1
|
Inoue Y, Kaku Y, Harada M, Ishijima K, Kuroda Y, Tatemoto K, Virhuez-Mendoza M, Nishino A, Yamamoto T, Inoue S, Matsuu A, Maeda K. Cross-Neutralization Activities of Antibodies against 18 Lyssavirus Glycoproteins. Jpn J Infect Dis 2024; 77:169-173. [PMID: 38171846 DOI: 10.7883/yoken.jjid.2023.400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some lyssaviruses, including the rabies virus (RABV), cause lethal neurological symptoms in humans. However, the efficacy of commercial vaccines has only been evaluated against RABV. To assess cross-reactivity among lyssaviruses, including RABV, sera from rabbits inoculated with human and animal RABV vaccines and polyclonal antibodies from rabbits immunized with expression plasmids of the glycoproteins of all 18 lyssaviruses were prepared, and cross-reactivity was evaluated via virus-neutralization tests using Duvenhage lyssavirus (DUVV), European bat lyssavirus-1 (EBLV-1), Mokola lyssavirus (MOKV), Lagos bat lyssavirus (LBV), and RABV. The sera from rabbits inoculated with RABV vaccines showed cross-reactivity with EBLV-1 and DUVV, both belonging to phylogroup I. However, reactivity with MOKV and LBV in phylogroup II was notably limited or below the detection level. Next, we compared the cross-reactivity of the polyclonal antibodies against all lyssavirus glycoproteins. Polyclonal antibodies had high virus-neutralization titers against the same phylogroup but not different phylogroups. Our findings indicate that a new vaccine should be developed for pre- and post-exposure prophylaxis against lyssaviral infections.
Collapse
Affiliation(s)
- Yusuke Inoue
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Yoshihiro Kaku
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Michiko Harada
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | | | - Ayano Nishino
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Tsukasa Yamamoto
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Aya Matsuu
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Ken Maeda
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| |
Collapse
|
2
|
Inoue Y, Kaku Y, Harada M, Ishijima K, Kuroda Y, Tatemoto K, Virhuez-Mendoza M, Nishino A, Yamamoto T, Park ES, Inoue S, Matsuu A, Maeda K. Establishment of serological neutralizing tests using pseudotyped viruses for comprehensive detection of antibodies against all 18 lyssaviruses. J Vet Med Sci 2024; 86:128-134. [PMID: 38092389 PMCID: PMC10849863 DOI: 10.1292/jvms.23-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 01/30/2024] Open
Abstract
Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine.
Collapse
Affiliation(s)
- Yusuke Inoue
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiro Kaku
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiko Harada
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kango Tatemoto
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Ayano Nishino
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsukasa Yamamoto
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aya Matsuu
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
3
|
Hsu WC, Lee F, Chen YW, Tu YC, Chang CC, Chiang YL, Hu SC. Detection of Rabies Virus in a Yellow-throated Marten (Martes flavigula chrysospila) in Taiwan. J Wildl Dis 2024; 60:219-222. [PMID: 37972644 DOI: 10.7589/jwd-d-23-00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/25/2023] [Indexed: 11/19/2023]
Abstract
In June 2021, a yellow-throated marten (Martes flavigula chrysospila) submitted for postmortem examination was diagnosed as rabid through laboratory testing. The rabies virus detected was closest phylogenetically to viruses of ferret badgers (Melogale moschata subaurantiaca) in Taiwan, indicating spillover infection from the primary reservoir in this area, the ferret badger.
Collapse
Affiliation(s)
- Wei-Cheng Hsu
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| | - Fan Lee
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| | - Yen-Wen Chen
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| | - Yang-Chang Tu
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| | - Chao-Chin Chang
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| | - Yi-Lun Chiang
- WildOne Wildlife Conservation Association, No. 126, Sinsing, Sinsing Village, Chihshang Township, Taitung County 958, Taiwan (R.O.C.)
| | - Shu-Chia Hu
- Veterinary Research Institute, Ministry of Agriculture, No. 376, Zhongzheng Rd., Danshui Dist., New Taipei City 25158, Taiwan (R.O.C.)
| |
Collapse
|
4
|
Viljoen N, Weyer J, Coertse J, Markotter W. Evaluation of Taxonomic Characteristics of Matlo and Phala Bat Rabies-Related Lyssaviruses Identified in South Africa. Viruses 2023; 15:2047. [PMID: 37896824 PMCID: PMC10611238 DOI: 10.3390/v15102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
We report the genetic characterization of two potentially novel rabies-related lyssaviruses identified from bats in Limpopo province, South Africa. Matlo bat lyssavirus (MBLV) was identified in two Miniopterus natalensis (Natal long-fingered) bats in 2015 and 2016, and Phala bat lyssavirus (PBLV) was identified in a Nycticeinops schlieffeni (Schlieffen's) bat in 2021. The distribution of both of these bat species is largely confined to parts of Africa, with limited reports from the Arabian Peninsula. MBLV and PBLV were demonstrated to group with the unassigned and phylogroup I lyssaviruses, respectively. MBLV was most closely related to Lyssavirus caucasicus (WCBV), whereas PBLV was most closely related to Lyssavirus formosa (TWBLV-1) and Taiwan bat lyssavirus 2 (TWBLV-2), based on analysis of the N and G genes, the concatenated N + P + M + G + L coding sequence, and the complete genome sequence. Based on our analysis, MBLV and WCBV appeared to constitute a phylogroup separate from Lyssavirus lleida (LLEBV) and Lyssavirus ikoma (IKOV). Analysis of the antigenic sites suggests that PBLV will likely be serologically distinguishable from established lyssaviruses in virus-neutralization tests, whereas MBLV appeared to be antigenically highly similar to WCBV. Taken together, the findings suggested that, while PBLV is likely a new lyssavirus species, MBLV is likely related to WCBV.
Collapse
Affiliation(s)
- Natalie Viljoen
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2000, South Africa
| | - Jessica Coertse
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
5
|
Dundarova H, Ivanova-Aleksandrova N, Bednarikova S, Georgieva I, Kirov K, Miteva K, Neov B, Ostoich P, Pikula J, Zukal J, Hristov P. Phylogeographic Aspects of Bat Lyssaviruses in Europe: A Review. Pathogens 2023; 12:1089. [PMID: 37764897 PMCID: PMC10534866 DOI: 10.3390/pathogens12091089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
During the last few decades, bat lyssaviruses have become the topic of intensive molecular and epidemiological investigations. Since ancient times, rhabdoviruses have caused fatal encephalitis in humans which has led to research into effective strategies for their eradication. Modelling of potential future cross-species virus transmissions forms a substantial component of the recent infection biology of rabies. In this article, we summarise the available data on the phylogeography of both bats and lyssaviruses in Europe and the adjacent reg ions, especially in the contact zone between the Palearctic and Ethiopian realms. Within these zones, three bat families are present with high potential for cross-species transmission and the spread of lyssaviruses in Phylogroup II to Europe (part of the western Palearctic). The lack of effective therapies for rabies viruses in Phylogroup II and the most divergent lyssaviruses generates impetus for additional phylogenetic and virological research within this geographical region.
Collapse
Affiliation(s)
- Heliana Dundarova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | | | - Sarka Bednarikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Irina Georgieva
- National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria
| | - Krasimir Kirov
- Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
| | - Kalina Miteva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Boyko Neov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Peter Ostoich
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| | - Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Zukal
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Peter Hristov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd., 1000 Sofia, Bulgaria
| |
Collapse
|
6
|
Shipley R, Wright E, Smith SP, Selden D, Fooks AR, Banyard AC. Taiwan Bat Lyssavirus: In Vitro and In Vivo Assessment of the Ability of Rabies Vaccine-Derived Antibodies to Neutralise a Novel Lyssavirus. Viruses 2022; 14:v14122750. [PMID: 36560754 PMCID: PMC9781811 DOI: 10.3390/v14122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Rabies is a neglected tropical disease. The prototype virus, the rabies virus, still causes tens of thousands of human fatalities annually. Rabies is one member of the genus Lyssavirus. The burden of other lyssaviruses is unclear. The continued emergence of novel lyssaviruses means that assessment of vaccine efficacy against these viruses is critical, as standard rabies vaccines are not efficacious against all lyssaviruses. Taiwan bat lyssavirus (TWBLV) was first reported in 2018 following isolation from Japanese house bats. Since the initial detection and genetic characterisation, no attempts have been made to antigenically define this virus. Due to the inaccessibility of the wildtype isolate, the successful generation of a live recombinant virus, cSN-TWBLV, is described, where the full-length genome clone of the RABV vaccine strain, SAD-B19, was constructed with the glycoprotein of TWBLV. In vitro and in vivo characterization of cSN-TWBLV was undertaken and demonstrated evidence for cross-neutralisation of cSN-TWBLV with phylogroup I -specific sera and rabies virus standard sera. For neutralisation equivalent to 0.5 IU/mL of WHO and World Organisation of Animal Health (WOAH) sera against CVS, 0.5 IU/mL of WOAH sera and 2.5 IU/mL of WHO sera were required to neutralise cSN-TWBLV. In addition, specific sera for ARAV and EBLV-1 exhibited the highest neutralising antibody titres against cSN-TWBLV, compared to other phylogroup I-specific sera.
