1
|
Li Y, Sun J, Li X, Yu W, Ren J, Wang B, Han X, Ma L, Sun X, Teng W, Gu X, Ding Q, Li B. Donepezil-induced degradation of hERG potassium channel via lysosomal pathway is exacerbated by hypoxia. Eur J Pharmacol 2025; 996:177549. [PMID: 40157707 DOI: 10.1016/j.ejphar.2025.177549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Donepezil (DPZ), an acetylcholinesterase inhibitor for Alzheimer's disease, has drawn attention for causing prolonged QT interval and torsade de pointes (TdP). Acquired long QT syndrome (acLQTS) is usually caused by blockage of the cardiac potassium current IKr/hERG, which is essential for cardiac repolarization. This study aimed to investigate DPZ's effect on hERG channel and its cardiotoxic mechanism, particularly focusing on whether hypoxia increases the risk of DPZ-induced acLQTS. To explore these, we employed western blotting to analyze protein levels, the patch clamp technique to measure hERG current and the action potentials of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Additionally, immunoprecipitation was utilized to detect protein-protein interactions. Finally, optical mapping monitored guinea pig ECGs and APD, providing in vivo insights. Our results indicate that 24-h incubation with DPZ inhibits hERG protein levels and current in the plasma membrane. Mechanistically, DPZ induces an imbalance in hERG protein acetylation/ubiquitination and decreases the stability of hERG by promoting HDAC6 expression, and the ubiquitinated hERG protein was degraded at lysosomes via K63-polyubiquitin chains. DPZ affects hERG membrane protein via two pathways: it accelerates endocytosis and directs degradation via CHMP3 (a sorting protein of ESCRT-III), while inhibiting recycling through Rab11. Hypoxia exacerbates DPZ-induced hERG degradation and APD prolongation in guinea pigs and hiPSC-CMs. Collectively, DPZ reduces hERG protein stability in the membrane, promoting its degradation in lysosomes. Hypoxia further exacerbates the risk of arrhythmia caused by DPZ. These findings remind us to pay attention to acLQTS induced by DPZ inhibition of hERG in clinical applications.
Collapse
Affiliation(s)
- Yuexin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinyang Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaoxu Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wenting Yu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiacheng Ren
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baoqiang Wang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaoxia Han
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lu Ma
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiang Sun
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei Teng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiwei Gu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qirui Ding
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baoxin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Wang T, Wang X, Ren W, Sun Z, Zhang Y, Wu N, Diao H. Cardiomyocyte proliferation: Advances and insights in macrophage-targeted therapy for myocardial injury. Genes Dis 2025; 12:101332. [PMID: 39935606 PMCID: PMC11810708 DOI: 10.1016/j.gendis.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 02/13/2025] Open
Abstract
In the mammalian heart, cardiomyocytes undergo a transient window of proliferation that leads to regenerative impairment, limiting cardiomyocyte proliferation and myocardial repair capacity. Cardiac developmental patterns exacerbate the progression of heart disease characterized by myocardial cell loss, ultimately leading to cardiac dysfunction and heart failure. Myocardial infarction causes the death of partial cardiomyocytes, which triggers an immune response to remove debris and restore tissue integrity. Interestingly, when transient myocardial injury triggers irreversible loss of cardiomyocytes, the subsequent macrophages responsible for proliferation and regeneration have a unique immune phenotype that promotes the formation of pre-existing new cardiomyocytes. During mammalian regeneration, mononuclear-derived macrophages and self-renewing resident cardiac macrophages provide multiple cytokines and molecular signals that create a regenerative environment and cellular plasticity capacity in postnatal cardiomyocytes, a pivotal strategy for achieving myocardial repair. Consistent with other human tissues, cardiac macrophages originating from the embryonic endothelium produce a hierarchy of contributions to monocyte recruitment and fate specification. In this review, we discuss the novel functions of macrophages in triggering cardiac regeneration and repair after myocardial infarction and provide recent advances and prospective insights into the phenotypic transformation and heterogeneous features involving cardiac macrophages. In conclusion, macrophages contribute critically to regeneration, repair, and remodeling, and are challenging targets for cardiovascular therapeutic interventions.
Collapse
Affiliation(s)
- Tao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Weibin Ren
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yanhui Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Hongyan Diao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
3
|
Weeratunga P, Harman RM, Jager MC, Van de Walle GR. Footprint-free induced pluripotent stem cells can be successfully differentiated into mesenchymal stromal cells in the feline model. Stem Cell Res Ther 2025; 16:195. [PMID: 40254569 PMCID: PMC12010622 DOI: 10.1186/s13287-025-04325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) can propagate indefinitely and give rise to every other cell type, rendering them invaluable for disease modelling, drug development research, and usage in regenerative medicine. While feline iPSCs have been described, there are currently no reports on generating genome integration (footprint)-free iPSCs from domestic cats. Therefore, the objective of this study was to generate feline iPSCs from fetal fibroblasts using non-integrative Sendai virus (SeV) vectors carrying human transcription factors. Moreover, these iPSCs were differentiated into mesenchymal stromal cells (MSCs), which can be used as an alternative to tissue-derived MSCs. METHODS Feline fetal fibroblasts were transduced with CytoTune-iPS 2.0 Sendai Reprogramming vectors at recommended multiplicity of infections (MOI) and cultured for about 6 days. At 7 days post transduction cells were dissociated, replated on inactivated feeder cells and maintained in iPSC medium for 28 days with daily medium change. Emerging iPSC colonies were mechanically passaged and transferred to fresh feeder cells and further passaged every 6-8 days. Four feline iPSC lines were generated, with two selected for further in-depth characterization. Feline iPSCs were then differentiated into MSCs using a serial plating strategy and an inhibitor of the transforming growth factor-β (TGF-β) type I receptor. RESULTS Feline iPSCs exhibited characteristic colony morphology, high nuclear-to-cytoplasmic ratio, positive alkaline phosphatase activity, and expressed feline OCT4, SOX2, and Nanog homeobox (NANOG) stem cell markers. Expression of SeV-derived transgenes decreased during passaging to be eventually lost from the host cells and feline iPSCs could be stably maintained for over 35 passages. Feline iPSCs differentiated into embryoid bodies in vitro and did not form fully differentiated teratomas; instead, they generated in vivo masses containing mesodermal tissue derivatives when injected into immunodeficient mice. Feline iPSC-derived MSCs were plastic adherent, displayed MSC-like morphology, expressed MSC-specific surface markers, and differentiated into cells from the mesodermal lineage in vitro. RNA deep sequencing identified 1,189 differentially expressed genes in feline iPSC-derived MSCs compared to feline iPSCs. CONCLUSION We demonstrated the generation of footprint-free iPSCs from domestic cats and their directed differentiation potential towards MSCs. These SeV-derived feline iPSCs and iPSC-derived MSCs will provide valuable models to study feline diseases and explore novel therapeutic strategies and can serve as translational models for human health, leading to increased knowledge on disease pathogenesis and improved therapeutic interventions.
Collapse
Affiliation(s)
- Prasanna Weeratunga
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA
| | - Mason C Jager
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14850, USA.
- Department of Veterinary Pathobiology, The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Lin M, Alimerzaloo F, Wang X, Alhalabi O, Krieg SM, Skutella T, Younsi A. Harnessing stem cell-derived exosomes: a promising cell-free approach for spinal cord injury. Stem Cell Res Ther 2025; 16:182. [PMID: 40247394 PMCID: PMC12004558 DOI: 10.1186/s13287-025-04296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/25/2025] [Indexed: 04/19/2025] Open
Abstract
Spinal cord injury (SCI) is a severe injury to the central nervous system that often results in permanent neurological dysfunction. Current treatments have limited efficacy and face challenges in restoring neurological function after injury. Recently, stem cell-derived exosomes have gained attention as an experimental treatment for SCI due to their unique properties, including superior biocompatibility, minimal immunogenicity and non-tumorigenicity. With their potential as a cell-free therapy, exosomes promote SCI repair by enhancing nerve regeneration, reducing inflammation and stabilizing the blood-spinal cord barrier. This review summarizes advances in stem cell-derived exosome research for SCI over the past years, focusing on their mechanisms and future prospects. Despite their promising therapeutic potential, clinical translation remains challenging due to standardization of exosome isolation protocols, compositional consistency and long-term safety profiles that require further investigation.
Collapse
Affiliation(s)
- Miaoman Lin
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Farzaneh Alimerzaloo
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Xingjin Wang
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Obada Alhalabi
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Thomas Skutella
- Medical Faculty, Heidelberg University, Heidelberg, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Verma I, Seshagiri PB. Current Applications of Human Pluripotent Stem Cells in Neuroscience Research and Cell Transplantation Therapy for Neurological Disorders. Stem Cell Rev Rep 2025:10.1007/s12015-025-10851-6. [PMID: 40186708 DOI: 10.1007/s12015-025-10851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 04/07/2025]
Abstract
Many neurological diseases involving tissue damage cannot be treated with drug-based approaches, and the inaccessibility of human brain samples further hampers the study of these diseases. Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide an excellent model for studying neural development and function. PSCs can be differentiated into various neural cell types, providing a renewal source of functional human brain cells. Therefore, PSC-derived neural cells are increasingly used for multiple applications, including neurodevelopmental and neurotoxicological studies, neurological disease modeling, drug screening, and regenerative medicine. In addition, the neural cells generated from patient iPSCs can be used to study patient-specific disease signatures and progression. With the recent advances in genome editing technologies, it is possible to remove the disease-related mutations in the patient iPSCs to generate corrected iPSCs. The corrected iPSCs can differentiate into neural cells with normal physiological functions, which can be used for autologous transplantation. This review highlights the current progress in using PSCs to understand the fundamental principles of human neurodevelopment and dissect the molecular mechanisms of neurological diseases. This knowledge can be applied to develop better drugs and explore cell therapy options. We also discuss the basic requirements for developing cell transplantation therapies for neurological disorders and the current status of the ongoing clinical trials.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Neurology, University of Michigan, Ann Arbor, 48109, USA.
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
6
|
Heiduschka S, Prigione A. iPSC models of mitochondrial diseases. Neurobiol Dis 2025; 207:106822. [PMID: 39892770 DOI: 10.1016/j.nbd.2025.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/17/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025] Open
Abstract
Mitochondrial diseases are historically difficult to study. They cause multi-systemic defects with prevalent impairment of hard-to-access tissues such as the brain and the heart. Furthermore, they suffer from a paucity of conventional model systems, especially because of the challenges associated with mitochondrial DNA (mtDNA) engineering. Consequently, most mitochondrial diseases are currently untreatable. Human induced pluripotent stem cells (iPSCs) represent a promising approach for developing human model systems and assessing therapeutic avenues in a patient- and tissue-specific context. iPSCs are being increasingly used to investigate mitochondrial diseases, either for dissecting mutation-specific defects within two-dimensional (2D) or three-dimensional (3D) progenies or for unveiling the impact of potential treatment options. Here, we review how iPSC-derived 2D cells and 3D organoid models have been applied to the study of mitochondrial diseases caused by either nuclear or mtDNA defects. We anticipate that the field of iPSC-driven modeling of mitochondrial diseases will continue to grow, likely leading to the development of innovative platforms for treatment discovery and toxicity that could benefit the patient community suffering from these debilitating disorders with highly unmet medical needs.
