1
|
Paz M, Moratorio G. Deep mutational scanning and CRISPR-engineered viruses: tools for evolutionary and functional genomics studies. mSphere 2025; 10:e0050824. [PMID: 40272173 DOI: 10.1128/msphere.00508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Recent advancements in synthetic biology and sequencing technologies have revolutionized the ability to manipulate viral genomes with unparalleled precision. This review focuses on two powerful methodologies: deep mutational scanning and CRISPR-based genome editing, that enable comprehensive mutagenesis and detailed functional characterization of viral proteins. These approaches have significantly deepened our understanding of the molecular determinants driving viral evolution and adaptation. Furthermore, we discuss how these advances provide transformative insights for future vaccine development and therapeutic strategies.
Collapse
Affiliation(s)
- Mercedes Paz
- Laboratory of Experimental Virus Evolution, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular Virology Laboratory, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Laboratory of Experimental Virus Evolution, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Molecular Virology Laboratory, Faculty of Sciences, University of the Republic, Montevideo, Uruguay
- Center for Innovation in Epidemiological Surveillance, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
2
|
Tang H, Zhuo Y, Chen J, Zhang R, Zheng M, Huang X, Chen Y, Huang M, Zeng Z, Huang X, Han C, Huang Y. Immune evasion, infectivity, and membrane fusion of the SARS-CoV-2 JN.1 variant. Virol J 2025; 22:162. [PMID: 40413500 PMCID: PMC12103042 DOI: 10.1186/s12985-025-02737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/10/2025] [Indexed: 05/27/2025] Open
Abstract
SARS-CoV-2 undergoes continuous mutations during transmission, resulting in a variety of Omicron subvariants. Currently, SARS-CoV-2 BA.2.86 and its descendants JN.1, KP.2, KP.1.1 have been identified as the primary variants spreading globally. These emerging Omicron variants have increased transmissibility, potentially elevating the risk of viral reinfection in the population. However, the biological characteristics of newly-emerged Omicron subvariants in infecting host cells remain unclear. In this study, we assessed the neutralization effect of BA.2.86 and its descendant JN.1, as well as D614G, BA.2, BA.4/5, XBB.1.5, EG.5.1, HV.1, HK.3, JD.1.1 and JG.3 on convalescent sera obtained from individuals infected with BA.5 or XBB.1.5 strain. We evaluated the biological characteristics of variants spike proteins by measuring viral infectivity, affinity for receptors, and membrane fusion. Compared to XBB-related subvariants, BA.2.86 exhibited a diminished immune escape response, but JN.1 displayed a markedly augmented immune escape capability, which was closely related to its rapid transmission. BA.2.86 was less infectious in susceptible cells, while the JN.1 variant exhibited relatively high infectivity. Notably, BA.2.86 and JN.1 exhibited low fusion activity in 293 T-ACE2 cells, but relatively high fusogenicity in transmembrane protease serine 2 (TMPRSS2) overexpression cells. This study explored the evolutionary characteristics of emerging Omicron subvariants in host adaptation, and provided new strategies for the prevention and treatment of coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Haijun Tang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Yanhang Zhuo
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Jianlin Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Rongzhao Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Miao Zheng
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350001, China
| | - Xinghua Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Yisheng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Minjian Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Zhaonan Zeng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xueping Huang
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
| | - Chenfeng Han
- Department of Blood Transfusion, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215000, China.
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
- Central Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
3
|
Li P, Faraone JN, Hsu CC, Chamblee M, Liu Y, Zheng YM, Xu Y, Carlin C, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Bednash JS, Xu K, Liu SL. Neutralization and spike stability of JN.1-derived LB.1, KP.2.3, KP.3, and KP.3.1.1 subvariants. mBio 2025; 16:e0046425. [PMID: 40136024 PMCID: PMC12077133 DOI: 10.1128/mbio.00464-25] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
During the summer of 2024, coronavirus disease 2019 (COVID-19) cases surged globally, driven by variants derived from JN.1 subvariants of severe acute respiratory syndrome coronavirus 2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and spike stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2 and increased resistance to elevated temperatures. Molecular modeling suggests that DelS31 enhances the NTD-receptor-binding domain (RBD) interaction, favoring the RBD down conformation and reducing accessibility to ACE2 and specific nAbs. Moreover, DelS31 introduces an N-linked glycan at N30, shielding the NTD from antibody recognition. These findings underscore the role of NTD mutations in immune evasion, spike stability, and viral infectivity, highlighting the need to consider DelS31-containing antigens in updated COVID-19 vaccines.IMPORTANCEThe emergence of novel severe acute respiratory syndrome coronavirus 2 variants continues to pose challenges for global public health, particularly in the context of immune evasion and viral stability. This study identifies a key N-terminal domain (NTD) mutation, DelS31, in JN.1-derived subvariants that enhances neutralizing antibody escape while reducing infectivity and cell-cell fusion. The DelS31 mutation stabilizes the spike protein conformation, limits S1 shedding, and increases thermal resistance, which possibly contribute to prolonged viral persistence. Structural analyses reveal that DelS31 enhances NTD-receptor-binding domain interactions by introducing glycan shielding, thus decreasing antibody and ACE2 accessibility. These findings emphasize the critical role of NTD mutations in shaping viral evolution and immune evasion, underscoring the urgent need for updated coronavirus disease 2019 vaccines that account for these adaptive changes.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yan Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Columbus, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kai Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Zhang R, Li D, Gao P, Ruan W, Qiao S, Xu S, Dai L, Luo T, Zhao X, Gao GF. A SARS-CoV and SARS-CoV-2 RBD Heterodimer Vaccine Candidate. J Med Virol 2025; 97:e70367. [PMID: 40317517 DOI: 10.1002/jmv.70367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
The continuous evolution of SARS-CoV-2 through accumulating mutations, combined with the persistent risk of zoonotic sarbecovirus transmission events, highlights the critical demand for broadly protective vaccines. Building on our previous findings that a heterodimeric receptor-binding domain (RBD) design substantially improves cross-reactive immunogenicity in vaccine candidates, we propose this strategy as a foundation for developing pan-sarbecovirus vaccines with cross-neutralizing capacity against diverse and emerging variants. In this study, we developed a sarbecovirus immunogen, utilizing a heterodimeric strategy incorporating the RBDs from both SARS-CoV and SARS-CoV-2. Pseudovirus neutralization assays revealed that mice immunized with the SARS-CoV-2 prototype (PT)-SARS-CoV heterodimer (PT-SARS) developed 39.9- to 305.6-fold higher neutralizing antibody (NAb) titers against SARS-CoV-2 sub-variants compared to the SARS-CoV RBD homodimer (SARS-SARS). Furthermore, PT-SARS elicited 17.6- and 31.2-fold enhanced neutralization against WIV1 and SARS-CoV, respectively, relative to the SARS-CoV-2 PT homodimer (PT-PT). To address evolving Omicron sub-variants, we further updated BA.1-SARS and BA.2-SARS immunogens. Notably, BA.2-SARS exhibited a 6.2-fold increase in neutralizing potency against BA.2.86 compared to PT-SARS. Crucially, the heterodimeric immunogen induced balanced and broadly reactive NAbs against multiple sarbecoviruses, including RaTG13, Pangolin GD, SARS-CoV, and SARS-CoV-2 variants/sub-variants, demonstrating its potential as a sarbecovirus immunogen candidate.
Collapse
Affiliation(s)
- Rong Zhang
- College of Animal Sciences and Veterinary Medicine, Guangxi University (GXU), Nanning, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Pengyue Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- School of Life Science, University of Science and Technology of China (USTC), Hefei, China
- Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen, China
| | - Wenjing Ruan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- School of Life Science, University of Science and Technology of China (USTC), Hefei, China
| | - Shitong Qiao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
- Beijing Life Science Academy, Beijing, China
| | - Senyu Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tingrong Luo
- College of Animal Sciences and Veterinary Medicine, Guangxi University (GXU), Nanning, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
5
|
Hu Y, Zou J, Nguyen MD, Chang HC, Yeung J, Hao H, Shi PY, Ren P, Xie X. Comparative analysis of replication and immune evasion among SARS-CoV-2 subvariants BA.2.86, JN.1, KP.2, and KP.3. mBio 2025:e0350324. [PMID: 40298448 DOI: 10.1128/mbio.03503-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) BA.2.86 sublineage and its descendants (JN.1, KP.2, and KP.3) have acquired key recurrent mutations (R346T, L455S, F456L, and Q493E) and became predominant strains, following the epidemiological progression: BA.2.86→JN.1→KP.2→KP.3. However, the mechanisms driving this succession remain incompletely understood. In this study, we assessed the replication fitness of SARS-CoV-2 strains containing spike sequences from BA.2.86 and its descendants (JN.1, KP.2, and KP.3) in primary human airway epithelium cells and their sensitivity to neutralization by human sera. Our analysis revealed reduced spike cleavage in JN.1 and KP.2 virions compared to BA.2.86 and KP.3, indicating that receptor-binding domain (RBD) mutations L455S and Q493E, despite being distant from the furin cleavage site, can influence spike cleavage. JN.1, with the additional L455S mutation, replicated more slowly than BA.2.86 but was more resistant to neutralization by XBB.1.5-infection sera, suggesting that immune evasion driven by the L455S mutation is the primary factor behind the BA.2.86-to-JN.1 transition. KP.2, carrying additional R346T, L455S, and F456L mutations, showed both enhanced replication and increased resistance to neutralization by JN.1-infection sera, indicating that the combined effects of these mutations on immune evasion and viral fitness drive the JN.1-to-KP.2 shift. The latest strain, KP.3, derived from JN.1 with the L455S, F456L, and Q493E mutations, demonstrated even greater replication than KP.2 while maintaining similar neutralization sensitivity to JN.1-infection sera, suggesting that Q493E further enhances viral replication and drives the KP.2-to-KP.3 transition. These findings highlight how specific recurrent spike mutations in BA.2.86 descendants fine-tune viral replication fitness and immune evasion, promoting their emergence and dominance. IMPORTANCE The study advances our understanding of the roles of immune evasion and replication fitness in driving the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the BA.2.86 sublineage to its descendants (JN.1, KP.2, and KP.3). Through head-to-head comparisons of the replication fitness of recombinant SARS-CoV-2 strains containing spike sequences from BA.2.86 and its descendants in primary human airway epithelium cells, alongside assessments of their neutralization sensitivity to human sera, we revealed how recurrent mutations R346T, L455S, F456L, and Q493E in the receptor-binding domain (RBD) fine-tune immune evasion and viral replication fitness, underscoring the critical need for updated countermeasures to combat newly emerged SARS-CoV-2 variants. Additionally, our analysis showed that the L455S and Q493E mutations in the RBD can influence spike cleavage, offering new insights into SARS-CoV-2 spike biology.
Collapse
Affiliation(s)
- Yanping Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jing Zou
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Michael D Nguyen
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hope C Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jason Yeung
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Haiping Hao
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xuping Xie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
6
|
Gerstenberg J, Lübbert C, Widera M, Schleenvoigt BT. The need of preexposure prophylaxis against COVID-19 in immunocompromised patients- an assessment from Germany. Infection 2025:10.1007/s15010-025-02540-w. [PMID: 40261482 DOI: 10.1007/s15010-025-02540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Affiliation(s)
- Jacob Gerstenberg
- Institute for Tropical Medicine, Eberhard-Karls University Tübingen, Tübingen, Germany
- Department of Internal Medicine, DIAKOVERE Friederikenstift, Hannover, Germany
| | - Christoph Lübbert
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Leipzig University Medical Center, Leipzig, Germany
| | - Marek Widera
- Institute for Medical Virology, Goethe University, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Benjamin T Schleenvoigt
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Friedrich-Schiller- University, Jena, Germany.
| |
Collapse
|
7
|
Jana ID, Kanjo K, Roy S, Bhasin M, Bhattacharya S, Banerjee I, Jana S, Chatterjee A, Chakrabarti AK, Chakraborty S, Mukherjee B, Varadarajan R, Mondal A. Early 2022 breakthrough infection sera from India target the conserved cryptic class 5 epitope to counteract immune escape by SARS-CoV-2 variants. J Virol 2025; 99:e0005125. [PMID: 40135898 PMCID: PMC11998512 DOI: 10.1128/jvi.00051-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, the vast majority of epitope mapping studies have focused on sera from mRNA-vaccinated populations from high-income countries. In contrast, here, we report an analysis of 164 serum samples isolated from patients with breakthrough infection in India during early 2022 who received two doses of the ChAdOx viral vector vaccine. Sera were screened for neutralization breadth against wild-type (WT), Kappa, Delta, and Omicron BA.1 viruses. Three sera with the highest neutralization breadth and potency were selected for epitope mapping, using charged scanning mutagenesis coupled with yeast surface display and next-generation sequencing. The mapped sera primarily targeted the recently identified class 5 cryptic epitope and, to a lesser extent, the class 1 and class 4 epitopes. The class 5 epitope is completely conserved across all severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and for most sarbecoviruses. Based on these observations, an additional 26 sera were characterized, and all showed a broad neutralizing activity, including against XBB.1.5. This is in contrast with the results obtained with the sera from individuals receiving multiple doses of original and updated mRNA vaccines, where impaired neutralization of XBB and later variants of concern (VOCs) were observed. Our study demonstrates that two doses of the ChAdOx vaccine in a highly exposed population were sufficient to drive substantial neutralization breadth against emerging and upcoming variants of concern. These data highlight the important role of hybrid immunity in conferring broad protection and inform future vaccine strategies to protect against rapidly mutating viruses. IMPORTANCE Worldwide implementation of coronavirus disease 2019 (COVID-19) vaccines and the parallel emergence of newer severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have shaped the humoral immune response in a population-specific manner. While characterizing this immune response is important for monitoring disease progression at the population level, it is also imperative for developing effective countermeasures in the form of novel vaccines and therapeutics. India has implemented the world's second largest COVID-19 vaccination drive and encountered a large number of post-vaccination "breakthrough" infections. From a cohort of patients with breakthrough infection, we identified individuals whose sera showed broadly neutralizing immunity against different SARS-CoV-2 variants. Interestingly, these sera primarily target a novel cryptic epitope, which was not identified in previous population-level studies conducted in Western countries. This rare cryptic epitope remains conserved across all SARS-CoV-2 variants, including recently emerged ones and for the SARS-like coronaviruses that may cause future outbreaks, thus representing a potential target for future vaccines.
