1
|
Abolfazli S, Butler AE, Kesharwani P, Sahebkar A. The beneficial impact of curcumin on cardiac lipotoxicity. J Pharm Pharmacol 2024; 76:1269-1283. [PMID: 39180454 DOI: 10.1093/jpp/rgae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
Lipotoxicity is defined as a prolonged metabolic imbalance of lipids that results in ectopic fat distribution in peripheral organs such as the liver, heart, and kidney. The harmful consequences of excessive lipid accumulation in cardiomyocytes cause cardiac lipotoxicity, which alters the structure and function of the heart. Obesity and diabetes are linked to lipotoxic cardiomyopathy. These anomalies might be caused by a harmful metabolic shift that accumulates toxic lipids and shifts glucose oxidation to less fatty acid oxidation. Research has linked fatty acids, fatty acyl coenzyme A, diacylglycerol, and ceramide to lipotoxic stress in cells. This stress can be brought on by apoptosis, impaired insulin signaling, endoplasmic reticulum stress, protein kinase C activation, p38 Ras-mitogen-activated protein kinase (MAPK) activation, or modification of peroxisome proliferator-activated receptors (PPARs) family members. Curcuma longa is used to extract curcumin, a hydrophobic polyphenol derivative with a variety of pharmacological characteristics. Throughout the years, curcumin has been utilized as an anti-inflammatory, antioxidant, anticancer, hepatoprotective, cardioprotective, anti-diabetic, and anti-obesity drug. Curcumin reduces cardiac lipotoxicity by inhibiting apoptosis and decreasing the expression of apoptosis-related proteins, reducing the expression of inflammatory cytokines, activating the autophagy signaling pathway, and inhibiting the expression of endoplasmic reticulum stress marker proteins.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University Medical Science, Sari, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Yu Y, Tan T, Yang W, Xu Z, Liu Y. Association between the systemic immune-inflammation index and obesity among adults: Insights from the NHANES 2017-2018. PLoS One 2024; 19:e0308288. [PMID: 39116149 PMCID: PMC11309425 DOI: 10.1371/journal.pone.0308288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Inflammation is an important causative factor of obesity. This study aimed to explore the possible association between the systemic immune-inflammatory index, a novel indicator of inflammation, and obesity. METHODS Data were collected from 4395 participants of the National Health and Nutrition Examination Survey 2017-2018 aged ≥ 20 years. The systemic immune-inflammatory index was calculated by multiplying the platelet count by the neutrophil-to-lymphocyte ratio. Obesity was defined as a body mass index ≥ 30 kg/m2. RESULTS A significant positive correlation was observed between the systemic immune-inflammatory index and body mass index following multivariate linear regression analysis (β = 1.75; 95% confidence interval = 1.16-2.33), which was greatest in adults aged < 60 years without hypertension and diabetes. Smoothed curve fitting and threshold effect analysis were used to characterize the nonlinear association between the systemic immune-inflammatory index and body mass index, and the inflection point was found to be 729.3. CONCLUSIONS The systemic immune-inflammatory index is positively associated with body mass index among adults in the United States and has the potential to enhance efforts to prevent adult obesity.
Collapse
Affiliation(s)
- Yanmei Yu
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Tongcai Tan
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wei Yang
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhitao Xu
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yong Liu
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Wang H, Guo H, Zhu K, He L, Yang JJ. Hairless (Hr) Deficiency Mitigates High-Fat Diet-Induced Obesity and Insulin Resistance in Mice. Adv Biol (Weinh) 2024; 8:e2300635. [PMID: 38655702 DOI: 10.1002/adbi.202300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Obesity is a significant global health concern linked to excessive dietary energy intake. This research focuses on the mammalian hairless protein (HR), known for its role in skin and hair function, and its impact on metabolism. Examining male wild-type (Hr+/+) and Hr null (Hr-/-) mice over a 14-week normal chow diet (NCD) or high-fat diet (HFD) intervention. This study reveals that HR deficiency exhibited a protective effect against HFD-induced obesity and insulin resistance. This protective effect is attributed to increased energy expenditure in Hr-/- mice. Moreover, the brown adipose tissue (BAT) of Hr-/- mice displays elevated levels of the thermogenic protein, uncoupling protein 1 (Ucp1), and its key transcriptional regulators (PPARγ and PGC1α), compared to Hr+/+ mice. In summary, the findings underscore the protective role of HR deficiency in countering HFD-induced adiposity by enhancing insulin sensitivity, raising energy expenditure, and augmenting thermogenic factors in BAT. Further exploration of HR metabolic regulation holds promise for potential therapeutic targets in addressing obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Haoyu Guo
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Kuicheng Zhu
- Department of Laboratory Animal Resources, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Long He
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
4
|
Grannes H, Ueland T, Simeone P, Liani R, Guagnano MT, Aukrust P, Michelsen AE, Birkeland K, di Castelnuovo A, Cipollone F, Consoli A, Halvorsen B, Gregersen I, Santilli F. Liraglutide and not lifestyle intervention reduces soluble CD163 after comparable weight loss in obese participants with prediabetes or type 2 diabetes mellitus. Cardiovasc Diabetol 2024; 23:146. [PMID: 38685051 PMCID: PMC11059692 DOI: 10.1186/s12933-024-02237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The GLP-1 receptor agonist liraglutide is used to treat hyperglycemia in type 2 diabetes but is also known to induce weight loss, preserve the beta cell and reduce cardiovascular risk. The mechanisms underlying these effects are however still not completely known. Herein we explore the effect of liraglutide on markers of immune cell activity in a population of obese individuals with prediabetes or newly diagnosed type 2 diabetes mellitus. METHOD Plasma levels of the monocyte/macrophage markers, soluble (s)CD163 and sCD14, the neutrophil markers myeloperoxidase (MPO) and neutrophil gelatinase-associated lipocalin (NGAL),the T-cell markers sCD25 and T-cell immunoglobulin mucin domain-3 (sTIM-3) and the inflammatory marker TNF superfamily (TNFSF) member 14 (LIGHT/TNFSF14) were measured by enzyme-linked immunosorbent assays in obese individuals with prediabetes or diabetes diagnosed within the last 12 months, prior to and after comparable weight loss achieved with lifestyle changes (n = 20) or liraglutide treatment (n = 20), and in healthy subjects (n = 13). RESULTS At baseline, plasma levels of the macrophage marker sCD163, and the inflammatory marker LIGHT were higher in cases as compared to controls. Plasma levels of sCD14, NGAL, sTIM-3 and sCD25 did not differ at baseline between patients and controls. After weight reduction following lifestyle intervention or liraglutide treatment, sCD163 decreased significantly in the liraglutide group vs. lifestyle (between-group difference p = 0.023, adjusted for visceral adipose tissue and triglycerides basal values). MPO and LIGHT decreased significantly only in the liraglutide group (between group difference not significant). Plasma levels of MPO and in particular sCD163 correlated with markers of metabolic dysfunction and inflammation. After weight loss, only sCD163 showed a trend for decreased levels during OGTT, both in the whole cohort as in those of liraglutide vs lifestyle group. CONCLUSION Weight loss following treatment with liraglutide was associated with reduced circulating levels of sCD163 when compared to the same extent of weight loss after lifestyle changes. This might contribute to reduced cardiometabolic risk in individuals receiving treatment with liraglutide.
Collapse
Affiliation(s)
- Helene Grannes
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| | - Paola Simeone
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rossella Liani
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Maria Teresa Guagnano
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Pål Aukrust
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Annika E Michelsen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kåre Birkeland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Francesco Cipollone
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Agostino Consoli
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Bente Halvorsen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ida Gregersen
- Research Institute for Internal Medicine, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0372, Oslo, Norway.
| | - Francesca Santilli
- Department of Medicine and Aging, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
5
|
Bradley D, Deng T, Shantaram D, Hsueh WA. Orchestration of the Adipose Tissue Immune Landscape by Adipocytes. Annu Rev Physiol 2024; 86:199-223. [PMID: 38345903 DOI: 10.1146/annurev-physiol-042222-024353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Obesity is epidemic and of great concern because of its comorbid and costly inflammatory-driven complications. Extensive investigations in mice have elucidated highly coordinated, well-balanced interactions between adipocytes and immune cells in adipose tissue that maintain normal systemic metabolism in the lean state, while in obesity, proinflammatory changes occur in nearly all adipose tissue immune cells. Many of these changes are instigated by adipocytes. However, less is known about obesity-induced adipose-tissue immune cell alterations in humans. Upon high-fat diet feeding, the adipocyte changes its well-known function as a metabolic cell to assume the role of an immune cell, orchestrating proinflammatory changes that escalate inflammation and progress during obesity. This transformation is particularly prominent in humans. In this review, we (a) highlight a leading and early role for adipocytes in promulgating inflammation, (b) discuss immune cell changes and the time course of these changes (comparing humans and mice when possible), and (c) note how reversing proinflammatory changes in most types of immune cells, including adipocytes, rescues adipose tissue from inflammation and obese mice from insulin resistance.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Pennsylvania State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA;
| | - Tuo Deng
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
6
|
Reshma A, Tamilanban T, Chitra V, Subramaniyan V, Gupta G, Fuloria NK, Sekar M, Fuloria S, Sahu R, Narayanan J, Chakravarthy S, Selvaraj S. Anti-obesity effects of olivetol in adult zebrafish model induced by short-term high-fat diet. Sci Rep 2023; 13:18449. [PMID: 37891223 PMCID: PMC10611697 DOI: 10.1038/s41598-023-44462-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Obesity is a complex disease caused by various factors, and synthetic drugs used to treat it can have side effects. Natural compounds, such as olivetol, could be a promising alternative. Olivetol is a substance found in certain lichen species and has anti-inflammatory and anti-cancer properties. In this study, researchers conducted in-silico molecular docking studies and found that olivetol had significant binding affinity with receptors involved in obesity. They also investigated the effects of olivetol on a diet-induced obese zebrafish model and found that high doses of olivetol reduced excessive fat accumulation and triglyceride and lipid accumulation. The low dose of olivetol showed a significant reduction in liver enzymes' levels. However, the high dose of olivetol resulted in a significant increase in HMG-CoA levels. These results suggest that olivetol may be a promising anti-obesity agent for the treatment of hyperlipidemia-related disorders, but further research is necessary to understand its full effects on the body.
Collapse
Affiliation(s)
- Andukuri Reshma
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - V Chitra
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha University, Chennai, 602105, India.
