1
|
Huang Z, Zhang R, Yao D, Fu H, Li L, Xiao S, Ou X, Xu M, Lu QB, Yang X. Avian influenza A(H5N6) virus detected during live-poultry market surveillance linked to a human infection in Changsha, China, from 2020 to 2023. Arch Virol 2025; 170:96. [PMID: 40205236 DOI: 10.1007/s00705-025-06280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/12/2025] [Indexed: 04/11/2025]
Abstract
In November 2022, we reported a fatal case of human infection caused by a highly pathogenic avian influenza A(H5N6) virus bearing a clade 2.3.4.4b HA gene in Changsha City. We investigated the transmission route and distribution of the H5N6 virus in the largest live-poultry market (LPM), which is linked to the human infection. A total of 1357 samples from the LPM were collected for avian influenza A virus detection from 2020 to 2023. The proportion of LPM samples positive for H5 subtype avian influenza virus was 14.30% (194/1357). Sequences of H5N6 (n = 10) and H5N1 (n = 4) avian influenza viruses were obtained from the LPM samples using next-generation sequencing. The complete genome sequence of the H5N6 virus from the human infection case, A/Changsha/1/2022(EPI_ISL_16466440), was determined and analyzed. The PB1 and PB2 segments shared 99.65% and 99.23% sequence identity with A/duck/Hunan/S40199/2021(H5N6) and A/Whooper swan/Sanmenxia/H615/2020(H5N8), respectively. The other segments showed the highest sequence similarity to strain A/Guangdong/1/2021(H5N6), which was isolated in Guangzhou. L89V and I292V substitutions in the PB2 protein were predicted from the A/Changsha/1/2022 genome sequence. Phylogenetic analysis based on the HA gene showed that A/Changsha/1/2022 and other H5 subtype isolates obtained from the LPM grouped together in the 2.3.4.4b branch. Bayesian evolutionary analysis of the HA gene showed that clade 2.3.4.4b of the H5N6 virus is likely to have been prevalent in Hunan Province around October 2021. In conclusion, we confirmed that the clade 2.3.4.4b HA gene of A/Changsha/1/2022 virus recombined with those of local strains. These results demonstrate the importance of continuous surveillance of H5N6 influenza viruses.
Collapse
Affiliation(s)
- Zheng Huang
- Changsha Municipal Center for Disease Control and Prevention, Changsha, China
| | - Rusheng Zhang
- Changsha Municipal Center for Disease Control and Prevention, Changsha, China
| | - Dong Yao
- Changsha Municipal Center for Disease Control and Prevention, Changsha, China
| | - Huiyuan Fu
- Changsha Municipal Center for Disease Control and Prevention, Changsha, China
| | - Lingzhi Li
- Changsha Municipal Center for Disease Control and Prevention, Changsha, China
| | - Shan Xiao
- Changsha Municipal Center for Disease Control and Prevention, Changsha, China
| | - Xinhua Ou
- Changsha Municipal Center for Disease Control and Prevention, Changsha, China
| | - Mingzhong Xu
- Changsha Municipal Center for Disease Control and Prevention, Changsha, China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| | - Xuewen Yang
- Changsha Municipal Center for Disease Control and Prevention, Changsha, China.
| |
Collapse
|
2
|
Yang Y, Yang Z, Zhang X, Niu B, Huang Q, Li Y, Yin H, Zhang X, Liao M, Jia W. Rapid detection of Pan-Avian Influenza Virus and H5, H7, H9 subtypes of Avian Influenza Virus using CRISPR/Cas13a and lateral flow assay. Poult Sci 2025; 104:104745. [PMID: 39740498 PMCID: PMC11750554 DOI: 10.1016/j.psj.2024.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025] Open
Abstract
Avian Influenza Virus (AIV) has been prevalent worldwide in recent years, resulting in substantial economic losses in the poultry industry. More importantly, AIV is capable of cross-species transmission among mammals, posing a dormant yet considerable threat to human health and safety. In this study, two rapid detection methods for AIV based on the CRISPR-Cas13a were developed. These methods can identify AIV through the M gene and differentiate the H5, H7, and H9 subtypes via the HA gene. The first method utilizes RT-RAA isothermal amplification of the target sequence in combination with the "collateral effect" of the Cas13a protein. The results are measured using a real-time quantitative PCR instrument, with a Limit of Detection (LOD) as low as 1 copy/μL. The second method combines RT-RAA with Cas13a and a lateral flow assay, allowing results to be visually observed with the naked eye, with a LOD of 10 copies/μL. Both methods demonstrated specificity and sensitivity comparable to or exceeding that of qRT-PCR, suggesting strong potential for clinical application.
Collapse
Affiliation(s)
- Yujia Yang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyi Yang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xinkui Zhang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Beibei Niu
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuhong Huang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Li
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, China
| | - Xianpeng Zhang
- Dongguan Key Laboratory of Zoonosis, Dongguan Center for Animal Disease Prevention and Control, Dongguan, 523128, China
| | - Ming Liao
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weixin Jia
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Xing X, Shi J, Cui P, Yan C, Zhang Y, Zhang Y, Wang C, Chen Y, Zeng X, Tian G, Liu L, Guan Y, Li C, Suzuki Y, Deng G, Chen H. Evolution and biological characterization of H5N1 influenza viruses bearing the clade 2.3.2.1 hemagglutinin gene. Emerg Microbes Infect 2024; 13:2284294. [PMID: 37966008 PMCID: PMC10769554 DOI: 10.1080/22221751.2023.2284294] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023]
Abstract
H5N1 avian influenza viruses bearing the clade 2.3.2.1 hemagglutinin (HA) gene have been widely detected in birds and poultry in several countries. During our routine surveillance, we isolated 28 H5N1 viruses between January 2017 and October 2020. To investigate the genetic relationship of the globally circulating H5N1 viruses and the biological properties of those detected in China, we performed a detailed phylogenic analysis of 274 representative H5N1 strains and analyzed the antigenic properties, receptor-binding preference, and virulence in mice of the H5N1 viruses isolated in China. The phylogenic analysis indicated that the HA genes of the 274 viruses belonged to six subclades, namely clades 2.3.2.1a to 2.3.2.1f; these viruses acquired gene mutations and underwent complicated reassortment to form 58 genotypes, with G43 being the dominant genotype detected in eight Asian and African countries. The 28 H5N1 viruses detected in this study carried the HA of clade 2.3.2.1c (two strains), 2.3.2.1d (three strains), or 2.3.2.1f (23 strains), and formed eight genotypes. These viruses were antigenically well-matched with the H5-Re12 vaccine strain used in China. Animal studies showed that the pathogenicity of the H5N1 viruses ranged from non-lethal to highly lethal in mice. Moreover, the viruses exclusively bound to avian-type receptors and have not acquired the ability to bind to human-type receptors. Our study reveals the overall picture of the evolution of clade 2.3.2.1 H5N1 viruses and provides insights into the control of these viruses.
Collapse
Affiliation(s)
- Xin Xing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People’s Republic of China
- Institute of Western Agriculture, CAAS, Changji, People’s Republic of China
| | - Pengfei Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Cheng Yan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yaping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuancheng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Congcong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Xianying Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Guobin Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Liling Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuntao Guan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People’s Republic of China
| | - Yasuo Suzuki
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Hualan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People’s Republic of China
- National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Hu X, Saxena A, Magstadt DR, Gauger PC, Burrough ER, Zhang J, Siepker C, Mainenti M, Gorden PJ, Plummer PJ, Li G. Genomic characterization of highly pathogenic avian influenza A H5N1 virus newly emerged in dairy cattle. Emerg Microbes Infect 2024; 13:2380421. [PMID: 39008278 PMCID: PMC11271078 DOI: 10.1080/22221751.2024.2380421] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
In March 2024, the emergence of highly pathogenic avian influenza (HPAI) A (H5N1) infections in dairy cattle was detected in the United Sates for the first time. We genetically characterize HPAI viruses from dairy cattle showing an abrupt drop in milk production, as well as from two cats, six wild birds, and one skunk. They share nearly identical genome sequences, forming a new genotype B3.13 within the 2.3.4.4b clade. B3.13 viruses underwent two reassortment events since 2023 and exhibit critical mutations in HA, M1, and NS genes but lack critical mutations in PB2 and PB1 genes, which enhance virulence or adaptation to mammals. The PB2 E627 K mutation in a human case associated with cattle underscores the potential for rapid evolution post infection, highlighting the need for continued surveillance to monitor public health threats.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Anugrah Saxena
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Drew R. Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Eric R. Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Chris Siepker
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Marta Mainenti
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Patrick J. Gorden
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Paul J. Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
5
|
Mao Q, Li Z, Li Y, Zhang Y, Liu S, Yin X, Peng C, Ma R, Li J, Hou G, Jiang W, Liu H. H5N1 high pathogenicity avian influenza virus in migratory birds exhibiting low pathogenicity in mallards increases its risk of transmission and spread in poultry. Vet Microbiol 2024; 292:110038. [PMID: 38458047 DOI: 10.1016/j.vetmic.2024.110038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
In 2020, an H5N1 avian influenza virus of clade 2.3.4.4b was detected in Europe for the first time and was spread throughout the world by wild migratory birds, resulting in the culling of an unprecedented number of wild birds and poultry due to the epidemic. In February 2023, we isolated and identified a strain of H5N1 high pathogenicity avian influenza virus from a swab sample from a grey crane in Ningxia, China. Phylogenetic analysis of the Hemagglutinin (HA) gene showed that the virus belonged to clade 2.3.4.4b, and several gene segments were closely related to H5N1 viruses infecting humans in China. Analysis of key amino acid sites revealed that the virus contained multiple amino acid substitutions that facilitate enhanced viral replication and mammalian pathogenicity. The results of animal challenge experiments showed that the virus is highly pathogenic to chickens, moderately pathogenic to BALB/c mice, and highly infectious but not lethal to mallards. Moreover, the virus exhibited minor antigenic drift compared with the H5-Re14 vaccine strain. To this end, we need to pay more attention to the monitoring of wild birds to prevent further spread of viruses to poultry and mammals, including humans.
