1
|
Dorscheid D, Gauvreau GM, Georas SN, Hiemstra PS, Varricchi G, Lambrecht BN, Marone G. Airway epithelial cells as drivers of severe asthma pathogenesis. Mucosal Immunol 2025:S1933-0219(25)00029-7. [PMID: 40154790 DOI: 10.1016/j.mucimm.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Our understanding of the airway epithelium's role in driving asthma pathogenesis has evolved over time. From being regarded primarily as a physical barrier that could be damaged via inflammation, the epithelium is now known to actively contribute to asthma development through interactions with the immune system. The airway epithelium contains multiple cell types with specialized functions spanning barrier action, mucociliary clearance, immune cell recruitment, and maintenance of tissue homeostasis. Environmental insults may cause direct or indirect injury to the epithelium leading to impaired barrier function, epithelial remodelling, and increased release of inflammatory mediators. In severe asthma, the epithelial barrier repair process is inhibited and the response to insults is exaggerated, driving downstream inflammation. Genetic and epigenetic mechanisms also maintain dysregulation of the epithelial barrier, adding to disease chronicity. Here, we review the role of the airway epithelium in severe asthma and how targeting the epithelium can contribute to asthma treatment.
Collapse
Affiliation(s)
- Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Bart N Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
2
|
Forconi CS, Nixon C, Wu HW, Odwar B, Pond-Tor S, Ong’echa JM, Kurtis J, Moormann AM. T follicular helper cell profiles differ by malaria antigen and for children compared to adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.13.589352. [PMID: 38659768 PMCID: PMC11042194 DOI: 10.1101/2024.04.13.589352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Circulating T-follicular helper (cTFH) cells have the potential to provide an additional correlate of protection against Plasmodium falciparum (Pf) as they are essential to promote B-cell production of long-lasting antibodies. Assessing the specificity of cTFH subsets to individual malaria antigens is vital to understanding the variation observed in antibody responses and identifying promising malaria vaccine candidates. Methods Using spectral flow cytometry and unbiased clustering analysis, we assessed antigen-specific cTFH cell recall responses in vitro to malaria vaccine candidates Pf-schizont egress antigen-1 (PfSEA-1A) and Pf-glutamic acid-rich protein (PfGARP) within a cross-section of children and adults living in a malaria-holoendemic region of western Kenya. Findings In children, a broad array of cTFH subsets (defined by cytokine and transcription factor expression) were reactive to both malaria antigens, PfSEA-1A and PfGARP, while adults had a narrow profile centering on cTFH17- and cTFH1/17-like subsets following stimulation with PfGARP only. Interpretation Because TFH17 cells are involved in the maintenance of memory antibody responses within the context of parasitic infections, our results suggest that PfGARP might generate longer-lived antibody responses compared to PfSEA-1A. These findings have intriguing implications for evaluating malaria vaccine candidates as they highlight the importance of including cTFH profiles when assessing interdependent correlates of protective immunity.
Collapse
Affiliation(s)
- Catherine S. Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christina Nixon
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Hannah W. Wu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Boaz Odwar
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sunthorn Pond-Tor
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - John M. Ong’echa
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Jonathan Kurtis
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
3
|
Murai A, Iwata M, Miyakawa S, Warude D, Sagara M, Kikukawa Y. CXCR5-targeted chimeric antigen receptor T regulatory cells for the selective inhibition of follicular helper T cell and B cell interaction. Cytotherapy 2025:S1465-3249(25)00002-7. [PMID: 40126458 DOI: 10.1016/j.jcyt.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 03/25/2025]
Abstract
BACKGROUND The dysregulation of follicular helper T (Tfh) cell function, followed by the proliferation of self-reactive B cells, can lead to the development of autoimmune diseases. Recently, adaptive T regulatory cell (Treg) transfer therapy has attracted considerable attention for inducing effective immune tolerance owing to Tregs' diverse immune-inhibitory activities. However, preclinical studies and recent clinical trials of polyclonal Treg therapy have suggested further improving the efficacy of Treg therapy through targeted tissue specificity and local persistence by gene engineering. In this study, we reported a novel approach to specifically inhibit Tfh cells by CXC motif chemokine receptor 5-targeted chimeric antigen receptor (CXCR5-CAR) Tregs. METHODS Tregs expressing CAR against CXCR5 were generated from human peripheral blood mononuclear cells-derived Tregs. The phenotype and suppressive capacity of the engineered Tregs were evaluated using coculture assays with naïve T cells, circulating Tfh (cTfh) cells, or a combination of cTfh cells and naïve B cells through flow cytometry analysis. RESULT CXCR5-CAR Tregs induced more potent inhibition of circulating cTfh cell proliferation while maintaining similar suppressive properties on CXCR5-negative responder cells compared with non-selective polyclonal Tregs. The antigen-dependent activation of CXCR5-CAR Tregs was confirmed by latency-associated peptide (LAP) expression in the coculture with cTfh cells. In the coculture condition with both cTfh and naïve B cells, the activation of naïve B cells induced by cTfh cells was more effectively inhibited by CXCR5-CAR Tregs than by polyclonal Tregs. CONCLUSION The results demonstrate the potential of CXCR5-CAR Tregs to effectively inhibit the Tfh-B cell response in autoimmune diseases, paving the way for further research to confirm their functional superiority in vivo. This novel approach offers promise for achieving local, long-term immune tolerance compared with existing approaches such as nonspecific immunosuppression and polyclonal Treg therapy.
Collapse
Affiliation(s)
- Aiko Murai
- Research, Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Masashi Iwata
- Research, Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, 251-8555, Japan
| | - Shuuichi Miyakawa
- Research, Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, 251-8555, Japan
| | | | - Masaki Sagara
- Research, Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yusuke Kikukawa
- Research, Oncology Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
4
|
Lambuk F, Nordin NA, Mussa A, Lambuk L, Ahmad S, Hassan R, Kadir R, Mohamud R, Yahya NK. Towards understanding the role of nanomedicine in targeting TNFR2 in rheumatoid arthritis. Immunology 2024; 173:622-633. [PMID: 39191474 DOI: 10.1111/imm.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the synovium and progressive joint destruction which significantly affects both quality of life and socioeconomic status. Admittedly, various treatments are available, but they are usually accompanied by various side effects, from mild to severe, and potentially with adverse events. Tumour necrosis factor-alpha (TNF-α) plays a crucial role in the pathophysiology of RA. It promotes inflammatory, apoptosis and necroptosis via TNF receptor-1 (TNFR1) but elicit anti-inflammatory effects via TNFR2. Herein, targeting TNFR2 has gained attention in RA studies. Understanding the role of nanomedicine in modulating TNFR2 signalling may be the instrument in development of RA therapies. Nanotechnology has made a significant progress in treating various conditions of diseases since its inception. Due to this, nanomedicine has emerged as a promising therapeutics approach for RA. Recent studies have demonstrated the potential of nanomedicine in RA theranostics, combining therapy and diagnostics for improved treatment outcomes. Owing to the challenges and advancements in the field of nanotechnology, nanoparticles are seen as an applicable candidate in the treatment of RA. In this review, we provide an overview of the role of nanomedicine in targeting TNFR2 for the treatment of RA and highlight the limitations of current therapies as well as the potential of nanocarriers with controlled drug release and active targeting abilities.
