1
|
Pourrajab B, Fotros D, Asghari P, Shidfar F. Effect of the Mediterranean Diet Supplemented With Olive Oil Versus the Low-Fat Diet on Serum Inflammatory and Endothelial Indexes Among Adults: A Systematic Review and Meta-analysis of Clinical Controlled Trials. Nutr Rev 2024:nuae166. [PMID: 39530776 DOI: 10.1093/nutrit/nuae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
CONTEXT Inflammation and endothelial dysfunction are important risk factors for chronic diseases, including cardiovascular diseases and related mortality. OBJECTIVE This systematic review and meta-analysis aimed to assess the effects of 2 popular dietary patterns-a Mediterranean (MED) diet supplemented with olive oil and a low-fat diet (LFD)-on factors related to inflammation and endothelial function in adults. DATA SOURCES AND DATA EXTRACTION The following online databases were searched for related studies published until August 7, 2024: PubMed/Medline, Scopus, Clarivate Analytics Web of Science, Cochrane Central Register of Controlled Trials, and Google Scholar. Two independent researchers selected the studies based on the eligibility criteria. DATA ANALYSIS The effect sizes were expressed as Hedges' g with 95% CIs. A total of 16 eligible trials with 20 effect sizes were included in the analyses. This meta-analysis revealed that the MED diet supplemented with olive oil significantly improved all of the indicators of the study compared with the LFD, except in the case of E-selectin, in which a low and nonsignificant decrease was reported. CONCLUSION Available evidence suggests that a MED diet supplemented with olive oil compared with the LFD significantly improves inflammation and serum endothelial function in adults. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023485718.
Collapse
Affiliation(s)
- Behnaz Pourrajab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Danial Fotros
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Parastoo Asghari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| | - Farzad Shidfar
- Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Nutritional Sciences, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
2
|
de la Cruz Cazorla S, Blanco S, Rus A, Molina-Ortega FJ, Ocaña E, Hernández R, Visioli F, del Moral ML. Nutraceutical Supplementation as a Potential Non-Drug Treatment for Fibromyalgia: Effects on Lipid Profile, Oxidative Status, and Quality of Life. Int J Mol Sci 2024; 25:9935. [PMID: 39337423 PMCID: PMC11432491 DOI: 10.3390/ijms25189935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Fibromyalgia (FM) is a chronic syndrome of unknown etiology, although many studies point to inflammation, oxidative stress, and altered mitochondrial metabolism as some of the cornerstones of this disease. Despite its socioeconomic importance and due to the difficulties in diagnosis, there are no effective treatments. However, the use of non-drug treatments is increasingly becoming a recommended strategy. In this context, the effects of supplementation of FM patients with an olive (poly)phenol, vitamin C, and vitamin B preparation were investigated in this work, analyzing complete blood count, biochemical, lipid, and coagulation profiles, and inflammation and oxidation status in blood samples. To gain a better understanding of the molecular mechanisms and pathways involved in the etiology of FM, a proteomic study was also performed to investigate the mechanisms of action of the supplement. Our results show that the nutraceutical lowers the lipid profile, namely cholesterol, and improves the oxidative status of patients as well as their quality of life, suggesting that this product could be beneficial in the co-treatment of FM. ClinicalTrials.gov (ID: NCT06348537).
Collapse
Affiliation(s)
| | - Santos Blanco
- Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain (S.B.); (R.H.); (M.L.d.M.)
| | - Alma Rus
- Department of Cell Biology, University of Granada, 18071 Granada, Spain;
| | | | - Esther Ocaña
- Unit of Clinic Analyses, Hospital Universitario Ciudad de Jaén, 23071 Jaén, Spain;
| | - Raquel Hernández
- Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain (S.B.); (R.H.); (M.L.d.M.)
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - María Luisa del Moral
- Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain (S.B.); (R.H.); (M.L.d.M.)
| |
Collapse
|
3
|
Abdnim R, Lafdil FZ, Elrherabi A, El Fadili M, Kandsi F, Benayad O, Legssyer A, Ziyyat A, Mekhfi H, Bnouham M. Fatty acids characterisation by GC-MS, antiglycation effect at multiple stages and protection of erythrocytes cells from oxidative damage induced by glycation of albumin of Opuntia ficus-indica (L.) Mill seed oil cultivated in Eastern Morocco: Experimental and computational approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118106. [PMID: 38570146 DOI: 10.1016/j.jep.2024.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Opuntia ficus-indica (L.) Mill is frequently observed in the Moroccan traditional medicinal system, where these approaches are employed to mitigate the onset of diabetes and the subsequent complications it may entail. AIM OF THE STUDY The aim of this research was to examine the effectiveness of Opuntia ficus-indica seed oil in preventing diabetic complications. Specifically, the study assessed its ability to counteract glycation at various stages, protected red blood cells from the harmful effects of glycated albumin, and inhibited pancreatic lipase digestive enzymes to understand its potential antihyperglycemic properties. Additionally, the study aimed to identify the chemical components responsible for these effects, evaluate antioxidant and anti-inflammatory properties, and conduct computational investigations such as molecular docking. MATERIALS AND METHODS The assessement of Opuntia ficus-indica seed oil antiglycation properties involved co-incubating the extract oil with a bovine serum albumin-glucose glycation model. The study investigated various stages of glycation, incorporating fructosamine (inceptive stage), protein carbonyls (intermediate stage), and AGEs (late stage). Additionally, measurement of β-amyloid aggregation of albumin was performed using Congo red, which is specific to amyloid structures. Additionally, the evaluation of oil's safeguarding effect on erythrocytes against toxicity induced by glycated albumin included the measurement of erythrocyte hemolysis, lipid peroxidation, reduced glutathione. The fatty acid of Opuntia ficus-indica seed oil were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro evaluation of antihyperglycemic activity involved the use of pancreatic lipase enzyme, while the assessement of antioxidant capability was carried out through the utilization of the ABTS and FRAP methods. The in vitro assessement of the denaturation of albumin activity was also conducted. In conjunction with the experimental outcomes, computational investigations were undertaken, specifically employing ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis. Furthermore, molecular docking was utilized to predict antioxidant and antiglycation mechanisms based on protein targets. RESULTS In vitro glycation assays, Opuntia ficus-indica seed oil displayed targeted inhibitory effects at multiple distinct stages. Within erythrocytes, in addition to mitigating hemolysis and lipid peroxidation induced by glycated albumin. GC-MS investigation revealed a richness of fatty acids and the most abundant compounds are Linoleic acid (36.59%), Palmitic acid (20.84%) and Oleic acid (19.33%) respectively. The findings of antioxidant ability showed a remarkable activity on FRAP and ABTS radicals. This oil showed a pronounced inhibitory impact (p < 0.001) on pancreatic lipase enzyme. It also exerted a notibale inhibition of albumin denaturation, in vitro. CONCLUSION The identified results were supported by the abundant compounds of fatty acids unveiled through GC-MS analysis, along with the computational investigation and molecular docking.
Collapse
Affiliation(s)
- Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco.
| | - Fatima Zahra Lafdil
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | - Amal Elrherabi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | - Mohamed El Fadili
- LIMAS Laboratory, Chemistry Department, Faculty of Sciences Dhar Mehrez, Sidi Mohamed Ben Abdellah University, Morocco
| | - Fahd Kandsi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | | | - Abdelkhaleq Legssyer
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | - Hassane Mekhfi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, B.P. 717, Morocco.
| |
Collapse
|
4
|
Visioli F. The Question of Cholesterol: Will Olive Oil Answer? J Nutr 2024; 154:10-11. [PMID: 38040408 DOI: 10.1016/j.tjnut.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, Madrid, Spain.
| |
Collapse
|
5
|
Hara T, Fukuda D, Ganbaatar B, Pham PT, Aini K, Rahadian A, Suto K, Yagi S, Kusunose K, Yamada H, Soeki T, Sata M. Olive mill wastewater and hydroxytyrosol inhibits atherogenesis in apolipoprotein E-deficient mice. Heart Vessels 2023; 38:1386-1394. [PMID: 37462755 DOI: 10.1007/s00380-023-02290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/13/2023] [Indexed: 09/26/2023]
Abstract
The Mediterranean diet, which is characterized by high consumption of olive oil, prevents cardiovascular disease. Meanwhile, olive mill wastewater (OMWW), which is obtained as a byproduct during olive oil production, contains various promising bioactive components such as water-soluble polyphenols. Hydroxytyrosol (HT), the major polyphenol in OMWW, has anti-oxidative and anti-inflammatory properties; however, the atheroprotective effects of OMWW and HT remain to be fully understood. Here, we investigated the effect of OMWW and HT on atherogenesis. Male 8-week-old apolipoprotein E-deficient mice were fed a western-type diet supplemented with OMWW (0.30%w/w) or HT (0.02%w/w) for 20 weeks. The control group was fed a non-supplemented diet. OMWW and HT attenuated the development of atherosclerosis in the aortic arch as determined by Sudan IV staining (P < 0.01, respectively) without alteration of body weight, plasma lipid levels, and blood pressure. OMWW and HT also decreased the production of oxidative stress (P < 0.01, respectively) and the expression of NADPH oxidase subunits (e.g., NOX2 and p22phox) and inflammatory molecules (e.g. IL-1β and MCP-1) in the aorta. The results of in vitro experiments demonstrated that HT inhibited the expression of these molecules that were stimulated with LPS in RAW264.7 cells, murine macrophage-like cells. OMWW and HT similarly attenuated atherogenesis. HT is a major component of water-soluble polyphenols in OMWW, and it inhibited inflammatory activation of macrophages. Therefore, our results suggest that the atheroprotective effects of OMWW are at least partially attributable to the anti-inflammatory effects of HT.
Collapse
Affiliation(s)
- Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
- Department of Cardio-Diabetes Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Byambasuren Ganbaatar
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Phuong Tran Pham
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kunduziayi Aini
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Arief Rahadian
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kumiko Suto
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Takeshi Soeki
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8503, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|
6
|
De Vito R, Parpinel M, Speciani MC, Fiori F, Bianco R, Caporali R, Ingegnoli F, Scotti I, Schioppo T, Ubiali T, Cutolo M, Grosso G, Ferraroni M, Edefonti V. Does Pizza Consumption Favor an Improved Disease Activity in Rheumatoid Arthritis? Nutrients 2023; 15:3449. [PMID: 37571389 PMCID: PMC10421216 DOI: 10.3390/nu15153449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
To our knowledge, no studies so far have investigated the role of pizza and its ingredients in modulating disease activity in rheumatoid arthritis (RA). We assessed this question via a recent cross-sectional study including 365 participants from Italy, the birthplace of pizza. Multiple robust linear and logistic regression models were fitted with the tertile consumption categories of each available pizza-related food item/group (i.e., pizza, refined grains, mozzarella cheese, and olive oil) as independent variables, and each available RA activity measure (i.e., the Disease Activity Score on 28 joints with C-reactive protein (DAS28-CRP), and the Simplified Disease Activity Index (SDAI)) as the dependent variable. Stratified analyses were carried out according to the disease severity or duration. Participants eating half a pizza >1 time/week (vs. ≤2 times/month) reported beneficial effects on disease activity, with the significant reductions of ~70% (overall analysis), and 80% (the more severe stratum), and the significant beta coefficients of -0.70 for the DAS28-CRP, and -3.6 for the SDAI (overall analysis) and of -1.10 and -5.30 (in long-standing and more severe RA, respectively). Among the pizza-related food items/groups, mozzarella cheese and olive oil showed beneficial effects, especially in the more severe stratum. Future cohort studies are needed to confirm this beneficial effect of pizza and related food items/groups on RA disease activity.