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India
| | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia , Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy, AIMST University, 08100, Bedong, Kedah, Malaysia
| | | | - J Narayanan
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Srikumar Chakravarthy
- SEGi University, Jalan Teknologi, Taman Sains Selangor, Kota Damansara, PJU 5, 47810, Petaling Jaya, Selangor, Malaysia
| | | |
Collapse
|
7
|
Paulo RR, Galvão VE, da Silva GG, Porto LP, Tonossu JM, Gandolfi MB, Guimarães-Okamoto PTC, Takahira RK, Rahal SC, Melchert A. Myeloperoxidase enzyme and Ferric-reducing antioxidant power concentrations in lean and obese dogs. Vet Res Commun 2022; 47:1007-1013. [DOI: 10.1007/s11259-022-10059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022]
|
8
|
Elmas MA, Ozakpinar OB, Kolgazi M, Sener G, Arbak S, Ercan F. Exercise improves testicular morphology and oxidative stress parameters in rats with testicular damage induced by a high-fat diet. Andrologia 2022; 54:e14600. [PMID: 36146902 DOI: 10.1111/and.14600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Obesity and male infertility are problems that affect population. Exercise is a nonpharmacological way to reduce the negative health effects of obesity. The purpose of this study was to examine the effects of exercise on hormone levels, blood-testis barrier, and inflammatory and oxidative biomarkers in rats that became obese due to a high-fat diet (HFD). Male rats received a standard diet (STD group) or a HFD (HFD group) for 18 weeks. During the final 6 weeks of the experiment, swimming exercises (1 h/5 days/week) were given to half of these animals (STD + EXC and HFD + EXC groups). Finally, blood and testicular tissues were analysed by biochemical and histological methods. Body weight, leptin, malondialdehyde, interleukin-6, TNF-alpha and myeloperoxidase levels, apoptotic cells and DNA fragmentation were increased, and testis weight, insulin, FSH, LH, testosterone, glutathione and superoxide dysmutase levels, proliferative cells, ZO-1, occludin, and gap junction protein Cx43 immunoreactivity were decreased in the HFD group. All these hormonal, morphological, oxidative and inflammatory biomarkers were enhanced in the HFD + EXC group. It is thought that exercise protected testicular cytotoxicity by regulating hormonal and oxidant/antioxidant balances and testicular function, inhibiting inflammation and apoptosis, as well as preserving blood-testis barrier.
Collapse
Affiliation(s)
- Merve Acikel Elmas
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Meltem Kolgazi
- Department of Physiology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Goksel Sener
- Fenerbahçe University, Vocational School of Health Service, Istanbul, Turkey
| | - Serap Arbak
- Department of Histology and Embryology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
9
|
Antitoxic Effects of Curcumin against Obesity-Induced Multi-Organs' Biochemical and Histopathological Abnormalities in an Animal Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9707278. [PMID: 36248416 PMCID: PMC9560822 DOI: 10.1155/2022/9707278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022]
Abstract
Background Obesity is a significant public health problem that is characterized by an increase in oxidative stress and enhanced inflammatory responses associated with immune cell invasion of adipose tissues. This study assessed several biochemical abnormalities, apoptosis, oxidative stress status, and associated histological changes in the liver, duodenum, and heart brought on by high-fat diet-induced obesity in rats. It also assessed the mechanistic benefits of curcumin in reversing these inflammatory, metabolic, and histological impairments. Methods Rats were assigned into three groups each including ten rats: the control group (CD), the high-fat diet group (HFD), and the high-fat diet + curcumin (HFDC) group. Serum glucose, insulin, and triglycerides (TAGs) were observed. In addition, apoptosis (indicated by hepatic DNA fragmentation) and oxidative stress status (indicated by hepatic MPO, GSH, and SOD) were assessed. Histopathological examinations included the GIT (liver and duodenum) and heart in addition to quantitative real-time polymerase chain reaction (qRT-PCR) assays of the adipose tissue genetic expressions for inflammatory signaling pathways (TLR4, IL-6, and TNF-α). Results The overall findings showed that the HFD group exhibited significantly higher levels of glucose, TAGs, and insulin than the control group (P < 0.01). The histological abnormalities of the studied organs in the HFD group were paralleled by these biochemical abnormalities, which were strongly associated with increased apoptosis, increased oxidative stress, and increased expression of the inflammatory signaling markers. There were significant improvements in the HFDC group in terms of biochemical, inflammatory, and histological investigations. Conclusions This study's findings concluded that obesity is significantly associated with biochemical and microscopic alterations in many organs. Curcumin exerted potent antitoxic, antioxidant, tissue-protective, and antiobesity effects. Curcumin is recommended to be added to various dietary regimens to prevent or delay the organs' dysfunction among obese people.
Collapse
|
10
|
Hypochlorous Acid Chemistry in Mammalian Cells—Influence on Infection and Role in Various Pathologies. Int J Mol Sci 2022; 23:ijms231810735. [PMID: 36142645 PMCID: PMC9504810 DOI: 10.3390/ijms231810735] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/19/2022] Open
Abstract
This review discusses the formation of hypochlorous acid HOCl and the role of reactive chlorinated species (RCS), which are catalysed by the enzyme myeloperoxidase MPO, mainly located in leukocytes and which in turn contribute to cellular oxidative stress. The reactions of RCS with various organic molecules such as amines, amino acids, proteins, lipids, carbohydrates, nucleic acids, and DNA are described, and an attempt is made to explain the chemical mechanisms of the formation of the various chlorinated derivatives and the data available so far on the effects of MPO, RCS and halogenative stress. Their presence in numerous pathologies such as atherosclerosis, arthritis, neurological and renal diseases, diabetes, and obesity is reviewed and were found to be a feature of debilitating diseases.
Collapse
|
11
|
Zhang B, Ma X, Huang B, Jiang Q, Loor JJ, Lv X, Zhang W, Li M, Wen J, Yin Y, Wang J, Yang W, Xu C. Transcriptomics of circulating neutrophils in dairy cows with subclinical hypocalcemia. Front Vet Sci 2022; 9:959831. [PMID: 36176696 PMCID: PMC9514324 DOI: 10.3389/fvets.2022.959831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Hypocalcemia is closely associated with inflammatory diseases in dairy cows. Recent research has underscored the key role of calcium in the adaptations of the innate immune system during this period. The main objective in the present study was to compare the transcriptome profiles and analyze differences in the expression of neutrophil (PMNL) immune function-related genes and calcium binding-related genes in hypocalcemic cows. At 2 days postpartum, a concentration >2.10 mmol Ca2+/L was used to classify cows as controls (CON), and a concentration <2.00 mmol Ca2+/L used to classify cows as low-calcium (LCAL) (n = 8 in each group). A routine medical examination was conducted by the attending veterinarian to ensure there were no other complications and that the blood β-hydroxybutyrate was <1.2 mmol/L. Blood was collected from the tail vein (20 mL) to isolate PMNL, and 5 cows in each group were used for RNA sequencing and statistical analysis of gene expression differences. Transcriptome RNA-seq sequencing analysis was via omicsstudio using the R package edgeR. GO and KEGG enrichment analysis were used for bioinformatics. The remaining 3 cows in each group were used for validation of RNA sequencing data via quantitative PCR, which confirmed the observed responses. Compared with CON, 158 genes in LCAL were significantly up-regulated and 296 genes were down-regulated. The downregulation of Interleukin-12 (CXCL12), Tubulin beta chain (TUBB1), L1 cell adhesion molecule (L1CAM), and Myeloperoxidase (MPO) indicated a decrease in immune function of PMNL in LCAL cows. The decreased expression of calcium-binding pathway-related genes in PMNL of LCAL cows indicated a decrease in immune function of PMNL likely related to calcium ions. For example, cartilage acid protein 1 (CRTAC1) and calcium/calmodulin-dependent kinase 4 (CAMK4) were significantly reduced in LCAL cows. The upregulation of Cyclin dependent kinase inhibitor 1A (CDKN1A), Perforin 1 (PRF1), and Homeodomain interacting protein kinase 3 (HIPK3) indicated that LCAL led to greater cell apoptosis and senescence. Overall, the analyses indicated that the reduction in PMNL immune function during hypocalcemia is associated with downregulation of intracellular Ca2+ related genes and upregulation of genes controlling apoptosis and senescence. Together, these alterations contribute to an immunosuppressive state during the transition period.
Collapse
Affiliation(s)
- Bingbing Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xinru Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baoyin Huang
- Animal Husbandry and Veterinary Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihaer, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Xinquan Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wei Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianan Wen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yufeng Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingjing Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wei Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- *Correspondence: Chuang Xu
| |
Collapse
|
12
|
Tüfek NH, Yahyazadeh A, Altunkaynak BZ. Protective effect of indole-3-carbinol on testis of a high fat diet induced obesity. Biotech Histochem 2022; 98:1-12. [PMID: 35703014 DOI: 10.1080/10520295.2022.2073612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
We investigated the effects of obesity caused by a high fat diet (HFD) on rat testes and evaluated the possible protective effects of indole-3-carbinol (IND). We used 24 8-10-week-old 200 g male rats randomly assigned to 4 groups: non-obese control (NC), obese control (OC), non-obese IND group (NI), obese + IND group (OI). Testis samples were examined using stereological, immunohistochemical, biochemical and histological methods. The number of spermatogenic cells, Leydig cells, mean volume of testes and seminiferous tubules was significantly decreased in the OC group compared to the NC group, but these values were increased significantly in the OI group compared to the OC group. We found a significant increase in catalase and myeloperoxidase activities in the OC group compared to the NC group. In the OI group, catalase and myeloperoxidase levels were decreased compared to the OC group. TUNEL-positive cells also were increased in the OC group compared to the NC group (p < 0.05), but these were fewer in the OI group than the OC group. We found marked morphological changes in testicular tissues between the NC and OC groups, as well as between the OI and OC groups. We found that HFD induced obesity was detrimental to rat testes and that administration of IND ameliorated testicular changes caused by obesity.
Collapse
Affiliation(s)
- Nur Hande Tüfek
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, Samsun, Turkey
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Medical Faculty, Karabuk University, Karabuk, Turkey
| | | |
Collapse
|
13
|
Oh MJ, Lee HHL, Lee HB, Do MH, Park M, Lee CH, Park HY. A water soluble extract of radish greens ameliorates high fat diet-induced obesity in mice and inhibits adipogenesis in preadipocytes. Food Funct 2022; 13:7494-7506. [PMID: 35686604 DOI: 10.1039/d1fo04152e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radish (Raphanus sativus L.) is a rich source of nutrients and its greens have reported functionalities. This study aimed to investigate the effects of a water-soluble extract from radish greens (WERG) on adipogenesis in 3T3-L1 adipocytes and high-fat diet-induced obesity in model mice. We also quantified the phytochemical composition of WERG such as glucoraphenin and ferulic acid. These findings show that treatment with 100 μg mL-1 WERG reduced lipid accumulation in 3T3-L1 adipocytes, whereas in mice, the administration of 100 mg kg-1 WERG reduced weight gain and hepatic lipid accumulation and improved the levels of serum lipid biomarkers. Furthermore, WERG treatment improved intestinal permeability and suppressed the activities of harmful intestinal enzymes in feces, thus improving gut health. It also inhibited metabolic endotoxemia and inflammatory marker levels in serum. Moreover, WERG reduced the expression of lipid-metabolism-related proteins in the liver and white adipose tissue. Collectively, these results indicate that WERG may potentiate the anti-obesity effect by improving gut health and regulating lipid metabolism.