Collapse
Affiliation(s)
- Qiuyan Mao
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China; College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, PR China
| | - Zhixin Li
- Ningxia Hui Autonomous Region Animal Disease Prevention and Control Center, Yinchuan 750001, PR China
| | - Yuecheng Li
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Yinchuan 750001, PR China
| | - Yaxin Zhang
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China; College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Shuo Liu
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Xin Yin
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Cheng Peng
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Rui Ma
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Yinchuan 750001, PR China
| | - Jinping Li
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Guangyu Hou
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China
| | - Wenming Jiang
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China.
| | - Hualei Liu
- Avian Diseases Surveillance Laboratory, China Animal Health and Epidemiology Center, Qingdao 266032, PR China.
| |
Collapse
|
6
|
Charostad J, Rezaei Zadeh Rukerd M, Mahmoudvand S, Bashash D, Hashemi SMA, Nakhaie M, Zandi K. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med Infect Dis 2023; 55:102638. [PMID: 37652253 DOI: 10.1016/j.tmaid.2023.102638] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Avian influenza viruses (AIVs) are globally challenging due to widespread circulation and high mortality rates. Highly pathogenic avian influenza (HPAI) strains like H5N1 have caused significant outbreaks in birds. Since 2003 to 14 July 2023, the World Health Organization (WHO) has documented 878 cases of HPAI H5N1 infection in humans and 458 (52.16%) fatalities in 23 countries. Recent outbreaks in wild birds, domestic birds, sea lions, minks, and etc., and the occurrence of genetic variations among HPAI H5N1 strains raise concerns about potential transmission and public health risks. This paper aims to provide a comprehensive overview of the current understanding and new insights into HPAI H5N1. It begins with an introduction to the significance of studying this virus and highlighting the need for updated knowledge. The origin and evaluation of HPAI H5N1 are examined, shedding light on its emergence, and spread across different geographic regions. The genome organization and structural biology of the H5N1 virus are explored, providing insights into its molecular composition and key structural features. This manuscript also delves into the phylogeny, evolution, mutational trends, reservoirs, and transmission routes of HPAI H5N1. The immune response against HPAI H5N1 and its implications for vaccine development are analyzed, along with an exploration of the pathogenesis and clinical manifestations of HPAI H5N1 in human cases. Furthermore, diagnostic tools and preventive and therapeutic strategies are discussed, highlighting the current approaches and potential future directions for better management of the potential pandemic.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Virology, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Keivan Zandi
- Arrowhead Pharmaceuticals, San Diego, CA, USA; Tropical Infectious Diseases Research and Education Center (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Tian J, Bai X, Li M, Zeng X, Xu J, Li P, Wang M, Song X, Zhao Z, Tian G, Liu L, Guan Y, Li Y, Chen H. Highly Pathogenic Avian Influenza Virus (H5N1) Clade 2.3.4.4b Introduced by Wild Birds, China, 2021. Emerg Infect Dis 2023; 29:1367-1375. [PMID: 37347504 PMCID: PMC10310395 DOI: 10.3201/eid2907.221149] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) subtype H5N1 clade 2.3.4.4b virus has spread globally, causing unprecedented large-scale avian influenza outbreaks since 2020. In 2021, we isolated 17 highly pathogenic avian influenza H5N1 viruses from wild birds in China. To determine virus origin, we genetically analyzed 1,529 clade 2.3.4.4b H5N1 viruses reported globally since October 2020 and found that they formed 35 genotypes. The 17 viruses belonged to genotypes G07, which originated from eastern Asia, and G10, which originated from Russia. The viruses were moderately pathogenic in mice but were highly lethal in ducks. The viruses were in the same antigenic cluster as the current vaccine strain (H5-Re14) used in China. In chickens, the H5/H7 trivalent vaccine provided complete protection against clade 2.3.4.4b H5N1 virus challenge. Our data indicate that vaccination is an effective strategy for preventing and controlling the globally prevalent clade 2.3.4.4b H5N1 virus.
Collapse
|
8
|
Yang J, Zhang C, Yuan Y, Sun J, Lu L, Sun H, Sun H, Chu D, Qin S, Chen J, Zhang C, Hao X, Shi W, Liu W, Gao GF, Digard P, Lycett S, Bi Y. Novel Avian Influenza Virus (H5N1) Clade 2.3.4.4b Reassortants in Migratory Birds, China. Emerg Infect Dis 2023; 29:1244-1249. [PMID: 37209677 DOI: 10.3201/eid2906.221723] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
Two novel reassortant highly pathogenic avian influenza viruses (H5N1) clade 2.3.4.4b.2 were identified in dead migratory birds in China in November 2021. The viruses probably evolved among wild birds through different flyways connecting Europe and Asia. Their low antigenic reaction to vaccine antiserum indicates high risks to poultry and to public health.
Collapse
|
9
|
Gu W, Shi J, Cui P, Yan C, Zhang Y, Wang C, Zhang Y, Xing X, Zeng X, Liu L, Tian G, Suzuki Y, Li C, Deng G, Chen H. Novel H5N6 reassortants bearing the clade 2.3.4.4b HA gene of H5N8 virus have been detected in poultry and caused multiple human infections in China. Emerg Microbes Infect 2022; 11:1174-1185. [PMID: 35380505 PMCID: PMC9126593 DOI: 10.1080/22221751.2022.2063076] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The globally circulating H5N8 avian influenza viruses bearing the clade 2.3.4.4b hemagglutinin (HA) gene are responsible for the loss of more than 33 million domestic poultry since January 2020. Moreover, the H5N8 viruses have reassorted with other avian influenza viruses and formed H5N1, H5N2, H5N3, H5N4, and H5N5 viruses in Europe, Africa, and North America. In this study, we analyzed 15 H5N6 viruses isolated from poultry and seven H5N6 viruses isolated from humans, and found these viruses formed seven different genotypes by deriving the clade 2.3.4.4b HA gene of H5N8 viruses, the neuraminidase of domestic duck H5N6 viruses, and internal genes of different viruses that previously circulated in domestic ducks and wild birds in China. Two of these genotypes (genotype 3 and genotype 6) have caused human infections in multiple provinces. The H5N6 viruses isolated from poultry have distinct pathotypes in mice; some of them replicate systemically and are highly lethal in mice. Although these viruses exclusively bind to avian-type receptors, it is worrisome that they may obtain key mutations that would increase their affinity for human-type receptors during replication in humans. Our study indicates that the novel H5N6 reassortants bearing the clade 2.3.4.4b HA gene of H5N8 viruses were generated through reassortment in domestic ducks and may have spread across a wide area of China, thereby posing a new challenge to the poultry industry and human health. Our findings emphasize the importance of careful monitoring, evaluation, and control of the H5N6 viruses circulating in nature.
Collapse
Affiliation(s)
- Wenli Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Cheng Yan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Congcong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yuancheng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xin Xing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yasuo Suzuki
- Department of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Zhao C, Guo J, Zeng X, Shi J, Deng G, Zhang Y, Wang Y, Ma Q, Gao X, Cui P, Liu L, Li X, Chen H. Novel H7N7 avian influenza viruses detected in migratory wild birds in eastern China between 2018 and 2020. Microbes Infect 2022; 24:105013. [DOI: 10.1016/j.micinf.2022.105013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
|
11
|
Hubálek Z. Pathogenic microorganisms associated with gulls and terns (Laridae). JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.21009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zdeněk Hubálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| |
Collapse
|
12
|
Jeong S, Otgontogtokh N, Lee DH, Davganyam B, Lee SH, Cho AY, Tseren-Ochir EO, Song CS. Highly Pathogenic Avian Influenza Clade 2.3.4.4 Subtype H5N6 Viruses Isolated from Wild Whooper Swans, Mongolia, 2020. Emerg Infect Dis 2021; 27:1181-1183. [PMID: 33754986 PMCID: PMC8007304 DOI: 10.3201/eid2704.203859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We identified clade 2.3.4.4 highly pathogenic avian influenza A(H5N6) viruses from whooper swans (Cygnus cygnus) found dead in Mongolia. The identification of these infections in wild birds in this area is of concern because of the potential for virus dissemination during fall migration.
Collapse
|
13
|
Cui Y, Li Y, Li M, Zhao L, Wang D, Tian J, Bai X, Ci Y, Wu S, Wang F, Chen X, Ma S, Qu Z, Yang C, Liu L, Shi J, Guan Y, Zeng X, Tian G, Cui P, Deng G, Jiang Y, Chen P, Liu J, Wang X, Bao H, Jiang L, Suzuki Y, Li C, Li Y, Chen H. Evolution and extensive reassortment of H5 influenza viruses isolated from wild birds in China over the past decade. Emerg Microbes Infect 2021; 9:1793-1803. [PMID: 32686602 PMCID: PMC7473172 DOI: 10.1080/22221751.2020.1797542] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lethal infection of wild birds with different subtypes of H5 viruses continuously occur. To investigate the genetic evolution and pathogenicity of H5 viruses in wild birds, we performed a detailed genetic and biologic analysis of 27 viruses, including H5N1, H5N2, H5N6, and H5N8 subtypes, that were responsible for avian influenza outbreaks in wild birds in China over the past decade. We found that these 27 viruses, bearing different clades/subclades of HA, were complicated reassortants and formed 12 different genotypes. Ten of the viruses tested were highly pathogenic in chickens, but showed distinct pathotypes in ducks and mice. Five of these 10 viruses, which were all from clade2.3.4.4, could bind human-type receptors. Our findings reveal the diversity of the genetic and biologic properties of H5 viruses circulating in wild birds and highlight the need to carefully monitor and evaluate the risks these viruses pose to animal and public health.
