekotka P, Greninger AL, Fletcher CV, Daar ES, Wohl DA, Eron JJ, Currier JS, Parikh UM, Sieg SF, Perelson AS, Coombs RW, Smith DM, Li JZ. Emergence of SARS-CoV-2 escape mutations during Bamlanivimab therapy in a phase II randomized clinical trial. Nat Microbiol 2022; 7:1906-1917. [PMID: 36289399 PMCID: PMC9675946 DOI: 10.1038/s41564-022-01254-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/19/2022] [Indexed: 11/08/2022]
Abstract
SARS-CoV-2 mutations that cause resistance to monoclonal antibody (mAb) therapy have been reported. However, it remains unclear whether in vivo emergence of SARS-CoV-2 resistance mutations alters viral replication dynamics or therapeutic efficacy in the immune-competent population. As part of the ACTIV-2/A5401 randomized clinical trial (NCT04518410), non-hospitalized participants with symptomatic SARS-CoV-2 infection were given bamlanivimab (700 mg or 7,000 mg) or placebo treatment. Here¸ we report that treatment-emergent resistance mutations [detected through targeted Spike (S) gene next-generation sequencing] were significantly more likely to be detected after bamlanivimab 700 mg treatment compared with the placebo group (7% of 111 vs 0% of 112 participants, P = 0.003). No treatment-emergent resistance mutations among the 48 participants who received 7,000 mg bamlanivimab were recorded. Participants in which emerging mAb resistant virus mutations were identified showed significantly higher pretreatment nasopharyngeal and anterior nasal viral loads. Daily respiratory tract viral sampling through study day 14 showed the dynamic nature of in vivo SARS-CoV-2 infection and indicated a rapid and sustained viral rebound after the emergence of resistance mutations. Participants with emerging bamlanivimab resistance often accumulated additional polymorphisms found in current variants of concern/interest that are associated with immune escape. These results highlight the potential for rapid emergence of resistance during mAb monotherapy treatment that results in prolonged high-level respiratory tract viral loads. Assessment of viral resistance should be prioritized during the development and clinical implementation of antiviral treatments for COVID-19.
Collapse
Affiliation(s)
- Manish C Choudhary
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kara W Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rinki Deo
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James P Flynn
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James Regan
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charles R Crain
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlee Moser
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Justin Ritz
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Joan A Dragavon
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Ajay Nirula
- Lilly Research Laboratories, San Diego, CA, USA
| | | | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Courtney V Fletcher
- Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric S Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David A Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Judith S Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Urvi M Parikh
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Scott F Sieg
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Robert W Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, CA, USA.
| | - Jonathan Z Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Thommana A, Shakya M, Gandhi J, Fung CK, Chain PSG, Maljkovic Berry I, Conte MA. Intrahost SARS-CoV-2 k-mer Identification Method (iSKIM) for Rapid Detection of Mutations of Concern Reveals Emergence of Global Mutation Patterns. Viruses 2022; 14:2128. [PMID: 36298683 PMCID: PMC9609618 DOI: 10.3390/v14102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022] Open
Abstract
Despite unprecedented global sequencing and surveillance of SARS-CoV-2, timely identification of the emergence and spread of novel variants of concern (VoCs) remains a challenge. Several million raw genome sequencing runs are now publicly available. We sought to survey these datasets for intrahost variation to study emerging mutations of concern. We developed iSKIM ("intrahost SARS-CoV-2 k-mer identification method") to relatively quickly and efficiently screen the many SARS-CoV-2 datasets to identify intrahost mutations belonging to lineages of concern. Certain mutations surged in frequency as intrahost minor variants just prior to, or while lineages of concern arose. The Spike N501Y change common to several VoCs was found as a minor variant in 834 samples as early as October 2020. This coincides with the timing of the first detected samples with this mutation in the Alpha/B.1.1.7 and Beta/B.1.351 lineages. Using iSKIM, we also found that Spike L452R was detected as an intrahost minor variant as early as September 2020, prior to the observed rise of the Epsilon/B.1.429/B.1.427 lineages in late 2020. iSKIM rapidly screens for mutations of interest in raw data, prior to genome assembly, and can be used to detect increases in intrahost variants, potentially providing an early indication of novel variant spread.
Collapse
Affiliation(s)
- Ashley Thommana
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Montgomery Blair High School, Silver Spring, MD 20901, USA
| | - Migun Shakya
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jaykumar Gandhi
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Christian K. Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Patrick S. G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
17
|
Nicot F, Trémeaux P, Latour J, Jeanne N, Ranger N, Raymond S, Dimeglio C, Salin G, Donnadieu C, Izopet J. Whole-genome sequencing of SARS-CoV-2: Comparison of target capture and amplicon single molecule real-time sequencing protocols. J Med Virol 2022; 95:e28123. [PMID: 36056719 PMCID: PMC9539136 DOI: 10.1002/jmv.28123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Fast, accurate sequencing methods are needed to identify new variants and genetic mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome. Single-molecule real-time (SMRT) Pacific Biosciences (PacBio) provides long, highly accurate sequences by circular consensus reads. This study compares the performance of a target capture SMRT PacBio protocol for whole-genome sequencing (WGS) of SARS-CoV-2 to that of an amplicon PacBio SMRT sequencing protocol. The median genome coverage was higher (p < 0.05) with the target capture protocol (99.3% [interquartile range, IQR: 96.3-99.5]) than with the amplicon protocol (99.3% [IQR: 69.9-99.3]). The clades of 65 samples determined with both protocols were 100% concordant. After adjusting for Ct values, S gene coverage was higher with the target capture protocol than with the amplicon protocol. After stratification on Ct values, higher S gene coverage with the target capture protocol was observed only for samples with Ct > 17 (p < 0.01). PacBio SMRT sequencing protocols appear to be suitable for WGS, genotyping, and detecting mutations of SARS-CoV-2.
