1
|
Sharma P, Joshi RV, Pritchard R, Xu K, Eicher MA. Therapeutic Antibodies in Medicine. Molecules 2023; 28:6438. [PMID: 37764213 PMCID: PMC10535987 DOI: 10.3390/molecules28186438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody engineering has developed into a wide-reaching field, impacting a multitude of industries, most notably healthcare and diagnostics. The seminal work on developing the first monoclonal antibody four decades ago has witnessed exponential growth in the last 10-15 years, where regulators have approved monoclonal antibodies as therapeutics and for several diagnostic applications, including the remarkable attention it garnered during the pandemic. In recent years, antibodies have become the fastest-growing class of biological drugs approved for the treatment of a wide range of diseases, from cancer to autoimmune conditions. This review discusses the field of therapeutic antibodies as it stands today. It summarizes and outlines the clinical relevance and application of therapeutic antibodies in treating a landscape of diseases in different disciplines of medicine. It discusses the nomenclature, various approaches to antibody therapies, and the evolution of antibody therapeutics. It also discusses the risk profile and adverse immune reactions associated with the antibodies and sheds light on future applications and perspectives in antibody drug discovery.
Collapse
Affiliation(s)
- Prerna Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA
| | | | | | | | | |
Collapse
|
2
|
Abbaszadeh F, Leylabadlo HE, Alinezhad F, Feizi H, Mobed A, Baghbanijavid S, Baghi HB. Bacteriophages: cancer diagnosis, treatment, and future prospects. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021; 51:23-34. [DOI: 10.1007/s40005-020-00503-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
|
3
|
Kafil V, Saei AA, Tohidkia MR, Barar J, Omidi Y. Immunotargeting and therapy of cancer by advanced multivalence antibody scaffolds. J Drug Target 2020; 28:1018-1033. [DOI: 10.1080/1061186x.2020.1772796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vala Kafil
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Kitayama Y, Isomura M. Gas-stimuli-responsive molecularly imprinted polymer particles with switchable affinity for target protein. Chem Commun (Camb) 2018; 54:2538-2541. [DOI: 10.1039/c7cc09889h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecularly imprinted polymer particles bearing gas-responsive property was successfully prepared using functional initiator.
Collapse
Affiliation(s)
- Yukiya Kitayama
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - Manabu Isomura
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| |
Collapse
|
5
|
Cell-Free Systems: Functional Modules for Synthetic and Chemical Biology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 137:67-102. [DOI: 10.1007/10_2013_185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
6
|
Fluobodies against Bioactive Natural Products and their Application in Fluorescence-Linked Immunosorbent Assay. Antibodies (Basel) 2012. [DOI: 10.3390/antib1020239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Erratum. Expert Opin Biol Ther 2012. [DOI: 10.1517/14712598.2012.659904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Altshuler EP, Serebryanaya DV, Katrukha AG. Generation of recombinant antibodies and means for increasing their affinity. BIOCHEMISTRY (MOSCOW) 2011; 75:1584-605. [PMID: 21417996 DOI: 10.1134/s0006297910130067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Highly specific interaction with foreign molecules is a unique feature of antibodies. Since 1975, when Keller and Milstein proposed the method of hybridoma technology and prepared mouse monoclonal antibodies, many antibodies specific to various antigens have been obtained. Recent development of methods for preparation of recombinant DNA libraries and in silico bioinformatics approaches for protein structure analysis makes possible antibody preparation using gene engineering approaches. The development of gene engineering methods allowed creating recombinant antibodies and improving characteristics of existing antibodies; this significantly extends the applicability of antibodies. By modifying biochemical and immunochemical properties of antibodies by changing their amino acid sequences it is possible to create antibodies with properties optimal for certain tasks. For example, application of recombinant technologies resulted in antibody preparation of high affinity significantly exceeding the initial affinity of natural antibodies. In this review we summarize information about the structure, modes of preparation, and application of recombinant antibodies and their fragments and also consider the main approaches used to increase antibody affinity.
Collapse
Affiliation(s)
- E P Altshuler
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Russia
| | | | | |
Collapse
|
9
|
Jeong MS, Kang CS, Han YS, Bang IS. Expression, purification, and characterization of recombinant fibulin-5 in a prokaryote expression system. J Microbiol 2010; 48:695-700. [PMID: 21046350 DOI: 10.1007/s12275-010-0320-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/15/2010] [Indexed: 11/26/2022]
Abstract
Fibulin-5 is a widely expressed, integrin-binding extracellular matrix protein that mediates endothelial cell adhesion and scaffolds cells to elastic fibers. To investigate anti-angiogenesis activities and context-specific activities on responsive cells of recombinant fibulin-5 (rfibulin-5) expressed in Escherichia coli, the cDNA of fibulin-5 cloned from a human placenta cDNA library was inserted into the pET32a (+) vector to allow fibulin-5 expression as a Trx fusion protein. The fusion protein Trx-fibulin-5, expressed as insoluble inclusion bodies, was solubilized and its resulting expression level reached to 15% of the total cell protein. The Trxfibulin-5 was purified effectively by N(2+)-chelating chromatography and then identified by Western blotting analysis with an anti-His tag antibody. The purified Trx-fibulin-5 was refolded by dialysis against redox reagents, and the rfibulin-5 released from the fusion protein by enterokinase cleavage was purified using a RESOURCE RPC column. The final purified rfibulin-5 effectively inhibited angiogenesis in chicken embryos in a dose-dependent manner through a chorioallantoic membrane (CAM) assay. Additionally, rfibulin-5 potently suppressed in vitro proliferation of human umbilical vein endothelial cells, but stimulated that of human dermal fibroblasts. The expression and in vitro refolding of rfibulin-5 resulted in production of an active molecule with a yield of 2.1 mg/L.