Collapse
Affiliation(s)
- Yanfang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yulei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Minghui Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Lu Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Deli Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Jingman Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xiaoli Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yanpeng Ci
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Shanshan Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Fei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xiaomei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Shujie Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Zhiyuan Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Cen Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yuntao Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Xiurong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Hongmei Bao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Li Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yasuo Suzuki
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.,College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, People's Republic of China
| |
Collapse
|
14
|
Li X, Li X, Xu B. Phylogeography of Highly Pathogenic H5 Avian Influenza Viruses in China. Virol Sin 2020; 35:548-555. [DOI: 10.1007/s12250-020-00193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 12/17/2019] [Indexed: 12/09/2022] Open
|
15
|
Hassan MM, El Zowalaty ME, Islam A, Rahman MM, Chowdhury MNU, Nine HSMZ, Rahman MK, Järhult JD, Hoque MA. Serological Evidence of Avian Influenza in Captive Wild Birds in a Zoo and Two Safari Parks in Bangladesh. Vet Sci 2020; 7:vetsci7030122. [PMID: 32882787 PMCID: PMC7558454 DOI: 10.3390/vetsci7030122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022] Open
Abstract
Avian influenza (AI) is endemic and frequently causes seasonal outbreaks in winter in Bangladesh due to high pathogenic avian influenza (HPAI) H5N1 and low pathogenic avian influenza (LPAI) H9N2. Among avian influenza A viruses (AIV), H5, H7, and H9 subtypes have the most zoonotic potential. Captive birds in zoos and safari parks are used for educational, recreational, breeding, and conservational purposes in Bangladesh. To screen for AIV in captive birds to assess potential public health threats, we conducted a cross-sectional study in two safari parks and one zoo in Bangladesh for four months, from November to December 2013 and from January to February 2014. We collected blood samples, oropharyngeal, and cloacal swabs from 228 birds. We tested serum samples for AIV antibodies using competitive enzyme-linked immunosorbent assay (c-ELISA) and AIV sero-subtype H5, H7, and H9 using hemagglutination inhibition (HI) test. Swab samples were tested for the presence of avian influenza viral RNA using real-time reverse transcription-polymerase chain reaction (rRT-PCR). Across all the samples, AIV antibody prevalence was 9.7% (95% CI: 6.1-14.2, n = 228) and AIV HA subtype H5, H7 and H9 sero-prevalence was 0% (95% CI: 0-1.6, n = 228), 0% (95% CI: 0-1.6, n = 228) and 6.6% (95% CI: 3.72-10.6, n = 228), respectively. No AI viral RNA (M-gene) was detected in any swab sample (0%, 95% CI: 0-1.6, n = 228). Birds in the Safari park at Cox's Bazar had a higher prevalence in both AIV antibody prevalence (13.5%) and AIV H9 sero-prevalence (9.6%) than any of the other sites, although the difference was not statistically significant. Among eight species of birds, Emu (Dromaius novaehollandiae) had the highest sero-positivity for both AIV antibody prevalence (26.1%) and AIV H9 prevalence (17.4%) followed by Golden pheasant (Chrysolophus pictus) with AIV antibody prevalence of 18.2% and AIV H9 prevalence of 11.4%. Our results highlight the presence of AI antibodies indicating low pathogenic AIV mingling in captive birds in zoos and safari parks in Bangladesh. Continuous programmed surveillance is therefore recommended to help better understand the diversity of AIVs and provide a clear picture of AI in captive wild birds, enabling interventions to reduce the risk of AIV transmission to humans.
Collapse
Affiliation(s)
- Mohammad M. Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh; (A.I.); (M.K.R.); (M.A.H.)
- Correspondence: (M.M.H.); (M.E.E.Z.)
| | - Mohamed E. El Zowalaty
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah 27272, UAE
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, SE-75 123 Uppsala, Sweden
- Correspondence: (M.M.H.); (M.E.E.Z.)
| | - Ariful Islam
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh; (A.I.); (M.K.R.); (M.A.H.)
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong Campus, Geelong VIC 3216, Australia
- EcoHealth Alliance, New York, NY 10001-2320, USA
| | - Md. M. Rahman
- Bhanghabandhu Sheikh Mujib Safari Park, Cox’s Bazar 4740, Bangladesh;
| | | | | | - Md. K. Rahman
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh; (A.I.); (M.K.R.); (M.A.H.)
- EcoHealth Alliance, New York, NY 10001-2320, USA
| | - Josef D. Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, SE-751 85 Uppsala, Sweden;
| | - Md. A. Hoque
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh; (A.I.); (M.K.R.); (M.A.H.)
| |
Collapse
|
16
|
Novel Mutations Evading Avian Immunity around the Receptor Binding Site of the Clade 2.3.2.1c Hemagglutinin Gene Reduce Viral Thermostability and Mammalian Pathogenicity. Viruses 2019; 11:v11100923. [PMID: 31600990 PMCID: PMC6832455 DOI: 10.3390/v11100923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022] Open
Abstract
Since 2007, highly pathogenic clade 2.3.2 H5N1 avian influenza A (A(H5N1)) viruses have evolved to clade 2.3.2.1a, b, and c; currently only 2.3.2.1c A(H5N1) viruses circulate in wild birds and poultry. During antigenic evolution, clade 2.3.2.1a and c A(H5N1) viruses acquired both S144N and V223I mutations around the receptor binding site of hemagglutinin (HA), with S144N generating an N-glycosylation sequon. We introduced single or combined reverse mutations, N144S and/or I223V, into the HA gene of the clade 2.3.2.1c A(H5N1) virus and generated PR8-derived, 2 + 6 recombinant A(H5N1) viruses. When we compared replication efficiency in embryonated chicken eggs, mammalian cells, and mice, the recombinant virus containing both N144S and I223V mutations showed increased replication efficiency in avian and mammalian hosts and pathogenicity in mice. The N144S mutation significantly decreased avian receptor affinity and egg white inhibition, but not all mutations increased mammalian receptor affinity. Interestingly, the combined reverse mutations dramatically increased the thermostability of HA. Therefore, the adaptive mutations possibly acquired to evade avian immunity may decrease viral thermostability as well as mammalian pathogenicity.
Collapse
|
17
|
Canavan BC. Opening Pandora's Box at the roof of the world: Landscape, climate and avian influenza (H5N1). Acta Trop 2019; 196:93-101. [PMID: 31063711 DOI: 10.1016/j.actatropica.2019.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/14/2019] [Accepted: 04/18/2019] [Indexed: 11/27/2022]
Abstract
The purpose of this case study is to examine how environmental disruption and agricultural practices act synergistically to create a perfect storm for the spread of avian influenza. Actors in this case study include the vast permafrost landscape of the Qinghai-Tibet Plateau; a wild goose that migrates over the Himalayas; the highest altitude railway in the world that traverses the plateau into Tibet; and an avian virus (H5N1). Commencing in 2001, tens of thousands of railway workers travelled to remote regions of the plateau to work on the railway. In order to feed and shelter these workers, the Chinese government established captive-bred goose farms as a source of high protein food. Beginning in 2005 and continuing in subsequent years, Qinghai Lake was the scene for the unprecedented appearance of avian influenza among migratory geese. This was a key moment in the global spread of H5N1 to poultry on three continents. Remote sensing technology suggested an ecological pathway for the transfer of avian viruses among chickens, captive-bred geese, and wild geese. Within a region experiencing rapid climate change, Qinghai Lake is warming even faster than the global average. This may relate to the persistent outbreaks of avian flu strains from Qinghai during the past twelve years. Globally, exponential increases in bird flu outbreaks are not merely a matter of chance mutations in flu viruses but also a result of antecedent social and environmental factors. The Qinghai case study provides real-world examples that bring these factors into sharp focus.
Collapse
Affiliation(s)
- Barbara C Canavan
- Independent Scholar, Global Health and The Environment, 320 SE 62nd Ave., Portland, Oregon, United States.
| |
Collapse
|
18
|
Chen J, Liang B, Hu J, Liu H, Sun J, Li M, Chen Q, He Y, Liu D. Circulation, Evolution and Transmission of H5N8 virus, 2016-2018. J Infect 2019; 79:363-372. [PMID: 31306679 DOI: 10.1016/j.jinf.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVES A second wave of highly pathogenic avian influenza A virus (HPAIV) H5N8 clade 2.3.4.4 has spread globally, causing outbreaks among wild birds and domestic poultry since autumn 2016. The circulation and evolutionary dynamics of the virus remain largely unknown. METHODS We performed surveillance for H5N8 in Qinghai Lake in China since the emergence of the virus (from 2016 to 2018). By analyzing recovered viruses in Qinghai Lake and all related viruses worldwide (449 strains), we identified the genotypes, estimated their genesis and reassortment, and evaluated their global distribution and transmission. RESULTS Through surveillance of wild migratory birds around Qinghai Lake between 2016 and 2018, we revealed that the H5N8 was introduced into Qinghai Lake bird populations (QH-H5N8), with distinct gene constellations in 2016 and 2017. A global analysis of QH-H5N8-related viruses showed that avian influenza viruses with low pathogenicity in wild birds contributed to the high diversity of genotypes; the major reassortment events possibly occurred during the 2016 breeding season and the following winters. CONCLUSIONS Continued circulation of QH-H5N8-related viruses among wild birds has resulted in the global distribution of high genotypic diversity. Thus, these viruses pose an ongoing threat to wild and domestic bird populations and warrant continuous surveillance.