Collapse
Affiliation(s)
- Mi-Jin Oh
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Hyun Hee L Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Moon Ho Do
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Miri Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Chang-Hyun Lee
- Department of Anatomy, Woosuk University, Jeollabuk-do 55338, Republic of Korea.
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
14
|
Fitzpatrick AM, Mutic AD, Mohammad AF, Stephenson ST, Grunwell JR. Obesity Is Associated with Sustained Symptomatology and Unique Inflammatory Features in Children with Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:815-826.e2. [PMID: 34688962 PMCID: PMC8917992 DOI: 10.1016/j.jaip.2021.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Obesity complicates the clinical manifestations of asthma in children. However, few studies have examined longitudinal outcomes or markers of systemic inflammation in obese asthmatic children. OBJECTIVE We hypothesized that obese children with asthma would have: (1) poorer clinical outcomes over 12 months, (2) decreased responsiveness to systemic corticosteroid administration, (3) greater markers of systemic inflammation, and (4) unique amino acid metabolites associated with oxidative stress. METHODS Children 6 to 17 years of age (lean, N = 257; overweight, N = 99; obese, N = 138) completed a baseline visit and follow-up visit at 12 months. Outcome measures included asthma control, quality of life, lung function, and exacerbations. A subset received intramuscular triamcinolone and were re-evaluated at 7(+7) days. Leptin, adiponectin, C-reactive protein, total cholesterol, interleukin (IL)-1β, IL-6, IL-17, interferon gamma, tumor necrosis factor alpha, monocyte-chemoattractant protein-1, and amino acid metabolites were also quantified in plasma as potential biomarkers of outcomes in obese children. RESULTS Obesity was associated with more symptoms, poorer quality life, and more exacerbations that persisted over 1 year despite greater medication requirements. Obese children also had minimal clinical improvement in asthma control and lung function after intramuscular triamcinolone. Leptin, C-reactive protein, and amino acid metabolites associated with glutathione synthesis and oxidative stress differed in obese children. Within the obese group, lower concentrations of arginine-related metabolites also distinguished uncontrolled from controlled asthma at 12 months. CONCLUSION Obesity is associated with poorer asthma outcomes and unique systemic inflammatory features that may not be adequately modified with conventional asthma therapies. Novel approaches may be needed given increased symptoms and unique inflammation and oxidative stress in obese children with asthma.
Collapse
Affiliation(s)
- Anne M. Fitzpatrick
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia,Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Abby D. Mutic
- Emory University Nell Hodgson Woodruff School of Nursing, Atlanta, Georgia
| | - Ahmad F. Mohammad
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia
| | - Susan T. Stephenson
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia
| | - Jocelyn R. Grunwell
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia,Children’s Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
15
|
Zhao Y, Shu Y, Zhao N, Zhou Z, Jia X, Jian C, Jin S. Insulin resistance induced by long-term sleep deprivation in rhesus macaques can be attenuated by Bifidobacterium. Am J Physiol Endocrinol Metab 2022; 322:E165-E172. [PMID: 34843659 DOI: 10.1152/ajpendo.00329.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term sleep deprivation (SD) is a bad lifestyle habit, especially among specific occupational practitioners, characterized by circadian rhythm misalignment and abnormal sleep/wake cycles. SD is closely associated with an increased risk of metabolic disturbance, particularly obesity and insulin resistance. The incretin hormone, glucagon-like peptide-1 (GLP-1), is a critical insulin release determinant secreted by the intestinal L-cell upon food intake. Besides, the gut microbiota participates in metabolic homeostasis and regulates GLP-1 release in a circadian rhythm manner. As a commonly recognized intestinal probiotic, Bifidobacterium has various clinical indications regarding its curative effect. However, few studies have investigated the effect of Bifidobacterium supplementation on sleep disorders. In the present study, we explored the impact of long-term SD on the endocrine metabolism of rhesus monkeys and determined the effect of Bifidobacterium supplementation on the SD-induced metabolic status. Lipid concentrations, body weight, fast blood glucose, and insulin levels increased after SD. Furthermore, after 2 mo of long-term SD, the intravenous glucose tolerance test showed that the glucose metabolism was impaired and the insulin sensitivity decreased. Moreover, 1 mo of Bifidobacterium oral administration significantly reduced blood glucose and attenuated insulin resistance in rhesus macaques. Overall, our results suggested that Bifidobacterium might be used to alleviate SD-induced aberrant glucose metabolism and improve insulin resistance. Also, it might help in better understanding the mechanisms governing the beneficial effects of Bifidobacterium.NEW & NOTEWORTHY Our findings demonstrated that long-term sleep deprivation is closely associated with metabolic syndromes. Bifidobacterium administration showed a superior effect on insulin resistance caused by sleep deprivation. Overall, we provide prevention and treatment methods for long-term sleep deprivation, a bad lifestyle habit among specific occupational practitioners, such as irregular shift workers.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yan Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ning Zhao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiong Jia
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chenxing Jian
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
16
|
Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol 2022; 19:177-191. [PMID: 35039631 PMCID: PMC8803838 DOI: 10.1038/s41423-021-00832-3] [Citation(s) in RCA: 332] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a component of many disease conditions that affect a large group of individuals worldwide. Chronic inflammation is characterized by persistent, low-grade inflammation and is increased in the aging population. Neutrophils are normally the first responders to acute inflammation and contribute to the resolution of inflammation. However, in chronic inflammation, the role of neutrophils is less well understood and has been described as either beneficial or detrimental, causing tissue damage and enhancing the immune response. Emerging evidence suggests that neutrophils are important players in several chronic diseases, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease and autoimmune disorders. This review will highlight the interaction of neutrophils with other cells in the context of chronic inflammation, the contribution of neutrophils to selected chronic inflammatory diseases, and possible future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Kenne
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
He X, Liu C, Peng J, Li Z, Li F, Wang J, Hu A, Peng M, Huang K, Fan D, Li N, Zhang F, Cai W, Tan X, Hu Z, Deng X, Li Y, Mo X, Li L, Shi Y, Yang L, Zhu Y, Wu Y, Liang H, Liao B, Hong W, He R, Li J, Guo P, Zhuo Y, Zhao L, Hu F, Li W, Zhu W, Zhang Z, Guo Z, Zhang W, Hong X, Cai W, Gu L, Du Z, Zhang Y, Xu J, Zuo T, Deng K, Yan L, Chen X, Chen S, Lei C. COVID-19 induces new-onset insulin resistance and lipid metabolic dysregulation via regulation of secreted metabolic factors. Signal Transduct Target Ther 2021; 6:427. [PMID: 34916489 PMCID: PMC8674414 DOI: 10.1038/s41392-021-00822-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Abnormal glucose and lipid metabolism in COVID-19 patients were recently reported with unclear mechanism. In this study, we retrospectively investigated a cohort of COVID-19 patients without pre-existing metabolic-related diseases, and found new-onset insulin resistance, hyperglycemia, and decreased HDL-C in these patients. Mechanistically, SARS-CoV-2 infection increased the expression of RE1-silencing transcription factor (REST), which modulated the expression of secreted metabolic factors including myeloperoxidase, apelin, and myostatin at the transcriptional level, resulting in the perturbation of glucose and lipid metabolism. Furthermore, several lipids, including (±)5-HETE, (±)12-HETE, propionic acid, and isobutyric acid were identified as the potential biomarkers of COVID-19-induced metabolic dysregulation, especially in insulin resistance. Taken together, our study revealed insulin resistance as the direct cause of hyperglycemia upon COVID-19, and further illustrated the underlying mechanisms, providing potential therapeutic targets for COVID-19-induced metabolic complications.
Collapse
Affiliation(s)
- Xi He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Obstetrics and Gynecology, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ao Hu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Meixiu Peng
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kan Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Na Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiping Cai
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xinghua Tan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhongwei Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yueping Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoneng Mo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yaling Shi
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Li Yang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanrong Wu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huichao Liang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baolin Liao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenxin Hong
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruiying He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pengle Guo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Youguang Zhuo
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lingzhai Zhao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenxue Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Zefeng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zeling Guo
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Zhang
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Xiqiang Hong
- Wuhan Metware Biotechnology Co., Ltd, Wuhan, China
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Lei Gu
- Max Planck Institute for Heart and Lung Research and Cardiopulmonary Institute (CPI), Bad Nauheim, Germany
| | - Ziming Du
- Department of Molecular Diagnostics, Sun Yat-sen Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tao Zuo
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinwen Chen
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Chunliang Lei
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Choromańska B, Myśliwiec P, Dadan J, Maleckas A, Zalewska A, Maciejczyk M. Effects of age and gender on the redox homeostasis of morbidly obese people. Free Radic Biol Med 2021; 175:108-120. [PMID: 34390781 DOI: 10.1016/j.freeradbiomed.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/28/2023]
Abstract
Obesity is a chronic disease of complex etiology. Recent evidence suggests that obesity is caused by inflammation of adipose tissue leading to metabolic disorders, cardiovascular disease and cancer. This is the first study to evaluated the effects of age and gender on redox homeostasis, glutathione metabolism, and oxidative damage to plasma/serum lipids and proteins in morbidly obese patients. The study included 120 (60 men and 60 women) morbidly obese patients with class 3 obesity (BMI > 40 kg/m2), classified into three groups depending on age: 20-39 years (n = 20), 40-59 years (n = 20) and 60 years or older (n = 20). The number of patients was calculated a priori based on our previous experiment. We observed a reduction in serum activity of antioxidant enzymes (↓SOD) and plasma concentration of non-enzymatic antioxidants (↓GSH) in obese patients compared to the lean controls, which further decreased with age. Redox status (↑TAC, ↑TOS and ↓OSI) in morbidly obese men and women was shifted towards oxidation. Moreover, lipid (↑MDA and ↑LOOH) and protein (↑AOPP, ↑AGE and ↑Amadori products) damage products of oxidation and nitrosylation/nitration (↑total NO, ↑S-nitrosothiols, ↑peroxynitrite and ↑nitrotyrosine) were elevated in both genders of morbidly obese patients and were higher in the elderly. Interestingly, the concentrations of oxidative and nitrosative stress markers were generally higher in obese men compared to obese women at the same age. Summarizing, we showed that the total antioxidant/oxidant potential of obese patients is significantly increased and shifted towards oxidation. Obese patients have increased lipid and protein oxidation, glycation and nitration as compared to the lean controls. Disturbances in redox homeostasis increase with age in obese patients. Oxidative and nitrosative stress are more intense in men than in women at the same age.
Collapse
Affiliation(s)
- Barbara Choromańska
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-276, Bialystok, Poland.
| | - Piotr Myśliwiec
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-276, Bialystok, Poland.
| | - Jacek Dadan
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-276, Bialystok, Poland.
| | - Almantas Maleckas
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Gastrosurgical Research and Education, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-274, Bialystok, Poland.