Collapse
Affiliation(s)
- Sonja Heiduschka
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
7
|
Jiménez A, López-Ornelas A, Gutiérrez-de la Cruz N, Puente-Rivera J, Mayen-Quinto RD, Sánchez-Monciváis A, Ignacio-Mejía I, Albores-Méndez EM, Vargas-Hernández MA, Estudillo E. The Use of Neurons Derived from Pluripotent Stem Cells to Study Nerve-Cancer Cell Interactions. Int J Mol Sci 2025; 26:3057. [PMID: 40243726 PMCID: PMC11988749 DOI: 10.3390/ijms26073057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Tumor innervation is a complex interaction between nerves and cancer cells that consists of axons invading tumors, and its complexity remains largely unknown in humans. Although some retrospective studies have provided important insights into the relationship between nerves and tumors, further knowledge is required about this biological process. Animal experiments have elucidated several molecular and cellular mechanisms of tumor innervation; however, no experimental models currently exist to study interactions between human cancer and nerve cells. Human pluripotent stem cells can differentiate into neurons for research purposes; however, the use of these neurons to study interactions with cancer cells remains largely unexplored. Hence, here we analyze the potential of human pluripotent stem cells to study the interaction of cancer cells and neurons derived from human pluripotent stem cells to unravel the poorly understood mechanisms of human tumor innervation.
Collapse
Affiliation(s)
- Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico; (A.J.); (A.L.-O.); (J.P.-R.)
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico; (A.J.); (A.L.-O.); (J.P.-R.)
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City 06800, Mexico
| | - Neptali Gutiérrez-de la Cruz
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Jonathan Puente-Rivera
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico; (A.J.); (A.L.-O.); (J.P.-R.)
| | - Rodolfo David Mayen-Quinto
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Anahí Sánchez-Monciváis
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Iván Ignacio-Mejía
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Exsal M. Albores-Méndez
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Marco Antonio Vargas-Hernández
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico; (N.G.-d.l.C.); (R.D.M.-Q.); (A.S.-M.); (I.I.-M.); (E.M.A.-M.); (M.A.V.-H.)
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| |
Collapse
|
8
|
Campitelli LMM, Lopes KP, de Lima IL, Ferreira FB, Isidoro ND, Ferreira GM, Ponce MCF, Ferreira MCDO, Mendes LS, Marcelino PHR, Neves MM, Klein SG, Fonseca BB, Polveiro RC, da Silva MV. Methodological and Ethical Considerations in the Use of Chordate Embryos in Biomedical Research. Int J Mol Sci 2025; 26:2624. [PMID: 40141265 PMCID: PMC11941781 DOI: 10.3390/ijms26062624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Animal embryos are vital tools in scientific research, providing insights into biological processes and disease mechanisms. This paper explores their historical and contemporary significance, highlighting the shift towards the refinement of in vitro systems as alternatives to animal experimentation. We have conducted a data review of the relevant literature on the use of embryos in research and synthesized the data to highlight the importance of this model for scientific progress and the ethical considerations and regulations surrounding embryo research, emphasizing the importance of minimizing animal suffering while promoting scientific progress through the principles of replacement, reduction, and refinement. Embryos from a wide range of species, including mammals, fish, birds, amphibians, and reptiles, play a crucial experimental role in enabling us to understand factors such as substance toxicity, embryonic development, metabolic pathways, physiological processes, etc., that contribute to the advancement of the biological sciences. To apply this model effectively, it is essential to match the research objectives with the most appropriate methodology, ensuring that the chosen approach is appropriate for the scope of the study.
Collapse
Affiliation(s)
- Laura Maria Mendes Campitelli
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Karina Pereira Lopes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Isabela Lemos de Lima
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Flávia Batista Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Nayara Delfim Isidoro
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia 38410-337, MG, Brazil
| | - Giovana Magalhães Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Maria Clara Fioravanti Ponce
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Ludmilla Silva Mendes
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Pedro Henrique Ribeiro Marcelino
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Sandra Gabriela Klein
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | | | - Richard Costa Polveiro
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
| | - Murilo Vieira da Silva
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (L.M.M.C.); (M.M.N.)
- Rodent Animal Facilities Complex, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| |
Collapse
|
9
|
Puddu A, Maggi DC. Molecular Research on Diabetes. Int J Mol Sci 2025; 26:1873. [PMID: 40076500 PMCID: PMC11899755 DOI: 10.3390/ijms26051873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
This Special Issue of the International Journal of Molecular Sciences collects the latest research on different biological processes and molecular mechanisms that cause diabetes [...].
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| | | |
Collapse
|
10
|
Ye J, Boileau RM, Parchem RJ, Judson-Torres RL, Blelloch R. The miR-290 and miR-302 clusters are essential for reprogramming of fibroblasts to induced pluripotent stem cells. Stem Cells 2025; 43:sxae080. [PMID: 40037390 PMCID: PMC11879289 DOI: 10.1093/stmcls/sxae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 03/06/2025]
Abstract
The miR-290 and miR-302 clusters of microRNAs are highly expressed in naïve and primed pluripotent stem cells, respectively. Ectopic expression of the embryonic stem cell (ESC)-specific cell cycle regulating family of microRNAs arising from these two clusters dramatically enhances the reprogramming of both mouse and human somatic cells to induced pluripotency. Here, we used genetic knockouts to dissect the requirement for the miR-290 and miR-302 clusters during the reprogramming of mouse fibroblasts into induced pluripotent stem cells (iPSCs) with retrovirally introduced Oct4, Sox2, and Klf4. Knockout of either cluster alone did not negatively impact the efficiency of reprogramming. Resulting cells appeared identical to their ESC microRNA cluster knockout counterparts. In contrast, the combined loss of both clusters blocked the formation of iPSCs. While rare double knockout clones could be isolated, they showed a dramatically reduced proliferation rate, a persistent inability to fully silence the exogenously introduced pluripotency factors, and a transcriptome distinct from individual miR-290 or miR-302 mutant ESC and iPSCs. Taken together, our data show that miR-290 and miR-302 are essential yet interchangeable in reprogramming to the induced pluripotent state.
Collapse
Affiliation(s)
- Julia Ye
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, United States
- Center for Reproductive Sciences, University of California at San Francisco, San Francisco, CA 94143, United States
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, United States
| | - Ryan M Boileau
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, United States
- Center for Reproductive Sciences, University of California at San Francisco, San Francisco, CA 94143, United States
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, United States
| | - Ronald J Parchem
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT 84112, United States
- Department of Dermatology, The University of Utah, Salt Lake City, UT 84112, United States
| | - Robert Blelloch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, United States
- Center for Reproductive Sciences, University of California at San Francisco, San Francisco, CA 94143, United States
- Department of Urology, University of California at San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
11
|
Javed S, Fersini M, Bernardini G. Unleashing the Power of Induced Pluripotent stem Cells in in vitro Modelling of Lesch-Nyhan Disease. Stem Cell Rev Rep 2025; 21:304-318. [PMID: 39495466 DOI: 10.1007/s12015-024-10821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Lesch-Nyhan disease (LND) is a monogenic rare neurodevelopmental disorder caused by a deficiency in hypoxanthine-guanine phosphoribosyltransferase (HPRT), the key enzyme of the purines salvage pathway. Beyond its well-documented metabolic consequences, HPRT deficiency leads to a distinctive neurobehavioral syndrome characterized by motor disabilities, cognitive deficits, and self-injurious behavior. Although various cell and animal models have been developed to investigate LND pathology, none have adequately elucidated the underlying mechanisms of its neurological alterations. Recent advances in human pluripotent stem cell research and in vitro differentiation techniques have ushered in a new era in rare neurodevelopmental disorders research. Pluripotent stem cells, with their ability to propagate indefinitely and to differentiate into virtually any cell type, offer a valuable alternative for modeling rare diseases, allowing for the detection of pathological events from the earliest stages of neuronal network development. Furthermore, the generation of patient-derived induced pluripotent stem cells using reprogramming technology provides an opportunity to develop a disease-relevant model within the context of a patient-specific genome. In this review, we examine current stem cell-based models of LND and assess their potential as optimal models for exploring key pathological molecular events during neurogenesis and for the discovering novel treatment options. We also address the limitations, challenges, and future prospects for improving the use of iPSCs in LND research.
Collapse
Affiliation(s)
- Sundas Javed
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, Siena, 53100, Italy
| | - Marco Fersini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, Siena, 53100, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, Siena, 53100, Italy.
| |
Collapse
|
12
|
Pandey KB. From bench to bedside: translational insights into aging research. FRONTIERS IN AGING 2025; 6:1492099. [PMID: 39926027 PMCID: PMC11802818 DOI: 10.3389/fragi.2025.1492099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025]
Abstract
Aging research has rapidly advanced from fundamental discoveries at the molecular and cellular levels to promising clinical applications. This review discusses the critical translational insights that bridge the gap between bench research and bedside applications, highlighting key discoveries in the mechanisms of aging, biomarkers, and therapeutic interventions. It underscores the importance of interdisciplinary approaches and collaboration among scientists, clinicians, and policymakers to address the complexities of aging and improve health span.
Collapse
Affiliation(s)
- Kanti Bhooshan Pandey
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Faculty of Biological Sciences, Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
13
|
Tanaka M. From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care. Biomedicines 2025; 13:167. [PMID: 39857751 PMCID: PMC11761901 DOI: 10.3390/biomedicines13010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The dual forces of structured inquiry and serendipitous discovery have long shaped neuropsychiatric research, with groundbreaking treatments such as lithium and ketamine resulting from unexpected discoveries. However, relying on chance is becoming increasingly insufficient to address the rising prevalence of mental health disorders like depression and schizophrenia, which necessitate precise, innovative approaches. Emerging technologies like artificial intelligence, induced pluripotent stem cells, and multi-omics have the potential to transform this field by allowing for predictive, patient-specific interventions. Despite these advancements, traditional methodologies such as animal models and single-variable analyses continue to be used, frequently failing to capture the complexities of human neuropsychiatric conditions. Summary: This review critically evaluates the transition from serendipity to precision-based methodologies in neuropsychiatric research. It focuses on key innovations such as dynamic systems modeling and network-based approaches that use genetic, molecular, and environmental data to identify new therapeutic targets. Furthermore, it emphasizes the importance of interdisciplinary collaboration and human-specific models in overcoming the limitations of traditional approaches. Conclusions: We highlight precision psychiatry's transformative potential for revolutionizing mental health care. This paradigm shift, which combines cutting-edge technologies with systematic frameworks, promises increased diagnostic accuracy, reproducibility, and efficiency, paving the way for tailored treatments and better patient outcomes in neuropsychiatric care.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| |
Collapse
|
14
|
Sotomayor-Lugo F, Iglesias-Barrameda N, Casado-Hernandez I, Villegas-Valverde CA, Ventura-Carmenate Y, Rivero-Jimenez RA. Aging: Disease or "natural" process? A glimpse from regenerative medicine. Rev Esp Geriatr Gerontol 2025; 60:101543. [PMID: 39369641 DOI: 10.1016/j.regg.2024.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 10/08/2024]
Abstract
We explore aging as a global phenomenon, questioning whether it constitutes a treatable condition or follows a natural course. Acknowledging its multifactorial nature, we delve into the challenges and opportunities inherent in this intricate biological process. The inclusion of old age in the 11th International Classification of Diseases sparks debate, categorizing it as a disease based on mechanistic explanations, blood-based biomarkers, and anti-aging products. Ethical dilemmas arise, emphasizing the difficulty of defining the transition from normal to pathological states during this process. We suggest that aging should be regarded as a treatable condition without necessarily labeling it a 'disease.' While anti-aging research unveils promising interventions like Metformin, Rapamycin, and cellular therapy, achieving biological immortality remains a formidable challenge. The future promises to prolong life and enhance quality by comprehensively understanding aging's implications for human health.