Collapse
Affiliation(s)
- Roberta De Vito
- Department of Biostatistics, Data Science Initiative, Center for Computational Molecular Biology, Brown University, 121 South Main Street and 164 Angell Street, Providence, RI 02912, USA;
| | - Maria Parpinel
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy; (M.P.); (F.F.); (R.B.)
| | - Michela Carola Speciani
- Branch of Medical Statistics, Biometry, and Epidemiology “G. A. Maccacaro”, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via Celoria 22, 20133 Milan, Italy; (M.C.S.); (M.F.)
| | - Federica Fiori
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy; (M.P.); (F.F.); (R.B.)
| | - Rachele Bianco
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy; (M.P.); (F.F.); (R.B.)
| | - Roberto Caporali
- Rheumatology Clinic, ASST Gaetano Pini, Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Piazza A. Ferrari 1, 20122 Milan, Italy;
| | - Francesca Ingegnoli
- Rheumatology Clinic, ASST Gaetano Pini, Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Piazza A. Ferrari 1, 20122 Milan, Italy;
| | - Isabella Scotti
- Rheumatology Clinic, ASST Gaetano Pini, Piazza A. Ferrari 1, 20122 Milan, Italy;
| | - Tommaso Schioppo
- Medicina Generale II, Ospedale San Paolo, ASST Santi Paolo Carlo, Via Antonio di Rudinì 8, 20142 Milan, Italy;
| | - Tania Ubiali
- UO Reumatologia, ASST Papa Giovanni XXIII, Piazza OMS—Organizzazione Mondiale della Sanità 1, 24127 Bergamo, Italy;
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Rheumatology, Department of Internal Medicine, University of Genova—IRCCS San Martino Polyclinic Hospital, Viale Benedetto XV 6, 16132 Genova, Italy;
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, Center for Human Nutrition and Mediterranean Foods (NUTREA), University of Catania, Via S. Sofia 97, 95123 Catania, Italy;
| | - Monica Ferraroni
- Branch of Medical Statistics, Biometry, and Epidemiology “G. A. Maccacaro”, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via Celoria 22, 20133 Milan, Italy; (M.C.S.); (M.F.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Sforza 35, 20122 Milan, Italy
| | - Valeria Edefonti
- Branch of Medical Statistics, Biometry, and Epidemiology “G. A. Maccacaro”, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via Celoria 22, 20133 Milan, Italy; (M.C.S.); (M.F.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Sforza 35, 20122 Milan, Italy
| |
Collapse
|
7
|
Pieroni A, Morini G, Piochi M, Sulaiman N, Kalle R, Haq SM, Devecchi A, Franceschini C, Zocchi DM, Migliavada R, Prakofjewa J, Sartori M, Krigas N, Ahmad M, Torri L, Sõukand R. Bitter Is Better: Wild Greens Used in the Blue Zone of Ikaria, Greece. Nutrients 2023; 15:3242. [PMID: 37513661 PMCID: PMC10385191 DOI: 10.3390/nu15143242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The current study reports an ethnobotanical field investigation of traditionally gathered and consumed wild greens (Chorta) in one of the five so-called Blue Zones in the world: Ikaria Isle, Greece. Through 31 semi-structured interviews, a total of 56 wild green plants were documented along with their culinary uses, linguistic labels, and locally perceived tastes. Most of the gathered greens were described as bitter and associated with members of Asteraceae and Brassicaceae botanical families (31%), while among the top-quoted wild greens, species belonging to these two plant families accounted for 50% of the wild vegetables, which were consumed mostly cooked. Cross-cultural comparison with foraging in other areas of the central-eastern Mediterranean and the Near East demonstrated a remarkable overlapping of Ikarian greens with Cretan and Sicilian, as well as in the prevalence of bitter-tasting botanical genera. Important differences with other wild greens-related food heritage were found, most notably with the Armenian and Kurdish ones, which do not commonly feature many bitter greens. The proven role of extra-oral bitter taste receptors in the modulation of gastric emptying, glucose absorption and crosstalk with microbiota opens new ways of looking at these differences, in particular with regard to possible health implications. The present study is also an important attempt to preserve and document the bio-cultural gastronomic heritage of Chorta as a quintessential part of the Mediterranean diet. The study recommends that nutritionists, food scientists, and historians, as well as policymakers and practitioners, pay the required attention to traditional rural dietary systems as models of sustainable health.
Collapse
Affiliation(s)
- Andrea Pieroni
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
- Department of Medical Analysis, Tishk International University, Erbil 44001, Iraq
| | - Gabriella Morini
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Maria Piochi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Naji Sulaiman
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
- Department of Ethnology, Charles University, 116 38 Prague, Czech Republic
| | - Raivo Kalle
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
- Estonian Literary Museum, Vanemuise 42, 51003 Tartu, Estonia
| | - Shiekh Marifatul Haq
- Department of Ethnobotany, Institute of Botany, Ilia State University, 0162 Tbilisi, Georgia
| | - Andrea Devecchi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Cinzia Franceschini
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Dauro M Zocchi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Riccardo Migliavada
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Julia Prakofjewa
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy
| | - Matteo Sartori
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy
| | - Nikos Krigas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, 57001 Thessaloniki, Greece
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Luisa Torri
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042 Pollenzo, Italy
| | - Renata Sõukand
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia, Italy
| |
Collapse
|
8
|
Martínez Álvarez JR, Lopez Jaen AB, Cavia-Saiz M, Muñiz P, Valls-Belles V. Beneficial Effects of Olive Oil Enriched with Lycopene on the Plasma Antioxidant and Anti-Inflammatory Profile of Hypercholesterolemic Patients. Antioxidants (Basel) 2023; 12:1458. [PMID: 37507996 PMCID: PMC10376681 DOI: 10.3390/antiox12071458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Olive oil and lycopene are foods that have potent antioxidant activity. The objective was to determine the effects of consumption of olive oil enriched with lycopene on oxidative stress biomarkers in hypercholesterolemic subjects. We examined the effects of oil enriched with lycopene extract daily intake during 1 month on plasma antioxidant capacity, lipids profile (triacylgycerols, total cholesterol, cHDL; cLDL, ox-LDL), biomarkers of oxidative stress, and inflammatory markers related with atherosclerosis risk (C-reactive protein (CRP), IL-6; sDC4L) in subjects hypercholesteremics (cholesterol > 220 mg/dL). In the group consuming olive oil-lycopene, significant increases (p < 0.05) in the levels of plasma lycopene concentration (0.146 ± 0.03 versus 0.202 ± 0.04 (µmol/L)), α-carotene (0.166 ± 0.064 versus 0.238 ± 0.07) and in β-carotene (0.493 ± 0.187 versus 0.713 ± 0.221) were observed. These results are linked with the increases of plasma antioxidants and decreases biomarkers of oxidative stress (carbonyl groups, malondialdehyde and 8-hydroxy-deoxiguanosine) observed in hypercholesterolemic group. In relation to lipid profile, a significant decrease was observed in the levels of ox-LDL (781 ± 302 versus 494 ± 200), remaining unchanged the levels of TG, cholesterol, HDL and LDL-c. Regarding inflammatory biomarkers, the levels of CRP and IL-6 decreased significantly. The positive results obtained in this study support the use of olive oil enriched with lycopene to reduce the risk of coronary disease.
Collapse
Affiliation(s)
- Jesus Roman Martínez Álvarez
- Departamento de Enfermería, Escuela Universitaria de Enfermería, Fisioterapia y Podología, Universidad Complutense, 28040 Madrid, Spain
| | | | - Monica Cavia-Saiz
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, 09001 Burgos, Spain
| | - Pilar Muñiz
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, 09001 Burgos, Spain
| | - Victoria Valls-Belles
- Unidad Predepartamental de Medicina, Facultad de Ciencias de la Salud, Universidad Jaume I, 12006 Castellón, Spain
| |
Collapse
|
9
|
Deo P, Dhillon VS, Thomas P, Fenech M. Oleic Acid Status Positively Correlates with the Soluble Receptor for Advanced Glycation End-Products (sRAGE) in Healthy Adults Who Are Homozygous for G Allele of RAGE G82S Polymorphism. Cells 2023; 12:1662. [PMID: 37371132 DOI: 10.3390/cells12121662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The soluble form of receptor for advanced glycation end products (sRAGE) have been implicated in the prevention of numerous pathologic states, and highlights as an attractive therapeutic target. Because diets rich in monounsaturated fatty acids (MUFA) reduce postprandial oxidative stress and inflammation that is related to better health during aging, we investigated the association between red blood cell (RBC) fatty acids with circulatory AGE biomarkers and further stratified this correlation based on GG and GA + AA genotype. METHODS A total of 172 healthy participants (median age = 53.74 ± 0.61 years) were recruited for the study. RBC fatty acid was analysed using gas chromatography and sRAGE was measured using a commercial ELISA kit. RESULTS The result showed a non-significant correlation between total MUFA with sRAGE however oleic acid (C18:1) exhibited a positive correlation (r = 0.178, p = 0.01) that remained statistically significant (β = 0.178, p = 0.02) after a stepwise multivariate regression analysis after adjusting for age, BMI and gender. In a univariate analysis, a positive significant correlation between C18:1 and sRAGE in GG genotype (r = 0.169, p = 0.02) and a non-significant correlation with GA + AA genotype (r = 0.192, p = 0.21) was evident. When C18:1 was stratified, a significant difference was observed for oleic acid and G82S polymorphism: low C18:1/GA + AA versus high C18:1/GG (p = 0.015) and high C18:1/GA + AA versus high C18:1/GG (p = 0.02). CONCLUSION Our study suggests that increased levels of C18:1 may be a potential therapeutic approach in increasing sRAGE in those with GG genotype and play a role in modulating AGE metabolism.
Collapse
Affiliation(s)
- Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Varinderpal S Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide 5000, Australia
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia
- Genome Health Foundation, North Brighton 5048, Australia
| |
Collapse
|
10
|
Gonzalez-Ortega R, Di Mattia CD, Pittia P, Natasa PU. Effect of heat treatment on phenolic composition and radical scavenging activity of olive leaf extract at different pH conditions: a spectroscopic and kinetic study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2047-2056. [PMID: 36461135 DOI: 10.1002/jsfa.12371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 09/21/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The present study focused on the effect of isothermal treatment (5-90 °C) and pH (2.0-6.0) of aqueous olive leaf phenolic extract solutions on the kinetics of degradation of single and total phenolic compounds and radical scavenging activity, with the objective of predicting and optimizing the thermal treatments in foods enriched with olive leaf extracts. RESULTS The major compound, oleuropein, showed higher degradation at low pH 2.0 and temperature-dependent reaction rates, which fitted well a first-order kinetic model, with an estimated activation energy of 98.03 ± 0.08 kJ mol-1 . Oleuropein hydrolysis resulted in a zero-order increase in hydroxytyrosol concentration at same pH (Ea = 71.59 ± 1.5 kJ mol-1 ), whereas a 100-fold slower degradation rate was observed at higher pH. Verbascoside was only degraded at pH 6.0, also following first-order kinetics. These changes in oleuropein and hydroxytyrosol concentrations led to significant changes in fluorescence maximum intensities centered around 315 and 360 nm and in the 425-500 nm spectral zone for samples at pH 6.0, which could be associated with verbacoside degradation. Conversely, analysis of total phenolic content and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity showed little changes, indicating a rather constant overall reducing capacity of the resulting pool of compounds after thermal treatments. CONCLUSION The present study can contribute to the knowledge related to oleuropein and phenolic fraction degradation as a result of matrix (pH) and processing. The kinetic parameters obtained could be applied for predicting and optimizing the thermal treatments in foods and drinks enriched with olive leaf extracts. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rodrigo Gonzalez-Ortega
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Carla Daniela Di Mattia
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Paola Pittia
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Poklar Ulrih Natasa
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- The Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CipKeBiP), Ljubljana, Slovenia
| |
Collapse
|
11
|
Olive Polyphenol Oxidase Gene Family. Int J Mol Sci 2023; 24:ijms24043233. [PMID: 36834644 PMCID: PMC9962951 DOI: 10.3390/ijms24043233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The phenolic compounds containing hydroxytyrosol are the minor components of virgin olive oil (VOO) with the greatest impact on its functional properties and health benefits. Olive breeding for improving the phenolic composition of VOO is strongly dependent on the identification of the key genes determining the biosynthesis of these compounds in the olive fruit and also their transformation during the oil extraction process. In this work, olive polyphenol oxidase (PPO) genes have been identified and fully characterized in order to evaluate their specific role in the metabolism of hydroxytyrosol-derived compounds by combining gene expression analysis and metabolomics data. Four PPO genes have been identified, synthesized, cloned and expressed in Escherichia coli, and the functional identity of the recombinant proteins has been verified using olive phenolic substrates. Among the characterized genes, two stand out: (i) OePPO2 with its diphenolase activity, which is very active in the oxidative degradation of phenols during oil extraction and also seems to be highly involved in the natural defense mechanism in response to biotic stress, and (ii) OePPO3, which codes for a tyrosinase protein, having diphenolase but also monophenolase activity, which catalyzes the hydroxylation of tyrosol to form hydroxytyrosol.