Collapse
Affiliation(s)
- Rebecca Shipley
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Samuel P. Smith
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK
| | - David Selden
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK
| | - Ashley C. Banyard
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency (APHA), Weybridge, London KT15 3NB, UK
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
- Institute for Infection and Immunity, St. George’s Hospital Medical School, University of London, London SW17 0RE, UK
- Correspondence:
| |
Collapse
|
7
|
Novel Bat Lyssaviruses Identified by Nationwide Passive Surveillance in Taiwan, 2018–2021. Viruses 2022; 14:v14071562. [PMID: 35891542 PMCID: PMC9316062 DOI: 10.3390/v14071562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Bat lyssaviruses were identified in Taiwan’s bat population during 2016–2017. The lyssavirus surveillance system was continuously conducted to understand the epidemiology. Through this system, the found dead bats were collected for lyssavirus detection by direct fluorescent antibody test and reverse transcription polymerase chain reaction. Three bats were identified as positive during 2018–2021. A novel lyssavirus, designated as Taiwan bat lyssavirus 2, was detected in a Nyctalus plancyi velutinus. This lyssavirus had less than 80% nucleotide identity in the nucleoprotein (N) gene with other lyssavirus species, forming a separate branch in the phylogenetic analysis. The other two cases were identified in Pipistrellus abramus (Japanese pipistrelles); they were identified to be similar to the former lyssavirus identified in 2016–2017, which was renominated as Taiwan bat lyssavirus 1 (TWBLV-1) in this study. Even though one of the TWBLV-1 isolates showed high genetic diversity in the N gene compared with other TWBLV-1 isolates, it may be a TWBLV-1 variant but not a new species based on its high amino acid identities in the nucleoprotein, same host species, and same geographic location as the other TWBLV-1.
Collapse
|
8
|
Weinberg M, Yovel Y. Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience 2022; 25:104782. [PMID: 35982789 PMCID: PMC9379578 DOI: 10.1016/j.isci.2022.104782] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While bats are often referred to as reservoirs of viral pathogens, a meta-analysis of the literature reveals many cases in which there is not enough evidence to claim so. In many cases, bats are able to confront viruses, recover, and remain immune by developing a potent titer of antibodies, often without becoming a reservoir. In other cases, bats might have carried an ancestral virus that at some time point might have mutated into a human pathogen. Moreover, bats exhibit a balanced immune response against viruses that have evolved over millions of years. Using genomic tools, it is now possible to obtain a deeper understanding of that unique immune system and its variability across the order Chiroptera. We conclude, that with the exception of a few viruses, bats pose little zoonotic danger to humans and that they operate a highly efficient anti-inflammatory response that we should strive to understand.
Collapse
Affiliation(s)
- Maya Weinberg
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Corresponding author
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Condori RE, Aragon A, Breckenridge M, Pesko K, Mower K, Ettestad P, Melman S, Velasco-Villa A, Orciari LA, Yager P, Streicker DG, Gigante CM, Morgan C, Wallace R, Li Y. Divergent Rabies Virus Variant of Probable Bat Origin in 2 Gray Foxes, New Mexico, USA. Emerg Infect Dis 2022; 28:1137-1145. [PMID: 35608558 PMCID: PMC9155866 DOI: 10.3201/eid2806.211718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the Western Hemisphere, bat-associated rabies viruses (RABVs) have established independent transmission cycles in multiple mammal hosts, forming genetically distinct lineages. In New Mexico, USA, skunks, bats, and gray foxes are rabies reservoir hosts and represent a public health risk because of encounters with humans. During 2015 and 2019, two previously undescribed RABVs were detected in 2 gray foxes (Urocyon cinereoargenteus) in Lincoln County, New Mexico. Phylogenetic analysis of the nucleoprotein gene indicated that the isolates are a novel RABV variant. These 2 cases probably represent repeated spillover events from an unknown bat reservoir to gray foxes. Molecular analysis of rabies cases across New Mexico identified that other cross-species transmission events were the result of viral variants previously known to be enzootic to New Mexico. Despite a robust rabies public health surveillance system in the United States, advances in testing and surveillance techniques continue to identify previously unrecognized zoonotic pathogens.
Collapse
|
10
|
Elakov AL. [Anti-rabies vaccines applied in the Russian Federation and perspectives for their improvement]. Vopr Virusol 2022; 67:107-114. [PMID: 35521983 DOI: 10.36233/0507-4088-102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/25/2022]
Abstract
Rabies is almost ubiquitous (except in certain areas) and poses a significant danger to both animals and humans. Every year around 55,000 people die from this disease worldwide. In the Russian Federation alone 400,000- 450,000 patients annually apply for anti-rabies treatment. In the absolute majority of cases human infection is caused by contact with infected animals. In RF, a number of cultured inactivated anti-rabies vaccines for medical and veterinary purposes have been developed, registered and used for specific prevention of rabies. These vaccine preparations have shown high effectiveness in preventing infection in domestic and farm animals. At the same time, the main reservoir of the rabies virus (Mononegavirales: Rhabdoviridae: Lyssavirus) (RV) are wild carnivores (Mammalia: Carnivora). For the purpose of their oral immunization, live virus vaccines from attenuated (fixed) strains of RV that are little resistant in the external environment are used. In Western Europe and North America there is successful experience with recombinant anti-rabies vaccine preparations containing a viral glycoprotein gene (G-protein). Such vaccines are safe for humans and animals. In Russia also had been developed a vector anti-rabies vaccine based on adenovirus (Adenoviridae), which can be used to combat this infection. Currently, in addition to classical rabies, diseases caused by new, previously unknown lyssaviruses (Lyssavirus) are becoming increasingly important. Bats (Mammalia: Microchiroptera) are their vectors. Cases of illness and death after contact with these animals have been described. In the near future, we should expect the development of new vaccines that will provide protection not only against RV, but also against other lyssaviruses.
Collapse
Affiliation(s)
- A L Elakov
- FSBSI «Federal Scientific Center - All-Russian Scientific Research Institute of Experimental Veterinary Medicine named after K.I. Skryabin and Ya.R. Kovalenko of the Russian Academy of Sciences»
| |
Collapse
|
11
|
de Melo GD, Hellert J, Gupta R, Corti D, Bourhy H. Monoclonal antibodies against rabies: current uses in prophylaxis and in therapy. Curr Opin Virol 2022; 53:101204. [PMID: 35151116 DOI: 10.1016/j.coviro.2022.101204] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 12/25/2022]
Abstract
Rabies is a severe viral infection that causes an acute encephalomyelitis, which presents a case fatality of nearly 100% after the manifestation of neurological clinical signs. Rabies can be efficiently prevented with post-exposure prophylaxis (PEP), composed of vaccines and anti-rabies immunoglobulins (RIGs); however, no treatment exists for symptomatic rabies. The PEP protocol faces access and implementation obstacles in resource-limited settings, which could be partially overcome by substituting RIGs for monoclonal antibodies (mAbs). mAbs offer lower production costs, consistent supply availability, long-term storage/stability, and an improved safety profile. Here we summarize the key features of the different available mAbs against rabies, focusing on their application in PEP and highlighting their potential in a novel therapeutic approach.