Collapse
Affiliation(s)
- Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| | - Bilin Liang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy Sciences, Beijing 101409, China
| | - Juefu Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jianqing Sun
- Qinghai Lake National Nature Reserve, Xining 810099, China
| | - Mingxin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Yubang He
- Qinghai Lake National Nature Reserve, Xining 810099, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Center for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy Sciences, Beijing 101409, China.
| |
Collapse
|
19
|
Yang J, Wang Z, Du Y, Jia Y, Wang L, Xu S, Zhu Q. Clade 2.3.2.1 H5N1 avian influenza viruses circulate at the interface of migratory and domestic birds around Qinghai Lake in China. Vet Microbiol 2019; 235:234-242. [PMID: 31383307 DOI: 10.1016/j.vetmic.2019.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 01/13/2023]
Abstract
During 2012-2015, six H5N1 avian influenza viruses were isolated from domestic birds and the environment around Qinghai Lake. Phylogenetic analysis of HA genes revealed that A/chicken/Gansu/XG2/2012 (CK/GS/XG2/12) belonged to clade 2.3.2.1a, while A/environment/Qinghai/1/2013 (EN/QH/1/13), A/chicken/Qinghai/QH1/2015 (CK/QH/QH1/15), A/chicken/Qinghai/QH2/2015 (CK/QH/QH2/15), A/chicken/Qinghai/QH3/2015 (CK/QH/QH3/15), and A/goose/Qinghai/QH6/2015 (GS/QH/QH6/15) belonged to clade 2.3.2.1c. Further analysis of the internal genes of the isolates found that the PB2 gene of EN/QH/1/13 had 99.6% nucleotide identity with that of A/tiger/Jiangsu/1/2013 (H5N1), which clustered into an independent branch with PB2 from multiple subtypes. PB2, PB1, and M genes of CK/QH/QH3/15 were from H9N2, suggesting it was a reassortant of H5N1 and H9N2. Animal studies of three selected viruses revealed that CK/GS/XG2/12, EN/QH/1/13, and CK/QH/QH3/15 were highly lethal to chickens, with intravenous pathogenicity indexes (IVPIs) of 2.97, 2.81, and 3.00, respectively, and systemically replicated in chickens. In a mouse study, three selected H5N1 viruses were highly pathogenic to mice and readily replicated in the lungs, nasal turbinates, kidneys, spleens, and brains. Therefore, isolates in this study appear to be novel reassortants that were circulating at the interface of wild and domestic birds around Qinghai Lake and are lethal to chickens and mice. These data suggest that more extensive surveillance should be implemented, and matched vaccines should be chosen for the domestic birds in this area.
Collapse
Affiliation(s)
- Jiayun Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Lanzhou 730046, China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Lanzhou 730046, China
| | - Yingying Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Lanzhou 730046, China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Lanzhou 730046, China
| | - Liang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Lanzhou 730046, China
| | - Shuai Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Lanzhou 730046, China.
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, CAAS, 1 Xujiaping, Lanzhou 730046, China.
| |
Collapse
|
20
|
Liu K, Gao R, Gu M, Li J, Shi L, Sun W, Liu D, Gao Z, Wang X, Hu J, Liu X, Hu S, Chen S, Gao S, Peng D, Jiao XA, Liu X. Genetic and biological characterization of two reassortant H5N2 avian influenza A viruses isolated from waterfowl in China in 2016. Vet Microbiol 2018; 224:8-16. [PMID: 30269795 DOI: 10.1016/j.vetmic.2018.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 01/22/2023]
Abstract
Two reassortant H5N2 viruses in which hemagglutinin (HA) was clustered into clade 2.3.4.4, were isolated from apparently healthy waterfowl in live poultry markets in Eastern China in 2016. We used specific pathogen-free chickens, mallard ducks, and BALB/c mice to evaluate the isolates' biological characteristics in different animal models. The newly isolated reassortant H5N2 viruses were able to cause severe disease in chickens and effective contact transmission, only at high doses. Our pathogenicity studies in ducks yielded an interesting result: the intravenous pathogenicity index (IVPI) indicated that isolate A/goose/Eastern China/1106/2016(1106) was low pathogenic and the other isolate A/duck/Eastern China/YD1516/2016(YD1516) was of highly pathogenicity in ducks. However, our 50% duck lethal dose (DLD50) experiment demonstrated that these viruses were all of low pathogenicity (DLD50 > 107.0 EID50) in ducks. Additionally, despite the fact that reassortant H5N2 were of low pathogenicity in mice, they could bind to both avian-type (SAα-2,3 Gal) and human-type (SAα-2,6 Gal) receptors, suggesting that these isolates still present a high risk for human infection. Therefore, it is of great importance to implement continual surveillance of avian influenza virus (AIV) to protect both veterinary and public health.
Collapse
Affiliation(s)
- Kaituo Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruyi Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Juan Li
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Liwei Shi
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wenqi Sun
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dong Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhao Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Sujuan Chen
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Song Gao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Daxin Peng
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xin-An Jiao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China (26116120), Yangzhou University, Yangzhou, China.
| |
Collapse
|
21
|
Hassan MM, Hoque MA, Debnath NC, Yamage M, Klaassen M. Are Poultry or Wild Birds the Main Reservoirs for Avian Influenza in Bangladesh? ECOHEALTH 2017; 14:490-500. [PMID: 28620679 PMCID: PMC5662684 DOI: 10.1007/s10393-017-1257-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/30/2017] [Accepted: 06/01/2017] [Indexed: 05/29/2023]
Abstract
Avian influenza viruses (AIV) are of great socioeconomic and health concern, notably in Southeast Asia where highly pathogenic strains, such as highly pathogenic avian influenza (HPAI) H5N1 and other H5 and H7 AIVs, continue to occur. Wild bird migrants are often implicated in the maintenance and spread of AIV. However, little systematic surveillance of wild birds has been conducted in Southeast Asia to evaluate whether the prevalence of AIV in wild birds is higher than in other parts of the world where HPAI outbreaks occur less frequently. Across Bangladesh, we randomly sampled a total of 3585 wild and domestic birds to assess the prevalence of AIV and antibodies against AIV and compared these with prevalence levels found in other endemic and non-endemic countries. Our study showed that both resident and migratory wild birds in Bangladesh do not have a particularly elevated AIV prevalence and AIV sero-prevalence compared to wild birds from regions in the world where H5N1 is not endemic and fewer AIV outbreaks in poultry occur. Like elsewhere, notably wild birds of the orders Anseriformes were identified as the main wild bird reservoir, although we found exceptionally high sero-prevalence in one representative of the order Passeriformes, the house crow (Corvus splendens), importantly living on offal from live bird markets. This finding, together with high sero- and viral prevalence levels of AIV in domestic birds, suggests that wild birds are not at the base of the perpetuation of AIV problems in the local poultry sector, but may easily become victim to AIV spill back from poultry into some species of wild birds, potentially assisting in further spread of the virus.
Collapse
Affiliation(s)
- Mohammad Mahmudul Hassan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Australia.
- Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh.
| | - Md Ahasanul Hoque
- Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Nitish Chandra Debnath
- Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
- FAO, Dhaka, Bangladesh
| | | | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
22
|
Li M, Liu H, Bi Y, Sun J, Wong G, Liu D, Li L, Liu J, Chen Q, Wang H, He Y, Shi W, Gao GF, Chen J. Highly Pathogenic Avian Influenza A(H5N8) Virus in Wild Migratory Birds, Qinghai Lake, China. Emerg Infect Dis 2017; 23:637-641. [PMID: 28169827 PMCID: PMC5367427 DOI: 10.3201/eid2304.161866] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In May 2016, a highly pathogenic avian influenza A(H5N8) virus strain caused deaths among 3 species of wild migratory birds in Qinghai Lake, China. Genetic analysis showed that the novel reassortant virus belongs to group B H5N8 viruses and that the reassortment events likely occurred in early 2016.
Collapse
|
23
|
Jiang W, Hou G, Li J, Peng C, Wang S, Chen J. Novel variants of clade 2.3.2.1 H5N1 highly pathogenic avian influenza virus in migratory waterfowl of Hongze Lake. Vet Microbiol 2017; 198:99-103. [DOI: 10.1016/j.vetmic.2016.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 11/28/2022]
|
24
|
Kang HM, Lee EK, Song BM, Heo GB, Jung J, Jang I, Bae YC, Jung SC, Lee YJ. Experimental infection of mandarin duck with highly pathogenic avian influenza A (H5N8 and H5N1) viruses. Vet Microbiol 2016; 198:59-63. [PMID: 28062008 DOI: 10.1016/j.vetmic.2016.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/30/2016] [Accepted: 12/03/2016] [Indexed: 11/18/2022]
Abstract
A highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in poultry and wild birds in South Korea in January 2014. Here, we determined the pathogenicity and transmissibility of three different clades of H5 viruses in mandarin ducks to examine the potential for wild bird infection. H5N8 (clade 2.3.4.4) replicated more efficiently in the upper and lower respiratory tract of mandarin ducks than two previously identified H5N1 virus clades (clades 2.2 and 2.3.2.1). However, none of the mandarin ducks infected with H5N8 and H5N1 viruses showed severe clinical signs or mortality, and gross lesions were only observed in a few tissues. Viral replication and shedding were greater in H5N8-infected ducks than in H5N1-infected ducks. Recovery of all viruses from control duck in contact with infected ducks indicated that the highly pathogenic H5 viruses spread horizontally through contact. Taken together, these results suggest that H5N8 viruses spread efficiently in mandarin ducks. Further studies of pathogenicity in wild birds are required to examine possible long-distance dissemination via migration routes.