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, 15-233, Bialystok, Poland.
| |
Collapse
|
19
|
Pineda-Cortel MRB, Bunag JAA, Mamerto TP, Abulencia MFB. Differential gene expression and network-based analyses of the placental transcriptome reveal distinct potential biomarkers for gestationaldiabetes mellitus. Diabetes Res Clin Pract 2021; 180:109046. [PMID: 34530062 DOI: 10.1016/j.diabres.2021.109046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
AIMS Gestational diabetes mellitus (GDM) is a common complication during pregnancy affecting the mother and fetus. With the problems encountered with the oral glucose tolerance test (OGTT), we aim to identify potential early biomarkers of GDM. METHODS A cross-sectional study was conducted among 80 pregnant women. Blood samples were collected every trimester, and total RNA was isolated. After quality control and library preparation, next-generation sequencing was performed. Differential expression analysis was done. Enriched Gene Ontology: Biological Processes (GO: BP) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified. Gene co-expression networks were constructed. Protein-protein Interaction (PPI) networks were then built from modules significantly correlated with Hemoglobin A1c. Genes with the highest degree of interaction were identified as hub genes. RESULTS IGKV2D-28 and PTPRG were consistently differentially expressed among the three comparisons. Top enriched GO: BP terms and KEGG pathways are linked to immune responses. Orange (r = 0.59, p = 0.02) and purple modules (r = 0.41, p = 0.02) of the GDM cohorts in the first and second trimesters, respectively, significantly correlated with Hemoglobin A1c. HDAC8 of the orange module and MPO and CRISP3 of the purple module were identified as hub genes. CONCLUSIONS In this study, potential biomarkers of GDM were identified, namely, IGKV2D-28, PTPRG, HDAC8, MPO, and CRISP3.
Collapse
Affiliation(s)
- Maria Ruth B Pineda-Cortel
- Department of Medical Technology, Faculty of Pharmacy, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines; The Graduate School, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines; Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines.
| | - Jose Angelo A Bunag
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines
| | - Therriz P Mamerto
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines; Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines
| | - Miguel Francisco B Abulencia
- Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Boulevard, 1015 Manila, Philippines
| |
Collapse
|
20
|
Blaszczak AM, Quiroga D, Jalilvand A, Torres Matias GS, Wright VP, Liu J, Yu L, Bradley D, Hsueh WA, Carson WE. Characterization of inflammatory changes in the breast cancer associated adipose tissue and comparison to the unaffected contralateral breast. Surg Oncol 2021; 39:101659. [PMID: 34534729 DOI: 10.1016/j.suronc.2021.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Adipose tissue has emerged as an important window into cancer pathophysiology, revealing potential targets for novel therapeutic interventions. The goal of this study was to compare the breast adipose tissue (BrAT) immune milieu surrounding breast carcinoma and contralateral unaffected breast tissue obtained from the same patient. MATERIALS AND METHODS Patients undergoing bilateral mastectomy for unilateral breast cancer were enrolled for bilateral BrAT collection at the time of operation. After BrAT was processed, adipocyte and stromal vascular fraction (SVF) gene expression was quantified by PCR. SVF cells were also processed for flow cytometric immune cell characterization. RESULTS Twelve patients underwent bilateral mastectomy for unilateral ductal carcinoma. BrAT adipocyte CXCL2 gene expression trended higher in the tumor-affected breast as compared to the unaffected breast. Macrophage MCP-1 and PPARγ gene expression also tended to be higher in the tumor-affected breasts. T cell gene expression of FOXP3 (p = 0.0370) were significantly greater in tumor-affected breasts than unaffected breasts. Affected BrAT contained higher numbers of Th2 CD4+ cells (p = 0.0165) and eosinophils (p = 0.0095) while trending towards increased macrophage and lower Th1 CD4+ cells infiltration than tumor-affected BrAT. CONCLUSION This preliminary study aimed to identify the immunologic environment present within BrAT and is the first to directly compare this in individual patients' tumor-associated and unaffected BrAT. These findings suggest that cancer-affected BrAT had increased levels of T cell specific FOXP3 and higher levels of anti-inflammatory/regulatory cells compared to the contralateral BrAT.
Collapse
Affiliation(s)
- Alecia M Blaszczak
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Dionisia Quiroga
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 410 W 12th Avenue, Columbus, OH, 43210, USA; Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Starling Loving Hall, 320 W10th Ave, Columbus, OH, 43210, USA
| | - Anahita Jalilvand
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Gina S Torres Matias
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Valerie P Wright
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Joey Liu
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, 2012 Kenny Rd, Columbus, OH, 43221, USA
| | - David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - William E Carson
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 410 W 12th Avenue, Columbus, OH, 43210, USA; Department of Surgery, The Ohio State University, 410 W 10th Ave, N911 Doan Hall, Columbus, OH, 43210, USA.
| |
Collapse
|
21
|
Blaszczak AM, Jalilvand A, Hsueh WA. Adipocytes, Innate Immunity and Obesity: A Mini-Review. Front Immunol 2021; 12:650768. [PMID: 34248937 PMCID: PMC8264354 DOI: 10.3389/fimmu.2021.650768] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
The role of adipose tissue (AT) inflammation in obesity and its multiple related-complications is a rapidly expanding area of scientific interest. Within the last 30 years, the role of the adipocyte as an endocrine and immunologic cell has been progressively established. Like the macrophage, the adipocyte is capable of linking the innate and adaptive immune system through the secretion of adipokines and cytokines; exosome release of lipids, hormones, and microRNAs; and contact interaction with other immune cells. Key innate immune cells in AT include adipocytes, macrophages, neutrophils, and innate lymphoid cells type 2 (ILC2s). The role of the innate immune system in promoting adipose tissue inflammation in obesity will be highlighted in this review. T cells and B cells also play important roles in contributing to AT inflammation and are discussed in this series in the chapter on adaptive immunity.
Collapse
Affiliation(s)
- Alecia M Blaszczak
- Hsueh Laboratory, The Ohio State University Wexner Medical Center, Diabetes and Metabolism Research Center, Columbus, OH, United States
| | - Anahita Jalilvand
- Hsueh Laboratory, The Ohio State University Wexner Medical Center, Diabetes and Metabolism Research Center, Columbus, OH, United States
| | - Willa A Hsueh
- Hsueh Laboratory, The Ohio State University Wexner Medical Center, Diabetes and Metabolism Research Center, Columbus, OH, United States
| |
Collapse
|
22
|
McDowell SAC, Luo RBE, Arabzadeh A, Doré S, Bennett NC, Breton V, Karimi E, Rezanejad M, Yang RR, Lach KD, Issac MSM, Samborska B, Perus LJM, Moldoveanu D, Wei Y, Fiset B, Rayes RF, Watson IR, Kazak L, Guiot MC, Fiset PO, Spicer JD, Dannenberg AJ, Walsh LA, Quail DF. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. ACTA ACUST UNITED AC 2021; 2:545-562. [DOI: 10.1038/s43018-021-00194-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
|
23
|
Michailidou Z, Gomez-Salazar M, Alexaki VI. Innate Immune Cells in the Adipose Tissue in Health and Metabolic Disease. J Innate Immun 2021; 14:4-30. [PMID: 33849008 DOI: 10.1159/000515117] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic disorders, such as obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease, are characterized by chronic low-grade tissue and systemic inflammation. During obesity, the adipose tissue undergoes immunometabolic and functional transformation. Adipose tissue inflammation is driven by innate and adaptive immune cells and instigates insulin resistance. Here, we discuss the role of innate immune cells, that is, macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid type 2 cells, dendritic cells, and mast cells, in the adipose tissue in the healthy (lean) and diseased (obese) state and describe how their function is shaped by the obesogenic microenvironment, and humoral, paracrine, and cellular interactions. Moreover, we particularly outline the role of hypoxia as a central regulator in adipose tissue inflammation. Finally, we discuss the long-lasting effects of adipose tissue inflammation and its potential reversibility through drugs, caloric restriction, or exercise training.
Collapse
Affiliation(s)
- Zoi Michailidou
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Mario Gomez-Salazar
- Centre for Cardiovascular Sciences, Edinburgh University, Edinburgh, United Kingdom
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
25
|
Strzepa A, Gurski CJ, Dittel LJ, Szczepanik M, Pritchard KA, Dittel BN. Neutrophil-Derived Myeloperoxidase Facilitates Both the Induction and Elicitation Phases of Contact Hypersensitivity. Front Immunol 2021; 11:608871. [PMID: 33569056 PMCID: PMC7868335 DOI: 10.3389/fimmu.2020.608871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 01/15/2023] Open
Abstract
Background Allergic contact dermatitis (ACD) is a common skin disorder affecting an estimated 15-20% of the general population. The mouse model of ACD is contact hypersensitivity (CHS), which consists of two phases: induction and elicitation. Although neutrophils are required for both CHS disease phases their mechanisms of action are poorly understood. Neutrophils release myeloperoxidase (MPO) that through oxidation of biomolecules leads to cellular damage. Objectives This study investigated mechanisms whereby MPO contributes to CHS pathogenesis. Methods CHS was induced in mice using oxazolone (OX) as the initiating hapten applied to the skin. After 7 days, CHS was elicited by application of OX to the ear and disease severity was measured by ear thickness and vascular permeability in the ear. The role of MPO in the two phases of CHS was determined utilizing MPO-deficient mice and a specific MPO inhibitor. Results During the CHS induction phase MPO-deficiency lead to a reduction in IL-1β production in the skin and a subsequent reduction in migratory dendritic cells (DC) and effector T cells in the draining lymph node. During the elicitation phase, inhibition of MPO significantly reduced both ear swelling and vascular permeability. Conclusion MPO plays dual roles in CHS pathogenesis. In the initiation phase MPO promotes IL-1β production in the skin and activation of migratory DC that promote effector T cell priming. In the elicitation phase MPO drives vascular permeability contributing to inflammation. These results indicate that MPO it could be a potential therapeutic target for the treatment of ACD in humans.
Collapse
Affiliation(s)
- Anna Strzepa
- Versiti Blood Research Institute, Milwaukee, WI, United States,Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Cody J. Gurski
- Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Landon J. Dittel
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Marian Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Kirkwood A. Pritchard
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bonnie N. Dittel
- Versiti Blood Research Institute, Milwaukee, WI, United States,Deparment of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Bonnie N. Dittel,
| |
Collapse
|
26
|
Tian R, Jin Z, Zhou L, Zeng XP, Lu N. Quercetin Attenuated Myeloperoxidase-Dependent HOCl Generation and Endothelial Dysfunction in Diabetic Vasculature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:404-413. [PMID: 33395297 DOI: 10.1021/acs.jafc.0c06335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Myeloperoxidase (MPO)-dependent hypochlorous acid (HOCl) generation plays crucial roles in diabetic vascular complications. As a natural polyphenol, quercetin has antioxidant properties in various diabetic models. Herein, we investigated the therapeutic mechanism for quercetin on MPO-mediated HOCl generation and endothelial dysfunction in diabetic vasculature. In vitro, the presence of MPO could amplify high glucose-induced endothelial dysfunction which was significantly inhibited by the NADPH oxidase inhibitor, HOCl or H2O2 scavengers, revealing the contribution of MPO/H2O2/HOCl to vascular endothelial injury. Furthermore, quercetin effectively inhibited MPO/high glucose-mediated HOCl generation and cytotoxicity to vascular endothelial cells. The inhibitive effect on MPO activity was related to the fact that quercetin reduced high glucose-induced H2O2 generation in endothelial cells and directly acted as a competitive substrate for MPO, thus limiting MPO/H2O2-dependent HOCl production. Moreover, quercetin could attenuate HOCl-caused endothelial dysfunction in endothelial cells and isolated aortas. In vivo, dietary quercetin significantly inhibited aortic endothelial dysfunction in diabetic mice, while this compound simultaneously suppressed vascular MPO expression and activity. Therefore, it was demonstrated herein that quercetin inhibited endothelial injury in diabetic vasculature via suppression of MPO/high glucose-dependent HOCl formation.