Collapse
Affiliation(s)
- Fatmawati Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nor Asyikin Nordin
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman, Sudan
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Suhana Ahmad
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Nurul Khaiza Yahya
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
5
|
Yaqub M, Pathan MS, Dev S, He L. Tfh cells potential dual role in cancer: A perspective. Heliyon 2024; 10:e37502. [PMID: 39386811 PMCID: PMC11462245 DOI: 10.1016/j.heliyon.2024.e37502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
T follicular helper cells (Tfh) were initially identified nearly two decades ago as critically important in directing B-cell maturation and antibody generation in the germinal centers of secondary lymphoid tissues. Since then, Tfh cells have become the center of sustained investigation in oncology due to their unique, often paradoxical roles in tumour immunity. Specifically, Tfh cells in the tumour microenvironment can enhance anti-tumour immune response or promote, through the same mechanisms, tumour progression. These dual roles largely result from Tfh cells controlling unique cytokine secretions and, in turn, shifting the net effect of the Tfh-driven immune response (by directly and indirectly affecting the activities of other cytotoxic T cells and natural killer cells). The dual nature of the Tfh is the basis for our commentary, which highlights their simultaneous identity as a curse and a gift to oncology. Indeed, the curtain calls for a better understanding Tfh cell biology, so that their potential can be used to benefit oncology. We discuss how prevalent Tfh cells in tumors can be beneficial in directing potent anti-tumour immune responses. We also review how the characterization of Tfh cells in tumors has now led to their identification as candidate biomarkers of response to immunotherapy, and how they are now being evaluated as targets for new immunotherapies leading to new clinical trials. The study concludes by emphasizing how the unique biological properties of Tfh cells can be leveraged to advance cancer treatment, ultimately aiming to enhance the effectiveness of clinical oncology practices.
Collapse
Affiliation(s)
- Muhammad Yaqub
- School of Biomedical Sciences, Hunan University, 410000, Changsha, PR China
| | | | - Soumyabrata Dev
- School of Computer Science, University College Dublin, Ireland
| | - Lan He
- School of Biomedical Sciences, Hunan University, 410000, Changsha, PR China
| |
Collapse
|
6
|
Guerra MB, Santana KG, Momolli M, Labat R, Chavantes MC, Zammuner SR, Júnior JAS, da Palma RK, Aimbire F, de Oliveira APL. Effect of photobiomodulation in an experimental in vitro model of asthma-Copd overlap. JOURNAL OF BIOPHOTONICS 2024; 17:e202400124. [PMID: 39134306 DOI: 10.1002/jbio.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 10/10/2024]
Abstract
The objective of the study was to evaluate the effect of photobiomodulation (PBM) with laser on the inflammatory process in an experimental in vitro model of ACO. The groups were: (1) human bronchial epithelial cells (BEAS-2B); (2) BEAS-2B cells treated with dexamethasone; (3) BEAS-2B cells irradiated with laser; (4) BEAS-2B cells stimulated with cigarette smoke extract (CSE) + House Dust Mite (HDM); (5) BEAS-2B cells stimulated with CSE + HDM and treated with dexamethasone; (6) BEAS-2B cells incubated with CSE + HDM and irradiated with laser. After 24 h, cytokines were quantified. There was a reduction in TNF-α, IL-1β, IL-6, IL-4, IL-5, IL-13, IL-17, IL-21, IL-23, and an increase in IL-10 and IFN-γ in cells from the laser-irradiated ACO group compared to only ACO group. With these results, we can suggest that photobiomodulation acts in the modulation of inflammation observed in ACO, and may be a treatment option.
Collapse
Affiliation(s)
- Marina Bertoni Guerra
- Post Graduate Program in Medicine-Biophotonic, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Kelly Gomes Santana
- Post Graduate Program in Medicine-Biophotonic, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Marcos Momolli
- Post Graduate Program in Medicine-Biophotonic, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Rodrigo Labat
- Post Graduate Program in Medicine-Biophotonic, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Stella Regina Zammuner
- Post Graduate Program in Medicine-Biophotonic, University Nove de Julho (UNINOVE), São Paulo, Brazil
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | - José Antonio Silva Júnior
- Post Graduate Program in Medicine-Biophotonic, University Nove de Julho (UNINOVE), São Paulo, Brazil
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | | | - Flavio Aimbire
- Translational Medicine, Federal University of São Paulo-UNIFESP, São José dos Campos, Brazil
| | | |
Collapse
|
7
|
Booth JS, Rapaka RR, McArthur MA, Fresnay S, Darton TC, Blohmke CJ, Jones C, Waddington CS, Levine MM, Pollard AJ, Sztein MB. Role of circulating T follicular helper subsets following Ty21a immunization and oral challenge with wild type S. Typhi in humans. Front Immunol 2024; 15:1384642. [PMID: 39328410 PMCID: PMC11424897 DOI: 10.3389/fimmu.2024.1384642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Despite decades of intense research, our understanding of the correlates of protection against Salmonella Typhi (S. Typhi) infection and disease remains incomplete. T follicular helper cells (TFH), an important link between cellular and humoral immunity, play an important role in the development and production of high affinity antibodies. While traditional TFH cells reside in germinal centers, circulating TFH (cTFH) (a memory subset of TFH) are present in blood. We used specimens from a typhoid controlled human infection model whereby participants were immunized with Ty21a live attenuated S. Typhi vaccine and then challenged with virulent S. Typhi. Some participants developed typhoid disease (TD) and some did not (NoTD), which allowed us to assess the association of cTFH subsets in the development and prevention of typhoid disease. Of note, the frequencies of cTFH were higher in NoTD than in TD participants, particularly 7 days after challenge. Furthermore, the frequencies of cTFH2 and cTFH17, but not cTFH1 subsets were higher in NoTD than TD participants. However, we observed that ex-vivo expression of activation and homing markers were higher in TD than in NoTD participants, particularly after challenge. Moreover, cTFH subsets produced higher levels of S. Typhi-specific responses (cytokines/chemokines) in both the immunization and challenge phases. Interestingly, unsupervised analysis revealed unique clusters with distinct signatures for each cTFH subset that may play a role in either the development or prevention of typhoid disease. Importantly, we observed associations between frequencies of defined cTFH subsets and anti-S. Typhi antibodies. Taken together, our results suggest that circulating TFH2 and TFH17 subsets might play an important role in the development or prevention of typhoid disease. The contribution of these clusters was found to be distinct in the immunization and/or challenge phases. These results have important implications for vaccines aimed at inducing long-lived protective T cell and antibody responses.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rekha R. Rapaka
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Monica A. McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Global Clinical Development, Sanofi, Swiftwater, PA, United States
| | - Stephanie Fresnay
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Rockville Center for Vaccine Research, GlaxsoSmithKline (GSK), Rockville, MD, United States
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Clinical Infection Research Group, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, and the National Institute for Health and Care Research (NIHR), Sheffield Biomedical Research Centre, Sheffield, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- GlaxsoSmithKline (GSK) Vaccines, London, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire S. Waddington
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Imperial College Healthcare, National Health Service (NHS) Trust, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
8
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Goleij P, Rahimi M, Pourshahroudi M, Tabari MAK, Muhammad S, Suteja RC, Daglia M, Majma Sanaye P, Hadipour M, Khan H, Sadeghi P. The role of IL-2 cytokine family in asthma. Cytokine 2024; 180:156638. [PMID: 38761716 DOI: 10.1016/j.cyto.2024.156638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The interleukin-2 (IL-2) family of cytokines, including IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, are pivotal regulators of the immune response, impacting both innate and adaptive immunity. Understanding their molecular characteristics, receptor interactions, and signalling pathways is essential for elucidating their roles in health and disease. OBJECTIVES This review provides a comprehensive overview of the IL-2 family of cytokines, highlighting their molecular biology, receptor interactions, and signalling mechanisms. Furthermore, it explores the involvement of IL-2 family cytokines in the pathogenesis of chronic respiratory diseases, with a specific focus on chronic obstructive pulmonary disease (COPD) and asthma. METHODS A thorough literature review was conducted to gather insights into the molecular biology, receptor interactions, and signalling pathways of IL-2 family cytokines. Additionally, studies investigating the roles of these cytokines in chronic respiratory diseases, particularly COPD and asthma, were analysed to discern their implications in wider pathophysiology of disease. RESULTS IL-2 family cytokines exert pleiotropic effects on immune cells, modulating cellular proliferation, differentiation, and survival. Dysregulation of IL-2 family cytokines has been implicated in the pathogenesis of chronic respiratory illnesses, including COPD and asthma. Elevated levels of IL-2 and IL-9 have been associated with disease severity in COPD, while IL-4 and IL-9 play crucial roles in asthma pathogenesis by promoting airway inflammation and remodelling. CONCLUSION Understanding the intricate roles of IL-2 family cytokines in chronic respiratory diseases provides valuable insights into potential therapeutic targets for these conditions. Targeting specific cytokines or their receptors may offer novel treatment modalities to attenuate disease progression and improve clinical outcomes in patients with COPD and asthma.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Rahimi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran.
| | - Motahareh Pourshahroudi
- Department of Public Health, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom.