Collapse
Affiliation(s)
- Indrani Das Jana
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Kawkab Kanjo
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Subhanita Roy
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Munmun Bhasin
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, India
| | - Shatarupa Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Indranath Banerjee
- B.C. Roy Technology Hospital, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | | | - Alok Kumar Chakrabarti
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Arindam Mondal
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
8
|
Zhu F, Rajan S, Hayes CF, Kwong KY, Goncalves AR, Zemla AT, Lau EY, Zhang Y, Cai Y, Goforth JW, Landajuela M, Gilchuk P, Kierny M, Dippel A, Amofah B, Kaplan G, Cadevilla Peano V, Morehouse C, Sparklin B, Gopalakrishnan V, Tuffy KM, Nguyen A, Beloor J, Kijak G, Liu C, Dijokaite-Guraliuc A, Mongkolsapaya J, Screaton GR, Petersen BK, Desautels TA, Bennett D, Conti S, Segelke BW, Arrildt KT, Kaul S, Grzesiak EA, da Silva FL, Bates TW, Earnhart CG, Hopkins S, Sundaram S, Esser MT, Francica JR, Faissol DM, LLNL Generative Unconstrained Intelligent Drug Engineering (GUIDE) consortium. Preemptive optimization of a clinical antibody for broad neutralization of SARS-CoV-2 variants and robustness against viral escape. SCIENCE ADVANCES 2025; 11:eadu0718. [PMID: 40153503 PMCID: PMC11952088 DOI: 10.1126/sciadv.adu0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/25/2025] [Indexed: 03/30/2025]
Abstract
Most previously authorized clinical antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have lost neutralizing activity to recent variants due to rapid viral evolution. To mitigate such escape, we preemptively enhance AZD3152, an antibody authorized for prophylaxis in immunocompromised individuals. Using deep mutational scanning (DMS) on the SARS-CoV-2 antigen, we identify AZD3152 vulnerabilities at antigen positions F456 and D420. Through two iterations of computational antibody design that integrates structure-based modeling, machine-learning, and experimental validation, we co-optimize AZD3152 against 24 contemporary and previous SARS-CoV-2 variants, as well as 20 potential future escape variants. Our top candidate, 3152-1142, restores full potency (100-fold improvement) against the more recently emerged XBB.1.5+F456L variant that escaped AZD3152, maintains potency against previous variants of concern, and shows no additional vulnerability as assessed by DMS. This preemptive mitigation demonstrates a generalizable approach for optimizing existing antibodies against potential future viral escape.
Collapse
Affiliation(s)
- Fangqiang Zhu
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Saravanan Rajan
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Conor F. Hayes
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Ka Yin Kwong
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Andre R. Goncalves
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Adam T. Zemla
- Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Edmond Y. Lau
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yi Zhang
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Yingyun Cai
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - John W. Goforth
- Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Mikel Landajuela
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Pavlo Gilchuk
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Michael Kierny
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Andrew Dippel
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Bismark Amofah
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Gilad Kaplan
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Vanessa Cadevilla Peano
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Christopher Morehouse
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Ben Sparklin
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | | | - Kevin M. Tuffy
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Amy Nguyen
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Jagadish Beloor
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Gustavo Kijak
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Aiste Dijokaite-Guraliuc
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Gavin R. Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Brenden K. Petersen
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Thomas A. Desautels
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Drew Bennett
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Simone Conti
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Brent W. Segelke
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Kathryn T. Arrildt
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Samantha Kaul
- Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Emilia A. Grzesiak
- Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Felipe Leno da Silva
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Thomas W. Bates
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Christopher G. Earnhart
- Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense, US Department of Defense, Frederick, MD 21703, USA
| | | | - Shivshankar Sundaram
- Center for Bioengineering, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Mark T. Esser
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Joseph R. Francica
- Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Daniel M. Faissol
- Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | | |
Collapse
|
9
|
Alemán GV, Cerpas C, Juarez JG, Moreira H, Arguello S, Coloma J, Harris E, Gordon A, Bennett SN, Balmaseda Á. Tracking the genetic diversity of SARS-CoV-2 variants in Nicaragua throughout the COVID-19 pandemic. Sci Rep 2025; 15:4817. [PMID: 39924561 PMCID: PMC11808107 DOI: 10.1038/s41598-024-84113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025] Open
Abstract
The global circulation of SARS-CoV-2 has been extensively documented; however, the dynamics within Central America, particularly Nicaragua, remain underexplored. This study characterizes the genomic diversity of SARS-CoV-2 in Nicaragua from March 2020 through December 2022, utilizing 1064 genomes obtained via next-generation sequencing. These sequences were selected nationwide and analyzed for variant classification, lineage predominance, and phylogenetic diversity. We employed both Illumina and Oxford Nanopore Technologies for all sequencing procedures. Results indicated a temporal and spatial shift in dominant lineages, initially from B.1 and A.2 in early 2020 to various Omicron subvariants toward the study's end. Significant lineage shifts correlated with changes in COVID-19 positivity rates, underscoring the epidemiological impact of variant dissemination. Comparative analysis with regional data underscored the low diversity of circulating lineages in Nicaragua and their delayed introduction compared to other countries in the Central American region. The study also linked specific viral mutations with hospitalization rates, emphasizing the clinical relevance of genomic surveillance. This research advances the understanding of SARS-CoV-2 evolution in Nicaragua and provides valuable information regarding its genetic diversity for public health officials in Central America. We highlight the critical role of ongoing genomic surveillance in identifying emergent lineages and informing public health strategies.
Collapse
Affiliation(s)
| | - Cristhiam Cerpas
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | | | | | | | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Ángel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua.
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua.
| |
Collapse
|
10
|
Yang J, He X, Shi H, He C, Lei H, He H, Yang L, Wang W, Shen G, Yang J, Zhao Z, Song X, Wang Z, Lu G, Li J, Wei Y. Recombinant XBB.1.5 boosters induce robust neutralization against KP.2- and KP.3-included JN.1 sublineages. Signal Transduct Target Ther 2025; 10:47. [PMID: 39870636 PMCID: PMC11772742 DOI: 10.1038/s41392-025-02139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
The newly emerged variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) demonstrate resistance to present therapeutic antibodies as well as the capability to evade vaccination-elicited antibodies. JN.1 sublineages were demonstrated as one of the most immune-evasive variants, showing higher neutralization resistance compared to XBB.1.5. In this study, serum samples were collected from adult participants including those who had gone through the BA.5/BF.7, EG.5/HK.3 and XBB/JN.1 infection waves, characterized by different infection and vaccination histories. We evaluated the neutralization in these serum samples against pseudoviruses of Omicron lineages. We further investigated humoral immune response of recombinant XBB vaccines against Omicron variants and estimated the neutralization resistance of JN.1 sublineages, including KP.2 and KP.3. Our results showed that sera from previous circulating Omicron subvariant breakthrough infections exhibited low neutralization against pseudoviruses of Omicron lineages. The GMTs of 50% neutralization against all tested pseudoviruses were significantly elevated in sera from individuals who received WSK-V102C or WSK-V102D boosters. Importantly, the GMTs of 50% neutralization in serum samples from individuals 4 months after a WSK-V102D booster against XBB.1.5, JN.1, JN.1.13, KP.2 and KP.3 pseudoviruses were 3479, 1684, 1397, 1247 and 1298, with 9.86-, 9.79-, 8.73-, 8.66- and 8.16-fold increase compared to those without booster, respectively, indicating that boosting with XBB.1.5 subunit vaccines still induced strong antibody responses against JN.1 sublineages. However, JN.1 sublineages, including KP.2 and KP.3, revealed more than 2-fold decreases in neutralizing antibody titers compared to XBB.1.5, suggesting significantly enhanced neutralization evasion and the necessity of boosters based on JN.1, KP.2 or KP.3.
Collapse
Affiliation(s)
- Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Huashan Shi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Heng He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jinliang Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhiwei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
11
|
Figgins MD, Bedford T. Frequency dynamics predict viral fitness, antigenic relationships and epidemic growth. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.12.02.24318334. [PMID: 39677467 PMCID: PMC11643185 DOI: 10.1101/2024.12.02.24318334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During the COVID-19 pandemic, SARS-CoV-2 variants drove large waves of infections, fueled by increased transmissibility and immune escape. Current models focus on changes in variant frequencies without linking them to underlying transmission mechanisms of intrinsic transmissibility and immune escape. We introduce a framework connecting variant dynamics to these mechanisms, showing how host population immunity interacts with viral transmissibility and immune escape to determine relative variant fitness. We advance a selective pressure metric that provides an early signal of epidemic growth using genetic data alone, crucial with current underreporting of cases. Additionally, we show that a latent immunity space model approximates immunological distances, offering insights into population susceptibility and immune evasion. These insights refine real-time forecasting and lay the groundwork for research into the interplay between viral genetics, immunity, and epidemic growth.
Collapse
Affiliation(s)
- Marlin D. Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
12
|
Yuan M, Wilson IA. Structural Immunology of SARS-CoV-2. Immunol Rev 2025; 329:e13431. [PMID: 39731211 PMCID: PMC11727448 DOI: 10.1111/imr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants. In contrast, antibodies targeting conserved regions, such as the S2 stem helix and fusion peptide, exhibit broader reactivity but generally lower neutralization potency. However, several broadly neutralizing antibodies have demonstrated exceptional efficacy against emerging variants, including the latest omicron subvariants, underscoring the potential of targeting vulnerable sites such as RBS-A and RBS-D/CR3022. We also highlight public classes of antibodies targeting different sites on the S protein. The vulnerable sites targeted by public antibodies present opportunities for germline-targeting vaccine strategies. Overall, developing escape-resistant, potent antibodies and broadly effective vaccines remains crucial for combating future variants. This review emphasizes the importance of identifying key epitopes and utilizing antibody affinity maturation to inform future therapeutic and vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
13
|
Jian F, Wang J, Yisimayi A, Song W, Xu Y, Chen X, Niu X, Yang S, Yu Y, Wang P, Sun H, Yu L, Wang J, Wang Y, An R, Wang W, Ma M, Xiao T, Gu Q, Shao F, Wang Y, Shen Z, Jin R, Cao Y. Evolving antibody response to SARS-CoV-2 antigenic shift from XBB to JN.1. Nature 2025; 637:921-929. [PMID: 39510125 PMCID: PMC11754117 DOI: 10.1038/s41586-024-08315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
The continuous evolution of SARS-CoV-2, particularly the emergence of the BA.2.86/JN.1 lineage replacing XBB, necessitates re-evaluation of vaccine compositions1-3. Here, we provide a comprehensive analysis of the humoral immune response to XBB and JN.1 human exposure. We demonstrate the antigenic distinctiveness of XBB and JN.1 lineages in SARS-CoV-2-naive individuals and show that infection with JN.1 elicits superior plasma neutralization against its subvariants. We highlight the strong immune evasion and receptor-binding capability of KP.3, supporting its foreseeable prevalence. Extensive analysis of the B cell receptor repertoire, in which we isolate approximately 2,000 receptor-binding-domain-specific antibodies, with targeting epitopes characterized by deep mutational scanning, underscores the superiority of JN.1-elicited memory B cells4,5. Class 1 IGHV3-53/3-66-derived neutralizing antibodies (NAbs) are important contributors to the wild-type reactivity of NAbs against JN.1. However, KP.2 and KP.3 evade a substantial subset of these antibodies, even those induced by JN.1, supporting a need for booster updates. JN.1-induced Omicron-specific antibodies also demonstrate high potency across Omicron. Escape hotspots for these NAbs have already been mutated, resulting in a higher immune barrier to escape and indicating probable recovery of escaped NAbs. In addition, the prevalence of IGHV3-53/3-66-derived antibodies and their ability to compete with all Omicron-specific NAbs suggests that they have an inhibitory effect on the activation of Omicron-specific naive B cells, potentially explaining the heavy immune imprinting in mRNA-vaccinated individuals6-8. These findings delineate the evolving antibody response to the antigenic shift of Omicron from XBB to JN.1 and highlight the importance of developing the JN.1 lineage, especially KP.2- and KP.3-based vaccine boosters.
