1
|
Carneiro P, Vicente MM, Leite MI, Santos ME, Pinho SS, Fernandes Â. The role of N-glycans in regulatory T cells in autoimmunity. Autoimmun Rev 2025; 24:103791. [PMID: 40043894 DOI: 10.1016/j.autrev.2025.103791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 05/17/2025]
Abstract
Regulatory T cells (Tregs) have a key role in the maintenance of immune tolerance and in the prevention of autoimmunity. Recent studies have shown an association between decreased Treg frequency and a deficient suppressive activity with the development of many autoimmune diseases. Although glycosylation, which consists in the addition of glycans to proteins and lipids on the cell surface, is recognized as a critical modification for T cell development and function, the relevance of glycans in Treg biology and activity, as well as their impact in the immunopathogenesis of autoimmune diseases, deserves more attention, as it is far from being fully understood. This review discusses the biological impact of N-glycans in Treg biology, highlighting their potential to uncover novel pathogenic mechanisms in autoimmunity and new targets for promising therapeutic approaches with clinical applications in autoimmune disease patients.
Collapse
Affiliation(s)
- Pedro Carneiro
- i3s - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Manuel M Vicente
- i3s - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Maria Isabel Leite
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Maria Ernestina Santos
- CHUdSA - Centro Hospitalar Universitário de Santo António, Department of Neurology, Porto, Portugal
| | - Salomé S Pinho
- i3s - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Ângela Fernandes
- i3s - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Zhong T, Li X, Lei K, Tang R, Deng Q, Love PE, Zhou Z, Zhao B, Li X. TGF-β-mediated crosstalk between TIGIT + Tregs and CD226 +CD8 + T cells in the progression and remission of type 1 diabetes. Nat Commun 2024; 15:8894. [PMID: 39406740 PMCID: PMC11480485 DOI: 10.1038/s41467-024-53264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by hyperglycemia resulting from the destruction of insulin-producing β-cells that is traditionally deemed irreversible, but partial remission (PR) with temporary reversal of hyperglycemia is sometimes observed. Here we use single-cell RNA sequencing to delineate the immune cell landscape across patients in different T1D stages. Together with cohort validation and functional assays, we observe dynamic changes in TIGIT+CCR7- Tregs and CD226+CCR7-CD8+ cytotoxic T cells during the peri-remission phase. Machine learning algorithms further identify TIGIT+CCR7- Tregs and CD226+CD8+ T cells as biomarkers for β-cell function decline in a predictive model, while cell communication analysis and in vitro assays suggest that TIGIT+CCR7- Tregs may inhibit CD226+CCR7-CD8+ T cells via TGF-β signaling. Lastly, in both cyclophosphamide-induced and streptozotocin (STZ)-induced mouse diabetes models, CD226 inhibition postpones insulitis onset and reduces hyperglycemia severity. Our results thus identify two interrelated immune cell subsets that may serve as biomarkers for monitoring disease progression and targets for therapeutic intervention of T1D.
Collapse
MESH Headings
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Mice
- Humans
- Transforming Growth Factor beta/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Male
- Disease Progression
- Female
- Diabetes Mellitus, Experimental/immunology
- Adult
- Mice, Inbred NOD
- Receptors, CCR7/metabolism
- Receptors, CCR7/genetics
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/immunology
- Adolescent
- Young Adult
- Cell Communication/immunology
Collapse
Affiliation(s)
- Ting Zhong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kang Lei
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institute, 17177, Solna, Sweden
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Bakery HH, Hussein HAA, Ahmed OM, Abuelsaad ASA, Khalil RG. The potential therapeutic role of IL-35 in pathophysiological processes in type 1 diabetes mellitus. Cytokine 2024; 182:156732. [PMID: 39126765 DOI: 10.1016/j.cyto.2024.156732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
A chronic autoimmune condition known as type 1 diabetes mellitus (T1DM) has characteristics marked by a gradual immune-mediated deterioration of the β-cells that produce insulin and causes overt hyperglycemia. it affects more than 1.2 million kids and teenagers (0-19 years old). In both, the initiation and elimination phases of T1DM, cytokine-mediated immunity is crucial in controlling inflammation. T regulatory (Treg) cells, a crucial anti-inflammatory CD4+ T cell subset, secretes interleukin-35 (IL-35). The IL-35 has immunomodulatory properties by inhibiting pro-inflammatory cells and cytokines, increasing the secretion of interleukin-10 (IL-10) as well as transforming Growth Factor- β (TGF-β), along with stimulating the Treg and B regulatory (Breg) cells. IL-35, it is a possible target for cutting-edge therapies for cancers, inflammatory, infectious, and autoimmune diseases, including TIDM. Unanswered questions surround IL-35's function in T1DM. Increasing data suggests Treg cells play a crucial role in avoiding autoimmune T1DM. Throughout this review, we will explain the biological impacts of IL-35 and highlight the most recently progresses in the roles of IL-35 in treatment of T1DM; the knowledge gathered from these findings might lead to the development of new T1DM treatments. This review demonstrates the potential of IL-35 as an effective autoimmune diabetes inhibitor and points to its potential therapeutic value in T1DM clinical trials.
Collapse
Affiliation(s)
- Heba H Bakery
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Heba A A Hussein
- Faculty of Medicine, Egyptian Fellowship of Radiology, Beni-Suef University, Egypt
| | - Osama M Ahmed
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | | | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt.
| |
Collapse
|
4
|
Sameir M, Soleimanifar N, Assadiasl S, Selman N, Sadr M, Mojtahedi H, Mohammed AJ, Abdulhussein RH, Hamid Al-Gawwam ZM, Hussein S, Saber AF, Nicknam MH. The Increased Frequency of Type 1 Regulatory T (Tr1) Cells and the Altered Expression of Aryl Hydrocarbon Receptor (AHR) and Interferon Regulatory Factor-4 (IRF4) Genes in Type 1 Diabetes: A Case-Control Study. Cureus 2024; 16:e65749. [PMID: 39211721 PMCID: PMC11361286 DOI: 10.7759/cureus.65749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aim Type 1 diabetes is an autoimmune disorder characterized by the destruction of pancreatic beta cells, leading to insulin deficiency and hyperglycemia. Regulatory T cells (Tregs), particularly type 1 regulatory T (Tr1) cells, play a crucial role in modulating autoimmune responses. Therefore, this study aimed to evaluate the frequency of Tr1 cells and their association with aryl hydrocarbon receptor (AHR) and interferon regulatory factor-4 (IRF4) gene expression levels in type 1 diabetes mellitus (T1DM) compared to the healthy controls. Method A case-control study design was used. The case group included patients diagnosed with T1DM, while the control group consisted of healthy individuals, matched for age and sex. Blood samples were collected, and peripheral blood mononuclear cells (PBMCs) were isolated. Serum interleukin 10 (IL-10) and interleukin 21 (IL-21) levels were measured using enzyme-linked immunosorbent assay (ELISA). The gene expression of AHR and IRF4 was analyzed using quantitative real-time polymerase chain reaction (qPCR), and Tr1 cell populations were determined using flow cytometry. Data were summarized with mean and standard error of the mean (SEM) for quantitative variables. Independent sample t-test, chi-square test, and the Mann-Whitney U test were used to compare groups. Statistical analyses were performed using SPSS version 25 (IBM SPSS Statistics, Armonk, NY), with significance levels set at p < 0.05. Figures were created using GraphPad Prism (GraphPad Software, San Diego, CA). Results A total of 45 cases were enrolled in the study, with 30 T1DM patients and 15 healthy controls. The mean IL-10 concentration was significantly higher in the patients (10.4 ± 1.1 pg/mL) compared to the healthy controls (5.1 ± 0.7 pg/mL), with a p-value of 0.001. There was no significant difference in IL-21 levels between the patients (76.1 ± 9.0 pg/mL) and healthy controls (88.2 ± 17.5 pg/mL), indicated by a p-value of 0.480. AHR gene expression was significantly lower in patients, with a p-value of 0.037. Although IRF4 gene expression was higher in patients, the difference was not statistically significant (p = 0.449). Tr1 cell frequency was significantly higher in T1DM patients (1.45% of cluster of differentiation 4+ {CD4+} T cells) compared to the healthy controls (0.40% of CD4+ T cells), with a p-value of 0.045. Conclusions The study demonstrated that T1DM is associated with higher IL-10 levels, decreased AHR gene expression, and a higher frequency of Tr1 cells. Policymakers should focus on developing targeted immunomodulatory therapies to address these immunological abnormalities. Healthcare providers should prioritize monitoring cytokine levels and gene expression in T1DM patients to tailor treatment plans effectively. Further research is needed to explore the therapeutic potential of modulating Tr1 cells and their related pathways in T1DM management.
Collapse
Affiliation(s)
- Mohammed Sameir
- Department of Clinical Autoimmune Therapy, Hammurabi College of Medicine, University of Babylon, Hilla, IRQ
| | - Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Nihad Selman
- College of Medicine, University of Babylon, Hilla, IRQ
| | - Maryam Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Ali J Mohammed
- Department of Physiology, Hammurabi College of Medicine, University of Babylon, Hilla, IRQ
| | - Rasha H Abdulhussein
- Department of Pediatrics, Hammurabi College of Medicine, University of Babylon, Hilla, IRQ
| | | | - Safin Hussein
- Department of Molecular Medicine, Tehran University of Medical Sciences, Tehran, IRN
- Department of Biology, University of Raparin, Ranya, IRQ
| | - Abdulmalik F Saber
- Department of Psychiatry and Mental Health Nursing, College of Nursing, Hawler Medical University, Erbil, IRQ
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, IRN
| |
Collapse
|
5
|
Honing DY, Luiten RM, Matos TR. Regulatory T Cell Dysfunction in Autoimmune Diseases. Int J Mol Sci 2024; 25:7171. [PMID: 39000278 PMCID: PMC11241405 DOI: 10.3390/ijms25137171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs), a suppressive subpopulation of T cells, are potent mediators of peripheral tolerance, responsible for immune homeostasis. Many autoimmune diseases exhibit disruptions in Treg function or quantity, resulting in an imbalance between protective and pathogenic immune cells. Selective expansion or manipulation of Tregs is a promising therapeutic approach for autoimmune diseases. However, the extensive diversity of Treg subpopulations and the multiple approaches used for Treg identification leads to high complexity, making it difficult to develop a successful treatment capable of modulating Tregs. In this review, we describe the suppressive mechanisms, subpopulations, classification, and identification methodology for Tregs, and their role in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Dionne Y Honing
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Rosalie M Luiten
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Tiago R Matos
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Sanofi, 1105 BP Amsterdam, The Netherlands
| |
Collapse
|
6
|
Takeuchi M, Nishio Y, Someya H, Sato T, Yoshimura A, Ito M, Harimoto K. Autoimmune uveitis attenuated in diabetic mice through imbalance of Th1/Th17 differentiation via suppression of AP-1 signaling pathway in Th cells. Front Immunol 2024; 15:1347018. [PMID: 38887289 PMCID: PMC11180723 DOI: 10.3389/fimmu.2024.1347018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose Inflammation is involved in the pathogenesis of diabetes, however the impact of diabetes on organ-specific autoimmune diseases remains unexplored. Experimental autoimmune uveoretinitis (EAU) is a widely accepted animal model of human endogenous uveitis. In this study, we investigated the effects of diabetic conditions on the development of EAU using a mouse diabetes model. Methods EAU was induced in wild-type C57BL/6 (WT) mice and Ins2Akita (Akita) mice with spontaneous diabetes by immunization with IRBP peptide. Clinical and histopathological examinations, and analysis of T cell activation state were conducted. In addition, alternations in the composition of immune cell types and gene expression profiles of relevant immune functions were identified using single-cell RNA sequencing. Results The development of EAU was significantly attenuated in immunized Akita (Akita-EAU) mice compared with immunized WT (WT-EAU) mice, although T cells were fully activated in Akita-EAU mice, and the differentiation into Th17 cells and regulatory T (Treg) cells was promoted. However, Th1 cell differentiation was inhibited in Akita-EAU mice, and single-cell analysis indicated that gene expression associated AP-1 signaling pathway (JUN, FOS, and FOSB) was downregulated not only in Th1 cells but also in Th17, and Treg cells in Akita-EAU mice at the onset of EAU. Conclusions In diabetic mice, EAU was significantly attenuated. This was related to selective inhibition of Th1 cell differentiation and downregulated AP-1 signaling pathway in both Th1 and Th17 cells.