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Syed Muhammad
- Farooqia College of Pharmacy, Mysuru, Karnataka, India.
| | | | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | | | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Parniyan Sadeghi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Saadh MJ, Alfattah MA, Ismail AH, Saeed BA, Abbas HH, Elashmawy NF, Hashim GA, Ismail KS, Abo-Zaid MA, Waggiallah HA. The role of Interleukin-21 (IL-21) in allergic disorders: Biological insights and regulatory mechanisms. Int Immunopharmacol 2024; 134:111825. [PMID: 38723368 DOI: 10.1016/j.intimp.2024.111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 06/03/2024]
Abstract
In recent decades, allergic diseases subsequent from an IgE-mediated response to specific allergens have become a progressively public chronic disease worldwide. They have shaped an important medical and socio-economic burden. A significant proportion of allergic disorders are branded via a form 2 immune response relating Th2 cells, type 2 natural lymphoid cells, mast cells and eosinophils. Interleukin-21 (IL-21) is a participant of the type-I cytokine family manufactured through numerous subsets of stimulated CD4+ T cells and uses controlling properties on a diversity of immune cells. Increasingly, experimental sign suggests a character for IL-21 in the pathogenesis of numerous allergic disorders. The purpose of this review is to discuss the biological properties of IL-21 and to summaries current developments in its role in the regulation of allergic disorders.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Mohammed A Alfattah
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Bashar Abdullah Saeed
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | | | - Nabila F Elashmawy
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Ghassan A Hashim
- Department of Nursing, Al-Zahrawi University College, Karbala, Iraq
| | - Khatib Sayeed Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia.
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
11
|
Zhou CZ, Xiong X, Tan WJ, Wang YF, Yang Z, Li XY, Yang XW, Liu XF, Yu SF, Wang LC, Geng S. Inhibition of Bcl-6 Expression Ameliorates Asthmatic Characteristics in Mice. Curr Med Sci 2024; 44:110-120. [PMID: 38277017 DOI: 10.1007/s11596-023-2800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/08/2023] [Indexed: 01/27/2024]
Abstract
OBJECTIVE The function of Bcl-6 in T follicular helper (Tfh) cell maturation is indispensable, and Tfh cells play a pivotal role in asthma. This study investigated the impact of Bcl-6 on asthmatic traits. METHODS The microscopic pathological alterations, airway resistance (AR), and lung compliance (LC) were determined in asthmatic mice and Bcl-6 interference mice. The surface molecular markers of Tfh cells and the Bcl-6 mRNA and protein expression were determined by flow cytometry, RT-qPCR, and Western blotting, respectively. The relationships between the Tfh cell ratio and the IgE and IgG1 concentrations in peripheral blood mononuclear cells (PBMCs) and bronchoalveolar lavage fluid (BALF) were determined. RESULTS Asthmatic inflammatory changes were observed in the lung tissue and were attenuated by Bcl-6 siRNA and dexamethasone (DXM). Asthmatic mice exhibited an increased AR and a decreased LC, while Bcl-6 siRNA or DXM mitigated these changes. The percentages of Tfh cells and eosinophils were significantly increased in the asthmatic mice, and they significantly decreased after Bcl-6 inhibition or DXM treatment. RT-qPCR and Western blotting analyses revealed that the Bcl-6 expression level in PBMCs was significantly higher in asthmatic mice, and it decreased following Bcl-6 inhibition or DXM treatment. The IgE expression in the serum and BALF and the B cell expression in PBMCs exhibited a similar trend. In asthmatic mice, the ratio of Tfh cells in the peripheral blood showed a strong positive correlation with the IgE levels in the serum and BALF, but not with the IgG1 levels. CONCLUSION The amelioration of airway inflammation and airway hyper-responsiveness is achieved through Bcl-6 suppression, which effectively hinders Tfh cell differentiation, ultimately resulting in a concurrent reduction in IgE production.
Collapse
Affiliation(s)
- Chang-Zhi Zhou
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiong Xiong
- Department of General Surgery, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Wei-Jun Tan
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ya-Fei Wang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhen Yang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xue-Ying Li
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiu-Wen Yang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiao-Fan Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Sun-Feng Yu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Liang-Chao Wang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Shuang Geng
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
12
|
Ung T, Rutledge NS, Weiss AM, Esser-Kahn AP, Deak P. Cell-targeted vaccines: implications for adaptive immunity. Front Immunol 2023; 14:1221008. [PMID: 37662903 PMCID: PMC10468591 DOI: 10.3389/fimmu.2023.1221008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Recent advancements in immunology and chemistry have facilitated advancements in targeted vaccine technology. Targeting specific cell types, tissue locations, or receptors can allow for modulation of the adaptive immune response to vaccines. This review provides an overview of cellular targets of vaccines, suggests methods of targeting and downstream effects on immune responses, and summarizes general trends in the literature. Understanding the relationships between vaccine targets and subsequent adaptive immune responses is critical for effective vaccine design. This knowledge could facilitate design of more effective, disease-specialized vaccines.
Collapse
Affiliation(s)
- Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Nakisha S. Rutledge
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Peter Deak
- Chemical and Biological Engineering Department, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Zhou P, Cao C, Ji T, Zheng T, Dai Y, Liu M, Jiang J, Sun D, Bai Z, Lu X, Gong F. Longitudinal analysis of memory Tfh cells and antibody response following CoronaVac vaccination. JCI Insight 2023; 8:e168437. [PMID: 37384407 PMCID: PMC10445683 DOI: 10.1172/jci.insight.168437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023] Open
Abstract
The inactivated vaccine CoronaVac is one of the most widely used COVID-19 vaccines globally. However, the longitudinal evolution of the immune response induced by CoronaVac remains elusive compared with other vaccine platforms. Here, we recruited 88 healthy individuals who received 3 doses of CoronaVac vaccine. We longitudinally evaluated their polyclonal and antigen-specific CD4+ T cells and neutralizing antibody response after receiving each dose of vaccine for over 300 days. Both the second and third doses of vaccine induced robust spike-specific neutralizing antibodies, with a third vaccine further increasing the overall magnitude of antibody response and neutralization against Omicron sublineages B.1.1.529, BA.2, BA.4/BA.5, and BA.2.75.2. Spike-specific CD4+ T cells and circulating T follicular helper (cTfh) cells were markedly increased by the second and third dose of CoronaVac vaccine, accompanied by altered composition of functional cTfh cell subsets with distinct effector and memory potential. Additionally, cTfh cells were positively correlated with neutralizing antibody titers. Our results suggest that CoronaVac vaccine-induced spike-specific T cells are capable of supporting humoral immunity for long-term immune protection.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Cheng Cao
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Tuo Ji
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Ting Zheng
- Hospital for Special Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People’s Hospital of Wuxi, Wuxi, China
| | - Min Liu
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junfeng Jiang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Daoqi Sun
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhonghu Bai
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaojie Lu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Du J, Jin S, Zhang M, Fu X, Yang J, Zhang L, Chen Z, Huang Z, Li W, Hou J, Wang T. Precise diagnosis and targeted therapy of nodal T-follicular helper cell lymphoma (T-FHCL). Front Oncol 2023; 13:1163190. [PMID: 37188182 PMCID: PMC10175683 DOI: 10.3389/fonc.2023.1163190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Nodal T-follicular helper cell lymphoma (T-FHCL) derived from T-follicular helper (Tfh) cell falls into a heterogeneous category of peripheral T-cell lymphoma (PTCL). Due to the limited number of therapeutic regimens and limited first-line efficacy, T-FHCL has a poor prognosis, and there is an urgent need for effective targeted therapies. With advancements in sequencing technologies, especially single-cell sequencing and next-generation sequencing, more specific genetic aberrations characteristic of T-FHCL can be discovered, allowing for precise molecular diagnosis and specific research on novel agents. Many biomarker-targeting agents, used either alone or in combination, have been tested, and they have generally enhanced the therapeutic outcomes of T-FHCL. Histone deacetylase inhibitors achieve significant clinical benefits in the treatment of T-FHCL, especially in combination therapy. Chimeric antigen receptor T-cell (CAR-T-cell) immunotherapies, hematopoietic stem cell transplantation, and other potential agents merit further study.
