1
|
Yang Z, Sun J, Xu T, Wang Y, Fang J, Wang K, Guo S, Xie X, Shen J. Discovery of potent free fatty acid receptor 1 full agonists with a novel scaffold bearing conjugated double bond linker. Bioorg Med Chem 2025; 123:118158. [PMID: 40139045 DOI: 10.1016/j.bmc.2025.118158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
GPR40 full agonists can not only lower blood glucose via glucose-stimulated insulin secretion (GSIS) with a low risk of hypoglycemia, but also promote incretin release such as glucagon-like peptide-1 (GLP-1). Compared with partial agonists, full agonists are superior in the treatment of diabetes and obesity. Based on patent research, we combined the highly compatible linker with CPL207280, a GPR40 partial agonist that metabolized mainly through oxidation, to design a potent GPR40 full agonist with a novel scaffold. We explored the linker, tail and acid head and finally found compound H1-2 with excellent glucose-lowering ability.
Collapse
Affiliation(s)
- Ziwei Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jun Sun
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Tifei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jiahui Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China.
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
2
|
Al Zoubi R, Sokkar S, Isawi IH, Baker QB. Activation fingerprints and allosteric modulation at the free fatty acid receptor 1 (FFAR1) revealed by molecular dynamics simulation. Arch Biochem Biophys 2025:110473. [PMID: 40409391 DOI: 10.1016/j.abb.2025.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/22/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
The free fatty acid receptor 1 (FFAR1) is a transmembrane G-protein coupled receptor that mediates the metabolic and insulinotropic effects of endogenous free fatty acids in pancreatic cells while also exerting neuro-regulatory effects in the brain. The complexity of FFAR1 derives from its multiple binding sites and the absence of conventional activation motifs observed in class A GPCRs. This study uses molecular dynamics simulations to investigate the molecular mechanisms that underpin endogenous signaling and allosteric regulation in the FFAR1. We investigated and compared three ligand-bound states and the APO state. The ligand-bound simulations included FFAR1 in complex with γ-linolenic acid, FFAR1 in complex with γ-linolenic acid and TAK875, and a fully activated FFAR1 bundle complexed with docosahexaenoic acid and G-protein. The results highlight distinct protein contact fingerprints and dynamics in the ligand-bound states relative to the APO state. While ligand binding, in the absence of stabilizing G-protein, destabilizes the intracellular domain of the receptor, the second extracellular loop exhibits greater stability and salt bridge contact with the transmembrane domain. Notably, simulations of FFAR1 complexed with γ-linolenic acid, bound at the intracellular domain, revealed stable interactions between γ-linolenic acid and the receptor, as well as similar activation fingerprints when compared to FFAR1 in complex with docosahexaenoic acid and Gq. This suggests an effective allosteric regulation of the receptor following γ-linolenic acid binding to the intracellular domain. Finally, a set of hydrophobic amino acid residues at the intracellular and extracellular domains appears to function as potential rotameric switches, facilitating water-mediated receptor activation.
Collapse
Affiliation(s)
- Rufaida Al Zoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Samah Sokkar
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Israa H Isawi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Qanita Bani Baker
- Department of Computer Science, Faculty of Computer and Information Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
3
|
Toncan F, Raj RR, Lee MJ. Dynamics of Fatty Acid Composition in Lipids and Their Distinct Roles in Cardiometabolic Health. Biomolecules 2025; 15:696. [PMID: 40427589 PMCID: PMC12110056 DOI: 10.3390/biom15050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Obesity and cardiometabolic diseases (CMDs) have reached epidemic levels. Dysregulation of lipid metabolism is a risk factor for obesity and CMDs. Lipids are energy substrates, essential components of cell membranes, and signaling molecules. Fatty acids (FAs) are the major components of lipids and are classified based on carbon chain length and number, position, and stereochemistry of double bonds. They exert differential impacts on CMDs, such that saturated fat increases risks while very-long-chain n-3 FAs provide benefits. The functionalities of FAs, modulating membrane properties, acting as ligands for receptors, and serving as precursors for lipid mediators, are vital for insulin signaling, lipid metabolism, oxidative stress, and inflammatory response, collectively contributing to cardiometabolic health. This review examines recent advances in the characteristics and functional properties of different FAs in lipid structures, signaling pathways, and cellular metabolism to better understand the differential roles of different types of FAs in obesity and cardiometabolic health.
Collapse
Affiliation(s)
- Fiorenzo Toncan
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI 96822, USA;
| | | | - Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI 96822, USA;
| |
Collapse
|
4
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Wong SW, Yang YY, Chen H, Xie L, Shen XZ, Zhang NP, Wu J. New advances in novel pharmacotherapeutic candidates for the treatment of metabolic dysfunction-associated steatohepatitis (MASH) between 2022 and 2024. Acta Pharmacol Sin 2025; 46:1145-1155. [PMID: 39870846 PMCID: PMC12032127 DOI: 10.1038/s41401-024-01466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) covers a broad spectrum of profile from simple fatty liver, evolving to metabolic dysfunction-associated steatohepatitis (MASH), to hepatic fibrosis, further progressing to cirrhosis and hepatocellular carcinoma (HCC). MASLD has become a prevalent disease with 25% in average over the world. MASH is an active stage, and requires pharmacological intervention when there is necroptotic damage with fibrotic progression. Although there is an increased understanding of MASH pathogenesis and newly approved resmetirom, given its complexity and heterogeneous pathophysiology, there is a strong necessity to develop more drug candidates with better therapeutic efficacy and well-tolerated safety profile. With an increased list of pharmaceutical candidates in the pipeline, it is anticipated to witness successful approval of more potential candidates in this fast-evolving field, thereby offering different categories of medications for selective patient populations. In this review, we update the advances in MASH pharmacotherapeutics that have completed phase II or III clinical trials with potential application in clinical practice during the latest 2 years, focusing on effectiveness and safety issues. The overview of fast-evolving status of pharmacotherapeutic candidates for MASH treatment confers deep insights into the key issues, such as molecular targets, endpoint selection and validation, clinical trial design and execution, interaction with drug administration authority, real-world data feedback and further adjustment in clinical application.
Collapse
Affiliation(s)
- Shu Wei Wong
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yong-Yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Ning-Ping Zhang
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
6
|
Cho YY, Kim S, Kim P, Jo MJ, Park SE, Choi Y, Jung SM, Kang HJ. G-Protein-Coupled Receptor (GPCR) Signaling and Pharmacology in Metabolism: Physiology, Mechanisms, and Therapeutic Potential. Biomolecules 2025; 15:291. [PMID: 40001594 PMCID: PMC11852853 DOI: 10.3390/biom15020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
G-protein coupled receptors (GPCRs), the largest family of integral membrane proteins, enable cells to sense and appropriately respond to the environment through mediating extracellular signaling to intercellular messenger molecules. GPCRs' pairing with a diverse array of G protein subunits and related downstream secondary messengers, combined with their ligand versatility-from conventional peptide hormone to numerous bioactive metabolites, allow GPCRs to comprehensively regulate metabolism and physiology. Consequently, GPCRs have garnered significant attention for their therapeutic potential in metabolic diseases. This review focuses on six GPCRs, GPR40, GPR120, GLP-1R, and ß-adrenergic receptors (ADRB1, ADRB2, and ADRB3), with GLP-1R recognized as a prominent regulator of system-level metabolism, while the roles of GPR40, GPR120 and ß-adrenergic receptors in central carbon metabolism and energy homeostasis are increasingly appreciated. Here, we discuss their physiological functions in metabolism, the current pharmacological landscape, and the intricacies of their signaling pathways via G protein and ß-arrestin activation. Additionally, we discuss the limitations of existing GPCR-targeted strategies for treating metabolic diseases and offer insights into future perspectives for advancing GPCR pharmacology.
Collapse
Affiliation(s)
- Yun Yeong Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (Y.Y.C.); (P.K.); (M.J.J.); (S.-E.P.)
| | - Soyeon Kim
- Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (S.K.); (Y.C.)
| | - Pankyung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (Y.Y.C.); (P.K.); (M.J.J.); (S.-E.P.)
| | - Min Jeong Jo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (Y.Y.C.); (P.K.); (M.J.J.); (S.-E.P.)
| | - Song-E Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (Y.Y.C.); (P.K.); (M.J.J.); (S.-E.P.)
| | - Yiju Choi
- Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (S.K.); (Y.C.)
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; (S.K.); (Y.C.)
| | - Hye Jin Kang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; (Y.Y.C.); (P.K.); (M.J.J.); (S.-E.P.)
| |
Collapse
|
7
|
Qiao X, Li X, Zhang M, Liu N, Wu Y, Lu S, Chen T. Targeting cryptic allosteric sites of G protein-coupled receptors as a novel strategy for biased drug discovery. Pharmacol Res 2025; 212:107574. [PMID: 39755133 DOI: 10.1016/j.phrs.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are highly effective targets for therapeutic drugs. GPCRs couple different downstream effectors, including G proteins (such as Gi/o, Gs, G12, and Gq) and β-arrestins (such as β-arrestin 1 and β-arrestin 2) to mediate diverse cellular and physiological responses. Biased signaling allows for the specific activation of certain pathways from the full range of receptors' signaling capabilities. Targeting more variable allosteric sites, which are spatially different from the highly conserved orthosteric sites, represents a novel approach in biased GPCR drug discovery, leading to innovative strategies for targeting GPCRs. Notably, the emergence of cryptic allosteric sites on GPCRs has expanded the repertoire of available drug targets and improved receptor subtype selectivity. Here, we conduct a summary of recent progress in the structural determination of cryptic allosteric sites on GPCRs and elucidate the biased signaling mechanisms induced by allosteric modulators. Additionally, we discuss means to identify cryptic allosteric sites and design biased allosteric modulators based on cryptic allosteric sites through structure-based drug design, which is an advanced pharmacotherapeutic approach for treating GPCR-associated diseases.