Collapse
Affiliation(s)
- Guilherme Dias de Melo
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, F-75015, France
| | - Jan Hellert
- Centre for Structural Systems Biology, Leibniz-Institut für Experimentelle Virologie (HPI), Notkestrasse 85, Hamburg, 22607, Germany
| | | | - Davide Corti
- Humabs Biomed SA, a Subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology Unit, Paris, F-75015, France; Institut Pasteur, Université de Paris, National Reference Center for Rabies, Paris, F-75015, France; Institut Pasteur, Université de Paris, WHO Collaborating Centre for Reference and Research on Rabies, Paris, F-75015, France.
| |
Collapse
|
12
|
Scott TP, Nel LH. Lyssaviruses and the Fatal Encephalitic Disease Rabies. Front Immunol 2021; 12:786953. [PMID: 34925368 PMCID: PMC8678592 DOI: 10.3389/fimmu.2021.786953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lyssaviruses cause the disease rabies, which is a fatal encephalitic disease resulting in approximately 59,000 human deaths annually. The prototype species, rabies lyssavirus, is the most prevalent of all lyssaviruses and poses the greatest public health threat. In Africa, six confirmed and one putative species of lyssavirus have been identified. Rabies lyssavirus remains endemic throughout mainland Africa, where the domestic dog is the primary reservoir - resulting in the highest per capita death rate from rabies globally. Rabies is typically transmitted through the injection of virus-laden saliva through a bite or scratch from an infected animal. Due to the inhibition of specific immune responses by multifunctional viral proteins, the virus usually replicates at low levels in the muscle tissue and subsequently enters the peripheral nervous system at the neuromuscular junction. Pathogenic rabies lyssavirus strains inhibit innate immune signaling and induce cellular apoptosis as the virus progresses to the central nervous system and brain using viral protein facilitated retrograde axonal transport. Rabies manifests in two different forms - the encephalitic and the paralytic form - with differing clinical manifestations and survival times. Disease symptoms are thought to be due mitochondrial dysfunction, rather than neuronal apoptosis. While much is known about rabies, there remain many gaps in knowledge about the neuropathology of the disease. It should be emphasized however, that rabies is vaccine preventable and dog-mediated human rabies has been eliminated in various countries. The global elimination of dog-mediated human rabies in the foreseeable future is therefore an entirely feasible goal.
Collapse
Affiliation(s)
| | - Louis Hendrik Nel
- Global Alliance for Rabies Control, Manhattan, KS, United States
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
13
|
Miao F, Li N, Yang J, Chen T, Liu Y, Zhang S, Hu R. Neglected challenges in the control of animal rabies in China. One Health 2021; 12:100212. [PMID: 33553562 PMCID: PMC7843516 DOI: 10.1016/j.onehlt.2021.100212] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/17/2020] [Accepted: 01/03/2021] [Indexed: 01/16/2023] Open
Abstract
Complex rabies transmission dynamics, including in dogs, wildlife livestock, and human-acquired rabies, can be observed in China. A temporary decrease in human rabies deaths with a simultaneous increase in animal rabies transmission is a typical example of "sectoral management separation" but not of the recommended "one-health" concept. In contrast to reliance on mass dog vaccination, reliance on postexposure prophylaxis to reduce human rabies burden is costly and ineffective in the prevention of rabies transmission from dogs to humans and other susceptible animal species. To answer the WHO call for the "elimination of dog-mediated human rabies by 2030," China faces the challenge of a lack of a strong political commitment and a workable plan and must act now before the rabies transmission dynamics become increasingly complicated by spreading to other species, such as ferret badgers in the Southeast and raccoon dogs and foxes in the North.
Collapse
Affiliation(s)
| | | | - Jinjin Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Jingyue Economic Development Zone, Changchun 130122, Jilin Province, China
| | - Teng Chen
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Jingyue Economic Development Zone, Changchun 130122, Jilin Province, China
| | - Ye Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Jingyue Economic Development Zone, Changchun 130122, Jilin Province, China
| | - Shoufeng Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Jingyue Economic Development Zone, Changchun 130122, Jilin Province, China
| | - Rongliang Hu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Jingyue Economic Development Zone, Changchun 130122, Jilin Province, China
| |
Collapse
|
14
|
Fisher CR, Lowe DE, Smith TG, Yang Y, Hutson CL, Wirblich C, Cingolani G, Schnell MJ. Lyssavirus Vaccine with a Chimeric Glycoprotein Protects across Phylogroups. Cell Rep 2021; 32:107920. [PMID: 32697993 PMCID: PMC7373069 DOI: 10.1016/j.celrep.2020.107920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/21/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
Rabies is nearly 100% lethal in the absence of treatment, killing an estimated 59,000 people annually. Vaccines and biologics are highly efficacious when administered properly. Sixteen rabies-related viruses (lyssaviruses) are similarly lethal, but some are divergent enough to evade protection from current vaccines and biologics, which are based only on the classical rabies virus (RABV). Here we present the development and characterization of LyssaVax, a vaccine featuring a structurally designed, functional chimeric glycoprotein (G) containing immunologically important domains from both RABV G and the highly divergent Mokola virus (MOKV) G. LyssaVax elicits high titers of antibodies specific to both RABV and MOKV Gs in mice. Immune sera also neutralize a range of wild-type lyssaviruses across the major phylogroups. LyssaVax-immunized mice are protected against challenge with recombinant RABV and MOKV. Altogether, LyssaVax demonstrates the utility of structural modeling in vaccine design and constitutes a broadened lyssavirus vaccine candidate.
Collapse
Affiliation(s)
- Christine R Fisher
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David E Lowe
- National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Todd G Smith
- National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Yong Yang
- National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Christina L Hutson
- National Center for Emerging and Zoonotic Infectious Diseases, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
15
|
Isolation of a Novel Bat Rhabdovirus with Evidence of Human Exposure in China. mBio 2021; 13:e0287521. [PMID: 35164557 PMCID: PMC8844929 DOI: 10.1128/mbio.02875-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bats are well-recognized reservoirs of zoonotic viruses. Several spillover events from bats to humans have been reported, causing severe epidemic or endemic diseases including severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), SARS-CoV, Middle East respiratory syndrome-CoV (MERS-CoV), henipaviruses, and filoviruses. In this study, a novel rhabdovirus species, provisionally named Rhinolophus rhabdovirus DPuer (DPRV), was identified from the horseshoe bat (Rhinolophus affinis) in Yunnan province, China, using next-generation sequencing. DPRV shedding in the spleen, liver, lung, and intestinal contents of wild bats with high viral loads was detected by real-time quantitative PCR, indicating that DPRV has tropism for multiple host tissues. Furthermore, DPRV can replicate in vitro in multiple mammalian cell lines, including BHK-21, A549, and MA104 cells, with the highest efficiency in hamster kidney cell line BHK-21, suggesting infectivity of DPRV in these cell line-derived hosts. Ultrastructure analysis revealed a characteristic bullet-shaped morphology and tightly clustered distribution of DPRV particles in the intracellular space. DPRV replicated efficiently in suckling mouse brains and caused death of suckling mice; death rates increased with passaging of DPRV in suckling mice. Moreover, 421 serum samples were collected from individuals who lived near the bat collection site and had fever symptoms within 1 year. DPRV-specific antibodies were detected in 20 (4.75%) human serum samples by indirect immunofluorescence assay. Furthermore, 10 (2.38%) serum samples were DPRV positive according to plaque reduction neutralization assay, which revealed potential transmission of DPRV from bats to humans and highlighted the potential public health risk. Potential vector association with DPRV was not found with negative viral RNA in bloodsucking arthropods. IMPORTANCE We identified a novel rhabdovirus from the horseshoe bat (Rhinolophus thomasi) in China with probable infectivity in humans. DPRV was isolated in vitro from several mammalian cell lines, indicating wide host tropism, excluding bats, of DPRV. DPRV replicated in the brains of suckling mice, and the death rate of suckling mice increased with passaging of DPRV in vivo. Serological tests indicated the possible infectivity of DPRV in humans and the potential transmission to humans. The present findings provide preliminary evidence for the potential risk of DPRV to public health. Additional studies with active surveillance are needed to address interspecies transmission and determine the pathogenicity of DPRV in humans.
Collapse
|
16
|
Kimprasit T, Nunome M, Iida K, Murakami Y, Wong ML, Wu CH, Kobayashi R, Hengjan Y, Takemae H, Yonemitsu K, Kuwata R, Shimoda H, Si L, Sohn JH, Asakawa S, Ichiyanagi K, Maeda K, Oh HS, Mizutani T, Kimura J, Iida A, Hondo E. Dispersal history of Miniopterus fuliginosus bats and their associated viruses in east Asia. PLoS One 2021; 16:e0244006. [PMID: 33444317 PMCID: PMC7808576 DOI: 10.1371/journal.pone.0244006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
In this study, we examined the role of the eastern bent-winged bat (Miniopterus fuliginosus) in the dispersion of bat adenovirus and bat alphacoronavirus in east Asia, considering their gene flows and divergence times (based on deep-sequencing data), using bat fecal guano samples. Bats in China moved to Jeju Island and/or Taiwan in the last 20,000 years via the Korean Peninsula and/or Japan. The phylogenies of host mitochondrial D-loop DNA was not significantly congruent with those of bat adenovirus (m2XY = 0.07, p = 0.08), and bat alphacoronavirus (m2XY = 0.48, p = 0.20). We estimate that the first divergence time of bats carrying bat adenovirus in five caves studied (designated as K1, K2, JJ, N2, and F3) occurred approximately 3.17 million years ago. In contrast, the first divergence time of bat adenovirus among bats in the 5 caves was estimated to be approximately 224.32 years ago. The first divergence time of bats in caves CH, JJ, WY, N2, F1, F2, and F3 harboring bat alphacoronavirus was estimated to be 1.59 million years ago. The first divergence time of bat alphacoronavirus among the 7 caves was estimated to be approximately 2,596.92 years ago. The origin of bat adenovirus remains unclear, whereas our findings suggest that bat alphacoronavirus originated in Japan. Surprisingly, bat adenovirus and bat alphacoronavirus appeared to diverge substantially over the last 100 years, even though our gene-flow data indicate that the eastern bent-winged bat serves as an important natural reservoir of both viruses.