Collapse
Affiliation(s)
- Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoshiaki Nishio
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hideaki Someya
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tomohito Sato
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kozo Harimoto
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
7
|
Tuomela K, Levings MK. Genetic engineering of regulatory T cells for treatment of autoimmune disorders including type 1 diabetes. Diabetologia 2024; 67:611-622. [PMID: 38236408 DOI: 10.1007/s00125-023-06076-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 01/19/2024]
Abstract
Suppression of pathogenic immune responses is a major goal in the prevention and treatment of type 1 diabetes. Adoptive cell therapy using regulatory T cells (Tregs), a naturally suppressive immune subset that is often dysfunctional in type 1 diabetes, is a promising approach to achieving localised and specific immune suppression in the pancreas or site of islet transplant. However, clinical trials testing administration of polyclonal Tregs in recent-onset type 1 diabetes have observed limited efficacy despite an excellent safety profile. Several barriers to efficacy have been identified, including lack of antigen specificity, low cell persistence post-administration and difficulty in generating sufficient cell numbers. Fortunately, the emergence of advanced gene editing techniques has opened the door to new strategies to engineer Tregs with improved specificity and function. These strategies include the engineering of FOXP3 expression to produce a larger source of suppressive cells for infusion, expressing T cell receptors or chimeric antigen receptors to generate antigen-specific Tregs and improving Treg survival by targeting cytokine pathways. Although these approaches are being applied in a variety of autoimmune and transplant contexts, type 1 diabetes presents unique opportunities and challenges for the genetic engineering of Tregs for adoptive cell therapy. Here we discuss the role of Tregs in type 1 diabetes pathogenesis and the application of Treg engineering in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
8
|
Mehta JM, Hiremath SC, Chilimba C, Ghasemi A, Weaver JD. Translation of cell therapies to treat autoimmune disorders. Adv Drug Deliv Rev 2024; 205:115161. [PMID: 38142739 PMCID: PMC10843859 DOI: 10.1016/j.addr.2023.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Autoimmune diseases are a diverse and complex set of chronic disorders with a substantial impact on patient quality of life and a significant global healthcare burden. Current approaches to autoimmune disease treatment comprise broadly acting immunosuppressive drugs that lack disease specificity, possess limited efficacy, and confer undesirable side effects. Additionally, there are limited treatments available to restore organs and tissues damaged during the course of autoimmune disease progression. Cell therapies are an emergent area of therapeutics with the potential to address both autoimmune disease immune dysfunction as well as autoimmune disease-damaged tissue and organ systems. In this review, we discuss the pathogenesis of common autoimmune disorders and the state-of-the-art in cell therapy approaches to (1) regenerate or replace autoimmune disease-damaged tissue and (2) eliminate pathological immune responses in autoimmunity. Finally, we discuss critical considerations for the translation of cell products to the clinic.
Collapse
Affiliation(s)
- Jinal M Mehta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Chishiba Chilimba
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
9
|
Riaz F, Wei P, Pan F. PPARs at the crossroads of T cell differentiation and type 1 diabetes. Front Immunol 2023; 14:1292238. [PMID: 37928539 PMCID: PMC10623333 DOI: 10.3389/fimmu.2023.1292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
T-cell-mediated autoimmune type 1 diabetes (T1D) is characterized by the immune-mediated destruction of pancreatic beta cells (β-cells). The increasing prevalence of T1D poses significant challenges to the healthcare system, particularly in countries with struggling economies. This review paper highlights the multifaceted roles of Peroxisome Proliferator-Activated Receptors (PPARs) in the context of T1D, shedding light on their potential as regulators of immune responses and β-cell biology. Recent research has elucidated the intricate interplay between CD4+ T cell subsets, such as Tregs and Th17, in developing autoimmune diseases like T1D. Th17 cells drive inflammation, while Tregs exert immunosuppressive functions, highlighting the delicate balance crucial for immune homeostasis. Immunotherapy has shown promise in reinstating self-tolerance and restricting the destruction of autoimmune responses, but further investigations are required to refine these therapeutic strategies. Intriguingly, PPARs, initially recognized for their role in lipid metabolism, have emerged as potent modulators of inflammation in autoimmune diseases, particularly in T1D. Although evidence suggests that PPARs affect the β-cell function, their influence on T-cell responses and their potential impact on T1D remains largely unexplored. It was noted that PPARα is involved in restricting the transcription of IL17A and enhancing the expression of Foxp3 by minimizing its proteasomal degradation. Thus, antagonizing PPARs may exert beneficial effects in regulating the differentiation of CD4+ T cells and preventing T1D. Therefore, this review advocates for comprehensive investigations to delineate the precise roles of PPARs in T1D pathogenesis, offering innovative therapeutic avenues that target both the immune system and pancreatic function. This review paper seeks to bridge the knowledge gap between PPARs, immune responses, and T1D, providing insights that may revolutionize the treatment landscape for this autoimmune disorder. Moreover, further studies involving PPAR agonists in non-obese diabetic (NOD) mice hold promise for developing novel T1D therapies.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
10
|
Shapiro MR, Peters LD, Brown ME, Cabello-Kindelan C, Posgai AL, Bayer AL, Brusko TM. Insulin-like Growth Factor-1 Synergizes with IL-2 to Induce Homeostatic Proliferation of Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1108-1122. [PMID: 37594278 PMCID: PMC10511790 DOI: 10.4049/jimmunol.2200651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
IL-2 has been proposed to restore tolerance via regulatory T cell (Treg) expansion in autoimmunity, yet off-target effects necessitate identification of a combinatorial approach allowing for lower IL-2 dosing. We recently reported reduced levels of immunoregulatory insulin-like growth factor-1 (IGF1) during type 1 diabetes progression. Thus, we hypothesized that IGF1 would synergize with IL-2 to expand Tregs. We observed IGF1 receptor was elevated on murine memory and human naive Treg subsets. IL-2 and IGF1 promoted PI3K/Akt signaling in Tregs, inducing thymically-derived Treg expansion beyond either agent alone in NOD mice. Increased populations of murine Tregs of naive or memory, as well as CD5lo polyclonal or CD5hi likely self-reactive, status were also observed. Expansion was attributed to increased IL-2Rγ subunit expression on murine Tregs exposed to IL-2 and IGF1 as compared with IL-2 or IGF1 alone. Assessing translational capacity, incubation of naive human CD4+ T cells with IL-2 and IGF1 enhanced thymically-derived Treg proliferation in vitro, without the need for TCR ligation. We then demonstrated that IGF1 and IL-2 or IL-7, which is also IL-2Rγ-chain dependent, can be used to induce proliferation of genetically engineered naive human Tregs or T conventional cells, respectively. These data support the potential use of IGF1 in combination with common γ-chain cytokines to drive homeostatic T cell expansion, both in vitro and in vivo, for cellular therapeutics and ex vivo gene editing.
Collapse
Affiliation(s)
- Melanie R. Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Matthew E. Brown
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | | | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| | - Allison L. Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL
| |
Collapse
|
11
|
Saraygord-Afshari N, Ghayem S, Foudazi R, Safa M. Drivers of consumers' behavioral intention toward private umbilical cord blood banking: a review. Cell Tissue Bank 2023; 24:651-661. [PMID: 36534202 DOI: 10.1007/s10561-022-10064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Immunitary bioeconomy encompasses a significant share of the bioeconomy that is accompanied by a high degree of complexity and various religious and ethical controversies for both customers and the service providers. Compared to blood banking, these complexities are more substantial for the new state-of-the-art technology of umbilical cord blood (UCB) banking, in which the viable therapeutically active substance of cord blood (i.e., cord blood stem cells (CBSCs)) is banked for much less likely future demand. It became even more complicated when we knew that the main three types of cord blood banking industry (i.e., private, public, or hybrid models) are not the same regarding economic, ethical, and even social considerations. The present paper aims to review and discuss the main drivers of behavioral intention among the customers of private UCB banking. We focused on private UCB banking because, although there is a low likelihood of childs' future need for their siblings' CBSCs, there is an unnecessary growing demand for using private UCB banking services. Based on the previously published pieces of research, we discussed five main influential factors (i.e., awareness, reference group, usability, disease history, and price) that can affect the customers' risk perception (and further their behavioral intention) to preserve their child UCB for private applications. Finally, we concluded that private UCB banking must not be considered a commercial activity, and ethically healthcare managers must be more actively involved in facilitating the proper flow of information among the customers.
Collapse
Affiliation(s)
- Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, P.O. Box: 14665-354, Tehran, 1449614535, Iran.
| | - Sonia Ghayem
- Department of Business Administration, Faculty of Management, UAE Branch, Islamic Azad University, Dubai, United Arab Emirates
| | - Reza Foudazi
- Department of Industrial engineering, Faculty of engineering, South-Tehran branch, Islamic Azad University, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 311] [Impact Index Per Article: 155.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
13
|
Wu T, Cai Z, Niu F, Qian B, Sun P, Yang N, Pang J, Mei H, Chang X, Chen F, Zhu Y, Li Y, Wu FG, Zhang Y, Lei T, Han X. Lentinan confers protection against type 1 diabetes by inducing regulatory T cell in spontaneous non-obese diabetic mice. Nutr Diabetes 2023; 13:4. [PMID: 37031163 PMCID: PMC10082833 DOI: 10.1038/s41387-023-00233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Lentinan (LNT) is a complex fungal component that possesses effective antitumor and immunostimulating properties. However, there is a paucity of studies regarding the effects and mechanisms of LNT on type 1 diabetes. OBJECTIVE In the current study, we investigated whether an intraperitoneal injection of LNT can diminish the risk of developing type 1 diabetes (T1D) in non-obese diabetic (NOD) mice and further examined possible mechanisms of LNT's effects. METHODS Pre-diabetic female NOD mice 8 weeks of age, NOD mice with 140-160 mg/dL, 200-230 mg/dL or 350-450 mg/dL blood glucose levels were randomly divided into two groups and intraperitoneally injected with 5 mg/kg LNT or PBS every other day. Then, blood sugar levels, pancreas slices, spleen, PnLN and pancreas cells from treatment mice were examined. RESULTS Our results demonstrated that low-dosage injections (5 mg/kg) of LNT significantly suppressed immunopathology in mice with autoimmune diabetes but increased the Foxp3+ regulatory T cells (Treg cells) proportion in mice. LNT treatment induced the production of Tregs in the spleen and PnLN cells of NOD mice in vitro. Furthermore, the adoptive transfer of Treg cells extracted from LNT-treated NOD mice confirmed that LNT induced Treg function in vivo and revealed an enhanced suppressive capacity as compared to the Tregs isolated from the control group. CONCLUSION LNT was capable of stimulating the production of Treg cells from naive CD4 + T cells, which implies that LNT exhibits therapeutic values as a tolerogenic adjuvant and may be used to reverse hyperglycaemia in the early and late stages of T1D.