Collapse
Affiliation(s)
- Florence Nicot
- Virology LaboratoryToulouse University HospitalToulouseFrance
| | | | - Justine Latour
- Virology LaboratoryToulouse University HospitalToulouseFrance
| | - Nicolas Jeanne
- Virology LaboratoryToulouse University HospitalToulouseFrance
| | - Noémie Ranger
- Virology LaboratoryToulouse University HospitalToulouseFrance
| | - Stéphanie Raymond
- Virology LaboratoryToulouse University HospitalToulouseFrance,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy)INSERM UMR 1291 – CNRS UMR 5051ToulouseFrance
| | - Chloé Dimeglio
- Virology LaboratoryToulouse University HospitalToulouseFrance,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy)INSERM UMR 1291 – CNRS UMR 5051ToulouseFrance
| | - Gérald Salin
- Genotoul‐Genome & Transcriptome—Plateforme Génomique (GeT‐PlaGe), US INRAe 1426Castanet‐TolosanFrance
| | - Cécile Donnadieu
- Genotoul‐Genome & Transcriptome—Plateforme Génomique (GeT‐PlaGe), US INRAe 1426Castanet‐TolosanFrance
| | - Jacques Izopet
- Virology LaboratoryToulouse University HospitalToulouseFrance,Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy)INSERM UMR 1291 – CNRS UMR 5051ToulouseFrance
| |
Collapse
|
18
|
Thommana A, Shakya M, Gandhi J, Fung CK, Chain PSG, Berry IM, Conte MA. Intrahost SARS-CoV-2 k-mer identification method (iSKIM) for rapid detection of mutations of concern reveals emergence of global mutation patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.16.504117. [PMID: 36032969 PMCID: PMC9413717 DOI: 10.1101/2022.08.16.504117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite unprecedented global sequencing and surveillance of SARS-CoV-2, timely identification of the emergence and spread of novel variants of concern (VoCs) remains a challenge. Several million raw genome sequencing runs are now publicly available. We sought to survey these datasets for intrahost variation to study emerging mutations of concern. We developed iSKIM ("intrahost SARS-CoV-2 k-mer identification method") to relatively quickly and efficiently screen the many SARS-CoV-2 datasets to identify intrahost mutations belonging to lineages of concern. Certain mutations surged in frequency as intrahost minor variants just prior to, or while lineages of concern arose. The Spike N501Y change common to several VoCs was found as a minor variant in 834 samples as early as October 2020. This coincides with the timing of the first detected samples with this mutation in the Alpha/B.1.1.7 and Beta/B.1.351 lineages. Using iSKIM, we also found that Spike L452R was detected as an intrahost minor variant as early as September 2020, prior to the observed rise of the Epsilon/B.1.429/B.1.427 lineages in late 2020. iSKIM rapidly screens for mutations of interest in raw data, prior to genome assembly, and can be used to detect increases in intrahost variants, potentially providing an early indication of novel variant spread.
Collapse
Affiliation(s)
- Ashley Thommana
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Montgomery Blair High School, Silver Spring, MD, USA
| | - Migun Shakya
- Los Alamos National Laboratory, Biosecurity and Public Health Group, Bioscience Division, Los Alamos, NM, USA
| | - Jaykumar Gandhi
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christian K Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrick S G Chain
- Los Alamos National Laboratory, Biosecurity and Public Health Group, Bioscience Division, Los Alamos, NM, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
19
|
Zhou T, Wang L, Misasi J, Pegu A, Zhang Y, Harris DR, Olia AS, Talana CA, Yang ES, Chen M, Choe M, Shi W, Teng IT, Creanga A, Jenkins C, Leung K, Liu T, Stancofski ESD, Stephens T, Zhang B, Tsybovsky Y, Graham BS, Mascola JR, Sullivan NJ, Kwong PD. Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science 2022; 376:eabn8897. [PMID: 35324257 PMCID: PMC9580340 DOI: 10.1126/science.abn8897] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
The rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (Omicron) variant and its resistance to neutralization by vaccinee and convalescent sera are driving a search for monoclonal antibodies with potent neutralization. To provide insight into effective neutralization, we determined cryo-electron microscopy structures and evaluated receptor binding domain (RBD) antibodies for their ability to bind and neutralize B.1.1.529. Mutations altered 16% of the B.1.1.529 RBD surface, clustered on an RBD ridge overlapping the angiotensin-converting enzyme 2 (ACE2)-binding surface and reduced binding of most antibodies. Substantial inhibitory activity was retained by select monoclonal antibodies-including A23-58.1, B1-182.1, COV2-2196, S2E12, A19-46.1, S309, and LY-CoV1404-that accommodated these changes and neutralized B.1.1.529. We identified combinations of antibodies with synergistic neutralization. The analysis revealed structural mechanisms for maintenance of potent neutralization against emerging variants.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R. Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claudia Jenkins
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erik-Stephane D. Stancofski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Designing AbhiSCoVac - A single potential vaccine for all ‘corona culprits’: Immunoinformatics and immune simulation approaches. J Mol Liq 2022; 351:118633. [PMID: 35125571 PMCID: PMC8801591 DOI: 10.1016/j.molliq.2022.118633] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
|
21
|
Naveca FG, Nascimento V, Souza V, Corado ADL, Nascimento F, Silva G, Mejía MC, Brandão MJ, Costa Á, Duarte D, Pessoa K, Jesus M, Gonçalves L, Fernandes C, Mattos T, Abdalla L, Santos JH, Martins A, Chui FM, Val FF, de Melo GC, Xavier MS, Sampaio VDS, Mourão MP, Lacerda MV, Batista ÉLR, Magalhães ALÁ, Dábilla N, Pereira LCG, Vinhal F, Miyajima F, Dias FBS, dos Santos ER, Coêlho D, Ferraz M, Lins R, Wallau GL, Delatorre E, Gräf T, Siqueira MM, Resende PC, Bello G. Spread of Gamma (P.1) Sub-Lineages Carrying Spike Mutations Close to the Furin Cleavage Site and Deletions in the N-Terminal Domain Drives Ongoing Transmission of SARS-CoV-2 in Amazonas, Brazil. Microbiol Spectr 2022; 10:e0236621. [PMID: 35196783 PMCID: PMC8865440 DOI: 10.1128/spectrum.02366-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