Collapse
Affiliation(s)
- Thachawech Kimprasit
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mitsuo Nunome
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Keisuke Iida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Min-Liang Wong
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ryosuke Kobayashi
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yupadee Hengjan
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hitoshi Takemae
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenzo Yonemitsu
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Lifan Si
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Joon-Hyuk Sohn
- Laboratory of Anatomy and Cell Biology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Susumu Asakawa
- Laboratory of Soil Biology and Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hong-Shik Oh
- Institute of Science Education, Jeju National University, Jeju, Korea
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Junpei Kimura
- Laboratory of Anatomy and Cell Biology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Atsuo Iida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Luo DS, Li B, Shen XR, Jiang RD, Zhu Y, Wu J, Fan Y, Bourhy H, Hu B, Ge XY, Shi ZL, Dacheux L. Characterization of Novel Rhabdoviruses in Chinese Bats. Viruses 2021; 13:v13010064. [PMID: 33466539 PMCID: PMC7824899 DOI: 10.3390/v13010064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022] Open
Abstract
Bats, the second largest order of mammals worldwide, harbor specific characteristics such as sustaining flight, a special immune system, unique habits, and ecological niches. In addition, they are the natural reservoirs of a variety of emerging or re-emerging zoonotic pathogens. Rhabdoviridae is one of the most diverse families of RNA viruses, which consists of 20 ecologically diverse genera, infecting plants, mammals, birds, reptiles, and fish. To date, three bat-related genera are described, named Lyssavirus, Vesiculovirus, and Ledantevirus. However, the prevalence and the distribution of these bat-related rhabdoviruses remain largely unknown, especially in China. To fill this gap, we performed a large molecular retrospective study based on the real-time reverse transcription polymerase chain reaction (RT-qPCR) detection of lyssavirus in bat samples (1044 brain and 3532 saliva samples, from 63 different bat species) originating from 21 provinces of China during 2006–2018. None of them were positive for lyssavirus, but six bat brains (0.6%) of Rhinolophus bat species, originating from Hubei and Hainan provinces, were positive for vesiculoviruses or ledanteviruses. Based on complete genomes, these viruses were phylogenetically classified into three putative new species, tentatively named Yinshui bat virus (YSBV), Taiyi bat virus (TYBV), and Qiongzhong bat virus (QZBV). These results indicate the novel rhabdoviruses circulated in different Chinese bat populations.
Collapse
Affiliation(s)
- Dong-Sheng Luo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institut Pasteur, Lyssavirus Epidemiology and Neuropathology Unit, 75724 Paris, France;
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Xu-Rui Shen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren-Di Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Jia Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Yi Fan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hervé Bourhy
- Institut Pasteur, Lyssavirus Epidemiology and Neuropathology Unit, 75724 Paris, France;
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China;
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.-S.L.); (B.L.); (X.-R.S.); (R.-D.J.); (Y.Z.); (J.W.); (Y.F.); (B.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Z.-L.S.); (L.D.); Tel.: +86-02787197311 (Z.-L.S.); +33-140613303 (L.D.)
| | - Laurent Dacheux
- Institut Pasteur, Lyssavirus Epidemiology and Neuropathology Unit, 75724 Paris, France;
- Correspondence: (Z.-L.S.); (L.D.); Tel.: +86-02787197311 (Z.-L.S.); +33-140613303 (L.D.)
| |
Collapse
|
18
|
Begeman L, Suu-Ire R, Banyard AC, Drosten C, Eggerbauer E, Freuling CM, Gibson L, Goharriz H, Horton DL, Jennings D, Marston DA, Ntiamoa-Baidu Y, Riesle Sbarbaro S, Selden D, Wise EL, Kuiken T, Fooks AR, Müller T, Wood JLN, Cunningham AA. Experimental Lagos bat virus infection in straw-colored fruit bats: A suitable model for bat rabies in a natural reservoir species. PLoS Negl Trop Dis 2020; 14:e0008898. [PMID: 33320860 PMCID: PMC7771871 DOI: 10.1371/journal.pntd.0008898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/29/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for lyssavirus associated bat rabies in a natural reservoir host, and can help with the investigation of lyssavirus infection dynamics in bats.
Collapse
Affiliation(s)
- Lineke Begeman
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
- * E-mail: (LB); (AAC)
| | - Richard Suu-Ire
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
| | - Ashley C. Banyard
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Christian Drosten
- Institute of Virology, Medical University of Berlin, Berlin, Germany
| | - Elisa Eggerbauer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
- Thüringer Landesamt für Verbraucherschutz, Bad Langensalza, Thüringen, Germany
| | - Conrad M. Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
| | - Louise Gibson
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
| | - Hooman Goharriz
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Daniel L. Horton
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Daisy Jennings
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Denise A. Marston
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Yaa Ntiamoa-Baidu
- Centre for African Wetlands / Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Silke Riesle Sbarbaro
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- University of Cambridge, Cambridge, United Kingdom
| | - David Selden
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Emma L. Wise
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Island of Riems, Germany
| | | | - Andrew A. Cunningham
- Institute of Zoology, Zoological Society of London, Regent’s Park, London, United Kingdom
- * E-mail: (LB); (AAC)
| |
Collapse
|
19
|
Kuhn JH, Adkins S, Alioto D, Alkhovsky SV, Amarasinghe GK, Anthony SJ, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Bartonička T, Basler C, Bavari S, Beer M, Bente DA, Bergeron É, Bird BH, Blair C, Blasdell KR, Bradfute SB, Breyta R, Briese T, Brown PA, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Buzkan N, Calisher CH, Cao M, Casas I, Chamberlain J, Chandran K, Charrel RN, Chen B, Chiumenti M, Choi IR, Clegg JCS, Crozier I, da Graça JV, Dal Bó E, Dávila AMR, de la Torre JC, de Lamballerie X, de Swart RL, Di Bello PL, Di Paola N, Di Serio F, Dietzgen RG, Digiaro M, Dolja VV, Dolnik O, Drebot MA, Drexler JF, Dürrwald R, Dufkova L, Dundon WG, Duprex WP, Dye JM, Easton AJ, Ebihara H, Elbeaino T, Ergünay K, Fernandes J, Fooks AR, Formenty PBH, Forth LF, Fouchier RAM, Freitas-Astúa J, Gago-Zachert S, Gāo GF, García ML, García-Sastre A, Garrison AR, Gbakima A, Goldstein T, Gonzalez JPJ, Griffiths A, Groschup MH, Günther S, Guterres A, Hall RA, Hammond J, Hassan M, Hepojoki J, Hepojoki S, Hetzel U, Hewson R, Hoffmann B, Hongo S, Höper D, Horie M, Hughes HR, Hyndman TH, Jambai A, Jardim R, Jiāng D, Jin Q, Jonson GB, et alKuhn JH, Adkins S, Alioto D, Alkhovsky SV, Amarasinghe GK, Anthony SJ, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Bartonička T, Basler C, Bavari S, Beer M, Bente DA, Bergeron É, Bird BH, Blair C, Blasdell KR, Bradfute SB, Breyta R, Briese T, Brown PA, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Buzkan N, Calisher CH, Cao M, Casas I, Chamberlain J, Chandran K, Charrel RN, Chen B, Chiumenti M, Choi IR, Clegg JCS, Crozier I, da Graça JV, Dal Bó E, Dávila AMR, de la Torre JC, de Lamballerie X, de Swart RL, Di Bello PL, Di Paola N, Di Serio F, Dietzgen RG, Digiaro M, Dolja VV, Dolnik O, Drebot MA, Drexler JF, Dürrwald R, Dufkova L, Dundon WG, Duprex WP, Dye JM, Easton AJ, Ebihara H, Elbeaino T, Ergünay K, Fernandes J, Fooks AR, Formenty PBH, Forth LF, Fouchier RAM, Freitas-Astúa J, Gago-Zachert S, Gāo GF, García ML, García-Sastre A, Garrison AR, Gbakima A, Goldstein T, Gonzalez JPJ, Griffiths A, Groschup MH, Günther S, Guterres A, Hall RA, Hammond J, Hassan M, Hepojoki J, Hepojoki S, Hetzel U, Hewson R, Hoffmann B, Hongo S, Höper D, Horie M, Hughes HR, Hyndman TH, Jambai A, Jardim R, Jiāng D, Jin Q, Jonson GB, Junglen S, Karadağ S, Keller KE, Klempa B, Klingström J, Kobinger G, Kondō H, Koonin EV, Krupovic M, Kurath G, Kuzmin IV, Laenen L, Lamb RA, Lambert AJ, Langevin SL, Lee B, Lemos ERS, Leroy EM, Li D, Lǐ J, Liang M, Liú W, Liú Y, Lukashevich IS, Maes P, Marciel de Souza W, Marklewitz M, Marshall SH, Martelli GP, Martin RR, Marzano SYL, Massart S, McCauley JW, Mielke-Ehret N, Minafra A, Minutolo M, Mirazimi A, Mühlbach HP, Mühlberger E, Naidu R, Natsuaki T, Navarro B, Navarro JA, Netesov SV, Neumann G, Nowotny N, Nunes MRT, Nylund A, Økland AL, Oliveira RC, Palacios G, Pallas V, Pályi B, Papa A, Parrish CR, Pauvolid-Corrêa A, Pawęska JT, Payne S, Pérez DR, Pfaff F, Radoshitzky SR, Rahman AU, Ramos-González PL, Resende RO, Reyes CA, Rima BK, Romanowski V, Robles Luna G, Rota P, Rubbenstroth D, Runstadler JA, Ruzek D, Sabanadzovic S, Salát J, Sall AA, Salvato MS, Sarpkaya K, Sasaya T, Schwemmle M, Shabbir MZ, Shí X, Shí Z, Shirako Y, Simmonds P, Širmarová J, Sironi M, Smither S, Smura T, Song JW, Spann KM, Spengler JR, Stenglein MD, Stone DM, Straková P, Takada A, Tesh RB, Thornburg NJ, Tomonaga K, Tordo N, Towner JS, Turina M, Tzanetakis I, Ulrich RG, Vaira AM, van den Hoogen B, Varsani A, Vasilakis N, Verbeek M, Wahl V, Walker PJ, Wang H, Wang J, Wang X, Wang LF, Wèi T, Wells H, Whitfield AE, Williams JV, Wolf YI, Wú Z, Yang X, Yáng X, Yu X, Yutin N, Zerbini FM, Zhang T, Zhang YZ, Zhou G, Zhou X. 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol 2020; 165:3023-3072. [PMID: 32888050 PMCID: PMC7606449 DOI: 10.1007/s00705-020-04731-2] [Show More Authors] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA.