Collapse
Affiliation(s)
- Tijun Wu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Zhi Cai
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fandi Niu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Bin Qian
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 2111198, China
| | - Peng Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Nan Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Pang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Hongliang Mei
- Department of Pharmacy, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Fang Chen
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yaqin Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Bechi Genzano C, Bezzecchi E, Carnovale D, Mandelli A, Morotti E, Castorani V, Favalli V, Stabilini A, Insalaco V, Ragogna F, Codazzi V, Scotti GM, Del Rosso S, Mazzi BA, De Pellegrin M, Giustina A, Piemonti L, Bosi E, Battaglia M, Morelli MJ, Bonfanti R, Petrelli A. Combined unsupervised and semi-automated supervised analysis of flow cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric type 1 diabetes. Front Immunol 2022; 13:1026416. [PMID: 36389771 PMCID: PMC9647173 DOI: 10.3389/fimmu.2022.1026416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2023] Open
Abstract
An unbiased and replicable profiling of type 1 diabetes (T1D)-specific circulating immunome at disease onset has yet to be identified due to experimental and patient selection limitations. Multicolor flow cytometry was performed on whole blood from a pediatric cohort of 107 patients with new-onset T1D, 85 relatives of T1D patients with 0-1 islet autoantibodies (pre-T1D_LR), 58 patients with celiac disease or autoimmune thyroiditis (CD_THY) and 76 healthy controls (HC). Unsupervised clustering of flow cytometry data, validated by a semi-automated gating strategy, confirmed previous findings showing selective increase of naïve CD4 T cells and plasmacytoid DCs, and revealed a decrease in CD56brightNK cells in T1D. Furthermore, a non-selective decrease of CD3+CD56+ regulatory T cells was observed in T1D. The frequency of naïve CD4 T cells at disease onset was associated with partial remission, while it was found unaltered in the pre-symptomatic stages of the disease. Thanks to a broad cohort of pediatric individuals and the implementation of unbiased approaches for the analysis of flow cytometry data, here we determined the circulating immune fingerprint of newly diagnosed pediatric T1D and provide a reference dataset to be exploited for validation or discovery purposes to unravel the pathogenesis of T1D.
Collapse
Affiliation(s)
| | - Eugenia Bezzecchi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Debora Carnovale
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Elisa Morotti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Pediatrics, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Castorani
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Favalli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Pediatrics, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angela Stabilini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vittoria Insalaco
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Ragogna
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valentina Codazzi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Stefania Del Rosso
- Laboratory Medicine, Autoimmunity Section, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Benedetta Allegra Mazzi
- Immuno-Hematology and Transfusion Medicine (ITMS), IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maurizio De Pellegrin
- Pediatric Orthopedic and Traumatology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of General Medicine, Diabetes and Endocrinology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco J. Morelli
- Center for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Riccardo Bonfanti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Pediatrics, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | |
Collapse
|
15
|
Okamura T, Hamaguchi M, Tominaga H, Kitagawa N, Hashimoto Y, Majima S, Senmaru T, Okada H, Ushigome E, Nakanishi N, Shichino S, Fukui M. Characterization of Peripheral Blood TCR in Patients with Type 1 Diabetes Mellitus by BD RhapsodyTM VDJ CDR3 Assay. Cells 2022; 11:cells11101623. [PMID: 35626661 PMCID: PMC9139223 DOI: 10.3390/cells11101623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
The sequence of complementarity-determining region 3 of the T-cell receptor (TCR) varies widely due to the insertion of random bases during V-(D)-J recombination. In this study, we used single-cell VDJ sequencing using the latest technology, BD Rhapsody, to identify the TCR sequences of autoreactive T-cells characteristic of Japanese type 1 diabetes mellitus (T1DM) and to clarify the pairing of TCR of peripheral blood mononuclear cells from four patients with T1DM at the single-cell level. The expression levels of the TCR alpha variable (TRAV) 17 and TRAV21 in T1DM patients were higher than those in healthy Japanese subjects. Furthermore, the Shannon index of CD8+ T cells and FOXP3+ cells in T1DM patients was lower than that of healthy subjects. The gene expression of PRF1, GZMH, ITGB2, NKG7, CTSW, and CST7 was increased, while the expression of CD4, CD7, CD5, HLA-A, CD27, and IL-32 was decreased in the CD8+ T cells of T1DM patients. The upregulated gene expression was IL4R and TNFRSF4 in FOXP3+ cells of T1DM patients. Overall, these findings demonstrate that TCR diversity and gene expression of CD8+ and FOXP3+ cells are different in patients with T1DM and healthy subjects.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Hiroyuki Tominaga
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Noriyuki Kitagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan;
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
- Correspondence: ; Tel.: +81-75-251-5505
| |
Collapse
|
16
|
Cabrera SM, Coren AT, Pant T, Ciecko AE, Jia S, Roethle MF, Simpson PM, Atkinson SN, Salzman NH, Chen YG, Hessner MJ. Probiotic normalization of systemic inflammation in siblings of type 1 diabetes patients: an open-label pilot study. Sci Rep 2022; 12:3306. [PMID: 35228584 PMCID: PMC8885673 DOI: 10.1038/s41598-022-07203-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
The incidence of type 1 diabetes (T1D) has increased, coinciding with lifestyle changes that have likely altered the gut microbiota. Dysbiosis, gut barrier dysfunction, and elevated systemic inflammation consistent with microbial antigen exposure, have been associated with T1D susceptibility and progression. A 6-week, single-arm, open-label pilot trial was conducted to investigate whether daily multi-strain probiotic supplementation could reduce this familial inflammation in 25 unaffected siblings of T1D patients. Probiotic supplementation was well-tolerated as reflected by high participant adherence and no adverse events. Community alpha and beta diversity were not altered between the pre- and post-supplement stool samplings. However, LEfSe analyses identified post-supplement enrichment of the family Lachnospiraceae, producers of the anti-inflammatory short chain fatty acid butyrate. Systemic inflammation was measured by plasma-induced transcription and quantified with a gene ontology-based composite inflammatory index (I.I.com). Post-supplement I.I.com was significantly reduced and pathway analysis predicted inhibition of numerous inflammatory mediators and activation of IL10RA. Subjects with the greatest post-supplement reduction in I.I.com exhibited significantly lower CD4+ CD45RO+ (memory):CD4+ CD45RA+ (naïve) T-cell ratios after supplementation. Post-supplement IL-12p40, IL-13, IL-15, IL-18, CCL2, and CCL24 plasma levels were significantly reduced, while post-supplement butyrate levels trended 1.4-fold higher. Probiotic supplementation may modify T1D susceptibility and progression and warrants further study.
Collapse
Affiliation(s)
- Susanne M Cabrera
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Alison T Coren
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Tarun Pant
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Ashley E Ciecko
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Shuang Jia
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Mark F Roethle
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Pippa M Simpson
- Division of Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Samantha N Atkinson
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nita H Salzman
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Division of Gastroenterology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Martin J Hessner
- The Max McGee Research Center for Juvenile Diabetes, Children's Research Institute of Children's Wisconsin, Milwaukee, WI, USA.
- Division of Endocrinology, Department of Pediatrics, Section of Endocrinology, The Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
17
|
Gomez-Muñoz L, Perna-Barrull D, Caroz-Armayones JM, Murillo M, Rodriguez-Fernandez S, Valls A, Vazquez F, Perez J, Corripio R, Castaño L, Bel J, Vives-Pi M. Candidate Biomarkers for the Prediction and Monitoring of Partial Remission in Pediatric Type 1 Diabetes. Front Immunol 2022; 13:825426. [PMID: 35280980 PMCID: PMC8904370 DOI: 10.3389/fimmu.2022.825426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
The partial remission (PR) phase, a period experienced by most patients with type 1 diabetes (T1D) soon after diagnosis, is characterized by low insulin requirements and improved glycemic control. Given the great potential of this phase as a therapeutic window for immunotherapies because of its association with immunoregulatory mechanisms and β-cell protection, our objective was to find peripheral immunological biomarkers for its better characterization, monitoring, and prediction. The longitudinal follow-up of 17 pediatric patients with new-onset T1D over one year revealed that, during the PR phase, remitter patients show increased percentages of effector memory (EM) T lymphocytes, terminally differentiated EM T lymphocytes, and neutrophils in comparison to non-remitter patients. On the contrary, remitter patients showed lower percentages of naïve T lymphocytes, regulatory T cells (TREG), and dendritic cells (DCs). After a year of follow-up, these patients also presented increased levels of regulatory B cells and transitional T1 B lymphocytes. On the other hand, although none of the analyzed cytokines (IL-2, IL-6, TGF-β1, IL-17A, and IL-10) could distinguish or predict remission, IL-17A was increased at T1D diagnosis in comparison to control subjects, and remitter patients tended to maintain lower levels of this cytokine than non-remitters. Therefore, these potential monitoring immunological biomarkers of PR support that this stage is governed by both metabolic and immunological factors and suggest immunoregulatory attempts during this phase. Furthermore, since the percentage of TREG, monocytes, and DCs, and the total daily insulin dose at diagnosis were found to be predictors of the PR phase, we next created an index-based predictive model comprising those immune cell percentages that could potentially predict remission at T1D onset. Although our preliminary study needs further validation, these candidate biomarkers could be useful for the immunological characterization of the PR phase, the stratification of patients with better disease prognosis, and a more personalized therapeutic management.
Collapse
Affiliation(s)
- Laia Gomez-Muñoz
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - David Perna-Barrull
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Josep M. Caroz-Armayones
- Department of Political and Social Sciences, Health Inequalities Research Group (GREDS-EMCONET), Pompeu Fabra University, Barcelona, Spain
- Johns Hopkins University–Pompeu Fabra University Public Policy Center, Barcelona, Spain
| | - Marta Murillo
- Pediatrics Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Aina Valls
- Pediatrics Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Federico Vazquez
- Endocrinology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Jacobo Perez
- Pediatric Endocrinology Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Autonomous University of Barcelona, Sabadell, Spain
| | - Raquel Corripio
- Pediatric Endocrinology Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Autonomous University of Barcelona, Sabadell, Spain
| | - Luis Castaño
- Cruces University Hospital, Biocruces Bizkaia Research Institute, UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Bilbao, Spain
| | - Joan Bel
- Pediatrics Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| |
Collapse
|
18
|
Ding JT, Yang KP, Lin KL, Cao YK, Zou F. Mechanisms and therapeutic strategies of immune checkpoint molecules and regulators in type 1 diabetes. Front Endocrinol (Lausanne) 2022; 13:1090842. [PMID: 36704045 PMCID: PMC9871554 DOI: 10.3389/fendo.2022.1090842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Considered a significant risk to health and survival, type 1 diabetes (T1D) is a heterogeneous autoimmune disease characterized by hyperglycemia caused by an absolute deficiency of insulin, which is mainly due to the immune-mediated destruction of pancreatic beta cells. SCOPE OF REVIEW In recent years, the role of immune checkpoints in the treatment of cancer has been increasingly recognized, but unfortunately, little attention has been paid to the significant role they play both in the development of secondary diabetes with immune checkpoint inhibitors and the treatment of T1D, such as cytotoxic T-lymphocyte antigen 4(CTLA-4), programmed cell death protein-1(PD-1), lymphocyte activation gene-3(LAG-3), programmed death ligand-1(PD-L1), and T-cell immunoglobulin mucin protein-3(TIM-3). Here, this review summarizes recent research on the role and mechanisms of diverse immune checkpoint molecules in mediating the development of T1D and their potential and theoretical basis for the prevention and treatment of diabetes. MAJOR CONCLUSIONS Immune checkpoint inhibitors related diabetes, similar to T1D, are severe endocrine toxicity induced with immune checkpoint inhibitors. Interestingly, numerous treatment measures show excellent efficacy for T1D via regulating diverse immune checkpoint molecules, including co-inhibitory and co-stimulatory molecules. Thus, targeting immune checkpoint molecules may exhibit potential for T1D treatment and improve clinical outcomes.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kong-Lan Lin
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Yu-Ke Cao
- School of Ophthalmology & Optometry, Nanchang University, Nanchang, China
| | - Fang Zou
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Fang Zou,
| |
Collapse
|
19
|
González-Mariscal I, Pozo-Morales M, Romero-Zerbo SY, Espinosa-Jimenez V, Escamilla-Sánchez A, Sánchez-Salido L, Cobo-Vuilleumier N, Gauthier BR, Bermúdez-Silva FJ. Abnormal cannabidiol ameliorates inflammation preserving pancreatic beta cells in mouse models of experimental type 1 diabetes and beta cell damage. Biomed Pharmacother 2021; 145:112361. [PMID: 34872800 DOI: 10.1016/j.biopha.2021.112361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/02/2022] Open
Abstract
The atypical cannabinoid Abn-CBD improves the inflammatory status in preclinical models of several pathologies, including autoimmune diseases. However, its potential for modulating inflammation in autoimmune type 1 diabetes (T1D) is unknown. Herein we investigate whether Abn-CBD can modulate the inflammatory response during T1D onset using a mouse model of T1D (non-obese diabetic- (NOD)-mice) and of beta cell damage (streptozotocin (STZ)-injected mice). Six-week-old female NOD mice were treated with Abn-CBD (0.1-1 mg/kg) or vehicle during 12 weeks and then euthanized. Eight-to-ten-week-old male C57Bl6/J mice were pre-treated with Abn-CBD (1 mg/kg of body weight) or vehicle for 1 week, following STZ challenge, and euthanized 1 week later. Blood, pancreas, pancreatic lymph nodes (PLNs) and T cells were collected and processed for analysis. Glycemia was also monitored. In NOD mice, treatment with Abn-CBD significantly reduced the severity of insulitis and reduced the pro-inflammatory profile of CD4+ T cells compared to vehicle. Concomitantly, Abn-CBD significantly reduced islet cell apoptosis and improved glucose tolerance. In STZ-injected mice, Abn-CBD decreased circulating proinflammatory cytokines and ameliorated islet inflammation reducing intra-islet phospho-NF-κB and TXNIP. Abn-CBD significantly reduced 2 folds intra-islet CD8+ T cells and reduced Th1/non-Th1 ratio in PLNs of STZ-injected mice. Islet cell apoptosis and intra-islet fibrosis were also significantly reduced in Abn-CBD pre-treated mice compared to vehicle. Altogether, Abn-CBD reduces circulating and intra-islet inflammation, preserving islets, thus delaying the progression of insulitis. Hence, Abn-CBD and related compounds emerge as new candidates to develop pharmacological strategies to treat the early stages of T1D.