Collapse
Affiliation(s)
- Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jing Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Ayijiang Yisimayi
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Weiliang Song
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Yanli Xu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaosu Chen
- Institute for Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiao Niu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sijie Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| | | | - Peng Wang
- Changping Laboratory, Beijing, China
| | | | | | - Jing Wang
- Changping Laboratory, Beijing, China
| | - Yao Wang
- Changping Laboratory, Beijing, China
| | - Ran An
- Changping Laboratory, Beijing, China
| | | | | | - Tianhe Xiao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | | | - Fei Shao
- Changping Laboratory, Beijing, China
| | - Youchun Wang
- Changping Laboratory, Beijing, China
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Zhongyang Shen
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Jahandar-Lashaki S, Farajnia S, Alizadeh E, Seirafi F, Tanoumand A, Hosseini MK. Isolation and Preliminary Characterization of a Novel scFv against SARS-CoV-2 : an Experimental and Computational Analysis. Avicenna J Med Biotechnol 2025; 17:64-79. [PMID: 40094093 PMCID: PMC11910022 DOI: 10.18502/ajmb.v17i1.17679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/19/2024] [Indexed: 03/19/2025] Open
Abstract
Background Since the initial outbreak, the SARS-CoV-2 virus has continued to circulate and mutate, resulting in the emergence of new viral sublineages. Due to the lack of effective protection and therapeutic measures against these new variants, the virus is able to further evolve and diversify. This study aimed to screen a phage antibody library to identify monoclonal antibodies in single-chain variable fragment (scFv) format that target the Receptor Binding Domain (RBD) of different SARS-CoV-2 strains. The newly discovered scFv has the potential for use as a diagnostic or therapeutic option against SARS-CoV-2. Methods The RBD protein was produced, purified, and used as an antigen during biopanning. Six rounds of panning enriched RBD-specific phages and the binding affinity of binders were monitored by polyclonal phage ELISA. Subsequently, monoclonal phage ELISA was employed to identify specific binders. After sequence confirmation, the reactivity of the isolated anti-RBD scFv was evaluated. Additionally, bioinformatics tools determined the interaction between selected scFv and SARS-CoV-2 strains. Results The ELISA analysis demonstrated that the expressed RBD retains its structural integrity and effectively interacts with antibodies present in the sera of COVID-19 patients. Through screening a phage display library, a strong-binding scFv for RBD was discovered, which can effectively neutralize SARS-CoV-2 and its novel variants. Conclusion The findings of this study have led to the discovery of a novel scFv that effectively neutralizes SARS-CoV-2 strains, offering immense potential for research and therapy purposes.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzin Seirafi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Tanoumand
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
| | | |
Collapse
|
15
|
Rosen LE, Tortorici MA, De Marco A, Pinto D, Foreman WB, Taylor AL, Park YJ, Bohan D, Rietz T, Errico JM, Hauser K, Dang HV, Chartron JW, Giurdanella M, Cusumano G, Saliba C, Zatta F, Sprouse KR, Addetia A, Zepeda SK, Brown J, Lee J, Dellota E, Rajesh A, Noack J, Tao Q, DaCosta Y, Tsu B, Acosta R, Subramanian S, de Melo GD, Kergoat L, Zhang I, Liu Z, Guarino B, Schmid MA, Schnell G, Miller JL, Lempp FA, Czudnochowski N, Cameroni E, Whelan SPJ, Bourhy H, Purcell LA, Benigni F, di Iulio J, Pizzuto MS, Lanzavecchia A, Telenti A, Snell G, Corti D, Veesler D, Starr TN. A potent pan-sarbecovirus neutralizing antibody resilient to epitope diversification. Cell 2024; 187:7196-7213.e26. [PMID: 39383863 PMCID: PMC11645210 DOI: 10.1016/j.cell.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has resulted in viral escape from clinically authorized monoclonal antibodies (mAbs), creating a need for mAbs that are resilient to epitope diversification. Broadly neutralizing coronavirus mAbs that are sufficiently potent for clinical development and retain activity despite viral evolution remain elusive. We identified a human mAb, designated VIR-7229, which targets the viral receptor-binding motif (RBM) with unprecedented cross-reactivity to all sarbecovirus clades, including non-ACE2-utilizing bat sarbecoviruses, while potently neutralizing SARS-CoV-2 variants since 2019, including the recent EG.5, BA.2.86, and JN.1. VIR-7229 tolerates extraordinary epitope variability, partly attributed to its high binding affinity, receptor molecular mimicry, and interactions with RBM backbone atoms. Consequently, VIR-7229 features a high barrier for selection of escape mutants, which are rare and associated with reduced viral fitness, underscoring its potential to be resilient to future viral evolution. VIR-7229 is a strong candidate to become a next-generation medicine.
Collapse
MESH Headings
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Epitopes/immunology
- Epitopes/chemistry
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/chemistry
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Spike Glycoprotein, Coronavirus/genetics
- Cross Reactions/immunology
- Chiroptera/virology
- Chiroptera/immunology
- COVID-19/immunology
- COVID-19/virology
- Angiotensin-Converting Enzyme 2/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
Collapse
Affiliation(s)
| | | | - Anna De Marco
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Dora Pinto
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - William B Foreman
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Dana Bohan
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Tyson Rietz
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | | | - Ha V Dang
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Martina Giurdanella
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Giuseppe Cusumano
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Christian Saliba
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Fabrizia Zatta
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Samantha K Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | - Julia Noack
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Qiqing Tao
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Brian Tsu
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Rima Acosta
- Vir Biotechnology, San Francisco, CA 94158, USA
| | | | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | - Lauriane Kergoat
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | - Ivy Zhang
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barbara Guarino
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Michael A Schmid
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Florian A Lempp
- Vir Biotechnology, San Francisco, CA 94158, USA; Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | - Elisabetta Cameroni
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015 Paris, France
| | | | - Fabio Benigni
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Antonio Lanzavecchia
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | | | | | - Davide Corti
- Humabs BioMed SA, a Subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Yang S, Yu Y, Jian F, Yisimayi A, Song W, Liu J, Wang P, Xu Y, Wang J, Niu X, Yu L, Wang Y, Shao F, Jin R, Wang Y, Cao Y. Antigenicity assessment of SARS-CoV-2 saltation variant BA.2.87.1. Emerg Microbes Infect 2024; 13:2343909. [PMID: 38616729 PMCID: PMC11073414 DOI: 10.1080/22221751.2024.2343909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The recent emergence of a SARS-CoV-2 saltation variant, BA.2.87.1, which features 65 spike mutations relative to BA.2, has attracted worldwide attention. In this study, we elucidate the antigenic characteristics and immune evasion capability of BA.2.87.1. Our findings reveal that BA.2.87.1 is more susceptible to XBB-induced humoral immunity compared to JN.1. Notably, BA.2.87.1 lacks critical escaping mutations in the receptor binding domain (RBD) thus allowing various classes of neutralizing antibodies (NAbs) that were escaped by XBB or BA.2.86 subvariants to neutralize BA.2.87.1, although the deletions in the N-terminal domain (NTD), specifically 15-23del and 136-146del, compensate for the resistance to humoral immunity. Interestingly, several neutralizing antibody drugs have been found to restore their efficacy against BA.2.87.1, including SA58, REGN-10933 and COV2-2196. Hence, our results suggest that BA.2.87.1 may not become widespread until it acquires multiple RBD mutations to achieve sufficient immune evasion comparable to that of JN.1.
Collapse
Affiliation(s)
- Sijie Yang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Yuanling Yu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- College of Chemistry and Molecular Engineering Peking University, Beijing, People’s Republic of China
| | - Ayijiang Yisimayi
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Weiliang Song
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
| | - Jingyi Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- College of Future Technology Peking University, Beijing, People’s Republic of China
| | - Peng Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Yanli Xu
- Beijing Ditan Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Jing Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Xiao Niu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- College of Chemistry and Molecular Engineering Peking University, Beijing, People’s Republic of China
| | - Lingling Yu
- Changping Laboratory, Beijing, People’s Republic of China
| | - Yao Wang
- Changping Laboratory, Beijing, People’s Republic of China
| | - Fei Shao
- Changping Laboratory, Beijing, People’s Republic of China
| | - Ronghua Jin
- Beijing Ditan Hospital Capital Medical University, Beijing, People’s Republic of China
| | - Youchun Wang
- Changping Laboratory, Beijing, People’s Republic of China
- Institute of Medical Biology Chinese Academy of Medical Science & Peking Union Medical College, Kunming, People’s Republic of China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People’s Republic of China
- Changping Laboratory, Beijing, People’s Republic of China
- School of Life Sciences, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Cofas-Vargas LF, Olivos-Ramirez GE, Chwastyk M, Moreira RA, Baker JL, Marrink SJ, Poma AB. Nanomechanical footprint of SARS-CoV-2 variants in complex with a potent nanobody by molecular simulations. NANOSCALE 2024; 16:18824-18834. [PMID: 39351797 DOI: 10.1039/d4nr02074j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Rational design of novel antibody therapeutics against viral infections such as coronavirus relies on surface complementarity and high affinity for their effectiveness. Here, we explore an additional property of protein complexes, the intrinsic mechanical stability, in SARS-CoV-2 variants when complexed with a potent antibody. In this study, we utilized a recent implementation of the GōMartini 3 approach to investigate large conformational changes in protein complexes with a focus on the mechanostability of the receptor-binding domain (RBD) from WT, Alpha, Delta, and XBB.1.5 variants in complex with the H11-H4 nanobody. The analysis revealed moderate differences in mechanical stability among these variants. Also, we identified crucial residues in both the RBD and certain protein segments in the nanobody that contribute to this property. By performing pulling simulations and monitoring the presence of specific native and non-native contacts across the protein complex interface, we provided mechanistic insights into the dissociation process. Force-displacement profiles indicate a tensile force clamp mechanism associated with the type of protein complex. Our computational approach not only highlights the key mechanostable interactions that are necessary to maintain overall stability, but it also paves the way for the rational design of potent antibodies that are mechanostable and effective against emergent SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Luis F Cofas-Vargas
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland.
| | - Gustavo E Olivos-Ramirez
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland.
| | - Mateusz Chwastyk
- Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Rodrigo A Moreira
- NEIKER, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Spain
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628, USA
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Adolfo B Poma
- Biosystems and Soft Matter Division, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland.