The Amazonas was one of the most heavily affected Brazilian states by the COVID-19 epidemic. Despite a large number of infected people, particularly during the second wave associated with the spread of the Variant of Concern (VOC) Gamma (lineage P.1), SARS-CoV-2 continues to circulate in the Amazonas. To understand how SARS-CoV-2 persisted in a human population with a high immunity barrier, we generated 1,188 SARS-CoV-2 whole-genome sequences from individuals diagnosed in the Amazonas state from 1st January to 6th July 2021, of which 38 were vaccine breakthrough infections. Our study reveals a sharp increase in the relative prevalence of Gamma plus (P.1+) variants, designated Pango Lineages P.1.3 to P.1.6, harboring two types of additional Spike changes: deletions in the N-terminal (NTD) domain (particularly Δ144 or Δ141-144) associated with resistance to anti-NTD neutralizing antibodies or mutations at the S1/S2 junction (N679K or P681H) that probably enhance the binding affinity to the furin cleavage site, as suggested by our molecular dynamics simulations. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1) from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct value of SARS-CoV-2 positive cases in Amazonas significantly decreases. Still, we did not find an increased incidence of P.1+ variants among breakthrough cases of fully vaccinated patients (71%) in comparison to unvaccinated individuals (93%). This evidence supports that the ongoing endemic transmission of SARS-CoV-2 in the Amazonas is driven by the spread of new local Gamma/P.1 sublineages that are more transmissible, although not more efficient to evade vaccine-elicited immunity than the parental VOC. Finally, as SARS-CoV-2 continues to spread in human populations with a declining density of susceptible hosts, the risk of selecting more infectious variants or antibody evasion mutations is expected to increase. IMPORTANCE The continuous evolution of SARS-CoV-2 is an expected phenomenon that will continue to happen due to the high number of cases worldwide. The present study analyzed how a Variant of Concern (VOC) could still circulate in a population hardly affected by two COVID-19 waves and with vaccination in progress. Our results showed that the answer behind that was a new generation of Gamma-like viruses, which emerged locally carrying mutations that made it more transmissible and more capable of spreading, partially evading prior immunity triggered by natural infections or vaccines. With thousands of new cases daily, the current pandemics scenario suggests that SARS-CoV-2 will continue to evolve and efforts to reduce the number of infected subjects, including global equitable access to COVID-19 vaccines, are mandatory. Thus, until the end of pandemics, the SARS-CoV-2 genomic surveillance will be an essential tool to better understand the drivers of the viral evolutionary process.
Collapse
Affiliation(s)
- Felipe Gomes Naveca
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdinete Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - Victor Souza
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - André de Lima Corado
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - Fernanda Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - George Silva
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
- Fundação Centro de Controle de Oncologia do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Matilde Contreras Mejía
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - Maria Júlia Brandão
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - Ágatha Costa
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - Débora Duarte
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - Karina Pessoa
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - Michele Jesus
- Laboratório de Diversidade Microbiana da Amazônia com Importância para a Saúde, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | - Luciana Gonçalves
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
- Fundação de Vigilância em Saúde do Amazonas - Dra. Rosemary Costa Pinto, Manaus, Amazonas, Brazil
| | - Cristiano Fernandes
- Fundação de Vigilância em Saúde do Amazonas - Dra. Rosemary Costa Pinto, Manaus, Amazonas, Brazil
| | - Tirza Mattos
- Laboratório Central de Saúde Pública do Amazonas, Manaus, Amazonas, Brazil
| | - Ligia Abdalla
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | | | - Alex Martins
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | | | - Fernando Fonseca Val
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Gisely Cardoso de Melo
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Mariana Simão Xavier
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanderson de Souza Sampaio
- Fundação de Vigilância em Saúde do Amazonas - Dra. Rosemary Costa Pinto, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Maria Paula Mourão
- Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | - Marcus Vinícius Lacerda
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, Brazil
- Laboratório de Diagnóstico e Controle e Doenças Infecciosas da Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Amazonas, Brazil
| | | | | | - Nathânia Dábilla
- Laboratório de Virologia e Cultivo Celular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Fernando Vinhal
- HLAGYN-Laboratório de Imunologia de Transplantes de Goiás, Aparecida de Goiânia, Goiás, Brazil
| | - Fabio Miyajima
- Laboratório Analitico de Competências Moleculares e Epidemiológicas, Fundação Oswaldo Cruz Ceará, Fiocruz, Eusébio, Ceará, Brazil
| | - Fernando Braga Stehling Dias
- Laboratório Analitico de Competências Moleculares e Epidemiológicas, Fundação Oswaldo Cruz Ceará, Fiocruz, Eusébio, Ceará, Brazil
| | - Eduardo Ruback dos Santos
- Unidade de Apoio Diagnóstico à COVID-19, Fundação Oswaldo Cruz Ceará, Fiocruz, Eusébio, Ceará, Brazil
| | - Danilo Coêlho
- Departamento de Virologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco, Brazil
| | - Matheus Ferraz
- Departamento de Virologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco, Brazil
| | - Roberto Lins
- Departamento de Virologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia e Núcleo de Bioinformática, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco, Brazil
| | - Edson Delatorre
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Espírito Santo, Brazil
| | - Tiago Gräf
- Instituto Gonçalo Moniz, Fiocruz, Salvador, Bahia, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo (LVRS), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios e do Sarampo (LVRS), Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Hoang MTV, Irinyi L, Hu Y, Schwessinger B, Meyer W. Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections. Front Microbiol 2022; 12:708550. [PMID: 35069461 PMCID: PMC8770865 DOI: 10.3389/fmicb.2021.708550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of the causative infectious agent is essential in the management of infectious diseases, with the ideal diagnostic method being rapid, accurate, and informative, while remaining cost-effective. Traditional diagnostic techniques rely on culturing and cell propagation to isolate and identify the causative pathogen. These techniques are limited by the ability and the time required to grow or propagate an agent in vitro and the facts that identification based on morphological traits are non-specific, insensitive, and reliant on technical expertise. The evolution of next-generation sequencing has revolutionized genomic studies to generate more data at a cheaper cost. These are divided into short- and long-read sequencing technologies, depending on the length of reads generated during sequencing runs. Long-read sequencing also called third-generation sequencing emerged commercially through the instruments released by Pacific Biosciences and Oxford Nanopore Technologies, although relying on different sequencing chemistries, with the first one being more accurate both platforms can generate ultra-long sequence reads. Long-read sequencing is capable of entirely spanning previously established genomic identification regions or potentially small whole genomes, drastically improving the accuracy of the identification of pathogens directly from clinical samples. Long-read sequencing may also provide additional important clinical information, such as antimicrobial resistance profiles and epidemiological data from a single sequencing run. While initial applications of long-read sequencing in clinical diagnosis showed that it could be a promising diagnostic technique, it also has highlighted the need for further optimization. In this review, we show the potential long-read sequencing has in clinical diagnosis of fungal infections and discuss the pros and cons of its implementation.
Collapse
Affiliation(s)
- Minh Thuy Vi Hoang
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yiheng Hu
- Research School of Biology, Australia National University, Canberra, ACT, Australia
| | | | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW, Australia
| |
Collapse
|
23
|
Rowe LA, Beddingfield BJ, Goff K, Killeen SZ, Chirichella NR, Melton A, Roy CJ, Maness NJ. Intra-Host SARS-CoV-2 Evolution in the Gut of Mucosally-Infected Chlorocebus aethiops (African Green Monkeys). Viruses 2022; 14:77. [PMID: 35062281 PMCID: PMC8777858 DOI: 10.3390/v14010077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
In recent months, several SARS-CoV-2 variants have emerged that enhance transmissibility and escape host humoral immunity. Hence, the tracking of viral evolutionary trajectories is clearly of great importance. Little is known about SARS-CoV-2 evolution in nonhuman primate models used to test vaccines and therapies and to model human disease. Viral RNA was sequenced from rectal swabs from Chlorocebus aethiops (African green monkeys) after experimental respiratory SARS-CoV-2 infection. Two distinct patterns of viral evolution were identified that were shared between all collected samples. First, mutations in the furin cleavage site that were initially present in the virus as a consequence of VeroE6 cell culture adaptation were not detected in viral RNA recovered in rectal swabs, confirming the necessity of this motif for viral infection in vivo. Three amino acid changes were also identified; ORF 1a S2103F, and spike D215G and H655Y, which were detected in rectal swabs from all sampled animals. These findings are demonstrative of intra-host SARS-CoV-2 evolution and may identify a host-adapted variant of SARS-CoV-2 that would be useful in future primate models involving SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lori A. Rowe
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Brandon J. Beddingfield
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Stephanie Z. Killeen
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Nicole R. Chirichella
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Alexandra Melton
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Chad J. Roy
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
24
|
Abstract
The field of molecular epidemiology responded to the SARS-CoV-2 pandemic with an unrivaled amount of whole viral genome sequencing. By the time this sentence is published we will have well surpassed 1.5 million whole genomes, more than 4 times the number of all microbial whole genomes deposited in GenBank and 35 times the total number of viral genomes. This extraordinary dataset that accrued in near real time has also given us an opportunity to chart the global and local evolution of a virus as it moves through the world population. The data itself presents challenges that have never been dealt with in molecular epidemiology, and tracking a virus that is changing so rapidly means that we are often running to catch up. Here we review what is known about the evolution of the virus, and the critical impact that whole genomes have had on our ability to trace back and track forward the spread of lineages of SARS-CoV-2. We then review what whole genomes have told us about basic biological properties of the virus such as transmissibility, virulence, and immune escape with a special emphasis on pediatric disease. We couch this discussion within the framework of systematic biology and phylogenetics, disciplines that have proven their worth again and again for identifying and deciphering the spread of epidemics, though they were largely developed in areas far removed from infectious disease and medicine.
Collapse
Affiliation(s)
- Ahmed M Moustafa
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Paul J Planet
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman College of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York, USA
| |
Collapse
|
25
|
Lhomme S, Latour J, Jeanne N, Trémeaux P, Ranger N, Migueres M, Salin G, Donnadieu C, Izopet J. Prediction of SARS-CoV-2 Variant Lineages Using the S1-Encoding Region Sequence Obtained by PacBio Single-Molecule Real-Time Sequencing. Viruses 2021; 13:v13122544. [PMID: 34960813 PMCID: PMC8707593 DOI: 10.3390/v13122544] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causal agent of the COVID-19 pandemic that emerged in late 2019. The outbreak of variants with mutations in the region encoding the spike protein S1 sub-unit that can make them more resistant to neutralizing or monoclonal antibodies is the main point of the current monitoring. This study examines the feasibility of predicting the variant lineage and monitoring the appearance of reported mutations by sequencing only the region encoding the S1 domain by Pacific Bioscience Single Molecule Real-Time sequencing (PacBio SMRT). Using the PacBio SMRT system, we successfully sequenced 186 of the 200 samples previously sequenced with the Illumina COVIDSeq (whole genome) system. PacBio SMRT detected mutations in the S1 domain that were missed by the COVIDseq system in 27/186 samples (14.5%), due to amplification failure. These missing positions included mutations that are decisive for lineage assignation, such as G142D (n = 11), N501Y (n = 6), or E484K (n = 2). The lineage of 172/186 (92.5%) samples was accurately determined by analyzing the region encoding the S1 domain with a pipeline that uses key positions in S1. Thus, the PacBio SMRT protocol is appropriate for determining virus lineages and detecting key mutations.