Collapse
Affiliation(s)
- Hyun-Mi Kang
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Eun-Kyoung Lee
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Byung-Min Song
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Gyeong-Beom Heo
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Joojin Jung
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Il Jang
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - You-Chan Bae
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Suk Chan Jung
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Youn-Jeong Lee
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea.
| |
Collapse
|
25
|
Characterization of Clade 7.2 H5 Avian Influenza Viruses That Continue To Circulate in Chickens in China. J Virol 2016; 90:9797-9805. [PMID: 27558424 PMCID: PMC5068530 DOI: 10.1128/jvi.00855-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022] Open
Abstract
The H5N1 avian influenza viruses emerged in Southeast Asia in the late 20th century and have evolved into multiple phylogenetic clades based on their hemagglutinin (HA)-encoding genes. The clade 7.2 viruses were first detected in chickens in northern China in 2006, and vaccines specifically targeted to the clade were developed and have been used in poultry in China since 2006. During routine surveillance and disease diagnosis, we isolated seven H5 viruses between 2011 and 2014 that bear the clade 7.2 HA genes. Here, we performed extensive studies to understand how the clade 7.2 H5 viruses have evolved in chickens in China. Full genome sequence analysis revealed that the seven viruses formed two subtypes (four H5N1 viruses and three H5N2 viruses) and four genotypes by deriving genes from other influenza viruses. All of the viruses had antigenically drifted from the clade 7.2 viruses that were isolated in 2006. Pathogenicity studies of four viruses, one from each genotype, revealed that all of the viruses are highly pathogenic in chickens, but none of them could replicate in ducks. The four viruses exclusively bound to avian-type receptors and replicated only in the turbinates and/or lungs of mice; none of them were lethal to mice at a dosage of 106 50% egg infective doses (EID50). Our study indicates that although the clade 7.2 viruses have not been eradicated from poultry through vaccination, they have not become more dangerous to other animals (e.g., ducks and mice) and humans. IMPORTANCE Animal influenza viruses can acquire the ability to infect and kill humans. The H5N1 viruses have been a concern in recent decades because of their clear pandemic potential. We sorted H5N1 influenza viruses into different phylogenetic clades based on their HA genes. The clade 7.2 viruses were detected in chickens in several provinces of northern China in 2006. Vaccines for these viruses were subsequently developed and have been used ever since to control infection of poultry. Here, we analyzed the genetic and biologic properties of seven clade 7.2 viruses that were isolated from chickens between 2011 and 2014. We found that after nearly 9 years of circulation in chickens, the clade 7.2 viruses still exclusively bind to avian-type receptors and are of low pathogenicity to mice, suggesting that these H5 viruses pose a low risk to human public health.
Collapse
|
26
|
Su S, Xing G, Wang J, Li Z, Gu J, Yan L, Lei J, Ji S, Hu B, Gray GC, Yan Y, Zhou J. Characterization of H7N2 Avian Influenza Virus in Wild Birds and Pikas in Qinghai-Tibet Plateau Area. Sci Rep 2016; 6:30974. [PMID: 27553660 PMCID: PMC4995509 DOI: 10.1038/srep30974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/11/2016] [Indexed: 11/25/2022] Open
Abstract
Qinghai Lake is a major migrating bird breeding site that has experienced several recent highly pathogenic avian influenza virus (HPAIV) epizootics. From 2006 to 2009 we studied Qinghai’s wild birds and pikas for evidence of AIV infections. We sampled 941 healthy wild animals and isolated seventeen H7N2 viruses (eight from pikas and nine from wild birds). The H7N2 viruses were phylogenetically closely related to each other and to viruses isolated in Hong Kong in the 1970s. We determined the pathogenicity of the H7N2 viruses by infecting chickens and mice. Our results suggest that pikas might play an important role in the ecology of AIVs, acting as intermediate hosts in which viruses become more adapted to mammals. Our findings of AI infection in pikas are consistent with previous observations and raise the possibility that pikas might play a previously unrecognized role in the ecology of AIVs peridomestic aquatic environments.
Collapse
Affiliation(s)
- Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gang Xing
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Junhua Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zengkui Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jinyan Gu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Yan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Lei
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Senlin Ji
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Boli Hu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gregory C Gray
- Division of Infectious Diseases, Global Health Institute, &Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Yan Yan
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiyong Zhou
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Xu Y, Gong P, Wielstra B, Si Y. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus. Sci Rep 2016; 6:30262. [PMID: 27507581 PMCID: PMC4978953 DOI: 10.1038/srep30262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/04/2016] [Indexed: 01/21/2023] Open
Abstract
The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.
Collapse
Affiliation(s)
- Yanjie Xu
- Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China
| | - Peng Gong
- Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China.,Joint Center for Global Change Studies, Beijing 100875, China
| | - Ben Wielstra
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, UK.,Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
| | - Yali Si
- Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, China.,Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
28
|
Greatorex ZF, Olson SH, Singhalath S, Silithammavong S, Khammavong K, Fine AE, Weisman W, Douangngeun B, Theppangna W, Keatts L, Gilbert M, Karesh WB, Hansel T, Zimicki S, O’Rourke K, Joly DO, Mazet JAK. Wildlife Trade and Human Health in Lao PDR: An Assessment of the Zoonotic Disease Risk in Markets. PLoS One 2016; 11:e0150666. [PMID: 27008628 PMCID: PMC4805265 DOI: 10.1371/journal.pone.0150666] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/16/2016] [Indexed: 01/30/2023] Open
Abstract
Although the majority of emerging infectious diseases can be linked to wildlife sources, most pathogen spillover events to people could likely be avoided if transmission was better understood and practices adjusted to mitigate risk. Wildlife trade can facilitate zoonotic disease transmission and represents a threat to human health and economies in Asia, highlighted by the 2003 SARS coronavirus outbreak, where a Chinese wildlife market facilitated pathogen transmission. Additionally, wildlife trade poses a serious threat to biodiversity. Therefore, the combined impacts of Asian wildlife trade, sometimes termed bush meat trade, on public health and biodiversity need assessing. From 2010 to 2013, observational data were collected in Lao PDR from markets selling wildlife, including information on volume, form, species and price of wildlife; market biosafety and visitor origin. The potential for traded wildlife to host zoonotic diseases that pose a serious threat to human health was then evaluated at seven markets identified as having high volumes of trade. At the seven markets, during 21 observational surveys, 1,937 alive or fresh dead mammals (approximately 1,009 kg) were observed for sale, including mammals from 12 taxonomic families previously documented to be capable of hosting 36 zoonotic pathogens. In these seven markets, the combination of high wildlife volumes, high risk taxa for zoonoses and poor biosafety increases the potential for pathogen presence and transmission. To examine the potential conservation impact of trade in markets, we assessed the status of 33,752 animals observed during 375 visits to 93 markets, under the Lao PDR Wildlife and Aquatic Law. We observed 6,452 animals listed by Lao PDR as near extinct or threatened with extinction. The combined risks of wildlife trade in Lao PDR to human health and biodiversity highlight the need for a multi-sector approach to effectively protect public health, economic interests and biodiversity.
Collapse
Affiliation(s)
- Zoe F. Greatorex
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
- * E-mail: (ZFG); (SHO)
| | - Sarah H. Olson
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
- University of Wisconsin Madison, Center for Sustainability and the Global Environment, Madison, Wisconsin, United States of America
- * E-mail: (ZFG); (SHO)
| | - Sinpakone Singhalath
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
| | - Soubanh Silithammavong
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
| | - Kongsy Khammavong
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
| | - Amanda E. Fine
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
| | - Wendy Weisman
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
| | - Bounlom Douangngeun
- National Animal Health Laboratory, Department of Livestock and Fisheries, Vientiane, Lao PDR
| | - Watthana Theppangna
- National Animal Health Laboratory, Department of Livestock and Fisheries, Vientiane, Lao PDR
| | - Lucy Keatts
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
| | - Martin Gilbert
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
| | - William B. Karesh
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
| | - Troy Hansel
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
| | - Susan Zimicki
- FHI360, Washington, District of Colombia, United States of America
| | | | - Damien O. Joly
- Wildlife Conservation Society, Wildlife Health & Health Policy Program, Bronx, New York, United States of America
| | - Jonna A. K. Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
29
|
Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015. Sci Rep 2015; 5:12986. [PMID: 26259704 PMCID: PMC4531313 DOI: 10.1038/srep12986] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/01/2015] [Indexed: 12/27/2022] Open
Abstract
Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.
Collapse
|
30
|
Haider N, Sturm-Ramirez K, Khan SU, Rahman MZ, Sarkar S, Poh MK, Shivaprasad HL, Kalam MA, Paul SK, Karmakar PC, Balish A, Chakraborty A, Mamun AA, Mikolon AB, Davis CT, Rahman M, Donis RO, Heffelfinger JD, Luby SP, Zeidner N. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh. Transbound Emerg Dis 2015; 64:144-156. [PMID: 25892457 DOI: 10.1111/tbed.12354] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/22/2022]
Abstract
Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate diagnostic testing and detect novel influenza strains.