Collapse
Affiliation(s)
- Isabel González-Mariscal
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain.
| | - Macarena Pozo-Morales
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain
| | - Silvana Y Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, 29071 Málaga, Spain
| | - Vanesa Espinosa-Jimenez
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain
| | - Alejandro Escamilla-Sánchez
- Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, 29071 Málaga, Spain
| | | | - Nadia Cobo-Vuilleumier
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Benoit R Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain; Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Francisco J Bermúdez-Silva
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, 29009 Málaga, Spain; Biomedical Research Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.
| |
Collapse
|
20
|
Chellappa S, Kushekhar K, Hagness M, Horneland R, Taskén K, Aandahl EM. The Presence of Activated T Cell Subsets prior to Transplantation Is Associated with Increased Rejection Risk in Pancreas Transplant Recipients. THE JOURNAL OF IMMUNOLOGY 2021; 207:2501-2511. [PMID: 34607938 DOI: 10.4049/jimmunol.2001103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Pancreas and islet transplantation (PTx) are currently the only curative treatment options for type 1 diabetes. CD4+ and CD8+ T cells play a pivotal role in graft function, rejection, and survival. However, characterization of immune cell status from patients with and without rejection of the pancreas graft is lacking. We performed multiparameter immune phenotyping of T cells from PTx patients prior to and 1 y post-PTx in nonrejectors and histologically confirmed rejectors. Our results suggest that rejection is associated with presence of elevated levels of activated CD4+ and CD8+ T cells with a gut-homing phenotype both prior to and 1 y post-PTx. The CD4+ and CD8+ T cells were highly differentiated, with elevated levels of type 1 inflammatory markers (T-bet and INF-γ) and cytotoxic components (granzyme B and perforin). Furthermore, we observed increased levels of activated FOXP3+ regulatory T cells in rejectors, which was associated with a hyporesponsive phenotype of activated effector T cells. Finally, activated T and B cell status was correlated in PTx patients, indicating a potential interplay between these cell types. In vitro treatment of healthy CD4+ and CD8+ T cells with tacrolimus abrogated the proliferation and cytokine (INF-γ, IL-2, and TNF-α) secretion associated with the type 1 inflammatory phenotype observed in pre- and post-PTx rejectors. Together, our results suggest the presence of activated CD4+ and CD8+ T cells prior to PTx confer increased risk for rejection. These findings may be used to identify patients that may benefit from more intense immunosuppressive treatment that should be monitored more closely after transplantation.
Collapse
Affiliation(s)
- Stalin Chellappa
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Kushi Kushekhar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Morten Hagness
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Einar Martin Aandahl
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; .,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
21
|
Baeten P, Van Zeebroeck L, Kleinewietfeld M, Hellings N, Broux B. Improving the Efficacy of Regulatory T Cell Therapy. Clin Rev Allergy Immunol 2021; 62:363-381. [PMID: 34224053 PMCID: PMC8256646 DOI: 10.1007/s12016-021-08866-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Autoimmunity is caused by an unbalanced immune system, giving rise to a variety of organ-specific to system disorders. Patients with autoimmune diseases are commonly treated with broad-acting immunomodulatory drugs, with the risk of severe side effects. Regulatory T cells (Tregs) have the inherent capacity to induce peripheral tolerance as well as tissue regeneration and are therefore a prime candidate to use as cell therapy in patients with autoimmune disorders. (Pre)clinical studies using Treg therapy have already established safety and feasibility, and some show clinical benefits. However, Tregs are known to be functionally impaired in autoimmune diseases. Therefore, ex vivo manipulation to boost and stably maintain their suppressive function is necessary when considering autologous transplantation. Similar to autoimmunity, severe coronavirus disease 2019 (COVID-19) is characterized by an exaggerated immune reaction and altered Treg responses. In light of this, Treg-based therapies are currently under investigation to treat severe COVID-19. This review provides a detailed overview of the current progress and clinical challenges of Treg therapy for autoimmune and hyperinflammatory diseases, with a focus on recent successes of ex vivo Treg manipulation.
Collapse
Affiliation(s)
- Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Lauren Van Zeebroeck
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Markus Kleinewietfeld
- University MS Center, Campus Diepenbeek, Diepenbeek, Belgium.,VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium. .,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium. .,Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Bettini M, Bettini ML. Function, Failure, and the Future Potential of Tregs in Type 1 Diabetes. Diabetes 2021; 70:1211-1219. [PMID: 34016597 PMCID: PMC8275894 DOI: 10.2337/dbi18-0058] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
Critical insights into the etiology of type 1 diabetes (T1D) came from genome-wide association studies that unequivocally connected genetic susceptibility to immune cell function. At the top of the susceptibility are genes involved in regulatory T-cell (Treg) function and development. The advances in epigenetic and transcriptional analyses have provided increasing evidence for Treg dysfunction in T1D. These are well supported by functional studies in mouse models and analysis of peripheral blood during T1D. For these reasons, Treg-based therapies are at the forefront of research and development and have a tangible probability to deliver a long-sought-after successful immune-targeted treatment for T1D. The current challenge in the field is whether we can directly assess Treg function at the tissue site or make informative interpretations based on peripheral data. Future studies focused on Treg function in pancreatic lymph nodes and pancreas could provide key insight into the ultimate mechanisms underlying Treg failure in T1D. In this Perspective we will provide an overview of current literature regarding Treg development and function in T1D and how this knowledge has been applied to Treg therapies.
Collapse
MESH Headings
- Animals
- Autoimmunity/physiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/therapy
- Endocrinology/methods
- Endocrinology/trends
- Humans
- Immune Tolerance/physiology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Mice
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Pancreas/immunology
- Pancreas/metabolism
- Pancreas/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/physiology
- T-Lymphocytes, Regulatory/transplantation
Collapse
Affiliation(s)
- Maria Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| | - Matthew L Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
23
|
Marfil-Garza BA, Hefler J, Bermudez De Leon M, Pawlick R, Dadheech N, Shapiro AMJ. Progress in Translational Regulatory T Cell Therapies for Type 1 Diabetes and Islet Transplantation. Endocr Rev 2021; 42:198-218. [PMID: 33247733 DOI: 10.1210/endrev/bnaa028] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Regulatory T cells (Tregs) have become highly relevant in the pathophysiology and treatment of autoimmune diseases, such as type 1 diabetes (T1D). As these cells are known to be defective in T1D, recent efforts have explored ex vivo and in vivo Treg expansion and enhancement as a means for restoring self-tolerance in this disease. Given their capacity to also modulate alloimmune responses, studies using Treg-based therapies have recently been undertaken in transplantation. Islet transplantation provides a unique opportunity to study the critical immunological crossroads between auto- and alloimmunity. This procedure has advanced greatly in recent years, and reports of complete abrogation of severe hypoglycemia and long-term insulin independence have become increasingly reported. It is clear that cellular transplantation has the potential to be a true cure in T1D, provided the remaining barriers of cell supply and abrogated need for immune suppression can be overcome. However, the role that Tregs play in islet transplantation remains to be defined. Herein, we synthesize the progress and current state of Treg-based therapies in T1D and islet transplantation. We provide an extensive, but concise, background to understand the physiology and function of these cells and discuss the clinical evidence supporting potency and potential Treg-based therapies in the context of T1D and islet transplantation. Finally, we discuss some areas of opportunity and potential research avenues to guide effective future clinical application. This review provides a basic framework of knowledge for clinicians and researchers involved in the care of patients with T1D and islet transplantation.