| |
Collapse
|
18
|
Yajima H, Nomai T, Okumura K, Maenaka K, The Genotype to Phenotype Japan (G2P-Japan) Consortium MatsunoKeita1NaoNaganori1SawaHirofumi1MizumaKeita1LiJingshu1KidaIzumi1MimuraYume1OhariYuma1TanakaShinya1TsudaMasumi1WangLei1OdaYoshikata1FerdousZannatul1ShishidoKenji1MohriHiromi1IidaMiki1FukuharaTakasuke1TamuraTomokazu1SuzukiRigel1SuzukiSaori1TsujinoShuhei1ItoHayato1KakuYu2MisawaNaoko2PlianchaisukArnon2GuoZiyi2HinayAlfredo A.Jr.2UsuiKaoru2SaikruangWilaiporn2LytrasSpyridon2UriuKeiya2YoshimuraRyo2KawakuboShusuke2NishumuraLuca2KosugiYusuke2FujitaShigeru2M.TolentinoJarel Elgin2ChenLuo2PanLin2LiWenye2YoMaximilian Stanley2HorinakaKio2SuganamiMai2ChibaMika2YasudaKyoko2IidaKeiko2StrangeAdam Patrick2OhsumiNaomi2TanakaShiho2OgawaEiko2FukudaTsuki2OsujoRina2YoshimuraKazuhisa3SadamasKenji3NagashimaMami3AsakuraHiroyuki3YoshidaIsao3NakagawaSo4TakayamaKazuo5HashimotoRina5DeguchiSayaka5WatanabeYukio5NakataYoshitaka5FutatsusakoHiroki5SakamotoAyaka5YasuharaNaoko5SuzukiTateki5KimuraKanako5SasakiJiei5NakajimaYukari5IrieTakashi6KawabataRyoko6Sasaki-TabataKaori7IkedaTerumasa8NasserHesham8ShimizuRyo8BegumMst Monira8JonathanMichael8MugitaYuka8LeongSharee8TakahashiOtowa8UenoTakamasa8MotozonoChihiro8ToyodaMako8SaitoAkatsuki9KosakaAnon9KawanoMiki9MatsubaraNatsumi9NishiuchiTomoko9ZahradnikJiri10AndrikopoulosProkopios10Padilla-BlancoMiguel10KonarAditi10Hokkaido University, Sapporo, JapanDivision of Systems Virology, Department of Microbiology and Immunolog, The Institute of Medical Science, The University of Tokyo, Tokyo, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanTokai University, Kanagawa, JapanKyoto University, Kyoto, JapanHiroshima University, Hiroshima, JapanKyushu University, Fukuoka, JapanKumamoto University, Kumamoto, JapanUniversity of Miyazaki, Miyazaki, JapanCharles University, Vestec-Prague, Czechia, Ito J, Hashiguchi T, Sato K. Molecular and structural insights into SARS-CoV-2 evolution: from BA.2 to XBB subvariants. mBio 2024; 15:e0322023. [PMID: 39283095 PMCID: PMC11481514 DOI: 10.1128/mbio.03220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Due to the incessant emergence of various SARS-CoV-2 variants with enhanced fitness in the human population, controlling the COVID-19 pandemic has been challenging. Understanding how the virus enhances its fitness during a pandemic could offer valuable insights for more effective control of viral epidemics. In this manuscript, we review the evolution of SARS-CoV-2 from early 2022 to the end of 2023-from Omicron BA.2 to XBB descendants. Focusing on viral evolution during this period, we provide concrete examples that SARS-CoV-2 has increased its fitness by enhancing several functions of the spike (S) protein, including its binding affinity to the ACE2 receptor and its ability to evade humoral immunity. Furthermore, we explore how specific mutations modify these functions of the S protein through structural alterations. This review provides evolutionary, molecular, and structural insights into how SARS-CoV-2 has increased its fitness and repeatedly caused epidemic surges during the pandemic.
Collapse
Affiliation(s)
- Hisano Yajima
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomo Nomai
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kaho Okumura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Liberal Arts, Sophia University, Tokyo, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - The Genotype to Phenotype Japan (G2P-Japan) ConsortiumMatsunoKeita1NaoNaganori1SawaHirofumi1MizumaKeita1LiJingshu1KidaIzumi1MimuraYume1OhariYuma1TanakaShinya1TsudaMasumi1WangLei1OdaYoshikata1FerdousZannatul1ShishidoKenji1MohriHiromi1IidaMiki1FukuharaTakasuke1TamuraTomokazu1SuzukiRigel1SuzukiSaori1TsujinoShuhei1ItoHayato1KakuYu2MisawaNaoko2PlianchaisukArnon2GuoZiyi2HinayAlfredo A.Jr.2UsuiKaoru2SaikruangWilaiporn2LytrasSpyridon2UriuKeiya2YoshimuraRyo2KawakuboShusuke2NishumuraLuca2KosugiYusuke2FujitaShigeru2M.TolentinoJarel Elgin2ChenLuo2PanLin2LiWenye2YoMaximilian Stanley2HorinakaKio2SuganamiMai2ChibaMika2YasudaKyoko2IidaKeiko2StrangeAdam Patrick2OhsumiNaomi2TanakaShiho2OgawaEiko2FukudaTsuki2OsujoRina2YoshimuraKazuhisa3SadamasKenji3NagashimaMami3AsakuraHiroyuki3YoshidaIsao3NakagawaSo4TakayamaKazuo5HashimotoRina5DeguchiSayaka5WatanabeYukio5NakataYoshitaka5FutatsusakoHiroki5SakamotoAyaka5YasuharaNaoko5SuzukiTateki5KimuraKanako5SasakiJiei5NakajimaYukari5IrieTakashi6KawabataRyoko6Sasaki-TabataKaori7IkedaTerumasa8NasserHesham8ShimizuRyo8BegumMst Monira8JonathanMichael8MugitaYuka8LeongSharee8TakahashiOtowa8UenoTakamasa8MotozonoChihiro8ToyodaMako8SaitoAkatsuki9KosakaAnon9KawanoMiki9MatsubaraNatsumi9NishiuchiTomoko9ZahradnikJiri10AndrikopoulosProkopios10Padilla-BlancoMiguel10KonarAditi10Hokkaido University, Sapporo, JapanDivision of Systems Virology, Department of Microbiology and Immunolog, The Institute of Medical Science, The University of Tokyo, Tokyo, JapanTokyo Metropolitan Institute of Public Health, Tokyo, JapanTokai University, Kanagawa, JapanKyoto University, Kyoto, JapanHiroshima University, Hiroshima, JapanKyushu University, Fukuoka, JapanKumamoto University, Kumamoto, JapanUniversity of Miyazaki, Miyazaki, JapanCharles University, Vestec-Prague, Czechia
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Biomolecular Science and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Faculty of Liberal Arts, Sophia University, Tokyo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
19
|
Luo M, Zhou R, Tang B, Liu H, Chen B, Liu N, Mo Y, Zhang P, Lee YL, Ip JD, Wing-Ho Chu A, Chan WM, Man HO, Chen Y, To KKW, Yuen KY, Dang S, Chen Z. Ultrapotent class I neutralizing antibodies post Omicron breakthrough infection overcome broad SARS-CoV-2 escape variants. EBioMedicine 2024; 108:105354. [PMID: 39341153 PMCID: PMC11470419 DOI: 10.1016/j.ebiom.2024.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The spread of emerging SARS-CoV-2 immune escape sublineages, especially JN.1 and KP.2, has resulted in new waves of COVID-19 globally. The evolving memory B cell responses elicited by the parental Omicron variants to subvariants with substantial antigenic drift remain incompletely investigated. METHODS Using the single B cell antibody cloning technology, we isolated single memory B cells, delineated the B cell receptor repertoire and conducted the pseudovirus-based assay for recovered neutralizing antibodies (NAb) screening. We analyzed the cryo-EM structures of top broadly NAbs (bnAbs) and evaluated their in vivo efficacy (golden Syrian hamster model). FINDINGS By investigating the evolution of human B cell immunity, we discovered a new panel of bnAbs arising from vaccinees after Omicron BA.2/BA.5 breakthrough infections. Two lead bnAbs neutralized major Omicron subvariants including JN.1 and KP.2 with IC50 values less than 10 ng/mL, representing ultrapotent receptor binding domain (RBD)-specific class I bnAbs. They belonged to the IGHV3-53/3-66 clonotypes instead of evolving from the pre-existing vaccine-induced IGHV1-58/IGKV3-20 bnAb ZCB11. Despite sequence diversity, they targeted previously unrecognized, highly conserved conformational epitopes in the receptor binding motif (RBM) for ultrapotent ACE2 blockade. The lead bnAb ZCP3B4 not only protected the lungs of hamsters intranasally challenged with BA.5.2, BQ.1.1 and XBB.1.5 but also prevented their contact transmission. INTERPRETATION Our findings demonstrated that class I bnAbs have evolved an ultrapotent mode of action protecting against highly transmissible and broad Omicron escape variants, and their epitopes are potential targets for novel bnAbs and vaccine development. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Mengxiao Luo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Bingjie Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Hang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Bohao Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yufei Mo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Pengfei Zhang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Ye Lim Lee
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jonathan Daniel Ip
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Allen Wing-Ho Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Wan-Mui Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Hiu-On Man
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yuting Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China; HKUST-Shenzhen Research Institute, Nanshan, Shenzhen, 518057, People's Republic of China.
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
20
|
Al Khalaf R, Bernasconi A, Pinoli P. Systematic analysis of SARS-CoV-2 Omicron subvariants' impact on B and T cell epitopes. PLoS One 2024; 19:e0307873. [PMID: 39298436 PMCID: PMC11412522 DOI: 10.1371/journal.pone.0307873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/14/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION Epitopes are specific structures in antigens that are recognized by the immune system. They are widely used in the context of immunology-related applications, such as vaccine development, drug design, and diagnosis / treatment / prevention of disease. The SARS-CoV-2 virus has represented the main point of interest within the viral and genomic surveillance community in the last four years. Its ability to mutate and acquire new characteristics while it reorganizes into new variants has been analyzed from many perspectives. Understanding how epitopes are impacted by mutations that accumulate on the protein level cannot be underrated. METHODS With a focus on Omicron-named SARS-CoV-2 lineages, including the last WHO-designated Variants of Interest, we propose a workflow for data retrieval, integration, and analysis pipeline for conducting a database-wide study on the impact of lineages' characterizing mutations on all T cell and B cell linear epitopes collected in the Immune Epitope Database (IEDB) for SARS-CoV-2. RESULTS Our workflow allows us to showcase novel qualitative and quantitative results on 1) coverage of viral proteins by deposited epitopes; 2) distribution of epitopes that are mutated across Omicron variants; 3) distribution of Omicron characterizing mutations across epitopes. Results are discussed based on the type of epitope, the response frequency of the assays, and the sample size. Our proposed workflow can be reproduced at any point in time, given updated variant characterizations and epitopes from IEDB, thereby guaranteeing to observe a quantitative landscape of mutations' impact on demand. CONCLUSION A big data-driven analysis such as the one provided here can inform the next genomic surveillance policies in combatting SARS-CoV-2 and future epidemic viruses.
Collapse
Affiliation(s)
- Ruba Al Khalaf
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italia
| | - Anna Bernasconi
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italia
| | - Pietro Pinoli
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italia
| |
Collapse
|
21
|
Li P, Faraone JN, Hsu CC, Chamblee M, Liu Y, Zheng YM, Xu Y, Carlin C, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Bednash JS, Xu K, Liu SL. Neutralization and Stability of JN.1-derived LB.1, KP.2.3, KP.3 and KP.3.1.1 Subvariants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611219. [PMID: 39282390 PMCID: PMC11398412 DOI: 10.1101/2024.09.04.611219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
During the summer of 2024, COVID-19 cases surged globally, driven by variants derived from JN.1 subvariants of SARS-CoV-2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2, and increased resistance to elevated temperatures. Molecular modeling suggests that the DelS31 mutation induces a conformational change that stabilizes the NTD and strengthens the NTD-Receptor-Binding Domain (RBD) interaction, thus favoring the down conformation of RBD and reducing accessibility to both the ACE2 receptor and certain nAbs. Additionally, the DelS31 mutation introduces an N-linked glycan modification at N30, which shields the underlying NTD region from antibody recognition. Our data highlight the critical role of NTD mutations in the spike protein for nAb evasion, stability, and viral infectivity, and suggest consideration of updating COVID-19 vaccines with antigens containing DelS31.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Kai Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Lead contact
| |
Collapse
|
22
|
Yang H, Guo H, Wang A, Cao L, Fan Q, Jiang J, Wang M, Lin L, Ge X, Wang H, Zhang R, Liao M, Yan R, Ju B, Zhang Z. Structural basis for the evolution and antibody evasion of SARS-CoV-2 BA.2.86 and JN.1 subvariants. Nat Commun 2024; 15:7715. [PMID: 39231977 PMCID: PMC11374805 DOI: 10.1038/s41467-024-51973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
The Omicron subvariants of SARS-CoV-2, especially for BA.2.86 and JN.1, have rapidly spread across multiple countries, posing a significant threat in the ongoing COVID-19 pandemic. Distinguished by 34 additional mutations on the Spike (S) protein compared to its BA.2 predecessor, the implications of BA.2.86 and its evolved descendant, JN.1 with additional L455S mutation in receptor-binding domains (RBDs), are of paramount concern. In this work, we systematically examine the neutralization susceptibilities of SARS-CoV-2 Omicron subvariants and reveal the enhanced antibody evasion of BA.2.86 and JN.1. We also determine the cryo-EM structures of the trimeric S proteins from BA.2.86 and JN.1 in complex with the host receptor ACE2, respectively. The mutations within the RBDs of BA.2.86 and JN.1 induce a remodeling of the interaction network between the RBD and ACE2. The L455S mutation of JN.1 further induces a notable shift of the RBD-ACE2 interface, suggesting the notably reduced binding affinity of JN.1 than BA.2.86. An analysis of the broadly neutralizing antibodies possessing core neutralizing epitopes reveals the antibody evasion mechanism underlying the evolution of Omicron BA.2.86 subvariant. In general, we construct a landscape of evolution in virus-receptor of the circulating Omicron subvariants.