| | - Scott Adkins
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Sergey V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F. Gamaleya National Center on Epidemiology and Microbiology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Simon J Anthony
- Mailman School of Public Health, Columbia University, New York, NY, USA
- EcoHealth Alliance, New York, NY, USA
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Justin Bahl
- Department of Infectious Diseases, Department of Epidemiology and Biostatistics, Institute of Bioinformatics, Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Tomáš Bartonička
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Christopher Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Sina Bavari
- Edge BioInnovation Consulting and Mgt, Frederick, MD, USA
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dennis A Bente
- Galveston National Laboratory, The University of Texas, Medical Branch at Galveston, Galveston, TX, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian H Bird
- School of Veterinary Medicine, One Health Institute, University of California, Davis, CA, USA
| | - Carol Blair
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kim R Blasdell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Steven B Bradfute
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rachel Breyta
- US Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| | - Thomas Briese
- Department of Epidemiology, Mailman School of Public Health, Center for Infection and Immunity, Columbia University, New York, NY, USA
| | - Paul A Brown
- Laboratory of Ploufragan-Plouzané-Niort, French Agency for Food, Environmental and Occupational Heath Safety ANSES, Ploufragan, France
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, The University of Texas, Medical Branch at Galveston, Galveston, TX, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Felicity Burt
- Division of Virology, National Health Laboratory Service, University of the Free State, Bloemfontein, Republic of South Africa
| | - Nihal Buzkan
- Department of Plant Protection, Faculty of Agriculture, Kahramanmaras Sütçü Imam University, Avsar Campus, 46060, Kahramanmaras, Turkey
| | | | - Mengji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Inmaculada Casas
- Respiratory Virus and Influenza Unit, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - John Chamberlain
- Virology and Pathogenesis Group, National Infection Service, Public Health England, Porton Down, UK
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rémi N Charrel
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Biao Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - Il-Ryong Choi
- Plant Breeding Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines
| | | | - Ian Crozier
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - John V da Graça
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX, USA
| | - Elena Dal Bó
- CIDEFI. Facultad de Ciencias Agrarias y Forestales, Universidad de La Plata, La Plata, Argentina
| | - Alberto M R Dávila
- Laboratório de Biologia Computacional e Sistemas, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, CA, USA
| | - Xavier de Lamballerie
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Rik L de Swart
- Department Viroscience, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Patrick L Di Bello
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Michele Digiaro
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Olga Dolnik
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Michael A Drebot
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - William G Dundon
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - W Paul Duprex
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Koray Ergünay
- Virology Unit, Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Jorlan Fernandes
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | | | | | - Leonie F Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ron A M Fouchier
- Department Viroscience, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle/Saale, Germany
| | - George Fú Gāo
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | | | - Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Aiah Gbakima
- Metabiota, Inc. Sierra Leone, Freetown, Sierra Leone
| | - Tracey Goldstein
- One Health Institute, Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jean-Paul J Gonzalez
- Department of Microbiology and Immunology, Division of Biomedical Graduate Research Organization, School of Medicine, Georgetown University, Washington, DC, 20057, USA
- Centaurus Biotechnologies, CTP, Manassas, VA, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht Institute for Tropical Medicine, WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever Reference and Research, Hamburg, Germany
| | - Alexandro Guterres
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - John Hammond
- United States Department of Agriculture, Agricultural Research Service, USNA, Floral and Nursery Plants Research Unit, Beltsville, MD, USA
| | - Mohamed Hassan
- Department of Agricultural Botany, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Satu Hepojoki
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
- Mobidiag Ltd, Espoo, Finland
| | - Udo Hetzel
- Institute of Veterinary Pathology, University of Zuerich, Zurich, Switzerland
| | - Roger Hewson
- Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Seiji Hongo
- Department of Infectious Diseases, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Masayuki Horie
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Holly R Hughes
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | - Amara Jambai
- Ministry of Health and Sanitation, Freetown, Sierra Leone
| | - Rodrigo Jardim
- Laboratório de Biologia Computacional e Sistemas, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Jin
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Gilda B Jonson
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Serpil Karadağ
- Republic Of Turkey Ministry Of Agriculture And Forestry, Pistachio Research Institute, Gaziantep, Turkey
| | - Karen E Keller
- United States Department of Agriculture, Agricultural Research Service, Horticulture Crops Research Unit, Corvallis, OR, USA
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gary Kobinger
- Department of Microbiology, Immunology and Infectious Diseases, Université Laval, Quebec City, Canada
| | - Hideki Kondō
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Gael Kurath
- US Geological Survey Western Fisheries Research Center, Seattle, WA, USA
| | - Ivan V Kuzmin
- US Department of Agriculture, Animal and Plant Health Inspection, National Veterinary Services Laboratories, Diagnostic Virology Laboratory, Ames, USA
| | - Lies Laenen
- Zoonotic Infectious Diseases Unit, KU Leuven, Rega Institute, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Robert A Lamb
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, USA
| | - Amy J Lambert
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | | | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elba R S Lemos
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Eric M Leroy
- MIVEGEC (IRD-CNRS-Montpellier university) Unit, French National Research Institute for Sustainable Development (IRD), Montpellier, France
| | - Dexin Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiànróng Lǐ
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mifang Liang
- Key Laboratory for Medical Virology, NHFPC, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Wénwén Liú
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yàn Liú
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, The Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Piet Maes
- Department of Agricultural Biotechnology, Center for Fungal Pathogenesis, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Marco Marklewitz
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Sergio H Marshall
- Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Giovanni P Martelli
- Department of Plant, Soil and Food Sciences, University "Aldo Moro", Bari, Italy
| | - Robert R Martin
- United States Department of Agriculture, Horticultural Crops Research Unit, Corvallis, OR, USA
| | - Shin-Yi L Marzano
- Department of Biology and Microbiology, Department of Plant Sciences, South Dakota State University, Brookings, SD, USA
| | - Sébastien Massart
- Gembloux Agro-Bio Tech, TERRA, Plant Pathology Laboratory, Liège University, Liège, Belgium
| | - John W McCauley
- Worldwide Influenza Centre, Francis Crick Institute, London, UK
| | | | - Angelantonio Minafra
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - Maria Minutolo
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, Italy
| | | | | | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Rayapati Naidu
- Department of Plant Pathology, Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Tomohide Natsuaki
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante-Consiglio Nazionale delle ricerche (Institute for Sustainable Plant Protection-National Research Council), Bari, Italy
| | - José A Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, USA
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Are Nylund