Collapse
Affiliation(s)
- Sébastien Lhomme
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31300 Toulouse, France; (M.M.); (J.I.)
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
- Correspondence: ; Tel.: +33-5-67-69-04-24
| | - Justine Latour
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| | - Nicolas Jeanne
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| | - Pauline Trémeaux
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| | - Noémie Ranger
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| | - Marion Migueres
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31300 Toulouse, France; (M.M.); (J.I.)
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| | - Gérald Salin
- INRAE, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France; (G.S.); (C.D.)
| | - Cécile Donnadieu
- INRAE, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France; (G.S.); (C.D.)
| | - Jacques Izopet
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31300 Toulouse, France; (M.M.); (J.I.)
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| |
Collapse
|
26
|
Abstract
Antigenic drift refers to the evolutionary accumulation of amino acid substitutions in viral proteins selected by host adaptive immune systems as the virus circulates in a population. Antigenic drift can substantially limit the duration of immunity conferred by infection and vaccination. Here, I explain the factors contributing to the rapid antigenic drift of the SARS-CoV-2 spike protein and receptor proteins of other viruses and discuss the implications for SARS-CoV-2 evolution and immunity.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
27
|
Natural and Recombinant SARS-CoV-2 Isolates Rapidly Evolve In Vitro to Higher Infectivity through More Efficient Binding to Heparan Sulfate and Reduced S1/S2 Cleavage. J Virol 2021; 95:e0135721. [PMID: 34406867 PMCID: PMC8513475 DOI: 10.1128/jvi.01357-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
One of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virulence factors is the ability to interact with high affinity to the ACE2 receptor, which mediates viral entry into cells. The results of our study demonstrate that within a few passages in cell culture, both the natural isolate of SARS-CoV-2 and the recombinant cDNA-derived variant acquire an additional ability to bind to heparan sulfate (HS). This promotes a primary attachment of viral particles to cells before their further interactions with the ACE2. Interaction with HS is acquired through multiple mechanisms. These include (i) accumulation of point mutations in the N-terminal domain (NTD) of the S protein, which increases the positive charge of the surface of this domain, (ii) insertions into the NTD of heterologous peptides containing positively charged amino acids, and (iii) mutation of the first amino acid downstream of the furin cleavage site. This last mutation affects S protein processing, transforms the unprocessed furin cleavage site into the heparin-binding peptide, and makes viruses less capable of syncytium formation. These viral adaptations result in higher affinity of viral particles to heparin, dramatic increase in plaque sizes, more efficient viral spread, higher infectious titers, and 2 orders of magnitude higher infectivity. The detected adaptations also suggest an active role of NTD in virus attachment and entry. As in the case of other RNA-positive (RNA+) viruses, evolution to HS binding may result in virus attenuation in vivo. IMPORTANCE The spike protein of SARS-CoV-2 is a major determinant of viral pathogenesis. It mediates binding to the ACE2 receptor and, later, fusion of viral envelope and cellular membranes. The results of our study demonstrate that SARS-CoV-2 rapidly evolves during propagation in cultured cells. Its spike protein acquires mutations in the NTD and in the P1′ position of the furin cleavage site (FCS). The amino acid substitutions or insertions of short peptides in NTD are closely located on the protein surface and increase its positive charge. They strongly increase affinity of the virus to heparan sulfate, make it dramatically more infectious for the cultured cells, and decrease the genome equivalent to PFU (GE/PFU) ratio by orders of magnitude. The S686G mutation also transforms the FCS into the heparin-binding peptide. Thus, the evolved SARS-CoV-2 variants efficiently use glycosaminoglycans on the cell surface for primary attachment before the high-affinity interaction of the spikes with the ACE2 receptor.
Collapse
|
28
|
Choudhary MC, Chew KW, Deo R, Flynn JP, Regan J, Crain CR, Moser C, Hughes M, Ritz J, Ribeiro RM, Ke R, Dragavon JA, Javan AC, Nirula A, Klekotka P, Greninger AL, Fletcher CV, Daar ES, Wohl DA, Eron JJ, Currier JS, Parikh UM, Sieg SF, Perelson AS, Coombs RW, Smith DM, Li JZ. Emergence of SARS-CoV-2 Resistance with Monoclonal Antibody Therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.09.03.21263105. [PMID: 34545376 PMCID: PMC8452115 DOI: 10.1101/2021.09.03.21263105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Resistance mutations to monoclonal antibody (mAb) therapy has been reported, but in the non-immunosuppressed population, it is unclear if in vivo emergence of SARS-CoV-2 resistance mutations alters either viral replication dynamics or therapeutic efficacy. In ACTIV-2/A5401, non-hospitalized participants with symptomatic SARS-CoV-2 infection were randomized to bamlanivimab (700mg or 7000mg) or placebo. Treatment-emergent resistance mutations were significantly more likely detected after bamlanivimab 700mg treatment than placebo (7% of 111 vs 0% of 112 participants, P=0.003). There were no treatment-emergent resistance mutations among the 48 participants who received bamlanivimab 7000mg. Participants with emerging mAb resistant virus had significantly higher pre-treatment nasopharyngeal and anterior nasal viral load. Intensive respiratory tract viral sampling revealed the dynamic nature of SARS-CoV-2 evolution, with evidence of rapid and sustained viral rebound after emergence of resistance mutations, and worsened symptom severity. Participants with emerging bamlanivimab resistance often accumulated additional polymorphisms found in current variants of concern/interest and associated with immune escape. These results highlight the potential for rapid emergence of resistance during mAb monotherapy treatment, resulting in prolonged high level respiratory tract viral loads and clinical worsening. Careful virologic assessment should be prioritized during the development and clinical implementation of antiviral treatments for COVID-19.