Collapse
Affiliation(s)
| | | | | | | | - Yendry Ventura-Carmenate
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates; Yas Clinic Khalifa City Hospital, Abu Dhabi, United Arab Emirates; United Arab Emirates University, Office of Research and Graduate Studies, College of Medicine and Health Science, Abu Dhabi, United Arab Emirates
| | - Rene Antonio Rivero-Jimenez
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates; United Arab Emirates University, Office of Research and Graduate Studies, College of Medicine and Health Science, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
15
|
Wils G, Hamerlinck L, Trypsteen W, Van Den Eeckhaut C, Weiss J, Nour AA, Vergult S, Vandesompele J. Digital PCR-Based Gene Expression Analysis Using a Highly Multiplexed Assay with Universal Detection Probes to Study Induced Pluripotent Stem Cell Differentiation into Cranial Neural Crest Cells. Methods Mol Biol 2025; 2880:17-47. [PMID: 39900753 DOI: 10.1007/978-1-0716-4276-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Induced pluripotent stem cells (iPSCs) have the potential to differentiate into any cell type, offering a valuable tool for research in developmental biology, regenerative medicine, and disease modeling. In this study, iPSCs were differentiated into cranial neural crest cells (CNCCs) over a 14-day period. RNA was extracted from these cells at day 0 (iPSCs), day 7, and day 14 to evaluate successful differentiation through the expression analysis of pluripotency and CNCC marker genes.A key focus was the conversion of existing qPCR assays into multiplexed RT-dPCR assays utilizing universal detection probes for precise gene expression analysis during the differentiation of induced pluripotent stem cells (iPSCs) into cranial neural crest cells (CNCCs). We aimed to leverage the superior precision, sensitivity, and multiplexing-degree of dPCR, particularly in quantifying low-abundance targets. We conducted a comparative analysis of the temporal expression patterns of crucial marker genes using both qPCR and dPCR.Our experiments revealed that the four five-plex dPCR assays could successfully detect and quantify the pluripotency and CNCC marker genes and evaluate CNCC differentiation. We observed the expected downregulation of pluripotency genes during differentiation. Conversely, the upregulation of CNCC markers validates the successful differentiation process. In conclusion, SYBR Green I gene expression qPCR assays can be readily converted into multiplex dPCR assays using universal detection probes.Overall, this work underscores the potential of dPCR as a valuable tool for molecular profiling in stem cell research, offering robust, precise, and efficient gene expression analysis. The findings suggest that while qPCR remains a reliable method for routine applications, dPCR provides particular advantages for high-precision, low-sample input studies, expanding the analytical toolbox for stem cell differentiation and gene expression research.
Collapse
Affiliation(s)
- Gertjan Wils
- pxlence, building RTP, campus UZ Gent, Corneel Heymanslaan, Ghent, Belgium
| | - Lisa Hamerlinck
- FunGen Lab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wim Trypsteen
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- DIGPCR Center, Ghent University, Ghent, Belgium
| | - Charlotte Van Den Eeckhaut
- pxlence, building RTP, campus UZ Gent, Corneel Heymanslaan, Ghent, Belgium
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | | | - Sarah Vergult
- FunGen Lab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- DIGPCR Center, Ghent University, Ghent, Belgium.
- pxlence, Ghent, Belgium.
| |
Collapse
|
16
|
Xu J, Gong W, Mo C, Hou X, Ou M. Global Knowledge Map and Emerging Research Trends in Induced Pluripotent Stem Cells and Hereditary Diseases: A CiteSpace-based Visualization and Analysis. Stem Cell Rev Rep 2025; 21:126-146. [PMID: 39377988 DOI: 10.1007/s12015-024-10799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 01/26/2025]
Abstract
The rise of induced pluripotent stem cells (iPSCs) technology has ushered in a landmark shift in the study of hereditary diseases. However, there is a scarcity of reports that offer a comprehensive and objective overview of the current state of research at the intersection of iPSCs and hereditary diseases. Therefore, this study endeavors to categorize and synthesize the publications in this field over the past decade through bibliometric methods and visual knowledge mapping, aiming to visually analyze their research focus and clinical trends. The English language literature on iPSCs and hereditary diseases, published from 2014 to 2023 in the Web of Science Core Collection (WoSCC), was examined. The CiteSpace (version 6.3.R1) software was utilized to visualize and analyze country/region, institution, scholar, co-cited authors, and co-cited journals. Additionally, the co-occurrence, clustering, and bursting of co-cited references were displayed. Analysis of 347 articles that met the inclusion criteria revealed a steady increase in the number of published articles and citation frequency in the field over the past decade. With regard to the countries/regions, institutions, scholars, and journals where the articles were published, the highest numbers were found in the USA, the University of California System, Suren M. Zakian, and Stem Cell Research, respectively. The current research is focused on the construction of disease models, both before and after correction, as well as drug target testing for single-gene hereditary diseases. Chromosome transplantation genomic therapy for hereditary diseases with abnormal chromosome structures may emerge as a future research hotspot in this field.
Collapse
Affiliation(s)
- Jiajun Xu
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Weiwei Gong
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chune Mo
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xianliang Hou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Minglin Ou
- Laboratory Center, Guangxi Key Laboratory of Metabolic Reprogramming and In- telligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Laboratory Center, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
17
|
Genova E, Rispoli P, Fengming Y, Kohei J, Bramuzzo M, Bulla R, Lucafò M, Ferraro RM, Decorti G, Stocco G. Time-efficient strategies in human iPS cell-derived pancreatic progenitor differentiation and cryopreservation: advancing towards practical applications. Stem Cell Res Ther 2024; 15:483. [PMID: 39695795 DOI: 10.1186/s13287-024-04068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Differentiation of patient-specific induced pluripotent stem cells (iPS) helps researchers to study the individual sensibility to drugs. However, differentiation protocols are time-consuming, and not all tissues have been studied. Few works are available regarding pancreatic exocrine differentiation of iPS cells, and little is known on culturing and cryopreserving these cells. METHODS We differentiated the iPS cells of two pediatric Crohn's disease patients into pancreatic progenitors and exocrine cells, adapting and shortening a protocol for differentiating embryonic stem cells. We analyzed the expression of key genes and proteins of the differentiation process by qPCR and immunofluorescence, respectively. We explored the possibility of keeping differentiated cells in culture and freezing and thawing them to shorten the time needed for the differentiation. We analyzed the cell cycle of undifferentiated and differentiated cells by flow cytometry. RESULTS The analysis of mRNA levels of key pancreatic differentiation genes PDX1 and pancreatic amylase indicate that iPS cells were successfully differentiated into pancreatic exocrine cells with expression of PDX1 (one way ANOVA p < 0.0001), and the two isoforms of amylase (one way ANOVA p < 0.05) significantly higher in exocrine cells in comparison to iPS cells. Differentiation efficiency was also confirmed by immunofluorescence analysis of PDX1 and amylase. We confirmed the possibility of shortening the time necessary for obtaining pancreatic cells without losing differentiation efficiency. Pancreatic progenitors and exocrine cells were maintained in culture and cryopreserved. Interestingly, the stemness marker OCT4 resulted significantly lower after subculturing (OCT4 p < 0.001; one-way ANOVA) and after freezing and thawing procedures (p < 0.05, one-way ANOVA) suggesting a reduction of undifferentiated stem cells leading to a purer population of pancreatic progenitor cells. Also, the stemness marker NANOG resulted lower after passaging, corroborating this result. CONCLUSIONS In this work, we optimized the generation of patient-specific pancreatic differentiated cells and laid the foundation for creating a bank of patient-specific pancreatic lines exploitable for tailored pharmacological assays. TRIAL REGISTRATION The study was approved by the Ethical Committee of the Institute of Maternal and Child Health IRCCS Burlo Garofolo, with approval number 1556 (internal ID RC 44/22).
Collapse
Affiliation(s)
- Elena Genova
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Paola Rispoli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Yue Fengming
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Shinshu University Interdisciplinary Cluster for Cutting Edge Research, Matsumoto, Japan
| | - Johkura Kohei
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Rosalba Monica Ferraro
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Gabriele Stocco
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
18
|
Wan-Chiew N, Baki MM, Lokanathan Y, Fauzi MB, Azman M. Genipin cross-linked gelatin hydrogel for encapsulating wharton jelly mesenchymal stem cells and basic fibroblast growth factor delivery in vocal fold regeneration. Front Cell Dev Biol 2024; 12:1489901. [PMID: 39703693 PMCID: PMC11655468 DOI: 10.3389/fcell.2024.1489901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Approaches to regenerate vocal fold in glottic insufficiency remains to be a focus for exploration. This is attributed to the applications of cells or biological molecules alone result in fast degradation and inadequate for regeneration. Development of an injectable hydrogel for glottic insufficiency is challenging, as it needs to be non-cytotoxic, elastic yet possess good strength and easy to fabricate. This gap prompts us to study the feasibility of our genipin(gn)-crosslinked gelatin (G) hydrogel in encapsulating Wharton's Jelly Mesenchymal Stem Cells (WJMSCs) and basic fibroblast growth factor (bFGF) WJMSCs with the aim to provide regeneration in glottic insufficiency. WJMSCs was encapsulated into two optimised formulations with the density of 2,000,000 cells/mL. The encapsulated cells were tested for its morphology, cell viability, proliferation and migration. Then, the incorporation of basic fibroblast growth factor (bFGF) was done into a final formulation and was tested for the cellular response and in vitro inflammation. 6G 0.4gn demonstrated better cell viability after in vitro culturing for 7 day. After incorporation of bFGF into cell-laden 6G 0.4gn, encapsulated WJMSCs showed to have improved viability and migration. The inflammatory profile of the hydrogel was imperceptible and was regarded as minimal or no pro- and anti-inflammation. Altogether, we have first formulated 6G 0.4gn which is suitable to encapsulate WJMSCs and incorporation of bFGF. Current study fulfils the market need in vocal fold regeneration, by suggesting its rejuvenating potential in glottic insufficiency, yet this combined formulation should be studied further to justify its translation to clinical setting.