Collapse
MESH Headings
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Humans
- Immune Evasion
- COVID-19/immunology
- COVID-19/virology
- Angiotensin-Converting Enzyme 2/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Cryoelectron Microscopy
- Antibodies, Viral/immunology
- Antibodies, Viral/chemistry
- Mutation
- Evolution, Molecular
- Protein Binding
- Models, Molecular
Collapse
Affiliation(s)
- Haonan Yang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Huimin Guo
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Aojie Wang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Liwei Cao
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Qing Fan
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jie Jiang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Miao Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Lin Lin
- Sustech Core Research Facilities, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xiangyang Ge
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Runze Zhang
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ming Liao
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou, Guangdong Province, China.
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China.
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
- Guangdong Key Laboratory for Anti-infection Drug Quality Evaluation, Shenzhen, Guangdong Province, China.
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Shenzhen, Guangdong Province, China.
| |
Collapse
|
23
|
Taylor AL, Starr TN. Deep mutational scanning of SARS-CoV-2 Omicron BA.2.86 and epistatic emergence of the KP.3 variant. Virus Evol 2024; 10:veae067. [PMID: 39310091 PMCID: PMC11414647 DOI: 10.1093/ve/veae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain. As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ashley L Taylor
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Dr E, Salt Lake City, UT 84112, USA
| | - Tyler N Starr
- Department of Biochemistry, University of Utah School of Medicine, 15 N Medical Dr E, Salt Lake City, UT 84112, USA
| |
Collapse
|
24
|
Li P, Faraone JN, Hsu CC, Chamblee M, Zheng YM, Carlin C, Bednash JS, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Xu K, Liu SL. Neutralization escape, infectivity, and membrane fusion of JN.1-derived SARS-CoV-2 SLip, FLiRT, and KP.2 variants. Cell Rep 2024; 43:114520. [PMID: 39024099 PMCID: PMC11430188 DOI: 10.1016/j.celrep.2024.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
We investigate JN.1-derived subvariants SLip, FLiRT, and KP.2 for neutralization by antibodies in vaccinated individuals, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients, or class III monoclonal antibody S309. Compared to JN.1, SLip, KP.2, and especially FLiRT exhibit increased resistance to bivalent-vaccinated and BA.2.86/JN.1-wave convalescent human sera. XBB.1.5 monovalent-vaccinated hamster sera robustly neutralize FLiRT and KP.2 but have reduced efficiency for SLip. All subvariants are resistant to S309 and show decreased infectivity, cell-cell fusion, and spike processing relative to JN.1. Modeling reveals that L455S and F456L in SLip reduce spike binding for ACE2, while R346T in FLiRT and KP.2 strengthens it. These three mutations, alongside D339H, alter key epitopes in spike, likely explaining the reduced sensitivity of these subvariants to neutralization. Our findings highlight the increased neutralization resistance of JN.1 subvariants and suggest that future vaccine formulations should consider the JN.1 spike as an immunogen, although the current XBB.1.5 monovalent vaccine could still offer adequate protection.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Julia N Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph S Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Jeffrey C Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Rama K Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Linda J Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA; Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Kai Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Li Z, Hu P, Qu L, Yang M, Qiu M, Xie C, Yang H, Cao J, Yi L, Liu Z, Zou L, Lian H, Zeng H, Xu S, Hu P, Sun J, He J, Chen L, Yang Y, Li B, Sun L, Lu J. Molecular epidemiology and population immunity of SARS-CoV-2 in Guangdong (2022-2023) following a pivotal shift in the pandemic. Nat Commun 2024; 15:7033. [PMID: 39147778 PMCID: PMC11327343 DOI: 10.1038/s41467-024-51141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
The SARS-CoV-2 Omicron variant sparked the largest wave of infections worldwide. Mainland China eased its strict COVID-19 measures in late 2022 and experienced two nationwide Omicron waves in 2023. Here, we investigated lineage distribution and virus evolution in Guangdong, China, 2022-2023 by comparing 5813 local viral genomes with the datasets from other regions of China and worldwide. Additionally, we conducted three large-scale serological surveys involving 1696 participants to measure their immune response to the BA.5 and XBB.1.9 before and after the corresponding waves. Our findings revealed the Omicron variants, mainly the BA.5.2.48 lineage, causing infections in over 90% of individuals across different age groups within a month. This rapid spread led to the establishment of widespread immunity, limiting the virus's ability to further adaptive mutation and dissemination. While similar immune responses to BA.5 were observed across all age groups after the initial wave, children aged 3 to 11 developed a stronger cross immune response to the XBB.1.9 strain, possibly explaining their lower infection rates in the following XBB.1 wave. Reinfection with Omicron XBB.1 variant triggered a more potent neutralizing immune response among older adults. These findings highlight the impact of age-specific immune responses on viral spread in potential future waves.
Collapse
Affiliation(s)
- Zhencui Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Pei Hu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Lin Qu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Mingda Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, China
| | - Ming Qiu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Chunyan Xie
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, China
| | - Haiyi Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Jiadian Cao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Lina Yi
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Zhe Liu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Lirong Zou
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Huimin Lian
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Huiling Zeng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shaojian Xu
- Longhua District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Pengwei Hu
- Nanshan District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Jiufeng Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Jianfeng He
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Liang Chen
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Ying Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China
| | - Baisheng Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
- Guangdong Workstation for Emerging Infectious Disease Control and Prevention, Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Limei Sun
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| | - Jing Lu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Institution of Public Health, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Benlarbi M, Ding S, Bélanger É, Tauzin A, Poujol R, Medjahed H, El Ferri O, Bo Y, Bourassa C, Hussin J, Fafard J, Pazgier M, Levade I, Abrams C, Côté M, Finzi A. Temperature-dependent Spike-ACE2 interaction of Omicron subvariants is associated with viral transmission. mBio 2024; 15:e0090724. [PMID: 38953636 PMCID: PMC11323525 DOI: 10.1128/mbio.00907-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The continued evolution of severe acute respiratory syndrome 2 (SARS-CoV-2) requires persistent monitoring of its subvariants. Omicron subvariants are responsible for the vast majority of SARS-CoV-2 infections worldwide, with XBB and BA.2.86 sublineages representing more than 90% of circulating strains as of January 2024. To better understand parameters involved in viral transmission, we characterized the functional properties of Spike glycoproteins from BA.2.75, CH.1.1, DV.7.1, BA.4/5, BQ.1.1, XBB, XBB.1, XBB.1.16, XBB.1.5, FD.1.1, EG.5.1, HK.3, BA.2.86 and JN.1. We tested their capacity to evade plasma-mediated recognition and neutralization, binding to angiotensin-converting enzyme 2 (ACE2), their susceptibility to cold inactivation, Spike processing, as well as the impact of temperature on Spike-ACE2 interaction. We found that compared to the early wild-type (D614G) strain, most Omicron subvariants' Spike glycoproteins evolved to escape recognition and neutralization by plasma from individuals who received a fifth dose of bivalent (BA.1 or BA.4/5) mRNA vaccine and improve ACE2 binding, particularly at low temperatures. Moreover, BA.2.86 had the best affinity for ACE2 at all temperatures tested. We found that Omicron subvariants' Spike processing is associated with their susceptibility to cold inactivation. Intriguingly, we found that Spike-ACE2 binding at low temperature was significantly associated with growth rates of Omicron subvariants in humans. Overall, we report that Spikes from newly emerged Omicron subvariants are relatively more stable and resistant to plasma-mediated neutralization, present improved affinity for ACE2 which is associated, particularly at low temperatures, with their growth rates.IMPORTANCEThe persistent evolution of SARS-CoV-2 gave rise to a wide range of variants harboring new mutations in their Spike glycoproteins. Several factors have been associated with viral transmission and fitness such as plasma-neutralization escape and ACE2 interaction. To better understand whether additional factors could be of importance in SARS-CoV-2 variants' transmission, we characterize the functional properties of Spike glycoproteins from several Omicron subvariants. We found that the Spike glycoprotein of Omicron subvariants presents an improved escape from plasma-mediated recognition and neutralization, Spike processing, and ACE2 binding which was further improved at low temperature. Intriguingly, Spike-ACE2 interaction at low temperature is strongly associated with viral growth rate, as such, low temperatures could represent another parameter affecting viral transmission.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Raphaël Poujol
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Julie Hussin
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Mila—Quebec AI institute, Montreal, Quebec, Canada
| | - Judith Fafard
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Cameron Abrams
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
27
|
Paciello I, Maccari G, Pierleoni G, Perrone F, Realini G, Troisi M, Anichini G, Cusi MG, Rappuoli R, Andreano E. SARS-CoV-2 JN.1 variant evasion of IGHV3-53/3-66 B cell germlines. Sci Immunol 2024; 9:eadp9279. [PMID: 39121195 DOI: 10.1126/sciimmunol.adp9279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 08/11/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 variant JN.1 recently emerged as the dominant variant despite having only one amino acid change on the spike (S) protein receptor binding domain (RBD) compared with the ancestral BA.2.86, which never represented more than 5% of global variants. To define at the molecular level the JN.1 ability to spread globally, we interrogated a panel of 899 neutralizing human monoclonal antibodies. Our data show that the single leucine-455-to-serine mutation in the JN.1 spike protein RBD unleashed the global spread of JN.1, likely occurring by elimination of more than 70% of the neutralizing antibodies mediated by IGHV3-53/3-66 germlines. However, the resilience of class 3 antibodies with low neutralization potency but strong Fc functions may explain the absence of JN.1 severe disease.
Collapse
Affiliation(s)
- Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Federica Perrone
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giulia Realini
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Marco Troisi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Gabriele Anichini
- Virology Unit, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Grazia Cusi
- Virology Unit, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rino Rappuoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- Fondazione Biotecnopolo di Siena, Siena, Italy
| | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| |
Collapse
|
28
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
29
|
Focosi D, Franchini M, Casadevall A, Maggi F. An update on the anti-spike monoclonal antibody pipeline for SARS-CoV-2. Clin Microbiol Infect 2024; 30:999-1006. [PMID: 38663655 DOI: 10.1016/j.cmi.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Anti-spike monoclonal antibodies represent one of the most tolerable prophylaxis and therapies for COVID-19 in frail and immunocompromised patients. Unfortunately, viral evolution in Omicron has led all of them to failure. OBJECTIVES We review here the current pipeline of anti-spike mAb's, discussing in detail the most promising candidates. SOURCES We scanned PubMed, ClinicalTrials.gov and manufacturers' press releases for clinical studies on anti-spike monoclonal antibodies. CONTENT We present state-of-art data clinical progress for AstraZeneca's AZD3152, Invivyd's VYD222, Regeneron's REGN-17092 and Aerium Therapeutics' AER-800. IMPLICATIONS The anti-spike monoclonal antibody clinical pipeline is currently limited to few agents (most being single antibodies) with unknown efficacy against the dominant JN.1 sublineage. The field of antibody-based therapies requires boosting by both manufacturers and institutions.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| | - Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantua, Italy
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
30
|
Zhang QE, Lindenberger J, Parsons RJ, Thakur B, Parks R, Park CS, Huang X, Sammour S, Janowska K, Spence TN, Edwards RJ, Martin M, Williams WB, Gobeil S, Montefiori DC, Korber B, Saunders KO, Haynes BF, Henderson R, Acharya P. SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition. Mol Cell 2024; 84:2747-2764.e7. [PMID: 39059371 PMCID: PMC11366207 DOI: 10.1016/j.molcel.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
A recombinant lineage of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant, named XBB, appeared in late 2022 and evolved descendants that successively swept local and global populations. XBB lineage members were noted for their improved immune evasion and transmissibility. Here, we determine cryoelectron microscopy (cryo-EM) structures of XBB.1.5, XBB.1.16, EG.5, and EG.5.1 spike (S) ectodomains to reveal reinforced 3-receptor binding domain (RBD)-down receptor-inaccessible closed states mediated by interprotomer RBD interactions previously observed in BA.1 and BA.2. Improved XBB.1.5 and XBB.1.16 RBD stability compensated for stability loss caused by early Omicron mutations, while the F456L substitution reduced EG.5 RBD stability. S1 subunit mutations had long-range impacts on conformation and epitope presentation in the S2 subunit. Our results reveal continued S protein evolution via simultaneous optimization of multiple parameters, including stability, receptor binding, and immune evasion, and the dramatic effects of relatively few residue substitutions in altering the S protein conformational landscape.