Collapse
Affiliation(s)
- Myoung Seok Jeong
- Department of Biological Science and the Research Institute for Basic Sciences, Hoseo University, Asan 336-795, Republic of Korea
| | | | | | | |
Collapse
|
10
|
Abstract
MMPs are a group of metalloendopeptidases whose major role is in extracellular matrix (ECM) catabolism under physiological and pathological conditions. ECM catabolism is often associated with different diseases, and accumulated studies support the causal relationship between MMPs and different diseases especially with cancer and arthritis. Therefore, MMPs have been considered as therapeutic target molecules. However, multiple failures of MMP inhibitor drugs in clinical trials from late 1990s to early 2000s resulted in the consideration that wide inhibitory spectrum inhibitors of metalloproteinases may not be desirable for treatment of diseases. On the other hand, developing low molecular mass selective inhibitor(s) targeting the active site is not a very easy task. One way to overcome this problem is to develop biologic inhibitors, namely antibodies. In this patent application, Dyax Corp. reported that a binding protein (such as an antibody) against metalloproteinases, especially membrane-type 1 MMP (MMP-14) can be used as a therapeutic drug against different diseases including cancer. They succeeded in generating a selective MMP-14 inhibitory antibody with a K(i) of 0.6 nM, which showed significant suppression of different tumour growth in mice. Further development of such an antibody as a drug may fulfil an unmet area of disease treatment targeting uncontrolled cell invasion and tissue destruction.
Collapse
Affiliation(s)
- Yoshifumi Itoh
- Kennedy Institute of Rheumatology, Imperial College London, Hammersmith, UK.
| |
Collapse
|
11
|
Zhang X, Zhang C, Liu Y, Yu X, Liu X. Construction of scFv phage display library with hapten-specific repertories and characterization of anti-ivermectin fragment isolated from the library. Eur Food Res Technol 2010. [DOI: 10.1007/s00217-010-1293-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Huang YM, Hu W, Rustandi E, Chang K, Yusuf-Makagiansar H, Ryll T. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol Prog 2010; 26:1400-10. [DOI: 10.1002/btpr.436] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Malik A, Firoz A, Jha V, Sunderasan E, Ahmad S. Modeling the three-dimensional structures of an unbound single-chain variable fragment (scFv) and its hypothetical complex with a Corynespora cassiicola toxin, cassiicolin. J Mol Model 2010; 16:1883-93. [DOI: 10.1007/s00894-010-0680-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 01/26/2010] [Indexed: 02/02/2023]
|
14
|
Development of sensitivity-improved fluorescence-linked immunosorbent assay using a fluorescent single-domain antibody against the bioactive naphthoquinone, plumbagin. Anal Bioanal Chem 2010; 396:2955-63. [DOI: 10.1007/s00216-010-3535-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
|
15
|
Backovic M, Johansson DX, Klupp BG, Mettenleiter TC, Persson MAA, Rey FA. Efficient method for production of high yields of Fab fragments in Drosophila S2 cells. Protein Eng Des Sel 2010; 23:169-74. [PMID: 20100703 DOI: 10.1093/protein/gzp088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fab molecules are used as therapeutic agents, and are invaluable tools in structural biology. We report here a method for production of recombinant Fab in Drosophila S2 cells for use in structural biology. Stably transfected S2 cell lines expressing the Fab were created within weeks. The recombinant Fab was secreted, and after affinity and size exclusion chromatography, 16 mg of pure protein were obtained from a liter of cell culture. The Fab was functional and formed a complex with its cognate antigen as demonstrated by co-precipitation and size exclusion chromatography. Biochemical characterization indicated that the Fab from S2 cells is less extensively glycosylated than the Fab obtained by digestion of antibody produced in hybridoma cells, a feature that may be advantageous for the purposes of crystallogenesis. Taken together, obtaining recombinant Fab from the S2 cells has been a faster and considerably more cost-effective method compared with the enzymatic digestion of the monoclonal antibody.
Collapse
Affiliation(s)
- Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale, Département de Virologie and CNRS Unité de Recherche Associée 3015, Paris, France.
| | | | | | | | | | | |
Collapse
|
16
|
Zhou C, Przedborski S. Intrabody and Parkinson's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:634-42. [PMID: 18834937 PMCID: PMC2745095 DOI: 10.1016/j.bbadis.2008.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/22/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
The intrabody technology has become a promising therapeutic avenue for a variety of incurable diseases. This technology is an intracellular application of gene-engineered antibodies, aimed at ablating the abnormal function of intracellular molecules. Parkinson's disease (PD) is a common neurodegenerative disease with no cure. Recent studies have explored possible intrabody applications against alpha-synuclein (alpha-syn), whose misfolding is believed to cause a familial form of PD. Here, we review the origin, production, and therapeutic mechanisms of intrabodies and the potential of intrabody protection against alpha-syn toxicity. Furthermore, we propose possible intrabody applications against leucine-rich repeat kinase 2 (LRRK2), whose mutations are the most frequent known cause of familial and sporadic PD.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
17
|
The selection of single-chain Fv antibody fragments specific to Bhlp 29.7 protein of Brachyspira hyodysenteriae. Folia Microbiol (Praha) 2009; 53:517-20. [PMID: 19381477 DOI: 10.1007/s12223-008-0081-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 06/04/2008] [Indexed: 10/20/2022]
Abstract
Single-chain antibodies (scFv) specific to Brachyspira hyodysenteriae were isolated from a phagemid library. Recombinant Bhlp 29.7 protein was used for scFv selection and individual clones were tested by ELISA and immunofluorescent test; four unique clones were isolated. One of selected clones was able to bind specifically B. hyodysenteriae in ELISA and immunofluorescence test. This is the first report of species-specific recombinant antibodies against B. hyodysenteriae.
Collapse
|
18
|
Abstract
Neutralizing antibodies are a critical component in the protection or recovery from viral infections. In the absence of available vaccines or antiviral drugs for many important human viral pathogens, the identification and characterization of new human monoclonal antibodies (hmAbs) that are able to neutralize viruses offers the possibility for effective pre- and/or post-exposure therapeutic modalities. Such hmAbs may also help in our understanding of the virus entry process, the mechanisms of virus neutralization, and in the eventual development of specific entry inhibitors, vaccines, and research tools. The majority of the more recently developed antiviral hmAbs have come from the use of antibody phage-display technologies using both naïve and immune libraries. Many of these agents are also enveloped viruses possessing important neutralizing determinants within their membrane-anchored envelope glycoproteins, and the use of recombinant, soluble versions of these viral glycoproteins is often critical in the isolation and development of antiviral hmAbs. This chapter will detail several methods that have been successfully employed to produce, purify, and characterize soluble and secreted versions of several viral envelope glycoproteins which have been successfully used as antigens to capture and isolate human phage-displayed monoclonal antibodies.