Collapse
Affiliation(s)
| | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Mario Bermudez De Leon
- Department of Molecular Biology, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo Leon, Mexico
| | - Rena Pawlick
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Canada.,Clinical Islet Transplant Program, University of Alberta, Edmonton, Canada
| |
Collapse
|
24
|
Ke Q, Kroger CJ, Clark M, Tisch RM. Evolving Antibody Therapies for the Treatment of Type 1 Diabetes. Front Immunol 2021; 11:624568. [PMID: 33679717 PMCID: PMC7930374 DOI: 10.3389/fimmu.2020.624568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes (T1D) is widely considered to be a T cell driven autoimmune disease resulting in reduced insulin production due to dysfunction/destruction of pancreatic β cells. Currently, there continues to be a need for immunotherapies that selectively reestablish persistent β cell-specific self-tolerance for the prevention and remission of T1D in the clinic. The utilization of monoclonal antibodies (mAb) is one strategy to target specific immune cell populations inducing autoimmune-driven pathology. Several mAb have proven to be clinically safe and exhibit varying degrees of efficacy in modulating autoimmunity, including T1D. Traditionally, mAb therapies have been used to deplete a targeted cell population regardless of antigenic specificity. However, this treatment strategy can prove detrimental resulting in the loss of acquired protective immunity. Nondepleting mAb have also been applied to modulate the function of immune effector cells. Recent studies have begun to define novel mechanisms associated with mAb-based immunotherapy that alter the function of targeted effector cell pools. These results suggest short course mAb therapies may have persistent effects for regaining and maintaining self-tolerance. Furthermore, the flexibility to manipulate mAb properties permits the development of novel strategies to target multiple antigens and/or deliver therapeutic drugs by a single mAb molecule. Here, we discuss current and potential future therapeutic mAb treatment strategies for T1D, and T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
25
|
Saksida T, Jevtić B, Djedović N, Miljković Đ, Stojanović I. Redox Regulation of Tolerogenic Dendritic Cells and Regulatory T Cells in the Pathogenesis and Therapy of Autoimmunity. Antioxid Redox Signal 2021; 34:364-382. [PMID: 32458699 DOI: 10.1089/ars.2019.7999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Autoimmune diseases are progressively affecting westernized societies, as the proportion of individuals suffering from autoimmunity is steadily increasing over the past decades. Understanding the role of reactive oxygen species (ROS) in modulation of the immune response in the pathogenesis of autoimmune disorders is of utmost importance. The focus of this review is the regulation of ROS production within tolerogenic dendritic cells (tolDCs) and regulatory T (Treg) cells that have the essential role in the prevention of autoimmune diseases and significant potency in their therapy. Recent Advances: It is now clear that ROS are extremely important for the proper function of both DC and T cells. Antigen processing/presentation and the ability of DC to activate T cells depend upon the ROS availability. Treg differentiation, suppressive function, and stability are profoundly influenced by ROS presence. Critical Issues: Although a plethora of results on the relation between ROS and immune cells exist, it remains unclear whether ROS modulation is a productive way for skewing T cells and DCs toward a tolerogenic phenotype. Also, the possibility of ROS modulation for enhancement of regulatory properties of DC and Treg during their preparation for use in cellular therapy has to be clarified. Future Directions: Studies of DC and T cell redox regulation should allow for the improvement of the therapy of autoimmune diseases. This could be achieved through the direct therapeutic application of ROS modulators in autoimmunity, or indirectly through ROS-dependent enhancement of tolDC and Treg preparation for cell-based immunotherapy. Antioxid. Redox Signal. 34, 364-382.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Neda Djedović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Ahmed R, Omidian Z, Giwa A, Donner T, Jie C, Hamad ARA. A reply to "TCR+/BCR+ dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes". Cell 2021; 184:840-843. [PMID: 33545037 PMCID: PMC7935028 DOI: 10.1016/j.cell.2020.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/05/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022]
Abstract
We have recently identified a novel lymphocyte that is a dual expresser (DE) of TCRαβ and BCR. DEs in T1D patients are predominated by a public BCR clonotype (clone-x) that encodes a potent autoantigen that cross-activates insulin-reactive T cells. Betts and colleagues were able to detect DEs but alleged to not detect high DE frequency, clone-x, or similar clones in T1D patients. Unfortunately, the authors did not follow our methods and when they did, their flow cytometric data at two sites were conflicting. Moreover, contrary to their claim, we identified clones similar to clone-x in their data along with clones bearing the core motif (DTAMVYYFDYW). Additionally, their report of no increased usage of clone-x VH/DH genes by bulk B cells confirms rather than challenges our results. Finally, the authors failed to provide data verifying purity of their sorted DEs, making it difficult to draw reliable conclusion of their repertoire analysis. This Matters Arising Response paper addresses the Japp et al. (2021) Matters Arising paper, published concurrently in Cell.
Collapse
Affiliation(s)
- Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA
| | - Adebola Giwa
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Ave, Ryan Hall 230, Des Moines, IA 50266, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 664G, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Clark M, Kroger CJ, Ke Q, Tisch RM. The Role of T Cell Receptor Signaling in the Development of Type 1 Diabetes. Front Immunol 2021; 11:615371. [PMID: 33603744 PMCID: PMC7884625 DOI: 10.3389/fimmu.2020.615371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
T cell receptor (TCR) signaling influences multiple aspects of CD4+ and CD8+ T cell immunobiology including thymic development, peripheral homeostasis, effector subset differentiation/function, and memory formation. Additional T cell signaling cues triggered by co-stimulatory molecules and cytokines also affect TCR signaling duration, as well as accessory pathways that further shape a T cell response. Type 1 diabetes (T1D) is a T cell-driven autoimmune disease targeting the insulin producing β cells in the pancreas. Evidence indicates that dysregulated TCR signaling events in T1D impact the efficacy of central and peripheral tolerance-inducing mechanisms. In this review, we will discuss how the strength and nature of TCR signaling events influence the development of self-reactive T cells and drive the progression of T1D through effects on T cell gene expression, lineage commitment, and maintenance of pathogenic anti-self T cell effector function.
Collapse
Affiliation(s)
- Matthew Clark
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles J Kroger
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland M Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
28
|
de Jesus TJ, Tomalka JA, Centore JT, Staback Rodriguez FD, Agarwal RA, Liu AR, Kern TS, Ramakrishnan P. Negative regulation of FOXP3 expression by c-Rel O-GlcNAcylation. Glycobiology 2021; 31:812-826. [PMID: 33442719 PMCID: PMC8351495 DOI: 10.1093/glycob/cwab001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
O-GlcNAcylation is a reversible post-translational protein modification that regulates fundamental cellular processes including immune responses and autoimmunity. Previously, we showed that hyperglycemia increases O-GlcNAcylation of the transcription factor, nuclear factor kappaB c-Rel at serine residue 350 and enhances the transcription of the c-Rel-dependent proautoimmune cytokines interleukin-2, interferon gamma and granulocyte macrophage colony stimulating factor in T cells. c-Rel also plays a critical role in the transcriptional regulation of forkhead box P3 (FOXP3)-the master transcription factor that governs development and function of Treg cells. Here we show that the regulatory effect of c-Rel O-GlcNAcylation is gene-dependent, and in contrast to its role in enhancing the expression of proautoimmune cytokines, it suppresses the expression of FOXP3. Hyperglycemia-induced O-GlcNAcylation-dependent suppression of FOXP3 expression was found in vivo in two mouse models of autoimmune diabetes; streptozotocin-induced diabetes and spontaneous diabetes in nonobese diabetic mice. Mechanistically, we show that both hyperglycemia-induced and chemically enhanced cellular O-GlcNAcylation decreases c-Rel binding at the FOXP3 promoter and negatively regulates FOXP3 expression. Mutation of the O-GlcNAcylation site in c-Rel, (serine 350 to alanine), augments T cell receptor-induced FOXP3 expression and resists the O-GlcNAcylation-dependent repression of FOXP3 expression. This study reveals c-Rel S350 O-GlcNAcylation as a novel molecular mechanism inversely regulating immunosuppressive FOXP3 expression and proautoimmune gene expression in autoimmune diabetes with potential therapeutic implications.
Collapse
Affiliation(s)
- Tristan J de Jesus
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Jeffrey A Tomalka
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Joshua T Centore
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Franklin D Staback Rodriguez
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Ruchira A Agarwal
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Angela R Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| | - Timothy S Kern
- Department of Ophthalmology, School of Medicine, University of California Irvine, 850 Health Sciences Road Irvine, CA 92697, USA
| | - Parameswaran Ramakrishnan
- Department of Pathology, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA.,Department of Biochemistry, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA.,The Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 2103 Cornell Rd, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4 + T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020; 22:E73. [PMID: 33374787 PMCID: PMC7796221 DOI: 10.3390/ijms22010073] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.
Collapse
Affiliation(s)
- Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| |
Collapse
|
30
|
Wen X, Yang J, James E, Chow IT, Reijonen H, Kwok WW. Increased islet antigen-specific regulatory and effector CD4 + T cells in healthy individuals with the type 1 diabetes-protective haplotype. Sci Immunol 2020; 5:5/44/eaax8767. [PMID: 32060144 DOI: 10.1126/sciimmunol.aax8767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022]
Abstract
The DRB1*15:01-DQB1*06:02 (DR1501-DQ6) haplotype is linked to dominant protection from type 1 diabetes, but the cellular mechanism for this association is unclear. To address this question, we identified multiple DR1501- and DQ6-restricted glutamate decarboxylase 65 (GAD65) and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific T cell epitopes. Three of the DR1501/DQ6-restricted epitopes identified were previously reported to be restricted by DRB1*04:01/DRB1*03:01/DQB1*03:02. We also used specific class II tetramer reagents to assess T cell frequencies. Our results indicated that GAD65- and IGRP-specific effector and CD25+CD127-FOXP3+ regulatory CD4+ T cells were present at higher frequencies in individuals with the protective haplotype than those with susceptible or neutral haplotypes. We further confirmed higher frequencies of islet antigen-specific effector and regulatory CD4+ T cells in DR1501-DQ6 individuals through a CD154/CD137 up-regulation assay. DR1501-restricted effector T cells were capable of producing interferon-γ (IFN-γ) and interleukin-4 (IL-4) but were more likely to produce IL-10 compared with effectors from individuals with susceptible haplotypes. To evaluate their capacity for antigen-specific regulatory activity, we cloned GAD65 and IGRP epitope-specific regulatory T cells. We showed that these regulatory T cells suppressed DR1501-restricted GAD65- and IGRP-specific effectors and DQB1*03:02-restricted GAD65-specific effectors in an antigen-specific fashion. In total, these results suggest that the protective DR1501-DQ6 haplotype confers protection through increased frequencies of islet-specific IL-10-producing T effectors and CD25+CD127-FOXP3+ regulatory T cells.
Collapse
Affiliation(s)
- Xiaomin Wen
- Benaroya Research Institute, Seattle, WA 98101, USA
| | - Junbao Yang
- Benaroya Research Institute, Seattle, WA 98101, USA
| | - Eddie James
- Benaroya Research Institute, Seattle, WA 98101, USA
| | - I-Ting Chow
- Benaroya Research Institute, Seattle, WA 98101, USA
| | - Helena Reijonen
- Department of Diabetes Immunology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - William W Kwok
- Benaroya Research Institute, Seattle, WA 98101, USA. .,Department of Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
31
|
Li L, Liu S, Yu J. Autoimmune thyroid disease and type 1 diabetes mellitus: same pathogenesis; new perspective? Ther Adv Endocrinol Metab 2020; 11:2042018820958329. [PMID: 32973994 PMCID: PMC7493255 DOI: 10.1177/2042018820958329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autoimmune thyroid disease (AITD) and type 1 diabetes mellitus (T1DM) are two common autoimmune diseases that can occur concomitantly. In general, patients with diabetes have a high risk of AITD. It has been proposed that a complex genetic basis together with multiple nongenetic factors make a variable contribution to the pathogenesis of T1DM and AITD. In this paper, we summarize current knowledge in the field regarding potential pathogenic factors of T1DM and AITD, including human leukocyte antigen, autoimmune regulator, lymphoid protein tyrosine phosphatase, forkhead box protein P3, cytotoxic T lymphocyte-associated antigen, infection, vitamin D deficiency, and chemokine (C-X-C motif) ligand. These findings offer an insight into future immunotherapy for autoimmune diseases.
Collapse
Affiliation(s)
- Liyan Li
- Department of Endocrinology, First People’s Hospital of Jinan, Jinan, People’s Republic of China
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, People’s Republic of China
| | - Junxia Yu
- Department of Endocrinology, Tengzhou Central People’s Hospital, 181 Xingtan Road, Tengzhou, Shandong Province, 277500, People’s Republic of China
| |
Collapse
|
32
|
Li DY, Xiong XZ. ICOS + Tregs: A Functional Subset of Tregs in Immune Diseases. Front Immunol 2020; 11:2104. [PMID: 32983168 PMCID: PMC7485335 DOI: 10.3389/fimmu.2020.02104] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
Recent studies have reported the pathological effect of ICOS+ T cells, but ICOS signals also widely participate in anti-inflammatory responses, particularly ICOS+ regulatory T (Treg) cells. The ICOS signaling pathway endows Tregs with increased generation, proliferation, and survival abilities. Furthermore, there is enough evidence to suggest a superior capacity of ICOS+ Tregs, which is partly attributable to IL-10 induced by ICOS, yet the associated mechanism needs further investigation. In this review, we discuss the complicated role of ICOS+ Tregs in several classical autoimmune diseases, allergic diseases, and cancers and investigate the related therapeutic applications in these diseases. Moreover, we identify ICOS as a potential biomarker for disease treatment and prognostic prediction. In addition, we believe that anti-ICOS/ICOSL monoclonal antibodies exhibit excellent clinical application potential. A thorough understanding of the effect of ICOS+ Tregs and the holistic role of ICOS toward the immune system will help to improve the therapeutic schedule of diseases.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Lu G, Rausell-Palamos F, Zhang J, Zheng Z, Zhang T, Valle S, Rosselot C, Berrouet C, Conde P, Spindler MP, Graham JG, Homann D, Garcia-Ocaña A. Dextran Sulfate Protects Pancreatic β-Cells, Reduces Autoimmunity, and Ameliorates Type 1 Diabetes. Diabetes 2020; 69:1692-1707. [PMID: 32381645 PMCID: PMC7372066 DOI: 10.2337/db19-0725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/03/2020] [Indexed: 12/14/2022]
Abstract
A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low-molecular-weight dextran sulfate (DS) is a sulfated semisynthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties in vitro. However, whether DS can protect pancreatic β-cells, reduce autoimmunity, and ameliorate T1D is unknown. In this study, we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity in vitro. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a proinflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in prediabetic NOD mice and, most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/HS proteoglycan expression, and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory costimulatory molecule programmed death-1 (PD-1) in T cells, reduces interferon-γ+CD4+ and CD8+ T cells, and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation, and immunomodulation can reverse diabetes in NOD mice, highlighting its therapeutic potential for the treatment of T1D.