Collapse
Affiliation(s)
- Xin Qiao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Mingyang Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanmei Wu
- Department of General Surgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
8
|
Soengas JL, Comesaña S, Blanco AM, Conde-Sieira M. Feed Intake Regulation in Fish: Implications for Aquaculture. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2025; 33:8-60. [DOI: 10.1080/23308249.2024.2374259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- José L. Soengas
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Ayelén M. Blanco
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
9
|
Xu Y, Michalowski CB, Koehler J, Darwish T, Guccio N, Alcaino C, Domingues I, Zhang W, Marotti V, Van Hul M, Paone P, Koutsoviti M, Boyd BJ, Drucker DJ, Cani PD, Reimann F, Gribble FM, Beloqui A. Smart control lipid-based nanocarriers for fine-tuning gut hormone secretion. SCIENCE ADVANCES 2024; 10:eadq9909. [PMID: 39671480 PMCID: PMC11641013 DOI: 10.1126/sciadv.adq9909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Modulating the endogenous stores of gastrointestinal hormones is considered a promising strategy to mimic gut endocrine function, improving metabolic dysfunction. Here, we exploit mouse and human knock-in and knockout intestinal organoids and show that agents used as commercial lipid excipients can activate nutrient-sensitive receptors on enteroendocrine cells (EECs) and, when formulated as lipid nanocarriers, can bestow biological effects through the release of GLP-1, GIP, and PYY from K and L cells. Studies in wild-type, dysglycemic, and gut Gcg knockout mice demonstrated that the effect exerted by lipid nanocarriers could be modulated by varying the excipients (e.g., nature and quantities), the formulation methodology, and their physiochemical properties (e.g., size and composition). This study demonstrates the therapeutic potential of using nanotechnology to modulate release of multiple endogenous hormones from the enteroendocrine system through a patient-friendly, inexpensive, and noninvasive manner.
Collapse
Affiliation(s)
- Yining Xu
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Cécilia Bohns Michalowski
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Jackie Koehler
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Tamana Darwish
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Nunzio Guccio
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Constanza Alcaino
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Inês Domingues
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Wunan Zhang
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Valentina Marotti
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Matthias Van Hul
- Louvain Drug Research Institute, Metabolism and Nutrition Group, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Paola Paone
- Louvain Drug Research Institute, Metabolism and Nutrition Group, Université catholique de Louvain, 1200 Brussels, Belgium
| | - Melitini Koutsoviti
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
- Novo Nordisk A/S, 2760 Måløv, Denmark
| | - Ben J. Boyd
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 2J7, Canada
| | - Patrice D. Cani
- Louvain Drug Research Institute, Metabolism and Nutrition Group, Université catholique de Louvain, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
- Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, 1200 Brussels, Belgium
| | - Frank Reimann
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Fiona M. Gribble
- Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ana Beloqui
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, 1200 Brussels, Belgium
- WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium
| |
Collapse
|
10
|
Liu L, Zhang Q, Ma Y, Lin L, Liu W, Ding A, Wang C, Zhou S, Cai J, Tang H. Recent Developments in Drug Design of Oral Synthetic Free Fatty Acid Receptor 1 Agonists. Drug Des Devel Ther 2024; 18:5961-5983. [PMID: 39679134 PMCID: PMC11646431 DOI: 10.2147/dddt.s487469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Over the past two decades, synthetic FFAR1 agonists such as TAK-875 and TSL1806 have undergone meticulous design and extensive clinical trials. However, due to issues primarily related to hepatotoxicity, no FFAR1 agonist has yet received regulatory approval. Research into the sources of hepatotoxicity suggests that one potential cause lies in the molecular structure itself. These structures typically feature lipid-like carboxylic acid head groups, which tend to generate toxic metabolites. Strategies to mitigate these risks focus on optimizing chemical groups to reduce lipophilicity and prevent the formation of reactive metabolites. Recent studies have concentrated on developing low-molecular-weight compounds that more closely resemble natural products, with CPL207280 showing promising potential and liver safety, currently in Phase II clinical trials. Moreover, ongoing research continues to explore the potential applications of FFAR1 agonists in diabetes management, as well as in conditions such as non-alcoholic fatty liver disease (NAFLD) and cerebrovascular diseases. Utilizing advanced technologies such as artificial intelligence and computer-aided design, the development of compact molecules that mimic natural structures represents a hopeful direction for future research and development.
Collapse
Affiliation(s)
- Lei Liu
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Qinghua Zhang
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Yichuan Ma
- China Medical University (CMU)-The Queen’s University of Belfast (QUB) Joint College, Shenyang, Liaoning, People’s Republic of China
| | - Ling Lin
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Wenli Liu
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Aizhong Ding
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Chunjian Wang
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| | - Shuiping Zhou
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
| | - Jinyong Cai
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
| | - Hai Tang
- Tasly Academy, Tasly Pharma Co., Ltd., Tianjin, People’s Republic of China
- Tasly Academy Jiangsu Branch, Jiangsu Tasly Diyi Pharmaceutical Co., Ltd., Huaian, Jiangsu, People’s Republic of China
| |
Collapse
|
11
|
Tough IR, Moodaley R, Cox HM. Enteroendocrine cell-derived peptide YY signalling is stimulated by pinolenic acid or Intralipid and involves coactivation of fatty acid receptors FFA1, FFA4 and GPR119. Neuropeptides 2024; 108:102477. [PMID: 39427565 DOI: 10.1016/j.npep.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Long chain fatty acids are sensed by enteroendocrine L cells that express free-fatty acid receptors, including FFA1, FFA4 and the acylethanolamine receptor GPR119. Here we investigated the acute effects of single or multiple agonism at these G protein-coupled receptors in intestinal mucosae where L cell-derived peptide YY (PYY) is anti-secretory and acts via epithelial Y1 receptors. Mouse ileal or colonic mucosae were mounted in Ussing chambers, voltage-clamped and the resultant short-circuit current (Isc) recorded continuously. The agonists used were; FFA1, TAK-875 or AM-1638; for FFA4, Merck A; or for GPR119, AR231453, PSN632408 or AR440006. Their responses were compared with those of pinolenic acid (PA, a presumed dual FFA1/FFA4 agonist) and the lipid emulsion, Intralipid. The FFA1 agonist AM-1638 (EC50 = 38.2 nM) was more potent than TAK-875 (EC50 = 203.1 nM) but exhibited similar efficacy. GPR119 agonism (AR231453) pretreatment enhanced subsequent FFA1 (AM-1638 or TAK-875) and FFA4 (Merck A) signalling. PA (EC50 = 298.2 nM) co-activated epithelial FFA1 and FFA4 and involved endogenous PYY Y1/Y2-receptor mechanisms but desensitisation was observed between PA and high GPR119 agonist concentrations. Apical Intralipid co-activated FFA1, FFA4 and GPR119 with a residual component not being attributable to PYY, or this trio of fatty acid receptors.
Collapse
Affiliation(s)
- Iain R Tough
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Runisha Moodaley
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| | - Helen M Cox
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
12
|
Dagbasi A, Fuller A, Hanyaloglu AC, Carroll B, McLaughlin J, Frost G, Holliday A. The role of nutrient sensing dysregulation in anorexia of ageing: The little we know and the much we don't. Appetite 2024; 203:107718. [PMID: 39423861 DOI: 10.1016/j.appet.2024.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The age-related decline in appetite and food intake - termed "anorexia of ageing" - is implicated in undernutrition in later life and hence provides a public health challenge for our ageing population. Eating behaviour is controlled, in part, by homeostatic mechanisms which sense nutrient status and provide feedback to appetite control regions of the brain. Such feedback signals, propagated by episodic gut hormones, are dysregulated in some older adults. The secretory responses of appetite-related gut hormones to feeding are amplified, inducing a more anorexigenic signal which is associated with reduced appetite and food intake. Such an augmented response would indicate an increase in gut sensitivity to nutrients. Consequently, this review explores the role of gastrointestinal tract nutrient sensing in age-related appetite dysregulation. We review and synthesise evidence for age-related alterations in nutrient sensing which may explain the observed hormonal dysregulation. Drawing on what is known regarding elements of nutrient sensing pathways in animal models, in other tissues of the body, and in certain models of disease, we identify potential causal mechanisms including alterations in enteroendocrine cell number and distribution, dysregulation of cell signalling pathways, and changes in the gut milieu. From identified gaps in evidence, we highlight interesting and important avenues for future research.
Collapse
Affiliation(s)
- Aygul Dagbasi
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, London, W12 0NN, UK
| | - Amy Fuller
- Research Centre for Health and Life Sciences, Institute of Health and Wellbeing, Faculty of Health and Life Science, Coventry University, Coventry, CV1 5FB, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology (IRDB), Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Bernadette Carroll
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS1 8TD, UK
| | - John McLaughlin
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, M13 9PT, UK
| | - Gary Frost
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, London, W12 0NN, UK
| | - Adrian Holliday
- School of Biomedical, Nutritional, and Sport Science, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK; Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
13
|
Dragonieri S, Portacci A, Quaranta VN, Carratu P, Lazar Z, Carpagnano GE, Bikov A. Therapeutic Potential of Glucagon-like Peptide-1 Receptor Agonists in Obstructive Sleep Apnea Syndrome Management: A Narrative Review. Diseases 2024; 12:224. [PMID: 39329893 PMCID: PMC11431450 DOI: 10.3390/diseases12090224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Background: Obstructive Sleep Apnea (OSA) is a prevalent disorder characterized by repetitive upper airway obstructions during sleep, leading to intermittent hypoxia and sleep fragmentation. Current treatments, particularly Continuous Positive Airway Pressure (CPAP), face adherence challenges, necessitating novel therapeutic approaches. Methods: This review explores the potential of Glucagon-like Peptide-1 receptor agonists (GLP-1RA), commonly used for type 2 diabetes and obesity, in managing OSA. GLP-1RA promotes weight loss, enhances insulin sensitivity, and exhibits anti-inflammatory and neuroprotective properties, potentially addressing key pathophysiological aspects of OSA. Results: Emerging evidence suggests that these agents may reduce OSA severity by decreasing upper airway fat deposition and improving respiratory control. Clinical trials have demonstrated significant reductions in the Apnea-Hypopnea Index (AHI) and improvements in sleep quality with GLP-1 therapy. Conclusions: Future research should focus on elucidating the mechanisms underlying GLP-1 effects on OSAS, optimizing combination therapies, and identifying patient subgroups that may benefit the most. Integrating GLP-1RA into OSAS management could revolutionize treatment by addressing both the metabolic and respiratory components of the disorder, ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Silvano Dragonieri
- Respiratory Medicine, Dipartimento di Biomedicina Traslazionale e Neuroscienze, University of Bari, 70121 Bari, Italy; (A.P.); (V.N.Q.); (G.E.C.)
| | - Andrea Portacci
- Respiratory Medicine, Dipartimento di Biomedicina Traslazionale e Neuroscienze, University of Bari, 70121 Bari, Italy; (A.P.); (V.N.Q.); (G.E.C.)
| | - Vitaliano Nicola Quaranta
- Respiratory Medicine, Dipartimento di Biomedicina Traslazionale e Neuroscienze, University of Bari, 70121 Bari, Italy; (A.P.); (V.N.Q.); (G.E.C.)
| | - Pierluigi Carratu
- Internal Medicine “A. Murri”, Department DIMEPREJ, University of Bari, 70121 Bari, Italy;
| | - Zsofia Lazar
- Department of Pulmonology, Semmelweis University, 1085 Budapest, Hungary;
| | - Giovanna Elisiana Carpagnano
- Respiratory Medicine, Dipartimento di Biomedicina Traslazionale e Neuroscienze, University of Bari, 70121 Bari, Italy; (A.P.); (V.N.Q.); (G.E.C.)