Collapse
Affiliation(s)
- Antony S. Dimitrov
- Profectus BioSciences, Inc., South Rolling Road 1450, Baltimore, 21227 U.S.A
| |
Collapse
|
19
|
Bossart KN, Bingham J, Middleton D. Targeted strategies for henipavirus therapeutics. Open Virol J 2007; 1:14-25. [PMID: 19440455 PMCID: PMC2675550 DOI: 10.2174/1874357900701010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 09/10/2007] [Accepted: 09/12/2007] [Indexed: 11/30/2022] Open
Abstract
Hendra and Nipah viruses are related emergent paramyxoviruses that infect and cause disease in animals and humans. Disease manifests as a generalized vasculitis affecting multiple organs, but is the most severe in the respiratory and central nervous systems. The high case fatality and person-to-person transmission associated with the most recent NiV outbreaks, and the recent re-emergence of HeV, emphasize the importance and necessity of effective therapeutics for these novel agents. In recent years henipavirus research has revealed a more complete understanding of pathogenesis and, as a consequence, viable approaches towards vaccines and therapeutics have emerged. All strategies target early steps in viral replication including receptor binding and membrane fusion. Animal models have been developed, some of which may prove more valuable than others for evaluating the efficacy of therapeutic agents and regimes. Assessments of protective host immunity and drug pharmacokinetics will be crucial to the further advancement of therapeutic compounds.
Collapse
Affiliation(s)
- Katharine N Bossart
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | | | | |
Collapse
|
20
|
Dezorzová-Tomanová K, Molinková D, Pekarová M, Celer V, Smola J. Isolation of Lawsonia intracellularis specific single-chain Fv antibody fragments from phage display library. Res Vet Sci 2007; 83:85-90. [PMID: 17198717 DOI: 10.1016/j.rvsc.2006.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 11/03/2006] [Accepted: 11/03/2006] [Indexed: 11/16/2022]
Abstract
Single-chain antibodies (scFv) exhibiting specific binding to Lawsonia intracellularis were isolated from a phagemid library expressing scFvs molecules on the surface of filamentous bacteriophages. For scFv selection whole bacterial cells were used and individual clones were tested in ELISA test. The total of seven unique clones with different fingerprint profiles was isolated. All clones were able to bind specifically in immunofluorescence assay. This is the first report of species specific recombinant antibodies against L. intracellularis.
Collapse
Affiliation(s)
- K Dezorzová-Tomanová
- Institute of Microbiology and Immunology, Faculty of Veterinary Medicine, Veterinary and Pharmaceutical University Brno, 612 42 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
21
|
Rajabi-Memari H, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Esmaili A. Expression and characterization of a recombinant single-domain monoclonal antibody against MUC1 mucin in tobacco plants. Hybridoma (Larchmt) 2006; 25:209-15. [PMID: 16934017 DOI: 10.1089/hyb.2006.25.209] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A promising alternative to conventional antibodies is the single-domain antibody fragment of the Camelidae (V(HH)), which (because of features such as small length, high expression, solubility, and stability) is preferred to other antibody derivatives. In this report, a recombinant single-domain antibody (V(HH)) against MUC1 mucin in the tobacco plant, which may be considered as a suitable and economical alternative expression system, was produced. This antibody was expressed under the control of a strong constitutive promoter, CaMV35S, and NOS terminator. A plant high-expression sequence (Kozak sequence) was linked at the 5' end for overexpression of the V(HH) gene. The constructed cassette (pBIV(HH)) was transferred to agrobacterium, and the VHH gene was inserted into the plant genome by agrobacterium-mediated transformation. Transgenic lines were selected on kanamycin (100 mg/L) and maintained in soil, and subsequent generations were obtained. The presence and expression of the transgene was confirmed in the transformants by polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and Western blot. Tobacco transgenic lines leave expressed V(HH) at levels varying from 1.12% to 1.63% of the total soluble protein. This report examines the transformation and expression of recombinant single-domain antibody (V(HH)) against antigen-associated tumor in tobacco plants.
Collapse
Affiliation(s)
- H Rajabi-Memari
- Department of Plant Breeding, School of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Ribosome display presents an innovative in vitro technology for the rapid isolation and evolution of high-affinity peptides or proteins. Displayed proteins are bound to and recovered from target molecules in multiple rounds of selection in order to enrich for specific binding proteins. No transformation step is necessary, which could lead to a loss of library diversity. A cycle of display and selection can be performed in one day, enabling the existing gene repertoire to be rapidly scanned. Proteins isolated from the panning rounds can be further modified through random or directed molecular evolution for affinity maturation, as well as selected for characteristics such as protein stability, folding and functional activity. Recently, the field of display technologies has become more prominent due to the generation of new scaffolds for ribosome display, isolation of high-affinity human antibodies by phage display, and their implementation in the discovery of novel protein-protein interactions. Applications for this technology extend into the broad field of antibody engineering, proteomics, and synthetic enzymes for diagnostics and therapeutics in cancer, autoimmune and infectious diseases, neurodegenerative diseases and inflammatory disorders. This review highlights the role of ribosome display in drug discovery, discusses advantages and disadvantages of the system, and attempts to predict the future impact of ribosome display technology on the development of novel engineered biopharmaceutical products for biological therapies.
Collapse
Affiliation(s)
- Achim Rothe
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
23
|
Abstract
Nanobodies are the smallest fragments of naturally occurring heavy-chain antibodies that have evolved to be fully functional in the absence of a light chain. As such, the cloning and selection of antigen-specific nanobodies obviate the need for construction and screening of large libraries, and for lengthy and unpredictable in vitro affinity maturation steps. The unique and well-characterised properties enable nanobodies to excel conventional therapeutic antibodies in terms of recognising uncommon or hidden epitopes, binding into cavities or active sites of protein targets, tailoring of half-life, drug format flexibility, low immunogenic potential and ease of manufacture. Moreover, the favourable biophysical and pharmacological properties of nanobodies, together with the ease of formatting them into multifunctional protein therapeutics, leaves them ideally placed as a new generation of antibody-based therapeutics. This review describes the state of the art on nanobodies and illustrates their potential as cancer therapeutic agents.