Collapse
Affiliation(s)
- Geming Lu
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Francisco Rausell-Palamos
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiamin Zhang
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China
| | - Zihan Zheng
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY
| | - Shelley Valle
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Carolina Rosselot
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Cecilia Berrouet
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Matthew P Spindler
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John G Graham
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dirk Homann
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Adolfo Garcia-Ocaña
- Division of Endocrinology, Diabetes and Bone Disease, Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
34
|
Vitamin D's Effect on Immune Function. Nutrients 2020; 12:nu12051248. [PMID: 32353972 PMCID: PMC7281985 DOI: 10.3390/nu12051248] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023] Open
Abstract
Ever since its discovery by Windhaus, the importance of the active metabolite of vitamin D (1,25-dihydroxyvitamin D3; 1,25-(OH)2D3) has been ever expanding. In this review, the attention is shifted towards the importance of the extra-skeletal effects of vitamin D, with special emphasis on the immune system. The first hint of the significant role of vitamin D on the immune system was made by the discovery of the presence of the vitamin D receptor on almost all cells of the immune system. In vitro, the overwhelming effect of supra-physiological doses of vitamin D on the individual components of the immune system is very clear. Despite these promising pre-clinical results, the translation of the in vitro observations to solid clinical effects has mostly failed. Nevertheless, the evidence of a link between vitamin D deficiency and adverse outcomes is overwhelming and clearly points towards avoidance of vitamin D deficiency especially in early life.
Collapse
|
35
|
Zhang X, Olsen N, Zheng SG. The progress and prospect of regulatory T cells in autoimmune diseases. J Autoimmun 2020; 111:102461. [PMID: 32305296 DOI: 10.1016/j.jaut.2020.102461] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
Regulatory T cells (Treg) are an important immune cell population, playing a crucial role in regulating immune tolerance and preventing autoimmune diseases. These cells consist of various cell sub-populations and generally have an immunoregulatory or suppressive role against immune responses. They also have a different cell heterogeneity and each populations has own biological characteristics. Treg deficiency, reduction, instability, reduced vitality and dysfunction all account for multiple autoimmune diseases. In this review, we have systemically reviewed Treg classification, phenotypic features, regulation of Foxp3 expression, plasticity and stability of Treg as well as their relationship with several important autoimmune diseases. We particularly focus on why and how inflammatory and diet environments affect the functional capacity and underlying mechanisms of Treg cell populations. We also summarize new advances in technologies which help to analyze and dissect these cells in molecular levels in-depth. We also clarify the possible clinical relevance on application of these cells in patients with autoimmune diseases. The advantages and weaknesses have been carefully discussed as well. We also propose the possible approaches to overcome these weaknesses of Treg cells in complicate environments. Thus, we have displayed the updated knowledge of Treg cells, which provides an overall insight into the role and mechanisms of Treg cells in autoimmune diseases.
Collapse
Affiliation(s)
- Ximei Zhang
- Institute of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA, 43201, USA
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine at Penn State College of Medicine and Milton S. Hershey Medical Center, Hershey, 17033, USA
| | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, PA, 43201, USA.
| |
Collapse
|
36
|
Nelson AS, Maddaloni M, Abbott JR, Hoffman C, Akgul A, Ohland C, Gharaibeh RZ, Jobin C, Brusko TM, Pascual DW. Oral therapy with colonization factor antigen I prevents development of type 1 diabetes in Non-obese Diabetic mice. Sci Rep 2020; 10:6156. [PMID: 32273533 PMCID: PMC7145799 DOI: 10.1038/s41598-020-62881-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
Antigen (Ag)-specific tolerization prevents type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but proved less effective in humans. Several auto-Ags are fundamental to disease development, suggesting T1D etiology is heterogeneous and may limit the effectiveness of Ag-specific therapies to distinct disease endotypes. Colonization factor antigen I (CFA/I) fimbriae from Escherichia coli can inhibit autoimmune diseases in murine models by inducing bystander tolerance. To test if Ag-independent stimulation of regulatory T cells (Tregs) can prevent T1D onset, groups of NOD mice were orally treated with Lactococcus lactis (LL) expressing CFA/I. LL-CFA/I treatment beginning at 6 weeks of age reduced disease incidence by 50% (p < 0.05) and increased splenic Tregs producing both IL-10 and IFN-γ 8-fold (p < 0.005) compared to LL-vehicle treated controls. To further describe the role of these Tregs in preventing T1D, protective phenotypes were examined at different time-points. LL-CFA/I treatment suppressed splenic TNF-α+CD8+ T cells 6-fold at 11 weeks (p < 0.005) and promoted a distinct microbiome. At 17 weeks, IFN-γ+CD4+ T cells were suppressed 10-fold (p < 0.005), and at 30 weeks, pancreatic Tbet+CD4+ T cells were suppressed (p < 0.05). These results show oral delivery of modified commensal organisms, such as LL-CFA/I, may be harnessed to restrict Th1 cell-mediated immunity and protect against T1D.
Collapse
Affiliation(s)
- Andrew S. Nelson
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Massimo Maddaloni
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Jeffrey R. Abbott
- 0000 0004 1936 8091grid.15276.37Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL United States
| | - Carol Hoffman
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Ali Akgul
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| | - Christina Ohland
- 0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Raad Z. Gharaibeh
- 0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Christian Jobin
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States ,0000 0004 1936 8091grid.15276.37Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Florida, Gainesville, FL United States
| | - Todd M. Brusko
- 0000 0004 1936 8091grid.15276.37Department of Pathology, Immunology, & Laboratory Medicine, University of Florida Diabetes Institute, University of Florida, Gainesville, FL United States
| | - David W. Pascual
- 0000 0004 1936 8091grid.15276.37Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL United States
| |
Collapse
|
37
|
Wang H, Lu CH, Ho PC. Metabolic adaptation orchestrates tissue context-dependent behavior in regulatory T cells. Immunol Rev 2020; 295:126-139. [PMID: 32147869 DOI: 10.1111/imr.12844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
The diverse distribution and functions of regulatory T cells (Tregs) ensure tissue and immune homeostasis; however, it remains unclear which factors can guide distribution, local differentiation, and tissue context-specific behavior in Tregs. Although the emerging concept that Tregs could re-adjust their transcriptome based on their habitations is supported by recent findings, the underlying mechanisms that reprogram transcriptome in Tregs are unknown. In the past decade, metabolic machineries have been revealed as a new regulatory circuit, known as immunometabolic regulation, to orchestrate activation, differentiation, and functions in a variety of immune cells, including Tregs. Given that systemic and local alterations of nutrient availability and metabolite profile associate with perturbation of Treg abundance and functions, it highlights that immunometabolic regulation may be one of the mechanisms that orchestrate tissue context-specific regulation in Tregs. The understanding on how metabolic program instructs Tregs in peripheral tissues not only represents a critical opportunity to delineate a new avenue in Treg biology but also provides a unique window to harness Treg-targeting approaches for treating cancer and autoimmunity with minimizing side effects. This review will highlight the metabolic features on guiding Treg formation and function in a disease-oriented perspective and aim to pave the foundation for future studies.
Collapse
Affiliation(s)
- Haiping Wang
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Chun-Hao Lu
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
38
|
Reduced PD-1 expression on circulating follicular and conventional FOXP3+ Treg cells in children with new onset type 1 diabetes and autoantibody-positive at-risk children. Clin Immunol 2020; 211:108319. [DOI: 10.1016/j.clim.2019.108319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
|
39
|
Hassuna NA, Mansour M, Ahmed TI, Hassan EA, Hefzy MM, Abd Elghani WM, Hefzy EM. Chronic Hepatitis C Infection Has No Effect on Peripheral CD4 +CD25 + Tregulatory Cells in Patients with End-Stage Renal Disease. Immunol Invest 2019; 49:477-488. [PMID: 31694423 DOI: 10.1080/08820139.2019.1674324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: T regulatory cells (Tregs), through variable mechanisms, play a crucial role in Hepatitis C virus (HCV) chronicity and infection tolerance. A great speculation is posed regarding the level, role of Tregs in end-stage renal disease (ESRD), and the presence of associated factors that could influence the Tregs population. Accordingly, we aimed at studying the effect of HCV infection on peripheral CD4+CD25+Tregs population among patients on hemodialysis (HD) as well as the effect of other comorbidities on these cells.Patients and methods: A group of 77 patients on HD (32 were HD HCV+ and 45 were HD HCV-) and 80 healthy controls (HCs) were included in the study. Flow cytometric analysis was performed for identification and quantification of peripheral CD4+ CD25+Tregs.Results: The frequency of CD4+ CD25+Tregs increased significantly in HD patients compared to the HCs (p = <.0001 each). HCV posed no effect on peripheral CD4+ CD25+ Tregs in ESRD patients, when comparing HD HCV- and HD HCV+ groups. In the hypertensive HD HCV-, Tregs percentage was higher than that in the non-hypertensive. However, the difference was not statistically significant. No significant difference was detected between HD HCV- and HD HCV+ patients on the count and percentages of Tregs according to the duration of dialysis.Conclusion: Demonstrating that chronic HCV infection has no effect on CD4+ CD25+ Tregs cells levels in ESRD patients is of great importance to the success of future allografts in such patients.
Collapse
Affiliation(s)
- Noha A Hassuna
- Medical Microbiology and Immunology Dept., Faculty of Medicine, Minia University, Minia, Egypt
| | - Mohamed Mansour
- Clinical Pathology Dept., Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Tarek I Ahmed
- Internal Medicine Dept., Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Essam A Hassan
- Tropical Medicine Dept., Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mohamed M Hefzy
- Nephrology Dept., Thumbay Hospital, Gulf University, Ajmon, UAE
| | - Wael M Abd Elghani
- Tropical Medicine Dept., Faculty of Medicine, Minia University, Minia, Egypt
| | - Enas M Hefzy
- Medical. Microbiology and Immunology Dept., Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
40
|
Nekoua MP, Fachinan R, Fagninou A, Alidjinou EK, Moutairou K, Hober D, Yessoufou A. Does control of glycemia regulate immunological parameters in insulin-treated persons with type 1 diabetes? Diabetes Res Clin Pract 2019; 157:107868. [PMID: 31560963 DOI: 10.1016/j.diabres.2019.107868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/30/2019] [Accepted: 09/23/2019] [Indexed: 02/07/2023]
Abstract
AIMS We investigated the relationships between control of glycemia and the frequencies of immune cell subpopulations and also the profile of circulating T cell cytokines in insulin-treated persons with type 1 diabetes (T1D). METHODS Clinical data and blood samples were collected from two groups of persons with T1D exhibiting either adequate (AGC) or inadequate glycemic control (IGC), as well as from individuals without diabetes considered as a control group. Serum cytokine levels and immune cell subpopulation frequencies were determined. RESULTS Irrespective of their capacity to control glycemia, the percentages of effector CD4+ T-cells and CD19+ B-cells were higher in persons with T1D than in controls, whilst monocytes were significantly more frequent in those with IGC than in controls. The overall frequencies of CD4+ T-cells, CD8+ T-cells and Foxp3+CD4+CD25+ regulatory T-cells did not differ between the three groups. The serum levels of IL-2 and IFN-γ were lower in both groups with T1D compared to controls, whilst the level of IL-4 did not differ. The level of IL-10 was significantly lower in those with AGC compared to controls. CONCLUSION Our study shows that insulin treatment is associated with a Th2-biased systemic immune phenotype in persons with T1D, reflected by a high proportion of effector CD4+ T cells and CD19+ B cells and a down-regulation of Th1-type serum cytokines.