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK;
| |
Collapse
|
14
|
Hoffman S, Adeli K. Glucagon-like peptide (GLP)-1 regulation of lipid and lipoprotein metabolism. MEDICAL REVIEW (2021) 2024; 4:301-311. [PMID: 39135603 PMCID: PMC11317082 DOI: 10.1515/mr-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 08/15/2024]
Abstract
Metabolic health is highly dependent on intestinal and hepatic handling of dietary and endogenous lipids and lipoproteins. Disorders of lipid and lipoprotein metabolism are commonly observed in patients with insulin resistant states such as obesity, metabolic syndrome, and type 2 diabetes. Evidence from both animal models and human studies indicates that a major underlying factor in metabolic or diabetic dyslipidemia is the overproduction of hepatic and intestinal apolipoprotein (apo)B-containing lipoprotein particles. These particles are catabolized down into highly proatherogenic remnants, which can be taken up into the arterial intima and promote plaque development. Several gut-derived peptides have been identified as key regulators of energy metabolism; one such peptide is the incretin hormone glucagon-like peptide (GLP)-1. Our laboratory has previously demonstrated that GLP-1 can signal both centrally and peripherally to reduce postprandial and fasting lipoprotein secretion. Moreover, we have demonstrated that GLP-1 receptor (GLP-1R) agonists can ameliorate diet-induced dyslipidemia. Recently, we published evidence for a novel vagal neuroendocrine signalling pathway by which native GLP-1 may exert its anti-lipemic effects. Furthermore, we demonstrated a novel role for other gut-derived peptides in regulating intestinal lipoprotein production. Overall, ample evidence supports a key role for GLP-1R on the portal vein afferent neurons and nodose ganglion in modulating intestinal fat absorption and lipoprotein production and identifies other gut-derived peptides as novel regulators of postprandial lipemia. Insights from these data may support identification of potential drug targets and the development of new therapeutics targeting treatment of diabetic dyslipidemia.
Collapse
Affiliation(s)
- Simon Hoffman
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Cardiovascular & Metabolic Disease, Merck Research Laboratories, South San Francisco, CA, USA
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Wargent ET, Kępczyńska MA, Kaspersen MH, Ulven ER, Arch JRS, Ulven T, Stocker CJ. Chronic administration of hydrolysed pine nut oil to mice improves insulin sensitivity and glucose tolerance and increases energy expenditure via a free fatty acid receptor 4-dependent mechanism. Br J Nutr 2024; 132:13-20. [PMID: 38751244 DOI: 10.1017/s0007114524000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
A healthy diet is at the forefront of measures to prevent type 2 diabetes. Certain vegetable and fish oils, such as pine nut oil (PNO), have been demonstrated to ameliorate the adverse metabolic effects of a high-fat diet. The present study investigates the involvement of the free fatty acid receptors 1 (FFAR1) and 4 (FFAR4) in the chronic activity of hydrolysed PNO (hPNO) on high-fat diet-induced obesity and insulin resistance. Male C57BL/6J wild-type, FFAR1 knockout (-/-) and FFAR4-/- mice were placed on 60 % high-fat diet for 3 months. Mice were then dosed hPNO for 24 d, during which time body composition, energy intake and expenditure, glucose tolerance and fasting plasma insulin, leptin and adiponectin were measured. hPNO improved glucose tolerance and decreased plasma insulin in the wild-type and FFAR1-/- mice, but not the FFAR4-/- mice. hPNO also decreased high-fat diet-induced body weight gain and fat mass, whilst increasing energy expenditure and plasma adiponectin. None of these effects on energy balance were statistically significant in FFAR4-/- mice, but it was not shown that they were significantly less than in wild-type mice. In conclusion, chronic hPNO supplementation reduces the metabolically detrimental effects of high-fat diet on obesity and insulin resistance in a manner that is dependent on the presence of FFAR4.
Collapse
Affiliation(s)
- Edward Taynton Wargent
- Institute of Translational Medicine, Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| | - Małgorzata A Kępczyńska
- Institute of Translational Medicine, Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| | - Mads H Kaspersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Elisabeth Rexen Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100Copenhagen, Denmark
| | - Jonathan R S Arch
- Institute of Translational Medicine, Clore Laboratory, University of Buckingham, Buckingham, MK18 1EG, UK
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100Copenhagen, Denmark
| | | |
Collapse
|
16
|
Jin C, Chen H, Xie L, Zhou Y, Liu LL, Wu J. GPCRs involved in metabolic diseases: pharmacotherapeutic development updates. Acta Pharmacol Sin 2024; 45:1321-1336. [PMID: 38326623 PMCID: PMC11192902 DOI: 10.1038/s41401-023-01215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024]
Abstract
G protein-coupled receptors (GPCRs) are expressed in a variety of cell types and tissues, and activation of GPCRs is involved in enormous metabolic pathways, including nutrient synthesis, transportation, storage or insulin sensitivity, etc. This review intends to summarize the regulation of metabolic homeostasis and mechanisms by a series of GPCRs, such as GPR91, GPR55, GPR119, GPR109a, GPR142, GPR40, GPR41, GPR43 and GPR120. With deep understanding of GPCR's structure and signaling pathways, it is attempting to uncover the role of GPCRs in major metabolic diseases, including metabolic syndrome, diabetes, dyslipidemia and nonalcoholic steatohepatitis, for which the global prevalence has risen during last two decades. An extensive list of agonists and antagonists with their chemical structures in a nature of small molecular compounds for above-mentioned GPCRs is provided as pharmacologic candidates, and their preliminary data of preclinical studies are discussed. Moreover, their beneficial effects in correcting abnormalities of metabolic syndrome, diabetes and dyslipidemia are summarized when clinical trials have been undertaken. Thus, accumulating data suggest that these agonists or antagonists might become as new pharmacotherapeutic candidates for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
- College of Clinical Medicine, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li-Li Liu
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
17
|
Dontamsetti KD, Pedrosa‐Suarez LC, Aktar R, Peiris M. Sensing of luminal contents and downstream modulation of GI function. JGH Open 2024; 8:e13083. [PMID: 38779131 PMCID: PMC11109814 DOI: 10.1002/jgh3.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The luminal environment is rich in macronutrients coming from our diet and resident microbial populations including their metabolites. Together, they have the capacity to modulate unique cell surface receptors, known as G-protein coupled receptors (GPCRs). Along the entire length of the gut epithelium, enteroendocrine cells express GPCRs to interact with luminal contents, such as GPR93 and the calcium sensing receptor to sense proteins, FFA2 and GPR84 to sense fatty acids, and SGLT1 and T1R to sense carbohydrates. Nutrient-receptor interaction causes the release of hormonal stores such as glucagon-like peptide 1, peptide YY, and cholecystokinin, which further regulate gut function. Existing data show the role of luminal components and microbial fermentation products on gut function. However, there is a lack of understanding in the mechanistic interactions between diet-derived luminal components and microbial products and nutrient-sensing receptors and downstream gastrointestinal modulation. This review summarizes current knowledge on various luminal components and describes in detail the range of nutrients and metabolites and their interaction with nutrient receptors in the gut epithelium and the emerging impact on immune cells.
Collapse
Affiliation(s)
- Kiran Devi Dontamsetti
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Laura Camila Pedrosa‐Suarez
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Rubina Aktar
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| |
Collapse
|
18
|
Patil M, Casari I, Warne LN, Falasca M. G protein-coupled receptors driven intestinal glucagon-like peptide-1 reprogramming for obesity: Hope or hype? Biomed Pharmacother 2024; 172:116245. [PMID: 38340396 DOI: 10.1016/j.biopha.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
'Globesity' is a foremost challenge to the healthcare system. The limited efficacy and adverse effects of available oral pharmacotherapies pose a significant obstacle in the fight against obesity. The biology of the leading incretin hormone glucagon-like-peptide-1 (GLP-1) has been highly captivated during the last decade owing to its multisystemic pleiotropic clinical outcomes beyond inherent glucoregulatory action. That fostered a pharmaceutical interest in synthetic GLP-1 analogues to tackle type-2 diabetes (T2D), obesity and related complications. Besides, mechanistic insights on metabolic surgeries allude to an incretin-based hormonal combination strategy for weight loss that emerged as a forerunner for the discovery of injectable 'unimolecular poly-incretin-agonist' therapies. Physiologically, intestinal enteroendocrine L-cells (EECs) are the prominent endogenous source of GLP-1 peptide. Despite comprehending the potential of various G protein-coupled receptors (GPCRs) to stimulate endogenous GLP-1 secretion, decades of translational GPCR research have failed to yield regulatory-approved endogenous GLP-1 secretagogue oral therapy. Lately, a dual/poly-GPCR agonism strategy has emerged as an alternative approach to the traditional mono-GPCR concept. This review aims to gain a comprehensive understanding by revisiting the pharmacology of a few potential GPCR-based complementary avenues that have drawn attention to the design of orally active poly-GPCR agonist therapy. The merits, challenges and recent developments that may aid future poly-GPCR drug discovery are critically discussed. Subsequently, we project the mechanism-based therapeutic potential and limitations of oral poly-GPCR agonism strategy to augment intestinal GLP-1 for weight loss. We further extend our discussion to compare the poly-GPCR agonism approach over invasive surgical and injectable GLP-1-based regimens currently in clinical practice for obesity.