Collapse
Affiliation(s)
- Hilde Revets
- Vrije Universiteit Brussel, Department of Molecular and Cellular Interactions, Laboratory of Cellular and Molecular Immunology, Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, Building E8, B-1050 Brussels, Belgium.
| | | | | |
Collapse
|
24
|
Bossart KN, Broder CC. Developments towards effective treatments for Nipah and Hendra virus infection. Expert Rev Anti Infect Ther 2006; 4:43-55. [PMID: 16441208 DOI: 10.1586/14787210.4.1.43] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hendra and Nipah virus are closely related emerging viruses comprising the Henipavirus genus of the subfamily Paramyxovirinae and are distinguished by their ability to cause fatal disease in both animal and human hosts. In particular, the high mortality and person-to-person transmission associated with the most recent Nipah virus outbreaks, as well as the very recent re-emergence of Hendra virus, has confirmed the importance and necessity of developing effective therapeutic interventions. Much research conducted on the henipaviruses over the past several years has focused on virus entry, including the attachment of virus to the host cell, the identification of the virus receptor and the membrane fusion process between the viral and host cell membranes. These findings have led to the development of possible vaccine candidates, as well as potential antiviral therapeutics. The common link among all of the possible antiviral agents discussed here, which have also been developed and tested, is that they target very early stages of the infection process. The establishment and validation of suitable animal models of Henipavirus infection and pathogenesis are also discussed as they will be crucial in the assessment of the effectiveness of any treatments for Hendra and Nipah virus infection.
Collapse
Affiliation(s)
- Katharine N Bossart
- Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong, Victoria 3220, Australia.
| | | |
Collapse
|
25
|
Abstract
Maximizing the expression yields of recombinant whole antibodies and antibody fragments such as Fabs, single-chain Fvs and single-domain antibodies is highly desirable since it leads to lower production costs. Various eukaryotic and prokaryotic expression systems have been exploited to accommodate antibody expression but Escherichia coli systems have enjoyed popularity, in particular with respect to antibody fragments, because of their low cost and convenience. In many instances, product yields have been less than adequate and intrinsic and extrinsic variables have been investigated in an effort to improve yields. This review deals with various aspects of antibody expression in E. coli with a particular focus on single-domain antibodies.
Collapse
Affiliation(s)
- Mehdi Arbabi-Ghahroudi
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | | | |
Collapse
|
26
|
DeNardo SJ, Richman CM, Albrecht H, Burke PA, Natarajan A, Yuan A, Gregg JP, O'Donnell RT, DeNardo GL. Enhancement of the therapeutic index: from nonmyeloablative and myeloablative toward pretargeted radioimmunotherapy for metastatic prostate cancer. Clin Cancer Res 2006; 11:7187s-7194s. [PMID: 16203820 DOI: 10.1158/1078-0432.ccr-1004-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE New strategies that target selected molecular characteristics and result in an effective therapeutic index are needed for metastatic, hormone-refractory prostate cancer. EXPERIMENTAL DESIGN A series of preclinical and clinical studies were designed to increase the therapeutic index of targeted radiation therapy for prostate cancer. (111)In/90Y-monoclonal antibody (mAb), m170, which targets aberrant sugars on abnormal MUC1, was evaluated in androgen-independent prostate cancer patients to determine the maximum tolerated dose and efficacy of nonmyeloablative radioimmunotherapy and myeloablative combined modality radioimmunotherapy with paclitaxel. To enhance the tumor to liver therapeutic index, a cathepsin degradable mAb linkage ((111)In/90Y-peptide-m170) was used in the myeloablative combined modality radioimmunotherapy protocol. For tumor to marrow therapeutic index improvement in future studies, anti-MUC1 scFvs modules were developed for pretargeted radioimmunotherapy. Anti-MUC1 and anti-DOTA scFvs were conjugated to polyethylene glycol scaffolds tested on DU145 prostate cancer cells and prostate tissue arrays, along with mAbs against MUC1 epitopes. RESULTS The nonmyeloablative maximum tolerated dose of 90Y-m170 was 0.74 GBq/m2 for patients with not more than 10% axial skeleton involvement. Metastatic prostate cancer was targeted in all 17 patients; mean radiation dose was 10.5 Gy/GBq and pain response occurred in 7 of 13 patients reporting pain. Myeloablative combined modality radioimmunotherapy with 0.4 GBq/m2 of 90Y-peptide-m170 and paclitaxel showed therapeutic effects in 4 of 6 patients and 30% less radiation to the liver per unit of activity. Neutropenia was dose limiting without marrow support and patient eligibility was a major limitation to dose escalation. Hypoglycosylated MUC1 epitopes were shown to be abundant in prostate cancer and to increase with disease grade. Anti-MUC1 scFvs binding to prostate cancer tissue and live cells were developed into di-scFv binding modules. CONCLUSIONS The therapeutic index enhancement for prostate radioimmunotherapy was achieved in clinical studies by the addition of cathepsin cleavable linkers to 90Y-conjugated mAbs and the use of paclitaxel. However, the need for marrow support in myeloablative combined modality radioimmunotherapy restricted eligible patients. Therefore, modular pretargeted radioimmunotherapy, aiming at improving the tumor to marrow therapeutic index, is being developed.