Collapse
Affiliation(s)
- Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shikai Jin
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghui Zhang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehang Fu
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingwen Yang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwen Zhang
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenwei Chen
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weisong Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Wang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Pandit H, Valentin A, Angel M, Deleage C, Bergamaschi C, Bear J, Sowder R, Felber BK, Pavlakis GN. Step-dose IL-7 treatment promotes systemic expansion of T cells and alters immune cell landscape in blood and lymph nodes. iScience 2023; 26:105929. [PMID: 36685042 PMCID: PMC9852696 DOI: 10.1016/j.isci.2023.105929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
We employed a dose-escalation regimen in rhesus macaques to deliver glycosylated IL-7, a cytokine critical for development and maintenance of T lymphocytes. IL-7 increased proliferation and survival of T cells and triggered several chemokines and cytokines. Induction of CXCL13 in lymph nodes (LNs) led to a remarkable increase of B cells in the LNs, proliferation of germinal center follicular T helper cells and elevated IL-21 levels suggesting an increase in follicle activity. Transcriptomics analysis showed induction of IRF-7 and Flt3L, which was linked to increased frequency of circulating plasmacytoid dendritic cells (pDCs) on IL-7 treatment. These pDCs expressed higher levels of CCR7, homed to LNs, and were associated with upregulation of type-1 interferon gene signature and increased production of IFN-α2a on TLR stimulation. Superior effects and dose-sparing advantage was observed by the step-dose regimen. Thus, IL-7 treatment leads to systemic effects involving both lymphoid and myeloid compartments.
Collapse
Affiliation(s)
- Hrishikesh Pandit
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Matthew Angel
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Center for Cancer Research Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Raymond Sowder
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
16
|
Wei X, Niu X. T follicular helper cells in autoimmune diseases. J Autoimmun 2023; 134:102976. [PMID: 36525939 DOI: 10.1016/j.jaut.2022.102976] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
T follicular helper (Tfh) cells with the phenotype of mainly expressing surface molecules C-X-C motif chemokine receptor type 5 (CXCR5), inducible co-stimulator (ICOS), secreting cytokine interleukin-21 (IL-21) and requiring the transcription factor B cell lymphoma 6 (BCL-6) have been recently defined as a new subset of CD4+ T cells. They exist in germinal centers (GCs) of lymphoid organs and in peripheral blood. With the ability to promote B cell development, GC formation and antibody production, Tfh cells play critical roles in the pathogenesis of many autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), etc. The aberrant proliferation and function of Tfh cells will cause the pathological process like autoantibody production and tissue injury. In this paper, we review the recent advances in Tfh cell biology and their roles in autoimmune diseases, with a mention of their use as therapeutic targets, which will shed more light on the pathogenesis and treatment of certain autoimmune diseases.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China; Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China.
| |
Collapse
|
17
|
Tong X, Guan C, Ji T, Cao C, Jiang J, Liu M, Guo Q, Zhou P, Gong F. Increased circulating T follicular helper 13 subset correlates with high IgE levels in pediatric allergic asthma. Eur J Immunol 2022; 52:2010-2012. [PMID: 36153835 DOI: 10.1002/eji.202250076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022]
Abstract
We found an elevation of circulating TFH13 cell subset in asthmatic children and the frequency of TFH13 cells positively correlated with the plasma dust mite-specific IgE levels. These results indicated that TFH13 cell subset may be responsible for the immunopathogenesis of excessive IgE accumulation in children with allergic asthma.
Collapse
Affiliation(s)
- Xiao Tong
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chaojiao Guan
- Department of Pediatrics, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Department of Pediatrics, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Tuo Ji
- Department of Central Laboratory, Cancer Hospital of Lianyungang, Lianyungang, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Cheng Cao
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Junfeng Jiang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Qin Guo
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Pengcheng Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
18
|
Identification of Molecular Markers Related to Immune Infiltration in Patients with Severe Asthma: A Comprehensive Bioinformatics Analysis Based on the Human Bronchial Epithelial Transcriptome. DISEASE MARKERS 2022; 2022:8906064. [DOI: 10.1155/2022/8906064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Background. Severe asthma (SA), a heterogeneous inflammatory disease characterized by immune cell infiltration, is particularly difficult to treat and manage. The airway epithelium is an important tissue in regulating innate and adaptive immunity, and targeting airway epithelial cell may contribute to improving the efficacy of asthma therapy. Methods. Bioinformatics methods were utilized to identify the hub genes and signaling pathways involved in SA. Experiments were performed to determine whether these hub genes and signaling pathways were affected by the differences in immune cell infiltration. Results. The weighted gene coexpression network analysis identified 14 coexpression modules, among which the blue and salmon modules exhibited the strongest associations with SA. The blue module was mainly enriched in actomyosin structure organization and was associated with regulating stem cell pluripotency signaling pathways. The salmon module was mainly involved in cornification, skin development, and glycosphingolipid biosynthesis-lacto and neolacto series. The protein-protein interaction network and module analysis identified 11 hub genes in the key modules. The CIBERSORTx algorithm revealed statistically significant differences in CD8+ T cells (
), T follicular helper cells (
), resting mast cells (
), and neutrophils (
) between patients with SA and mild-moderate asthma patients. Pearson’s correlation analysis identified 11 genes that were significantly associated with a variety of immune cells. We further predicted the utility of some potential drugs and validated our results in external datasets. Conclusion. Our results may help provide a better understanding of the relationship between the airway epithelial transcriptome and clinical data of SA. And this study will help to guide the development of SA-targeted molecular therapy.
Collapse
|
19
|
Zhou P, Zheng T, Zhao B. Cytokine-mediated immunomodulation of osteoclastogenesis. Bone 2022; 164:116540. [PMID: 36031187 PMCID: PMC10657632 DOI: 10.1016/j.bone.2022.116540] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Cytokines are an important set of proteins regulating bone homeostasis. In inflammation induced bone resorption, cytokines, such as RANKL, TNF-α, M-CSF, are indispensable for the differentiation and activation of resorption-driving osteoclasts, the process we know as osteoclastogenesis. On the other hand, immune system produces a number of regulatory cytokines, including IL-4, IL-10 and IFNs, and limits excessive activation of osteoclastogenesis and bone loss during inflammation. These unique properties make cytokines powerful targets as rheostat to maintain bone homeostasis and for potential immunotherapies of inflammatory bone diseases. In this review, we summarize recent advances in cytokine-mediated regulation of osteoclastogenesis and provide insights of potential translational impact of bench-side research into clinical treatment of bone disease.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China; Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Ting Zheng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
20
|
Zhou P. Protein vaccine NVX-CoV2373 elicits functional T cell immunity. J Clin Invest 2022; 132:163614. [PMID: 36189797 PMCID: PMC9525108 DOI: 10.1172/jci163614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The SARS-CoV-2 vaccine NVX-CoV2373 is a protein-based vaccine that might circumvent the difficulties in distributing mRNA vaccines to regions with limited access to cold-chain and refrigeration. However, the NVX-CoV2373–induced T cell and antibody responses remain poorly understood. In this issue of the JCI, Moderbacher et al. characterized SARS-CoV-2–specific CD4+ and CD8+ T cell responses elicited by one or two doses of NVX-CoV2373 in individuals enrolled in a phase I/IIa trial. Substantially increased spike-specific CD4+ and T follicular helper cells were found after the first or second vaccine dose, with some individuals developing a modest spike-specific CD8+ T cell response. Correlation analysis revealed an association between spike-specific CD4+ T cells and neutralizing antibody titers. Notably, preexisting T cell immunity showed negligible effects on NVX-CoV2373–induced T cell responses. These findings indicate that the protein-based vaccine NVX-CoV2373 induces robust T cell immunity capable of recognizing SARS-CoV-2 antigens and supporting humoral immune responses.