Collapse
|
12
|
Del Saz-Lara A, Boughanem H, López de Las Hazas MC, Crespo C, Saz-Lara A, Visioli F, Macias-González M, Dávalos A. Hydroxytyrosol decreases EDNRA expression through epigenetic modification in colorectal cancer cells. Pharmacol Res 2023; 187:106612. [PMID: 36528246 DOI: 10.1016/j.phrs.2022.106612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The Mediterranean diet (MD) is one of the healthiest ones and is associated with a lower incidence of cardiovascular and cerebrovascular diseases as well as cancer. Extra virgin olive oil (EVOO) is probably the most idiosyncratic component of this diet. EVOO has been attributed with many healthful effects, which may be due to its phenolic components, e.g. including hydroxytyrosol (HT). Recent studies suggest that EVOO and HT have molecular targets in human tissues and modulate epigenetic mechanisms. DNA methylation is one of the most studied epigenetic mechanisms and consists of the addition of a methyl group to the cytosines of the DNA chain. Given the purported health effects of EVOO (poly)phenols, we analyzed the changes induced by HT in DNA methylation, in a colorectal cancer cell line. Caco-2 cells were treated with HT for one week or with the demethylating agent 5'-azacytidine for 48 h. Global DNA methylation was assessed by ELISA. DNA bisulfitation was performed and Infinium Methylation EPIC BeadChips were used to analyze the specific methylation of CpG sites. We show an increase in global DNA methylation in Caco-2 cells after HT treatment, with a total of 32,141 differentially methylated (CpGs DMCpGs). Interestingly, our analyses revealed the endothelin receptor type A gene (EDNRA) as a possible molecular target of HT. In summary, we demonstrate that cellular supplementation with HT results in a specific methylome map and propose a potential gene target for HT.
Collapse
Affiliation(s)
- Andrea Del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain; Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Hatim Boughanem
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Alicia Saz-Lara
- Health and Social Research Center, Universidad de Castilla-La Mancha, 16171 Cuenca, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain; Department of Molecular Medicine, University of Padova, Padova, Italy.
| | - Manuel Macias-González
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| |
Collapse
|
13
|
Navarro A, Ruiz-Méndez MV, Sanz C, Martínez M, Rego D, Pérez AG. Application of Pulsed Electric Fields to Pilot and Industrial Scale Virgin Olive Oil Extraction: Impact on Organoleptic and Functional Quality. Foods 2022; 11:foods11142022. [PMID: 35885265 PMCID: PMC9318511 DOI: 10.3390/foods11142022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/17/2022] Open
Abstract
The quality of virgin olive oil (VOO) is largely determined by the technology used in the industrial process of extracting the oil. Technological innovations within this field aim to strike a proper balance between oil yield and the optimal chemical composition of VOO. The application of pulsed electric fields (PEF) that cause the electroporation of the plant cell membranes favors a more efficient breakage of the olive fruit tissue, which in turn could facilitate the extraction of the oil and some of its key minor components. Pilot-scale and industrial extraction tests have been conducted to assess the effect of PEF technology on the oil extraction yield and on the organoleptic and functional quality of VOO. The best results were obtained by combining the PEF treatment (2 kV/cm) with short malaxation times and a low processing temperature. Under these conditions, PEF technology could decisively improve the oil yield by up to 25% under optimal conditions and enhance the incorporation of phenolic and volatile compounds into the oils. The PEF treatment neither affected the physicochemical parameters used to determine the commercial categories of olive oils, nor the tocopherol content. Similarly, the sensory evaluation of the PEF-extracted oils by means of a panel test did not detect the appearance of any defect or off-flavor. In addition, the intensity of positive attributes (fruity, bitter and pungent) was generally higher in PEF oils than in control oils.
Collapse
Affiliation(s)
- Alberto Navarro
- Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra. de Utrera, km 1, 41013 Seville, Spain
| | - María-Victoria Ruiz-Méndez
- Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra. de Utrera, km 1, 41013 Seville, Spain
| | - Carlos Sanz
- Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra. de Utrera, km 1, 41013 Seville, Spain
| | | | - Duarte Rego
- EnergyPulse Systems, Est Paco Lumiar Polo Tecnológico Lt3, 1600-546 Lisbon, Portugal
| | - Ana G Pérez
- Instituto de la Grasa (CSIC), Campus Universidad Pablo de Olavide, Edificio 46, Ctra. de Utrera, km 1, 41013 Seville, Spain
| |
Collapse
|
14
|
del Saz-Lara A, López de las Hazas MC, Visioli F, Dávalos A. Nutri-Epigenetic Effects of Phenolic Compounds from Extra Virgin Olive Oil: A Systematic Review. Adv Nutr 2022; 13:2039-2060. [PMID: 35679085 PMCID: PMC9526845 DOI: 10.1093/advances/nmac067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/14/2022] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
Dietary components can induce epigenetic changes through DNA methylation, histone modification, and regulation of microRNAs (miRNAs). Studies of diet-induced epigenetic regulation can inform anticipatory trials and fine-tune public health guidelines. We systematically reviewed data on the effect of extra virgin olive oil (EVOO) and its phenolic compounds (OOPCs) on the epigenetic landscape. We conducted a literature search using PubMed, Scopus, and Web of Science databases and scrutinized published evidence. After applying selection criteria (e.g., inclusion of in vitro, animal, or human studies supplemented with EVOO or its OOPCs), we thoroughly reviewed 51 articles, and the quality assessment was performed using the revised Cochrane risk of bias tool. The results show that both EVOO and its OOPCs can promote epigenetic changes capable of regulating the expression of genes and molecular targets involved in different metabolic processes. For example, oleuropein (OL) may be an epigenetic regulator in cancer, and hydroxytyrosol (HT) modulates the expression of miRNAs involved in the development of cancer, cardiovascular, and neurodegenerative diseases. We conclude that EVOO and its OOPCs can regulate gene expression by modifying epigenetic mechanisms that impact human pathophysiology. A full elucidation of the epigenetic effects of EVOO and its OOPCs may contribute to developing different pharma-nutritional strategies that exploit them as epigenetic agents. This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) as CRD42022320316.
Collapse
Affiliation(s)
- Andrea del Saz-Lara
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus de Excelencia Internacional de la Universidad Autónoma de Madrid y el Consejo Superior de Investigaciones Científicas (CEI UAM + CSIC), Madrid, Spain,Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - María-Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus de Excelencia Internacional de la Universidad Autónoma de Madrid y el Consejo Superior de Investigaciones Científicas (CEI UAM + CSIC), Madrid, Spain
| | | | | |
Collapse
|
15
|
Ruocco C, Ragni M, Tedesco L, Segala A, Servili M, Riccardi G, Carruba MO, Valerio A, Nisoli E, Visioli F. Molecular and metabolic effects of extra-virgin olive oil on the cardiovascular gene signature in rodents. Nutr Metab Cardiovasc Dis 2022; 32:1571-1582. [PMID: 35461749 DOI: 10.1016/j.numecd.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS Overweight and obesity are major risk factors for degenerative diseases, including cardiometabolic disorders and cancer. Research on fat and fatty acids' type is attracting less attention than that on carbohydrates. High adherence to a Mediterranean diet is associated with a better prognosis. One characteristic of the Mediterranean diet is extra-virgin olive oil (EVOO) as the foremost source of dietary fat. EVOO is different from other vegetable oils because it contains peculiar "minor" components, mainly phenolic in nature. Even though olive oil is highly caloric, unrestricted use of olive oil in the PREDIMED trial did not result in weight gain. We sought to study the effects of EVOO in an appropriate mouse model of increased body weight. Furthermore, we explored the biochemical and metabolomic responses to EVOO consumption. METHODS AND RESULTS C57BL/6N male mice were weight-matched and fed ad libitum with the following diets, for 16 weeks: 1) saturated fatty acid diet (SFA) or 2) extra-virgin olive oil diet (EVOO), a custom-prepared diet, isocaloric compared to SFA, in which 82% of fat was replaced by high (poly)phenol EVOO. We evaluated glucose homeostasis, serum biochemistry and plasma metabolomics, in addition to cardiac and hepatic gene profile, and mitochondrial respiration rate. CONCLUSION Replacing saturated fatty acids (e.g. lard) with EVOO translates into moderate yet beneficial cardiometabolic and hepatic effects. Future research will further clarify the mechanisms of action of EVOO (poly)phenols and their role in a balanced diet.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Laura Tedesco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Agnese Segala
- Department of Molecular and Translational Medicine, Brescia University, 25123 Brescia, Italy
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06126 Perugia, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, Brescia University, 25123 Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, 20129 Milan, Italy.
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padua, Padua, Italy; IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
16
|
Visioli F, Poli A. Prevention and Treatment of Atherosclerosis: The Use of Nutraceuticals and Functional Foods. Handb Exp Pharmacol 2022; 270:271-285. [PMID: 31792678 DOI: 10.1007/164_2019_341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nutritional interventions are effective and - in theory - easy to implement primary and secondary prevention strategies that reduce several risk factors of atherosclerosis and cardiovascular disease (CVD). Yet, because of (a) the severe impact of CVD in terms of mortality, morbidity, quality of life, and economy, (b) the proved role of LDL plasma concentrations as the most critical risk factor, and (c) the obstacles found both in terms of biological effects and compliance of the patient by an exclusively dietary intervention, food supplements or nutraceuticals are now valuable resources for physicians. As regards cholesterol control, several preparations are available in the market, and we will critically review them in this chapter.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Padua, Italy
- IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
| | - Andrea Poli
- Nutrition Foundation of Italy, Milan, Italy.
| |
Collapse
|
17
|
Shen J, Zhang M, Zhao L, Mujumdar AS, Wang H. Schemes for enhanced antioxidant stability in frying meat: a review of frying process using single oil and blended oils. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34961384 DOI: 10.1080/10408398.2021.2019672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Deep-fried meat products are widely popular. However, harmful compounds produced by various chemical reactions during frying have been shown to be detrimental to human health. It is of great necessity to raise practical suggestions for improving the oxidation problem of frying oils and frying conditions in some aspects. Vegetable oils are not as thermally stable as saturated fats, and blended oils have higher thermal stability than single oil. In this review, we discussed the oxidation problems frying oils and meats are subject to during frying, starting from the oil oxidation mechanism, the effects of different oils and fats on the quality of different fried meats under different conditions were concluded to alleviate the oxidation problem, to highlight the necessity of applying blended oils for frying, and effective antioxidants added to frying oils are also introduced, that would provide more convenient and practical options for obtaining higher quality of fried meat products and offer better understanding of the potential of blended frying oils for frying meat products.
Collapse
Affiliation(s)
- Ju Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Montreal, Quebec, Canada
| | - Haixiang Wang
- R&D Centre, Yechun Food Production and Distribution Co., Ltd, Yangzhou, Jiangsu, China
| |
Collapse
|
18
|
Fabiano A, Migone C, Cerri L, Piras AM, Mezzetta A, Maisetta G, Esin S, Batoni G, Di Stefano R, Zambito Y. Combination of Two Kinds of Medicated Microparticles Based on Hyaluronic Acid or Chitosan for a Wound Healing Spray Patch. Pharmaceutics 2021; 13:2195. [PMID: 34959476 PMCID: PMC8705855 DOI: 10.3390/pharmaceutics13122195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/11/2023] Open
Abstract
Olive leaves extract (OLE) has been extensively studied as antioxidant and antibiotic and these characteristics make it particularly interesting for use on wounds. For this reason, the aim of this study was to introduce OLE in microparticles (MP) of hyaluronic acid (MPHA-OLE) or chitosan (MPCs-OLE) to obtain a spray patch for the treatment of wounds in anatomical areas that are difficult to protect with traditional patches. The MP were characterized for particle size and ability to protect OLE from degradation, to absorb water from wound exudate, to control OLE release from MP. The MPHA and MPCs medicated or not and mixtures of the two types in different proportions were studied in vitro on fibroblasts by the scratch wound healing assay. The MP size was always less than 5 µm, and therefore, suitable for a spray patch. The MPCs-OLE could slow down the release of OLE therefore only about 60% of the polyphenols contained in it were released after 4 h. Both MPHA and MPCs could accelerate wound healing. A 50% MPHA-OLE-50% MPCs-OLE blend was the most suitable for accelerating wound healing. The MPHA-OLE-MPCs-OLE blends studied in this work were shown to have the characteristics suitable for a spray patch, thus giving a second life to the waste products of olive growers.
Collapse
Affiliation(s)
- Angela Fabiano
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (A.F.); (C.M.); (L.C.); (A.M.P.); (A.M.)
| | - Chiara Migone
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (A.F.); (C.M.); (L.C.); (A.M.P.); (A.M.)
| | - Luca Cerri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (A.F.); (C.M.); (L.C.); (A.M.P.); (A.M.)
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Anna Maria Piras
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (A.F.); (C.M.); (L.C.); (A.M.P.); (A.M.)
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (A.F.); (C.M.); (L.C.); (A.M.P.); (A.M.)
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.M.); (S.E.); (G.B.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.M.); (S.E.); (G.B.)