Collapse
Affiliation(s)
- Ng Wan-Chiew
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Marina Mat Baki
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mawaddah Azman
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Liu Z, Ren J, Qiu C, Wang Y, Zhang T. Application of mesenchymal stem cells in liver fibrosis and regeneration. LIVER RESEARCH 2024; 8:246-258. [PMID: 39958916 PMCID: PMC11771278 DOI: 10.1016/j.livres.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 02/18/2025]
Abstract
Liver transplantation remains the most effective treatment for end-stage liver disease (ESLD), but it is fraught with challenges such as immunosuppression, high risk and cost, and donor shortage. In recent years, stem cell transplantation has emerged as a promising new strategy for ESLD treatment, with mesenchymal stem cells (MSCs) gaining significant attention because of their unique properties. MSCs can regulate signaling pathways, including hepatocyte growth factor/c-Met, Wnt/beta (β)-catenin, Notch, transforming growth factor-β1/Smad, interleukin-6/Janus kinase/signal transducer and activator of transcription 3, and phosphatidylinositol 3-kinase/PDK/Akt, thereby influencing the progression of liver fibrosis and regeneration. As a promising stem cell type, MSCs offer numerous advantages in liver disease treatment, including low immunogenicity; ease of acquisition; unlimited proliferative ability; pluripotent differentiation potential; immunomodulatory function; and anti-inflammatory, antifibrotic, and antiapoptotic biological characteristics. This review outlines the mechanisms by which MSCs reverse liver fibrosis and promote liver regeneration. MSCs are crucial in reversing liver fibrosis and repairing liver damage through the secretion of growth factors, regulation of signaling pathways, and modulation of immune responses. MSCs have shown good therapeutic effects in preclinical and clinical studies, providing new strategies for liver disease treatment. However, challenges still exist in the clinical application of MSCs, including low differentiation efficiency and limited sources. This review provides a reference for MSC application in liver disease treatment. With the continuous progress in MSC research, MSCs are expected to achieve breakthroughs in liver disease treatment, thereby improving patient treatment outcomes.
Collapse
Affiliation(s)
- Zhenyu Liu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Junkai Ren
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cheng Qiu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ying Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Tong Zhang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
20
|
Aalders J, Léger L, Hassannia B, Goossens V, Vanden Berghe T, van Hengel J. Improving cardiac differentiation of human pluripotent stem cells by targeting ferroptosis. Regen Ther 2024; 27:21-31. [PMID: 38496011 PMCID: PMC10940893 DOI: 10.1016/j.reth.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
Generation of cardiomyocytes from human pluripotent stem cells (hPSCs) is of high interest for disease modelling and regenerative medicine. hPSCs can provide an unlimited source of patient-specific cardiomyocytes that are otherwise difficult to obtain from individuals. Moreover, the low proliferation rate of adult cardiomyocytes and low viability ex vivo limits the quantity of study material. Most protocols for the differentiation of cardiomyocytes from hPSCs are based on the temporal modulation of the Wnt pathway. However, during the initial stage of GSK-3 inhibition, a substantial number of cells are lost due to detachment. In this study, we aimed to increase the efficiency of generating cardiomyocytes from hPSCs. We identified cell death as a detrimental factor during this initial stage of in vitro cardiomyocyte differentiation. Through pharmacological targeting of different types of cell death, we discovered that ferroptosis was the main cell death type during the first 48 h of the in vitro differentiation procedure. Inhibiting ferroptosis using ferrostatin-1 during cardiomyocyte differentiation resulted in increased robustness and cell yield.
Collapse
Affiliation(s)
- Jeffrey Aalders
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 37a, 2nd floor, 9000, Ghent, Belgium
| | - Laurens Léger
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 37a, 2nd floor, 9000, Ghent, Belgium
| | - Behrouz Hassannia
- Cell Death Signalling Lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Tom Vanden Berghe
- Cell Death Signalling Lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, 9052 Ghent, Belgium
| | - Jolanda van Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Entrance 37a, 2nd floor, 9000, Ghent, Belgium
| |
Collapse
|
21
|
Bayarsaikhan D, Bayarsaikhan G, Kang HA, Lee SB, Han SH, Okano T, Kim K, Lee B. A Study on iPSC-Associated Factors in the Generation of Hepatocytes. Tissue Eng Regen Med 2024; 21:1245-1254. [PMID: 39495460 PMCID: PMC11589077 DOI: 10.1007/s13770-024-00674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Hepatocytes are an attractive cell source in hepatic tissue engineering because they are the primary cells of the liver, maintaining liver homeostasis through their intrinsic function. Due to the increasing demand for liver donors, a wide range of methods are being studied to obtain functionally active hepatocytes. iPSCs are one of the alternative cell sources, which shows great promise as a tool for generating hepatocytes. METHODS This study determined whether factors associated with iPSCs contributed to variation in hepatocyte-like cells derived from iPSCs. The factors of concern for the iPSCs included the culture system, the source of iPSCs, and cell seeding density for initiating the differentiation. RESULTS Our results found iPSC-dependent variances among differentiated hepatocyte-like cells. The matrix used in culturing iPSCs significantly impacts cell morphologies, characteristics, and the expression of pluripotent genes, such as OCT4 and SOX2, varied in iPSCs derived from different sources. These characteristics, in turn, play a consequential role in determining the functional activity of the iPSC-derived hepatocyte-like cells. In addition, cell seeding density was observed to be an essential factor for the efficient generation of iPSC-derived hepatocyte-like cells, with 2- 4 × 10 cells/cm of seeding density resulting in good morphology and functionality. CONCLUSION This study provides the baseline of effective differentiation protocols for iPSC-derived hepatocyte-like cells with the appropriate conditions, including cell culture media, iPSC source, and the seeding density of iPSCs.
Collapse
Affiliation(s)
- Delger Bayarsaikhan
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Govigerel Bayarsaikhan
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Hyun A Kang
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea
| | - Su Bin Lee
- Department of Biomedical Engineering, Jungwon University, 85 Munmu-Ro, Goesan-Eup, Goesan-Gun, Chuncheongbuk-do, 28023, Republic of Korea
| | - So Hee Han
- Department of Biomedical Engineering, Jungwon University, 85 Munmu-Ro, Goesan-Eup, Goesan-Gun, Chuncheongbuk-do, 28023, Republic of Korea
| | - Teruo Okano
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawa-da-cho, Shinjuku-ku, Tokyo, 1628666, Japan
| | - Kyungsook Kim
- Department of Biomedical Engineering, Jungwon University, 85 Munmu-Ro, Goesan-Eup, Goesan-Gun, Chuncheongbuk-do, 28023, Republic of Korea.
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), Health Sciences, University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
| | - Bonghee Lee
- Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 406-840, Republic of Korea.
| |
Collapse
|
22
|
Zhang H, Ren X, Wu C, He X, Huang Z, Li Y, Liao L, Xiang J, Li M, Wu L. Intracellular calcium dysregulation in heart and brain diseases: Insights from induced pluripotent stem cell studies. J Neuropathol Exp Neurol 2024; 83:993-1002. [PMID: 39001792 DOI: 10.1093/jnen/nlae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
The central nervous system (CNS) plays a role in regulating heart rate and myocardial contractility through sympathetic and parasympathetic nerves, and the heart can impact the functional equilibrium of the CNS through feedback signals. Although heart and brain diseases often coexist and mutually influence each other, the potential links between heart and brain diseases remain unclear due to a lack of reliable models of these relationships. Induced pluripotent stem cells (iPSCs), which can differentiate into multiple functional cell types, stem cell biology and regenerative medicine may offer tools to clarify the mechanisms of these relationships and facilitate screening of effective therapeutic agents. Because calcium ions play essential roles in regulating both the cardiovascular and nervous systems, this review addresses how recent iPSC disease models reveal how dysregulation of intracellular calcium might be a common pathological factor underlying the relationships between heart and brain diseases.
Collapse
Affiliation(s)
- Huayang Zhang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xueming Ren
- Department of Ophthalmology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chunyu Wu
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xinsen He
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Zhengxuan Huang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yangpeng Li
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lei Liao
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jie Xiang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
23
|
Chen J, Ou Q, Liu Y, Cui T, Yang H, Tang J, Lu L, Xu G, Cui H, Jin C, Li Q. Embryoid body-based differentiation of human-induced pluripotent stem cells into cells with a corneal stromal keratocyte phenotype. BMJ Open Ophthalmol 2024; 9:e001828. [PMID: 39613390 PMCID: PMC11605830 DOI: 10.1136/bmjophth-2024-001828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/08/2024] [Indexed: 12/01/2024] Open
Abstract
OBJECTIVE The transparency of the cornea is determined by the extracellular matrix, which is secreted by corneal stromal keratocytes (CSKs). Human-induced pluripotent stem cell (hiPSC)-derived keratocytes (hiPSC-CSKs) can be used in cell-based therapy for treating corneal blindness. Our goal was to develop an effective small molecule-based technique for differentiating hiPSCs into keratocytes. METHODS AND ANALYSIS hiPSCs were cultured in chemically defined medium, and embryoid bodies (EBs) were generated; these EBs were induced into CSKs using keratocyte-differentiated medium. The expression of keratocyte-specific markers was assessed using quantitative RT-PCR, immunostaining and Western blotting. RESULTS We found that the expression of genes encoding keratocyte markers, including aldehyde dehydrogenase 1 family member A1 (ALDH1A1), lumican and keratocan, was upregulated. Immunostaining showed positive staining for ALDH1A1 and keratocan in the hiPSC-CSK samples. Similarly, western blot analysis indicated that ALDH1A1 and keratocan expression levels were significantly greater in the hiPSC-CSKs than in the control cells. In addition, hiPSC-CSKs were not transformed into fibroblasts or myofibroblasts. CONCLUSION We established an innovative and effective method to generate CSKs via the EB-based differentiation of hiPSCs, which might be employed for cell-based therapy of corneal stromal opacities.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yifan Liu
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingting Cui
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huimin Yang
- Department of Ophthalmology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiancen Tang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Lixia Lu
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guotong Xu
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongping Cui
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Caixia Jin
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Li
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| |
Collapse
|
24
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
25
|
Górska A, Trubalski M, Borowski B, Brachet A, Szymańczyk S, Markiewicz R. Navigating stem cell culture: insights, techniques, challenges, and prospects. Front Cell Dev Biol 2024; 12:1435461. [PMID: 39588275 PMCID: PMC11586186 DOI: 10.3389/fcell.2024.1435461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Stem cell research holds huge promise for regenerative medicine and disease modeling, making the understanding and optimization of stem cell culture a critical aspect of advancing these therapeutic applications. This comprehensive review provides an in-depth overview of stem cell culture, including general information, contemporary techniques, encountered problems, and future perspectives. The article begins by explaining the fundamental characteristics of various stem cell types, elucidating the importance of proper culture conditions in maintaining pluripotency or lineage commitment. A detailed exploration of established culture techniques sheds light on the evolving landscape of stem cell culture methodologies. Common challenges such as genetic stability, heterogeneity, and differentiation efficiency are thoroughly discussed, with insights into cutting-edge strategies and technologies aimed at addressing these hurdles. Moreover, the article delves into the impact of substrate materials, culture media components, and biophysical cues on stem cell behavior, emphasizing the intricate interplay between the microenvironment and cell fate decisions. As stem cell research advances, ethical considerations and regulatory frameworks become increasingly important, prompting a critical examination of these aspects in the context of culture practices. Lastly, the article explores emerging perspectives, including the integration of artificial intelligence and machine learning in optimizing culture conditions, and the potential applications of stem cell-derived products in personalized medicine. This comprehensive overview aims to serve as a valuable resource for researchers and clinicians, fostering a deeper understanding of stem cell culture and its key role in advancing regenerative medicine and biomedical research.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Adam Brachet
- Student Scientific Association, Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Renata Markiewicz
- Occupational Therapy Laboratory, Chair of Nursing Development, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
26
|
Jia YK, Yu Y, Guan L. Advances in understanding the regulation of pluripotency fate transition in embryonic stem cells. Front Cell Dev Biol 2024; 12:1494398. [PMID: 39479513 PMCID: PMC11521825 DOI: 10.3389/fcell.2024.1494398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Embryonic stem cells (ESCs) sourced from the inner cell mass of blastocysts, are akin to this tissue in function but lack the capacity to form all extraembryonic structures. mESCs are transient cell populations that express high levels of transcripts characteristic of 2-cell (2C) embryos and are identified as "2-cell-like cells" (2CLCs). Previous studies have shown that 2CLCs can contribute to both embryonic and extraembryonic tissues upon reintroduction into early embryos. Approximately 1% of mESCs dynamically transition from pluripotent mESCs into 2CLCs. Nevertheless, the scarcity of mammalian embryos presents a significant challenge to the molecular characterization of totipotent cells. To date, Previous studies have explored various methods for reprogramming pluripotent cells into totipotent cells. While there is a good understanding of the molecular regulatory network maintaining ES pluripotency, the process by which pluripotent ESCs reprogram into totipotent cells and the associated molecular mechanisms of totipotent regulation remain poorly understood. This review synthesizes recent insights into the regulatory pathways of ESC reprogramming into 2CLC, exploring molecular mechanisms modulated by transcriptional regulators, small molecules, and epigenetic changes. The objective is to construct a theoretical framework for the field of researchers.