Collapse
|
21
|
Grydziuszko E, Phelps A, Bruton K, Jordana M, Koenig JFE. Heterogeneity, subsets, and plasticity of T follicular helper cells in allergy. J Allergy Clin Immunol 2022; 150:990-998. [PMID: 36070826 DOI: 10.1016/j.jaci.2022.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 10/14/2022]
Abstract
Antibody responses are critical for protection against pathogens. However, diseases such as allergic rhinitis or food allergy result from aberrant production of IgE antibodies against otherwise innocuous environmental antigens. The production of allergen-specific IgE requires interaction between B cells and CD4+ T cells, and a granular understanding of these interactions is required to develop novel therapies for allergic disease. CD4+ T cells are exceptionally heterogeneous in their transcriptional, epigenetic, and proteomic profiles, which poses significant challenges when attempting to define subsets relevant to the study of allergy among a continuum of cells. Defining subsets such as the T follicular helper (TFH) cell cluster provides a shorthand to understand the functions of CD4+ T cells in antibody production and supports mechanistic experimentation for hypothesis-driven discovery. With a focus on allergic disease, this Rostrum article broadly discusses heterogeneity among CD4+ T cells and provides a rationale for subdividing TFH cells into both functional and cytokine-skewed subsets. Further, it highlights the plasticity demonstrated by TFH cells during the primary response and after recall, and it explores the possibility of harnessing this plasticity to reprogram immunity for therapeutic benefit in allergic disease.
Collapse
Affiliation(s)
- Emily Grydziuszko
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Allyssa Phelps
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Kelly Bruton
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Joshua F E Koenig
- Department of Medicine, Schroeder Allergy and Immunology Research Institute, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
22
|
Foxp2 inhibits Th9 cell differentiation and attenuates allergic airway inflammation in a mouse model of ovalbumin-induced asthma. Int Immunopharmacol 2022; 111:109060. [PMID: 35930910 DOI: 10.1016/j.intimp.2022.109060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
This study aimed to explore the effects of forkhead box P2 gene (Foxp2) on T-helper 9 (Th9) differentiation in asthmatic mice. An in vivo asthmatic mouse model was induced with ovalbumin (OVA). An in vitro model was established by culturing CD4+ T cells with TGF-β, IL-4, and anti-IFN-γ. ELISA, flow cytometry, qRT-PCR and Western blot were performed to examine IL-9 secretion, Th9 cell number, and Th9 cell transcription factor expression, respectively. Pathological changes in lung tissues and airway mucus secretion were assessed with HE and PAS glycogen staining. Anti-IL-9 mAb reversed the elevation in Th9 cells and IL-9 expression in lung tissues and bronchoalveolar lavage fluid (BALF) of asthmatic mice. Foxp2 was downregulated in BALF and lung tissue of asthmatic mice and Th9 cells. Overexpression of Foxp2 inhibited Th9 cell differentiation in vitro and improved airway inflammation in vivo. Our study suggests that overexpression of Foxp2 attenuates allergic asthma by inhibiting Th9 cell differentiation.
Collapse
|
23
|
Immunomodulatory Properties of Pomegranate Peel Extract in a Model of Human Peripheral Blood Mononuclear Cell Culture. Pharmaceutics 2022; 14:pharmaceutics14061140. [PMID: 35745713 PMCID: PMC9228601 DOI: 10.3390/pharmaceutics14061140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 12/20/2022] Open
Abstract
Pomegranate peel extract (PoPEx) has been shown to have antioxidant and anti-inflammatory properties, but its effect on the adaptive immune system has not been sufficiently investigated. In this study, the treatment of human peripheral blood mononuclear cells (PBMC) with PoPEx (range 6.25–400 µg/mL) resulted in cytotoxicity at concentrations of 100 µg/mL and higher, due to the induction of apoptosis and oxidative stress, whereas autophagy was reduced. At non-cytotoxic concentrations, the opposite effect on these processes was observed simultaneously with the inhibition of PHA-induced PBMC proliferation and a significant decrease in the expression of CD4. PoPEx differently modulated the expression of activation markers (CD69, CD25, ICOS) and PD1 (inhibitory marker), depending on the dose and T-cell subsets. PoPEx (starting from 12.5 µg/mL) suppressed the production of Th1 (IFN-γ), Th17 (IL-17A, IL-17F, and IL-22), Th9 (IL-9), and proinflammatory cytokines (TNF-α and IL-6) in culture supernatants. Lower concentrations upregulated Th2 (IL-5 and IL-13) and Treg (IL-10) responses as well as CD4+CD25hiFoxp3+ cell frequency. Higher concentrations of PoPEx increased the frequency of IL-10- and TGF-β-producing T-cells (much higher in the CD4+ subset). In conclusion, our study suggested for the first time complex immunoregulatory effects of PoPEx on T cells, which could assist in the suppression of chronic inflammatory and autoimmune diseases.
Collapse
|
24
|
Baron F, Canti L, Ariën KK, Kemlin D, Desombere I, Gerbaux M, Pannus P, Beguin Y, Marchant A, Humblet-Baron S. Insights From Early Clinical Trials Assessing Response to mRNA SARS-CoV-2 Vaccination in Immunocompromised Patients. Front Immunol 2022; 13:827242. [PMID: 35309332 PMCID: PMC8931657 DOI: 10.3389/fimmu.2022.827242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/04/2022] [Indexed: 12/25/2022] Open
Abstract
It is critical to protect immunocompromised patients against COVID-19 with effective SARS-CoV-2 vaccination as they have an increased risk of developing severe disease. This is challenging, however, since effective mRNA vaccination requires the successful cooperation of several components of the innate and adaptive immune systems, both of which can be severely affected/deficient in immunocompromised people. In this article, we first review current knowledge on the immunobiology of SARS-COV-2 mRNA vaccination in animal models and in healthy humans. Next, we summarize data from early trials of SARS-COV-2 mRNA vaccination in patients with secondary or primary immunodeficiency. These early clinical trials identified common predictors of lower response to the vaccine such as anti-CD19, anti-CD20 or anti-CD38 therapies, low (naive) CD4+ T-cell counts, genetic or therapeutic Bruton tyrosine kinase deficiency, treatment with antimetabolites, CTLA4 agonists or JAK inhibitors, and vaccination with BNT162b2 versus mRNA1273 vaccine. Finally, we review the first data on third dose mRNA vaccine administration in immunocompromised patients and discuss recent strategies of temporarily holding/pausing immunosuppressive medication during vaccination.
Collapse
Affiliation(s)
- Frédéric Baron
- Laboratory of Hematology, GIGA-I3, University of Liege and Centre Hospitalier Universitaire (CHU) of Liège, Liege, Belgium
- Department of Medicine, Division of Hematology, Centre Hospitalier Universitaire (CHU) of Liège, Liège, Belgium
| | - Lorenzo Canti
- Laboratory of Hematology, GIGA-I3, University of Liege and Centre Hospitalier Universitaire (CHU) of Liège, Liege, Belgium
| | - Kevin K. Ariën
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Delphine Kemlin
- Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Isabelle Desombere
- Scientific Directorate Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Margaux Gerbaux
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Pieter Pannus
- Scientific Directorate Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-I3, University of Liege and Centre Hospitalier Universitaire (CHU) of Liège, Liege, Belgium
- Department of Medicine, Division of Hematology, Centre Hospitalier Universitaire (CHU) of Liège, Liège, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stéphanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Meng Z, Chen H, Deng C, Meng S. Potential cellular endocrinology mechanisms underlying the effects of Chinese herbal medicine therapy on asthma. Front Endocrinol (Lausanne) 2022; 13:916328. [PMID: 36051395 PMCID: PMC9424672 DOI: 10.3389/fendo.2022.916328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma is a complex syndrome with polygenetic tendency and multiple phenotypes, which has variable expiratory airflow limitation and respiratory symptoms that vary over time and in intensity. In recent years, continuous industrial development has seriously impacted the climate and air quality at a global scale. It has been verified that climate change can induce asthma in predisposed individuals and that atmospheric pollution can exacerbate asthma severity. At present, a subset of patients is resistant to the drug therapy for asthma. Hence, it is urgent to find new ideas for asthma prevention and treatment. In this review, we discuss the prescription, composition, formulation, and mechanism of traditional Chinese medicine monomer, traditional Chinese medicine monomer complex, single herbs, and traditional Chinese patent medicine in the treatment of asthma. We also discuss the effects of Chinese herbal medicine on asthma from the perspective of cellular endocrinology in the past decade, emphasizing on the roles as intracellular and extracellular messengers of three substances-hormones, substances secreted by pulmonary neuroendocrine cells, and neuroendocrine-related signaling protein-which provide the theoretical basis for clinical application and new drug development.