Collapse
Affiliation(s)
- Sally J DeNardo
- School of Medicine, University of California Davis, Sacramento, California 95816, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Oved K, Lev A, Noy R, Segal D, Reiter Y. Antibody-mediated targeting of human single-chain class I MHC with covalently linked peptides induces efficient killing of tumor cells by tumor or viral-specific cytotoxic T lymphocytes. Cancer Immunol Immunother 2005; 54:867-79. [PMID: 15906027 PMCID: PMC11032774 DOI: 10.1007/s00262-005-0666-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 09/21/2004] [Indexed: 01/05/2023]
Abstract
Soluble forms of human MHC class I HLA-A2 were produced in which the peptide binding groove was uniformly occupied by a single tumor or viral-derived peptides attached via a covalent flexible peptide linker to the N terminus of a single-chain beta-2-microglobulin-HLA-A2 heavy chain fusion protein. A tetravalent version of this molecule with various peptides was found to be functional. It could stimulate T cells specifically as well as bind them with high avidity. The covalently linked single chain peptide-HLA-A2 construct was next fused at its C-terminal end to a scFv antibody fragment derived from the variable domains of an anti-IL-2R alpha subunit-specific humanized antibody, anti-Tac. The scFv-MHC fusion was thus encoded by a single gene and produced in E. coli as a single polypeptide chain. Binding studies revealed its ability to decorate Ag-positive human tumor cells with covalent peptide single-chain HLA-A2 (scHLA-A2) molecules in a manner that was entirely dependent upon the specificity of the targeting Antibody fragment. Most importantly, the covalent scHLA-A2 molecule, when bound to the target tumor cells, could induce efficient and specific HLA-A2-restricted, peptide-specific CTL-mediated lysis. These results demonstrate the ability to generate soluble, stable, and functional single-chain HLA-A2 molecules with covalently linked peptides, which when fused to targeting antibodies, potentiate CTL killing. This new approach may open the way for the development of new immunotherapeutic strategies based on antibody targeting of natural cognate MHC ligands and CTL-based cytotoxic mechanisms.
Collapse
MESH Headings
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibody-Dependent Cell Cytotoxicity/genetics
- Antigen Presentation
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Cytotoxicity Tests, Immunologic
- HLA-A2 Antigen/immunology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/metabolism
- Humans
- Immunoglobulin Fragments/genetics
- Immunoglobulin Fragments/immunology
- Interleukin-2 Receptor alpha Subunit
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Peptide Fragments/genetics
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Recombinant Fusion Proteins/pharmacology
- T-Lymphocytes, Cytotoxic/immunology
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/immunology
- beta 2-Microglobulin/metabolism
- gp100 Melanoma Antigen
Collapse
Affiliation(s)
- Kfir Oved
- Department of Biology, The Technion-Israel Institute of Technology, Technion City, Room 333, Haifa, 32000 Israel
| | - Avital Lev
- Department of Biology, The Technion-Israel Institute of Technology, Technion City, Room 333, Haifa, 32000 Israel
| | - Roy Noy
- Department of Biology, The Technion-Israel Institute of Technology, Technion City, Room 333, Haifa, 32000 Israel
| | - Dina Segal
- Department of Biology, The Technion-Israel Institute of Technology, Technion City, Room 333, Haifa, 32000 Israel
| | - Yoram Reiter
- Department of Biology, The Technion-Israel Institute of Technology, Technion City, Room 333, Haifa, 32000 Israel
| |
Collapse
|
28
|
Donofrio G, Heppner FL, Polymenidou M, Musahl C, Aguzzi A. Paracrine inhibition of prion propagation by anti-PrP single-chain Fv miniantibodies. J Virol 2005; 79:8330-8. [PMID: 15956578 PMCID: PMC1143714 DOI: 10.1128/jvi.79.13.8330-8338.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are characterized by the deposition of PrP(Sc), an abnormal form of the cellular prion protein PrP(C). A growing body of evidence suggests that antibodies to PrP(C) can antagonize deposition of PrP(Sc). However, host tolerance hampers the induction of immune responses to PrP(C), and cross-linking of PrP(C) by bivalent anti-PrP antibodies is neurotoxic. In order to obviate these problems, we explored the antiprion potential of recombinant single-chain antibody (scFv) fragments. scFv fragments derived from monoclonal anti-PrP antibody 6H4, flagged with c-myc and His6 tags, were correctly processed and secreted by mammalian RD-4 rhabdomyosarcoma cells. When cocultured with cells secreting anti-PrP scFv, chronically prion-infected neuroblastoma cells ceased to produce PrP(Sc), even if antibody-producing cells were physically separated from target cells in transwell cultures. Expression of scFv with irrelevant specificity, or of similarly tagged molecules, was not curative. Therefore, eukaryotically expressed scFv exerts a paracrine antiprion activity. The effector functions encoded by immunoglobulin constant domains are unnecessary for this effect. Because of their small size and their monovalent binding, scFv fragments may represent candidates for gene transfer-based immunotherapy of prion diseases.
Collapse
Affiliation(s)
- Gaetano Donofrio
- Institute of Neuropathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Makabe K, Asano R, Ito T, Tsumoto K, Kudo T, Kumagai I. Tumor-directed lymphocyte-activating cytokines: refolding-based preparation of recombinant human interleukin-12 and an antibody variable domain-fused protein by additive-introduced stepwise dialysis. Biochem Biophys Res Commun 2005; 328:98-105. [PMID: 15670756 DOI: 10.1016/j.bbrc.2004.12.141] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Indexed: 11/27/2022]
Abstract
Integration of lymphocyte-activating cytokines (e.g., interleukin-12: IL-12) to tumor cells offers promise for cancer immunotherapy, but the preparation of such heterodimeric proteins by refolding is difficult because of subunit instability. We achieved the refolding of Escherichia coli-expressed human IL-12 by a stepwise dialysis method, preventing the formation of insoluble aggregates by adding a redox reagent and an aggregation suppressor. We also constructed a tumor-specific IL-12 protein, each subunit of which was fused with one chain of variable domain fragment (Fv) of anticarcinoembryonic antigen (CEA) antibody T84.66 (aCEA-IL12). Fusion of IL-12 with Fv greatly increased the yield of functional heterodimer. Several assays have indicated that the Fv domain and IL-12 domain of the fused protein had cognate biological activities, and it enhanced the cytotoxicity of T-LAK cells for the cancer cell line.