Collapse
Affiliation(s)
- Yong kang Jia
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, China
| | - Yang Yu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Guan
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
27
|
Ke L, Cao Y, Lu Z, Hallajzadeh J. Advances in different adult stem cell-derived exosomal non-coding RNAs for the treatment of neurological disorders: a narrative review. Front Cell Dev Biol 2024; 12:1459246. [PMID: 39450275 PMCID: PMC11500198 DOI: 10.3389/fcell.2024.1459246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Neurological disorders are being increasingly recognized as major causes of death and disability around the world. Neurological disorders refer to a broad range of medical conditions that affect the brain and spinal cord. These disorders can have various causes, including genetic factors, infections, trauma, autoimmune reactions, or neurodegenerative processes. Each disorder has its own unique symptoms, progression, and treatment options. Optimal communication between interneurons and neuron-glia cells within the homeostatic microenvironment is of paramount importance. Within this microenvironment, exosomes play a significant role in promoting intercellular communication by transferring a diverse cargo of contents, including proteins, lipids, and non-coding RNAs (ncRNAs). Partially, nervous system homeostasis is preserved by various stem cell-derived exosomal ncRNAs, which include circular RNAs (circRNAs), long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and PIWI-interacting RNAs (piRNAs). The diversity of these exosomal ncRNAs suggests their potential to influence multiple pathways and cellular processes within the nervous system. Stem cell-derived exosomes and their ncRNA contents have been investigated for potential therapeutic uses in neurological disorders, owing to their demonstrated capabilities in neuroprotection, neuroregeneration, and modulation of disease-related pathways. The ability of stem cell-derived exosomes to cross the blood-brain barrier makes them a promising delivery vehicle for therapeutic ncRNAs. This review aims to summarize the current understanding of different stem cell-derived exosomal ncRNAs and their therapeutic potential and clinical applications.
Collapse
Affiliation(s)
- Lebin Ke
- Department of Health Examination, The Third Affiliated Hospital of Shanghai University, Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yingying Cao
- Department of Neurology, Tiantai People’s Hospital of Zhejiang Province, Tiantai Branch of Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhejiang, China
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
28
|
Deng C, Aldali F, Luo H, Chen H. Regenerative rehabilitation: a novel multidisciplinary field to maximize patient outcomes. MEDICAL REVIEW (2021) 2024; 4:413-434. [PMID: 39444794 PMCID: PMC11495474 DOI: 10.1515/mr-2023-0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/15/2024] [Indexed: 10/25/2024]
Abstract
Regenerative rehabilitation is a novel and rapidly developing multidisciplinary field that converges regenerative medicine and rehabilitation science, aiming to maximize the functions of disabled patients and their independence. While regenerative medicine provides state-of-the-art technologies that shed light on difficult-to-treated diseases, regenerative rehabilitation offers rehabilitation interventions to improve the positive effects of regenerative medicine. However, regenerative scientists and rehabilitation professionals focus on their aspects without enough exposure to advances in each other's field. This disconnect has impeded the development of this field. Therefore, this review first introduces cutting-edge technologies such as stem cell technology, tissue engineering, biomaterial science, gene editing, and computer sciences that promote the progress pace of regenerative medicine, followed by a summary of preclinical studies and examples of clinical investigations that integrate rehabilitative methodologies into regenerative medicine. Then, challenges in this field are discussed, and possible solutions are provided for future directions. We aim to provide a platform for regenerative and rehabilitative professionals and clinicians in other areas to better understand the progress of regenerative rehabilitation, thus contributing to the clinical translation and management of innovative and reliable therapies.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongmei Luo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
29
|
Mohite P, Puri A, Dave R, Budar A, Munde S, Ghosh SB, Alqahtani T, Shmrany HA, Kumer A, Dhara B. Unlocking the therapeutic potential: odyssey of induced pluripotent stem cells in precision cell therapies. Int J Surg 2024; 110:6432-6455. [PMID: 38963728 PMCID: PMC11487032 DOI: 10.1097/js9.0000000000001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
This review explores the application of induced pluripotent stem cells (iPSCs) in regenerative medicine. The therapeutic significance of iPSC-derived cell therapy within regenerative medicine, emphasizes their reprogramming process and crucial role in cellular differentiation while setting the purpose and scope for the comprehensive exploration of iPSC-derived cell therapy. The subsequent sections intricately examine iPSC-derived cell therapy, unraveling the diverse derivatives of iPSCs and striking a delicate balance between advantages and limitations in therapeutic applications. Mechanisms of action, revealing how iPSC-derived cells seamlessly integrate into tissues, induce regeneration, and contribute to disease modeling and drug screening advancements is discussed. The analysis extends to clinical trials, shedding light on outcomes, safety considerations, and ethical dimensions. Challenges and concerns, including the risk of tumorigenesis and scalability issues, are explored. The focus extends to disease-specific applications, showcasing iPSC-derived cell therapy as a promising avenue for various medical conditions, supported by illustrative case studies. Future directions and research needs are outlined, identifying areas for further exploration, safety considerations and potential enhancements that will shape the future landscape of iPSC-derived therapies. In conclusion, this review provides a significant understanding of iPSC-derived cell therapy's status that contemplates the implications for regenerative medicine and personalized treatment using iPSCs, offering a comprehensive perspective on the evolving field within the confines of a dynamic and promising scientific frontier.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Roshan Dave
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Aarati Budar
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar, Maharashtra
| | - Shruti Bagchi Ghosh
- Department of Pharmaceutical Chemistry, Calcutta Institute of Pharmaceutical Technology and Allied Health Science, Uluberia, Howrah
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ajoy Kumer
- Department of Chemistry, IUBAT-International University of Business Agriculture & Technology, Dhaka, Bangladesh
| | - Bikram Dhara
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Health Sciences, Novel Global Community and Educational Foundation. Hebersham, NSW, Australia
| |
Collapse
|
30
|
Kim DY, Liu Y, Kim G, An SB, Han I. Innovative Strategies in 3D Bioprinting for Spinal Cord Injury Repair. Int J Mol Sci 2024; 25:9592. [PMID: 39273538 PMCID: PMC11395085 DOI: 10.3390/ijms25179592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition that disrupts neurons within the spinal cord, leading to severe motor and sensory deficits. While current treatments can alleviate pain, they do not promote neural regeneration or functional recovery. Three-dimensional (3D) bioprinting offers promising solutions for SCI repair by enabling the creation of complex neural tissue constructs. This review provides a comprehensive overview of 3D bioprinting techniques, bioinks, and stem cell applications in SCI repair. Additionally, it highlights recent advancements in 3D bioprinted scaffolds, including the integration of conductive materials, the incorporation of bioactive molecules like neurotrophic factors, drugs, and exosomes, and the design of innovative structures such as multi-channel and axial scaffolds. These innovative strategies in 3D bioprinting can offer a comprehensive approach to optimizing the spinal cord microenvironment, advancing SCI repair. This review highlights a comprehensive understanding of the current state of 3D bioprinting in SCI repair, offering insights into future directions in the field of regenerative medicine.
Collapse
Affiliation(s)
- Daniel Youngsuk Kim
- Research Competency Milestones Program (RECOMP), School of Medicine, CHA University, Seongnam-si 13488, Republic of Korea
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Yanting Liu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Gyubin Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea
| |
Collapse
|
31
|
Ye J, Boileau RM, Parchem RJ, Judson-Torres RL, Blelloch R. The miR-290 and miR-302 clusters are essential for reprogramming of fibroblasts to induced pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610895. [PMID: 39282363 PMCID: PMC11398367 DOI: 10.1101/2024.09.02.610895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The miR-290 and miR-302 clusters of microRNAs are highly expressed in naïve and primed pluripotent stem cells, respectively. Ectopic expression of the embryonic stem cell-specific cell cycle regulating (ESCC) family of microRNAs arising from these two clusters dramatically enhances the reprogramming of both mouse and human somatic cells to induced pluripotency. Here, we used genetic knockouts to dissect the requirement for the miR-290 and miR-302 clusters during the reprogramming of mouse fibroblasts into induced pluripotent stem cells (iPSCs) with retrovirally introduced Oct4, Sox2, and Klf4. Knockout of either cluster alone did not negatively impact the efficiency of reprogramming. Resulting cells appeared identical to their embryonic stem cell microRNA cluster knockout counterparts. In contrast, the combined loss of both clusters blocked the formation of iPSCs. While rare double knockout clones could be isolated, they showed a dramatically reduced proliferation rate, a persistent inability to fully silence the exogenously introduced pluripotency factors, and a transcriptome distinct from individual miR-290 or miR-302 mutant ESC and iPSCs. Taken together, our data show that miR-290 and miR-302 are essential yet interchangeable in reprogramming to the induced pluripotent state. Impact Statement The process by which somatic cell reprogramming yields induced pluripotent stem cells (iPSCs) is incompletely understood. MicroRNAs from the miR-290 and miR-302 clusters have been shown to greatly increase reprogramming efficiency, but their requirement in the process has not been studied. Here, we examine this requirement by genetically removing the miRNA clusters in somatic cells. We discover that somatic cells lacking either, but not both, of these miRNA clusters can form iPSC cells. This work thus provides new important insight into mechanisms underlying reprogramming to pluripotency.