Collapse
Affiliation(s)
- Qianyi E Zhang
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Biochemistry, Durham, NC 27710, USA
| | | | - Ruth J Parsons
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Biochemistry, Durham, NC 27710, USA
| | - Bhishem Thakur
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Rob Parks
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Chan Soo Park
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Xiao Huang
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Salam Sammour
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | | | - Taylor N Spence
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Medicine, Durham, NC 27710, USA
| | - Mitchell Martin
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA
| | - Wilton B Williams
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA; Duke University, Department of Integrative Immunology, Durham, NC 27710, USA
| | - Sophie Gobeil
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Université Laval, Institut de Biologie Intégrative et des Systèmes (IBIS), Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Centre de Recherche en Infectiologie de l'Université Laval, PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Québec, QC, Canada
| | - David C Montefiori
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA
| | - Bette Korber
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; The New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Kevin O Saunders
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA; Duke University, Department of Integrative Immunology, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Medicine, Durham, NC 27710, USA; Duke University, Department of Integrative Immunology, Durham, NC 27710, USA
| | - Rory Henderson
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Medicine, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke University, Duke Human Vaccine Institute, Durham, NC 27710, USA; Duke University, Department of Biochemistry, Durham, NC 27710, USA; Duke University, Department of Surgery, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Taylor AL, Starr TN. Deep mutational scanning of SARS-CoV-2 Omicron BA.2.86 and epistatic emergence of the KP.3 variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604853. [PMID: 39091888 PMCID: PMC11291116 DOI: 10.1101/2024.07.23.604853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Deep mutational scanning experiments aid in the surveillance and forecasting of viral evolution by providing prospective measurements of mutational effects on viral traits, but epistatic shifts in the impacts of mutations can hinder viral forecasting when measurements were made in outdated strain backgrounds. Here, we report measurements of the impact of all single amino acid mutations on ACE2-binding affinity and protein folding and expression in the SARS-CoV-2 Omicron BA.2.86 spike receptor-binding domain (RBD). As with other SARS-CoV-2 variants, we find a plastic and evolvable basis for receptor binding, with many mutations at the ACE2 interface maintaining or even improving ACE2-binding affinity. Despite its large genetic divergence, mutational effects in BA.2.86 have not diverged greatly from those measured in its Omicron BA.2 ancestor. However, we do identify strong positive epistasis among subsequent mutations that have accrued in BA.2.86 descendants. Specifically, the Q493E mutation that decreased ACE2-binding affinity in all previous SARS-CoV-2 backgrounds is reversed in sign to enhance human ACE2-binding affinity when coupled with L455S and F456L in the currently emerging KP.3 variant. Our results point to a modest degree of epistatic drift in mutational effects during recent SARS-CoV-2 evolution but highlight how these small epistatic shifts can have important consequences for the emergence of new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ashley L. Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Tyler N. Starr
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
32
|
Planchais C, Fernández I, Chalopin B, Bruel T, Rosenbaum P, Beretta M, Dimitrov JD, Conquet L, Donati F, Prot M, Porrot F, Planas D, Staropoli I, Guivel-Benhassine F, Baquero E, van der Werf S, Haouz A, Simon-Lorière E, Montagutelli X, Maillère B, Rey FA, Guardado-Calvo P, Nozach H, Schwartz O, Mouquet H. Broad sarbecovirus neutralization by combined memory B cell antibodies to ancestral SARS-CoV-2. iScience 2024; 27:110354. [PMID: 39071888 PMCID: PMC11277385 DOI: 10.1016/j.isci.2024.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Antibodies play a pivotal role in protecting from SARS-CoV-2 infection, but their efficacy is challenged by the continuous emergence of viral variants. In this study, we describe two broadly neutralizing antibodies cloned from the memory B cells of a single convalescent individual after infection with ancestral SARS-CoV-2. Cv2.3194, a resilient class 1 anti-RBD antibody, remains active against Omicron sub-variants up to BA.2.86. Cv2.3132, a near pan-Sarbecovirus neutralizer, targets the heptad repeat 2 membrane proximal region. When combined, Cv2.3194 and Cv2.3132 form a complementary SARS-CoV-2 neutralizing antibody cocktail exhibiting a local dose-dependent synergy. Thus, remarkably robust neutralizing memory B cell antibodies elicited in response to ancestral SARS-CoV-2 infection can withstand viral evolution and immune escape. The cooperative effect of such antibody combination may confer a certain level of protection against the latest SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Cyril Planchais
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, 75015 Paris, France
| | - Ignacio Fernández
- Institut Pasteur, Université Paris Cité, Structural Virology Unit, 75015 Paris, France
- CNRS UMR3569, 75015 Paris, France
| | - Benjamin Chalopin
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Timothée Bruel
- CNRS UMR3569, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, 75015 Paris, France
| | - Pierre Rosenbaum
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, 75015 Paris, France
| | - Maxime Beretta
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, 75015 Paris, France
| | - Jordan D. Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Laurine Conquet
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, 75015 Paris, France
| | - Flora Donati
- Institut Pasteur, Université Paris Cité, G5 Evolutionary Genomics of RNA Viruses, 75015 Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, 75015 Paris, France
| | - Matthieu Prot
- Institut Pasteur, Université Paris Cité, G5 Evolutionary Genomics of RNA Viruses, 75015 Paris, France
| | - Françoise Porrot
- CNRS UMR3569, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, 75015 Paris, France
| | - Delphine Planas
- CNRS UMR3569, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, 75015 Paris, France
| | - Isabelle Staropoli
- CNRS UMR3569, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, 75015 Paris, France
| | - Florence Guivel-Benhassine
- CNRS UMR3569, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, 75015 Paris, France
| | - Eduard Baquero
- Institut Pasteur, Université Paris Cité, Structural Virology Unit, 75015 Paris, France
- CNRS UMR3569, 75015 Paris, France
| | - Sylvie van der Werf
- CNRS UMR3569, 75015 Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Molecular Genetics of RNA Viruses, 75015 Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Cristallography Platform-C2RT, 75015 Paris, France
| | - Etienne Simon-Lorière
- Institut Pasteur, Université Paris Cité, G5 Evolutionary Genomics of RNA Viruses, 75015 Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, 75015 Paris, France
| | - Xavier Montagutelli
- Institut Pasteur, Université Paris Cité, Mouse Genetics Laboratory, 75015 Paris, France
| | - Bernard Maillère
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Félix A. Rey
- Institut Pasteur, Université Paris Cité, Structural Virology Unit, 75015 Paris, France
- CNRS UMR3569, 75015 Paris, France
| | - Pablo Guardado-Calvo
- Institut Pasteur, Université Paris Cité, Structural Virology Unit, 75015 Paris, France
- CNRS UMR3569, 75015 Paris, France
| | - Hervé Nozach
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Olivier Schwartz
- CNRS UMR3569, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Virus & Immunity Unit, 75015 Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, 75015 Paris, France
| |
Collapse
|
33
|
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. Atomistic Prediction of Structures, Conformational Ensembles and Binding Energetics for the SARS-CoV-2 Spike JN.1, KP.2 and KP.3 Variants Using AlphaFold2 and Molecular Dynamics Simulations: Mutational Profiling and Binding Free Energy Analysis Reveal Epistatic Hotspots of the ACE2 Affinity and Immune Escape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602810. [PMID: 39026832 PMCID: PMC11257589 DOI: 10.1101/2024.07.09.602810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The most recent wave of SARS-CoV-2 Omicron variants descending from BA.2 and BA.2.86 exhibited improved viral growth and fitness due to convergent evolution of functional hotspots. These hotspots operate in tandem to optimize both receptor binding for effective infection and immune evasion efficiency, thereby maintaining overall viral fitness. The lack of molecular details on structure, dynamics and binding energetics of the latest FLiRT and FLuQE variants with the ACE2 receptor and antibodies provides a considerable challenge that is explored in this study. We combined AlphaFold2-based atomistic predictions of structures and conformational ensembles of the SARS-CoV-2 Spike complexes with the host receptor ACE2 for the most dominant Omicron variants JN.1, KP.1, KP.2 and KP.3 to examine the mechanisms underlying the role of convergent evolution hotspots in balancing ACE2 binding and antibody evasion. Using the ensemble-based mutational scanning of the spike protein residues and computations of binding affinities, we identified binding energy hotspots and characterized molecular basis underlying epistatic couplings between convergent mutational hotspots. The results suggested that the existence of epistatic interactions between convergent mutational sites at L455, F456, Q493 positions that enable to protect and restore ACE2 binding affinity while conferring beneficial immune escape. To examine immune escape mechanisms, we performed structure-based mutational profiling of the spike protein binding with several classes of antibodies that displayed impaired neutralization against BA.2.86, JN.1, KP.2 and KP.3. The results confirmed the experimental data that JN.1, KP.2 and KP.3 harboring the L455S and F456L mutations can significantly impair the neutralizing activity of class-1 monoclonal antibodies, while the epistatic effects mediated by F456L can facilitate the subsequent convergence of Q493E changes to rescue ACE2 binding. Structural and energetic analysis provided a rationale to the experimental results showing that BD55-5840 and BD55-5514 antibodies that bind to different binding epitopes can retain neutralizing efficacy against all examined variants BA.2.86, JN.1, KP.2 and KP.3. The results support the notion that evolution of Omicron variants may favor emergence of lineages with beneficial combinations of mutations involving mediators of epistatic couplings that control balance of high ACE2 affinity and immune evasion.
Collapse
|
34
|
Liu P, Yue C, Meng B, Xiao T, Yang S, Liu S, Jian F, Zhu Q, Yu Y, Ren Y, Wang P, Li Y, Wang J, Mao X, Shao F, Wang Y, Gupta RK, Cao Y, Wang X. Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through structural plasticity. Natl Sci Rev 2024; 11:nwae206. [PMID: 39071099 PMCID: PMC11282955 DOI: 10.1093/nsr/nwae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 07/30/2024] Open
Abstract
Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating viral infectivity. The reduced infectivity is recovered in the presence of heparin sulfate, which targets the 'N354 pocket' to ease restrictions of conformational transition resulting in a 'RBD-up' state, thereby conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell-cell fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides selective advantage in humans through multiple mechanisms.
Collapse
Affiliation(s)
- Pan Liu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Yue
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Meng
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK
| | - Tianhe Xiao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100080, China
- Changping Laboratory, Beijing 102206, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Sijie Yang
- Changping Laboratory, Beijing 102206, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuo Liu
- Changping Laboratory, Beijing 102206, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100080, China
- Changping Laboratory, Beijing 102206, China
| | - Qianhui Zhu
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yanyan Ren
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Wang
- Changping Laboratory, Beijing 102206, China
| | - Yixin Li
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyue Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Mao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Shao
- Changping Laboratory, Beijing 102206, China
| | | | - Ravindra Kumar Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100080, China
- Changping Laboratory, Beijing 102206, China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Changping Laboratory, Beijing 102206, China
| |
Collapse
|
35
|
Sluchanko NN, Shcheblyakov DV, Varfolomeeva LA, Favorskaya IA, Dolzhikova IV, Korobkova AI, Alekseeva IA, Esmagambetov IB, Derkaev AA, Prokofiev VV, Zorkov ID, Logunov DY, Gintsburg AL, Popov VO, Boyko KM. Structural Basis for Evasion of New SARS-CoV-2 Variants from the Potent Virus-Neutralizing Nanobody Targeting the S-Protein Receptor-Binding Domain. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1260-1272. [PMID: 39218023 DOI: 10.1134/s0006297924070083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024]
Abstract
COVID-19 has caused millions of deaths and many times more infections worldwide, emphasizing the unpreparedness of the global health system in the face of new infections and the key role for vaccines and therapeutics, including virus-neutralizing antibodies, in prevention and containment of the disease. Continuous evolution of the SARS-CoV-2 coronavirus has been causing its new variants to evade the action of the immune system, which highlighted the importance of detailed knowledge of the epitopes of already selected potent virus-neutralizing antibodies. A single-chain antibody ("nanobody") targeting the SARS-CoV-2 receptor-binding domain (RBD), clone P2C5, had exhibited robust virus-neutralizing activity against all SARS-CoV-2 variants and, being a major component of the anti-COVID-19 formulation "GamCoviMab", had successfully passed Phase I of clinical trials. However, after the emergence of the Delta and XBB variants, a decrease in the neutralizing activity of this nanobody was observed. Here we report on the successful crystal structure determination of the RBD:P2C5 complex at 3.1 Å, which revealed the intricate protein-protein interface, sterically occluding full ACE2 receptor binding by the P2C5-neutralized RBD. Moreover, the structure revealed the developed RBD:P2C5 interface centered around residues Leu452 and Phe490, thereby explaining the evasion of the Delta or Omicron XBB, but not Omicron B.1.1.529 variant, as a result of the single L452R or F490S mutations, respectively, from the action of P2C5. The structure obtained is expected to foster nanobody engineering in order to rescue neutralization activity and will facilitate epitope mapping for other neutralizing nanobodies by competition assays.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Dmitry V Shcheblyakov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.