Collapse
Affiliation(s)
- N Haider
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,Section for Epidemiology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - K Sturm-Ramirez
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - S U Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - M Z Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - S Sarkar
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M K Poh
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | | | - M A Kalam
- Department of Livestock Services, Ministry of Fisheries and Livestock, Dhaka, Bangladesh
| | - S K Paul
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - P C Karmakar
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - A Balish
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - A Chakraborty
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - A A Mamun
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - A B Mikolon
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,United States Department of Agriculture (USDA), Hawthorne, CA, USA
| | - C T Davis
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - M Rahman
- Institute of Epidemiology, Diseases Control and Research (IEDCR), Dhaka, Bangladesh
| | - R O Donis
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - J D Heffelfinger
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - S P Luby
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,Division of Infectious Disease and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - N Zeidner
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.,Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| |
Collapse
|
31
|
Tian H, Cui Y, Dong L, Zhou S, Li X, Huang S, Yang R, Xu B. Spatial, temporal and genetic dynamics of highly pathogenic avian influenza A (H5N1) virus in China. BMC Infect Dis 2015; 15:54. [PMID: 25887370 PMCID: PMC4329208 DOI: 10.1186/s12879-015-0770-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 01/19/2015] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND The spatial spread of H5N1 avian influenza, significant ongoing mutations, and long-term persistence of the virus in some geographic regions has had an enormous impact on the poultry industry and presents a serious threat to human health. METHODS We applied phylogenetic analysis, geospatial techniques, and time series models to investigate the spatiotemporal pattern of H5N1 outbreaks in China and the effect of vaccination on virus evolution. RESULTS Results showed obvious spatial and temporal clusters of H5N1 outbreaks on different scales, which may have been associated with poultry and wild-bird transmission modes of H5N1 viruses. Lead-lag relationships were found among poultry and wild-bird outbreaks and human cases. Human cases were preceded by poultry outbreaks, and wild-bird outbreaks were led by human cases. Each clade has gained its own unique spatiotemporal and genetic dominance. Genetic diversity of the H5N1 virus decreased significantly between 1996 and 2011; presumably under strong selective pressure of vaccination. Mean evolutionary rates of H5N1 virus increased after vaccination was adopted in China. A clear signature of positively selected sites in the clade 2.3.2 virus was discovered and this may have resulted in the emergence of clade 2.3.2.1. CONCLUSIONS Our study revealed two different transmission modes of H5N1 viruses in China, and indicated a significant role of poultry in virus dissemination. Furthermore, selective pressure posed by vaccination was found in virus evolution in the country.
Collapse
Affiliation(s)
- Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China.
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Sen Zhou
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing, 100084, China.
| | - Xiaowen Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China.
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing, 100084, China.
| | - Shanqian Huang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Bing Xu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China.
- Ministry of Education Key Laboratory for Earth System Modelling, Center for Earth System Science, Tsinghua University, Beijing, 100084, China.
- Department of Geography, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
32
|
Phylogenetic and pathogenic analyses of three H5N1 avian influenza viruses (clade 2.3.2.1) isolated from wild birds in Northeast China. INFECTION GENETICS AND EVOLUTION 2015; 29:138-45. [DOI: 10.1016/j.meegid.2014.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/20/2014] [Accepted: 11/22/2014] [Indexed: 11/19/2022]
|
33
|
Abstract
Six type-A low pathogenic influenza viruses from 14 Red-necked Grebes (Podiceps grisegena) from Agassiz National Wildlife Refuge were sequenced. The grebe viruses were closely related to North American duck viruses. The genetic and temporal subtype consistency between the duck and grebe isolates suggest spillover events, potentially enhanced by feather eating.
Collapse
|
34
|
Novel residues in avian influenza virus PB2 protein affect virulence in mammalian hosts. Nat Commun 2014; 5:5021. [PMID: 25289523 DOI: 10.1038/ncomms6021] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 08/20/2014] [Indexed: 12/18/2022] Open
Abstract
Highly pathogenic avian H5N1 influenza viruses have sporadically transmitted to humans causing high mortality. The mechanistic basis for adaptation is still poorly understood, although several residues in viral protein PB2 are known to be important for this event. Here, we demonstrate that three residues, 147T, 339T and 588T, in PB2 play critical roles in the virulence of avian H5N1 influenza viruses in a mammalian host in vitro and in vivo and, together, result in a phenotype comparable to that conferred by the previously known PB2-627K mutation with respect to virus polymerase activity. A virus with the three residues and 627K in PB2, as has been isolated from a lethal human case, is more pathogenic than viruses with only the three residues or 627K in PB2. Importantly, H5N1 viruses bearing the former three PB2 residues have circulated widely in recent years in avian species in nature.
Collapse
|
35
|
Le TH, Nguyen NTB. Evolutionary dynamics of highly pathogenic avian influenza A/H5N1 HA clades and vaccine implementation in Vietnam. Clin Exp Vaccine Res 2014; 3:117-27. [PMID: 25003084 PMCID: PMC4083063 DOI: 10.7774/cevr.2014.3.2.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 01/05/2023] Open
Abstract
Based on hemagglutinin (HA) and neuraminidase (NA), influenza A virus is divided into 18 different HA (H1 to H18) and 11 NA types (N1 to N11), opening the possibility for reassortment between the HA and NA genes to generate new HxNy subtypes (where x could be any HA and y is any NA, possibly). In recent four years, since 2010, highly pathogenic avian influenza (HPAI) viruses of H5N1 subtype (HPAI A/H5N1) have become highly enzootic and dynamically evolved to form multiple H5 HA clades, particularly in China, Vietnam, Indonesia, Egypt, Cambodia, and Bangladesh. So far, after more than 10 years emerged in Vietnam (since late 2003), HPAI A/H5N1 is still posing a potential risk of causing outbreaks in poultry, with high frequency of annual endemics. Intragenic variation (referred to as antigenic drift) in HA (e.g., H5) has given rise to form numerous clades, typically marking the major timelines of the evolutionary status and vaccine application in each period. The dominance of genetically and antigenically diversified clade 2.3.2.1 (of subgroups a, b, c), clade 1.1 (1.1.1/1.1.2) and re-emergence of clade 7.1/7.2 at present, has urged Vietnam to the need for dynamically applied antigenicity-matching vaccines, i.e., the plan of importing Re-6 vaccine for use in 2014, in parallel use of Re-1/Re-5 since 2006. In this review, we summarize evolutionary features of HPAI A/H5N1 viruses and clade formation during recent 10 years (2004-2014). Dynamic of vaccine implementation in Vienam is also remarked.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nga Thi Bich Nguyen
- Department of Immunology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
36
|
Kobayashi-Ishihara M, Takahashi H, Ohnishi K, Nishimura K, Terahara K, Ato M, Itamura S, Kageyama T, Tsunetsugu-Yokota Y. Broad cross-reactive epitopes of the H5N1 influenza virus identified by murine antibodies against the A/Vietnam/1194/2004 hemagglutinin. PLoS One 2014; 9:e99201. [PMID: 24945805 PMCID: PMC4063728 DOI: 10.1371/journal.pone.0099201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/12/2014] [Indexed: 01/07/2023] Open
Abstract
There is an urgent need for a rapid diagnostic system to detect the H5 subtype of the influenza A virus. We previously developed monoclonal antibodies (mAbs) against the H5 hemagglutinin (HA) for use in a rapid diagnostic kit. In this study, we determined the epitopes of the anti-H5 HA murine mAbs OM-b, AY-2C2, and YH-1A1. Binding assays of the mAbs to different strains of H5 HAs indicated that OM-b and AY-2C2 cross-reacted with HAs from clades 1, 2.1.3.2, 2.2, and 2.3.4, whereas YH-1A1 failed to bind to those of clades 2.1.3.2 and 2.3.4. HA chimeras revealed that the epitopes for each of the mAbs were in the HA1 region. Analysis of escape mutants revealed that OM-b and AY-2C2 mAbs interacted mainly with amino acid residues D43 and G46, and the YH-1A1 mAb interacted with G139 and K or R140 of H5 HA. Multiple alignments of H5 HA protein sequences showed that D43 and G46 were very conserved among H5N1 HAs, except those in clade 2.2.1 and clade 7 (88.7%). The epitope for YH-1A1 mAb was highly variable in the HAs of H5N1, although it was well conserved in those of H5N2-N9. The OM-b and AY-2C2 mAbs could bind to the HAs of clades 1.1 and 2.3.2.1 that are currently epidemic in Asia, and we conclude that these would be effective for the detection of H5N1 infections in this region.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hitoshi Takahashi
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Kazuo Ohnishi
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kengo Nishimura
- Tsuruga Institute of Biotechnology, Toyobo, Co., Ltd., Tsuruga, Fukui, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shigeyuki Itamura
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tsutomu Kageyama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Ohta-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
37
|
Cappelle J, Zhao D, Gilbert M, Nelson MI, Newman SH, Takekawa JY, Gaidet N, Prosser DJ, Liu Y, Li P, Shu Y, Xiao X. Risks of avian influenza transmission in areas of intensive free-ranging duck production with wild waterfowl. ECOHEALTH 2014; 11:109-19. [PMID: 24652313 PMCID: PMC4047217 DOI: 10.1007/s10393-014-0914-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 05/06/2023]
Abstract
For decades, southern China has been considered to be an important source for emerging influenza viruses since key hosts live together in high densities in areas with intensive agriculture. However, the underlying conditions of emergence and spread of avian influenza viruses (AIV) have not been studied in detail, particularly the complex spatiotemporal interplay of viral transmission between wild and domestic ducks, two major actors of AIV epidemiology. In this synthesis, we examine the risks of avian influenza spread in Poyang Lake, an area of intensive free-ranging duck production and large numbers of wild waterfowl. Our synthesis shows that farming of free-grazing domestic ducks is intensive in this area and synchronized with wild duck migration. The presence of juvenile domestic ducks in harvested paddy fields prior to the arrival and departure of migrant ducks in the same fields may amplify the risk of AIV circulation and facilitate the transmission between wild and domestic populations. We provide evidence associating wild ducks migration with the spread of H5N1 in the spring of 2008 from southern China to South Korea, Russia, and Japan, supported by documented wild duck movements and phylogenetic analyses of highly pathogenic avian influenza H5N1 sequences. We suggest that prevention measures based on a modification of agricultural practices may be implemented in these areas to reduce the intensity of AIV transmission between wild and domestic ducks. This would require involving all local stakeholders to discuss feasible and acceptable solutions.