Collapse
Affiliation(s)
- Mohan Patil
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Ilaria Casari
- Metabolic Signalling Group, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Leon N Warne
- Little Green Pharma, West Perth, Western Australia 6872, Australia
| | - Marco Falasca
- University of Parma, Department of Medicine and Surgery, Via Volturno 39, 43125 Parma, Italy.
| |
Collapse
|
19
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
20
|
Huang J, Suzuki M, Endo A, Watanabe A, Sakata I. The role of free fatty acid receptor-1 in gastric contractions in Suncus murinus. Food Funct 2024; 15:2221-2233. [PMID: 38318756 DOI: 10.1039/d3fo03565d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Motilin is an important hormonal regulator in the migrating motor complex (MMC). Free fatty acid receptor-1 (FFAR1, also known as GPR40) has been reported to stimulate motilin release in human duodenal organoids. However, how FFAR1 regulates gastric motility in vivo is unclear. This study investigated the role of FFAR1 in the regulation of gastric contractions and its possible mechanism of action using Suncus murinus. Firstly, intragastric administration of oleic acid (C18:1, OA), a natural ligand for FFAR1, stimulated phase II-like contractions, followed by phase III-like contractions in the fasted state, and the gastric emptying rate was accelerated. The administration of GW1100, an FFAR1 antagonist, inhibited the effects of OA-induced gastric contractions. Intravenous infusion of a ghrelin receptor antagonist (DLS) or serotonin 4 (5-HT4) receptor antagonist (GR125487) inhibited phase II-like contractions and prolonged the onset of phase III-like contractions induced by OA. MA-2029, a motilin receptor antagonist, delayed the occurrence of phase III-like contractions. In vagotomized suncus, OA did not induce phase II-like contractions. In addition, OA promoted gastric emptying through a vagal pathway during the postprandial period. However, OA did not directly act on the gastric body to induce contractions in vitro. In summary, this study indicates that ghrelin, motilin, 5-HT, and the vagus nerve are involved in the role of FFAR1 regulating MMC. Our findings provide novel evidence for the involvement of nutritional factors in the regulation of gastric motility.
Collapse
Affiliation(s)
- Jin Huang
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Miu Suzuki
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Ami Endo
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Ayumi Watanabe
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
- Research Area of Evolutionary Molecular Design, Strategic Research Center, Saitama University, Saitama, Japan
| |
Collapse
|
21
|
Clarke GS, Li H, Ladyman SR, Young RL, Gatford KL, Page AJ. Effect of pregnancy on the expression of nutrient-sensors and satiety hormones in mice. Peptides 2024; 172:171114. [PMID: 37926186 DOI: 10.1016/j.peptides.2023.171114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Small intestinal satiation pathways involve nutrient-induced stimulation of chemoreceptors leading to release of satiety hormones from intestinal enteroendocrine cells (ECCs). Whether adaptations in these pathways contribute to increased maternal food intake during pregnancy is unknown. To determine the expression of intestinal nutrient-sensors and satiety hormone transcripts and proteins across pregnancy in mice. Female C57BL/6J mice (10-12 weeks old) were randomized to mating and then tissue collection at early- (6.5 d), mid- (12.5 d) or late-pregnancy (17.5 d), or to an unmated age matched control group. Relative transcript expression of intestinal fatty acid, peptide and amino acid and carbohydrate chemoreceptors, as well as gut hormones was determined across pregnancy. The density of G-protein coupled receptor 93 (GPR93), free fatty acid receptor (FFAR) 4, cholecystokinin (CCK) and glucagon-like peptide1 (GLP-1) immunopositive cells was then compared between non-pregnant and late-pregnant mice. Duodenal GPR93 expression was lower in late pregnant than non-pregnant mice (P < 0.05). Ileal FFAR1 expression was higher at mid- than at early- or late-pregnancy. Ileal FFAR2 expression was higher at mid-pregnancy than in early pregnancy. Although FFAR4 expression was consistently lower in late-pregnant than non-pregnant mice (P < 0.001), the density of FFAR4 immunopositive cells was higher in the jejunum of late-pregnant than non-pregnant mice. A subset of protein and fatty acid chemoreceptor transcripts undergo region-specific change during murine pregnancy, which could augment hormone release and contribute to increased food intake. Further investigations are needed to determine the functional relevance of these changes.
Collapse
Affiliation(s)
- Georgia S Clarke
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Hui Li
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Richard L Young
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Kathryn L Gatford
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia
| | - Amanda J Page
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, SAHMRI, Adelaide, SA 5000, Australia.
| |
Collapse
|
22
|
Abdelhalim KA. Short-chain fatty acids (SCFAs) from gastrointestinal disorders, metabolism, epigenetics, central nervous system to cancer - A mini-review. Chem Biol Interact 2024; 388:110851. [PMID: 38145797 DOI: 10.1016/j.cbi.2023.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Short-chain fatty acids (SCFAs), generated through microbial fermentation of dietary fibers and proteins in the gut, play a pivotal role in maintaining intestinal integrity, cellular function, and the immune response. SCFAs, including butyrate, acetate, and propionate, are absorbed in the colon or excreted through feces, contributing to essential physiological processes. Butyrate, a primary energy source for colonocytes, exhibits anti-inflammatory properties and regulates key pathways, such as nuclear factor-κB (NF-κB) inhibition. SCFAs' impact extends beyond the intestines, influencing the gut-brain axis, systemic circulation, and folate metabolism. A decline in colonic SCFAs has been linked to gastrointestinal diseases, emphasizing their clinical relevance, while their effects on immune checkpoints, such as ipilimumab, provide intriguing prospects for cancer therapy. This mini-review explores SCFAs' diverse roles, shedding light on their significance in health and potential implications for disease management. Understanding SCFAs' intricate mechanisms enhances our knowledge of their therapeutic potential and highlights their emerging importance in various physiological contexts.
Collapse
|
23
|
Paul A, Nahar S, Nahata P, Sarkar A, Maji A, Samanta A, Karmakar S, Maity TK. Synthetic GPR40/FFAR1 agonists: An exhaustive survey on the most recent chemical classes and their structure-activity relationships. Eur J Med Chem 2024; 264:115990. [PMID: 38039791 DOI: 10.1016/j.ejmech.2023.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Free fatty acid receptor 1 (FFAR1 or GPR40) is a potential target for treating type 2 diabetes mellitus (T2DM) and related disorders that have been extensively researched for many years. GPR40/FFAR1 is a promising anti-diabetic target because it can activate insulin, promoting glucose metabolism. It controls T2DM by regulating glucose levels in the body through two separate mechanisms: glucose-stimulated insulin secretion and incretin production. In the last few years, various synthetic GPR40/FFAR1 agonists have been discovered that fall under several chemical classes, viz. phenylpropionic acid, phenoxyacetic acid, and dihydrobenzofuran acetic acid. However, only a few synthetic agonists have entered clinical trials due to various shortcomings like poor efficacy, low lipophilicity and toxicity issues. As a result, pharmaceutical firms and research institutions are interested in developing synthetic GPR40/FFAR1 agonists with superior effectiveness, lipophilicity, and safety profiles. This review encompasses the most recent research on synthetic GPR40/FFAR1 agonists, including their chemical classes, design strategies and structure-activity relationships. Additionally, we have emphasised the structural characteristics of the most potent GPR40/FFAR1 agonists from each chemical class of synthetic derivatives and analysed their chemico-biological interactions. This work will hopefully pave the way for developing more potent and selective synthetic GPR40/FFAR1 agonists for treating T2DM and related disorders.
Collapse
Affiliation(s)
- Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| |
Collapse
|
24
|
Barton JR, Londregan AK, Alexander TD, Entezari AA, Covarrubias M, Waldman SA. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci 2023; 17:1272955. [PMID: 38027512 PMCID: PMC10662325 DOI: 10.3389/fnins.2023.1272955] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroendocrine cells (EECs) are an essential interface between the gut and brain that communicate signals about nutrients, pain, and even information from our microbiome. EECs are hormone-producing cells expressed throughout the gastrointestinal epithelium and have been leveraged by pharmaceuticals like semaglutide (Ozempic, Wegovy), terzepatide (Mounjaro), and retatrutide (Phase 2) for diabetes and weight control, and linaclotide (Linzess) to treat irritable bowel syndrome (IBS) and visceral pain. This review focuses on role of intestinal EECs to communicate signals from the gut lumen to the brain. Canonically, EECs communicate information about the intestinal environment through a variety of hormones, dividing EECs into separate classes based on the hormone each cell type secretes. Recent studies have revealed more diverse hormone profiles and communication modalities for EECs including direct synaptic communication with peripheral neurons. EECs known as neuropod cells rapidly relay signals from gut to brain via a direct communication with vagal and primary sensory neurons. Further, this review discusses the complex information processing machinery within EECs, including receptors that transduce intraluminal signals and the ion channel complement that govern initiation and propagation of these signals. Deeper understanding of EEC physiology is necessary to safely treat devastating and pervasive conditions like irritable bowel syndrome and obesity.
Collapse
Affiliation(s)
- Joshua R. Barton
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Annie K. Londregan
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tyler D. Alexander
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ariana A. Entezari
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Manuel Covarrubias
- Department of Neurosciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A. Waldman
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
25
|
Drucker DJ, Holst JJ. The expanding incretin universe: from basic biology to clinical translation. Diabetologia 2023; 66:1765-1779. [PMID: 36976349 DOI: 10.1007/s00125-023-05906-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023]
Abstract
Incretin hormones, principally glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1(GLP-1), potentiate meal-stimulated insulin secretion through direct (GIP + GLP-1) and indirect (GLP-1) actions on islet β-cells. GIP and GLP-1 also regulate glucagon secretion, through direct and indirect pathways. The incretin hormone receptors (GIPR and GLP-1R) are widely distributed beyond the pancreas, principally in the brain, cardiovascular and immune systems, gut and kidney, consistent with a broad array of extrapancreatic incretin actions. Notably, the glucoregulatory and anorectic activities of GIP and GLP-1 have supported development of incretin-based therapies for the treatment of type 2 diabetes and obesity. Here we review evolving concepts of incretin action, focusing predominantly on GLP-1, from discovery, to clinical proof of concept, to therapeutic outcomes. We identify established vs uncertain mechanisms of action, highlighting biology conserved across species, while illuminating areas of active investigation and uncertainty that require additional clarification.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.
| | - Jens J Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Weninger SN, Herman C, Meyer RK, Beauchemin ET, Kangath A, Lane AI, Martinez TM, Hasneen T, Jaramillo SA, Lindsey J, Vedantam G, Cai H, Cope EK, Caporaso JG, Duca FA. Oligofructose improves small intestinal lipid-sensing mechanisms via alterations to the small intestinal microbiota. MICROBIOME 2023; 11:169. [PMID: 37533066 PMCID: PMC10394784 DOI: 10.1186/s40168-023-01590-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/02/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Upper small intestinal dietary lipids activate a gut-brain axis regulating energy homeostasis. The prebiotic, oligofructose (OFS) improves body weight and adiposity during metabolic dysregulation but the exact mechanisms remain unknown. This study examines whether alterations to the small intestinal microbiota following OFS treatment improve small intestinal lipid-sensing to regulate food intake in high fat (HF)-fed rats. RESULTS In rats fed a HF diet for 4 weeks, OFS supplementation decreased food intake and meal size within 2 days, and reduced body weight and adiposity after 6 weeks. Acute (3 day) OFS treatment restored small intestinal lipid-induced satiation during HF-feeding, and was associated with increased small intestinal CD36 expression, portal GLP-1 levels and hindbrain neuronal activation following a small intestinal lipid infusion. Transplant of the small intestinal microbiota from acute OFS treated donors into HF-fed rats also restored lipid-sensing mechanisms to lower food intake. 16S rRNA gene sequencing revealed that both long and short-term OFS altered the small intestinal microbiota, increasing Bifidobacterium relative abundance. Small intestinal administration of Bifidobacterium pseudolongum to HF-fed rats improved small intestinal lipid-sensing to decrease food intake. CONCLUSION OFS supplementation rapidly modulates the small intestinal gut microbiota, which mediates improvements in small intestinal lipid sensing mechanisms that control food intake to improve energy homeostasis. Video Abstract.