| | - Larisa A Varfolomeeva
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Irina A Favorskaya
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Inna V Dolzhikova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Anastasia I Korobkova
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Irina A Alekseeva
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Ilias B Esmagambetov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Artem A Derkaev
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Vladimir V Prokofiev
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Ilya D Zorkov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Denis Y Logunov
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Alexander L Gintsburg
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
- National Research Center for Epidemiology and Microbiology named after Honorary Academician N. F. Gamaleya, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| |
Collapse
|
36
|
Dadonaite B, Brown J, McMahon TE, Farrell AG, Figgins MD, Asarnow D, Stewart C, Lee J, Logue J, Bedford T, Murrell B, Chu HY, Veesler D, Bloom JD. Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature 2024; 631:617-626. [PMID: 38961298 PMCID: PMC11254757 DOI: 10.1038/s41586-024-07636-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
SARS-CoV-2 variants acquire mutations in the spike protein that promote immune evasion1 and affect other properties that contribute to viral fitness, such as ACE2 receptor binding and cell entry2,3. Knowledge of how mutations affect these spike phenotypes can provide insight into the current and potential future evolution of the virus. Here we use pseudovirus deep mutational scanning4 to measure how more than 9,000 mutations across the full XBB.1.5 and BA.2 spikes affect ACE2 binding, cell entry or escape from human sera. We find that mutations outside the receptor-binding domain (RBD) have meaningfully affected ACE2 binding during SARS-CoV-2 evolution. We also measure how mutations to the XBB.1.5 spike affect neutralization by serum from individuals who recently had SARS-CoV-2 infections. The strongest serum escape mutations are in the RBD at sites 357, 420, 440, 456 and 473; however, the antigenic effects of these mutations vary across individuals. We also identify strong escape mutations outside the RBD; however, many of them decrease ACE2 binding, suggesting they act by modulating RBD conformation. Notably, the growth rates of human SARS-CoV-2 clades can be explained in substantial part by the measured effects of mutations on spike phenotypes, suggesting our data could enable better prediction of viral evolution.
Collapse
Affiliation(s)
- Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Teagan E McMahon
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ariana G Farrell
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marlin D Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jenni Logue
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Helen Y Chu
- University of Washington, Department of Medicine, Division of Allergy and Infectious Diseases, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
37
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Exploring conformational landscapes and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variant complexes with the ACE2 receptor using AlphaFold2-based structural ensembles and molecular dynamics simulations. Phys Chem Chem Phys 2024; 26:17720-17744. [PMID: 38869513 DOI: 10.1039/d4cp01372g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles evolution and binding mechanisms of convergent evolution for the SARS-CoV-2 spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamics (MD) simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and MD simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and MD simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas, 75275, USA
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
38
|
Okumura M, Sekiguchi K, Okamoto T, Saika R, Maki H, Sato W, Sato N, Yamamura T, Takahashi Y. 'Grasshopper sign': the novel imaging of post-COVID-19 myelopathy with delayed longitudinal white matter abnormalities. BMJ Neurol Open 2024; 6:e000730. [PMID: 38884066 PMCID: PMC11177679 DOI: 10.1136/bmjno-2024-000730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Recently, there have been a few reports of atypical post-coronavirus disease 2019 (COVID-19) myelopathy manifesting tract-specific lesions similar to those due to vitamin B12 deficiency. However, the precise characteristics of imaging or clinical course remain not well understood. Methods A retrospective analysis of the clinical and imaging characteristics of four patients who were referred to our hospital with a unique post-COVID-19 myelopathy was performed. Results Four-to-six weeks following COVID-19 infection in the summer of 2023, four middle-aged men developed paraparesis, hypo/dysesthesia and bladder/bowel disturbance, suggesting myelopathy. Although spinal MRI showed no abnormalities in the early stages, tract-specific longitudinal lesions along the dorsal and lateral columns became apparent as the symptoms progressed. Owing to the lack of MRI findings at the early stage, all cases were challenging to diagnose. However, the patients remained partially responsive to aggressive immunosuppressive therapies, even in the advanced stage. Discussion We termed these tract-specific longitudinal lesions in the presented case series 'Grasshopper sign' because brain coronal and spine axial MRI findings looked like a grasshopper's antennae and face. Early identification of the characteristic MRI abnormality could allow for early intervention using intensive immunosuppressive therapy, which could improve patient outcomes.
Collapse
Affiliation(s)
- Motohiro Okumura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kazumasa Sekiguchi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tomoko Okamoto
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Reiko Saika
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroyuki Maki
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
39
|
Chen X, Mohapatra A, Nguyen HTV, Schimanski L, Kit Tan T, Rijal P, Chen CP, Cheng SH, Lee WH, Chou YC, Townsend AR, Ma C, Huang KYA. The presence of broadly neutralizing anti-SARS-CoV-2 RBD antibodies elicited by primary series and booster dose of COVID-19 vaccine. PLoS Pathog 2024; 20:e1012246. [PMID: 38857264 PMCID: PMC11192315 DOI: 10.1371/journal.ppat.1012246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/21/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Antibody-mediated immunity plays a key role in protection against SARS-CoV-2. We characterized B-cell-derived anti-SARS-CoV-2 RBD antibody repertoires from vaccinated and infected individuals and elucidate the mechanism of action of broadly neutralizing antibodies and dissect antibodies at the epitope level. The breadth and clonality of anti-RBD B cell response varies among individuals. The majority of neutralizing antibody clones lose or exhibit reduced activities against Beta, Delta, and Omicron variants. Nevertheless, a portion of anti-RBD antibody clones that develops after a primary series or booster dose of COVID-19 vaccination exhibit broad neutralization against emerging Omicron BA.2, BA.4, BA.5, BQ.1.1, XBB.1.5 and XBB.1.16 variants. These broadly neutralizing antibodies share genetic features including a conserved usage of the IGHV3-53 and 3-9 genes and recognize three clustered epitopes of the RBD, including epitopes that partially overlap the classically defined set identified early in the pandemic. The Fab-RBD crystal and Fab-Spike complex structures corroborate the epitope grouping of antibodies and reveal the detailed binding mode of broadly neutralizing antibodies. Structure-guided mutagenesis improves binding and neutralization potency of antibody with Omicron variants via a single amino-substitution. Together, these results provide an immunological basis for partial protection against severe COVID-19 by the ancestral strain-based vaccine and indicate guidance for next generation monoclonal antibody development and vaccine design.
Collapse
Affiliation(s)
- Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lisa Schimanski
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Pramila Rijal
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Cheng-Pin Chen
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Hsing Cheng
- Department of Infectious Diseases, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, and School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Wen-Hsin Lee
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Alain R. Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuan-Ying A. Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Immunology and Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
40
|
Chakraborty C, Bhattacharya M. FLip mutations (L455F + F456L) in newly emerging VOI, JN.1: Its antibody and immune escape. Int Immunopharmacol 2024; 133:112146. [PMID: 38677090 DOI: 10.1016/j.intimp.2024.112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
During the COVID-19 pandemic, one of the biggest challenges was the continuous evolution of SARS-CoV-2 through various mutations. This has resulted in the emergence of several variants and subvariants. The escape mutations are reported as significant mutations in several variants and subvariants responsible for immune, antibody, and nAb escape. It has been reported that FLip mutations (L455F and F456L) in the spike RBD are responsible for immune evasion and antibody escape. Recently, WHO has included a new SARS-CoV-2 VOI, JN.1 lineage, a descendent of BA.2.86. The variant is reported from more than 41 countries, including France, the USA, Canada, the UK, Singapore, Sweden, and India. It contains FLip mutations in the spike protein in RBD (L455F and F456L). The risk assessment of the variant by WHO shows it has increased transmission, immune escape, and antibody escape due to the mutations. The article illustrated that FLip mutations in RBD (L455F and F456L) are responsible for augmented transmission and immune and antibody escape.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| |
Collapse
|
41
|
Li P, Faraone JN, Hsu CC, Chamblee M, Zheng YM, Carlin C, Bednash JS, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Xu K, Liu SL. Characteristics of JN.1-derived SARS-CoV-2 subvariants SLip, FLiRT, and KP.2 in neutralization escape, infectivity and membrane fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595020. [PMID: 38826376 PMCID: PMC11142104 DOI: 10.1101/2024.05.20.595020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
SARS-CoV-2 variants derived from the immune evasive JN.1 are on the rise worldwide. Here, we investigated JN.1-derived subvariants SLip, FLiRT, and KP.2 for their ability to be neutralized by antibodies in bivalent-vaccinated human sera, XBB.1.5 monovalent-vaccinated hamster sera, sera from people infected during the BA.2.86/JN.1 wave, and class III monoclonal antibody (Mab) S309. We found that compared to parental JN.1, SLip and KP.2, and especially FLiRT, exhibit increased resistance to COVID-19 bivalent-vaccinated human sera and BA.2.86/JN.1-wave convalescent sera. Interestingly, antibodies in XBB.1.5 monovalent vaccinated hamster sera robustly neutralized FLiRT and KP.2 but had reduced efficiency for SLip. These JN.1 subvariants were resistant to neutralization by Mab S309. In addition, we investigated aspects of spike protein biology including infectivity, cell-cell fusion and processing, and found that these subvariants, especially SLip, had a decreased infectivity and membrane fusion relative to JN.1, correlating with decreased spike processing. Homology modeling revealed that L455S and F456L mutations in SLip reduced local hydrophobicity in the spike and hence its binding to ACE2. In contrast, the additional R346T mutation in FLiRT and KP.2 strengthened conformational support of the receptor-binding motif, thus counteracting the effects of L455S and F456L. These three mutations, alongside D339H, which is present in all JN.1 sublineages, alter the epitopes targeted by therapeutic Mabs, including class I and class III S309, explaining their reduced sensitivity to neutralization by sera and S309. Together, our findings provide insight into neutralization resistance of newly emerged JN.1 subvariants and suggest that future vaccine formulations should consider JN.1 spike as immunogen, although the current XBB.1.5 monovalent vaccine could still offer adequate protection.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kai Xu
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Lead contact
| |
Collapse
|
42
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. AlphaFold2 Predictions of Conformational Ensembles and Atomistic Simulations of the SARS-CoV-2 Spike XBB Lineages Reveal Epistatic Couplings between Convergent Mutational Hotspots that Control ACE2 Affinity. J Phys Chem B 2024; 128:4696-4715. [PMID: 38696745 DOI: 10.1021/acs.jpcb.4c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
In this study, we combined AlphaFold-based atomistic structural modeling, microsecond molecular simulations, mutational profiling, and network analysis to characterize binding mechanisms of the SARS-CoV-2 spike protein with the host receptor ACE2 for a series of Omicron XBB variants including XBB.1.5, XBB.1.5+L455F, XBB.1.5+F456L, and XBB.1.5+L455F+F456L. AlphaFold-based structural and dynamic modeling of SARS-CoV-2 Spike XBB lineages can accurately predict the experimental structures and characterize conformational ensembles of the spike protein complexes with the ACE2. Microsecond molecular dynamics simulations identified important differences in the conformational landscapes and equilibrium ensembles of the XBB variants, suggesting that combining AlphaFold predictions of multiple conformations with molecular dynamics simulations can provide a complementary approach for the characterization of functional protein states and binding mechanisms. Using the ensemble-based mutational profiling of protein residues and physics-based rigorous calculations of binding affinities, we identified binding energy hotspots and characterized the molecular basis underlying epistatic couplings between convergent mutational hotspots. Consistent with the experiments, the results revealed the mediating role of the Q493 hotspot in the synchronization of epistatic couplings between L455F and F456L mutations, providing a quantitative insight into the energetic determinants underlying binding differences between XBB lineages. We also proposed a network-based perturbation approach for mutational profiling of allosteric communications and uncovered the important relationships between allosteric centers mediating long-range communication and binding hotspots of epistatic couplings. The results of this study support a mechanism in which the binding mechanisms of the XBB variants may be determined by epistatic effects between convergent evolutionary hotspots that control ACE2 binding.