Collapse
Affiliation(s)
- Rong Tian
- MOE Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zeran Jin
- MOE Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lan Zhou
- MOE Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xing-Ping Zeng
- MOE Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Naihao Lu
- MOE Key Laboratory of Functional Small Organic Molecule, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
27
|
Scandolara TB, da Silva JC, Malanowski J, de Oliveira JA, Rech D, Panis C. Anti-neutrophil antibodies (anti-MPO-ANCAs) are associated with poor prognosis in breast cancer patients. Immunobiology 2020; 225:152011. [PMID: 33130517 DOI: 10.1016/j.imbio.2020.152011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Anti-neutrophil antibodies are capable of activating neutrophils in sterile environments, releasing extracellular traps containing myeloperoxidase (MPO) and anti-MPO antibodies (MPO-ANCAs or anti-MPO-ANCAs), which have been implicated in the pathogenesis of several diseases. The present study evaluated systemic and tumor tissue levels of anti-MPO-ANCAs breast cancer patients, and its relation to clinicopathological characteristics. Anti-MPO-ANCAs were measured in serum and tissue samples of 150 patients by enzyme-linked immunoassay. Samples were pooled according to clinicopathological characteristics of patients. Higher anti-MPO-ANCAs levels were detected in groups presenting negative clinicopathological characteristics, such as high histological grade tumors and risk factors such as body mass index, menopausal status and early onset at diagnosis. The present data highlights anti-MPO-ANCAs as associated to poor prognosis in breast cancer, a role beyond its actually discussed role in autoimmunity and vasculitis.
Collapse
Affiliation(s)
- Thalita Basso Scandolara
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Federal University of Rio de Janeiro, Brazil; Post-graduation Program of Health-Applied Sciences, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil
| | - Janaína Carla da Silva
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Post-graduation Program of Health-Applied Sciences, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil
| | - Jéssica Malanowski
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil
| | - Janoário Athanázio de Oliveira
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Francisco Beltrão Cancer Hospital (Ceonc), Francisco Beltrão, Paraná, Brazil
| | - Daniel Rech
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Post-graduation Program of Health-Applied Sciences, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Francisco Beltrão Cancer Hospital (Ceonc), Francisco Beltrão, Paraná, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil; Post-graduation Program of Health-Applied Sciences, State University of West Paraná (Unioeste), Francisco Beltrão, Paraná, Brazil.
| |
Collapse
|
28
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
29
|
Blaszczak AM, Krishna SG, Hart PA, Bradley D, Hsueh W, Lara LF, Hussan H, Hinton A, Conwell DL, Cruz-Monserrate Z. Class III obesity rather than metabolic syndrome impacts clinical outcomes of acute pancreatitis: A propensity score weighted analysis. Pancreatology 2020; 20:1287-1295. [PMID: 32891531 PMCID: PMC7780090 DOI: 10.1016/j.pan.2020.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The incidence rates of acute pancreatitis (AP) and the prevalence of class III obesity, and metabolic syndrome (MetS) are increasing in the US. Since class III obesity was associated with adverse clinical outcomes of AP, we sought to understand if the presence of metabolic comorbidities collectively recognized, as MetS were associated with worse clinical outcomes and increased health-care utilization. METHODS The Nationwide Readmissions Database (NRD) (2010-2014) was reviewed to identify all adult subjects with a principal discharge diagnosis of AP. Inpatient mortality, severe AP (SAP), and 30-day readmissions were the primary outcomes analyzed. Propensity score weighted analyses were used to compare AP subjects with and without MetS and were further stratified by class III obesity status. RESULTS MetS was associated with 12.91% (139,165/1,078,183) of all admissions with AP. Propensity score weighted analyses showed that MetS was associated with an increased proportion of SAP (OR 1.21, 95% CI 1.17, 1.25), but decreased mortality (OR 0.62, 95% CI 0.54, 0.70) and 30-day readmissions (OR 0.86, 95% CI 0.83, 0.89). Propensity score weighted analyses also revealed that class III obesity was independently associated with increased mortality in AP subjects with (OR 1.92, 95% CI 1.41, 2.61) and without MetS (OR 1.55, 95% CI 1.26, 1.92), and increased SAP in subjects with and without MetS. CONCLUSIONS Class III obesity appears to be the primary factor associated with adverse clinical outcomes in subjects with MetS admitted with AP. This has significant implications for patient management and future research targeting AP.
Collapse
Affiliation(s)
- Alecia M Blaszczak
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA; The Comprehensive Cancer Center, Arthur G. James Cancer Hospital, Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Phil A Hart
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA; The Comprehensive Cancer Center, Arthur G. James Cancer Hospital, Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA
| | - Willa Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes & Metabolism, Department of Internal Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA
| | - Luis F Lara
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA; The Comprehensive Cancer Center, Arthur G. James Cancer Hospital, Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Hisham Hussan
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA; The Comprehensive Cancer Center, Arthur G. James Cancer Hospital, Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Alice Hinton
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Darwin L Conwell
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA; The Comprehensive Cancer Center, Arthur G. James Cancer Hospital, Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Division of Internal Medicine, The Ohio State University, Wexner Medical Center, Columbus, OH, 43210, USA; The Comprehensive Cancer Center, Arthur G. James Cancer Hospital, Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
30
|
The Impact of Hypertension and Metabolic Syndrome on Nitrosative Stress and Glutathione Metabolism in Patients with Morbid Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1057570. [PMID: 32963689 PMCID: PMC7501544 DOI: 10.1155/2020/1057570] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/08/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
In this pathbreaking study, we evaluated nitrosative stress in morbidly obese patients with and without metabolic syndrome. 62 women with class 3 obesity (BMI > 40 kg/m2) were divided into three subgroups: obese patients (OB), obese patients with hypertension (OB+HYP), and obese patients with metabolic syndrome (OB+MS). In comparison to the lean patients, OB had increased levels of serum myeloperoxidase (MPO), plasma nitric oxide (NO), S-nitrosothiols, and peroxynitrite (ONOO−), as well as nitrotyrosine, while oxidized glutathione (GSSG) rose only in OB+HYP group. Interestingly, ONOO− was significantly higher in OB+HYP and OB+MS as compared to OB group, while MPO only in OB+MS group. OB+MS had greater nitrotyrosine and S-nitrosothiol values than OB+HYP. Moreover, peroxynitrite could differentiate OB from OB+HYP and OB+MS (AUC 0.9292; p < 0.0001; 87.5% sensitivity, 90% specificity) as well as between OB and OB+MS group (AUC 0.9125; p < 0.0001; 81.25% sensitivity, 83.33%). In conclusion, we showed that MPO activity, NO formation, and nitrosative damage to proteins parallel the progression of metabolic disturbances of obesity. Evaluation of ONOO− concentrations may help predict the development of hypertension and metabolic syndrome in patients with morbid obesity; however, longer-term studies are required for larger numbers of patients.
Collapse
|
31
|
Lee HB, Oh MJ, Do MH, Kim YS, Park HY. Molokhia leaf extract prevents gut inflammation and obesity. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112866. [PMID: 32302714 DOI: 10.1016/j.jep.2020.112866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Molokhia is highly consumed in Egypt as edible and medicinal plants, and its leaves are used for the treatment of pain, fever, and inflammation. AIM OF THE STUDY High-fat diet (HFD) induces gut dysbiosis, which is closely linked to metabolic diseases including obesity and leaky gut. The effects of molokhia (Corchorus olitorius L.) on anti-obesity and gut health were investigated in this study. MATERIALS AND METHODS The effects of a water-soluble extract from molokhia leaves (WM) on lipid accumulation in 3T3-L1 adipocytes and on body weight, gut permeability, hormone levels, fecal enzyme activity of the intestinal microflora, and gut microbiota in HFD-induced C57BL/6J mice were examined. RESULTS WM treatment significantly inhibited lipid accumulation in 3T3-L1 adipocytes. Mice treated with 100 mg/kg WM had 13.1, 52.4, and 17.4% significantly lower body weights, gut permeability, and hepatic lipid accumulation than those in the HFD group, respectively. In addition, WM influenced gut health by inhibiting metabolic endotoxemia and colonic inflammation. It also altered the composition of the gut microbiota; in particular, it increased the abundance of Lactobacillus and decreased that of Desulfovibrio. CONCLUSION Our results extend our understanding of the beneficial effects of WM consumption, including the prevention of gut dysbiosis and obesity.
Collapse
Affiliation(s)
- Hye-Bin Lee
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea; Department of Food Science and Technology, Chonbuk National University, Jeollabuk-do, 54896, Republic of Korea.
| | - Mi-Jin Oh
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea.
| | - Moon Ho Do
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea.
| | - Young-Soo Kim
- Department of Food Science and Technology, Chonbuk National University, Jeollabuk-do, 54896, Republic of Korea.
| | - Ho-Young Park
- Division of Functional Food Research, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea.
| |
Collapse
|
32
|
Elieh Ali Komi D, Shafaghat F, Christian M. Crosstalk Between Mast Cells and Adipocytes in Physiologic and Pathologic Conditions. Clin Rev Allergy Immunol 2020; 58:388-400. [PMID: 32215785 PMCID: PMC7244609 DOI: 10.1007/s12016-020-08785-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive fatty acids and glucose uptake support the infiltration of adipose tissue (AT) by a variety of immune cells including neutrophils, pro-inflammatory M1 macrophages, and mast cells (MCs). These cells promote inflammation by releasing pro-inflammatory mediators. The involvement of MCs in AT biology is supported by their accumulation in the AT of obese individuals along with significantly higher serum levels of MC-derived tryptase. AT-resident MCs under the influence of locally derived adipokines such as leptin become activated and release pro-inflammatory cytokines including TNFα that worsens the inflammatory state. MCs support angiogenesis in AT by releasing chymase and inducing preadipocyte differentiation and also the proliferation of adipocytes through 15-deoxy-delta PGJ2/PPARγ interaction. Additionally, they contribute to the remodeling of the AT extracellular matrix (ECM) and play a role in the recruitment and activation of leukocytes. MC degranulation has been linked to brown adipocyte activation, and evidence indicates an important link between MCs and the appearance of BRITE/beige adipocytes in white AT. Cell crosstalk between MCs and AT-resident cells, mainly adipocytes and immune cells, shows that these cells play a critical role in the regulation of AT homeostasis and inflammation.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Shafaghat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark Christian
- School of Science and Technology, Nottingham, NG11 8NS, UK.
| |
Collapse
|
33
|
Abstract
Adipose tissue (AT) plays a central role in both metabolic health and pathophysiology. Its expansion in obesity results in increased mortality and morbidity, with contributions to cardiovascular disease, diabetes mellitus, fatty liver disease, and cancer. Obesity prevalence is at an all-time high and is projected to be 50% in the United States by 2030. AT is home to a large variety of immune cells, which are critical to maintain normal tissue functions. For example, γδ T cells are fundamental for AT innervation and thermogenesis, and macrophages are required for recycling of lipids released by adipocytes. The expansion of visceral white AT promotes dysregulation of its immune cell composition and likely promotes low-grade chronic inflammation, which has been proposed to be the underlying cause for the complications of obesity. Interestingly, weight loss after obesity alters the AT immune compartment, which may account for the decreased risk of developing these complications. Recent technological advancements that allow molecular investigation on a single-cell level have led to the discovery of previously unappreciated heterogeneity in many organs and tissues. In this review, we will explore the heterogeneity of immune cells within the visceral white AT and their contributions to homeostasis and pathology.