Collapse
Affiliation(s)
- Magloire Pandoua Nekoua
- Université d'Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526 Cotonou, Benin; Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France
| | - Rufine Fachinan
- Université d'Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526 Cotonou, Benin
| | - Adnette Fagninou
- Université d'Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526 Cotonou, Benin
| | - Enagnon Kazali Alidjinou
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France
| | - Kabirou Moutairou
- Université d'Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526 Cotonou, Benin
| | - Didier Hober
- Université de Lille, Faculté de Médecine, CHU de Lille, Laboratoire de Virologie EA3610, F-59000 Lille, France.
| | - Akadiri Yessoufou
- Université d'Abomey-Calavi, Faculté des Sciences et Techniques, Institut des Sciences Biomédicales Appliquées (ISBA), Laboratoire de Biologie et Physiologie Cellulaires, 01 BP 526 Cotonou, Benin.
| |
Collapse
|
41
|
Petsiou A, Paschou SA, Vartholomatos G, Chatzigianni K, Kolaitis N, Giotaki E, Bondinas GP, Moustakas AK, Karamoutsios A, Zervou E, Tigas S, Tsatsoulis A, Papadopoulos GK. A modified flow cytometry method for objective estimation of human CD4 + regulatory T cells (CD4 + Tregs) in peripheral blood, via CD4/CD25/CD45RO/FoxP3 labeling. CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 98:259-269. [PMID: 31571372 DOI: 10.1002/cyto.b.21841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/26/2019] [Accepted: 08/04/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Several methods exist for flow-cytometric estimation of human peripheral blood CD4+ T regulatory cells (CD4+ Tregs). METHODS We report our experience with the estimation of human CD4+ Tregs via three different characterizations using flow cytometry (CD25high FoxP3+ , CD25high CD127low/- FoxP3+ , and CD4+ CD25high/int CD45ROFoxP3+ ) in normal subjects. We have used these methods on the control populations from two studies (32 and 36 subjects, respectively), the latter two methods retrospectively on the subjects of the first study. The six CD4+ T cell fractions obtained by the third method were differentially colored to ascertain the distribution of these cell fractions in the CD25/FoxP3, CD45RO/FoxP3, and CD25/CD127 dot plots from CD4/CD25/CD45RO/FoxP3 and CD4/CD25/CD45RO/CD127 panels. RESULTS Each approach gives significantly different estimates of Tregs (expressed as percentage of CD4+ T cells), with the second almost invariably yielding higher percentages than the other two. Only the third approach can distinguish among effector and naïve Tregs and FoxP3+ non-Tregs. Analysis of CD25/CD127 dot plots reveals that Treg delineation via the widely used definition of CD4+ CD25high CD127low/- cells unavoidably yields a mixture of nearly all effector and most of naïve Tregs, as well as FoxP3+ non-Tregs plus other cells. Delineation of effector/naïve Tregs and FoxP3+ non-Tregs is possible via CD45RO/CD25 dot plots but not by CD45RO/FoxP3 counterparts (as done previously) because of overlapping FoxP3 intensities among Tregs and non-Tregs. CONCLUSION Our comparison shows that CD4/CD25/CD45RO/FoxP3 panels are an objective means of estimating effector and naïve Tregs via colored dot plots, aiding thus in Treg delineation in health and detecting aberrations in disease.
Collapse
Affiliation(s)
- Asimina Petsiou
- Unit of Molecular Biology, Laboratory of Hematology, University Hospital of Ioannina, Ioannina, Greece
| | - Stavroula A Paschou
- Department of Endocrinology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Georgios Vartholomatos
- Unit of Molecular Biology, Laboratory of Hematology, University Hospital of Ioannina, Ioannina, Greece
| | - Katerina Chatzigianni
- Unit of Molecular Biology, Laboratory of Hematology, University Hospital of Ioannina, Ioannina, Greece
| | - Nikolaos Kolaitis
- Laboratory of Hematology, University Hospital of Ioannina, Ioannina, Greece
| | - Eleni Giotaki
- Department of Nursing, Technological Educational Institute of Epirus, Ioannina, Greece
| | - George P Bondinas
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | - Antonis K Moustakas
- Department of Food Science and Technology, Technological Educational Institute of Ionian Islands, Argostoli, Greece
| | - Achilleas Karamoutsios
- Laboratory of Animal Health-Food Hygiene and Quality, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | - Eleftheria Zervou
- Department of Bloodbank, University Hospital of Ioannina, Ioannina, Greece
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina School of Medicine, Ioannina, Greece
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Bioprocessing and Bioproducts, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| |
Collapse
|
42
|
Transplantation of MHC-mismatched mouse embryonic stem cell-derived thymic epithelial progenitors and MHC-matched bone marrow prevents autoimmune diabetes. Stem Cell Res Ther 2019; 10:239. [PMID: 31387620 PMCID: PMC6685174 DOI: 10.1186/s13287-019-1347-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Background Type 1 diabetes (T1D) is an autoimmune disease resulting from the destruction of insulin-secreting islet β cells by autoreactive T cells. Non-obese diabetic (NOD) mice are the widely used animal model for human T1D. Autoimmunity in NOD mice is associated with particular major histocompatibility complex (MHC) loci and impaired islet autoantigen expression and/or presentation in the thymus, which results in defects in both central and peripheral tolerance. It has been reported that induction of mixed chimerism with MHC-mismatched, but not MHC-matched donor bone marrow (BM) transplants prevents the development T1D in NOD mice. We have reported that mouse embryonic stem cells (mESCs) can be selectively induced in vitro to generate thymic epithelial progenitors (TEPs) that further develop into thymic epithelial cells (TECs) in vivo to support T cell development. Methods To determine whether transplantation of MHC-mismatched mESC-TEPs could prevent the development of insulitis and T1D, NOD mice were conditioned and injected with MHC-mismatched B6 mESC-TEPs and MHC-matched BM from H-2g7 B6 mice. The mice were monitored for T1D development. The pancreas, spleen, BM, and thymus were then harvested from the mice for evaluation of T1D, insulitis, chimerism levels, and T cells. Results Transplantation of MHC-mismatched mESC-TEPs and MHC-matched donor BM prevented insulitis and T1D development in NOD mice. This was associated with higher expression of proinsulin 2, a key islet autoantigen in the mESC-TECs, and an increased number of regulatory T cells. Conclusions Our results suggest that embryonic stem cell-derived TEPs may offer a new approach to control T1D. Electronic supplementary material The online version of this article (10.1186/s13287-019-1347-1) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
High Thymic Output of Effector CD4 + Cells May Lead to a Treg : T Effector Imbalance in the Periphery in NOD Mice. J Immunol Res 2019; 2019:8785263. [PMID: 31281853 PMCID: PMC6594269 DOI: 10.1155/2019/8785263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cells (Tregs) play a critical role in controlling autoreactive T cells, and quantitative and/or qualitative deficiencies in Tregs are associated with autoimmune diseases, including type 1 diabetes (T1D), in both humans and mice. Both the incidence of T1D and percentages of peripheral Tregs in NOD mice vary considerably between animal facilities. In our animal facility, the incidence of T1D in NOD mice is high at 90-100% and the percentages of peripheral CD4+Foxp3+ cells in ~9-10-week-old female NOD mice are decreased compared to control (B6) mice shortly before high glucose is first detected (~12 weeks). These data suggest that there is an imbalance between Tregs and potentially pathogenic effector T cells at this age that could have significant impact on disease progression to overt diabetes. The goal of the current study was to investigate mechanisms that play a role in peripheral Treg : T effector cell balance in NOD mice, including differences in persistence/survival, peripheral homeostatic proliferation, and thymic production and output of CD4+ T cells. We found no differences in persistence/survival or homeostatic proliferation of either Tregs or effector T cells between NOD and B6 mice. Furthermore, although the percentages and absolute numbers of CD4+Foxp3+ cells in thymus were not decreased in NOD compared to B6 mice, the percentage of CD4+ recent thymic emigrants (RTE) that were Foxp3+ was significantly lower in 9-week-old NOD mice. Interestingly, the thymic output of CD4+Foxp3+ cells was not lower in NOD mice, whereas the thymic output of CD4+Foxp3− cells was significantly higher in NOD mice at that age compared to B6 mice. These data suggest that the higher thymic output of CD4+Foxp3− T cells contributes, at least in part, to the lower percentages of peripheral CD4+Foxp3+ Tregs in NOD mice and an imbalance between Tregs and T effector cells that may contribute to the development of full-blown diabetes.
Collapse
|
44
|
Mattner J, Mohammed JP, Fusakio ME, Giessler C, Hackstein CP, Opoka R, Wrage M, Schey R, Clark J, Fraser HI, Rainbow DB, Wicker LS. Genetic and functional data identifying Cd101 as a type 1 diabetes (T1D) susceptibility gene in nonobese diabetic (NOD) mice. PLoS Genet 2019; 15:e1008178. [PMID: 31199784 PMCID: PMC6568395 DOI: 10.1371/journal.pgen.1008178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic multi-factorial disorder characterized by the immune-mediated destruction of insulin-producing pancreatic beta cells. Variations at a large number of genes influence susceptibility to spontaneous autoimmune T1D in non-obese diabetic (NOD) mice, one of the most frequently studied animal models for human disease. The genetic analysis of these mice allowed the identification of many insulin-dependent diabetes (Idd) loci and candidate genes, one of them being Cd101. CD101 is a heavily glycosylated transmembrane molecule which exhibits negative-costimulatory functions and promotes regulatory T (Treg) function. It is abundantly expressed on subsets of lymphoid and myeloid cells, particularly within the gastrointestinal tract. We have recently reported that the genotype-dependent expression of CD101 correlates with a decreased susceptibility to T1D in NOD.B6 Idd10 congenic mice compared to parental NOD controls. Here we show that the knockout of CD101 within the introgressed B6-derived Idd10 region increased T1D frequency to that of the NOD strain. This loss of protection from T1D was paralleled by decreased Gr1-expressing myeloid cells and FoxP3+ Tregs and an enhanced accumulation of CD4-positive over CD8-positive T lymphocytes in pancreatic tissues. As compared to CD101+/+ NOD.B6 Idd10 donors, adoptive T cell transfers from CD101-/- NOD.B6 Idd10 mice increased T1D frequency in lymphopenic NOD scid and NOD.B6 Idd10 scid recipients. Increased T1D frequency correlated with a more rapid expansion of the transferred CD101-/- T cells and a lower proportion of recipient Gr1-expressing myeloid cells in the pancreatic lymph nodes. Fewer of the Gr1+ cells in the recipients receiving CD101-/- T cells expressed CD101 and the cells had lower levels of IL-10 and TGF-β mRNA. Thus, our results connect the Cd101 haplotype-dependent protection from T1D to an anti-diabetogenic function of CD101-expressing Tregs and Gr1-positive myeloid cells and confirm the identity of Cd101 as Idd10.