Collapse
|
29
|
Prajapat M, Handa V, Sarma P, Prakash A, Kaur H, Sharma S, Bhattacharyya A, Kumar S, Sharma AR, Avti P, Medhi B. Update on geographical variation and distribution of SARS-nCoV-2: A systematic review. Indian J Pharmacol 2021; 53:310-316. [PMID: 34414910 PMCID: PMC8411960 DOI: 10.4103/ijp.ijp_483_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Knowledge of a new mutant strain of SARS-coronavirus (CoV-2) is enormously essential to identify a targeted drug and for the development of the vaccine. In this article, we systematically reviewed the different mutation strains (variant of concern [VOC] and variant of interest [VOI]) which were found in different countries such as the UK, Singapore, China, Germany, Vietnam, Western Africa, Dublin, Ireland, Brazil, Iran, Italy, France, America, and Philippines. We searched four literature databases (PubMed, EMBASE, NATURE, and Willey online library) with suitable keywords and the time filter was November 2019 to June 16, 2021. To understand the worldwide spread of variants of SARS-CoV-2, we included a total of 27 articles of case reports, clinical and observational studies in the systematic review. However, these variants mostly spread because of their ability to increase transmission, virulence, and escape immunity. So, in this paper is we found mutated strains of SARS-CoV-2 like VOCs that are found in different regions across the globe are ALPHA strain in the U.K, BETA strain in South Africa, GAMMA strain in Brazil, Gamma and Beta strains in European Countries, and some VOIs like Theta variant in the Philippines.
Collapse
Affiliation(s)
- Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vrishbhanu Handa
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saurabh Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College and Hospital, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Raj Sharma
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
30
|
Resende PC, Naveca FG, Lins RD, Dezordi FZ, Ferraz MVF, Moreira EG, Coêlho DF, Motta FC, Paixão ACD, Appolinario L, Lopes RS, Mendonça ACDF, da Rocha ASB, Nascimento V, Souza V, Silva G, Nascimento F, Neto LGL, da Silva FV, Riediger I, Debur MDC, Leite AB, Mattos T, da Costa CF, Pereira FM, dos Santos CA, Rovaris DB, Fernandes SB, Abbud A, Sacchi C, Khouri R, Bernardes AFL, Delatorre E, Gräf T, Siqueira MM, Bello G, Wallau GL. The ongoing evolution of variants of concern and interest of SARS-CoV-2 in Brazil revealed by convergent indels in the amino (N)-terminal domain of the spike protein. Virus Evol 2021; 7:veab069. [PMID: 34532067 PMCID: PMC8438916 DOI: 10.1093/ve/veab069] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022] Open
Abstract
Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. Importantly, we detected the community transmission of different P.1 lineages bearing NTD indels ∆69-70 (which can impact several SARS-CoV-2 diagnostic protocols), ∆144 and ins214ANRN, and a new VOI N.10 derived from the B.1.1.33 lineage carrying three NTD deletions (∆141-144, ∆211, and ∆256-258). These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil generates new viral lineages that might be more resistant to antibody neutralization than parental variants of concern.
Collapse
Affiliation(s)
| | | | - Roberto D Lins
- Department of Virology, Instituto Aggeu Magalhães, FIOCRUZ-Pernambuco, Av. Professor Moraes Rego, s/n – Cidade Universitária, Recife 50.740-465, Brazil
| | - Filipe Zimmer Dezordi
- Departamento de Entomologia, Instituto Aggeu Magalhães, FIOCRUZ-Pernambuco, Av. Professor Moraes Rego, s/n – Cidade Universitária, Recife 50.740-465, Brazil
- Núcleo de Bioinformática (NBI), Instituto Aggeu Magalhães FIOCRUZ-Pernambuco, Av. Professor Moraes Rego, s/n – Cidade Universitária, Recife 50.740-465, Brazil
| | - Matheus V. F Ferraz
- Department of Virology, Instituto Aggeu Magalhães, FIOCRUZ-Pernambuco, Av. Professor Moraes Rego, s/n – Cidade Universitária, Recife 50.740-465, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Av. Professor Moraes Rego, s/n – Cidade Universitária, Recife 50.740-560, Brazil
| | - Emerson G Moreira
- Department of Virology, Instituto Aggeu Magalhães, FIOCRUZ-Pernambuco, Av. Professor Moraes Rego, s/n – Cidade Universitária, Recife 50.740-465, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Av. Professor Moraes Rego, s/n – Cidade Universitária, Recife 50.740-560, Brazil
| | | | - Fernando Couto Motta
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Anna Carolina Dias Paixão
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Luciana Appolinario
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Renata Serrano Lopes
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Ana Carolina da Fonseca Mendonça
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Alice Sampaio Barreto da Rocha
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Valdinete Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Instituto Leônidas e Maria Deane, FIOCRUZ-Amazonas, Rua Teresina, 476. Adrianópolis, Manaus 69.057-070, Brazil
| | - Victor Souza