Collapse
Affiliation(s)
- Koki Makabe
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba-yama 07, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Ascione A, Flego M, Zamboni S, De Cinti E, Dupuis ML, Cianfriglia M. Isolation and characterization of the human monoclonal antibodies C10 in single-chain fragment variable (scFv) format to glucose oxidase from Aspergillus niger. ACTA ACUST UNITED AC 2005; 23:380-4. [PMID: 15684666 DOI: 10.1089/hyb.2004.23.380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Despite biotechnological and clinical applications very few monoclonal antibodies (MAbs) directed to the enzyme glucose oxidase, have been produced so far because of the heavy side effects of the immunization schedule for conventional MAb preparation. In contrast, the phage display method allows for the selection of monoclonal human antibody fragments against any antigens, including toxic proteins. Furthermore, cDNA sequences encoding selected antibody fragments are readily identified, facilitating various molecular targeting approaches. In order to obtain such human fragments recognizing glucose oxidase, we used the large synthetic ETH-2 library based on the principle of protein design. Phage displaying glucose oxidase reactive scFvs were obtained after three rounds of selection on glucose oxidase-coated immunotubes and subsequent amplification in TG1 E. coli cells. Eventually, one high reactive scFv clone was selected and further examined. The anti-glucose oxidase scFv C10 was found suitable for Western blot; Biacore analysis showed that the binding affinity of the glucose oxidase-reactive scFv is almost equal that of MAbs prepared with conventional hybridoma technology. Finally, the cDNA sequence of this human scFv may be exploited to generate bispecific antibodies to target in the tumor environment-specific toxic enzymatic reaction.
Collapse
Affiliation(s)
- Alessandro Ascione
- Section of Pharmacogenetics, Drug Resistance and Experimental Therapeutics, Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Rojas G, Talavera A, Munoz Y, Rengifo E, Krengel U, Angström J, Gavilondo J, Moreno E. Light-chain shuffling results in successful phage display selection of functional prokaryotic-expressed antibody fragments to N-glycolyl GM3 ganglioside. J Immunol Methods 2004; 293:71-83. [PMID: 15541278 DOI: 10.1016/j.jim.2004.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 05/17/2004] [Accepted: 07/10/2004] [Indexed: 11/30/2022]
Abstract
Phage display technology makes it possible to introduce and rapidly screen diversity in antibody binding sites. Chain shuffling has been successfully used to humanize murine antibody fragments and also to obtain affinity matured variants. Here we report a different application of this method: the use of chain shuffling to overcome improper prokaryotic expression behavior of a hybridoma-derived single-chain antibody fragment. Construction and expression of such recombinant antibody fragments remain as empirical entities, hampered by the inability to express some antibody genes coming from eukaryotic cells in bacterial expression systems. Such problems are different for each combination of variable regions and can be serious enough to preclude the use of some hybridomas as sources of V regions to obtain recombinant antibody fragments. The particular binding properties and potential usefulness of some monoclonal antibodies make it highly desirable to bypass these technical limitations in order to develop smaller size therapeutic agents in the form of antibody fragments. The 14F7 mouse monoclonal antibody is one such attractive candidate due to its high specificity for the N-glycolyl GM3 ganglioside overexpressed in tumor cells and its ability to distinguish this antigen from closely related gangliosides like N-acetyl GM3. Our goal was to construct a phage-displayed single-chain Fv antibody fragment derived from 14F7. After cloning the original variable regions from the 14F7 hybridoma in a phagemid vector, we were unable to detect either binding activity or even expression of antibody fragments in bacteria, despite repetitive efforts. We constructed light-chain shuffling libraries, from which functional antibody fragments were readily selected. These combined the original 14F7 heavy chain variable region with a wide variety of unrelated murine and human light-chain variable regions. New antibody fragments retained the valuable properties of the monoclonal antibody in terms of fine specificity, affinity and tumor recognition. They were readily produced by bacteria, either in phage-displayed form or as soluble molecules, and provided a panel of potentially useful variants for cancer diagnosis and immunotherapy. Chain shuffling and phage display were found to be useful strategies for selecting antibody fragments on the basis of both prokaryotic expression and antigen binding criteria.
Collapse
Affiliation(s)
- Gertrudis Rojas
- Recombinant Antibodies Laboratory, Pharmaceuticals Division, Center for Genetic Engineering and Biotechnologym, P.O. Box 6162, Ave 31 e/ 158 y 190, Cubanacán, Playa, La Habana 10600, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The goals of our research are to develop high-affinity and high-stability antibodies and fragments thereof for targeting tumor-specific antigens in an attempt to develop new therapeutic agents for human hepatocellular carcinoma (HCC). Tumor-associated antigens are excellent targets for drug and gene delivery, and offer the advantage of high cellular specificity. We have explored the use of a monoclonal antibody (Mab) AF-20 raised against a human hepatoma cell line (FOCUS) as a model system. This antibody binds to a 180-kDa homodimeric cell surface glycoprotein with high affinity. The antigen is uniformly expressed in HCC-derived cell lines and human tumors, including those with distant metastasis. There is minimal expression in nontumor tissues, and none detectable in normal liver. Because the AF-20 antigen antibody interactions on the cell surface is rapidly internalized at 37 degrees C, there is an opportunity to deliver cytotoxic payloads to tumor cells. In addition, high-affinity single-chain monoclonal antibody fragments (scFv) have been created using a novel yeast display system. Drug conjugates with AF-20 monoclonal antibodies have been prepared for gene targeting of HCC both in vitro and in vivo using preclinical animal model systems. These studies show that it is possible to generate high-affinity intact scFv antibody fragments that will allow specific tumor targeting of adenoviruses containing suicide genes, chemotherapeutic agents such as methotrexate, and cytotoxic peptides to produce antitumor effects. Therefore, specific antibody targeting of antitumor agents to HCC cells has the potential for therapeutic application in this devastating disease.