Collapse
Affiliation(s)
- Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Shengxi Meng,
| |
Collapse
|
26
|
Jeong J, Lee HK. The Role of CD4 + T Cells and Microbiota in the Pathogenesis of Asthma. Int J Mol Sci 2021; 22:11822. [PMID: 34769255 PMCID: PMC8584410 DOI: 10.3390/ijms222111822] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma, a chronic respiratory disease involving variable airflow limitations, exhibits two phenotypes: eosinophilic and neutrophilic. The asthma phenotype must be considered because the prognosis and drug responsiveness of eosinophilic and neutrophilic asthma differ. CD4+ T cells are the main determinant of asthma phenotype. Th2, Th9 and Tfh cells mediate the development of eosinophilic asthma, whereas Th1 and Th17 cells mediate the development of neutrophilic asthma. Elucidating the biological roles of CD4+ T cells is thus essential for developing effective asthma treatments and predicting a patient's prognosis. Commensal bacteria also play a key role in the pathogenesis of asthma. Beneficial bacteria within the host act to suppress asthma, whereas harmful bacteria exacerbate asthma. Recent literature indicates that imbalances between beneficial and harmful bacteria affect the differentiation of CD4+ T cells, leading to the development of asthma. Correcting bacterial imbalances using probiotics reportedly improves asthma symptoms. In this review, we investigate the effects of crosstalk between the microbiota and CD4+ T cells on the development of asthma.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
27
|
Gu G, Lv X, Liu G, Zeng R, Li S, Chen L, Liang Z, Wang H, Lu F, Zhan L, Lv X. Tnfaip6 Secreted by Bone Marrow-Derived Mesenchymal Stem Cells Attenuates TNBS-Induced Colitis by Modulating Follicular Helper T Cells and Follicular Regulatory T Cells Balance in Mice. Front Pharmacol 2021; 12:734040. [PMID: 34707499 PMCID: PMC8542666 DOI: 10.3389/fphar.2021.734040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Objective: To investigate the immunological mechanism of bone marrow-derived mesenchymal stem cells (BM-MSCs) in inflammatory bowel disease (IBD). Methods: Mice with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis were intraperitoneally injected with phosphate-buffered saline, BM-MSCs, BM-MSCs with tumor necrosis factor-induced protein 6 (Tnfaip6) knockdown mediated by RNA interference recombinant adenovirus, and BM-MSCs-infected with control adenovirus or recombinant mouse Tnfaip6. The disease activity index, weight loss, and histological scores were recorded. Serum levels of Tnfaip6 and pro- and anti-inflammatory cytokines, including interleukin (IL)-21, tumor necrosis factor-alpha (TNF-α), IL-10 were measured by enzyme-linked immunosorbent assay. The relative expression levels of these cytokines, B-cell lymphoma 6 (BCL-6) and fork-like transcription factor p3 (Foxp3) in the colon were determined by real-time quantitative PCR (RT-qPCR). BCL-6 and Foxp3 are the master regulators of follicular helper T cells (Tfh) and follicular regulatory T cells (Tfr), respectively. The infiltration of Tfh and Tfr in mesenteric lymph nodes (MLNs) and spleens was analyzed by flow cytometry. Results: Compared to the normal control group, the expression levels of BCL-6 and IL-21 in the colon, Tfh infiltration, and ratios of Tfh/Tfr in the MLNs and spleen, and the serum concentrations of IL-21 and TNF-α increased significantly in the colitis model group (p < 0.05). Intraperitoneal injection of BM-MSCs or Tnfaip6 ameliorated weight loss and clinical and histological severity of colitis, downregulated the expression of BCL-6, IL-21, and TNF-α, upregulated the expression of Foxp3, IL-10, and Tnfaip6 (p < 0.05), increased Tfr and reduced the infiltration of Tfh in the MLNs and spleen, and downregulated the Tfh/Tfr ratio (p < 0.05). On the other hand, BM-MSCs lost the therapeutic effect and immune regulatory functions on Tfh and Tfr after Tnfaip6 knockdown. Conclusion: Tfh increase in the inflamed colon, Tfh decrease and Tfr increase during the colitis remission phase, and the imbalance of the Tfh/Tfr ratio is closely related to the progression of IBD. Tnfaip6 secreted by BM-MSCs alleviates IBD by inhibiting Tfh differentiation, promoting Tfr differentiation, and improving the imbalance of Tfh/Tfr in mice.
Collapse
Affiliation(s)
- Guangli Gu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gengfeng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruizhi Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaoliang Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiqin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Lu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lingling Zhan
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
28
|
Immunosuppression in Malaria: Do Plasmodium falciparum Parasites Hijack the Host? Pathogens 2021; 10:pathogens10101277. [PMID: 34684226 PMCID: PMC8536967 DOI: 10.3390/pathogens10101277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Malaria reflects not only a state of immune activation, but also a state of general immune defect or immunosuppression, of complex etiology that can last longer than the actual episode. Inhabitants of malaria-endemic regions with lifelong exposure to the parasite show an exhausted or immune regulatory profile compared to non- or minimally exposed subjects. Several studies and experiments to identify and characterize the cause of this malaria-related immunosuppression have shown that malaria suppresses humoral and cellular responses to both homologous (Plasmodium) and heterologous antigens (e.g., vaccines). However, neither the underlying mechanisms nor the relative involvement of different types of immune cells in immunosuppression during malaria is well understood. Moreover, the implication of the parasite during the different stages of the modulation of immunity has not been addressed in detail. There is growing evidence of a role of immune regulators and cellular components in malaria that may lead to immunosuppression that needs further research. In this review, we summarize the current evidence on how malaria parasites may directly and indirectly induce immunosuppression and investigate the potential role of specific cell types, effector molecules and other immunoregulatory factors.
Collapse
|
29
|
Zheng T, Fan M, Wei Y, Feng J, Zhou P, Sun X, Xue A, Qin CX, Yu D. Huangbai Liniment Ameliorates Skin Inflammation in Atopic Dermatitis. Front Pharmacol 2021; 12:726035. [PMID: 34531749 PMCID: PMC8438128 DOI: 10.3389/fphar.2021.726035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD), also known as atopic eczema, is one of the most common skin diseases and is characterized by allergic skin inflammation, redness, and itchiness and is associated with a hyperactivated type 2 immune response. The leading causes of AD include an imbalance in the immune system, genetic predisposition, or environmental factors, making the development of effective pharmacotherapies complex. Steroids are widely used to treat AD; however, they provide limited efficacy in the long term and can lead to adverse effects. Thus, novel treatments that offer durable efficacy and fewer side effects are urgently needed. Here, we investigated the therapeutic potential of Huangbai Liniment (HB), a traditional Chinese medicine, using an experimental AD mouse model, following our clinical observations of AD patients. In both AD patient and the mouse disease model, HB significantly improved the disease condition. Specifically, patients who received HB treatment on local skin lesions (3–4 times/day) showed improved resolution of inflammation. Using the 1-Chloro-2,4-dinitrobenzene (DNCB)-induced AD model in BALB/c mice, we observed that HB profoundly alleviated severe skin inflammation and relieved the itching. The dermatopathological results showed markedly reversed skin inflammation with decreased epidermal thickness and overall cellularity. Correspondingly, HB treatment largely decreased the mRNA expression of proinflammatory cytokines, including IL-1β, TNF-α, IL-17, IL-4, and IL-13, associated with declined gene expression of IL-33, ST2, and GATA3, which are connected to the type 2 immune response. In addition, HB restored immune tolerance by promoting regulatory T (TREG) cells and inhibiting the generation of TH1, TH2, and TH17 cells in vitro and in the DNCB-induced AD mouse model. For the first time, we demonstrate that HB markedly mitigates skin inflammation in AD patients and the DNCB-induced AD mouse model by reinvigorating the T cell immune balance, shedding light on the future development and application of novel HB-based therapeutics for AD.