Collapse
Affiliation(s)
- Jochen Mattner
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Javid P. Mohammed
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Michael E. Fusakio
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Claudia Giessler
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carl-Philipp Hackstein
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Opoka
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, United States of America
| | - Marius Wrage
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Schey
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Clark
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Heather I. Fraser
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Daniel B. Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Linda S. Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Barcenilla H, Åkerman L, Pihl M, Ludvigsson J, Casas R. Mass Cytometry Identifies Distinct Subsets of Regulatory T Cells and Natural Killer Cells Associated With High Risk for Type 1 Diabetes. Front Immunol 2019; 10:982. [PMID: 31130961 PMCID: PMC6509181 DOI: 10.3389/fimmu.2019.00982] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/16/2019] [Indexed: 01/18/2023] Open
Abstract
Type 1 diabetes (T1D) is characterized by autoimmune destruction of insulin producing β-cells. The time from onset of islet autoimmunity to manifest clinical disease can vary widely in length, and it is fairly uncharacterized both clinically and immunologically. In the current study, peripheral blood mononuclear cells from autoantibody-positive children with high risk for T1D, and from age-matched healthy individuals, were analyzed by mass cytometry using a panel of 32 antibodies. Surface markers were chosen to identify multiple cell types including T, B, NK, monocytes, and DC, and antibodies specific for identification of differentiation, activation and functional markers were also included in the panel. By applying dimensional reduction and computational unsupervised clustering approaches, we delineated in an unbiased fashion 132 phenotypically distinct subsets within the major immune cell populations. We were able to identify an effector memory Treg subset expressing HLA-DR, CCR4, CCR6, CXCR3, and GATA3 that was increased in the high-risk group. In addition, two subsets of NK cells defined by CD16+ CD8+ CXCR3+ and CD16+ CD8+ CXCR3+ CD11c+ were also higher in the same subjects. High-risk individuals did not show impaired glucose tolerance at the time of sampling, suggesting that the changes observed were not the result of metabolic imbalance, and might be potential biomarkers predictive of T1D.
Collapse
Affiliation(s)
- Hugo Barcenilla
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Linda Åkerman
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Mikael Pihl
- Core Facility, Flow Cytometry Unit, Linköping University, Linköping, Sweden
| | - Johnny Ludvigsson
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,Crown Princess Victoria Children's Hospital, Region Östergötland, Linköping, Sweden
| | - Rosaura Casas
- Division of Pediatrics, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
46
|
Paul M, Dayal D, Bhansali A, Sachdeva N. Characterization of proinsulin-specific regulatory T cells in type 1 diabetes at different ages of onset. Pediatr Diabetes 2019; 20:271-281. [PMID: 30635950 DOI: 10.1111/pedi.12813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Regulatory T cells (Tregs) play an important role in maintaining tolerance to self-antigens. Defects in the frequency and function of polyclonal Tregs have been reported in type 1 diabetes (T1D). However, characteristics of proinsulin (PI)-specific Tregs in human T1D have not yet been explored. Therefore, we aimed to characterize PI-specific Tregs in two distinct pathophysiological subtypes of T1D, juvenile-onset T1D (JOT1D) and adult-onset T1D (AOT1D), distinguished by the age of onset. METHODS Peripheral blood mononuclear cells of the recruited subjects were stimulated in vitro with PI-derived peptides. PI-specific Tregs were characterized by flow cytometry using the combination of markers CD25, CD137, FOXP3 and CD45RA. RESULTS Firstly, we observed similar frequencies of polyclonal Tregs in the T1D (n = 25) and healthy control (HC) (n = 20) subjects (P = 0.96), with a positive correlation between age and frequency of polyclonal Tregs (r = +0.35, P = 0.04). While the frequency of polyclonal Tregs was higher in AOT1D group (P = 0.02), both JOT1D (n = 14) and AOT1D groups (n = 11) had a comparable frequency of PI-specific Tregs in their peripheral blood. The frequency of PI-specific memory Tregs was significantly high in both the JOT1D (P = 0.02) and AOT1D (P = 0.009) groups compared to their respective HC groups (n = 10). Finally, we observed no significant difference in the expression of FOXP3 and IL-2 receptor in PI-specific Tregs in all the groups. CONCLUSIONS Unlike polyclonal Tregs, both T1D subtypes harbor comparable frequencies of PI-specific Tregs. Chronic antigen presentation results in a distinct memory-like phenotype of PI-specific Tregs in these subjects irrespective of the age of disease onset.
Collapse
Affiliation(s)
- Mahinder Paul
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Devi Dayal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
47
|
Grohová A, Dáňová K, Špíšek R, Palová-Jelínková L. Cell Based Therapy for Type 1 Diabetes: Should We Take Hyperglycemia Into Account? Front Immunol 2019; 10:79. [PMID: 30804929 PMCID: PMC6370671 DOI: 10.3389/fimmu.2019.00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is characterized by long standing hyperglycemia leading to numerous life-threatening complications. For type 1 diabetes mellitus, resulting from selective destruction of insulin producing cells by exaggerated immune reaction, the only effective therapy remains exogenous insulin administration. Despite accurate compliance to treatment of certain patients, transient episodes of hyperglycemia cannot be completely eliminated by this symptomatic treatment. Novel immunotherapeutic approaches based on tolerogenic dendritic cells, T regulatory cells and mesenchymal stem cells (MSCs) have been tested in clinical trials, endeavoring to directly modulate the autoimmune destruction process in pancreas. However, hyperglycemia itself affects the immune system and the final efficacy of cell-based immunotherapies could be affected by the different glycemic control of enrolled patients. The present review explores the impact of hyperglycemia on immune cells while providing greater insight into the molecular mechanisms of high glucose action and subsequent metabolic reprogramming of different immune cells. Furthermore, over-production of mitochondrial reactive oxygen species, formation of advanced glycation end products as a consequence of hyperglycemia and their downstream signalization in immune cells are also discussed. Since hyperglycemia in patients with type 1 diabetes mellitus might have an impact on immune-interventional treatment, the maintenance of a tight glucose control seems to be beneficial in patients considered for cell-based therapy.
Collapse
Affiliation(s)
- Anna Grohová
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia.,Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine, University Hospital Motol, Prague, Czechia
| | - Klára Dáňová
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Radek Špíšek
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| |
Collapse
|
48
|
Viisanen T, Gazali AM, Ihantola EL, Ekman I, Näntö-Salonen K, Veijola R, Toppari J, Knip M, Ilonen J, Kinnunen T. FOXP3+ Regulatory T Cell Compartment Is Altered in Children With Newly Diagnosed Type 1 Diabetes but Not in Autoantibody-Positive at-Risk Children. Front Immunol 2019; 10:19. [PMID: 30723474 PMCID: PMC6349758 DOI: 10.3389/fimmu.2019.00019] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/04/2019] [Indexed: 01/11/2023] Open
Abstract
The dysfunction of FOXP3-positive regulatory T cells (Tregs) plays a key role in the pathogenesis of autoimmune diseases, including type 1 diabetes (T1D). However, previous studies analyzing the peripheral blood Treg compartment in patients with T1D have yielded partially conflicting results. Moreover, the phenotypic complexity of peripheral blood Tregs during the development of human T1D has not been comprehensively analyzed. Here, we used multi-color flow cytometry to analyze the frequency of distinct Treg subsets in blood samples from a large cohort comprising of 74 children with newly diagnosed T1D, 76 autoantibody-positive children at-risk for T1D and 180 age- and HLA-matched control children. The frequency of CD4+CD25+CD127lowFOXP3+ Tregs was higher in children with T1D compared to control children, and this change was attributable to a higher proportion of naïve Tregs in these subjects. Further longitudinal analyses demonstrated that the increase in Treg frequency correlated with disease onset. The frequencies of the minor subsets of CD25+FOXP3low memory Tregs as well as CD25lowCD127lowFOXP3+ Tregs were also increased in children with T1D. Moreover, the ratio of CCR6-CXCR3+ and CCR6+CXCR3- memory Tregs was altered and the frequency of proliferating Ki67-positive and IFN-γ producing memory Tregs was decreased in children with T1D. The frequency of CXCR5+FOXP3+ circulating follicular T regulatory cells was not altered in children with T1D. Importantly, none of the alterations observed in children with T1D were observed in autoantibody-positive at-risk children. In conclusion, our study reveals multiple alterations in the peripheral blood Treg compartment at the diagnosis of T1D that appear not to be features of early islet autoimmunity.
Collapse
Affiliation(s)
- Tyyne Viisanen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ahmad M Gazali
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Emmi-Leena Ihantola
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ilse Ekman
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Riitta Veijola
- PEDEGO Research Unit, Department of Pediatrics, Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland.,Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mikael Knip
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland.,Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Tuure Kinnunen
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Eastern Finland Laboratory Centre (ISLAB), Kuopio, Finland
| |
Collapse
|
49
|
Dietary Cows' Milk Protein A1 Beta-Casein Increases the Incidence of T1D in NOD Mice. Nutrients 2018; 10:nu10091291. [PMID: 30213104 PMCID: PMC6163334 DOI: 10.3390/nu10091291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/20/2022] Open
Abstract
The contribution of cows’ milk containing beta-casein protein A1 variant to the development of type 1 diabetes (T1D) has been controversial for decades. Despite epidemiological data demonstrating a relationship between A1 beta-casein consumption and T1D incidence, direct evidence is limited. We demonstrate that early life exposure to A1 beta-casein through the diet can modify progression to diabetes in non-obese diabetic (NOD) mice, with the effect apparent in later generations. Adult NOD mice from the F0 generation and all subsequent generations (F1 to F4) were fed either A1 or A2 beta-casein supplemented diets. Diabetes incidence in F0–F2 generations was similar in both cohorts of mice. However, diabetes incidence doubled in the F3 generation NOD mice fed an A1 beta-casein supplemented diet. In F4 NOD mice, subclinical insulitis and altered glucose handling was evident as early as 10 weeks of age in A1 fed mice only. A significant decrease in the proportion of non-conventional regulatory T cell subset defined as CD4+CD25−FoxP3+ was evident in the F4 generation of A1 fed mice. This feeding intervention study demonstrates that dietary A1 beta-casein may affect glucose homeostasis and T1D progression, although this effect takes generations to manifest.
Collapse
|
50
|
Bleich D, Wagner DH. Challenges to Reshape the Future of Type 1 Diabetes Research. J Clin Endocrinol Metab 2018; 103:2838-2842. [PMID: 29912401 PMCID: PMC6692708 DOI: 10.1210/jc.2018-00568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/04/2018] [Indexed: 12/25/2022]
Abstract
CONTEXT Immunotherapy trials to prevent type 1 diabetes have been unsuccessful for >15 years. Understanding pitfalls and knowledge gaps in the immunology of type 1 diabetes should lead us in new directions that will yield better trial outcomes. A proposal is made for precision medicine trial design in future type 1 diabetes studies. EVIDENCE ACQUISITION High-quality peer-reviewed basic science and clinical research trials for type 1 diabetes were used in this Perspective article. Type 1 diabetes publications were reviewed from 2000 to 2018 by using Google Scholar and PubMed reference databases. EVIDENCE SYNTHESIS Personalized medicine for type 1 diabetes should recognize that each individual has phenotypic and genotypic quirks that distinguish them from other study participants. A uniform protocol for antigen-specific immunotherapy has consistently failed to prevent disease. An alternative approach using molecular tools to personalize the preventive treatment strategy might be a road forward for type 1 diabetes research. Assumptions or lack of knowledge about disease stratification (not all type 1 diabetes is the same disease), individualized antigen-specific T cells, regulatory T-cell populations, and T-cell receptor rearrangement are just a few aspects of immunology that require integration with clinical trial design. CONCLUSIONS The type 1 diabetes research community continues to bring forward novel immunotherapy trials to prevent disease, but this approach is unlikely to succeed until several fundamental aspects of clinical immunology are recognized and addressed. Here, we identify several knowledge gaps that could rectify type 1 diabetes trial design and lead to future success.
Collapse
Affiliation(s)
- David Bleich
- Division of Endocrinology, Diabetes, & Metabolism, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey
- Correspondence and Reprint Requests: David Bleich, MD, Division of Endocrinology, Diabetes, & Metabolism, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, MSB I-588, Newark, New Jersey 07103. E-mail:
| | - David H Wagner
- Immunology Section, Department of Medicine and The Webb-Waring Center, The University of Colorado Anschutz Medical Center, Aurora, Colorado
| |
Collapse
|