Collapse
Affiliation(s)
- Leonhard Mohr
- Department of Medicine II, University Hospital Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Nuttall SD, Humberstone KS, Krishnan UV, Carmichael JA, Doughty L, Hattarki M, Coley AM, Casey JL, Anders RF, Foley M, Irving RA, Hudson PJ. Selection and affinity maturation of IgNAR variable domains targeting Plasmodium falciparum AMA1. Proteins 2004; 55:187-97. [PMID: 14997552 DOI: 10.1002/prot.20005] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The new antigen receptor (IgNAR) is an antibody unique to sharks and consists of a disulphide-bonded dimer of two protein chains, each containing a single variable and five constant domains. The individual variable (V(NAR)) domains bind antigen independently, and are candidates for the smallest antibody-based immune recognition units. We have previously produced a library of V(NAR) domains with extensive variability in the CDR1 and CDR3 loops displayed on the surface of bacteriophage. Now, to test the efficacy of this library, and further explore the dynamics of V(NAR) antigen binding we have performed selection experiments against an infectious disease target, the malarial Apical Membrane Antigen-1 (AMA1) from Plasmodium falciparum. Two related V(NAR) clones were selected, characterized by long (16- and 18-residue) CDR3 loops. These recombinant V(NAR)s could be harvested at yields approaching 5mg/L of monomeric protein from the E. coli periplasm, and bound AMA1 with nanomolar affinities (K(D)= approximately 2 x 10(-7) M). One clone, designated 12Y-2, was affinity-matured by error prone PCR, resulting in several variants with mutations mapping to the CDR1 and CDR3 loops. The best of these variants showed approximately 10-fold enhanced affinity over 12Y-2 and was Plasmodium falciparum strain-specific. Importantly, we demonstrated that this monovalent V(NAR) co-localized with rabbit anti-AMA1 antisera on the surface of malarial parasites and thus may have utility in diagnostic applications.
Collapse
Affiliation(s)
- Stewart D Nuttall
- CSIRO Health Sciences and Nutrition, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Blazek D, Celer V. The production and application of single-chain antibody fragments. Folia Microbiol (Praha) 2003; 48:687-98. [PMID: 14976730 DOI: 10.1007/bf02993480] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This review discusses methods for the single-chain antibody fragment ($cFv) generation and scFv expression systems, and describes potential applications of scFv in the therapy of viral diseases and cancer, with emphasis on intracellularly expressed scFvs (intrabodies), application of scFvs in detection and diagnostics, and their use in proteomics.
Collapse
Affiliation(s)
- D Blazek
- Institute of Microbiology and Immunology, Faculty of Veterinary Medicine, Veterinary and Pharmaceutical University, 612 42 Brno, Czechia
| | | |
Collapse
|
35
|
Nuttall SD, Krishnan UV, Doughty L, Pearson K, Ryan MT, Hoogenraad NJ, Hattarki M, Carmichael JA, Irving RA, Hudson PJ. Isolation and characterization of an IgNAR variable domain specific for the human mitochondrial translocase receptor Tom70. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3543-54. [PMID: 12919318 DOI: 10.1046/j.1432-1033.2003.03737.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The new antigen receptor (IgNAR) from sharks is a disulphide bonded dimer of two protein chains, each containing one variable and five constant domains, and functions as an antibody. In order to assess the antigen-binding capabilities of isolated IgNAR variable domains (VNAR), we have constructed an in vitro library incorporating synthetic CDR3 regions of 15-18 residues in length. Screening of this library against the 60 kDa cytosolic domain of the 70 kDa outer membrane translocase receptor from human mitochondria (Tom70) resulted in one dominant antigen-specific clone (VNAR 12F-11) after four rounds of in vitro selection. VNAR 12F-11 was expressed into the Escherichia coli periplasm and purified by anti-FLAG affinity chromatography at yields of 3 mg x L(-1). Purified protein eluted from gel filtration columns as a single monomeric protein and CD spectrum analysis indicated correct folding into the expected beta-sheet conformation. Specific binding to Tom70 was demonstrated by ELISA and BIAcore (Kd = 2.2 +/- 0.31 x 10(-9) m-1) indicating that these VNAR domains can be efficiently displayed as bacteriophage libraries, and selected against target antigens with an affinity and stability equivalent to that obtained for other single domain antibodies. As an initial step in producing 'intrabody' variants of 12F-11, the impact of modifying or removing the conserved immunoglobulin intradomain disulphide bond was assessed. High affinity binding was only retained in the wild-type protein, which combined with our inability to affinity mature 12F-11, suggests that this particular VNAR is critically dependent upon precise CDR loop conformations for its binding affinity.
Collapse
Affiliation(s)
- Stewart D Nuttall
- CSIRO Health Sciences and Nutrition, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moghaddam A, Borgen T, Stacy J, Kausmally L, Simonsen B, Marvik OJ, Brekke OH, Braunagel M. Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 2003; 280:139-55. [PMID: 12972195 DOI: 10.1016/s0022-1759(03)00109-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Use of phage display of recombinant antibodies and large repertoire naïve antibody libraries for identifying antibodies of high specificity has been extensively reported. Nevertheless, there have been few reported antibodies to haptens that have originated from naïve antibody libraries with potential use in diagnostics. We have used chain shuffling of lead single-chain fragment variable (scFv) antibodies, isolated from a naïve antibody library, to screen for antibodies that specifically recognise the major metabolite of heroin, 6-monoacetylmorphine (6MAM). The antibodies were identified by screening high-density colonies of Escherichia coli expressing soluble scFv antibody fragments without prior expression on bacteriophage (phage display). The antibodies recognise 6MAM with affinities of 1-3x10(-7) M with no crossreactivity to morphine. These antibodies can potentially be used for developing a rapid immunoassay in drug-testing programs. To our knowledge, this is the first report of an antibody that distinguishes 6MAM from its de-acetylated form, morphine.
Collapse
Affiliation(s)
- Amir Moghaddam
- GeNova AS, Oslo Research Park, Guastadalléen 21, N-0349 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Carmichael JA, Power BE, Garrett TPJ, Yazaki PJ, Shively JE, Raubischek AA, Wu AM, Hudson PJ. The crystal structure of an anti-CEA scFv diabody assembled from T84.66 scFvs in V(L)-to-V(H) orientation: implications for diabody flexibility. J Mol Biol 2003; 326:341-51. [PMID: 12559905 DOI: 10.1016/s0022-2836(02)01428-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diabodies (scFv dimers) are small, bivalent antibody mimetics of approximately 55kDa in size that possess rapid in vivo targeting pharmacokinetics compared to the intact parent antibody, and may prove highly suitable for imaging and therapeutic applications. Here, we describe T84.66Di, the first diabody crystal structure in which the scFvs comprise V domains linked in the V(L)-to-V(H) orientation. The structure was determined by X-ray diffraction analysis to 2.6 A resolution. The T84.66Di scFv was constructed from the anti-carcinoembryonic antigen (anti-CEA) antibody T84.66 variable domains connected by an eight residue peptide linker to provide flexibility between Fv modules and promote dimer formation with bivalent affinity to the cell-surface target, CEA. Therefore, it was surprising to observe a close association of some Fv module complementarity-determining regions in the T84.66 diabody crystal, especially compared to other diabody structures all of which are linked in the opposite V(H)-to-V(L) orientation. The differences between the arrangement of Fv modules in the T84.66Di V(L)-to-V(H) linked diabody structure compared to the crystal structure of L5MK16 and other proposed V(H)-to-V(L) linked diabodies has been investigated and their potential for flexibility discussed. The comparison between V(H)-to-V(L) and V(L)-to-V(H) linked diabodies revealed in this study represents a limited repertoire of possible diabody Fv orientations, but one that reveals the potential flexibility of these molecules. This analysis therefore provides some signposts that may impact on future molecular designs for these therapeutic molecules with respect to diabody flexibility and avidity.