Collapse
Affiliation(s)
| | - Chloe Herman
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Rachel K Meyer
- Department of Nutritional Sciences, University of Arizona, Tucson, USA
| | - Eve T Beauchemin
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, USA
- Faculty of Medicine, Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Archana Kangath
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, USA
| | - Adelina I Lane
- Department of Physiology, University of Arizona, Tucson, USA
| | | | - Tahia Hasneen
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Sierra A Jaramillo
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jason Lindsey
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, USA
| | - Haijiang Cai
- Department of Neuroscience, University of Arizona, Tucson, AZ, USA
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, USA
| | - Emily K Cope
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - J Gregory Caporaso
- Center for Applied Microbiome Science, Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, College of Agricultural and Life Sciences, University of Arizona, Tucson, USA.
- BIO5 Institute for Collaborative Research, University of Arizona, Tucson, USA.
| |
Collapse
|
27
|
Yamamoto Y, Narumi K, Yamagishi N, Nishi T, Ito T, Iseki K, Kobayashi M, Kanai Y. Oral administration of linoleic acid immediately before glucose load ameliorates postprandial hyperglycemia. Front Pharmacol 2023; 14:1197743. [PMID: 37583904 PMCID: PMC10424117 DOI: 10.3389/fphar.2023.1197743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction: Fatty acids are a major nutrient in dietary fat, some of which are ligands of long-chain fatty acid receptors, including G-protein-coupled receptor (GPR) 40 and GPR120. Pretreatment with GPR40 agonists enhanced the secretion of insulin in response to elevating blood glucose levels after glucose load in a diabetes model, but pretreatment with GPR120 agonist did not ameliorate postprandial hyperglycemia. This study examined whether oral administration of linoleic acid (LA), a GPR40 and GPR120 agonist, immediately before glucose load would affect the elevation of postprandial blood glucose levels in rats. Methods: Male rats and rats with type 1 diabetes administered streptozocin were orally administered LA, trilinolein, α-linolenic acid (α-LA), oleic acid, TAK-875, or TUG-891 immediately before glucose load. Blood glucose levels were measured before, then 15, 30, 60 and 120 min after glucose load. CACO-2 cells were used to measure the uptake of [14C] α-MDG for 30 min with or without LA. Gastric content from rats administered LA was collected 15 and 30 min after glucose load, and blood samples were collected for measurement of glucagon-like peptide 1 (GLP-1) and cholecystokinin concentrations. Results: The elevation of postprandial blood glucose levels was slowed by LA but not by trilinolein in rats without promotion of insulin secretion, and this effect was also observed in rats with type 1 diabetes. The uptake of α-MDG, an SGLT-specific substrate, was, however, not inhibited by LA. Gastric emptying was slowed by LA 15 min after glucose load, and GLP-1, but not cholecystokinin, level was elevated by LA 15 min after glucose load. TUG-891, a GPR120 agonist, ameliorated postprandial hyperglycemia but TAK-875, a GPR40 agonist, did not. Pretreatment with AH7614, a GPR120 antagonist, partially canceled the improvement of postprandial hyperglycemia induced by LA. α-LA, which has high affinity with GPR120 as well as LA, slowed the elevation of postprandial blood glucose levels, but oleic acid, which has lower affinity with GPR120 than LA, did not. Conclusion: Oral administration of LA immediately after glucose load ameliorated postprandial hyperglycemia due to slowing of gastric emptying via promotion of GLP-1 secretion. The mechanisms may be associated with GPR120 pathway.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Naoko Yamagishi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshio Nishi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takao Ito
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yoshimitsu Kanai
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
28
|
Oteng AB, Liu L. GPCR-mediated effects of fatty acids and bile acids on glucose homeostasis. Front Endocrinol (Lausanne) 2023; 14:1206063. [PMID: 37484954 PMCID: PMC10360933 DOI: 10.3389/fendo.2023.1206063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Fatty acids and glucose are key biomolecules that share several commonalities including serving as energy substrates and as signaling molecules. Fatty acids can be synthesized endogenously from intermediates of glucose catabolism via de-novo lipogenesis. Bile acids are synthesized endogenously in the liver from the biologically important lipid molecule, cholesterol. Evidence abounds that fatty acids and bile acids play direct and indirect roles in systemic glucose homeostasis. The tight control of plasma glucose levels during postprandial and fasted states is principally mediated by two pancreatic hormones, insulin and glucagon. Here, we summarize experimental studies on the endocrine effects of fatty acids and bile acids, with emphasis on their ability to regulate the release of key hormones that regulate glucose metabolism. We categorize the heterogenous family of fatty acids into short chain fatty acids (SCFAs), unsaturated, and saturated fatty acids, and highlight that along with bile acids, these biomolecules regulate glucose homeostasis by serving as endogenous ligands for specific G-protein coupled receptors (GPCRs). Activation of these GPCRs affects the release of incretin hormones by enteroendocrine cells and/or the secretion of insulin, glucagon, and somatostatin by pancreatic islets, all of which regulate systemic glucose homeostasis. We deduce that signaling induced by fatty acids and bile acids is necessary to maintain euglycemia to prevent metabolic diseases such as type-2 diabetes and related metabolic disorders.
Collapse
|
29
|
Ren Q, Fan Y, Yang L, Shan M, Shi W, Qian H. An updated patent review of GPR40/ FFAR1 modulators (2020 - present). Expert Opin Ther Pat 2023; 33:565-577. [PMID: 37947382 DOI: 10.1080/13543776.2023.2272649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
INTRODUCTION Free fatty acid receptor 1 (FFAR1) is a potential therapeutic target for type 2 diabetes mellitus (T2DM) because it could clinically stimulate insulin release in a glucose-dependent manner without inducing hypoglycemia. In both the pharmaceutical industry and academic community, FFAR1 agonists have attracted considerable attention. AREAS COVERED The review presents a patent overview of FFAR1 modulators in 2020-2023, along with chemical structures, the biological activities and therapeutic applications of the representative compounds. Our patent survey used the major electronic databases, namely SciFinder, and Web of Science and Innojoy. EXPERT OPINION Although FFAR1 agonists exhibit outstanding advantages, they are also associated with significant challenges. At present, reducing the molecular weight and overall lipophilicity and developing tissue-specific FFAR1 agonists may be the strategies for alleviating hepatotoxicity.
Collapse
Affiliation(s)
- Qiang Ren
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Yiqing Fan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Lixin Yang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Mayu Shan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
30
|
Pon'kina DA, Kuranov SO, Marenina MK, Meshkova YV, Zhukova NA, Khvostov MV, Luzina OA, Tolstikova TG, Salakhutdinov NF. Bornyl-Containing Derivatives of Benzyloxyphenylpropanoic Acid as FFAR1 Agonists: In Vitro and In Vivo Studies. Pharmaceutics 2023; 15:1670. [PMID: 37376118 DOI: 10.3390/pharmaceutics15061670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases worldwide. Several classes of hypoglycemic drugs are used to treat it, but various side effects limit their clinical use. Consequently, the search for new anti-diabetic agents remains an urgent task for modern pharmacology. In this investigation, we examined the hypoglycemic effects of bornyl-containing benzyloxyphenylpropanoic acid derivatives (QS-528 and QS-619) in a diet-induced model of T2DM. Animals were given the tested compounds per os at a dose of 30 mg/kg for 4 weeks. At the end of the experiment, compound QS-619 demonstrated a hypoglycemic effect, while QS-528 showed hepatoprotection. In addition, we performed a number of in vitro and in vivo experiments to study the presumed mechanism of action of the tested agents. Compound QS-619 was determined to activate the free fatty acid receptor-1 (FFAR1) similarly to the reference agonist GW9508 and its structural analogue QS-528. Both agents also increased insulin and glucose-dependent insulinotropic polypeptide concentrations in CD-1 mice. Our results indicate that QS-619 and QS-528 are probably full FFAR1 agonists.
Collapse
Affiliation(s)
- Darya A Pon'kina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Sergey O Kuranov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Mariya K Marenina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Yulia V Meshkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nataliya A Zhukova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Mikhail V Khvostov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga A Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Tatiana G Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
31
|
Li Y, Lu Z, Kirkwood CL, Kirkwood KL, Wank SA, Li AJ, Lopes-Virella MF, Huang Y. GPR40 deficiency worsens metabolic syndrome-associated periodontitis in mice. J Periodontal Res 2023; 58:575-587. [PMID: 36807310 PMCID: PMC10182248 DOI: 10.1111/jre.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/20/2023]
Abstract
BACKGROUND AND OBJECTIVE G protein-coupled receptor 40 (GPR40) is a receptor for medium- and long-chain free fatty acids (FFAs). GPR40 activation improves type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), and the complications of T2DM and MetS. Periodontitis, a common oral inflammatory disease initiated by periodontal pathogens, is another complication of T2DM and MetS. Since FFAs play a key role in the pathogenesis of MetS which exacerbates periodontal inflammation and GPR40 is a FFA receptor with anti-inflammatory properties, it is important to define the role of GPR40 in MetS-associated periodontitis. MATERIALS AND METHODS We induced MetS and periodontitis by high-fat diet and periodontal injection of lipopolysaccharide (LPS), respectively, in wild-type and GPR40-deficient mice and determined alveolar bone loss and periodontal inflammation using micro-computed tomography, histology, and osteoclast staining. We also performed in vitro study to determine the role of GPR40 in the expression of proinflammatory genes. RESULTS The primary outcome of the study is that GPR40 deficiency increased alveolar bone loss and enhanced osteoclastogenesis in control mice and the mice with both MetS and periodontitis. GPR40 deficiency also augmented periodontal inflammation in control mice and the mice with both MetS and periodontitis. Furthermore, GPR40 deficiency led to increased plasma lipids and insulin resistance in control mice but had no effect on the metabolic parameters in mice with MetS alone. For mice with both MetS and periodontitis, GPR40 deficiency increased insulin resistance. Finally, in vitro studies with macrophages showed that deficiency or inhibition of GPR40 upregulated proinflammatory genes while activation of GPR40 downregulated proinflammatory gene expression stimulated synergistically by LPS and palmitic acid. CONCLUSION GPR40 deficiency worsens alveolar bone loss and periodontal inflammation in mice with both periodontitis and MetS, suggesting that GPR40 plays a favorable role in MetS-associated periodontitis. Furthermore, GPR40 deficiency or inhibition in macrophages further upregulated proinflammatory and pro-osteoclastogenic genes induced by LPS and palmitic acid, suggesting that GPR40 has anti-inflammatory and anti-osteoclastogenic properties.