Collapse
Affiliation(s)
- Ada Weinstock
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Hernandez Moura Silva
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Kathryn J. Moore
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Edward A. Fisher
- Department of Medicine, Leon H. Charney Division of Cardiology, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
34
|
Abstract
Obesity is becoming an epidemic in the United States and worldwide and increases risk for many diseases, particularly insulin resistance, type 2 diabetes mellitus, and cardiovascular disease. The mechanisms linking obesity with these diseases remain incompletely understood. Over the past 2 to 3 decades, it has been recognized that in obesity, inflammation, with increased accumulation and inflammatory polarization of immune cells, takes place in various tissues, including adipose tissue, skeletal muscle, liver, gut, pancreatic islet, and brain and may contribute to obesity-linked metabolic dysfunctions, leading to insulin resistance and type 2 diabetes mellitus. Therapies targeting inflammation have shed light on certain obesity-linked diseases, including type 2 diabetes mellitus and atherosclerotic cardiovascular disease, but remain to be tested further and confirmed in clinical trials. This review focuses on inflammation in adipose tissue and its potential role in insulin resistance associated with obesity.
Collapse
Affiliation(s)
- Huaizhu Wu
- From the Department of Medicine (H.W., C.M.B.), Baylor College of Medicine, Houston, TX.,Department of Pediatrics (H.W.), Baylor College of Medicine, Houston, TX
| | - Christie M Ballantyne
- From the Department of Medicine (H.W., C.M.B.), Baylor College of Medicine, Houston, TX.,Department of Molecular and Human Genetics (C.M.B.), Baylor College of Medicine, Houston, TX.,Center for Cardiometabolic Disease Prevention (C.M.B.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
35
|
Davies MJ, Hawkins CL. The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease. Antioxid Redox Signal 2020; 32:957-981. [PMID: 31989833 DOI: 10.1089/ars.2020.8030] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and other strong oxidants, which kill bacteria and other invading pathogens. However, MPO also drives the development of numerous chronic inflammatory pathologies, including atherosclerosis, neurodegenerative disease, lung disease, arthritis, cancer, and kidney disease, which are globally responsible for significant patient mortality and morbidity. Recent Advances: The development of imaging approaches to precisely identify the localization of MPO and the molecular targets of HOCl in vivo is an important advance, as typically the involvement of MPO in inflammatory disease has been inferred by its presence, together with the detection of biomarkers of HOCl, in biological fluids or diseased tissues. This will provide valuable information in regard to the cell types responsible for releasing MPO in vivo, together with new insight into potential therapeutic opportunities. Critical Issues: Although there is little doubt as to the value of MPO inhibition as a protective strategy to mitigate tissue damage during chronic inflammation in experimental models, the impact of long-term inhibition of MPO as a therapeutic strategy for human disease remains uncertain, in light of the potential effects on innate immunity. Future Directions: The development of more targeted MPO inhibitors or a treatment regimen designed to reduce MPO-associated host tissue damage without compromising pathogen killing by the innate immune system is therefore an important future direction. Similarly, a partial MPO inhibition strategy may be sufficient to maintain adequate bacterial activity while decreasing the propagation of inflammatory pathologies.
Collapse
Affiliation(s)
- Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
36
|
Qaddoumi MG, Alanbaei M, Hammad MM, Al Khairi I, Cherian P, Channanath A, Thanaraj TA, Al-Mulla F, Abu-Farha M, Abubaker J. Investigating the Role of Myeloperoxidase and Angiopoietin-like Protein 6 in Obesity and Diabetes. Sci Rep 2020; 10:6170. [PMID: 32277104 PMCID: PMC7148302 DOI: 10.1038/s41598-020-63149-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Myeloperoxidase (MPO) is positively associated with obesity and diet-induced insulin resistance. Angiopoietin-like protein 6 (ANGPTL6) regulates metabolic processes and counteract obesity through increased energy expenditure. This study aims to evaluate the plasma MPO and ANGPTL6 levels in obese and diabetic individuals as well as MPO association with biochemical markers of obesity. A total of 238 participants were enrolled, including 137 control and 101 type 2 diabetes (T2D) patients. ANGPTL6 and MPO levels and other biomarkers were measured via ELISA. ANGPTL6 levels were significantly higher in the diabetic population and obese individuals. When the group was stratified based on T2D, ANGPTL6 levels were significantly higher in obese-diabetic participants compared with non-obese-diabetics, but obese-non-diabetic individuals had similar ANGPTL6 levels to their controls. MPO levels were higher in obese compared with non-obese participants but did not differ between T2D and control participants. MPO levels were upregulated in obese compared with non-obese in both diabetics and non-diabetics. MPO was positively associated with ANGPTL6, triglyceride, BMI, TNF-alpha, high-sensitivity C-reactive protein, interleukin-6, and plasminogen activator inhibitor-1. Taken together, our findings suggest that both MPO and ANGPTL6 may regulate obesity, although MPO exerts this effect independent of diabetes while ANGPTL6 may have a modulatory role in diabetes.
Collapse
Affiliation(s)
- Mohammad G Qaddoumi
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
- Pharmacology and Therapeutics Department, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Muath Alanbaei
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Maha M Hammad
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al Khairi
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Arshad Channanath
- Functional Genomic Unit, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | | | - Fahd Al-Mulla
- Functional Genomic Unit, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | - Jehad Abubaker
- Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait.
| |
Collapse
|
37
|
Tam TH, Chan KL, Boroumand P, Liu Z, Brozinick JT, Bui HH, Roth K, Wakefield CB, Penuela S, Bilan PJ, Klip A. Nucleotides released from palmitate-activated murine macrophages attract neutrophils. J Biol Chem 2020; 295:4902-4911. [PMID: 32132172 DOI: 10.1074/jbc.ra119.010868] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/27/2020] [Indexed: 01/11/2023] Open
Abstract
Obesity and elevation of circulating free fatty acids are associated with an accumulation and proinflammatory polarization of macrophages within metabolically active tissues, such as adipose tissue, muscle, liver, and pancreas. Beyond macrophages, neutrophils also accumulate in adipose and muscle tissues during high-fat diets and contribute to a state of local inflammation and insulin resistance. However, the mechanisms by which neutrophils are recruited to these tissues are largely unknown. Here we used a cell culture system as proof of concept to show that, upon exposure to a saturated fatty acid, palmitate, macrophages release nucleotides that attract neutrophils. Moreover, we found that palmitate up-regulates pannexin-1 channels in macrophages that mediate the attraction of neutrophils, shown previously to allow transfer of nucleotides across membranes. These findings suggest that proinflammatory macrophages release nucleotides through pannexin-1, a process that may facilitate neutrophil recruitment into metabolic tissues during obesity.
Collapse
Affiliation(s)
- Theresa H Tam
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kenny L Chan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhi Liu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | | | | | - Kenneth Roth
- Eli Lilly and Company, Indianapolis, Indiana 46285
| | - C Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
38
|
Luo W, Ai L, Wang B, Wang L, Gan Y, Liu C, Jensen J, Zhou Y. Eccentric exercise and dietary restriction inhibits M1 macrophage polarization activated by high-fat diet-induced obesity. Life Sci 2020; 243:117246. [PMID: 31904367 DOI: 10.1016/j.lfs.2019.117246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/21/2022]
Abstract
AIMS Obesity induce low-grade inflammation and elicit insulin resistance (IR), exercise training accompanied by a low-fat diet has been prescribed as part of the treatment for managing obesity and IR. The purpose of this study is to evaluate the effect of eccentric exercise accompanied by a low-fat diet on glycolipid metabolism, exercise capacity, and macrophage polarization in obesity-induced IR mice. MATERIALS AND METHODS Mice were fed with 60% high fat diet (HFD) for 12 weeks and subsequently treated with eccentric exercise or/and dietary restriction for 8 weeks. Related biochemical index were examined both before and during intervention to evaluate the ability of glycolipid metabolism. Exercise capacity was measured to verify the results of biochemical index. At 12 weeks and 12 + 8 weeks, infiltration was observed by H&E staining in adipose tissue, and macrophage polarization was detected by Immunofluorescence staining and ELISA. KEY FINDING 1) obesity-induced IR model was established by HFD fed for 12 weeks accompanied by impaired exercise ability and increased M1 macrophage, 2) eccentric exercise accompanied by a low-fat diet markedly rescued obesity-induced IR and improved exercise capacity, 3) eccentric exercise accompanied by a low-fat diet markedly inhibited M1 macrophage polarization and activated M2 macrophage. SIGNIFICANCE Eccentric exercise accompanied by a low-fat diet rescued obesity-induced IR and improved exercise capacity, which were associated with the inhibition of M1 macrophage polarization and the activation of M2 macrophage. These indicate that macrophage polarization provides the potential target of intervention for inflammation and IR in obesity.
Collapse
Affiliation(s)
- Wei Luo
- Department of Exercise Physiology, Beijing Sport University, Beijing, China; Department of Sports and Health Sciences, Nanjing Sport Institute, Nanjing, China
| | - Lei Ai
- Jiangsu Research Institute of Sports Science, Nanjing, China
| | - Bofa Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Liying Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yanming Gan
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Chenzhe Liu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Yue Zhou
- Department of Exercise Physiology, Beijing Sport University, Beijing, China.
| |
Collapse
|
39
|
Piek A, Koonen DPY, Schouten EM, Lindtstedt EL, Michaëlsson E, de Boer RA, Silljé HHW. Pharmacological myeloperoxidase (MPO) inhibition in an obese/hypertensive mouse model attenuates obesity and liver damage, but not cardiac remodeling. Sci Rep 2019; 9:18765. [PMID: 31822739 PMCID: PMC6904581 DOI: 10.1038/s41598-019-55263-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Lifestyle factors are important drivers of chronic diseases, including cardiovascular syndromes, with low grade inflammation as a central player. Attenuating myeloperoxidase (MPO) activity, an inflammatory enzyme associated with obesity, hypertension and heart failure, could have protective effects on multiple organs. Herein, the effects of the novel oral available MPO inhibitor AZM198 were studied in an obese/hypertensive mouse model which displays a cardiac phenotype. Eight week old male C57BL6/J mice received 16 weeks of high fat diet (HFD) combined with angiotensin II (AngII) infusion during the last 4 weeks, with low fat diet and saline infusion as control. Treated animals showed therapeutic AZM198 levels (2.1 µM), corresponding to 95% MPO inhibition. AZM198 reduced elevated circulating MPO levels in HFD/AngII mice to normal values. Independent of food intake, bodyweight increase and fat accumulation were attenuated by AZM198, alongside with reduced visceral adipose tissue (VAT) inflammation and attenuated severity of nonalcoholic steatohepatitis. The HFD/AngII perturbation caused impaired cardiac relaxation and contraction, and increased cardiac hypertrophy and fibrosis. AZM198 treatment did, however, not improve these cardiac parameters. Thus, AZM198 had positive effects on the main lipid controlling tissues in the body, namely adipose tissue and liver. This did, however, not directly result in improved cardiac function.