Collapse
Affiliation(s)
- Ting Zheng
- Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Miao Fan
- School of Pharmaceutical Science, Shandong University, Jinan, China
| | - Yunbo Wei
- Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jinhong Feng
- Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pengcheng Zhou
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Xin Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Anqi Xue
- Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Cheng Xue Qin
- School of Pharmaceutical Science, Shandong University, Jinan, China.,Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Di Yu
- Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Varricchi G, Modestino L, Poto R, Cristinziano L, Gentile L, Postiglione L, Spadaro G, Galdiero MR. Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma. Clin Exp Med 2021; 22:285-300. [PMID: 34342773 PMCID: PMC9110438 DOI: 10.1007/s10238-021-00750-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022]
Abstract
Neutrophils (PMNs) contain and release a powerful arsenal of mediators, including several granular enzymes, reactive oxygen species (ROS) and neutrophil extracellular traps (NETs). Although airway neutrophilia is associated with severity, poor response to glucocorticoids and exacerbations, the pathophysiological role of neutrophils in asthma remains poorly understood. Twenty-four patients with asthma and 22 healthy controls (HCs) were prospectively recruited. Highly purified peripheral blood neutrophils (> 99%) were evaluated for ROS production and activation status upon stimulation with lipopolysaccharide (LPS), N-formylmethionyl-leucyl-phenylalanine (fMLP) and phorbol 12-myristate 13-acetate (PMA). Plasma levels of myeloperoxidase (MPO), CXCL8, matrix metalloproteinase-9 (MMP-9), granulocyte–monocyte colony-stimulating factor (GM-CSF) and vascular endothelial growth factor (VEGF-A) were measured by ELISA. Plasma concentrations of citrullinated histone H3 (CitH3) and circulating free DNA (dsDNA) were evaluated as NET biomarkers. Activated PMNs from asthmatics displayed reduced ROS production and activation status compared to HCs. Plasma levels of MPO, MMP-9 and CXCL8 were increased in asthmatics compared to HCs. CitH3 and dsDNA plasma levels were increased in asthmatics compared to controls and the CitH3 concentrations were inversely correlated to the % decrease in FEV1/FVC in asthmatics. These findings indicate that neutrophils and their mediators could have an active role in asthma pathophysiology.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy
| | - Luca Modestino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Luca Gentile
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131, Naples, Italy
| | - Loredana Postiglione
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131, Naples, Italy.
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131, Naples, Italy.
- World Allergy Organization (WAO) Center of Excellence, 80131, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, 80131, Naples, Italy.
| |
Collapse
|
31
|
Wishnie AJ, Chwat-Edelstein T, Attaway M, Vuong BQ. BCR Affinity Influences T-B Interactions and B Cell Development in Secondary Lymphoid Organs. Front Immunol 2021; 12:703918. [PMID: 34381455 PMCID: PMC8350505 DOI: 10.3389/fimmu.2021.703918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
B cells produce high-affinity immunoglobulins (Igs), or antibodies, to eliminate foreign pathogens. Mature, naïve B cells expressing an antigen-specific cell surface Ig, or B cell receptor (BCR), are directed toward either an extrafollicular (EF) or germinal center (GC) response upon antigen binding. B cell interactions with CD4+ pre-T follicular helper (pre-Tfh) cells at the T-B border and effector Tfh cells in the B cell follicle and GC control B cell development in response to antigen. Here, we review recent studies demonstrating the role of B cell receptor (BCR) affinity in modulating T-B interactions and the subsequent differentiation of B cells in the EF and GC response. Overall, these studies demonstrate that B cells expressing high affinity BCRs preferentially differentiate into antibody secreting cells (ASCs) while those expressing low affinity BCRs undergo further affinity maturation or differentiate into memory B cells (MBCs).
Collapse
Affiliation(s)
- Alec J Wishnie
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| | - Tzippora Chwat-Edelstein
- Department of Biology, The City College of New York, New York, NY, United States.,Macaulay Honors College, New York, NY, United States
| | - Mary Attaway
- Department of Biology, The City College of New York, New York, NY, United States
| | - Bao Q Vuong
- Biology PhD Program, Graduate Center, The City University of New York, New York, NY, United States.,Department of Biology, The City College of New York, New York, NY, United States
| |
Collapse
|
32
|
Almeida L, Dhillon-LaBrooy A, Carriche G, Berod L, Sparwasser T. CD4 + T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. J Allergy Clin Immunol 2021; 148:16-32. [PMID: 33966898 DOI: 10.1016/j.jaci.2021.03.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
The progression through different steps of T-cell development, activation, and effector function is tightly bound to specific cellular metabolic processes. Previous studies established that T-effector cells have a metabolic bias toward aerobic glycolysis, whereas naive and regulatory T cells mainly rely on oxidative phosphorylation. More recently, the field of immunometabolism has drifted away from the notion that mitochondrial metabolism holds little importance in T-cell activation and function. Of note, T cells possess metabolic promiscuity, which allows them to adapt their nutritional requirements according to the tissue environment. Altogether, the integration of these metabolic pathways culminates in the generation of not only energy but also intermediates, which can regulate epigenetic programs, leading to changes in T-cell fate. In this review, we discuss the recent literature on how glycolysis, amino acid catabolism, and fatty acid oxidation work together with the tricarboxylic acid cycle in the mitochondrion. We also emphasize the importance of the electron transport chain for T-cell immunity. We also discuss novel findings highlighting the role of key enzymes, accessory pathways, and posttranslational protein modifications that distinctively regulate T-cell function and might represent prominent candidates for therapeutic purposes.
Collapse
Affiliation(s)
- Luís Almeida
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Ayesha Dhillon-LaBrooy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Guilhermina Carriche
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Luciana Berod
- Institute for Molecular Medicine Mainz, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
33
|
Boutin RCT, Petersen C, Woodward SE, Serapio-Palacios A, Bozorgmehr T, Loo R, Chalanuchpong A, Cirstea M, Lo B, Huus KE, Barcik W, Azad MB, Becker AB, Mandhane PJ, Moraes TJ, Sears MR, Subbarao P, McNagny KM, Turvey SE, Finlay BB. Bacterial-fungal interactions in the neonatal gut influence asthma outcomes later in life. eLife 2021; 10:e67740. [PMID: 33876729 PMCID: PMC8075585 DOI: 10.7554/elife.67740] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial members of the infant gut microbiota and bacterial-derived short-chain fatty acids (SCFAs) have been shown to be protective against childhood asthma, but a role for the fungal microbiota in asthma etiology remains poorly defined. We recently reported an association between overgrowth of the yeast Pichia kudriavzevii in the gut microbiota of Ecuadorian infants and increased asthma risk. In the present study, we replicated these findings in Canadian infants and investigated a causal association between early life gut fungal dysbiosis and later allergic airway disease (AAD). In a mouse model, we demonstrate that overgrowth of P. kudriavzevii within the neonatal gut exacerbates features of type-2 and -17 inflammation during AAD later in life. We further show that P. kudriavzevii growth and adherence to gut epithelial cells are altered by SCFAs. Collectively, our results underscore the potential for leveraging inter-kingdom interactions when designing putative microbiota-based asthma therapeutics.