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Arnfinn L Økland
- Fish Disease Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Renata C Oliveira
- Laboratório de Hantaviroses e Rickettsioses, Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Gustavo Palacios
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Bernadett Pályi
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| | - Anna Papa
- National Reference Centre for Arboviruses and Haemorrhagic Fever Viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Colin R Parrish
- College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Alex Pauvolid-Corrêa
- Department of Veterinary Integrated Biosciences and Department of Entomology, Texas A&M University, College Station, USA
| | - Janusz T Pawęska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham-Johannesburg, Gauteng, South Africa
| | - Susan Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Daniel R Pérez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Aziz-Ul Rahman
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Bertus K Rima
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular, Centro Cientifico Technológico-La Plata, Consejo Nacional de Investigaciones Científico Tecnológico-Universidad Nacional de La Plata, La Plata, Argentina
| | - Gabriel Robles Luna
- Instituto de Biotecnología y Biología Molecular, CCT-La Plata, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Paul Rota
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA, 01536, USA
| | - Daniel Ruzek
- Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Jiří Salát
- Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | | | - Maria S Salvato
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kamil Sarpkaya
- Department of Forestry Engineering, Faculty of Forestry, Karabuk University (UNIKA), Karabük, Turkey
| | - Takahide Sasaya
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Fukuyama, Japan
| | - Martin Schwemmle
- Faculty of Medicine, University Medical Center-University Freiburg, Freiburg, Germany
| | - Muhammad Z Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Xiǎohóng Shí
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Zhènglì Shí
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | - Yukio Shirako
- Asian Center for Bioresources and Environmental Sciences, University of Tokyo, Tokyo, Japan
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS "E. Medea", Bosisio Parini, Italy
| | - Sophie Smither
- CBR Division, Dstl, Porton Down, Salisbury, Wiltshire, UK
| | - Teemu Smura
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kirsten M Spann
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - David M Stone
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| | | | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Robert B Tesh
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Keizō Tomonaga
- Institute for Frontier Life and Medical Sciences (inFront), Kyoto University, Kyoto, Japan
| | - Noël Tordo
- Institut Pasteur, Unité des Stratégies Antivirales, WHO Collaborative Centre for Viral Haemorrhagic Fevers and Arboviruses, OIE Reference Laboratory for RVFV and CCHFV, Paris, France
- Institut Pasteur de Guinée, Conakry, Guinea
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Strada delle Cacce 73, 10135, Turin, Italy
| | - Ioannis Tzanetakis
- Division of Agriculture, Department of Entomology and Plant Pathology, University of Arkansas System, Fayetteville, AR, 72701, USA
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany
- German Center of Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), 73 Strada delle Cacce, 10135, Turin, Italy
| | - Bernadette van den Hoogen
- Department of Viroscience, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Nikos Vasilakis
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Martin Verbeek
- Wageningen University and Research, Biointeractions and Plant Health, Wageningen, The Netherlands
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD, USA
| | - Peter J Walker
- School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Hui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB-Fondation Mérieux, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Tàiyún Wèi
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Heather Wells
- Mailman School of Public Health, Center for Infection and Immunity, Columbia University, New York, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - John V Williams
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Zhìqiáng Wú
- MOH Key Laboratory of Systems Biology of Pathogens, IPB, CAMS, Beijing, China
| | - Xin Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Xīnglóu Yáng
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | - Xuejie Yu
- Wuhan University School of Health Sciences, Wuhan, China
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - F Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Yong-Zhen Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
- Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guohui Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangdong, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Forró B, Marton S, Fehér E, Domán M, Kemenesi G, Cadar D, Hornyák Á, Bányai K. Phylogeny of Hungarian EBLV-1 strains using whole-genome sequence data. Transbound Emerg Dis 2020; 68:1323-1331. [PMID: 33460276 DOI: 10.1111/tbed.13789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
European bat lyssavirus 1 (EBLV-1) is a widespread lyssavirus across Europe, whose epizootic cycle is linked to a few bat species. Occasionally, EBLV-1 infection may occur in domestic animals and humans. EBLV-1 can be classified into two subtypes, where subtype EBLV-1a shows a wide geographic distribution between France and Russia whereas subtype EBLV-1b is distributed between Spain and Poland. In this study, we determined the genome sequence of two recent EBLV-1a strains detected in Hungary and analysed their adaptive evolution and phylodynamics. The data set that included 100 EBLV-1 genome sequences identified positive selection at selected sites in genes coding for viral proteins (N, codon 18; P, 141 and 155; G, 244 and 488; L, 168, 980, 1597 and 1754). A major genetic clade containing EBLV-1a isolates from Hungary, Slovakia, Denmark and Poland was estimated to have diverged during the 19th century whereas the divergence of the most recent ancestor of Hungarian and Slovakian isolates dates back to 1950 (time span, 1930 to 1970). Phylogeographic analysis of the EBLV-1a genomic sequences demonstrated strong evidence of viral dispersal from Poland to Hungary. This new information indicates that additional migratory flyways may help the virus spread, a finding that supplements the general theory on a west-to-east dispersal of EBLV-1a strains. Long-distance migrant bats may mediate the dispersal of EBLV-1 strains across Europe; however, structured surveillance and extended genome sequencing would be needed to better understand the epizootiology of EBLV-1 infections in Europe.
Collapse
Affiliation(s)
- Barbara Forró
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Enikő Fehér
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Marianna Domán
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Gábor Kemenesi
- Szentágothai Research Centre, Virological Research Group Pécs Hungary, University of Pécs, Pécs, Hungary.,Faculty of Sciences, Institute of Biology, University of Pécs, Pécs, Hungary
| | - Daniel Cadar
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, National Reference Centre for Tropical Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ákos Hornyák
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
21
|
Oliveira RN, Freire CC, Iamarino A, Zanotto PM, Pessoa R, Sanabani SS, Souza SPD, Castilho JG, Batista HBCR, Carnieli P, Macedo CI, Watanabe JT, Brandão PE. Rabies virus diversification in aerial and terrestrial mammals. Genet Mol Biol 2020; 43:e20190370. [PMID: 32745160 PMCID: PMC7416755 DOI: 10.1590/1678-4685-gmb-2019-0370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/17/2020] [Indexed: 12/25/2022] Open
Abstract
Rabies is a fatal zoonotic infection of the central nervous system of mammals and has been known to humans for millennia. The etiological agent, is a neurotropic RNA virus in the order Mononegavirales, family Rhabdoviridae, genus Lyssavirus. There are currently accepted to be two cycles for rabies transmission: the urban cycle and the sylvatic cycle. The fact that both cycles originated from a common RABV or lyssavirus ancestor and the adaptive divergence that occurred since then as this ancestor virus adapted to a wide range of fitness landscapes represented by reservoir species in the orders Carnivora and Chiroptera led to the emergence of the diverse RABV lineages currently found in the sylvatic and urban cycles. Here we study full genome phylogenies and the time to the most recent common ancestor (TMRCA) of the RABVs in the sylvatic and urban cycles. Results show that there were differences between the nucleotide substitution rates per site per year for the same RABV genes maintained independently in the urban and sylvatic cycles. The results identify the most suitable gene for phylogenetic analysis, heterotachy among RABV genes and the TMRCA for the two cycles.