Collapse
Affiliation(s)
- Arnold Piek
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Debby P Y Koonen
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth-Maria Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eva L Lindtstedt
- Early Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Erik Michaëlsson
- Early Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
40
|
Schoeps DO, Holzer S, Suano-Souza FI, Hix S, Fonseca FLA, Sarni ROS. Myeloperoxidase as cardiovascular risk marker in pre-pubertal preterm children? Nutr Metab Cardiovasc Dis 2019; 29:1345-1352. [PMID: 31653520 DOI: 10.1016/j.numecd.2019.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/16/2019] [Accepted: 08/23/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIMS To evaluate the biomarkers related to cardiovascular risk in pre-pubertal preterm children with a birth weight of less than 1,500 g and relate them to current nutritional status, insulin resistance, and inflammation. METHODS & RESULTS This is a cross-sectional, controlled study with pre-pubertal preterm children aged 5-9 years with a birth weight of less than 1500 g (Preterm group, n = 44) compared to full term children of adequate weight for gestational age (Control group, n = 30). Clinical evaluation: anthropometry and pubertal staging. Laboratory tests: total cholesterol and fractions, triglycerides, paraoxonase 1, apolipoproteins A-I and B, myeloperoxidase (MPO), high sensitivity C-reactive protein (hs-CRP), glycemia and insulin (to calculate HOMA-IR). In the preterm group, 19 (43.2%) were male, with mean birth weight and gestational age of 1157 ± 242 g and 30.0 ± 2.3 weeks, respectively. The preterm group showed lower concentrations of HDL-c (60.1 ± 10.1 vs. 69.0 ± 10.0 mg/dL; p < 0.001); higher concentrations of hs-CRP [0.55 mg/dL (0.30; 39.4) vs. 0.30 mg/dL (0.30; 10.80); p = 0.043], of MPO [21.1 ng/mL (5.7; 120.0) vs. 8.1 ng/mL (2.6; 29.6); p < 0.001] and of MPO/HDL-c ratio [0.39 (0.09; 2.07) ng/mg vs. 0.11 (0.05; 0.58)]. The MPO/HDL-c ratio was the variable that showed the best discriminatory power between the groups (AUC = 0.878; 95% CI; 0.795-0.961). MPO concentrations in the preterm group were correlated with those of hs-CRP (r = 0.390; p = 0.009), insulin (r = 0.448; p = 0.002) and HOMA-IR (r = 0.462; p = 0.002). CONCLUSION Prepubertal preterm children show high MPO concentrations and MPO/HDL-c ratio that are associated with inflammation and oxidative stress, which, in turn, may be associated with atherosclerosis.
Collapse
Affiliation(s)
- Denise O Schoeps
- Pediatric Department, ABC University Health Center/ABC Faculty of Medicine, Brazil
| | - Simone Holzer
- Pediatric Department, ABC University Health Center/ABC Faculty of Medicine, Brazil
| | - Fabiola I Suano-Souza
- Pediatric Department, ABC University Health Center/ABC Faculty of Medicine, Brazil; Pediatric Department, Federal University of São Paulo - São Paulo Medical School, Brazil.
| | - Sonia Hix
- ABC University Health Center/ABC Faculty of Medicine, Brazil
| | | | - Roseli O S Sarni
- Pediatric Department, ABC University Health Center/ABC Faculty of Medicine, Brazil
| |
Collapse
|
41
|
Chai W, Aylor K, Liu Z, Gan LM, Michaëlsson E, Barrett E. Inhibiting myeloperoxidase prevents onset and reverses established high-fat diet-induced microvascular insulin resistance. Am J Physiol Endocrinol Metab 2019; 317:E1063-E1069. [PMID: 31593502 DOI: 10.1152/ajpendo.00203.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A high-fat diet (HFD) can rapidly recruit neutrophils to insulin target tissues and within days induce microvascular insulin resistance (IR). Myeloperoxidase (MPO) is highly enriched in neutrophils, can inhibit nitric oxide-mediated vasorelaxation in vitro and is associated with increased cardiovascular disease risk. AZD5904 irreversibly inhibits MPO and in human clinical trials. MPO knockout, or chemical inhibition, blunts HFD-induced metabolic IR in mice. Whether MPO affects microvascular IR or muscle metabolic insulin sensitivity in vivo is unknown. We used contrast-enhanced ultrasound and the euglycemic insulin clamp to test whether inhibiting MPO could prevent the development or reverse established HFD-induced metabolic and/or microvascular IR in Sprague-Dawley rats. Two weeks of HFD feeding blocked insulin-mediated skeletal muscle capillary recruitment, inhibited glucose utilization, and insulin signaling to muscle. Continuous subcutaneous AZD5904 infusion during the 2 wk selectively blocked HFD's microvascular effect. Furthermore, AZD5904 infusion during the last 2 of 4 wk of HFD feeding restored microvascular insulin sensitivity but not metabolic IR. We conclude that inhibiting MPO selectively improves vascular IR. This selective microvascular effect may connote a therapeutic potential for MPO inhibition in the prevention of vascular disease/dysfunction seen in IR humans.
Collapse
Affiliation(s)
- Weidong Chai
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kevin Aylor
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Erik Michaëlsson
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Eugene Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
42
|
Preston KJ, Rom I, Vrakas C, Landesberg G, Etwebi Z, Muraoka S, Autieri M, Eguchi S, Scalia R. Postprandial activation of leukocyte-endothelium interaction by fatty acids in the visceral adipose tissue microcirculation. FASEB J 2019; 33:11993-12007. [PMID: 31393790 DOI: 10.1096/fj.201802637rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
High-fat diet (HFD)-induced obesity is associated with accumulation of inflammatory cells predominantly in visceral adipose depots [visceral adipose tissue (VAT)] rather than in subcutaneous ones [subcutaneous adipose tissue (SAT)]. The cellular and molecular mechanisms responsible for this phenotypic difference remain poorly understood. Controversy also exists on the overall impact that adipose tissue inflammation has on metabolic health in diet-induced obesity. The endothelium of the microcirculation regulates both the transport of lipids and the trafficking of leukocytes into organ tissue. We hypothesized that the VAT and SAT microcirculations respond differently to postprandial processing of dietary fat. We also tested whether inhibition of endothelial postprandial responses to high-fat meals (HFMs) preserves metabolic health in chronic obesity. We demonstrate that administration of a single HFM or ad libitum access to a HFD for 24 h quickly induces a transient P-selectin-dependent inflammatory phenotype in the VAT but not the SAT microcirculation of lean wild-type mice. Studies in P-selectin-deficient mice confirmed a mechanistic role for P-selectin in the initiation of leukocyte trafficking, myeloperoxidase accumulation, and acute reduction in adiponectin mRNA expression by HFMs. Despite reduced VAT inflammation in response to HFMs, P-selectin-deficient mice still developed glucose intolerance and insulin resistance when chronically fed an HFD. Our data uncover a novel nutrient-sensing role of the vascular endothelium that instigates postprandial VAT inflammation. They also demonstrate that inhibition of this transient postprandial inflammatory response fails to correct metabolic dysfunction in diet-induced obesity.-Preston, K. J., Rom, I., Vrakas, C., Landesberg, G., Etwebe, Z., Muraoka, S., Autieri, M., Eguchi, S., Scalia, R. Postprandial activation of leukocyte-endothelium interaction by fatty acids in the visceral adipose tissue microcirculation.
Collapse
Affiliation(s)
| | - Inna Rom
- Cardiovascular Research Center and
| | | | | | | | | | - Michael Autieri
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Satoru Eguchi
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Rosario Scalia
- Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Mannino MH, Patel RS, Eccardt AM, Perez Magnelli RA, Robinson CLC, Janowiak BE, Warren DE, Fisher JS. Myoglobin as a versatile peroxidase: Implications for a more important role for vertebrate striated muscle in antioxidant defense. Comp Biochem Physiol B Biochem Mol Biol 2019; 234:9-17. [PMID: 31051268 DOI: 10.1016/j.cbpb.2019.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
Abstract
Myoglobins (Mb) are ubiquitous proteins found in striated muscle of nearly all vertebrate taxa. Although their function is most commonly associated with facilitating oxygen storage and diffusion, Mb has also been implicated in cellular antioxidant defense. The oxidized (Fe3+) form of Mb (metMB) can react with hydrogen peroxide (H2O2) to produce ferrylMb. FerrylMb can be reduced back to metMb for another round of reaction with H2O2. In the present study, we have shown that horse skeletal muscle Mb displays peroxidase activity using 2,2'-azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) as reducing substrates, as well as the biologically-relevant substrates NADH/NADPH, ascorbate, caffeic acid, and resveratrol. We have also shown that ferrylMb can be reduced by both ethanol and acetaldehyde, which are known to accumulate in some vertebrate tissues under anaerobic conditions, such as anoxic goldfish and crucian carp, implying a potential mechanism for ethanol detoxification in striated muscle. We found that metMb peroxidase activity is pH-dependent, increasing as pH decreases from 7.4 to 6.1, which is biologically relevant to anaerobic vertebrate muscle when incurring intracellular lactic acidosis. Finally, we found that metMb reacts with hypochlorite in a heme-dependent fashion, indicating that Mb could play a role in hypochlorite detoxification. Taken together, these data suggest that Mb peroxidase activity might be an important antioxidant mechanism in vertebrate cardiac and skeletal muscle under a variety of physiological conditions, such as those that might occur in contracting skeletal muscle or during hypoxia.
Collapse
|
44
|
Daryabor G, Kabelitz D, Kalantar K. An update on immune dysregulation in obesity-related insulin resistance. Scand J Immunol 2019; 89:e12747. [PMID: 30593678 DOI: 10.1111/sji.12747] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/29/2022]
Abstract
Obesity is associated with chronic low-grade inflammation of the adipose tissue (AT) that might develop into systemic inflammation, insulin resistance (IR) and an increased risk of type 2 diabetes mellitus (T2DM) in severe obese rodents and humans. In the lean state, small normal adipocytes and AT macrophages interact with each other to maintain metabolic homeostasis but during obesity, enlarged adipocytes secrete inflammatory mediators and express immune receptors to recruit immune cells and aggravate the inflammation. The better understanding of the obesity-related inflammatory milieu and the sequential events leading to IR could be helpful in designing new preventive and therapeutic strategies. The present review will discuss the cellular and molecular abnormalities participating in the pathogenesis of obesity in obese individuals as well as high-fat diet (HFD)-fed mice, a mouse model of obesity.