Collapse
Affiliation(s)
- Nishank Raisinghani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Mohammed Alshahrani
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Grace Gupta
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
| | - Sian Xiao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275, United States
| | - Gennady Verkhivker
- Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
43
|
Liu C, Das R, Dijokaite-Guraliuc A, Zhou D, Mentzer AJ, Supasa P, Selvaraj M, Duyvesteyn HME, Ritter TG, Temperton N, Klenerman P, Dunachie SJ, Paterson NG, Williams MA, Hall DR, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. Emerging variants develop total escape from potent monoclonal antibodies induced by BA.4/5 infection. Nat Commun 2024; 15:3284. [PMID: 38627386 PMCID: PMC11021415 DOI: 10.1038/s41467-024-47393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/29/2024] [Indexed: 04/19/2024] Open
Abstract
The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of high levels of immunity. Here, we isolate spike (S) binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. Twenty eight potent antibodies are isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5, SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called 'FLip' mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.
Collapse
Affiliation(s)
- Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Raksha Das
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Daming Zhou
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Alexander J Mentzer
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Piyada Supasa
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Muneeswaran Selvaraj
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - Thomas G Ritter
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich Chatham Maritime, Kent, ME4 4TB, UK
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susanna J Dunachie
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, Oxford, UK
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Neil G Paterson
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Mark A Williams
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - David R Hall
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
44
|
Tortorici MA, Addetia A, Seo AJ, Brown J, Sprouse K, Logue J, Clark E, Franko N, Chu H, Veesler D. Persistent immune imprinting occurs after vaccination with the COVID-19 XBB.1.5 mRNA booster in humans. Immunity 2024; 57:904-911.e4. [PMID: 38490197 DOI: 10.1016/j.immuni.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
Immune imprinting describes how the first exposure to a virus shapes immunological outcomes of subsequent exposures to antigenically related strains. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) Omicron breakthrough infections and bivalent COVID-19 vaccination primarily recall cross-reactive memory B cells induced by prior Wuhan-Hu-1 spike mRNA vaccination rather than priming Omicron-specific naive B cells. These findings indicate that immune imprinting occurs after repeated Wuhan-Hu-1 spike exposures, but whether it can be overcome remains unclear. To understand the persistence of immune imprinting, we investigated memory and plasma antibody responses after administration of the updated XBB.1.5 COVID-19 mRNA vaccine booster. We showed that the XBB.1.5 booster elicited neutralizing antibody responses against current variants that were dominated by recall of pre-existing memory B cells previously induced by the Wuhan-Hu-1 spike. Therefore, immune imprinting persists after multiple exposures to Omicron spikes through vaccination and infection, including post XBB.1.5 booster vaccination, which will need to be considered to guide future vaccination.
Collapse
Affiliation(s)
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Kaiti Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jenni Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Erica Clark
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Helen Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
45
|
Raisinghani N, Alshahrani M, Gupta G, Xiao S, Tao P, Verkhivker G. Predicting Functional Conformational Ensembles and Binding Mechanisms of Convergent Evolution for SARS-CoV-2 Spike Omicron Variants Using AlphaFold2 Sequence Scanning Adaptations and Molecular Dynamics Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587850. [PMID: 38617283 PMCID: PMC11014522 DOI: 10.1101/2024.04.02.587850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, we combined AlphaFold-based approaches for atomistic modeling of multiple protein states and microsecond molecular simulations to accurately characterize conformational ensembles and binding mechanisms of convergent evolution for the SARS-CoV-2 Spike Omicron variants BA.1, BA.2, BA.2.75, BA.3, BA.4/BA.5 and BQ.1.1. We employed and validated several different adaptations of the AlphaFold methodology for modeling of conformational ensembles including the introduced randomized full sequence scanning for manipulation of sequence variations to systematically explore conformational dynamics of Omicron Spike protein complexes with the ACE2 receptor. Microsecond atomistic molecular dynamic simulations provide a detailed characterization of the conformational landscapes and thermodynamic stability of the Omicron variant complexes. By integrating the predictions of conformational ensembles from different AlphaFold adaptations and applying statistical confidence metrics we can expand characterization of the conformational ensembles and identify functional protein conformations that determine the equilibrium dynamics for the Omicron Spike complexes with the ACE2. Conformational ensembles of the Omicron RBD-ACE2 complexes obtained using AlphaFold-based approaches for modeling protein states and molecular dynamics simulations are employed for accurate comparative prediction of the binding energetics revealing an excellent agreement with the experimental data. In particular, the results demonstrated that AlphaFold-generated extended conformational ensembles can produce accurate binding energies for the Omicron RBD-ACE2 complexes. The results of this study suggested complementarities and potential synergies between AlphaFold predictions of protein conformational ensembles and molecular dynamics simulations showing that integrating information from both methods can potentially yield a more adequate characterization of the conformational landscapes for the Omicron RBD-ACE2 complexes. This study provides insights in the interplay between conformational dynamics and binding, showing that evolution of Omicron variants through acquisition of convergent mutational sites may leverage conformational adaptability and dynamic couplings between key binding energy hotspots to optimize ACE2 binding affinity and enable immune evasion.
Collapse
|
46
|
Zhang QE, Lindenberger J, Parsons R, Thakur B, Parks R, Park CS, Huang X, Sammour S, Janowska K, Spence TN, Edwards RJ, Martin M, Williams WB, Gobeil S, Montefiori DC, Korber B, Saunders KO, Haynes BF, Haynes BF, Henderson R, Acharya P. SARS-CoV-2 Omicron XBB lineage spike structures, conformations, antigenicity, and receptor recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.580004. [PMID: 38405707 PMCID: PMC10888797 DOI: 10.1101/2024.02.12.580004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A recombinant lineage of the SARS-CoV-2 Omicron variant, named XBB, appeared in late 2022 and evolved descendants that successively swept local and global populations. XBB lineage members were noted for their improved immune evasion and transmissibility. Here, we determine cryo-EM structures of XBB.1.5, XBB.1.16, EG.5 and EG.5.1 spike (S) ectodomains to reveal reinforced 3-RBD-down receptor inaccessible closed states mediated by interprotomer receptor binding domain (RBD) interactions previously observed in BA.1 and BA.2. Improved XBB.1.5 and XBB.1.16 RBD stability compensated for stability loss caused by early Omicron mutations, while the F456L substitution reduced EG.5 RBD stability. S1 subunit mutations had long-range impacts on conformation and epitope presentation in the S2 subunit. Our results reveal continued S protein evolution via simultaneous optimization of multiple parameters including stability, receptor binding and immune evasion, and the dramatic effects of relatively few residue substitutions in altering the S protein conformational landscape.
Collapse
|
47
|
Arantes I, Gomes M, Ito K, Sarafim S, Gräf T, Miyajima F, Khouri R, de Carvalho FC, de Almeida WAF, Siqueira MM, Resende PC, Naveca FG, Bello G, COVID-19 Fiocruz Genomic Surveillance Network. Spatiotemporal dynamics and epidemiological impact of SARS-CoV-2 XBB lineage dissemination in Brazil in 2023. Microbiol Spectr 2024; 12:e0383123. [PMID: 38315011 PMCID: PMC10913747 DOI: 10.1128/spectrum.03831-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 02/07/2024] Open
Abstract
The SARS-CoV-2 XBB is a group of highly immune-evasive lineages of the Omicron variant of concern that emerged by recombining BA.2-descendent lineages and spread worldwide during 2023. In this study, we combine SARS-CoV-2 genomic data (n = 11,065 sequences) with epidemiological data of severe acute respiratory infection (SARI) cases collected in Brazil between October 2022 and July 2023 to reconstruct the space-time dynamics and epidemiologic impact of XBB dissemination in the country. Our analyses revealed that the introduction and local emergence of lineages carrying convergent mutations within the Spike protein, especially F486P, F456L, and L455F, propelled the spread of XBB* lineages in Brazil. The average relative instantaneous reproduction numbers of XBB* + F486P, XBB* + F486P + F456L, and XBB* + F486P + F456L + L455F lineages in Brazil were estimated to be 1.24, 1.33, and 1.48 higher than that of other co-circulating lineages (mainly BQ.1*/BE*), respectively. Despite such a growth advantage, the dissemination of these XBB* lineages had a reduced impact on Brazil's epidemiological scenario concerning previous Omicron subvariants. The peak number of SARI cases from SARS-CoV-2 during the XBB wave was approximately 90%, 80%, and 70% lower than that observed during the previous BA.1*, BA.5*, and BQ.1* waves, respectively. These findings revealed the emergence of multiple XBB lineages with progressively increasing growth advantage, yet with relatively limited epidemiological impact in Brazil throughout 2023. The XBB* + F486P + F456L + L455F lineages stand out for their heightened transmissibility, warranting close monitoring in the months ahead. IMPORTANCE Brazil was one the most affected countries by the SARS-CoV-2 pandemic, with more than 700,000 deaths by mid-2023. This study reconstructs the dissemination of the virus in the country in the first half of 2023, a period characterized by the dissemination of descendants of XBB.1, a recombinant of Omicron BA.2 lineages evolved in late 2022. The analysis supports that XBB dissemination was marked by the continuous emergence of indigenous lineages bearing similar mutations in key sites of their Spike protein, a process followed by continuous increments in transmissibility, and without repercussions in the incidence of severe cases. Thus, the results suggest that the epidemiological impact of the spread of a SARS-CoV-2 variant is influenced by an intricate interplay of factors that extend beyond the virus's transmissibility alone. The study also underlines the need for SARS-CoV-2 genomic surveillance that allows the monitoring of its ever-shifting composition.
Collapse
Affiliation(s)
- Ighor Arantes
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marcelo Gomes
- Grupo de Métodos Analíticos em Vigilância Epidemiológica, Fiocruz, Rio de Janeiro, Brazil
| | - Kimihito Ito
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
| | - Sharbilla Sarafim
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Tiago Gräf
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
| | | | | | - Felipe Cotrim de Carvalho
- Departamento do Programa Nacional de Imunizações, Coordenação-Geral de Vigilância das doenças imunopreveníveis, Secretaria de Vigilância em saúde e ambiente, Brasília, Brazil
| | - Walquiria Aparecida Ferreira de Almeida
- Departamento do Programa Nacional de Imunizações, Coordenação-Geral de Vigilância das doenças imunopreveníveis, Secretaria de Vigilância em saúde e ambiente, Brasília, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Felipe Gomes Naveca
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| | - Gonzalo Bello
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - COVID-19 Fiocruz Genomic Surveillance Network
- Laboratório de Arbovírus e Vírus Hemorrágicos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Grupo de Métodos Analíticos em Vigilância Epidemiológica, Fiocruz, Rio de Janeiro, Brazil
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido, Japan
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba, Brazil
- Fiocruz, Fortaleza, Brazil
- Instituto Gonçalo Moniz, Fiocruz, Salvador, Brazil
- Departamento do Programa Nacional de Imunizações, Coordenação-Geral de Vigilância das doenças imunopreveníveis, Secretaria de Vigilância em saúde e ambiente, Brasília, Brazil
- Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Núcleo de Vigilância de Vírus Emergentes, Reemergentes ou Negligenciados, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
| |
Collapse
|
48
|
Yao Z, Zhang L, Duan Y, Tang X, Lu J. Molecular insights into the adaptive evolution of SARS-CoV-2 spike protein. J Infect 2024; 88:106121. [PMID: 38367704 DOI: 10.1016/j.jinf.2024.106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has substantially damaged the global economy and human health. The spike (S) protein of coronaviruses plays a pivotal role in viral entry by binding to host cell receptors. Additionally, it acts as the primary target for neutralizing antibodies in those infected and is the central focus for currently utilized or researched vaccines. During the virus's adaptation to the human host, the S protein of SARS-CoV-2 has undergone significant evolution. As the COVID-19 pandemic has unfolded, new mutations have arisen and vanished, giving rise to distinctive amino acid profiles within variant of concern strains of SARS-CoV-2. Notably, many of these changes in the S protein have been positively selected, leading to substantial alterations in viral characteristics, such as heightened transmissibility and immune evasion capabilities. This review aims to provide an overview of our current understanding of the structural implications associated with key amino acid changes in the S protein of SARS-CoV-2. These research findings shed light on the intricate and dynamic nature of viral evolution, underscoring the importance of continuous monitoring and analysis of viral genomes. Through these molecular-level investigations, we can attain deeper insights into the virus's adaptive evolution, offering valuable guidance for designing vaccines and developing antiviral drugs to combat the ever-evolving viral threats.
Collapse
Affiliation(s)
- Zhuocheng Yao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lin Zhang
- College of Fishery, Ocean University of China, Qingdao 266003, China
| | - Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|