Collapse
Affiliation(s)
- Rozlyn CT Boutin
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Charisse Petersen
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Sarah E Woodward
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | | | - Tahereh Bozorgmehr
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Rachelle Loo
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Alina Chalanuchpong
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Mihai Cirstea
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Bernard Lo
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
| | - Kelsey E Huus
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Weronika Barcik
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Meghan B Azad
- Children’s Hospital Research Institute of Manitoba and Department of Pediatrics and Child Health, University of ManitobaWinnipegMBCanada
| | - Allan B Becker
- Children’s Hospital Research Institute of Manitoba and Department of Pediatrics and Child Health, University of ManitobaWinnipegMBCanada
| | - Piush J Mandhane
- Department of Pediatrics, University of AlbertaEdmontonCanada
- School of Public Health, University of AlbertaEdmontonCanada
| | | | | | - Padmaja Subbarao
- The Hospital for Sick ChildrenTorontoCanada
- Department of Pediatrics, University of TorontoTorontoCanada
| | - Kelly M McNagny
- Department of Biomedical Engineering, University of British ColumbiaVancouverCanada
- Department of Medical Genetics University of British ColumbiaVancouverCanada
| | - Stuart E Turvey
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Department of Pediatrics, University of British ColumbiaVancouverCanada
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouverCanada
| |
Collapse
|
34
|
Ebersole JL, Kirakodu SS, Orraca L, Gonzalez Martinez J, Gonzalez OA. Gingival transcriptomics of follicular T cell footprints in progressing periodontitis. Clin Exp Immunol 2021; 204:373-395. [PMID: 33565609 DOI: 10.1111/cei.13584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
Follicular helper T cells (Tfh) cells have been identified in the circulation and in tertiary lymphoid structures in chronic inflammation. Gingival tissues with periodontitis reflect chronic inflammation, so genomic footprints of Tfh cells should occur in these tissues and may differ related to aging effects. Macaca mulatta were used in a ligature-induced periodontitis model [adult group (aged 12-23 years); young group (aged 3-7 years)]. Gingival tissue and subgingival microbiome samples were obtained at matched healthy ligature-induced disease and clinical resolution sites. Microarray analysis examined Tfh genes (n = 54) related to microbiome characteristics documented using 16S MiSeq. An increase in the major transcription factor of Tfh cells, BCL6, was found with disease in both adult and young animals, while master transcription markers of other T cell subsets were either decreased or showed minimal change. Multiple Tfh-related genes, including surface receptors and transcription factors, were also significantly increased during disease. Specific microbiome patterns were significantly associated with profiles indicative of an increased presence/function of Tfh cells. Importantly, unique microbial complexes showed distinctive patterns of interaction with Tfh genes differing in health and disease and with the age of the animals. An increase in Tfh cell responsiveness occurred in the progression of periodontitis, affected by age and related to specific microbial complexes in the oral microbiome. The capacity of gingival Tfh cells to contribute to localized B cell activation and active antibody responses, including affinity maturation, may be critical for controlling periodontal lesions and contributing to limiting and/or resolving the lesions.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Biomedical Science, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - S S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - L Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, PR, USA
| | - J Gonzalez Martinez
- Caribbean Primate Research Center, University of Puerto Rico, Toa Baja, PR, USA
| | - O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
35
|
Zhou P, Zheng T, Li Y, Zhang X, Feng J, Wei Y, Wang H, Yao Y, Gong F, Tian W, Sun L, Liu Z, Zhao B, Yu D. Chlorinated Flame-Retardant Dechlorane 602 Potentiates Type 2 Innate Lymphoid Cells and Exacerbates Airway Inflammation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1099-1109. [PMID: 33377767 DOI: 10.1021/acs.est.0c03758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chlorinated flame-retardant dechloranes are emerging substitutes for restricted flame retardants. Recent studies have demonstrated that they are accumulated in wildlife and detectable in humans; however, their effects on human health are poorly understood. Here, for the first time, we revealed that widely used chlorinated flame-retardant dechlorane 602 (Dec 602) exacerbated airway inflammation in two mouse models induced by house dust mite (HDM) or IL-33, respectively. Deteriorated airway inflammation by Dec 602 was associated with a higher production of type 2 cytokines including IL-4, IL-5, and IL-13, and IgE, accompanied by enhanced mRNA expression of proinflammatory cytokines such as TNF-α and IL-6. Mechanistically, we found that Dec 602 directly potentiated mouse and human group 2 innate lymphoid cells and, as such, promoted airway inflammation even in the absence of conventional T cells in Rag -/- mice. These findings provide novel immunological insights necessary for further studies of the health impact of emerging flame-retardant dechloranes including Dec 602.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Ting Zheng
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xin Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jinhong Feng
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yunbo Wei
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hao Wang
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
- The University of Queensland Diamantina Institute, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Wenjing Tian
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Di Yu
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
36
|
Gong F, Dai Y, Zheng T, Cheng L, Zhao D, Wang H, Liu M, Pei H, Jin T, Yu D, Zhou P. Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals. J Clin Invest 2020; 130:6588-6599. [PMID: 32841212 PMCID: PMC7685722 DOI: 10.1172/jci141054] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUNDMarked progress is achieved in understanding the physiopathology of coronavirus disease 2019 (COVID-19), which caused a global pandemic. However, the CD4+ T cell population critical for antibody response in COVID-19 is poorly understood.METHODSIn this study, we provided a comprehensive analysis of peripheral CD4+ T cells from 13 COVID-19 convalescent patients, defined as confirmed free of SARS-CoV-2 for 2 to 4 weeks, using flow cytometry and magnetic chemiluminescence enzyme antibody immunoassay. The data were correlated with clinical characteristics.RESULTSWe observed that, relative to healthy individuals, convalescent patients displayed an altered peripheral CD4+ T cell spectrum. Specifically, consistent with other viral infections, cTfh1 cells associated with SARS-CoV-2-targeting antibodies were found in COVID-19 covalescent patients. Individuals with severe disease showed higher frequencies of Tem and Tfh-em cells but lower frequencies of Tcm, Tfh-cm, Tfr, and Tnaive cells, compared with healthy individuals and patients with mild and moderate disease. Interestingly, a higher frequency of cTfh-em cells correlated with a lower blood oxygen level, recorded at the time of admission, in convalescent patients. These observations might constitute residual effects by which COVID-19 can impact the homeostasis of CD4+ T cells in the long-term and explain the highest ratio of class-switched virus-specific antibody producing individuals found in our severe COVID-19 cohort.CONCLUSIONOur study demonstrated a close connection between CD4+ T cells and antibody production in COVID-19 convalescent patients.FUNDINGSix Talent Peaks Project in Jiangsu Province and the National Natural Science Foundation of China (NSFC).
Collapse
Affiliation(s)
- Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People’s Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Ting Zheng
- Qilu University of Technology, Shandong Academy of Sciences, Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Jinan, China
| | - Liang Cheng
- Department of Respiration, The Fifth People’s Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Dan Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Wang
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Min Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Pei
- Department of Laboratory Medicine, The Fifth People’s Hospital of Wuxi, Wuxi, Jiangsu, China
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Yu
- Qilu University of Technology, Shandong Academy of Sciences, Shandong Analysis and Test Center, Laboratory of Immunology for Environment and Health, Jinan, China
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Pengcheng Zhou
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
37
|
Berghi NO, Dumitru M, Vrinceanu D, Ciuluvica RC, Simioniuc-Petrescu A, Caragheorgheopol R, Tucureanu C, Cornateanu RS, Giurcaneanu C. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp Ther Med 2020; 20:2352-2360. [PMID: 32765714 PMCID: PMC7401840 DOI: 10.3892/etm.2020.8961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic diseases have been classified in the last decades using various theories. The main classes of the newest classification in allergic respiratory diseases focus on the characterization of the endotype (which takes into account biomarkers related to determinant pathophysiological mechanisms) and of the phenotype (based on the description of the disease). Th2, Th1 and Th17 lymphocytes and the type of inflammatory response mediated by them represent the basis for Th2 and non-Th2 endotype classification. In addition, new lymphocytes were also used to characterize allergic diseases: Th9 lymphocytes, Th22 lymphocytes, T follicular helper cells (TFH) lymphocytes and invariant natural killer T (iNKT) lymphocytes. In the last decade, a growing body of evidence focused on chemokines, chemoattractant cytokines, which seems to have an important contribution to the pathogenesis of this pathology. This review presents the interactions between chemokines and Th lymphocytes in the context of Th2/non-Th2 endotype classification of respiratory allergies.
Collapse
Affiliation(s)
- Nicolae Ovidiu Berghi
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| | - Mihai Dumitru
- Anatomy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Vrinceanu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | | | - Anca Simioniuc-Petrescu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | - Ramona Caragheorgheopol
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Catalin Tucureanu
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Roxana Sfrent Cornateanu
- Department of Physiopathology and Immunology, 'Carol Davila' University of Medicine and Pharmacy, 041914 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| |
Collapse
|