Collapse
Affiliation(s)
- Gholamreza Daryabor
- Department of Immunology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Kurosh Kalantar
- Department of Immunology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Abstract
Immune cells are present in the adipose tissue (AT) and regulate its function. Under lean conditions, immune cells predominantly of type 2 immunity, including eosinophils, M2-like anti-inflammatory macrophages and innate lymphoid cells 2, contribute to the maintenance of metabolic homeostasis within the AT. In the course of obesity, pro-inflammatory immune cells, such as M1-like macrophages, prevail in the AT. Inflammation in the obese AT is associated with the development of metabolic complications such as insulin resistance, type 2 diabetes and cardiovascular disease. Thus, the immune cell-adipocyte crosstalk in the AT is an important regulator of AT function and systemic metabolism. We discuss herein this crosstalk with a special focus on the role of innate immune cells in AT inflammation and metabolic homeostasis in obesity.
Collapse
Affiliation(s)
- Kyoung-Jin Chung
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Antonios Chatzigeorgiou
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
46
|
Ali M, Jasmin S, Fariduddin M, Alam SMK, Arslan MI, Biswas SK. Neutrophil elastase and myeloperoxidase mRNA expression in overweight and obese subjects. Mol Biol Rep 2018; 45:1245-1252. [PMID: 30056589 DOI: 10.1007/s11033-018-4279-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Neutrophil elastase and myeloperoxidase enzymes have been implicated in high-fat diet-induced obesity, insulin resistance (IR) and atherosclerosis in animal models. The aim of the present study was to explore neutrophil elastase and myeloperoxidase mRNA expressions in the peripheral blood leukocytes (PBL) in overweight and obese subjects, and to correlate those mRNA expressions with BMI, IR and cardiovascular biomarkers. In this cross-sectional study, 74 apparently healthy subjects including 22 lean, 27 overweight and 25 obese subjects were recruited. Cardiovascular and metabolic biomarkers were evaluated from fasting blood samples. The mRNA levels of neutrophil elastase and myeloperoxidase genes in the PBL were quantified by real-time PCR. Compared to lean group, the overweight and obese groups showed significant upregulation of both neutrophil elastase (p < 0.001) and myeloperoxidase (p < 0.03) mRNA expressions in the PBL. But no difference was found between overweight and obese groups. The neutrophil elastase and myeloperoxidase mRNA levels showed significant positive correlation with BMI, serum triglyceride, atherogenic index of plasma and 10-year risk of developing cardiovascular disease. But no correlation was found with glucose, insulin or IR. It was concluded that the neutrophil elastase and myeloperoxidase genes are up-regulated in both overweight and obese subjects and are associated with BMI and markers of cardiovascular disease.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka - 1000, Bangladesh
| | - Shahana Jasmin
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka - 1000, Bangladesh
| | - Mohammad Fariduddin
- Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Sheikh M K Alam
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka - 1000, Bangladesh
| | - M I Arslan
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka - 1000, Bangladesh
| | - Subrata K Biswas
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka - 1000, Bangladesh.
| |
Collapse
|
47
|
Liu D, Liu L, Hu Z, Song Z, Wang Y, Chen Z. Evaluation of the oxidative stress-related genes ALOX5, ALOX5AP, GPX1, GPX3 and MPO for contribution to the risk of type 2 diabetes mellitus in the Han Chinese population. Diab Vasc Dis Res 2018; 15:336-339. [PMID: 29383971 DOI: 10.1177/1479164118755044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Type 2 diabetes mellitus is a polygenic metabolic disorder resulting from oxidative stress, the root cause of insulin resistance, β-cell dysfunction and impaired glucose tolerance. The aim of this study was to investigate the role of oxidative stress-related genes ALOX5, ALOX5AP, GPX1, GPX3 and MPO in type 2 diabetes mellitus susceptibility in the Chinese Han population. METHODS A total of 396 type 2 diabetes mellitus patients and 678 controls were recruited. The ALOX5 rs10900213, ALOX5AP rs4293222, GPX1 rs1050450, GPX3 rs3828599 and MPO rs2107545 gene polymorphisms were genotyped. RESULTS We found one single-nucleotide polymorphism in the MPO gene was associated with type 2 diabetes mellitus susceptibility [rs2107545: odds ratio = 1.563 (1.166-2.096); p = 0.003], after adjusting for covariates. Furthermore, we also considered the likely complexity of effects of genetic and conventional risk factors in type 2 diabetes mellitus-related vascular complications, such as carotid plaques. Our analysis revealed that the GPX1 rs1050450 and MPO rs2107545 were significantly associated with increased risk of carotid plaques in type 2 diabetes mellitus patients. CONCLUSION Our study presents novel evidence for main effects of MPO gene on type 2 diabetes mellitus susceptibility. Furthermore, our study supported the association between variants of oxidative stress-related genes ( GPX1 and MPO) and carotid plaques in type 2 diabetes mellitus patients, which indicated a modulation of type 2 diabetes mellitus-related vascular complication susceptibility by genetic predisposition.
Collapse
Affiliation(s)
- Ding Liu
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Lei Liu
- 2 Department of Health Management Centre, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhongyang Hu
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhi Song
- 1 Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yaqin Wang
- 2 Department of Health Management Centre, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zhiheng Chen
- 2 Department of Health Management Centre, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
48
|
Microenvironment of Immune Cells Within the Visceral Adipose Tissue Sensu Lato vs. Epicardial Adipose Tissue: What Do We Know? Inflammation 2018; 41:1142-1156. [PMID: 29846855 DOI: 10.1007/s10753-018-0798-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The chronic low-grade inflammation of the visceral adipose tissue is now fully established as one of the main contributors to metabolic disorders such as insulin resistance, subsequently leading to metabolic syndrome and other associated cardiometabolic pathologies. The orchestration of immune response and the "ratio of responsibility" of different immune cell populations have been studied extensively over the last few years within the visceral adipose tissue in general sense (sensu lato). However, it is essential to clearly distinguish different types of visceral fat distribution. Visceral adipose tissue is not only the classical omental or epididymal depot, but includes also specific type of fat in the close vicinity to the myocardium-the epicardial adipose tissue. Disruption of this type of fat during obesity was found to have a unique and direct influence over the cardiovascular disease development. Therefore, epicardial adipose tissue and other types of visceral adipose tissue depots should be studied separately. The purpose of this review is to explore the present knowledge about the morphology and dynamics of individual populations of immune cells within the visceral adipose tissue sensu lato in comparison to the knowledge regarding the epicardial adipose tissue specifically.
Collapse
|
49
|
Lu N, Sui Y, Tian R, Peng YY. Inhibitive Effects of Quercetin on Myeloperoxidase-Dependent Hypochlorous Acid Formation and Vascular Endothelial Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4933-4940. [PMID: 29708335 DOI: 10.1021/acs.jafc.8b01537] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Myeloperoxidase (MPO) from activated neutrophils plays important roles in multiple human inflammatory diseases by catalyzing the formation of powerful oxidant hypochlorous acid (HOCl). As a major flavonoid in the human diet, quercetin has been suggested to act as antioxidant and anti-inflammatory agent in vitro and in vivo. In this study, we showed that quercetin inhibited MPO-mediated HOCl formation (75.0 ± 6.2% for 10 μM quercetin versus 100 ± 5.2% for control group, P < 0.01) and cytotoxicity to endothelial cells in vitro, while this flavonoid was nontoxic to endothelial cell cultures ( P > 0.05, all cases). Moreover, quercetin inhibited HOCl generation by stimulated neutrophils (a rich source of MPO) and protected endothelial cells from neutrophils-induced injury. Furthermore, quercetin could inhibit HOCl-induced endothelial dysfunction such as loss of cell viability, and decrease of nitric oxide formation in endothelial cells ( P < 0.05, all cases). Consistent with these in vitro data, quercetin attenuated lipopolysaccharide-induced endothelial dysfunction and increase of MPO activity in mouse aortas, while this flavonoid could protect against HOCl-mediated endothelial dysfunction in isolated aortas ( P < 0.05). Therefore, it was proposed that quercetin attenuated endothelial injury in inflammatory vasculature via inhibition of vascular-bound MPO-mediated HOCl formation or scavenging of HOCl. These data indicate that quercetin is a nontoxic inhibitor of MPO activity and MPO/neutrophils-induced cytotoxicity in endothelial cells and may be useful for targeting MPO-dependent vascular disease and inflammation.
Collapse
Affiliation(s)
- Naihao Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| | - Yinhua Sui
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| | - Rong Tian
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| | - Yi-Yuan Peng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education; Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering , Jiangxi Normal University , Nanchang 330022 , China
| |
Collapse
|
50
|
Tseng A, Kim K, Li J, Cho J. Myeloperoxidase Negatively Regulates Neutrophil-Endothelial Cell Interactions by Impairing αMβ2 Integrin Function in Sterile Inflammation. Front Med (Lausanne) 2018; 5:134. [PMID: 29780806 PMCID: PMC5946029 DOI: 10.3389/fmed.2018.00134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/20/2018] [Indexed: 01/22/2023] Open
Abstract
Interactions of neutrophils with endothelial cells (ECs) and platelets contribute to tissue damage and vascular occlusion under sterile inflammatory conditions. However, the molecular mechanisms regulating the cell–cell interactions remain poorly understood. Previous studies suggest that reactive oxygen species, such as hydrogen peroxide (H2O2), produced from NADPH oxidase 2 play a critical role in platelet–neutrophil interactions by regulating the function of neutrophil αMβ2 integrin during sterile inflammation. In this study, we further demonstrate a crucial role for myeloperoxidase (MPO) in regulating the adhesive function of neutrophils through αMβ2 integrin. Using real-time fluorescence intravital microscopy and in vitro assays, we showed that loss of MPO promoted neutrophil–EC interactions and neutrophil emigration but did not affect neutrophil–platelet interactions under inflammatory conditions. Using genetic and pharmacologic approaches, we found that following agonist stimulation, MPO knockout (KO) neutrophils exhibited a significant increase in extracellular H2O2 and surface level of αMβ2 integrin and that these effects were dependent on MPO activity. Our in vivo studies using an ischemia/reperfusion-induced hepatic inflammation model revealed that compared to wild-type mice, neutrophils from MPO KO mice—displayed a pro-migratory phenotype while ameliorating tissue damage. These results suggest that MPO plays a negative role in the adhesive and migratory function of neutrophils by impairing αMβ2 integrin function under sterile inflammatory conditions.
Collapse
Affiliation(s)
- Alan Tseng
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Kyungho Kim
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL, United States.,Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Jing Li
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|