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Instituto Leônidas e Maria Deane, FIOCRUZ-Amazonas, Rua Teresina, 476. Adrianópolis, Manaus 69.057-070, Brazil
| | - George Silva
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Instituto Leônidas e Maria Deane, FIOCRUZ-Amazonas, Rua Teresina, 476. Adrianópolis, Manaus 69.057-070, Brazil
| | - Fernanda Nascimento
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Instituto Leônidas e Maria Deane, FIOCRUZ-Amazonas, Rua Teresina, 476. Adrianópolis, Manaus 69.057-070, Brazil
| | - Lidio Gonçalves Lima Neto
- Laboratório Central de Saúde Pública do Estado do Maranhão (LACEN-MA), Rua João Luís, Bairro Diamente, Sao Luis 65020-320, Brazil
| | - Fabiano Vieira da Silva
- Laboratório Central de Saúde Pública do Estado do Maranhão (LACEN-MA), Rua João Luís, Bairro Diamente, Sao Luis 65020-320, Brazil
| | - Irina Riediger
- Laboratório Central de Saúde Pública do Estado do Paraná (LACEN-PR), Rua Ubaldino do Amaral 545 - Alto da XV, Curitiba 80060-190, Brazil
| | - Maria do Carmo Debur
- Laboratório Central de Saúde Pública do Estado do Paraná (LACEN-PR), Rua Ubaldino do Amaral 545 - Alto da XV, Curitiba 80060-190, Brazil
| | - Anderson Brandao Leite
- Laboratório Central de Saúde Pública do Estado do Alagoas (LACEN-AL), Av. Marechal Castelo Branco, 1773 Jatiúca, Alagoas, 57030340 Brazil
| | - Tirza Mattos
- Laboratório Central de Saúde Pública do Amazonas (LACEN-AM), Rua Emílio Moreira, 528 - Centro, Manaus 69020-040, Brazil
| | - Cristiano Fernandes da Costa
- Fundação de Vigilância em Saúde do Amazonas, Av. Torquato Tapajós, 4.010 Colônia Santo Antônio, Manaus 69.093-018, Brazil
| | - Felicidade Mota Pereira
- Laboratório Central de Saúde Pública do Estado da Bahia (LACEN-BA), Rua Waldemar Falcão, 123 - Bairro Brotas, Salvador 40295-001, Brazil
| | - Cliomar Alves dos Santos
- Laboratório Central de Saúde Pública do Estado de Sergipe (LACEN-SE), Rua Campo do Brito, 551 - Bairro São José, Aracajú, Sergipe 49020-380, Brazil
| | - Darcita Buerger Rovaris
- Laboratório Central de Saúde Pública do Estado de Santa Catarina (LACEN-SC), Avenida Rio Branco, 152 – Fundos, Florianópolis, Santa Catarina 88015-201, Brazil
| | - Sandra Bianchini Fernandes
- Laboratório Central de Saúde Pública do Estado de Santa Catarina (LACEN-SC), Avenida Rio Branco, 152 – Fundos, Florianópolis, Santa Catarina 88015-201, Brazil
| | | | - Claudio Sacchi
- Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, São Paulo 01246-000, Brazil
| | | | - André Felipe Leal Bernardes
- Laboratório Central de Saúde Pública do Estado de Minas Gerais (LACEN-MG), Rua Conde Pereira Carneiro, 80 - Gameleira, Belo Horizonte 30510-010, Brazil
| | - Edson Delatorre
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514 - Goiabeira, Alegre 29075-910, Brazil
| | | | - Marilda Mendonça Siqueira
- Laboratory of Respiratory Viruses and Measles (LVRS), Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ-Rio de Janeiro, Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | | |
Collapse
|
31
|
Abdullaev A, Odilov A, Ershler M, Volkov A, Lipina T, Gasanova T, Lebedin Y, Babichenko I, Sudarikov A. Viral Load and Patterns of SARS-CoV-2 Dissemination to the Lungs, Mediastinal Lymph Nodes, and Spleen of Patients with COVID-19 Associated Lymphopenia. Viruses 2021; 13:1410. [PMID: 34372615 PMCID: PMC8310371 DOI: 10.3390/v13071410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Lymphopenia is a frequent hematological manifestation, associated with a severe course of COVID-19, with an insufficiently understood pathogenesis. We present molecular genetic immunohistochemical, and electron microscopic data on SARS-CoV-2 dissemination and viral load (VL) in lungs, mediastinum lymph nodes, and the spleen of 36 patients who died from COVID-19. Lymphopenia <1 × 109/L was observed in 23 of 36 (63.8%) patients. In 12 of 36 cases (33%) SARS-CoV-2 was found in lung tissues only with a median VL of 239 copies (range 18-1952) SARS-CoV-2 cDNA per 100 copies of ABL1. Histomorphological changes corresponding to bronchopneumonia and the proliferative phase of DAD were observed in these cases. SARS-CoV-2 dissemination into the lungs, lymph nodes, and spleen was detected in 23 of 36 patients (58.4%) and was associated with the exudative phase of DAD in most of these cases. The median VL in the lungs was 12,116 copies (range 810-250281), lymph nodes-832 copies (range 96-11586), and spleen-71.5 copies (range 0-2899). SARS-CoV-2 in all cases belonged to the 19A strain. A immunohistochemical study revealed SARS-CoV-2 proteins in pneumocytes, alveolar macrophages, and bronchiolar epithelial cells in lung tissue, sinus histiocytes of lymph nodes, as well as cells of the Billroth pulp cords and spleen capsule. SARS-CoV-2 particles were detected by transmission electron microscopy in the cytoplasm of the endothelial cell, macrophages, and lymphocytes. The infection of lymphocytes with SARS-CoV-2 that we discovered for the first time may indicate a possible link between lymphopenia and SARS-CoV-2-mediated cytotoxic effect.