Collapse
Affiliation(s)
- Yanchun Li
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Zhongyang Lu
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Cameron L. Kirkwood
- Departments of Oral Biology, School of Dental Medicine, University at Buffalo
| | - Keith L. Kirkwood
- Departments of Oral Biology, School of Dental Medicine, University at Buffalo
- Department of Head & Neck/Plastic & Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Stephen A. Wank
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Ai-Jun Li
- Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Yan Huang
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
32
|
Dallatana A, Cremonesi L, Trombetta M, Fracasso G, Nocini R, Giacomello L, Innamorati G. G Protein-Coupled Receptors and the Rise of Type 2 Diabetes in Children. Biomedicines 2023; 11:1576. [PMID: 37371671 DOI: 10.3390/biomedicines11061576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The human genome counts hundreds of GPCRs specialized to sense thousands of different extracellular cues, including light, odorants and nutrients in addition to hormones. Primordial GPCRs were likely glucose transporters that became sensors to monitor the abundance of nutrients and direct the cell to switch from aerobic metabolism to fermentation. Human β cells express multiple GPCRs that contribute to regulate glucose homeostasis, cooperating with many others expressed by a variety of cell types and tissues. These GPCRs are intensely studied as pharmacological targets to treat type 2 diabetes in adults. The dramatic rise of type 2 diabetes incidence in pediatric age is likely correlated to the rapidly evolving lifestyle of children and adolescents of the new century. Current pharmacological treatments are based on therapies designed for adults, while youth and puberty are characterized by a different hormonal balance related to glucose metabolism. This review focuses on GPCRs functional traits that are relevant for β cells function, with an emphasis on aspects that could help to differentiate new treatments specifically addressed to young type 2 diabetes patients.
Collapse
Affiliation(s)
- Alessia Dallatana
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Linda Cremonesi
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Maddalena Trombetta
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Verona, 37124 Verona, Italy
| | - Giulio Fracasso
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Luca Giacomello
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37134 Verona, Italy
| |
Collapse
|
33
|
Kim DY, Sung JH. The effects of GPR40 agonists on hair growth are mediated by ANGPTL4. Biomed Pharmacother 2023; 161:114509. [PMID: 37002580 DOI: 10.1016/j.biopha.2023.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
GPR40 is found primarily in pancreatic β cells, and is well known to regulate insulin secretion. Despite numerous studies on GPR40, the role and functions of GPR40 related to hair growth are not yet known. The current study investigated hair growth promoting effect of the GPR40 agonists and its mechanism of action using various bio-informatics tools, in vitro and animal experiments. GPR40 may affect the hair cycle, according to clustering and Gene Set Enrichment Analysis (GSEA). Hair growth effect of GPR40 was validated by telogen-to-anagen transition and vibrissae organ culture in the mouse. GPR40 was predominantly expressed in the outer root sheath (ORS) in anagen stage, suggesting that ORS cell is the target of GPR40 agonists. To investigate the mechanism of action for GPR40 agonists' hair growth effect, Gene Ontology (GO) enrichment analysis was performed and it revealed that GPR40 agonists were associated with angiogenesis. ANGPTL4, known for promoting angiogenesis, was highly up-regulated after GPR40 agonists treatment in the hORS cells, and also increased the proliferation and migration. Furthermore, GPR40 agonists promoted hair growth by inducing angiogenesis via ANGPTL4 in the animal experiment. GPR40 agonists activated MAPK and peroxisome proliferator-activated receptors (PPARγ) pathway in hORS cells, while the inhibition of MAPK pathway attenuated ANGPTL4 expression. Finally, GPR40 agonists increased hair growth via autocrine effects in the ORS cells, and induced angiogenesis through paracrine effects by upregulating ANGPTL4 via p38 and PPARγ pathways. As a result, GPR40 agonists have potential as a therapeutic drug for hair loss treatment.
Collapse
Affiliation(s)
- Doo Yeong Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea; Epi Biotech Co., Ltd. Incheon, South Korea.
| |
Collapse
|
34
|
Kuranov SO, Pon Kina DA, Meshkova YV, Marenina MK, Khvostov MV, Luzina OA, Tolstikova TG, Salakhutdinov NF. Synthesis and Evaluation of Hypoglycemic Activity of Structural Isomers of ((Benzyloxy)phenyl)propanoic Acid Bearing an Aminobornyl Moiety. Int J Mol Sci 2023; 24:ijms24098022. [PMID: 37175725 PMCID: PMC10178661 DOI: 10.3390/ijms24098022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Free fatty acid receptor-1 (FFAR1) agonists are promising candidates for therapy of type 2 diabetes because of their ability to normalize blood sugar levels during hyperglycemia without the risk of hypoglycemia. Previously, we synthesized compound QS-528, a FFA1 receptor agonist with a hypoglycemic effect in C57BL/6NCrl mice. In the present work, structural analogs of QS-528 based on (hydroxyphenyl)propanoic acid bearing a bornyl fragment in its structure were synthesized. The seven novel compounds synthesized were structural isomers of compound QS-528, varying the positions of the substituents in the aromatic fragments as well as the configuration of the asymmetric center in the bornyl moiety. The studied compounds were shown to have the ability to activate FFAR1 at a concentration of 10 μM. The cytotoxicity of the compounds as well as their effect on glucose uptake in HepG2 cells were studied. The synthesized compounds were found to increase glucose uptake by cells and have no cytotoxic effect. Two compounds, based on the meta-substituted phenylpropanoic acid, 3-(3-(4-(((1R,2R,4R)-1,7,7-trimethylbicyclo-[2.2.1]heptan-2-ylamino)methyl)benzyloxy)phenyl)propanoic acid and 3-(3-(3-(((1R,2R,4R)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-ylamino)methyl)benzyloxy)phenyl)propanoic acid, were shown to have a pronounced hypoglycemic effect in the oral glucose tolerance test with CD-1 mice.
Collapse
Affiliation(s)
- Sergey O Kuranov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Darya A Pon Kina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Yulia V Meshkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Mariya K Marenina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Mikhail V Khvostov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Olga A Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Tatiana G Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
35
|
de Laat MA, Fitzgerald DM. Equine metabolic syndrome: Role of the enteroinsular axis in the insulin response to oral carbohydrate. Vet J 2023; 294:105967. [PMID: 36858344 DOI: 10.1016/j.tvjl.2023.105967] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
Equine insulin dysregulation (ID) comprises amplified insulin responses to oral carbohydrates or insulin resistance, or both, which leads to sustained or periodic hyperinsulinaemia. Hyperinsulinaemia is important in horses because of its clear association with laminitis risk, and the gravity of this common sequela justifies the need for a better understanding of insulin and glucose homoeostasis in this species. Post-prandial hyperinsulinaemia is the more commonly identified component of ID and is diagnosed using tests that include an assessment of the gastrointestinal tract (GIT). There are several factors present in the GIT that either directly, or indirectly, enhance insulin secretion from the endocrine pancreas, and these factors are collectively referred to as the enteroinsular axis (EIA). A role for key components of the EIA, such as the incretin peptides glucagon-like peptide-1 and 2, in the pathophysiology of ID has been investigated in horses. By comparison, the function (and even existence) of many EIA peptides of potential importance, such as glicentin and oxyntomodulin, remains unexplored. The incretins that have been examined all increase insulin responses to oral carbohydrate through one or more mechanisms. This review presents what is known about the EIA in horses, and discusses how it might contribute to ID, then compares this to current understanding derived from the extensive studies undertaken in other species. Future directions for research are discussed and knowledge gaps that should be prioritised are suggested.
Collapse
Affiliation(s)
- Melody A de Laat
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia.
| | - Danielle M Fitzgerald
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
36
|
Wang B, Cai Z, Yao H, Jiao S, Chen S, Yang Z, Huang W, Ren Q, Cao Z, Chen Y, Zhang L, Li Z. Discovery of a structurally novel, potent, and once-weekly free fatty acid receptor 1 agonist for the treatment of diabetes. Eur J Med Chem 2023; 245:114883. [PMID: 36343410 DOI: 10.1016/j.ejmech.2022.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 12/08/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a lifelong disease that requires long-term medication to control glucose levels, and thereby long-acting drug has been clinically needed for improving medical adherence. The free fatty acid receptor 1 (FFA1) was considered as a promising target for several diseases, such as T2DM, pain and fatty liver. However, no once-weekly FFA1 agonist has been reported until now. Herein, we report the successful discovery of ZLY50, the first once-weekly FFA1 agonist with a completely new chemotype, highly agonistic activity and selectivity on FFA1. Moreover, ZLY50 has enough brain exposure to activate FFA1 in brain, and it is the first orally available FFA1 agonist with analgesic activity. Notably, the long-term anti-diabetic and anti-fatty liver effects of ZLY50 (once-weekly) were better than those of HWL-088 (once-daily), a highly potent FFA1 agonist with far stronger glucose-lowering effect than Phase 3 clinical candidate TAK-875. Further mechanism studies suggested that ZLY50 alleviates fatty liver by regulating the expressions of genes related to lipid metabolism, mitochondrial function, and oxidative stress in liver.