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (G.M.); (S.E.); (G.B.)
| | - Rossella Di Stefano
- Cardiovascular Research Laboratory, Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, Via Paradisa 2, 56100 Pisa, Italy;
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (A.F.); (C.M.); (L.C.); (A.M.P.); (A.M.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
19
|
Kalache A, Bazinet RP, Carlson S, Evans WJ, Kim CH, Lanham-New S, Visioli F, Griffiths JC. Science-based policy: targeted nutrition for all ages and the role of bioactives. Eur J Nutr 2021; 60:1-17. [PMID: 34427766 PMCID: PMC8383919 DOI: 10.1007/s00394-021-02662-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/26/2022]
Abstract
Globally, there has been a marked increase in longevity, but it is also apparent that significant inequalities remain, especially the inequality related to insufficient 'health' to enjoy or at least survive those later years. The major causes include lack of access to proper nutrition and healthcare services, and often the basic information to make the personal decisions related to diet and healthcare options and opportunities. Proper nutrition can be the best predictor of a long healthy life expectancy and, conversely, when inadequate and/or improper a prognosticator of a sharply curtailed expectancy. There is a dichotomy in both developed and developing countries as their populations are experiencing the phenomenon of being 'over fed and under nourished', i.e., caloric/energy excess and lack of essential nutrients, leading to health deficiencies, skyrocketing global obesity rates, excess chronic diseases, and premature mortality. There is need for new and/or innovative approaches to promoting health as individuals' age, and for public health programs to be a proactive blessing and not an archaic status quo 'eat your vegetables' mandate. A framework for progress has been proposed and published by the World Health Organization in their Global Strategy and Action Plan on Ageing and Health (WHO (2017) Advancing the right to health: the vital role of law. https://apps.who.int/iris/bitstream/handle/10665/252815/9789241511384-eng.pdf?sequence=1&isAllowed=y . Accessed 07 Jun 2021; WHO (2020a) What is Health Promotion. www.who.int/healthpromotion/fact-sheet/en/ . Accessed 07 Jun 2021; WHO (2020b) NCD mortality and morbidity. www.who.int/gho/ncd/mortality_morbidity/en/ . Accessed 07 Jun 2021). Couple this WHO mandate with current academic research into the processes of ageing, and the ingredients or regimens that have shown benefit and/or promise of such benefits. Now is the time for public health policy to 'not let the perfect be the enemy of the good,' but to progressively make health-promoting nutrition recommendations.
Collapse
Affiliation(s)
- Alexandre Kalache
- International Longevity Centre-Brazil, Rio de Janiero, Brazil
- Age Friendly Institute, Boston, MA, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Susan Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - William J Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Chi Hee Kim
- Global Government Affairs, Herbalife Nutrition, Los Angeles, CA, USA
| | - Susan Lanham-New
- Nutritional Sciences Department, University of Surrey, Guildford, UK
| | - Francesco Visioli
- Department of Molecular Sciences, University of Padova, Padova, Italy
- IMDEA-Food, Madrid, Spain
| | - James C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
20
|
León-González AJ, Sáez-Martínez P, Jiménez-Vacas JM, Herrero-Aguayo V, Montero-Hidalgo AJ, Gómez-Gómez E, Madrona A, Castaño JP, Espartero JL, Gahete MD, Luque RM. Comparative Cytotoxic Activity of Hydroxytyrosol and Its Semisynthetic Lipophilic Derivatives in Prostate Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10091348. [PMID: 34572980 PMCID: PMC8464900 DOI: 10.3390/antiox10091348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 12/30/2022] Open
Abstract
A high adherence to a Mediterranean diet has been related to numerous beneficial effects in human health, including a lower incidence and mortality of prostate cancer (PCa). Olive oil is an important source of phenolic bioactive compounds, mainly hydroxytyrosol (HT), of this diet. Because of the growing interest of this compound and its derivatives as a cancer chemopreventive agent, we aimed to compare the in vitro effect of HT isolated from olive mill wastewaters and five semisynthetic alkyl ether, ester, and nitro-derivatives against prostate cancer (PCa) cell lines. The effect in cell proliferation was determined in RWPE-1, LNCaP, 22Rv1, and PC-3 cells by resazurin assay, the effect in cell migration by wound healing assay, and tumorsphere and colony formation were evaluated. The changes in key signaling pathways involved in carcinogenesis were assessed by using a phosphorylation pathway profiling array and by Western blotting. Antiproliferative effects of HT and two lipophilic derivatives [hydroxytyrosyl acetate (HT-Ac)/ethyl hydroxytyrosyl ether (HT-Et)] were significantly higher in cancerous PC-3 and 22Rv1 cells than in non-malignant RWPE-1 cells. HT/HT-Ac/HT-Et significantly reduced migration capacity in RWPE-1 and PC-3 and prostatosphere size and colony formation in 22Rv1, whereas only HT-Ac and HT-Et reduced these functional parameters in PC-3. The cytotoxic effect in 22Rv1 cells was correlated with modifications in the phosphorylation pattern of key proteins, including ERK1/2 and AKT. Consistently, HT-Ac and HT-Et decreased p-AKT levels in PC-3. In sum, our results suggest that HT and its lipophilic derivatives could be considered as potential therapeutic tools in PCa.
Collapse
Affiliation(s)
- Antonio J. León-González
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
- Correspondence: (A.J.L.-G.); (R.M.L.); Tel.: +34-957213740 (R.M.L.)
| | - Prudencio Sáez-Martínez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Juan M. Jiménez-Vacas
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Antonio J. Montero-Hidalgo
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Enrique Gómez-Gómez
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- Urology Service, HURS/IMIBIC, 14004 Cordoba, Spain
| | - Andrés Madrona
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (A.M.); (J.L.E.)
| | - Justo P. Castaño
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - José L. Espartero
- Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (A.M.); (J.L.E.)
| | - Manuel D. Gahete
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Raúl M. Luque
- Maimonides Institute of Biomedical Research of Cordoba (IMIBIC), 14004 Cordoba, Spain; (P.S.-M.); (J.M.J.-V.); (V.H.-A.); (A.J.M.-H.); (E.G.-G.); (J.P.C.); (M.D.G.)
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14014 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
- Correspondence: (A.J.L.-G.); (R.M.L.); Tel.: +34-957213740 (R.M.L.)
| |
Collapse
|
21
|
Taheri M, Amiri-Farahani L. Anti-Inflammatory and Restorative Effects of Olives in Topical Application. Dermatol Res Pract 2021; 2021:9927976. [PMID: 34257643 PMCID: PMC8257351 DOI: 10.1155/2021/9927976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
METHODS A literature search was conducted (1990-2021) in Medline, Embase, CINAHL, Google Scholar, Science Direct, SID, IranDoc, and Magiran databases. From the 102 reviewed articles, 17 articles were selected to be included in the current article. RESULTS Various forms of olive have long been used to accelerate the healing of various wounds and skin damage such as diabetic foot ulcers, atopic dermatitis, diaper dermatitis, episiotomy wound, and nipple ulcer but there are still no credible documents or articles that provide reliable evidence of topical use. CONCLUSION According to the information obtained from the articles reviewed, olive oil appears to be an effective, safe, and available treatment. This study suggests that olive oil is an alternative remedy to minimize the frequent use of chemical-based treatments. More research may be beneficial to reach certainty in terms of curative properties of olive oil in similar or different injuries in different populations.
Collapse
Affiliation(s)
- Mahdiyeh Taheri
- Department of Reproductive Health and Midwifery, Faculty of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Amiri-Farahani
- Department of Reproductive Health and Midwifery, Nursing Care Research Center, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Mazzocchi A, De Cosmi V, Risé P, Milani GP, Turolo S, Syrén ML, Sala A, Agostoni C. Bioactive Compounds in Edible Oils and Their Role in Oxidative Stress and Inflammation. Front Physiol 2021; 12:659551. [PMID: 33995124 PMCID: PMC8119658 DOI: 10.3389/fphys.2021.659551] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Diet and inflammatory response are recognized as strictly related, and interest in exploring the potential of edible fats and oils for health and chronic diseases is emerging worldwide. Polyunsaturated fatty acids (PUFAs) present in fish oil (FO), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may be partly converted into oxygenated bioactive lipids with anti-inflammatory and/or pro-resolving activities. Moreover, the co-presence of phenolic compounds and vitamins in edible oils may prevent the development of chronic diseases by their anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory activities. Finally, a high content in mono-unsaturated fatty acids may improve the serum lipid profile and decrease the alterations caused by the oxidized low-density lipoproteins and free radicals. The present review aims to highlight the role of lipids and other bioactive compounds contained in edible oils on oxidative stress and inflammation, focusing on critical and controversial issues that recently emerged, and pointing to the opposing role often played by edible oils components and their oxidized metabolites.
Collapse
Affiliation(s)
- Alessandra Mazzocchi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valentina De Cosmi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Patrizia Risé
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Turolo
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marie-Louise Syrén
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Angelo Sala
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.,Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Pediatric Intermediate Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
23
|
Gluten-Free Breadsticks Fortified with Phenolic-Rich Extracts from Olive Leaves and Olive Mill Wastewater. Foods 2021; 10:foods10050923. [PMID: 33922194 PMCID: PMC8146876 DOI: 10.3390/foods10050923] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Nowadays, food processing by-products, which have long raised serious environmental concerns, are recognized to be a cheap source of valuable compounds. In the present study, incorporation of phenolic-rich extracts (500 and 1000 mg kg−1) from olive leaves (OL) and olive mill wastewater (OMW) into conventional gluten-free formulations has been exploited as a potential strategy for developing nutritious and healthy breadsticks with extended shelf-life. To this end, moisture, water activity (aw), visual and textural properties, the composition of biologically active compounds (soluble, insoluble, and bio-accessible polyphenols), antioxidant activity, oxidation stability, and consumer preference of the resulting breadsticks were investigated. Fortified breadsticks had higher moisture and aw, lower hardness, and similar color in comparison to the control, especially in the case of OL extract supplementation. All enriched formulations significantly affected the phenolic composition, as evidenced by the decrease in insoluble/soluble polyphenols ratio (from 7 in the control up to 3.1 and 4.5 in OL and OMW, respectively), and a concomitant increase in polyphenol bio-accessibility (OL: 14.5–23% and OMW: 10.4–15% rise) and antioxidant activity (OL: 20–36% and OMW: 11–16% rise). Moreover, a significant shelf-life extension was observed in all fortified breadsticks (especially in case of OMW supplementation). Sensory evaluation evidenced that 61% of the assessors showed a marked, but not significant, tendency to consider the sample supplemented with high levels of OL as a more palatable choice.
Collapse
|
24
|
Tomé-Carneiro J, Crespo MC, López de Las Hazas MC, Visioli F, Dávalos A. Olive oil consumption and its repercussions on lipid metabolism. Nutr Rev 2021; 78:952-968. [PMID: 32299100 DOI: 10.1093/nutrit/nuaa014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Consumption of highly processed foods, such as those high in trans fats and free sugars, coupled with sedentarism and chronic stress increases the risk of obesity and cardiometabolic disorders, while adherence to a Mediterranean diet is inversely associated with the prevalence of such diseases. Olive oil is the main source of fat in the Mediterranean diet. Data accumulated thus far show consumption of extra virgin, (poly)phenol-rich olive oil to be associated with specific health benefits. Of note, recommendations for consumption based on health claims refer to the phenolic content of extra virgin olive oil as beneficial. However, even though foods rich in monounsaturated fatty acids, such as olive oil, are healthier than foods rich in saturated and trans fats, their inordinate use can lead to adverse effects on health. The aim of this review was to summarize the data on olive oil consumption worldwide and to critically examine the literature on the potential adverse effects of olive oil and its main components, particularly any effects on lipid metabolism. As demonstrated by substantial evidence, extra virgin olive oil is healthful and should be preferentially used within the context of a balanced diet, but excessive consumption may lead to adverse consequences.