Collapse
Affiliation(s)
- Adhamjon Abdullaev
- National Research Center for Hematology, Laboratory of Molecular Hematology, Novy Zykovski Lane 4a, 125167 Moscow, Russia;
| | - Akmaljon Odilov
- Department of Pathological Anatomy, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.O.); (A.V.); (I.B.)
| | - Maxim Ershler
- National Research Center for Hematology, Hematopoiesis Physiology Laboratory, Novy Zykovski Lane 4a, 125167 Moscow, Russia;
| | - Alexey Volkov
- Department of Pathological Anatomy, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.O.); (A.V.); (I.B.)
- Department of Pathological Anatomy, Municipal Clinical Hospital Named after E.O. Mukhin, 17 Federativny Prospect, 111399 Moscow, Russia
| | - Tatiana Lipina
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gori, 1, 12, 119234 Moscow, Russia;
| | - Tatiana Gasanova
- Department of Virology, Lomonosov Moscow State University, Leninskie Gori, 1, 40, 119234 Moscow, Russia;
| | - Yuri Lebedin
- XEMA Company Limited, 9th Parkovaya St., 48, 105043 Moscow, Russia;
| | - Igor Babichenko
- Department of Pathological Anatomy, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.O.); (A.V.); (I.B.)
| | - Andrey Sudarikov
- National Research Center for Hematology, Laboratory of Molecular Hematology, Novy Zykovski Lane 4a, 125167 Moscow, Russia;
| |
Collapse
|
32
|
Shiliaev N, Lukash T, Palchevska O, Crossman DK, Green TJ, Crowley MR, Frolova EI, Frolov I. Natural isolate and recombinant SARS-CoV-2 rapidly evolve in vitro to higher infectivity through more efficient binding to heparan sulfate and reduced S1/S2 cleavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34230926 DOI: 10.1101/2021.06.28.450274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
One of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virulence factors is the ability to interact with high affinity to the ACE2 receptor, which mediates viral entry into cells. The results of our study demonstrate that within a few passages in cell culture, both the natural isolate of SARS-CoV-2 and the recombinant, cDNA-derived variant acquire an additional ability to bind to heparan sulfate (HS). This promotes a primary attachment of viral particles to cells before their further interactions with the ACE2. Interaction with HS is acquired through multiple mechanisms. These include i) accumulation of point mutations in the N-terminal domain (NTD) of the S protein, which increase the positive charge of the surface of this domain, ii) insertions into NTD of heterologous peptides, containing positively charged amino acids, and iii) mutation of the first amino acid downstream of the furin cleavage site. This last mutation affects S protein processing, transforms the unprocessed furin cleavage site into the heparin-binding peptide and makes viruses less capable of syncytia formation. These viral adaptations result in higher affinity of viral particles to heparin sepharose, dramatic increase in plaque sizes, more efficient viral spread, higher infectious titers and two orders of magnitude lower GE:PFU ratios. The detected adaptations also suggest an active role of NTD in virus attachment and entry. As in the case of other RNA+ viruses, evolution to HS binding may result in virus attenuation in vivo . IMPORTANCE The spike protein of SARS-CoV-2 is a major determinant of viral pathogenesis. It mediates binding to ACE2 receptor and later, fusion of viral envelope and cellular membranes. The results of our study demonstrate that SARS-CoV-2 rapidly evolves during propagation in cultured cells. Its spike protein acquires mutations in the N-terminal domain (NTD) and in P1‘ position of the furin cleavage site (FCS). The amino acid substitutions or insertions of short peptides in NTD are closely located on the protein surface and increase its positive charge. They strongly increase affinity of the virus to heparan sulfate, make it dramatically more infectious for the cultured cells and decrease GE:PFU ratio by orders of magnitude. The S686G mutation also transforms the FCS into the heparin-binding peptide. Thus, the evolved SARS-CoV-2 variants efficiently use glycosaminoglycans on the cell surface for primary attachment before the high affinity interaction of the spikes with the ACE2 receptor.
Collapse
|
33
|
Cimolai N. Passive Immunity Should and Will Work for COVID-19 for Some Patients. Clin Hematol Int 2021; 3:47-68. [PMID: 34595467 PMCID: PMC8432400 DOI: 10.2991/chi.k.210328.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In the absence of effective antiviral chemotherapy and still in the context of emerging vaccines for severe acute respiratory syndrome-CoV-2 infections, passive immunotherapy remains a key treatment and possible prevention strategy. What might initially be conceived as a simplified donor-recipient process, the intricacies of donor plasma, IV immunoglobulins, and monoclonal antibody modality applications are becoming more apparent. Key targets of such treatment have largely focused on virus neutralization and the specific viral components of the attachment Spike protein and its constituents (e.g., receptor binding domain, N-terminal domain). The cumulative laboratory and clinical experience suggests that beneficial protective and treatment outcomes are possible. Both a dose- and a time-dependency emerge. Lesser understood are the concepts of bioavailability and distribution. Apart from direct antigen binding from protective immunoglobulins, antibody effector functions have potential roles in outcome. In attempting to mimic the natural but variable response to infection or vaccination, a strong functional polyclonal approach attracts the potential benefits of attacking antigen diversity, high antibody avidity, antibody persistence, and protection against escape viral mutation. The availability and ease of administration for any passive immunotherapy product must be considered in the current climate of need. There is never a perfect product, but yet there is considerable room for improving patient outcomes. Given the variability of human genetics, immunity, and disease, and given the nuances of the virus and its potential for change, passive immunotherapy can be developed that will be effective for some but not all patients. An understanding of such patient variability and limitations is just as important as the understanding of the direct interactions between immunotherapy and virus.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Children’s and Women’s Health Centre of British Columbia, 4480 Oak Street, Vancouver, BC, Canada V6H 3V4
| |
Collapse
|