Collapse
Affiliation(s)
- Jennifer A Carmichael
- CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville 3052, Vic., Australia
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Peter J Hudson
- CRC for Diagnostics at CSIRO Health Sciences and Nutrition, Parkville, Victoria, Australia.
| | | |
Collapse
|
39
|
Asano R, Kudo T, Makabe K, Tsumoto K, Kumagai I. Antitumor activity of interleukin-21 prepared by novel refolding procedure from inclusion bodies expressed in Escherichia coli. FEBS Lett 2002; 528:70-6. [PMID: 12297282 DOI: 10.1016/s0014-5793(02)03254-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Interleukin-21 (IL-21) has recently been identified as a novel 4-helix-bundle type I cytokine possessing a cytokine receptor gamma chain essential for the immune response. We report the preparation and functional characterization of Escherichia coli-expressed recombinant human IL-21 (rIL-21). The rIL-21, expressed as insoluble inclusion bodies in E. coli, was solubilized and then refolded by using a modified dialysis method. The introduction of redox reagents during refolding led to a dramatic increase in the refolding efficiency. Circular dichroism spectrum analysis showed that the refolded rIL-21 had an alpha-helix as a secondary structure, which is a characteristic of type I cytokines. Flow cytometry confirmed previous reports that rIL-21 binds to CD3-activated T cells (T-LAK) and to cell lines Raji, HL60, and Jurkat. rIL-21 stimulated the proliferation of T-LAK but not peripheral blood mononuclear cells, and this effect seems to be identical to that of co-stimulation with anti-CD3 antibody. Growth inhibition assay indicated that enhancement of the cytotoxicity of T-LAK to the human bile duct carcinoma TFK-1 depended on the concentration of rIL-21. Thus, refolded rIL-21 had activity identical to that of authentic IL-21 and enhanced the anti-tumor activity of T-LAK. These conclusions suggest the potential use of the refolded cytokine in adoptive immunotherapy using T-LAK cells and in the discovery of other functions of the cytokine.
Collapse
Affiliation(s)
- Ryutaro Asano
- Cell Resource Center for Biomedical Research, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | |
Collapse
|
40
|
Lev A, Novak H, Segal D, Reiter Y. Recruitment of CTL activity by tumor-specific antibody-mediated targeting of single-chain class I MHC-peptide complexes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2988-96. [PMID: 12218113 DOI: 10.4049/jimmunol.169.6.2988] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The MHC class I-restricted CD8 CTL effector arm of the adaptive immune response is uniquely equipped to recognize tumor cells as foreign and consequently initiates the cascade of events resulting in their destruction. However, tumors have developed sophisticated strategies to escape immune effector mechanisms; their most well-known strategy is down-regulation of MHC class I molecules. To overcome this and develop new approaches for immunotherapy, we have constructed a recombinant molecule in which a single-chain MHC is specifically targeted to tumor cells through its fusion to cancer-specific recombinant Ab fragments. As a model we used a single-chain HLA-A2 molecule genetically fused to the variable domains of an anti-IL-2Ralpha subunit-specific humanized Ab, anti-Tac. The construct, termed B2M-aTac(dsFv), was expressed in Escherichia coli, and functional molecules were produced by in vitro refolding in the presence of HLA-A2-restricted antigenic peptides. Flow cytometry studies revealed the ability to decorate Ag-positive, HLA-A2-negative human tumor cells with HLA-A2-peptide complexes in a manner that was entirely dependent upon the specificity of the targeting Ab fragment. Most importantly, the B2M-aTac(dsFv)-mediated coating of the target tumor cells made them susceptible for efficient and specific HLA-A2-restricted, melanoma gp100 peptide-specific CTL-mediated lysis. These results demonstrate the concept that Ab-guided, Ag-specific targeting of MHC-peptide complexes on tumor cells can render them susceptible and more receptive and thus potentiate CTL killing. This type of approach may open the way for the development of new immunotherapeutic strategies based on Ab targeting of natural cognate MHC ligands and CTL-based cytotoxic mechanisms.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibody-Dependent Cell Cytotoxicity/genetics
- Antigens, Neoplasm/genetics
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/isolation & purification
- Antineoplastic Agents/metabolism
- Binding Sites, Antibody/genetics
- Binding Sites, Antibody/immunology
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/metabolism
- Cytotoxicity Tests, Immunologic/methods
- Genetic Vectors/chemical synthesis
- Genetic Vectors/isolation & purification
- Genetic Vectors/metabolism
- Genetic Vectors/pharmacology
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- HLA-A2 Antigen/metabolism
- Humans
- Immunoglobulin Fragments/genetics
- Injections, Subcutaneous
- Membrane Glycoproteins/genetics
- Mice
- Mice, Nude
- Peptide Fragments/genetics
- Receptors, Interleukin-2/genetics
- Receptors, Interleukin-2/immunology
- Recombinant Fusion Proteins/chemical synthesis
- Recombinant Fusion Proteins/isolation & purification
- Recombinant Fusion Proteins/metabolism
- Recombinant Fusion Proteins/pharmacology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Cells, Cultured
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/immunology
- beta 2-Microglobulin/metabolism
- gp100 Melanoma Antigen
Collapse
Affiliation(s)
- Avital Lev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|