Collapse
Affiliation(s)
- João Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus of International Excellence UAM + CSIC, Madrid, Spain
| | - María Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus of International Excellence UAM + CSIC, Madrid, Spain
| | - María Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus of International Excellence UAM + CSIC, Madrid, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus of International Excellence UAM + CSIC, Madrid, Spain.,Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, Campus of International Excellence UAM + CSIC, Madrid, Spain
| |
Collapse
|
25
|
Majumder D, Debnath M, Sharma KN, Shekhawat SS, Prasad GBKS, Maiti D, Ramakrishna S. Olive oil consumption can prevent non-communicable diseases and COVID-19 : Review. Curr Pharm Biotechnol 2021; 23:261-275. [PMID: 33845735 DOI: 10.2174/1389201022666210412143553] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022]
Abstract
The Mediterranean diet is appraised as the premier dietary regimen and its espousal is correlated with the prevention of degenerative diseases and extended longevity. The consumption of olive oil stands out as the most peculiar feature of the Mediterranean diet. Olive oil rich in various bioactive compounds like oleanolic acid, oleuropein, oleocanthal, and hydroxytyrosol is known for its anti-inflammatory as well as cardioprotective property. Recently in silico studies have indicated that phytochemicals present in olive oil are a potential candidate to act against SARS-CoV-2. Although extensive studies on olive oil and its phytochemical composition; still, some lacunas persist in understanding how the phytochemical composition of olive oil is dependent on upstream processing. The signaling pathways regulated by olive oil in the restriction of various diseases is also not clear. To answer these queries, a detailed search of research and review articles published between 1990 to 2019 were reviewed in this effect. Olive oil consumption was found to be advantageous for various chronic non-communicable diseases. Olive oil's constituents are having potent anti-inflammatory activities and thus restrict the progression of various inflammation-linked diseases ranging from arthritis to cancer. But it is also notable that the amount and nature of phytochemical composition of household olive oil are regulated by its upstream processing and the physicochemical properties of this oil can give a hint regarding the manufacturing method as well as its therapeutic. Moreover, daily uptake of olive oil should be monitored as excessive intake can cause body weight gain and change in the basal metabolic index. So, it can be concluded that olive oil consumption is beneficial for human health, and particularly for the prevention of cardiovascular diseases, breast cancer, and inflammation. The simple way of processing olive oil maintains the polyphenol constituents and provides more protection against non-communicable diseases and SARS-CoV-2.
Collapse
Affiliation(s)
- Debabrata Majumder
- Department of Human Physiology Tripura University, Suryamaninagar Tripura-799022. India
| | - Mousumi Debnath
- Department of Biosciences Manipal University, Jaipur Campus Rajasthan-303007. India
| | - Kamal Nayan Sharma
- Department of Chemistry, Biochemistry and Forensic science Amity University Haryana, Manesar Haryana-122412. India
| | - Surinder Singh Shekhawat
- Rajasthan olive Cultivation limited Campus Agriculture Research Station, Jaipur Rajasthan-302018. India
| | - G B K S Prasad
- Department of Biochemistry Jiwaji University, Gwalior Madhya Pradesh-474001. India
| | - Debasish Maiti
- Department of Human Physiology Tripura University, Suryamaninagar Tripura-799022. India
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology National University Singapore. Singapore
| |
Collapse
|
26
|
The Nutraceutical Properties of "Pizza Napoletana Marinara TSG" a Traditional Food Rich in Bioaccessible Antioxidants. Antioxidants (Basel) 2021; 10:antiox10030495. [PMID: 33810088 PMCID: PMC8004925 DOI: 10.3390/antiox10030495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Italian gastronomy experiences have ever-enhancing fame around the world. It is due to the linkage between taste and salubriousness commonly related to Mediterranean foods. The market proposes many types of pizza to suit all palates. The antioxidant potential of the “Pizza Napoletana marinara” included in the register of traditional specialties guaranteed (TSG) was determined in this work. ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method evaluated the antioxidant activity of the pizza homogenized. In vitro digestion models estimated the intestinal and gastric bioaccessibility of the main antioxidant compounds (lycopene and phenolics). To our knowledge, this is the first study to provide the content, antioxidant potential, and bioaccessibility of the antioxidants (polyphenols and lycopene) contained in the traditional pizza “marinara TSG”. Our results showed that the “Pizza Napoletana marinara” had polyphenols concentration, lycopene level, antioxidant activity, and bioaccessibility of phenolic compounds and lycopene better than other similar pizzas. They confirmed the nutritional importance of traditional preparations and established the nutraceutical potential of “pizza marinara TSG” as a food rich in bio-accessible antioxidants.
Collapse
|
27
|
García-Cabo C, Castañón-Apilánez M, Benavente-Fernández L, Jimenez JM, Arenillas J, Castellanos M, Rodrigo-Stevens G, Tejada-Meza H, Pérez C, Martínez-Zabaleta M, Rodriguez-Castro E, Sánchez J, Julian-Villaverde F, Pinedo A, Palacio E, López-Cancio E. Impact of Mediterranean Diet prior to Stroke on the Prognosis of Patients Undergoing Endovascular Treatment. Cerebrovasc Dis 2021; 50:303-309. [PMID: 33730721 DOI: 10.1159/000514136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/13/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Mediterranean diet (MeDiet) has been associated with lower risk of stroke. Additionally, animal models suggested that some components of MeDiet are associated with better outcomes after ischemic stroke (IS). We aimed to evaluate the association between global adherence to the MeDiet and the consumption of particular components of the MeDiet with stroke outcomes. MATERIAL AND METHODS Multicenter observational study of consecutive IS patients treated with endovascular therapy. Inclusion criteria were large anterior circulation vessel occlusion and pre-stroke modified Rankin scale (mRS) <2. Adherence to MeDiet prior to stroke was evaluated using MEDAS 14-item scale. We evaluated the total score and also individual components of the scale. Clinical, radiological, and prognostic variables were collected. Good functional prognosis was considered as mRS ≤2 and complete recanalization as thrombolysis in cerebral infarction 3. RESULTS From January 1 to October 30, 2018, 239 patients were included (mean age 71 years, 48% women, median baseline NIHSS 16). Median MEDAS scale was 8 points (7-10). Patients with a higher adherence to MeDiet had significantly lower total and LDL-cholesterol levels. Total adherence score was not associated with stroke outcomes. In multivariate analyses, consumption of olive oil as the principal source of fat was independently associated with good functional outcome at 3 months, OR 3.2 (1.1-10.1) and daily consumption of wine was independently associated with complete recanalization, OR 2.0 (1.1-3.8). CONCLUSIONS Our study suggests that some components of MeDiet, such as olive oil and wine consumption, are related to better prognosis after stroke. More studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Carmen García-Cabo
- Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | - Jose Maria Jimenez
- Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Juan Arenillas
- Neurology Department, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Mar Castellanos
- Neurology Department, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario, A Coruña, Spain
| | | | | | - Cristina Pérez
- Neurology Department, Hospital Clínico de Zaragoza, Zaragoza, Spain
| | | | - Emilio Rodriguez-Castro
- Neurology Department, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Joaquín Sánchez
- Neurology Department, Complejo Hospitalario de Vigo, Vigo, Spain
| | | | - Ana Pinedo
- Neurology Department, Hospital de Galdakao, Bilbao, Spain
| | - Enrique Palacio
- Neurology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Elena López-Cancio
- Neurology Department, Hospital Universitario Central de Asturias, Oviedo, Spain,
| | | |
Collapse
|
28
|
The Effect of Antioxidant and Anti-Inflammatory Capacity of Diet on Psoriasis and Psoriatic Arthritis Phenotype: Nutrition as Therapeutic Tool? Antioxidants (Basel) 2021; 10:antiox10020157. [PMID: 33499118 PMCID: PMC7912156 DOI: 10.3390/antiox10020157] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation and increased oxidative stress are contributing factors to many non-communicable diseases. A growing body of evidence indicates that dietary nutrients can activate the immune system and may lead to the overproduction of pro-inflammatory cytokines. Fatty acids as macronutrients are key players for immunomodulation, with n-3 polyunsaturated fatty acids having the most beneficial effect, while polyphenols and carotenoids seem to be the most promising antioxidants. Psoriasis is a chronic, immune-mediated inflammatory disease with multifactorial etiology. Obesity is a major risk factor for psoriasis, which leads to worse clinical outcomes. Weight loss interventions and, generally, dietary regimens such as gluten-free and Mediterranean diet or supplement use may potentially improve psoriasis’ natural course and response to therapy. However, data about more sophisticated nutritional patterns, such as ketogenic, very low-carb or specific macro- and micro-nutrient substitution, are scarce. This review aims to present the effect of strictly structured dietary nutrients, that are known to affect glucose/lipid metabolism and insulin responses, on chronic inflammation and immunity, and to discuss the utility of nutritional regimens as possible therapeutic tools for psoriasis and psoriatic arthritis.
Collapse
|
29
|
Ramírez-Expósito MJ, Carrera-González MP, Mayas MD, Martínez-Martos JM. Gender differences in the antioxidant response of oral administration of hydroxytyrosol and oleuropein against N-ethyl-N-nitrosourea (ENU)-induced glioma. Food Res Int 2020; 140:110023. [PMID: 33648253 DOI: 10.1016/j.foodres.2020.110023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022]
Abstract
Brain tumorigenesis has been associated not only with oxidative stress, but also with a reduced response of non-enzyme and enzyme antioxidant defense systems. In fact, the imbalance between free-radical production and the efficiency of the antioxidant defense systems triggers the process because the central nervous system (CNS) is very sensitive to free-radical damage. Phenolic compounds, mainly oleuropein and its major metabolite hydroxytyrosol, derived from olives and virgin olive oil, have been shown to exert important anticancer activities both in vitro and in vivo due to their antioxidant properties. The present study analyzes the effects of the oral administration of oleuropein, hydroxytyrosol and the mixture of both phenolic compounds in rats with transplacental N-ethyl-N-nitrosourea (ENU)-induced brain tumors to analyze their potential effect against brain tumorigenesis through the modification of redox system components. Oxidative stress parameters, non-enzyme and enzyme antioxidant defense systems and blood chemistry were assayed in the different experimental groups. The treatment with oleuropein, hydroxytyrosol and/or the mixture of both phenolic compounds promotes a limited beneficial effect as anticancer compounds in our ENU-induced animal model of brain tumor. These effects occur via redox control mechanisms involving endogenous enzymatic and non-enzymatic antioxidant defense systems, and are highly dependent on the gender of the animals.
Collapse
Affiliation(s)
- M J Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain
| | - M P Carrera-González
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain
| | - M D Mayas
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain
| | - J M Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, Jaén, Spain.
| |
Collapse
|
30
|
Boskou D, Clodoveo ML. Olive Oil: Processing Characterization, and Health Benefits. Foods 2020; 9:foods9111612. [PMID: 33172043 PMCID: PMC7694685 DOI: 10.3390/foods9111612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022] Open
Abstract
The Mediterranean diet is now well known worldwide and recognized as a nutrition reference model by the World Health Organization. Virgin olive oil, prepared from healthy and intact fruits of the olive tree only by mechanical means, is a basic ingredient, a real pillar of this diet. Its positive role in health has now been a topic of universal concern. The virtues of natural olive oil, and especially of extra virgin olive oil, are related to the quality of the fruits, the employment of advanced technologies, and the availability of sophisticated analytical techniques that are used to control the origin of the fruits and guarantee the grade of the final product. With the aim of enriching the recent multidisciplinary scientific information that orbits around this healthy lipid source, a new special issue of Foods journal has been published.