Collapse
Affiliation(s)
- Julia Ye
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ryan M. Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ronald J. Parchem
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT 84112, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
32
|
Aili Y, Maimaitiming N, Wang Z, Wang Y. Brain organoids: A new tool for modelling of neurodevelopmental disorders. J Cell Mol Med 2024; 28:e18560. [PMID: 39258535 PMCID: PMC11388061 DOI: 10.1111/jcmm.18560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024] Open
Abstract
Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three-dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cells allows for controlled monitoring and evaluation of early neurodevelopmental processes and has opened a window for studying various aspects of human brain development. However, such organoids lack original anatomical structure of the brain during maturation, and neurodevelopmental maturation processes that rely on unique cellular interactions and neural network connections are limited. Consequently, organoids are difficult to be used extensively and effectively while modelling later stages of human brain development and disease progression. To address this problem, several methods and technologies have emerged that aim to enhance the sophisticated regulation of brain organoids developmental processes through bioengineering approaches, which may alleviate some of the current limitations. This review discusses recent advances and application areas of human brain organoid culture methods, aiming to generalize optimization strategies for organoid systems, improve the ability to mimic human brain development, and enhance the application value of organoids.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | | | - Zengliang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | - Yongxin Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| |
Collapse
|
33
|
Wei L, Yan W, Shah W, Zhang Z, Wang M, Liu B, Xue Z, Cao Y, Hou X, Zhang K, Yan B, Wang X. Advancements and challenges in stem cell transplantation for regenerative medicine. Heliyon 2024; 10:e35836. [PMID: 39247380 PMCID: PMC11379611 DOI: 10.1016/j.heliyon.2024.e35836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Stem cell transplantation has emerged as a promising avenue in regenerative medicine, potentially facilitating tissue repair in degenerative diseases and injuries. This review comprehensively examines recent developments and challenges in stem cell transplantation. It explores the identification and isolation of various stem cell types, including embryonic, induced pluripotent, and adult stem cells derived from multiple sources. Additionally, the review highlights the tissue-specific applications of these stem cells, focusing on bone and cartilage regeneration, treatment of neurological disorders, and management of hematological conditions. Future advancements and effective resolution of current challenges will be crucial in fully realizing the potential of stem cell transplantation in regenerative medicine. With responsible and ethical practices, the field can potentially transform disease and injury treatment, ultimately improving the quality of life for countless individuals.
Collapse
Affiliation(s)
- Lingxi Wei
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Wenqi Yan
- Shandong University, Ji Nan, Shandong, 250000, China
| | - Wahid Shah
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Zhengwei Zhang
- Department of Ophthalmology, Jiangnan University Medical Center, Wuxi, Jiangsu, 214002, China
| | - Minghe Wang
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Biao Liu
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Zhentong Xue
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Yixin Cao
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Xinyu Hou
- School of Geographic Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Kai Zhang
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Beibei Yan
- Shanxi Medical University, Tai Yuan, Shanxi, 030607, China
| | - Xiaogang Wang
- Department of Cataract, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| |
Collapse
|
34
|
Della Rocca Y, Diomede F, Konstantinidou F, Gatta V, Stuppia L, Benedetto U, Zimarino M, Lanuti P, Trubiani O, Pizzicannella J. Autologous hGMSC-Derived iPS: A New Proposal for Tissue Regeneration. Int J Mol Sci 2024; 25:9169. [PMID: 39273117 PMCID: PMC11395260 DOI: 10.3390/ijms25179169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The high mortality in the global population due to chronic diseases highlights the urgency to identify effective alternative therapies. Regenerative medicine provides promising new approaches for this purpose, particularly in the use of induced pluripotent stem cells (iPSCs). The aim of the work is to establish a new pluripotency cell line obtained for the first time by reprogramming human gingival mesenchymal stem cells (hGMSCs) by a non-integrating method. The hGMSC-derived iPS line characterization is performed through morphological analysis with optical and electron scanning microscopy and through the pluripotency markers expression evaluation in cytofluorimetry, immunofluorescence, and RT-PCR. To confirm the pluripotency of new hGMSC-derived iPS, the formation of embryoid bodies (EBs), as an alternative to the teratoma formation test, is studied in morphological analysis and through three germ layers' markers' expression in immunofluorescence and RT-PCR. At the end, a comparative study between parental hGMSCs and derived iPS cells is performed also for the extracellular vesicles (EVs) and their miRNA content. The new hGMSC-derived iPS line demonstrated to be pluripotent in all aspects, thus representing an innovative dynamic platform for personalized tissue regeneration.
Collapse
Affiliation(s)
- Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Fanì Konstantinidou
- Department of Psychological Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Umberto Benedetto
- Department of Cardiac Surgery, "S.S. Annunziata" Hospital, ASL 2 Abruzzo, Via dei Vestini, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Marco Zimarino
- Department of Cardiology, "S.S. Annunziata" Hospital, ASL 2 Abruzzo, Via dei Vestini, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi 11, 66100 Chieti, Italy
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, "G. d'Annunzio" University of Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy
| |
Collapse
|
35
|
Buijsen RAM, van der Graaf LM, Kuijper EC, Pepers BA, Daoutsali E, Weel L, Raz V, Parfitt DA, van Roon-Mom WMC. Calcium-Enhanced Medium-Based Delivery of Splice Modulating Antisense Oligonucleotides in 2D and 3D hiPSC-Derived Neuronal Models. Biomedicines 2024; 12:1933. [PMID: 39335447 PMCID: PMC11428300 DOI: 10.3390/biomedicines12091933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Antisense technology demonstrates significant potential for addressing inherited brain diseases, with over a dozen products already available and numerous others in the development pipeline. The versatility of differentiating induced pluripotent stem cells (iPSCs) into nearly all neural cell types proves invaluable for comprehending the mechanisms behind neurological diseases, replicating cellular phenotypes, and advancing the testing and development of new therapies, including antisense oligonucleotide therapeutics. While delivering antisense oligonucleotides (ASOs) to human iPSC-based neuronal models has posed challenges, this study explores various delivery methods, including lipid-based transfection, gymnotic uptake, Ca(2+)-enhanced medium (CEM)-based delivery, and electroporation, in 2D and 3D hiPSC-derived neuronal models. This study reveals that CEM-based delivery exhibits efficiency and low toxicity in both 2D neuronal cultures and 3D brain organoids. Furthermore, the findings indicate that CEM is slightly more effective in neurons than in astrocytes, suggesting promising avenues for further exploration and optimization of preclinical ASO strategies in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Elsa C Kuijper
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Barry A Pepers
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Elena Daoutsali
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lotte Weel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Vered Raz
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - David A Parfitt
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | |
Collapse
|
36
|
Xu L, Shi J, Wu S. Positron emission tomography probes for stem cell monitoring: a review. Am J Transl Res 2024; 16:3534-3544. [PMID: 39262689 PMCID: PMC11384350 DOI: 10.62347/ciut6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/08/2024] [Indexed: 09/13/2024]
Abstract
Stem cells possess unique self-renewal and differentiation capacities, that are central to cell replacement and tissue regeneration. The therapeutic potential of stem cell applications has garnered increasing attention in recent years for a spectrum of human diseases, from ischemic disorders to oncological challenges. Despite their potential, a comprehensive understanding of the biological behavior, efficacy, and safety of these cells remains elusive, hindering their clinical adoption. This review focuses on the use of positron emission tomography (PET) imaging as a cutting-edge tool for bridging this knowledge gap. PET imaging, a noninvasive diagnostic method, has been highlighted for its ability to monitor cellular dynamics after stem cell transplantation. A variety of molecular probes within the PET framework enable the longitudinal and quantitative evaluation of post-transplant cellular behavior. This discourse systematically delineates various PET probes specifically designed for the in vivo tracking of the stem cell life cycle. These probes offer a pathway to a deeper understanding and more precise evaluation of stem cell behavior post-transplantation. Implementing PET imaging probes can revolutionize the clinical understanding of stem cell behavior, advancing and widening clinical therapeutic applications.
Collapse
Affiliation(s)
- Ligong Xu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| | - Jingjing Shi
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine) Hangzhou, Zhejiang, China
| | - Shuang Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Sartori-Maldonado R, Montaser H, Soppa I, Eurola S, Juutila J, Balaz M, Puttonen H, Otonkoski T, Saarimäki-Vire J, Wartiovaara K. Thymidylate synthase disruption to limit cell proliferation in cell therapies. Mol Ther 2024; 32:2535-2548. [PMID: 38867450 PMCID: PMC11405178 DOI: 10.1016/j.ymthe.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Stem and progenitor cells hold great promise for regenerative medicine and gene therapy approaches. However, transplantation of living cells entails a fundamental risk of unwanted growth, potentially exacerbated by CRISPR-Cas9 or other genetic manipulations. Here, we describe a safety system to control cell proliferation while allowing robust and efficient cell manufacture, without any added genetic elements. Inactivating TYMS, a key nucleotide metabolism enzyme, in several cell lines resulted in cells that proliferate only when supplemented with exogenous thymidine. Under supplementation, TYMS-/--pluripotent stem cells proliferate, produce teratomas, and successfully differentiate into potentially therapeutic cell types such as pancreatic β cells. Our results suggest that supplementation with exogenous thymidine affects stem cell proliferation, but not the function of stem cell-derived cells. After differentiation, postmitotic cells do not require thymidine in vitro or in vivo, as shown by the production of functional human insulin in mice up to 5 months after implantation of stem cell-derived pancreatic tissue.
Collapse
Affiliation(s)
- Rocio Sartori-Maldonado
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Inkeri Soppa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Juhana Juutila
- Faculty of Biological and Environmental Sciences University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00790 Helsinki, Finland
| | - Melanie Balaz
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Henri Puttonen
- Department of Pathology, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Kirmo Wartiovaara
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Clinical Genetics, Helsinki University Hospital, 00290 Helsinki, Finland.
| |
Collapse
|
38
|
Benazzato C, Lojudice F, Pöehlchen F, Leite PEC, Manucci AC, Van der Linden V, Jungmann P, Sogayar MC, Bruni-Cardoso A, Russo FB, Beltrão-Braga P. Zika virus vertical transmission induces neuroinflammation and synapse impairment in brain cells derived from children born with Congenital Zika Syndrome. Sci Rep 2024; 14:18002. [PMID: 39097642 PMCID: PMC11297915 DOI: 10.1038/s41598-024-65392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/18/2024] [Indexed: 08/05/2024] Open
Abstract
Zika virus (ZIKV) infection was first reported in 2015 in Brazil as causing microcephaly and other developmental abnormalities in newborns, leading to the identification of Congenital Zika Syndrome (CZS). Viral infections have been considered an environmental risk factor for neurodevelopmental disorders outcome, such as Autism Spectrum Disorder (ASD). Moreover, not only the infection per se, but maternal immune system activation during pregnancy, has been linked to fetal neurodevelopmental disorders. To understand the impact of ZIKV vertical infection on brain development, we derived induced pluripotent stem cells (iPSC) from Brazilian children born with CZS, some of the patients also being diagnosed with ASD. Comparing iPSC-derived neurons from CZS with a control group, we found lower levels of pre- and postsynaptic proteins and reduced functional synapses by puncta co-localization. Furthermore, neurons and astrocytes derived from the CZS group showed decreased glutamate levels. Additionally, the CZS group exhibited elevated levels of cytokine production, one of which being IL-6, already associated with the ASD phenotype. These preliminary findings suggest that ZIKV vertical infection may cause long-lasting disruptions in brain development during fetal stages, even in the absence of the virus after birth. These disruptions could contribute to neurodevelopmental disorders manifestations such as ASD. Our study contributes with novel knowledge of the CZS outcomes and paves the way for clinical validation and the development of potential interventions to mitigate the impact of ZIKV vertical infection on neurodevelopment.