Collapse
Affiliation(s)
- Bin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Huixin Yao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Shixuan Jiao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Siliang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wanqiu Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Qiang Ren
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Ya Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
37
|
Keles U, Ow JR, Kuentzel KB, Zhao LN, Kaldis P. Liver-derived metabolites as signaling molecules in fatty liver disease. Cell Mol Life Sci 2022; 80:4. [PMID: 36477411 PMCID: PMC9729146 DOI: 10.1007/s00018-022-04658-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
Excessive fat accumulation in the liver has become a major health threat worldwide. Unresolved fat deposition in the liver can go undetected until it develops into fatty liver disease, followed by steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Lipid deposition in the liver is governed by complex communication, primarily between metabolic organs. This can be mediated by hormones, organokines, and also, as has been more recently discovered, metabolites. Although how metabolites from peripheral organs affect the liver is well documented, the effect of metabolic players released from the liver during the development of fatty liver disease or associated comorbidities needs further attention. Here we focus on interorgan crosstalk based on metabolites released from the liver and how these molecules act as signaling molecules in peripheral tissues. Due to the liver's specific role, we are covering lipid and bile mechanism-derived metabolites. We also discuss the high sucrose intake associated with uric acid release from the liver. Excessive fat deposition in the liver during fatty liver disease development reflects disrupted metabolic processes. As a response, the liver secretes a variety of signaling molecules as well as metabolites which act as a footprint of the metabolic disruption. In the coming years, the reciprocal exchange of metabolites between the liver and other metabolic organs will gain further importance and will help to better understand the development of fatty liver disease and associated diseases.
Collapse
Affiliation(s)
- Umur Keles
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Katharina Barbara Kuentzel
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Li Na Zhao
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden. .,Lund University Diabetes Centre (LUDC), Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|
38
|
Chemosensing of fat digestion by the expression pattern of GPR40, GPR120, CD36 and enteroendocrine profile in sheep. Res Vet Sci 2022; 150:89-97. [DOI: 10.1016/j.rvsc.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/20/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
|
39
|
Karmokar PF, Moniri NH. Oncogenic signaling of the free-fatty acid receptors FFA1 and FFA4 in human breast carcinoma cells. Biochem Pharmacol 2022; 206:115328. [PMID: 36309079 DOI: 10.1016/j.bcp.2022.115328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
Globally, breast cancer is the most frequent type of cancer in women, and most breast cancer-associated deaths are due to metastasis and recurrence of the disease. Dietary habits, specifically dietary fat intake is a crucial risk factor involved in breast cancer development and progression. Decades of research has revealed that free-fatty acids (FFA) modulate carcinogenic processes through fatty acid metabolism and lipid peroxidation. The ground-breaking discovery of free-fatty acid receptors, which are members of the G-protein coupled receptor (GPCR) superfamily, has led to the realization that FFA can also act via these receptors to modulate carcinogenic effects. The long-chain free-fatty acid receptors FFA1 (previously termed GPR40) and FFA4 (previously termed GPR120) are activated by mono- and polyunsaturated fatty acids including ω-3, 6, and 9 fatty acids. Initial enthusiasm towards the study of these receptors focused on their insulin secretagogue and sensitization effects, and the downstream associated metabolic regulation. However, recent studies have demonstrated that abnormal expression and/or aberrant FFA1/FFA4 signaling are evident in human breast carcinomas, suggesting that FFA receptors could be a promising target in the treatment of breast cancer. The current review discusses the diverse roles of FFA1 and FFA4 in the regulation of cell proliferation, migration, invasion, and chemotherapy resistance in human breast carcinoma cells and tissue.
Collapse
Affiliation(s)
- Priyanka F Karmokar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA 30341, USA; Department of Biomedical Sciences, School of Medicine, Mercer University Health Sciences Center, Mercer University, Macon, GA 31207, USA.
| |
Collapse
|
40
|
Lu Z, Li Y, Li AJ, Syn WK, Wank SA, Lopes-Virella MF, Huang Y. Loss of GPR40 in LDL receptor-deficient mice exacerbates high-fat diet-induced hyperlipidemia and nonalcoholic steatohepatitis. PLoS One 2022; 17:e0277251. [PMID: 36331958 PMCID: PMC9635748 DOI: 10.1371/journal.pone.0277251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
GPR40, a G protein-coupled receptor for free fatty acids (FFAs), is considered as a therapeutic target for type 2 diabetes mellitus (T2DM) since GPR40 activation in pancreatic beta cells enhances glucose-stimulated insulin secretion. Nonalcoholic fatty liver disease (NAFLD) is a common complication of T2DM or metabolic syndrome (MetS). However, the role of GPR40 in NAFLD associated with T2DM or MetS has not been well established. Given that it is known that cholesterol and FFAs are critically involved in the pathogenesis of nonalcoholic steatohepatitis (NASH) and LDL receptor (LDLR)-deficient mice are a good animal model for human hyperlipidemia including high cholesterol and FFAs, we generated GPR40 and LDLR double knockout (KO) mice in this study to determine the effect of GPR40 KO on hyperlipidemia-promoted NASH. We showed that GPR40 KO increased plasma levels of cholesterol and FFAs in high-fat diet (HFD)-fed LDLR-deficient mice. We also showed that GPR40 KO exacerbated HFD-induced hepatic steatosis, inflammation and fibrosis. Further study demonstrated that GPR40 KO led to upregulation of hepatic CD36 and genes involved in lipogenesis, fatty acid oxidation, fibrosis and inflammation. Finally, our in vitro mechanistic studies showed that while CD36 was involved in upregulation of proinflammatory molecules in macrophages by palmitic acid (PA) and lipopolysaccharide (LPS), GPR40 activation in macrophages exerts anti-inflammatory effects. Taken together, this study demonstrated for the first time that loss of GPR40 in LDLR-deficient mice exacerbated HFD-induced hyperlipidemia, hepatic steatosis, inflammation and fibrosis potentially through a CD36-dependent mechanism, suggesting that GPR40 may play a beneficial role in hyperlipidemia-associated NASH in LDLR-deficient mice.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Euskal Herriko Unibertsitatea/Universidad del País Vasco, Leioa, Spain
| | - Stephen A. Wank
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Yan Huang
- Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
41
|
Wang Y, Wu Y, Wang A, Wang A, Alkhalidy H, Helm R, Zhang S, Ma H, Zhang Y, Gilbert E, Xu B, Liu D. An olive-derived elenolic acid stimulates hormone release from L-cells and exerts potent beneficial metabolic effects in obese diabetic mice. Front Nutr 2022; 9:1051452. [PMID: 36386896 PMCID: PMC9664001 DOI: 10.3389/fnut.2022.1051452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023] Open
Abstract
Insulin resistance and progressive decline in functional β-cell mass are two key factors for developing type 2 diabetes (T2D), which is largely driven by overweight and obesity, a significant obstacle for effective metabolic control in many patients with T2D. Thus, agents that simultaneously ameliorate obesity and act on multiple pathophysiological components could be more effective for treating T2D. Here, we report that elenolic acid (EA), a phytochemical, is such a dual-action agent. we show that EA dose-dependently stimulates GLP-1 secretion in mouse clonal L-cells and isolated mouse ileum crypts. In addition, EA induces L-cells to secrete peptide YY (PYY). EA induces a rapid increase in intracellular [Ca2+]i and the production of inositol trisphosphate in L-cells, indicating that EA activates phospholipase C (PLC)-mediated signaling. Consistently, inhibition of (PLC) or Gαq ablates EA-stimulated increase of [Ca2+]i and GLP-1 secretion. In vivo, a single dose of EA acutely stimulates GLP-1 and PYY secretion in mice, accompanied with an improved glucose tolerance and insulin levels. Oral administration of EA at a dose of 50 mg/kg/day for 2 weeks normalized the fasting blood glucose and restored glucose tolerance in high-fat diet-induced obese (DIO) mice to levels that were comparable to chow-fed mice. In addition, EA suppresses appetite, reduces food intake, promotes weight loss, and reverses perturbated metabolic variables in obese mice. These results suggest that EA could be a dual-action agent as an alternative or adjuvant treatment for both T2D and obesity.
Collapse
Affiliation(s)
- Yao Wang
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yajun Wu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Aihua Wang
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Hana Alkhalidy
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Richard Helm
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Elizabeth Gilbert
- School of Animal Sciences, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bin Xu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Drug Discovery Center, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
42
|
Guan HP, Xiong Y. Learn from failures and stay hopeful to GPR40, a GPCR target with robust efficacy, for therapy of metabolic disorders. Front Pharmacol 2022; 13:1043828. [PMID: 36386134 PMCID: PMC9640913 DOI: 10.3389/fphar.2022.1043828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
GPR40 is a class A G-protein coupled receptor (GPCR) mainly expressed in pancreas, intestine, and brain. Its endogenous ligand is long-chain fatty acids, which activate GPR40 after meal ingestion to induce secretion of incretins in the gut, including GLP-1, GIP, and PYY, the latter control appetite and glucose metabolism. For its involvement in satiety regulation and metabolic homeostasis, partial and AgoPAM (Positive Allosteric Modulation agonist) GPR40 agonists had been developed for type 2 diabetes (T2D) by many pharmaceutical companies. The proof-of-concept of GPR40 for control of hyperglycemia was achieved by clinical trials of partial GPR40 agonist, TAK-875, demonstrating a robust decrease in HbA1c (-1.12%) after chronic treatment in T2D. The development of TAK-875, however, was terminated due to liver toxicity in 2.7% patients with more than 3-fold increase of ALT in phase II and III clinical trials. Different mechanisms had since been proposed to explain the drug-induced liver injury, including acyl glucuronidation, inhibition of mitochondrial respiration and hepatobiliary transporters, ROS generation, etc. In addition, activation of GPR40 by AgoPAM agonists in pancreas was also linked to β-cell damage in rats. Notwithstanding the multiple safety concerns on the development of small-molecule GPR40 agonists for T2D, some partial and AgoPAM GPR40 agonists are still under clinical development. Here we review the most recent progress of GPR40 agonists development and the possible mechanisms of the side effects in different organs, and discuss the possibility of developing novel strategies that retain the robust efficacy of GPR40 agonists for metabolic disorders while avoid toxicities caused by off-target and on-target mechanisms.