Collapse
Affiliation(s)
- Dimitrios Boskou
- School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (D.B.); (M.L.C.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy
- Correspondence: (D.B.); (M.L.C.)
| |
Collapse
|
31
|
Visioli F, Rodríguez-Pérez M, Gómez-Torres Ó, Pintado-Losa C, Burgos-Ramos E. Hydroxytyrosol improves mitochondrial energetics of a cellular model of Alzheimer's disease. Nutr Neurosci 2020; 25:990-1000. [PMID: 33023416 DOI: 10.1080/1028415x.2020.1829344] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mitochondrial energetic deficit is one of the hallmarks of neurodegenerative disorders, e.g. Alzheimer´s disease (AD). Adherence to a Mediterranean diet is associated with lower incidence of cognitive decline and AD and extra virgin olive oil's (poly)phenols such as oleuropein and hydroxytyrosol (HT) are being actively studied in this respect. In this study, we assessed the effects of HT on mitochondrial energetic dysfunction in the 7PA2 cells cellular model, i.e. one of the best cellular models of Aβ toxicity with a well-characterized mitochondrial dysfunction typically observed in AD. We report an increase of new mitochondria at 8 h post HT-treatment, which was followed by higher mitochondrial fusion. Further, ATP concentrations were significantly increased after 24 h of treatment with HT as compared with controls. Our data suggest that HT may revert the energetic deficit of a cellular model of AD by potentiating mitochondrial activity. Because HT is being proposed as dietary supplement or component of functional foods, future studies in appropriate animal models and - eventually - humans are warranted to further investigate its potential neuroprotective actions in AD.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Padua, Italy.,IMDEA-Food, CEI UAM+CSIC, Madrid, Spain
| | - María Rodríguez-Pérez
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Óscar Gómez-Torres
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Cristina Pintado-Losa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Emma Burgos-Ramos
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
32
|
Carpi S, Polini B, Manera C, Digiacomo M, Salsano JE, Macchia M, Scoditti E, Nieri P. miRNA Modulation and Antitumor Activity by the Extra-Virgin Olive Oil Polyphenol Oleacein in Human Melanoma Cells. Front Pharmacol 2020; 11:574317. [PMID: 33071785 PMCID: PMC7539365 DOI: 10.3389/fphar.2020.574317] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022] Open
Abstract
Extra-virgin olive oil (EVOO) polyphenols contribute to Mediterranean diet health-promoting properties. One of the most abundant secoiridoid present in EVOO, Oleacein (OA), demonstrated anticancer activity against several tumors. Nevertheless, its role against melanoma has not still investigated. This study aimed at determining in vitro the antimelanoma activity of OA and the relative mechanism of action. OA induced cell growth inhibition in 501Mel melanoma cells with an IC50 in the low micromolar range of concentrations. Moreover, an OA concentration approximating the IC50 induced G1/S phase arrest, DNA fragmentation, and downregulation of genes encoding antiapoptotic (BCL2 and MCL1) and proproliferative (c-KIT, K-RAS, PIK3R3, mTOR) proteins, while increased transcription levels of the proapoptotic protein BAX. Concordantly, OA increased the levels of miR-193a-3p (targeting MCL1, c-KIT and K-RAS), miR-193a-5p (targeting PIK3R3 and mTOR), miR-34a-5p (targeting BCL2 and c-KIT) and miR-16-5p (miR-16-5p targeting BCL2, K-RAS and mTOR), while decreased miR-214-3p (targeting BAX). These modulatory effects might contribute to the inhibition of 501Mel melanoma cell growth observed after treatment with an olive leaves-derived formulation rich in OA, with potential application against in situ cutaneous melanoma. Altogether, these results demonstrate the ability of OA to contrast the proliferation of cutaneous melanoma cells through the transcriptional modulation of relevant genes and microRNAs, confirming the anticancer potential of EVOO and suggesting OA as a chemopreventive agent for cancer disease therapy.
Collapse
Affiliation(s)
- Sara Carpi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health," University of Pisa, Pisa, Italy
| | - Beatrice Polini
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Clementina Manera
- Interdepartmental Research Center "Nutraceuticals and Food for Health," University of Pisa, Pisa, Italy.,Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Maria Digiacomo
- Interdepartmental Research Center "Nutraceuticals and Food for Health," University of Pisa, Pisa, Italy.,Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Marco Macchia
- Interdepartmental Research Center "Nutraceuticals and Food for Health," University of Pisa, Pisa, Italy.,Laboratory of Medicinal Chemistry, Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Egeria Scoditti
- Laboratory of Vascular Biology and Nutrigenomics, National Research Council (CNR) Institute of Clinical Physiology (IFC), Lecce, Italy
| | - Paola Nieri
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health," University of Pisa, Pisa, Italy
| |
Collapse
|
33
|
Visioli F, Davalos A, López de las Hazas M, Crespo MC, Tomé‐Carneiro J. An overview of the pharmacology of olive oil and its active ingredients. Br J Pharmacol 2020; 177:1316-1330. [PMID: 31270815 PMCID: PMC7056466 DOI: 10.1111/bph.14782] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
In addition to providing sensory stimuli, usually taste, smell and sight, olive oil contains a range of minor components, mostly phenolic in nature. These components are endowed with pharmacological or pharma‐nutritional properties that are the subject of active research worldwide. Based on our more than 25 years of experience in this field, we critically focus on what we believe are the most pharmacologically prominent actions of the constituents of olive oil. Most of the effects are due to the phenolic compounds in extra virgin olive oil, such as hydroxytyrosol and oleocanthal (which are often mis‐categorized as in vivo antioxidants) and concern the cardiovascular system. Other potentially beneficial activities are still to be investigated in depth. We conclude that—in the context of a proper diet that includes high‐quality products—the use of high‐quality olive oil contributes to achieving and sustaining overall health.Linked ArticlesThis article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc
Collapse
Affiliation(s)
- Francesco Visioli
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Alberto Davalos
- Laboratory of Epigenetics of Lipid MetabolismInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - María‐Carmen López de las Hazas
- Laboratory of Epigenetics of Lipid MetabolismInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - María Carmen Crespo
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| | - Joao Tomé‐Carneiro
- Laboratory of Functional FoodsInstituto Madrileño de Estudios Avanzados (IMDEA)‐Alimentación, CEI UAM+CSICMadridSpain
| |
Collapse
|
34
|
Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases. Antioxidants (Basel) 2020; 9:antiox9020149. [PMID: 32050687 PMCID: PMC7070598 DOI: 10.3390/antiox9020149] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Iridoids, which have beneficial health properties, include a wide group of cyclopentane [c] pyran monoterpenoids present in plants and insects. The cleavage of the cyclopentane ring leads to secoiridoids. Mainly, secoiridoids have shown a variety of pharmacological effects including anti-diabetic, antioxidant, anti-inflammatory, immunosuppressive, neuroprotective, anti-cancer, and anti-obesity, which increase the interest of studying these types of bioactive compounds in depth. Secoiridoids are thoroughly distributed in several families of plants such as Oleaceae, Valerianaceae, Gentianaceae and Pedialaceae, among others. Specifically, Olea europaea L. (Oleaceae) is rich in oleuropein (OL), dimethyl-OL, and ligstroside secoiridoids, and their hydrolysis derivatives are mostly OL-aglycone, oleocanthal (OLE), oleacein (OLA), elenolate, oleoside-11-methyl ester, elenoic acid, hydroxytyrosol (HTy), and tyrosol (Ty). These compounds have proved their efficacy in the management of diabetes, cardiovascular and neurodegenerative disorders, cancer, and viral and microbial infections. Particularly, the antioxidant, anti-inflammatory, and immunomodulatory properties of secoiridoids from the olive tree (Olea europaea L. (Oleaceae)) have been suggested as a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. Thus, the purpose of this review is to summarize recent advances in the protective role of secoiridoids derived from the olive tree (preclinical studies and clinical trials) in diseases with an important pathogenic contribution of oxidative and peroxidative stress and damage, focusing on their plausible mechanisms of the action involved.
Collapse
|
35
|
Barrera C, Valenzuela R, Rincón MA, Espinosa A, López-Arana S, González-Mañan D, Romero N, Vargas R, Videla LA. Iron-induced derangement in hepatic Δ-5 and Δ-6 desaturation capacity and fatty acid profile leading to steatosis: Impact on extrahepatic tissues and prevention by antioxidant-rich extra virgin olive oil. Prostaglandins Leukot Essent Fatty Acids 2020; 153:102058. [PMID: 32007744 DOI: 10.1016/j.plefa.2020.102058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
The administration of iron induces liver oxidative stress and depletion of long-chain polyunsaturated fatty acids (LCPUFAs), n-6/n-3 LCPUFA ratio enhancement and fat accumulation, which may be prevented by antioxidant-rich extra virgin olive oil (AR-EVOO) supplementation. Male Wistar rats were subjected to a control diet (50 mg iron/kg diet) or iron-rich diet (IRD; 200 mg/kg diet) with alternate AR-EVOO for 21 days. Liver fatty acid (FA) analysis was performed by gas-liquid chromatography (GLC) after lipid extraction and fractionation, besides Δ-5 desaturase (Δ-5 D) and Δ6-D mRNA expression (qPCR) and activity (GLC) measurements. The IRD significantly (p < 0.05) increased hepatic total fat, triacylglycerols, free FA contents and serum transaminases levels, with diminution in those of n-6 and n-3 LCPUFAs, higher n-6/n-3 ratios, lower unsaturation index and Δ5-D and Δ6-D activities, whereas the mRNA expression of both desaturases was enhanced over control values, changes that were prevented by concomitant AR-EVOO supplementation. N-6 and n-3 LCPUFAs were also decreased by IRD in extrahepatic tissues and normalized by AR-EVOO. In conclusion, AR-EVOO supplementation prevents IRD-induced changes in parameters related to liver FA metabolism and steatosis, an effect that may have a significant impact in the treatment of iron-related pathologies or metabolic disorders such as non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile.
| | - Miguel A Rincón
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra López-Arana
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile
| | | | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Romina Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
36
|
Bordoni L, Fedeli D, Fiorini D, Gabbianelli R. Extra Virgin Olive Oil and Nigella sativa Oil Produced in Central Italy: A Comparison of the Nutrigenomic Effects of Two Mediterranean Oils in a Low-Grade Inflammation Model. Antioxidants (Basel) 2019; 9:E20. [PMID: 31878334 PMCID: PMC7022781 DOI: 10.3390/antiox9010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Extra virgin olive (EVO) oil and Nigella sativa (NG) oil are two well-known Mediterranean foods whose consumption has been associated with beneficial effects on human health. This study investigates the nutrigenomic properties of two high quality EVO and NG oils in an in vitro model of low-grade inflammation of human macrophages (THP-1 cells). The aim was to assess whether these healthy foods could modulate inflammation through antioxidant and epigenetic mechanisms. When THP-1 cells were co-exposed to both lipopolysaccharides (LPS)-induced inflammation and oils, both EVO and NG oils displayed anti-inflammatory activity. Both oils were able to restore normal expression levels of DNMT3A and HDAC1 (but not DNMT3B), which were altered under inflammatory conditions. Moreover, EVO oil was able to prevent the increase in TET2 expression and reduce global DNA methylation that were measured in inflamed cells. Due to its antioxidant properties, EVO oil was particularly efficient in restoring normal levels of membrane fluidity, which, on the contrary, were reduced in the presence of inflammation. In conclusion, these data support the hypothesis that these Mediterranean oils could play a major role in the modulation of low-grade inflammation and metabolic syndrome prevention. However, NS oil seems to be more efficient in the control of proinflammatory cytokines, whereas EVO oil better helps to counteract redox imbalance. Further studies that elucidate the nutrigenomic properties of local produce might help to promote regional the production and consumption of high-quality food, which could also help the population to maintain and promote health.
Collapse
Affiliation(s)
- Laura Bordoni
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Donatella Fedeli
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Sant'Agostino, 62032 Camerino, MC, Italy
| | - Rosita Gabbianelli
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| |
Collapse
|
37
|
Abstract
The Mediterranean diet (MedDiet), abundant in minimally processed plant-based foods, rich in monounsaturated fat from olive oil, but lower in saturated fat, meats, and dairy products, seems an ideal nutritional model for cardiovascular health. Methodological aspects of Mediterranean intervention trials, limitations in the quality of some meta-analyses, and other issues may have raised recent controversies. It remains unclear whether such limitations are important enough as to attenuate the postulated cardiovascular benefits of the MedDiet. We aimed to critically review current evidence on the role of the MedDiet in cardiovascular health. We systematically searched observational prospective cohorts and randomized controlled trials which explicitly reported to assess the effect of the MedDiet on hard cardiovascular end points. We critically assessed all the original cohorts and randomized controlled trials included in the 5 most comprehensive meta-analyses published between 2014 and 2018 and additional prospective studies not included in these meta-analyses, totaling 45 reports of prospective studies (including 4 randomized controlled trials and 32 independent observational cohorts). We addressed the existing controversies on methodology and other issues. Some departures from individual randomization in a subsample of the landmark Spanish trial (PREDIMED [Prevención con Dieta Mediterránea]) did not represent any clinically meaningful attenuation in the strength of its findings and the results of PREDIMED were robust in a wide range of sensitivity analyses. The criteria for causality were met and potential sources of controversies did not represent any reason to compromise the main findings of the available observational studies and randomized controlled trials. The available evidence is large, strong, and consistent. Better conformity with the traditional MedDiet is associated with better cardiovascular health outcomes, including clinically meaningful reductions in rates of coronary heart disease, ischemic stroke, and total cardiovascular disease.