Collapse
Affiliation(s)
- Cecilia Benazzato
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil
| | - Fernando Lojudice
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo-SP, 01246-903, Brazil
| | - Felizia Pöehlchen
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil
- Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Paulo Emílio Corrêa Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Federal Fluminense University, Rio de Janeiro, 24220-900, Brazil
| | - Antonio Carlos Manucci
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | | | - Patricia Jungmann
- Pathology Department, University of Pernambuco, Recife, 50670-901, Brazil
| | - Mari C Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo-SP, 01246-903, Brazil
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Alexandre Bruni-Cardoso
- Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Fabiele B Russo
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil.
| | - Patricia Beltrão-Braga
- Microbiology Department, Institute of Biomedical Sciences (ICB-II), University of São Paulo, Av. Prof Lineu Prestes, 1374, 2Nd Floor, Room 235, São Paulo, SP, 05508-000, Brazil.
- Institute Pasteur of São Paulo, Av. Prof. Lucio Martins Rodrigues 370, A-Building, 4Th Floor, São Paulo-SP, 05508-020, Brazil.
| |
Collapse
|
39
|
Park G, Rim YA, Sohn Y, Nam Y, Ju JH. Replacing Animal Testing with Stem Cell-Organoids : Advantages and Limitations. Stem Cell Rev Rep 2024; 20:1375-1386. [PMID: 38639829 PMCID: PMC11319430 DOI: 10.1007/s12015-024-10723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Various groups including animal protection organizations, medical organizations, research centers, and even federal agencies such as the U.S. Food and Drug Administration, are working to minimize animal use in scientific experiments. This movement primarily stems from animal welfare and ethical concerns. However, recent advances in technology and new studies in medicine have contributed to an increase in animal experiments throughout the years. With the rapid increase in animal testing, concerns arise including ethical issues, high cost, complex procedures, and potential inaccuracies.Alternative solutions have recently been investigated to address the problems of animal testing. Some of these technologies are related to stem cell technologies, such as organ-on-a-chip, organoids, and induced pluripotent stem cell models. The aim of the review is to focus on stem cell related methodologies, such as organoids, that can serve as an alternative to animal testing and discuss its advantages and limitations, alongside regulatory considerations.Although stem cell related methodologies has shortcomings, it has potential to replace animal testing. Achieving this requires further research on stem cells, with potential societal and technological benefits.
Collapse
Affiliation(s)
- Guiyoung Park
- School of Biopharmaceutical and Medical Sciences, Health & Wellness College, Sungshin Women's University, 55, Dobong-ro 76ga-gil, Gangbuk-gu, Seoul, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 4 3, Seoul, 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- Yipscell Inc, L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, Korea.
| | - Ji Hyeon Ju
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 4 3, Seoul, 06591, Republic of Korea.
- Department of Biomedicine & Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Yipscell Inc, L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, Korea.
| |
Collapse
|
40
|
Yu P, Bosholm CC, Zhu H, Duan Z, Atala A, Zhang Y. Beyond waste: understanding urine's potential in precision medicine. Trends Biotechnol 2024; 42:953-969. [PMID: 38369434 PMCID: PMC11741143 DOI: 10.1016/j.tibtech.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Urine-derived stem cells (USCs) are a promising source of stem cells for cell therapy, renal toxicity drug testing, and renal disease biomarker discovery. Patients' own USCs can be used for precision medicine. In this review we first describe the isolation and characterization of USCs. We then discuss preclinical studies investigating the use of USCs in cell therapy, exploring the utility of USCs and USC-derived induced pluripotent stem cells (u-iPSCs) in drug toxicity testing, and investigating the use of USCs as biomarkers for renal disease diagnosis. Finally, we discuss the challenges of using USCs in these applications and provide insights into future research directions. USCs are a promising tool for advancing renal therapy, drug testing, and biomarker discovery. Further research is needed to explore their potential.
Collapse
Affiliation(s)
- Pengfei Yu
- The Fourth Department of Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China; Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carol Christine Bosholm
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hainan Zhu
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhongping Duan
- The Fourth Department of Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Anthony Atala
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
41
|
Atia GA, Rashed F, Taher ES, Cho SG, Dayem AA, Soliman MM, Shalaby HK, Mohammed NA, Taymour N, El-Sherbiny M, Ebrahim E, Ramadan MM, Abdelkader A, Abdo M, Aldarmahi AA, Atwa AM, Bafail DA, Abdeen A. Challenges of therapeutic applications and regenerative capacities of urine based stem cells in oral, and maxillofacial reconstruction. Biomed Pharmacother 2024; 177:117005. [PMID: 38945084 DOI: 10.1016/j.biopha.2024.117005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Urine-derived stem cells (USCs) have gained the attention of researchers in the biomedical field in the past few years . Regarding the several varieties of cells that have been used for this purpose, USCs have demonstrated mesenchymal stem cell-like properties, such as differentiation and immunomodulation. Furthermore, they could be differentiated into several lineages. This is very interesting for regenerative techniques based on cell therapy. This review will embark on describing their separation, and profiling. We will specifically describe the USCs characteristics, in addition to their differentiation potential. Then, we will introduce and explore the primary uses of USCs. These involve thier utilization as a platform to produce stem cells, however, we shall concentrate on the utilization of USCs for therapeutic, and regenerative orofacial applications, providing an in-depth evaluation of this purpose. The final portion will address the limitations and challenges of their implementation in regenerative dentistry.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt.
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, South Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, South Korea
| | - Magdalen M Soliman
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Badr University, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez 43512, Egypt
| | - Nourelhuda A Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Mutah, Al-Karak 61710, Jordan
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Elturabi Ebrahim
- Department of Medical Surgical Nursing, Nursing College, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmoud M Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt; Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed A Aldarmahi
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21582, Saudi Arabia; National Guard, Health Affairs, King Abdullah International Medical Research Centre, Jeddah 21582, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Duaa A Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 11829, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| |
Collapse
|
42
|
Liu J, Kong G, Lu C, Wang J, Li W, Lv Z, Tong J, Liu Y, Xiong W, Li H, Fan J. IPSC-NSCs-derived exosomal let-7b-5p improves motor function after spinal cord Injury by modulating microglial/macrophage pyroptosis. J Nanobiotechnology 2024; 22:403. [PMID: 38982427 PMCID: PMC11232148 DOI: 10.1186/s12951-024-02697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Following spinal cord injury (SCI), the inflammatory storm initiated by microglia/macrophages poses a significant impediment to the recovery process. Exosomes play a crucial role in the transport of miRNAs, facilitating essential cellular communication through the transfer of genetic material. However, the miRNAs from iPSC-NSCs-Exos and their potential mechanisms leading to repair after SCI remain unclear. This study aims to explore the role of iPSC-NSCs-Exos in microglia/macrophage pyroptosis and reveal their potential mechanisms. METHODS iPSC-NSCs-Exos were characterized and identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. A mouse SCI model and a series of in vivo and in vitro experiments were conducted to investigate the therapeutic effects of iPSC-NSCs-Exos. Subsequently, miRNA microarray analysis and rescue experiments were performed to confirm the role of miRNAs in iPSC-NSCs-Exos in SCI. Mechanistic studies were carried out using Western blot, luciferase activity assays, and RNA-ChIP. RESULTS Our findings revealed that iPSC-NSCs-derived exosomes inhibited microglia/macrophage pyroptosis at 7 days post-SCI, maintaining myelin integrity and promoting axonal growth, ultimately improving mice motor function. The miRNA microarray showed let-7b-5p to be highly enriched in iPSC-NSCs-Exos, and LRIG3 was identified as the target gene of let-7b-5p. Through a series of rescue experiments, we uncovered the connection between iPSC-NSCs and microglia/macrophages, revealing a novel target for treating SCI. CONCLUSION In conclusion, we discovered that iPSC-NSCs-derived exosomes can package and deliver let-7b-5p, regulating the expression of LRIG3 to ameliorate microglia/macrophage pyroptosis and enhance motor function in mice after SCI. This highlights the potential of combined therapy with iPSC-NSCs-Exos and let-7b-5p in promoting functional recovery and limiting inflammation following SCI.
Collapse
Affiliation(s)
- Jie Liu
- Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China
| | - Guang Kong
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chenlin Lu
- Department of Clinical Research Center, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China
| | - Juan Wang
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbo Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China
| | - Zhengming Lv
- Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China
| | - Jian Tong
- Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China
| | - Yuan Liu
- Songjiang Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wu Xiong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China.
| | - Haijun Li
- Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China.
| | - Jin Fan
- Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China.
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China.
| |
Collapse
|
43
|
Rehman A, Fatima I, Noor F, Qasim M, Wang P, Jia J, Alshabrmi FM, Liao M. Role of small molecules as drug candidates for reprogramming somatic cells into induced pluripotent stem cells: A comprehensive review. Comput Biol Med 2024; 177:108661. [PMID: 38810477 DOI: 10.1016/j.compbiomed.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
With the use of specific genetic factors and recent developments in cellular reprogramming, it is now possible to generate lineage-committed cells or induced pluripotent stem cells (iPSCs) from readily available and common somatic cell types. However, there are still significant doubts regarding the safety and effectiveness of the current genetic methods for reprogramming cells, as well as the conventional culture methods for maintaining stem cells. Small molecules that target specific epigenetic processes, signaling pathways, and other cellular processes can be used as a complementary approach to manipulate cell fate to achieve a desired objective. It has been discovered that a growing number of small molecules can support lineage differentiation, maintain stem cell self-renewal potential, and facilitate reprogramming by either increasing the efficiency of reprogramming or acting as a genetic reprogramming factor substitute. However, ongoing challenges include improving reprogramming efficiency, ensuring the safety of small molecules, and addressing issues with incomplete epigenetic resetting. Small molecule iPSCs have significant clinical applications in regenerative medicine and personalized therapies. This review emphasizes the versatility and potential safety benefits of small molecules in overcoming challenges associated with the iPSCs reprogramming process.
Collapse
Affiliation(s)
- Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fatima Noor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan; Department of Bioinformatics and Biotechnology, Government College University of Faisalabad, 38000, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University of Faisalabad, 38000, Pakistan
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinrui Jia
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, PR China
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
44
|
García-López M, Jiménez-Vicente L, González-Jabardo R, Dorado H, Gómez-Manjón I, Martín MÁ, Ayuso C, Arenas J, Gallardo ME. Creation of an Isogenic Human iPSC-Based RGC Model of Dominant Optic Atrophy Harboring the Pathogenic Variant c.1861C>T (p.Gln621Ter) in the OPA1 Gene. Int J Mol Sci 2024; 25:7240. [PMID: 39000346 PMCID: PMC11242102 DOI: 10.3390/ijms25137240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Autosomal dominant optic atrophy (ADOA) is a rare progressive disease mainly caused by mutations in OPA1, a nuclear gene encoding for a mitochondrial protein that plays an essential role in mitochondrial dynamics, cell survival, oxidative phosphorylation, and mtDNA maintenance. ADOA is characterized by the degeneration of retinal ganglion cells (RGCs). This causes visual loss, which can lead to legal blindness in many cases. Nowadays, there is no effective treatment for ADOA. In this article, we have established an isogenic human RGC model for ADOA using iPSC technology and the genome editing tool CRISPR/Cas9 from a previously generated iPSC line of an ADOA plus patient harboring the pathogenic variant NM_015560.3: c.1861C>T (p.Gln621Ter) in heterozygosis in OPA1. To this end, a protocol based on supplementing the iPSC culture media with several small molecules and defined factors trying to mimic embryonic development has been employed. Subsequently, the created model was validated, confirming the presence of a defect of intergenomic communication, impaired mitochondrial respiration, and an increase in apoptosis and ROS generation. Finally, we propose the analysis of OPA1 expression by qPCR as an easy read-out method to carry out future drug screening studies using the created RGC model. In summary, this model provides a useful platform for further investigation of the underlying pathophysiological mechanisms of ADOA plus and for testing compounds with potential pharmacological action.