Collapse
Affiliation(s)
- Julien Cappelle
- CIRAD-ES, UR AGIRs, TA C 22/E, Campus International de Baillarguet, 34398, Montpellier cedex 5, France,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kang HM, Choi JG, Kim KI, Kim BS, Batchuluun D, Erdene-Ochir TO, Kim MC, Kwon JH, Park CK, Lee YJ. Pathogenicity in domestic ducks and mice of highly pathogenic H5N1 clade 2.3.2.1 influenza viruses recently circulating in Eastern Asia. Vet Microbiol 2013; 167:327-33. [PMID: 24120936 DOI: 10.1016/j.vetmic.2013.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022]
Abstract
Influenza virus A (H5N1) clade 2.3.2.1 has recently caused widespread outbreaks of disease in domestic poultry and wild birds in Eastern Asia. In the current study, the antigenicity and pathogenicity of three clade 2.3.2.1 viruses (Ck/Kr/Gimje/08, Ws/Mongolia/1/09, and Ws/Mongolia/7/10) were investigated in domestic ducks and mice. The H5N1 influenza viruses in this study were antigenically similar to each other (r-values of 0.35-1.4). The three viruses replicated systemically in all tissues tested in domestic ducks, indicating high pathogenicity. However, the viruses produced different clinical signs and mortality rates: Ck/Kr/Gimje/08 and Ws/Mongolia/1/09 resulted in 100% mortality with severe neurological signs, whereas Ws/Mongolia/7/10 resulted in 50% mortality with relatively mild neurological signs. In mice, infection with Ck/Kr/Gimje/08 and Ws/Mongolia/7/10 resulted in weight loss that peaked at 4 days post-infection (22.3% and 20.8%, respectively), same MLD50 (2.2 Log10 EID50) and systemic replication. The three viruses had K deletion at the -2 position of the HA1-connecting peptide (PQRERRRK-R), which is associated with increased virulence in domestic ducks and harbored NA stalk deletion, NS1 deletion and mutation of P42S in NS1, and full length (90aa) in PB1-F2, which confer increased virulence in mice. Our study shows that clade 2.3.2.1 viruses from Korea and Mongolia are antigenically similar and highly pathogenic in both domestic ducks and mice. Moreover, we provide molecular determinants of the clade 2.3.2.1 viruses associated with the pathogenicity in domestic ducks and mice, respectively.
Collapse
Affiliation(s)
- Hyun-Mi Kang
- Avian Disease Division, Animal and Plant Quarantine Agency, 175 Anyangro, Anyangsi, Gyeonggido 430-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mondal SP, Balasuriya UBR, Yamage M. Genetic diversity and phylogenetic analysis of highly pathogenic avian influenza (HPAI) H5N1 viruses circulating in Bangladesh from 2007-2011. Transbound Emerg Dis 2013; 60:481-91. [PMID: 24125197 DOI: 10.1111/tbed.12173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Indexed: 11/29/2022]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 virus has been endemic in Bangladesh since its first isolation in February 2007. Phylogenetic analysis of the haemagglutinin (HA) gene of HPAI H5N1 viruses demonstrated that 25 Bangladeshi isolates including two human isolates from 2007-2011 along with some isolates from neighbouring Asian countries (India, Bhutan, Myanmar, Nepal, China and Vietnam) segregate into two distinct clades (2.2 and 2.3). There was clear evidence of introduction of clade 2.3.2 and 2.3.4 viruses in 2011 in addition to clade 2.2 viruses that had been in circulation in Bangladesh since 2007. The data clearly demonstrated the movement of H5N1 strains between Asian countries included in this study due to migration of wild birds and/or illegal movement of poultry across borders. Interestingly, the two human isolates were closely related to the clade 2.2 Bangladeshi chicken isolates indicating that they have originated from chickens. Furthermore, comparative amino acid sequence analysis revealed several substitutions (including 189R>K and 282I>V) in HA protein of some clade 2.2 Bangladeshi viruses including the human isolates, suggesting there was antigenic drift in clade 2.2.3 viruses that were circulating between 2008 and 2011. Overall, the data imply genetic diversity among circulating viruses and multiple introductions of H5N1 viruses with an increased risk of human infections in Bangladesh, and establishment of H5N1 virus in wild and domestic bird populations, which demands active surveillance.
Collapse
Affiliation(s)
- S P Mondal
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, 40546, USA
| | | | | |
Collapse
|
40
|
Investigating a crow die-off in January-February 2011 during the introduction of a new clade of highly pathogenic avian influenza virus H5N1 into Bangladesh. Arch Virol 2013; 159:509-18. [PMID: 24081824 DOI: 10.1007/s00705-013-1842-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
Abstract
We investigated unusual crow mortality in Bangladesh during January-February 2011 at two sites. Crows of two species, Corvus splendens and C. macrorhynchos, were found sick and dead during the outbreaks. In selected crow roosts, morbidity was ~1 % and mortality was ~4 % during the investigation. Highly pathogenic avian influenza virus H5N1 clade 2.3.2.1 was isolated from dead crows. All isolates were closely related to A/duck/India/02CA10/2011 (H5N1) with 99.8 % and A/crow/Bangladesh/11rs1984-15/2011 (H5N1) virus with 99 % nucleotide sequence identity in their HA genes. The phylogenetic cluster of Bangladesh viruses suggested a common ancestor with viruses found in poultry from India, Myanmar and Nepal. Histopathological changes and immunohistochemistry staining in brain, pancreas, liver, heart, kidney, bursa of Fabricius, rectum, and cloaca were consistent with influenza virus infection. Through our limited investigation in domesticated birds near the crow roosts, we did not identify any samples that tested positive for influenza virus A/H5N1. However, environmental samples collected from live-bird markets near an outbreak site during the month of the outbreaks tested very weakly positive for influenza virus A/H5N1 in clade 2.3.2.1-specific rRT-PCR. Continuation of surveillance in wild and domestic birds may identify evolution of new avian influenza virus and associated public-health risks.
Collapse
|
41
|
Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1. Viruses 2013; 5:2129-52. [PMID: 24022072 PMCID: PMC3798894 DOI: 10.3390/v5092129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/14/2013] [Accepted: 08/20/2013] [Indexed: 11/16/2022] Open
Abstract
Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.
Collapse
|
42
|
Wu C, Lu X, Wang X, Jin T, Cheng X, Fang S, Wang X, Ma H, Zhang R, Cheng J. Clinical symptoms, immune factors, and molecular characteristics of an adult male in Shenzhen, China infected with influenza virus H5N1. J Med Virol 2013; 85:760-8. [PMID: 23508902 DOI: 10.1002/jmv.23492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2012] [Indexed: 11/10/2022]
Abstract
On December 29, 2011, a man infected with a subclade of the H5N1 virus was confirmed in Shenzhen, China. The clinical symptoms and immune factors of the patient were investigated and the phylogenetic and molecular characteristics of the virus were analyzed. High fever, rapid development of serious pneumonia and multi-organ failure were the main clinical symptoms. Arterial blood gas analysis showed that PaCO2 rose sharply and PO2 decreased. Leukocyte and platelet counts decreased rapidly. Peripheral blood lymphocyte counts indicated lymphopenia and inverted ratios of CD4(+) to CD8(+) cells. Cytokine analysis showed that the levels of serum IL-6, IL-10, and IFN-r continued to increase, whereas the levels of IL-12 and TNFs decreased during the clinical course. MCP-1 and IP-10 remained at a high level after infection. Phylogenetic analysis confirmed that the virus A/Shenzhen/1/2011 belongs to the new subclade 2.3.2.1. An Arg (R) insertion at P6 and an RP8I substitution in the HA cleavage site motif were detected in the virus. Compared to the vaccine strain, 16 specific substitutions occurred in the HA1 protein. Some of them were located on the receptor-binding site, glycosylation site and the region of the antigenic determinant. In summary, serious complications and immune system disorders were the main features of the infection with H5N1. Gene variation did not weaken the highly pathogenic features of viruses and the pathogenicity and antigenicity of the new subclade virus were changed.