Collapse
Affiliation(s)
- Rafael N Oliveira
- Instituto Pasteur, Laboratório de Biologia Molecular, São Paulo, SP, Brazil
| | - Caio C Freire
- Universidade de São Paulo, Instituto de Ciências Biomédicas (ICB-II), Departamento de Microbiologia, Laboratório de Evolução Molecular e Bioinformática, São Paulo, SP, Brazil
| | - Atila Iamarino
- Universidade de São Paulo, Instituto de Ciências Biomédicas (ICB-II), Departamento de Microbiologia, Laboratório de Evolução Molecular e Bioinformática, São Paulo, SP, Brazil
| | - Paolo M Zanotto
- Universidade de São Paulo, Instituto de Ciências Biomédicas (ICB-II), Departamento de Microbiologia, Laboratório de Evolução Molecular e Bioinformática, São Paulo, SP, Brazil
| | - Rodrigo Pessoa
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Departamento de Virologia, São Paulo, SP, Brazil
| | - Sabri S Sanabani
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Departamento de Virologia, São Paulo, SP, Brazil
| | | | - Juliana G Castilho
- Instituto Pasteur, Laboratório de Biologia Molecular, São Paulo, SP, Brazil
| | | | - Pedro Carnieli
- Instituto Pasteur, Laboratório de Biologia Molecular, São Paulo, SP, Brazil
| | - Carla I Macedo
- Instituto Pasteur, Laboratório de Biologia Molecular, São Paulo, SP, Brazil
| | - Jaqueline T Watanabe
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Departamento de Virologia, São Paulo, SP, Brazil
| | - Paulo E Brandão
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnica, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Markotter W, Coertse J, De Vries L, Geldenhuys M, Mortlock M. Bat-borne viruses in Africa: a critical review. J Zool (1987) 2020; 311:77-98. [PMID: 32427175 PMCID: PMC7228346 DOI: 10.1111/jzo.12769] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/27/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022]
Abstract
In Africa, bat-borne zoonoses emerged in the past few decades resulting in large outbreaks or just sporadic spillovers. In addition, hundreds of more viruses are described without any information on zoonotic potential. We discuss important characteristics of bats including bat biology, evolution, distribution and ecology that not only make them unique among most mammals but also contribute to their potential as viral reservoirs. The detection of a virus in bats does not imply that spillover will occur and several biological, ecological and anthropogenic factors play a role in such an event. We summarize and critically analyse the current knowledge on African bats as reservoirs for corona-, filo-, paramyxo- and lyssaviruses. We highlight that important information on epidemiology, bat biology and ecology is often not available to make informed decisions on zoonotic spillover potential. Even if knowledge gaps exist, it is still important to recognize the role of bats in zoonotic disease outbreaks and implement mitigation strategies to prevent exposure to infectious agents including working safely with bats. Equally important is the crucial role of bats in various ecosystem services. This necessitates a multidisciplinary One Health approach to close knowledge gaps and ensure the development of responsible mitigation strategies to not only minimize risk of infection but also ensure conservation of the species.
Collapse
Affiliation(s)
- W. Markotter
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - J. Coertse
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - L. De Vries
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - M. Geldenhuys
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - M. Mortlock
- Department of Medical VirologyCentre for Viral ZoonosesFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
23
|
Zhao L, Chen T, Miao F, Li J, Du H, Zhao J. Bat lyssavirus should be further monitored in Rondônia state, Brazil. Rev Soc Bras Med Trop 2020; 53:e20190420. [PMID: 32321090 PMCID: PMC7182290 DOI: 10.1590/0037-8682-0420-2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/09/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
- Lifeng Zhao
- College of Animal Veterinary Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Teng Chen
- Key Laboratory of Jilin Province for Zoonoses Prevention and Control, Laboratory of Epidemiology, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Faming Miao
- Key Laboratory of Jilin Province for Zoonoses Prevention and Control, Laboratory of Epidemiology, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Junfeng Li
- Jilin Agricultural University, Changchun 130118, China
| | - Haijun Du
- Changchun Sci-Tech University, 1699 Donghua street, Shuangyang District, Changchun 130600, China
| | - Jinghui Zhao
- Changchun Sci-Tech University, 1699 Donghua street, Shuangyang District, Changchun 130600, China.,Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
24
|
Orłowska A, Smreczak M, Freuling CM, Müller T, Trębas P, Rola J. Serological Survey of Lyssaviruses in Polish Bats in the Frame of Passive Rabies Surveillance Using an Enzyme-Linked Immunosorbent Assay. Viruses 2020; 12:v12030271. [PMID: 32121200 PMCID: PMC7150987 DOI: 10.3390/v12030271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Bats are known to host a number of nonpathogenic viruses, as well as highly pathogenic viruses causing fatal diseases like rabies. Serological surveys as part of active and passive bat rabies surveillance mainly use seroneutralization assays, demonstrating the presence of lyssavirus-specific antibodies in a variety of European bats, particularly against European bat lyssaviruses type 1 (EBLV-1). Here, we present the first serological survey in European bats of this kind during which European bats from Poland collected in the frame of passive rabies surveillance between 2012 and 2018, as well as Serotine bats (Eptesicus serotinus) and North American Big Brown bats (Eptesicus fuscus) from previous experimental studies, were tested using a commercial ELISA kit for the detection of anti-lyssavirus antibodies. Results: Lyssavirus-specific antibodies were detected in 35 (30.4%) out of 115 Polish bats of both sexes, representing nine out of 13 identified bat species endemic mainly to Central Southern Europe and Western Asia, i.e., Eptesicus serotinus, Nyctalus noctula, Myotis daubentonii, Plecotus auritus, Vespertillo murinus, Pipistrellus pipistrellus, Pipistrellus pipilstrellus/Pipistrellus pygmaeus, Myotis brandtii, and Barbastella barbastellus. Seroprevalence was highest in bat species of Nyctalus noctula, Eptesicus serotinus, Plecotus auritus, and Myotis daubentonii. More than 60% of the ELISA seropositive bats originated from the voivodeships of Silesia, Lower-Silesian, Warmian-Mazurian, and Mazowian. Rabies-specific antibodies were also found in Eptesicus fuscus bats from North America. Conclusions: The study demonstrates the principal application of the BioPro Rabies ELISA Ab Kit for the detection of anti-lyssavirus specific antibodies in body fluids and serum samples of bats. However, results may only be reliable for North American bats, whereas interpretation of results for European bats per se is difficult because proper validation of the test is hampered by the protected status of these species.
Collapse
Affiliation(s)
- Anna Orłowska
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
- Correspondence: (A.O.); (M.S.); Tel.: +48-818-893-072 (A.O.); +48818-893-029 (M.S.)
| | - Marcin Smreczak
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
- Correspondence: (A.O.); (M.S.); Tel.: +48-818-893-072 (A.O.); +48818-893-029 (M.S.)
| | - Conrad Martin Freuling
- Institute of Molecular Virology and Cell Biology, FLI, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (C.M.F.); (T.M.)
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, FLI, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany; (C.M.F.); (T.M.)
| | - Paweł Trębas
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
| | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland; (P.T.); (J.R.)
| |
Collapse
|
25
|
Rupprecht CE, Salahuddin N. Current status of human rabies prevention: remaining barriers to global biologics accessibility and disease elimination. Expert Rev Vaccines 2019; 18:629-640. [PMID: 31159618 DOI: 10.1080/14760584.2019.1627205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Rabies is a serious, neglected tropical disease. Zoonotic agents are RNA viruses (Genus Lyssavirus, Family Rhabdoviridae), global in distribution. As an acute, progressive, incurable encephalitis, rabies has the highest case fatality of any infectious disease. Warm-blooded vertebrates are susceptible hosts. Major mammalian reservoirs include mesocarnivores and bats. Given wildlife perpetuation, rabies is not eradicable, but is preventable and controllable, especially under newly available international guidelines. Areas covered: Literature review over the past 5 years reveals development of sensitive, specific diagnostic tests and safe and highly effective human and veterinary vaccines. Yet, tens of thousands of human fatalities occur annually, usually in Africa and Asia, primarily after canine exposure. Human and domestic animal vaccination, before or after exposure, is the single greatest preventative strategy following a rabid animal bite. Expert opinion: Significant progress occurred during the twenty-first century regarding vaccine development, doses, and schedules. Remaining barriers to widespread rabies vaccination include an inter-related set of economic, cultural, social, educational, ecological and technological factors. A basic understanding of local and regional root causes of cases historically allows for broader accessibility to vaccination in a trans-disciplinary fashion to meet the global elimination of human rabies caused via dogs (GEHRD) by 2030.
Collapse
Affiliation(s)
| | - Naseem Salahuddin
- b Infectious Disease Division, Department of Medicine , The Indus Hospital , Karachi , Pakistan
| |
Collapse
|
26
|
Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, Banyard AC. Bats and Viruses: Emergence of Novel Lyssaviruses and Association of Bats with Viral Zoonoses in the EU. Trop Med Infect Dis 2019; 4:tropicalmed4010031. [PMID: 30736432 PMCID: PMC6473451 DOI: 10.3390/tropicalmed4010031] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Bats in the EU have been associated with several zoonotic viral pathogens of significance to both human and animal health. Virus discovery continues to expand the existing understating of virus classification, and the increased interest in bats globally as reservoirs or carriers of zoonotic agents has fuelled the continued detection and characterisation of new lyssaviruses and other viral zoonoses. Although the transmission of lyssaviruses from bat species to humans or terrestrial species appears rare, interest in these viruses remains, through their ability to cause the invariably fatal encephalitis—rabies. The association of bats with other viral zoonoses is also of great interest. Much of the EU is free of terrestrial rabies, but several bat species harbor lyssaviruses that remain a risk to human and animal health. Whilst the rabies virus is the main cause of rabies globally, novel related viruses continue to be discovered, predominantly in bat populations, that are of interest purely through their classification within the lyssavirus genus alongside the rabies virus. Although the rabies virus is principally transmitted from the bite of infected dogs, these related lyssaviruses are primarily transmitted to humans and terrestrial carnivores by bats. Even though reports of zoonotic viruses from bats within the EU are rare, to protect human and animal health, it is important characterise novel bat viruses for several reasons, namely: (i) to investigate the mechanisms for the maintenance, potential routes of transmission, and resulting clinical signs, if any, in their natural hosts; (ii) to investigate the ability of existing vaccines, where available, to protect against these viruses; (iii) to evaluate the potential for spill over and onward transmission of viral pathogens in novel terrestrial hosts. This review is an update on the current situation regarding zoonotic virus discovery within bats in the EU, and provides details of potential future mechanisms to control the threat from these deadly pathogens.