Collapse
Affiliation(s)
- Miguel A Martínez-González
- From the Department of Preventive Medicine and Public Health, IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain (M.A.M.-G., A.G., M.R.-C.).,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute of Health, Madrid, Spain (M.A.M.-G., A.G., M.R.-C.).,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA (M.A.M.-G.)
| | - Alfredo Gea
- From the Department of Preventive Medicine and Public Health, IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain (M.A.M.-G., A.G., M.R.-C.).,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute of Health, Madrid, Spain (M.A.M.-G., A.G., M.R.-C.)
| | - Miguel Ruiz-Canela
- From the Department of Preventive Medicine and Public Health, IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain (M.A.M.-G., A.G., M.R.-C.).,CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute of Health, Madrid, Spain (M.A.M.-G., A.G., M.R.-C.)
| |
Collapse
|
38
|
Gaforio JJ, Visioli F, Alarcón-de-la-Lastra C, Castañer O, Delgado-Rodríguez M, Fitó M, Hernández AF, Huertas JR, Martínez-González MA, Menendez JA, Osada JDL, Papadaki A, Parrón T, Pereira JE, Rosillo MA, Sánchez-Quesada C, Schwingshackl L, Toledo E, Tsatsakis AM. Virgin Olive Oil and Health: Summary of the III International Conference on Virgin Olive Oil and Health Consensus Report, JAEN (Spain) 2018. Nutrients 2019; 11:E2039. [PMID: 31480506 PMCID: PMC6770785 DOI: 10.3390/nu11092039] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
The Mediterranean diet is considered as the foremost dietary regimen and its adoption is associated with the prevention of degenerative diseases and an extended longevity. The preeminent features of the Mediterranean diet have been agreed upon and the consumption of olive oil stands out as the most peculiar one. Indeed, the use of olive oil as the nearly exclusive dietary fat is what mostly characterizes the Mediterranean area. Plenty of epidemiological studies have correlated that the consumption of olive oil was associated with better overall health. Indeed, extra virgin olive oil contains (poly)phenolic compounds that are being actively investigated for their purported biological and pharma-nutritional properties. On 18 and 19 May 2018, several experts convened in Jaen (Spain) to discuss the most recent research on the benefits of olive oil and its components. We reported a summary of that meeting (reviewing several topics related to olive oil, not limited to health) and concluded that substantial evidence is accruing to support the widespread opinion that extra virgin olive oil should, indeed, be the fat of choice when it comes to human health and sustainable agronomy.
Collapse
Affiliation(s)
- José J Gaforio
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
- Agri-Food Campus of International Excellence (ceiA3), 14071 Córdoba, Spain.
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
- Laboratory of Functional Foods, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM + CSIC, 28049 Madrid, Spain
| | | | - Olga Castañer
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- CIBER Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Delgado-Rodríguez
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, 23071 Jaén, Spain
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Monserrat Fitó
- Cardiovascular Risk and Nutrition Research Group (CARIN), Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- CIBER Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 18016 Granada, Spain
| | - Jesús R Huertas
- Institute of Nutrition and Food Technology, Biomedical Research Centre, Department of Physiology, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
| | - Miguel A Martínez-González
- CIBER Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health-IdiSNA, University of Navarra, 31008 Pamplona, Spain
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, 17007 Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Jesús de la Osada
- CIBER Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biochemistry, Molecular and Cellular Biology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain
| | - Angeliki Papadaki
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol BS8 1TZ, UK
| | - Tesifón Parrón
- Departamento de Enfermería, Fisioterapia y Medicina, Universidad de Almería, 04120 Almería, Spain
| | - Jorge E Pereira
- Facultad de Agronomía, Universidad de la República, 12900 Montevideo, Uruguay
| | - María A Rosillo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Cristina Sánchez-Quesada
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, 23071 Jaén, Spain
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain
| | - Lukas Schwingshackl
- Institute for Evidence in Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Estefanía Toledo
- CIBER Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health-IdiSNA, University of Navarra, 31008 Pamplona, Spain
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| |
Collapse
|
39
|
Ameliorative effect of virgin olive oil against nephrotoxicity following sub-chronic administration of ethephon in male rats. J Tradit Complement Med 2019; 10:487-495. [PMID: 32953565 PMCID: PMC7484965 DOI: 10.1016/j.jtcme.2019.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Background Ethephon (EP) is the most famous plant growth regulator with different adverse effects on kidney function. Virgin Olive Oil (VOO) is considered as a natural source of antioxidant with beneficial effects. Thus, this study was conducted to investigate the effects of VOO on nephrotoxicity induced by EP in rats. Methods and materials In this study, 80 male rats (weighing 200–250 g) were divided into four groups including I: control group received normal saline as vehicle, II: received VOO, III: received EP (150 mg/kg/day) for 2 months, IV: received EP (150 mg/kg/day for 2 months, after 2-month pretreatment with VOO. VOO (2 mL/kg/day) and vehicle were administered by gastric gavage for 2 months. At the end, the animals were sacrificed, and their blood and kidneys were used for examinations. Isolated kidneys were used for histopathological and oxidative stress studies. Results Significant increases were recorded in blood (neutrophils, monocytes) and urinary parameters as well as malondialdehyde (MDA) content in the group III compared to groups II and I (P˂0.05). Antioxidant enzymes significantly declined and histopathological alterations increased in the group III. In the group IV, significant decreases were recorded in blood and urinary parameters, MDA, and histopathological alterations and a significant increase were found in antioxidant enzymes compared to group III (P˂0.05). Conclusions Findings of the present study demonstrated protective effects of VOO in prevention of kidneys against EP -induced toxicity in albino rats. Ethephon as a most famous example of plant growth regulator induced nephrotoxicity and histopathological alterations by increasing malondialdehyde (MDA) content and decreasing antioxidant levels. Virgin olive oil (VOO) is considered as a natural source of antioxidant with hypoglycaemic, hypotensive, hepatoprotective cardiovascular effects. VOO has a protective effects against ethephon induced renal toxicity through its antioxidant properties in adult albino rat VOO increased the levels of antioxidant enzymes and decreased MDA content of renal tissue. VOO decreased the levels of blood (neutrophils, monocytes) and urinary parameters. VOO reduced the degeneration of tubules and glomeruli and decreased the percentage of PCNA+ of tubular epithelium.
Collapse
|
40
|
Menni HB, Belarbi M, Menni DB, Bendiab H, Kherraf Y, Ksouri R, Djebli N, Visioli F. Anti-inflammatory activity of argan oil and its minor components. Int J Food Sci Nutr 2019; 71:307-314. [PMID: 31394953 DOI: 10.1080/09637486.2019.1650005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Argan oil is thought to be the most expensive edible oil worldwide. It is difficult to produce and the argan tree only grows in a limited geographical area, notably Morocco and Algeria. Because it is produced by mechanical means, argan oil contains "minor" components that might be endowed with healthful effects. We investigated in vivo the anti-inflammatory activities of argan oil and its unsaponifiable fraction, using diclofenac as the control, in a carrageenan-induced rat model of inflammation. Rats were given different amounts of argan oil or its unsaponifiable fraction, by gavage. We report that argan oil and its "minor" components effectively lessen the inflammatory actions of carrageenan. Far from being "pharmacological" the actions of argan oil are comparable with those of diclofenac in the short, i.e. 4 h term. Sustained consumption of argan oil might, therefore, contribute to lessen the burden of degenerative diseases associated with higher inflammatory status.
Collapse
Affiliation(s)
- Hanane Ben Menni
- Laboratoire de Produits Naturels (LAPRONA), Département de Biologie, Université de Tlemcen, Tlemcen, Algeria
| | - Meriem Belarbi
- Laboratoire de Produits Naturels (LAPRONA), Département de Biologie, Université de Tlemcen, Tlemcen, Algeria
| | - Dounia Ben Menni
- Laboratoire de Produits Naturels (LAPRONA), Département de Biologie, Université de Tlemcen, Tlemcen, Algeria
| | - Hadjer Bendiab
- Laboratoire de Pharmacognosie et Phytothérapie, Université de Mostaganeme, Mostaganem, Algeria
| | - Yamina Kherraf
- Laboratoire d'Histologie Embryologie et Génétique Clinique, CHU de Tlemcen, Tlemcen, Algeria
| | - Riadh Ksouri
- Centre de Biotechnologie de Borj-Cédria, Laboratoire des Plantes et Médicinales (LPAM), Tunis, Tunisia
| | - Noureddine Djebli
- Laboratoire de Pharmacognosie et Phytothérapie, Université de Mostaganeme, Mostaganem, Algeria
| | - Francesco Visioli
- IMDEA-Food, CEI UAM + CSIC, Madrid, Spain.,Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
41
|
Effects of Olive Oil and Its Minor Components on Cardiovascular Diseases, Inflammation, and Gut Microbiota. Nutrients 2019; 11:nu11081826. [PMID: 31394805 PMCID: PMC6722810 DOI: 10.3390/nu11081826] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Olive oil is one of the main ingredients in the Mediterranean diet, being an important ally in disease prevention. Its nutritional composition is comprised of mainly monounsaturated fatty acids, with oleic being the major acid, plus minor components which act as effective antioxidants, such as hydroxytyrosol. Studies have shown that the consumption of olive oil, as well as its isolated components or in synergism, can be a primary and secondary protective factor against the development of cardiovascular diseases since it reduces the concentrations of low-density lipoproteins and increases the concentration of high-density lipoproteins. Furthermore, it exerts an influence on the inflammatory markers, such as interleukin-6 and tumor necrosis factor, which are pro-inflammatory agents in the body. The components present in olive oil are also associated with the promotion of intestinal health since they stimulate a higher biodiversity of beneficial gut bacteria, enhancing their balance. The objective of this review is to present recent data on investigated effects of olive oil and its components on the metabolism, focused on cardiovascular diseases, inflammation, and gut biota.
Collapse
|
42
|
López de Las Hazas MC, Martin-Hernández R, Crespo MC, Tomé-Carneiro J, Del Pozo-Acebo L, Ruiz-Roso MB, Escola-Gil JC, Osada J, Portillo MP, Martinez JA, Navarro MA, Rubió L, Motilva MJ, Visioli F, Dávalos A. Identification and validation of common molecular targets of hydroxytyrosol. Food Funct 2019; 10:4897-4910. [PMID: 31339147 DOI: 10.1039/c9fo01159e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydroxytyrosol (HT) is involved in healthful activities and is beneficial to lipid metabolism. Many investigations focused on finding tissue-specific targets of HT through the use of different omics approaches such as transcriptomics and proteomics. However, it is not clear which (if any) of the potential molecular targets of HT reported in different studies are concurrently affected in various tissues. Following the bioinformatic analyses of publicly available data from a selection of in vivo studies involving HT-supplementation, we selected differentially expressed lipid metabolism-related genes and proteins common to more than one study, for validation in rodent liver samples from the entire selection. Four miRNAs (miR-802-5p, miR-423-3p, miR-30a-5p, and miR-146b-5p) responded to HT supplementation. Of note, miR-802-5p was commonly regulated in the liver and intestine. Our premise was that, in an organ crucial for lipid metabolism such as the liver, consistent modulation should be found for a specific target of HT even if different doses and duration of HT supplementation were used in vivo. Even though our results show inconsistency regarding differentially expressed lipid metabolism-related genes and proteins across studies, we found Fgf21 and Rora as potential novel targets of HT. Omics approaches should be fine-tuned to better exploit the available databases.