Collapse
Affiliation(s)
- Chunli Wu
- Center for Disease Control and Prevention, Shenzhen 518020, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Olszewska M, Śmietanka K, Minta Z. Phylogenetic studies of H3 low pathogenic avian influenza viruses isolated from wild mallards in Poland. Acta Vet Hung 2013; 61:416-24. [PMID: 23921353 DOI: 10.1556/avet.2013.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In order to study the variation of low pathogenic avian influenza viruses (AIV) of H3 subtype in the natural reservoir, partial genetic characterisation of four AIV isolates of H3 subtype, recovered from wild mallards in Poland in 2006-2010, was performed. Phylogenetic analysis clearly confirms that there is a constant flow of AIV H3 between wild birds in Eurasia and Africa, and, to a limited degree, to North America (Alaska), with an occasional spill-over to poultry. The analysis of the PA gene of one isolate from 2010 suggests that it is closely related to several HPAI H5N1 viruses belonging to clade 2.3.2 and that, therefore, a reassortment event has occurred recently between low pathogenic and H5N1 highly pathogenic AIV.
Collapse
Affiliation(s)
- Monika Olszewska
- 1 National Veterinary Research Institute Department of Poultry Diseases Al. Partyzantów 57 24-100 Puławy Poland
| | - Krzysztof Śmietanka
- 1 National Veterinary Research Institute Department of Poultry Diseases Al. Partyzantów 57 24-100 Puławy Poland
| | - Zenon Minta
- 1 National Veterinary Research Institute Department of Poultry Diseases Al. Partyzantów 57 24-100 Puławy Poland
| |
Collapse
|
44
|
Complex reassortment of multiple subtypes of avian influenza viruses in domestic ducks at the Dongting Lake Region of China. J Virol 2013; 87:9452-62. [PMID: 23804642 DOI: 10.1128/jvi.00776-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain insight into the ecology of avian influenza viruses (AIV), we conducted active influenza virus surveillance in domestic ducks on farms located on the flyway of migratory birds in the Dongting Lake region of Hunan Province, China, from winter 2011 until spring 2012. Specimens comprising 3,030 duck swab samples and 1,010 environmental samples were collected from 101 duck farms. We isolated AIV of various HA subtypes, including H3, H4, H5, H6, H9, H10, H11, and H12. We sequenced the entire coding sequences of the genomes of 28 representative isolates constituting 13 specific subtypes. When the phylogenetic relationships among these isolates were examined, we observed that extensive reassortment events had occurred. Among the 28 Dongting Lake viruses, 21 genotypes involving the six internal genes were identified. Furthermore, we identified viruses or viral genes introduced from other countries, viral gene segments of unknown origin, and a novel HA/NA combination. Our findings emphasize the importance of farmed domestic ducks in the Dongting Lake region to the genesis and evolution of AIV and highlight the need for continued surveillance of domestic ducks in this region.
Collapse
|
45
|
Śmietanka K, Minta Z, Reichert M, Olszewska M, Wyrostek K, Jóźwiak M, van den Berg T. Experimental infection of juvenile domestic and Canada geese with two different clades of H5N1 high pathogenicity avian influenza virus. Vet Microbiol 2013; 163:235-41. [DOI: 10.1016/j.vetmic.2012.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/27/2022]
|
46
|
Characterization of clade 2.3.2.1 H5N1 highly pathogenic avian influenza viruses isolated from wild birds (mandarin duck and Eurasian eagle owl) in 2010 in Korea. Viruses 2013; 5:1153-74. [PMID: 23611846 PMCID: PMC3705271 DOI: 10.3390/v5041153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 12/30/2022] Open
Abstract
Starting in late November 2010, the H5N1 highly pathogenic avian influenza (HPAI) virus was isolated from many types of wild ducks and raptors and was subsequently isolated from poultry in Korea. We assessed the genetic and pathogenic properties of the HPAI viruses isolated from a fecal sample from a mandarin duck and a dead Eurasian eagle owl, the most affected wild bird species during the 2010/2011 HPAI outbreak in Korea. These viruses have similar genetic backgrounds and exhibited the highest genetic similarity with recent Eurasian clade 2.3.2.1 HPAI viruses. In animal inoculation experiments, regardless of their originating hosts, the two Korean isolates produced highly pathogenic characteristics in chickens, ducks and mice without pre-adaptation. These results raise concerns about veterinary and public health. Surveillance of wild birds could provide a good early warning signal for possible HPAI infection in poultry as well as in humans.
Collapse
|
47
|
Uchida Y, Suzuki Y, Shirakura M, Kawaguchi A, Nobusawa E, Tanikawa T, Hikono H, Takemae N, Mase M, Kanehira K, Hayashi T, Tagawa Y, Tashiro M, Saito T. Genetics and infectivity of H5N1 highly pathogenic avian influenza viruses isolated from chickens and wild birds in Japan during 2010–11. Virus Res 2012; 170:109-17. [DOI: 10.1016/j.virusres.2012.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 01/17/2023]
|
48
|
Qu M, Boruah BM, Zhang W, Li Y, Liu W, Bi Y, Gao GF, Yang R, Liu D, Gao B. A Rat Basophilic Leukaemia cell sensor for the detection of pathogenic viruses. Biosens Bioelectron 2012; 43:412-8. [PMID: 23356997 DOI: 10.1016/j.bios.2012.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/08/2012] [Accepted: 11/10/2012] [Indexed: 12/13/2022]
Abstract
A Rat Basophilic Leukemia (RBL) cell sensor is developed for the detection and identification of pathogenic viruses. Recombinant sdAb-Fc antibodies were constructed by linking virus-specific single domain antibody to mouse IgE-Fc fragment. The sdAb-Fc can bind to FcεRI receptors on RBL cells and can be cross-linked by target viruses leading to cell activation and Ca(2+) influx reflected by the increase of intracellular fluorescence. The responses of RBL cells to viruses in real time could be observed using fluorescence microscopy. 10(3) TCID50 of H5N1 viruses and 10 LD50 of rabies viruses could be detected in less than three minutes. An excess quantity of non-relevant viruses did not interfere with the recognition of target viruses.
Collapse
Affiliation(s)
- Mingsheng Qu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ratanakorn P, Wiratsudakul A, Wiriyarat W, Eiamampai K, Farmer AH, Webster RG, Chaichoune K, Suwanpakdee S, Pothieng D, Puthavathana P. Satellite tracking on the flyways of brown-headed gulls and their potential role in the spread of highly pathogenic avian influenza H5N1 virus. PLoS One 2012; 7:e49939. [PMID: 23209623 PMCID: PMC3509151 DOI: 10.1371/journal.pone.0049939] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/18/2012] [Indexed: 11/18/2022] Open
Abstract
Brown-headed gulls (Larus brunnicephalus), winter visitors of Thailand, were tracked by satellite telemetry during 2008-2011 for investigating their roles in the highly pathogenic avian influenza (HPAI) H5N1 virus spread. Eight gulls negative for influenza virus infection were marked with solar-powered satellite platform transmitters at Bang Poo study site in Samut Prakarn province, Thailand; their movements were monitored by the Argos satellite tracking system, and locations were mapped. Five gulls completed their migratory cycles, which spanned 7 countries (China, Bangladesh, India, Myanmar, Thailand, Cambodia, and Vietnam) affected by the HPAI H5N1 virus. Gulls migrated from their breeding grounds in China to stay overwinter in Thailand and Cambodia; while Bangladesh, India, Myanmar, and Vietnam were the places of stopovers during migration. Gulls traveled an average distance of about 2400 km between Thailand and China and spent 1-2 weeks on migration. Although AI surveillance among gulls was conducted at the study site, no AI virus was isolated and no H5N1 viral genome or specific antibody was detected in the 75 gulls tested, but 6.6% of blood samples were positive for pan-influenza A antibody. No AI outbreaks were reported in areas along flyways of gulls in Thailand during the study period. Distance and duration of migration, tolerability of the captive gulls to survive the HPAI H5N1 virus challenge and days at viral shedding after the virus challenging suggested that the Brown-headed gull could be a potential species for AI spread, especially among Southeast Asian countries, the epicenter of H5N1 AI outbreak.
Collapse
Affiliation(s)
- Parntep Ratanakorn
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | | | | | - Krairat Eiamampai
- Department of National Park, Wildlife and Plant Conservation, Ministry of Natural Resource and Environment, Bangkok, Thailand
| | - Adrian H. Farmer
- Wild Ecological Solutions, Fort Collins, Colorado, United States of America
| | - Robert G. Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children Research Hospital, Memphis, Tennessee, United States of America
| | | | - Sarin Suwanpakdee
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Duangrat Pothieng
- Department of National Park, Wildlife and Plant Conservation, Ministry of Natural Resource and Environment, Bangkok, Thailand
| | - Pilaipan Puthavathana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
50
|
Kim HR, Lee YJ, Park CK, Oem JK, Lee OS, Kang HM, Choi JG, Bae YC. Highly pathogenic avian influenza (H5N1) outbreaks in wild birds and poultry, South Korea. Emerg Infect Dis 2012; 18:480-3. [PMID: 22377052 PMCID: PMC3309593 DOI: 10.3201/eid1803.111490] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Highly pathogenic avian influenza (H5N1) among wild birds emerged simultaneously with outbreaks in domestic poultry in South Korea during November 2010–May 2011. Phylogenetic analysis showed that these viruses belonged to clade 2.3.2, as did viruses found in Mongolia, the People’s Republic of China, and Russia in 2009 and 2010.
Collapse
Affiliation(s)
- Hye-Ryoung Kim
- Animal Disease Diagnosis ivision, Animal, Plant and Fisheries Quarantine and Inspection Agency, Anyang, South Korea
| | | | | | | | | | | | | | | |
Collapse
|