Collapse
Affiliation(s)
- Rebecca Shipley
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| | - Edward Wright
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| | - David Selden
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
| | - Guanghui Wu
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
| | - James Aegerter
- APHA - National Wildlife Management Centre, Wildlife Epidemiology and Modelling, Sand Hutton, YO41 1LZ York, UK.
| | - Anthony R Fooks
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, SW17 0RE, UK.
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, SW17 0RE, UK.
| |
Collapse
|
27
|
Picard-Meyer E, Beven V, Hirchaud E, Guillaume C, Larcher G, Robardet E, Servat A, Blanchard Y, Cliquet F. Lleida Bat Lyssavirus isolation in Miniopterus schreibersii in France. Zoonoses Public Health 2018; 66:254-258. [PMID: 30460779 DOI: 10.1111/zph.12535] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/26/2023]
Abstract
Bat rabies cases are attributed in Europe to five different Lyssavirus species of 16 recognized Lyssavirus species causing rabies. One of the most genetically divergent Lyssavirus spp. has been detected in a dead Miniopterus schreibersii bat in France. Brain samples were found positive for the presence of antigen, infectious virus and viral RNA by classical virological methods and molecular methods respectively. The complete genome sequence was determined by next-generation sequencing. The analysis of the complete genome sequence confirmed the presence of Lleida bat lyssavirus (LLEBV) in bats in France with 99.7% of nucleotide identity with the Spanish LLEBV strain (KY006983).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexandre Servat
- ANSES-Nancy Laboratory for Rabies and Wildlife, Malzéville, France
| | | | - Florence Cliquet
- ANSES-Nancy Laboratory for Rabies and Wildlife, Malzéville, France
| |
Collapse
|
28
|
Doysabas KCC, Oba M, Furuta M, Iida K, Omatsu T, Furuya T, Okada T, Sutummaporn K, Shimoda H, Wong ML, Wu CH, Ohmori Y, Kobayashi R, Hengjan Y, Yonemitsu K, Kuwata R, Kim YK, Han SH, Sohn JH, Han SH, Suzuki K, Kimura J, Maeda K, Oh HS, Endoh D, Mizutani T, Hondo E. Encephalomyocarditis virus is potentially derived from eastern bent-wing bats living in East Asian countries. Virus Res 2018; 259:62-67. [PMID: 30391400 PMCID: PMC7114854 DOI: 10.1016/j.virusres.2018.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022]
Abstract
EMCV genome was widely found in fecal guanos in Taiwanese, Korean, and Japanese caves. Miniopterus fuliginosus is the main source of the fecal guano. It is possible that Miniopterus fuliginosus is one of the natural hosts of EMCV in East Asia.
Bats are reservoir hosts of many zoonotic viruses and identification of viruses that they carry is important. This study aimed to use high throughput screening to identify the viruses in fecal guano of Taiwanese insectivorous bats caves in order to obtain more information on bat-derived pathogenic viruses in East Asia. Guano samples were collected from two caves in Taiwan, pooled, and then subjected to Multiplex PCR-based next generation sequencing for viral identification. Subsequently, encephalomyocarditis virus (EMCV) sequence was detected and confirmed by reverse transcription PCR. EMCV is considered as rodent virus and thus, animal species identification through cytochrome oxidase I (COI) barcoding was further done to identify the viral source. Finally, determination of distribution and verification of the presence of EMCV in guano obtained from Japanese and South Korean caves was also done. We concluded that the guano collected was not contaminated with the excrement of rodents which were reported and presumed to live in Taiwan. Also, EMCV genome fragments were found in guanos of Japanese and South Korean caves. It is possible that the eastern bent-wing bat (Miniopterus fuliginosus) is one of the natural hosts of EMCV in East Asia.
Collapse
Affiliation(s)
- Karla Cristine C Doysabas
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mami Oba
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Japan
| | - Masaya Furuta
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Keisuke Iida
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tsutomu Omatsu
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Japan
| | - Takashi Okada
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kripitch Sutummaporn
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Japan
| | | | | | | | - Yasushige Ohmori
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ryosuke Kobayashi
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yupadee Hengjan
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | - Yoo-Kyung Kim
- Institute of Science Education, Jeju National University, Jeju, South Korea
| | - Sang-Hyun Han
- Institute of Science Education, Jeju National University, Jeju, South Korea
| | - Joon-Hyuk Sohn
- Laboratory of Veterinary Anatomy and Cell Biology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Sang-Hoon Han
- Natural Institute of Biological Resources, South Korea
| | | | - Junpei Kimura
- Laboratory of Veterinary Anatomy and Cell Biology and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ken Maeda
- Yamaguchi University, Yamaguchi, Japan
| | - Hong-Shik Oh
- Institute of Science Education, Jeju National University, Jeju, South Korea
| | - Daiji Endoh
- Department of Veterinary Radiology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu-shi 069-8501, Japan
| | - Tetsuya Mizutani
- Laboratory of Veterinary Microbiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Japan
| | - Eiichi Hondo
- Laboratory of Animal Morphology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
29
|
Comprehensive Analysis of Codon Usage on Rabies Virus and Other Lyssaviruses. Int J Mol Sci 2018; 19:ijms19082397. [PMID: 30110957 PMCID: PMC6121662 DOI: 10.3390/ijms19082397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022] Open
Abstract
Rabies virus (RABV) and other lyssaviruses can cause rabies and rabies-like diseases, which are a persistent public health threat to humans and other mammals. Lyssaviruses exhibit distinct characteristics in terms of geographical distribution and host specificity, indicative of a long-standing diversification to adapt to the environment. However, the evolutionary diversity of lyssaviruses, in terms of codon usage, is still unclear. We found that RABV has the lowest codon usage bias among lyssaviruses strains, evidenced by its high mean effective number of codons (ENC) (53.84 ± 0.35). Moreover, natural selection is the driving force in shaping the codon usage pattern of these strains. In summary, our study sheds light on the codon usage patterns of lyssaviruses, which can aid in the development of control strategies and experimental research.
Collapse
|
30
|
Rupprecht CE, Xiang Z, Servat A, Franka R, Kirby J, Ertl HCJ. Additional Progress in the Development and Application of a Direct, Rapid Immunohistochemical Test for Rabies Diagnosis. Vet Sci 2018; 5:E59. [PMID: 29925781 PMCID: PMC6024515 DOI: 10.3390/vetsci5020059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
Laboratory-based surveillance is fundamental to effective rabies prevention and control. The direct fluorescent antibody (AB) test (FAT) is the gold standard for rabies diagnosis. Recently, additional tests besides the FAT have been developed, such as the direct rapid immunohistochemical test (DRIT). In this study, our objective was to further refine technical aspects of the DRIT using a combination of two monoclonal ABs (MABs), 502 and 802, conduct additional testing among rabies reference laboratories using a diversity of animal species and rabies virus (RV) variants and compare the potential utility of the DRIT for end users via proficiency testing (PT) against the FAT. Considering the ideal molar ratios of biotin to AB in formulation of the DRIT conjugate, 3.9 was found to be superior to 7.4, for detection of RV antigens in the brain of a naturally infected raccoon. Optimization of the DRIT conjugate may also be dependent upon the apparent choice of specific viral antigens for testing, as a gray fox RV variant reacted less strongly than a raccoon RV variant in determining the working dilution of the MAB cocktail. Using the same MABs and protocol, the DRIT was compared to the FAT using more than 800 samples of mammalian brains, representative of more than 25 taxa, including in excess of 250 animal rabies cases from Europe and North America. Sensitivity was determined at 98% (96⁻100%, 95% CI) and specificity was calculated at 95% (92⁻96%, 95% CI). In a comparison among end users, PT of laboratory personnel resulted in values of 77⁻100% sensitivity and 86-100% specificity. Based upon these and previously reported results, the DRIT appears to be a suitable alternative to the FAT for use in lyssavirus diagnosis.
Collapse
Affiliation(s)
| | | | - Alexandre Servat
- OIE/WHO/EU Laboratory for Rabies and Wildlife, French Agency for Food, Environmental and Occupational Health and Safety, 54220 Malzeville, France.
| | | | - Jordona Kirby
- USDA, APHIS, Wildlife Services, Milton, FL 32583, USA.
| | | |
Collapse
|