Collapse
Affiliation(s)
- Marta García-López
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Lydia Jiménez-Vicente
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Raquel González-Jabardo
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Helena Dorado
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Irene Gómez-Manjón
- Servicio de Genética, Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Miguel Ángel Martín
- Servicio de Genética, Hospital 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carmen Ayuso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - María Esther Gallardo
- Grupo de Investigación Traslacional con Células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
45
|
von Bibra C, Hinkel R. Non-human primate studies for cardiomyocyte transplantation-ready for translation? Front Pharmacol 2024; 15:1408679. [PMID: 38962314 PMCID: PMC11221829 DOI: 10.3389/fphar.2024.1408679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Non-human primates (NHP) are valuable models for late translational pre-clinical studies, often seen as a last step before clinical application. The unique similarity between NHPs and humans is often the subject of ethical concerns. However, it is precisely this analogy in anatomy, physiology, and the immune system that narrows the translational gap to other animal models in the cardiovascular field. Cell and gene therapy approaches are two dominant strategies investigated in the research field of cardiac regeneration. Focusing on the cell therapy approach, several xeno- and allogeneic cell transplantation studies with a translational motivation have been realized in macaque species. This is based on the pressing need for novel therapeutic options for heart failure patients. Stem cell-based remuscularization of the injured heart can be achieved via direct injection of cardiomyocytes (CMs) or patch application. Both CM delivery approaches are in the late preclinical stage, and the first clinical trials have started. However, are we already ready for the clinical area? The present review concentrates on CM transplantation studies conducted in NHPs, discusses the main sources and discoveries, and provides a perspective about human translation.
Collapse
Affiliation(s)
- Constantin von Bibra
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| | - Rabea Hinkel
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, Stiftung Tieraerztliche Hochschule Hannover, University of Veterinary Medicine, Hanover, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
- DZHK (German Centre of Cardiovascular Research), Partner Site Lower Saxony, Goettingen, Germany
| |
Collapse
|
46
|
Jiang Y, Lv H, Shen F, Fan L, Zhang H, Huang Y, Liu J, Wang D, Pan H, Yang J. Strategies in product engineering of mesenchymal stem cell-derived exosomes: unveiling the mechanisms underpinning the promotive effects of mesenchymal stem cell-derived exosomes. Front Bioeng Biotechnol 2024; 12:1363780. [PMID: 38756412 PMCID: PMC11096451 DOI: 10.3389/fbioe.2024.1363780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Articular cartilage injuries present a significant global challenge, particularly in the aging population. These injuries not only restrict movement due to primary damage but also exacerbate elderly degenerative lesions, leading to secondary cartilage injury and osteoarthritis. Addressing osteoarthritis and cartilage damage involves overcoming several technical challenges in biological treatment. The use of induced mesenchymal stem cells (iMSCs) with functional gene modifications emerges as a solution, providing a more stable and controllable source of Mesenchymal Stem Cells (MSCs) with reduced heterogeneity. Furthermore, In addition, this review encompasses strategies aimed at enhancing exosome efficacy, comprising the cultivation of MSCs in three-dimensional matrices, augmentation of functional constituents within MSC-derived exosomes, and modification of their surface characteristics. Finally, we delve into the mechanisms through which MSC-exosomes, sourced from diverse tissues, thwart osteoarthritis (OA) progression and facilitate cartilage repair. This review lays a foundational framework for engineering iMSC-exosomes treatment of patients suffering from osteoarthritis and articular cartilage injuries, highlighting cutting-edge research and potential therapeutic pathways.
Collapse
Affiliation(s)
- Yudong Jiang
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanning Lv
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuguo Shen
- Orthopedics Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lei Fan
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Hongjun Zhang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Yong Huang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jia Liu
- Central Laboratory, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Dong Wang
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Haile Pan
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianhua Yang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
47
|
Pazzin DB, Previato TTR, Budelon Gonçalves JI, Zanirati G, Xavier FAC, da Costa JC, Marinowic DR. Induced Pluripotent Stem Cells and Organoids in Advancing Neuropathology Research and Therapies. Cells 2024; 13:745. [PMID: 38727281 PMCID: PMC11083827 DOI: 10.3390/cells13090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.
Collapse
Affiliation(s)
- Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Fernando Antonio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| |
Collapse
|
48
|
Okada T, Okada A, Aoki H, Onozato D, Kato T, Takase H, Ohshima S, Sugino T, Unno R, Taguchi K, Hamamoto S, Ando R, Shimada IS, Hashita T, Iwao T, Matsunaga T, Yasui T. Phagocytosis model of calcium oxalate monohydrate crystals generated using human induced pluripotent stem cell-derived macrophages. Urolithiasis 2024; 52:51. [PMID: 38554162 DOI: 10.1007/s00240-024-01553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/03/2024] [Indexed: 04/01/2024]
Abstract
Macrophages play a role in nephrolithiasis, offering the possibility of developing macrophage-mediated preventive therapies. To establish a system for screening drugs that could prevent the formation of kidney stones, we aimed to develop a model using human induced pluripotent stem cell (iPSC)-derived macrophages to study phagocytosis of calcium oxalate monohydrate (COM) crystals. Human iPSCs (201B7) were cultured. CD14+ monocytes were recovered using a stepwise process that involved the use of growth factors and cytokines. These cells were then allowed to differentiate into M1 and M2 macrophages. The macrophages were co-cultured with COM crystals and used in the phagocytosis experiments. Live cell imaging and polarized light observation via super-resolution microscopy were used to visualize phagocytosis. Localization of phagocytosed COM crystals was observed using transmission electron microscopy. Intracellular fluorescence intensity was measured using imaging cytometry to quantify phagocytosis. Human iPSCs successfully differentiated into M1 and M2 macrophages. M1 macrophages adhered to the culture plate and moved COM crystals from the periphery to cell center over time, whereas M2 macrophages did not adhere to the culture plate and actively phagocytosed the surrounding COM crystals. Fluorescence assessment over a 24-h period showed that M2 macrophages exhibited higher intracellular fluorescence intensity (5.65-times higher than that of M1 macrophages at 4.5 h) and maintained this advantage for 18 h. This study revealed that human iPSC-derived macrophages have the ability to phagocytose COM crystals, presenting a new approach for studying urinary stone formation and highlighting the potential of iPSC-derived macrophages as a tool to screen nephrolithiasis-related drugs.
Collapse
Affiliation(s)
- Tomoki Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan.
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Daichi Onozato
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Taiki Kato
- Department of Urology, Nagoya City East Medical Center, Nagoya, Aichi, Japan
| | - Hiroshi Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shigeru Ohshima
- Department of Medical Technology, Yokkaichi Nursing and Medical Technology school of Nursing and Medical Care, Yokkaichi, Mie, Japan
| | - Teruaki Sugino
- Department of Urology, Nagoya City East Medical Center, Nagoya, Aichi, Japan
| | - Rei Unno
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Kazumi Taguchi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Shuzo Hamamoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Ryosuke Ando
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| | - Issei S Shimada
- Department of Cell Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan
| |
Collapse
|
49
|
Cohen J, Mathew A, Dourvetakis KD, Sanchez-Guerrero E, Pangeni RP, Gurusamy N, Aenlle KK, Ravindran G, Twahir A, Isler D, Sosa-Garcia SR, Llizo A, Bested AC, Theoharides TC, Klimas NG, Kempuraj D. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells 2024; 13:511. [PMID: 38534355 PMCID: PMC10969521 DOI: 10.3390/cells13060511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammatory and neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI) and Amyotrophic lateral sclerosis (ALS) are chronic major health disorders. The exact mechanism of the neuroimmune dysfunctions of these disease pathogeneses is currently not clearly understood. These disorders show dysregulated neuroimmune and inflammatory responses, including activation of neurons, glial cells, and neurovascular unit damage associated with excessive release of proinflammatory cytokines, chemokines, neurotoxic mediators, and infiltration of peripheral immune cells into the brain, as well as entry of inflammatory mediators through damaged neurovascular endothelial cells, blood-brain barrier and tight junction proteins. Activation of glial cells and immune cells leads to the release of many inflammatory and neurotoxic molecules that cause neuroinflammation and neurodegeneration. Gulf War Illness (GWI) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are chronic disorders that are also associated with neuroimmune dysfunctions. Currently, there are no effective disease-modifying therapeutic options available for these diseases. Human induced pluripotent stem cell (iPSC)-derived neurons, astrocytes, microglia, endothelial cells and pericytes are currently used for many disease models for drug discovery. This review highlights certain recent trends in neuroinflammatory responses and iPSC-derived brain cell applications in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kirk D Dourvetakis
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Estella Sanchez-Guerrero
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Geeta Ravindran
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Sara Rukmini Sosa-Garcia
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Axel Llizo
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Alison C Bested
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| |
Collapse
|
50
|
Yang L, Liu SC, Liu YY, Zhu FQ, Xiong MJ, Hu DX, Zhang WJ. Therapeutic role of neural stem cells in neurological diseases. Front Bioeng Biotechnol 2024; 12:1329712. [PMID: 38515621 PMCID: PMC10955145 DOI: 10.3389/fbioe.2024.1329712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
The failure of endogenous repair is the main feature of neurological diseases that cannot recover the damaged tissue and the resulting dysfunction. Currently, the range of treatment options for neurological diseases is limited, and the approved drugs are used to treat neurological diseases, but the therapeutic effect is still not ideal. In recent years, different studies have revealed that neural stem cells (NSCs) have made exciting achievements in the treatment of neurological diseases. NSCs have the potential of self-renewal and differentiation, which shows great foreground as the replacement therapy of endogenous cells in neurological diseases, which broadens a new way of cell therapy. The biological functions of NSCs in the repair of nerve injury include neuroprotection, promoting axonal regeneration and remyelination, secretion of neurotrophic factors, immune regulation, and improve the inflammatory microenvironment of nerve injury. All these reveal that NSCs play an important role in improving the progression of neurological diseases. Therefore, it is of great significance to better understand the functional role of NSCs in the treatment of neurological diseases. In view of this, we comprehensively discussed the application and value of NSCs in neurological diseases as well as the existing problems and challenges.
Collapse
Affiliation(s)
- Ling Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Si-Cheng Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Yi Liu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fu-Qi Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Mei-Juan Xiong
- The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|