Collapse
|
43
|
Brubaker PL. The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology 2022; 163:6717959. [PMID: 36156130 DOI: 10.1210/endocr/bqac159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota. The integrated input from these numerous secretagogues results in a variety of temporal patterns in L cell secretion, ranging from minutes to 24 hours. This review combines the findings of traditional, physiological studies with those using newer molecular approaches to describe what is known and what remains to be elucidated after 5 decades of research on the intestinal L cell and its secreted peptides, GLP-1 and GLP-2.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
44
|
Teng D, Zhou Y, Tang Y, Liu G, Tu Y. Mechanistic Studies on the Stereoselectivity of FFAR1 Modulators. J Chem Inf Model 2022; 62:3664-3675. [PMID: 35877470 PMCID: PMC9364411 DOI: 10.1021/acs.jcim.2c00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Free fatty acid receptor 1 (FFAR1) is a potential therapeutic target for the treatment of type 2 diabetes (T2D). It has been validated that agonists targeting FFAR1 can achieve the initial therapeutic endpoints of T2D, and the epimer agonists (R,S) AM-8596 can activate FFAR1 differently, with one acting as a partial agonist and the other as a full agonist. Up to now, the origin of the stereoselectivity of FFAR1 agonists remains elusive. In this work, we used molecular simulation methods to elucidate the mechanism of the stereoselectivity of the FFAR1 agonists (R)-AM-8596 and (S)-AM-8596. We found that the full agonist (R)-AM-8596 disrupts the residue interaction network around the receptor binding pocket and promotes the opening of the binding site for the G-protein, thereby resulting in the full activation of FFAR1. In contrast, the partial agonist (S)-AM-8596 forms stable electrostatic interactions with FFAR1, which stabilizes the residue network and hinders the conformational transition of the receptor. Our work thus clarifies the selectivity and underlying molecular activation mechanism of FFAR1 agonists.
Collapse
Affiliation(s)
- Dan Teng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Yang Zhou
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yaoquan Tu
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, Stockholm SE-106 91, Sweden
| |
Collapse
|
45
|
Chandra R, Aryal DK, Douros JD, Shahid R, Davis SJ, Campbell JE, Ilkayeya O, White PJ, Rodriguez R, Newgard CB, Wetsel WC, Liddle RA. Ildr1 gene deletion protects against diet-induced obesity and hyperglycemia. PLoS One 2022; 17:e0270329. [PMID: 35749484 PMCID: PMC9231709 DOI: 10.1371/journal.pone.0270329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Immunoglobulin-like Domain-Containing Receptor 1 (ILDR1) is expressed on nutrient sensing cholecystokinin-positive enteroendocrine cells of the gastrointestinal tract and it has the unique ability to induce fat-mediated CCK secretion. However, the role of ILDR1 in CCK-mediated regulation of satiety is unknown. In this study, we examined the effects of ILDR1 on food intake and metabolic activity using mice with genetically-deleted Ildr1. Methods The expression of ILDR1 in murine tissues and the measurement of adipocyte cell size were evaluated by light and fluorescence confocal microscopy. The effects of Ildr1 deletion on mouse metabolism were quantitated using CLAMS chambers and by targeted metabolomics assays of multiple tissues. Hormone levels were measured by ELISA. The effects of Ildr1 gene deletion on glucose and insulin levels were determined using in vivo oral glucose tolerance, meal tolerance, and insulin tolerance tests, as well as ex vivo islet perifusion. Results ILDR1 is expressed in a wide range of tissues. Analysis of metabolic data revealed that although Ildr1-/- mice consumed more food than wild-type littermates, they gained less weight on a high fat diet and exhibited increased metabolic activity. Adipocytes in Ildr1-/- mice were significantly smaller than in wild-type mice fed either low or high fat diets. ILDR1 was expressed in both alpha and beta cells of pancreatic islets. Based on oral glucose and mixed meal tolerance tests, Ildr1-/- mice were more effective at lowering post-prandial glucose levels, had improved insulin sensitivity, and glucose-regulated insulin secretion was enhanced in mice lacking ILDR1. Conclusion Ildr1 loss significantly modified metabolic activity in these mutant mice. While Ildr1 gene deletion increased high fat food intake, it reduced weight gain and improved glucose tolerance. These findings indicate that ILDR1 modulates metabolic responses to feeding in mice.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (RC); (RAL)
| | - Dipendra K. Aryal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jonathan D. Douros
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
| | - Rafiq Shahid
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Supriya J. Davis
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
- Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Jonathan E. Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
| | - Olga Ilkayeya
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina, United States of America
| | - Phillip J. White
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina, United States of America
| | - Ramona Rodriguez
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University, Durham, North Carolina, United States of America
| | - Christopher B. Newgard
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, United States of America
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina, United States of America
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University, Durham, North Carolina, United States of America
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Rodger A. Liddle
- Department of Medicine, Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Veterans Affairs Medical Center, Durham, North Carolina, United States of America
- * E-mail: (RC); (RAL)
| |
Collapse
|
46
|
Katsouri IP, Vandervelpen EVG, Gattor AO, Engelbeen S, El Sayed A, Seitaj K, Becerra EDM, Vanderheyden PML. Complex FFA1 receptor (in)dependent modulation of calcium signaling by free fatty acids. Biochem Pharmacol 2022; 202:115150. [PMID: 35724691 DOI: 10.1016/j.bcp.2022.115150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
The expression of free fatty acid 1 receptors (FFA1R), activated by long chain fatty acids in human pancreatic β-cells and enhancing glucose-stimulated insulin secretion are an attractive target to treat type 2 diabetes. Yet several clinical studies with synthetic FFA1R agonists had to be discontinued due to cytotoxicity and/or so-called "liver concerns". It is not clear whether these obstructions are FFA1R dependent. In this context we used CHO-AEQ cells expressing the bioluminescent calcium-sensitive protein aequorin to investigate calcium signaling elicited by FFA1 receptor ligands α-linolenic acid (ALA), oleic acid (OLA) and myristic acid (MYA). This study revealed complex modulation of intracellular calcium signaling by these fatty acids. First these compounds elicited a typical transient increase of intracellular calcium via binding to FFA1 receptors. Secondly slightly higher concentrations of ALA substantially reduced ATP mediated calcium responses in CHO-AEQ cells and Angiotensin II responses in CHO-AEQ cells expressing human AT1 receptors. This effect was less pronounced with MYA and OLA and was not linked to FFA1 receptor activation nor to acute cytotoxicity as a result of plasma membrane perturbation. Yet it can be hypothesized that, in line with previous studies, unsaturated long chain fatty acids such as ALA and OLA are capable of inactivating the G-proteins involved in purinergic and Angiotensin AT1 receptor calcium signaling. Alternatively the ability of fatty acids to deplete intracellular calcium stores might underly the observed cross-inhibition of these receptor responses in the same cells.
Collapse
Affiliation(s)
- Ilektra Petrina Katsouri
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ebert Vinciane G Vandervelpen
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Albert Owusu Gattor
- Lehrstuhl für Pharmazeutische und Medizinische Chemie II, Universität Regensburg, Regensburg, Germany
| | - Sarah Engelbeen
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Abdulrahman El Sayed
- The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Klejdia Seitaj
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eduardo Daniel Morales Becerra
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Patrick M L Vanderheyden
- Research Group of Molecular and Biochemical Pharmacology, Department of Biotechnology and Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
47
|
Wu MZ, GongPan PC, Dai MY, Sun P, Huang TP, Xu YK, Xiao CF, Li J, Sun YL, Ji KL. Dimeric styrylpyrones with stimulating GLP-1 secretion activities from Alpinia kwangsiensis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Guccio N, Gribble FM, Reimann F. Glucose-Dependent Insulinotropic Polypeptide-A Postprandial Hormone with Unharnessed Metabolic Potential. Annu Rev Nutr 2022; 42:21-44. [PMID: 35609956 DOI: 10.1146/annurev-nutr-062320-113625] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is released from the upper small intestine in response to food intake and contributes to the postprandial control of nutrient disposition, including of sugars and fats. Long neglected as a potential therapeutic target, the GIPR axis has received increasing interest recently, with the emerging data demonstrating the metabolically favorable outcomes of adding GIPR agonism to GLP-1 receptor agonists in people with type 2 diabetes and obesity. This review examines the physiology of the GIP axis, from the mechanisms underlying GIP secretion from the intestine to its action on target tissues and therapeutic development. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nunzio Guccio
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| | - Fiona M Gribble
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| | - Frank Reimann
- MRC Metabolic Diseases Unit, Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ,
| |
Collapse
|
49
|
Involvement of Gut Microbial Metabolites Derived from Diet on Host Energy Homeostasis. Int J Mol Sci 2022; 23:ijms23105562. [PMID: 35628369 PMCID: PMC9146040 DOI: 10.3390/ijms23105562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
Due to the excess energy intake, which is a result of a high fat and high carbohydrate diet, dysfunction of energy balance leads to metabolic disorders such as obesity and type II diabetes mellitus (T2DM). Since obesity can be a risk factor for various diseases, including T2DM, hypertension, hyperlipidemia, and metabolic syndrome, novel prevention and treatment are expected. Moreover, host diseases linked to metabolic disorders are associated with changes in gut microbiota profile. Gut microbiota is affected by diet, and nutrients are used as substrates by gut microbiota for produced metabolites, such as short-chain and long-chain fatty acids, that may modulate host energy homeostasis. These free fatty acids are not only essential energy sources but also signaling molecules via G-protein coupled receptors (GPCRs). Some GPCRs are critical for metabolic functions, such as hormone secretion and immune function in various types of cells and tissues and contribute to energy homeostasis. The current studies have shown that GPCRs for gut microbial metabolites improved host energy homeostasis and systemic metabolic disorders. Here, we will review the association between diet, gut microbiota, and host energy homeostasis.
Collapse
|
50
|
The Sensory Mechanisms of Nutrient-Induced GLP-1 Secretion. Metabolites 2022; 12:metabo12050420. [PMID: 35629924 PMCID: PMC9147592 DOI: 10.3390/metabo12050420] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
The enteroendocrine system of the gut regulates energy homeostasis through the release of hormones. Of the gut-derived hormones, GLP-1 is particularly interesting, as analogs of the hormone have proven to be highly effective for the treatment of type 2 diabetes mellitus and obesity. Observations on increased levels of GLP-1 following gastric bypass surgery have enhanced the interest in endogenous hormone secretion and highlighted the potential of endogenous secretion in therapy. The macronutrients and their digestive products stimulate the secretion of GLP-1 through various mechanisms that we have only begun to understand. From findings obtained from different experimental models, we now have strong indications for a role for both Sodium-Glucose Transporter 1 (SGLT1) and the K+ATP channel in carbohydrate-induced GLP-1 secretion. For fat, the free fatty acid receptor FFA1 and the G-protein-coupled receptor GPR119 have been linked to GLP-1 secretion. For proteins, Peptide Transporter 1 (Pept1) and the Calcium-Sensing Receptor (CaSR) are thought to mediate the secretion. However, attempts at clinical application of these mechanisms have been unsuccessful, and more work is needed before we fully understand the mechanisms of nutrient-induced GLP-1 secretion.
Collapse
|