Collapse
Affiliation(s)
- María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cuyàs E, Verdura S, Lozano-Sánchez J, Viciano I, Llorach-Parés L, Nonell-Canals A, Bosch-Barrera J, Brunet J, Segura-Carretero A, Sanchez-Martinez M, Encinar JA, Menendez JA. The extra virgin olive oil phenolic oleacein is a dual substrate-inhibitor of catechol-O-methyltransferase. Food Chem Toxicol 2019; 128:35-45. [PMID: 30935952 DOI: 10.1016/j.fct.2019.03.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Catechol-containing polyphenols present in coffee and tea, while serving as excellent substrates for catechol-O-methyltransferase (COMT)-catalyzed O-methylation, can also operate as COMT inhibitors. However, little is known about the relationship between COMT and the characteristic phenolics present in extra virgin olive oil (EVOO). We here selected the EVOO dihydroxy-phenol oleacein for a computational study of COMT-driven methylation using classic molecular docking/molecular dynamics simulations and hybrid quantum mechanical/molecular mechanics, which were supported by in vitro activity studies using human COMT. Oleacein could be superimposed onto the catechol-binding site of COMT, maintaining the interactions with the atomic positions involved in methyl transfer from the S-adenosyl-L-methionine cofactor. The transition state structure for the meta-methylation in the O5 position of the oleacein benzenediol moiety was predicted to occur preferentially. Enzyme analysis of the conversion ratio of catechol to O-alkylated guaiacol confirmed the inhibitory effect of oleacein on human COMT, which remained unaltered when tested against the protein version encoded by the functional Val158Met polymorphism of the COMT gene. Our study provides a theoretical determination of how EVOO dihydroxy-phenols can be metabolized via COMT. The ability of oleacein to inhibit COMT adds a new dimension to the physiological and therapeutic utility of EVOO secoiridoids.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sara Verdura
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jesús Lozano-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain; Research and Development Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
| | | | | | | | - Joaquim Bosch-Barrera
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain; Medical Oncology, Catalan Institute of Oncology (ICO) Dr. Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology (ICO) Dr. Josep Trueta University Hospital, Girona, Spain; Department of Medical Sciences, Medical School University of Girona, Girona, Spain; Hereditary Cancer Programme, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL) L'Hospitalet del Llobregat, Barcelona, Spain; Hereditary Cancer Programme, Catalan Institute of Oncology (ICO) Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain; Research and Development Functional Food Centre (CIDAF), PTS Granada, Granada, Spain
| | | | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain.
| | - Javier A Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Spain; Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
44
|
Torri L, Bondioli P, Folegatti L, Rovellini P, Piochi M, Morini G. Development of Perilla seed oil and extra virgin olive oil blends for nutritional, oxidative stability and consumer acceptance improvements. Food Chem 2019; 286:584-591. [PMID: 30827650 DOI: 10.1016/j.foodchem.2019.02.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/21/2019] [Accepted: 02/14/2019] [Indexed: 01/05/2023]
Abstract
This study reports the blending at different levels (25, 30, 35, 40 and 45%) of Perilla seed oil (PO) with extra virgin olive oil (EVOO). Pure oils and blends were evaluated in terms of free acidity, peroxide value, fatty acid composition, sterols, tocopherols and biophenols content, oxidation stability, sensory acceptability and food pairing. Blends with high content of ω - 3 and ω - 6 fatty acids, biophenols, tocopherols, sterols and satisfying oxidation stability were obtained, representing products with improved nutritional properties. All blends resulted acceptable by consumers. Two groups of consumers with opposite preferences for samples with low (25-35%) and high (40-45%) levels of PO were identified. Blends containing 40-45% of PO were mainly paired to strong-flavour and cooked foods, while blends with less PO were preferably matched with raw meat and vegetables. Consequently, PO and EVOO blends showed promising potential as innovative vegetable oils with improved nutritional properties and versatile gastronomic use.
Collapse
Affiliation(s)
- Luisa Torri
- University of Gastronomic Sciences, Piazza Vittorio Emanuele, 9, 12042 Pollenzo -Bra, Italy.
| | - Paolo Bondioli
- INNOVHUB-SSI-SSOG, Via Giuseppe Colombo, 79, 20133 Milano, Italy.
| | | | | | - Maria Piochi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele, 9, 12042 Pollenzo -Bra, Italy.
| | - Gabriella Morini
- University of Gastronomic Sciences, Piazza Vittorio Emanuele, 9, 12042 Pollenzo -Bra, Italy.
| |
Collapse
|
45
|
Determination of Pigments in Virgin and Extra-Virgin Olive Oils: A Comparison between Two Near UV-Vis Spectroscopic Techniques. Foods 2019; 8:foods8010018. [PMID: 30621084 PMCID: PMC6352134 DOI: 10.3390/foods8010018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
The colour of olive oil is due to the presence of natural pigments belonging to the class of carotenoids, chlorophylls, and their derivatives. These substances, other than being responsible for the colour, an important qualitative feature of the oil, have antioxidant and, more generally, nutraceutical properties and their quantification can be related to the product’s quality and authenticity. In this work, we have quantified the total amount of carotenoids and chlorophylls’ derivatives in several virgin and extra-virgin olive oils produced in Italy, by using two different methods that are based on near-ultraviolet-visible absorption spectroscopy. The first method defines two indexes, K670 and K470, related to absorbance values of oil at wavelengths of 670 and 470 nm, respectively. The second method is based on the mathematical deconvolution of the whole absorption spectrum of the oil to obtain the concentrations of four main pigments present in olive oils: β-carotene, lutein, pheophytin A, and pheophytin B. The concentrations of the total carotenoids and total chlorophylls’ derivatives, as obtained by the two spectroscopic methods, are compared and the results are discussed in view of the practical usefulness of spectroscopic techniques for a fast determination of pigments in olive oil.
Collapse
|
46
|
Summerhill V, Karagodin V, Grechko A, Myasoedova V, Orekhov A. Vasculoprotective Role of Olive Oil Compounds via Modulation of Oxidative Stress in Atherosclerosis. Front Cardiovasc Med 2018; 5:188. [PMID: 30622950 PMCID: PMC6308304 DOI: 10.3389/fcvm.2018.00188] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Existing evidence supports the significant role of oxidative stress in the endothelial injury, and there is a direct link between increased oxidative stress, and the development of endothelial dysfunction. Endothelial dysfunction precedes the development of atherosclerosis and subsequent cardiovascular disease (CVD). The overproduction of reactive oxygen species facilitates the processes, such as oxidative modification of low-density lipoproteins and phospholipids, reduction in the NOS-derived nitric oxide, and the functional disruption of high-density lipids that are profoundly involved in atherogenesis, inflammation, and thrombus formation in vascular cells. Thus, under oxidative stress conditions, endothelial dysfunction was found to be associated with the following endothelial alterations: reduced nitric oxide bioavailability, increased anticoagulant properties, increased platelet aggregation, increased expression of adhesion molecules, chemokines, and cytokines. In this review, we summarized the evidence indicating that endothelial damage triggered by oxidation can be diminished or reversed by the compounds of olive oil, a readily available antioxidant food source. Olive oil bioactive compounds exhibited a potent capability to attenuate oxidative stress and improve endothelial function through their anti-inflammatory, anti-oxidant, and anti-thrombotic properties, therefore reducing the risk and progression of atherosclerosis. Also, their molecular mechanisms of action were explored to establish the potential preventive and/or therapeutic alternatives to the pharmacological remedies available.
Collapse
Affiliation(s)
- Volha Summerhill
- Skolkovo Innovative Center, Institute for Atherosclerosis Research Moscow, Moscow, Russia
| | - Vasilyi Karagodin
- Department of Commodity Research and Expertise, Plekhanov Russian University of Economics, Moscow, Russia
| | - Andrey Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Veronika Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander Orekhov
- Skolkovo Innovative Center, Institute for Atherosclerosis Research Moscow, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
47
|
Oleuropein, the Main Polyphenol of Olea europaea Leaf Extract, Has an Anti-Cancer Effect on Human BRAF Melanoma Cells and Potentiates the Cytotoxicity of Current Chemotherapies. Nutrients 2018; 10:nu10121950. [PMID: 30544808 PMCID: PMC6316801 DOI: 10.3390/nu10121950] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/25/2022] Open
Abstract
Oleuropein (Ole), a secoiridoid glucoside present in Olea europaea leaves, gained scientific interest thanks to its several biological properties, including the anticancer one. We verified whether Ole might potentiate the cytotoxicity of conventional drugs used to treat melanoma, disclosing a potentially new therapeutic strategy. We tested the cytotoxic action of Ole alone or in combination with chemotherapeutics on A375 human melanoma cells. We found that Ole was able, at a dose of 500 µM, to stimulate apoptosis, while at a non-toxic dose of 250 µM, it affected cell proliferation and induced the downregulation of the pAKT/pS6 pathway. A dose of 250 µM Ole did not potentiate the effect of Vemurafenib (PLX4032), but it succeeded in increasing the cytotoxic effect of Dacarbazine (DTIC). The major effect was found in the association between Ole and Everolimus (RAD001), also on PLX4032-resistant BRAF melanoma cells, which possibly cooperate in the inhibition of the pAKT/pS6 pathway. Of interest, an olive leaf extract enriched in equimolar Ole was more effective and able to further improve DTIC and RAD001 efficacy on BRAF melanoma cells with respect to Ole alone. Therefore, Ole represents a natural product able to potentiate a wide array of chemotherapeutics against BRAF melanoma cells affecting the pAKT/pS6 pathway.
Collapse
|
48
|
Use of Nutraceuticals in Angiogenesis-Dependent Disorders. Molecules 2018; 23:molecules23102676. [PMID: 30340320 PMCID: PMC6222874 DOI: 10.3390/molecules23102676] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
The term of angiogenesis refers to the growth of new vessels from pre-existing capillaries. The phenomenon is necessary for physiological growth, repair and functioning of our organs. When occurring in a not regulated manner, it concurs to pathological conditions as tumors, eye diseases, chronic degenerative disorders. On the contrary insufficient neovascularization or endothelial disfunction accompanies ischemic and metabolic disorders. In both the cases an inflammatory and oxidative condition exists in supporting angiogenesis deregulation and endothelial dysfunction. The use of nutraceuticals with antioxidant and anti-inflammatory activities can be a therapeutic option to maintain an adequate vascularization and endothelial cell proper functioning or to blunt aberrant angiogenesis. A revision of the updated literature reports on nutraceuticals to guide endothelial cell wellness and to restore physiological tissue vascularization is the objective of this paper. The critical aspects as well as lacking data for human use will be explored from a pharmacological perspective.
Collapse
|
49
|
Sivakumar G, Uccella NA, Gentile L. Probing Downstream Olive Biophenol Secoiridoids. Int J Mol Sci 2018; 19:ijms19102892. [PMID: 30249049 PMCID: PMC6212805 DOI: 10.3390/ijms19102892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
Numerous bioactive biophenol secoiridoids (BPsecos) are found in the fruit, leaves, and oil of olives. These BPsecos play important roles in both the taste of food and human health. The main BPseco bioactive from green olive fruits, leaves, and table olives is oleuropein, while olive oil is rich in oleuropein downstream pathway molecules. The aim of this study was to probe olive BPseco downstream molecular pathways that are alike in biological and olive processing systems at different pHs and reaction times. The downstream molecular pathway were analyzed by high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI/MS) and typed neglected of different overlap (TNDO) computational methods. Our study showed oleuropein highest occupied molecular orbital (HOMO) and HOMO-1 triggered the free radical processes, while HOMO-2 and lowest unoccupied molecular orbital (LUMO) were polar reactions of glucoside and ester groups. Olive BPsecos were found to be stable under acid and base catalylic experiments. Oleuropein aglycone opened to diales and rearranged to hydroxytyrosil-elenolate under strong reaction conditions. The results suggest that competition among olive BPseco HOMOs could induce glucoside hydrolysis during olive milling due to native olive β-glucosidases. The underlined olive BPsecos downstream molecular mechanism herein could provide new insights into the olive milling process to improve BPseco bioactives in olive oil and table olives, which would enhance both the functional food and the nutraceuticals that are produced from olives.
Collapse
Affiliation(s)
- Ganapathy Sivakumar
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX 77204, USA.
| | - Nicola A Uccella
- IRESMO Foundation Group, via Petrozza 16A, 87040 Montalto Uffugo, Italy.
- Department of Mechanical, Energy and Management Engineering (DIMEG), University of Calabria, P. Bucci 42C, 87036 Rende, Italy.
| | - Luigi Gentile
- Chemistry and Chemical Technology Department, University of Calabria, P. Bucci 12C, 87036 Rende, Italy.
- Molecular Ecology, Microbial Ecology and Evolutionary Genetics (MEMEG) unit, Department of Biology, Lund University, 22362 Lund, Sweden.
| |
Collapse
|
50
|
Effect of Adherence to a Mediterranean Diet and Olive Oil Intake during Pregnancy on Risk of Small for Gestational Age Infants. Nutrients 2018; 10:nu10091234. [PMID: 30189597 PMCID: PMC6164545 DOI: 10.3390/nu10091234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/25/2022] Open
Abstract
To quantify the effect of a Mediterranean dietary pattern, as well as the consumption of olive oil (OO), on the risk of having a small for gestational age infants (SGA), a matched case-control study was conducted in Spain. Dietary intake during pregnancy was assessed using a validated food frequency questionnaire. Three indices were used to evaluate the adherence to Mediterranean diet (MD) (Predimed, Trichopoulou and Panagiotakos). Crude odds ratios (cOR) and adjusted odds ratios (aOR) and their 95% confidence intervals (CI) were estimated using conditional logistic regression models. Results were stratified by severity of SGA: moderate (percentiles 6–10), and severe (percentiles ≤5). For moderate, four or more points in the Predimed´s index was associated with a 41% reduction of having SGA compared with women with a score ≤3, aOR = 0.59 (95% CI 0.38–0.98); for severe, the reduction in risk was not statistically significant. Similar results were found when the other MD indexes were used. An intake of OO above 5 g/day was associated with a lower risk of SGA (aOR = 0.53, 95% CI 0.34–0.85); statistical significance was observed for moderate SGA (aOR = 0.53, 95% CI 0.30–0.96), but not for severe SGA (aOR = 0.51, 95% CI 0.24–1.07), although the magnitude of ORs were quite similar. Adherence to a MD and OO intake is associated with a reduced risk of SGA.
Collapse
|