1
|
Mabry ME, Fanelli A, Mavian C, Lorusso A, Manes C, Soltis PS, Capua I. The panzootic potential of SARS-CoV-2. Bioscience 2023; 73:814-829. [PMID: 38125826 PMCID: PMC10728779 DOI: 10.1093/biosci/biad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Each year, SARS-CoV-2 is infecting an increasingly unprecedented number of species. In the present article, we combine mammalian phylogeny with the genetic characteristics of isolates found in mammals to elaborate on the host-range potential of SARS-CoV-2. Infections in nonhuman mammals mirror those of contemporary viral strains circulating in humans, although, in certain species, extensive viral circulation has led to unique genetic signatures. As in other recent studies, we found that the conservation of the ACE2 receptor cannot be considered the sole major determinant of susceptibility. However, we are able to identify major clades and families as candidates for increased surveillance. On the basis of our findings, we argue that the use of the term panzootic could be a more appropriate term than pandemic to describe the ongoing scenario. This term better captures the magnitude of the SARS-CoV-2 host range and would hopefully inspire inclusive policy actions, including systematic screenings, that could better support the management of this worldwide event.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Carla Mavian
- Emerging Pathogens Institute and with the Department of Pathology, University of Florida, Gainesville, Florida, United States
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Costanza Manes
- Department of Wildlife Ecology and Conservation and with the One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Ilaria Capua
- One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
- School of International Advanced Studies, Johns Hopkins University, Bologna, Italy
| |
Collapse
|
2
|
Nooruzzaman M, Diel DG. Infection Dynamics, Pathogenesis, and Immunity to SARS-CoV-2 in Naturally Susceptible Animal Species. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1195-1201. [PMID: 37782853 PMCID: PMC10558081 DOI: 10.4049/jimmunol.2300378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 10/04/2023]
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, presents a broad host range. Domestic cats and white-tailed deer (WTD) are particularly susceptible to SARS-CoV-2 with multiple variant strains being associated with infections in these species. The virus replicates in the upper respiratory tract and in associated lymphoid tissues, and it is shed through oral and nasal secretions, which leads to efficient transmission of the virus to contact animals. Robust cell-mediated and humoral immune responses are induced upon infection in domestic cats, which curb the progression of clinical disease and are associated with control of infection. In WTD, high levels of neutralizing Abs are detected early upon infection. In this review, the current understanding of the infection dynamics, pathogenesis, and immune responses to SARS-CoV-2 infection in animals, with special focus on naturally susceptible felids and WTD, are discussed.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| |
Collapse
|
3
|
Jaramillo Hernández DA, Chacón MC, Velásquez MA, Vásquez-Trujillo A, Sánchez AP, Salazar Garces LF, García GL, Velasco-Santamaría YM, Pedraza LN, Lesmes-Rodríguez LC. Seroprevalence of exposure to SARS-CoV-2 in domestic dogs and cats and its relationship with COVID-19 cases in the city of Villavicencio, Colombia. F1000Res 2023; 11:1184. [PMID: 37965037 PMCID: PMC10643872 DOI: 10.12688/f1000research.125780.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 11/16/2023] Open
Abstract
Background: Since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, different animal species have been implicated as possible intermediate hosts that could facilitate the transmission of the virus between species. The detection of these hosts has intensified, reporting wild, zoo, farm, and pet animals. The goal of this study was to determine the seroprevalence of anti-SARS-CoV-2 immunoglobulins (IgG) in domestic dogs and cats and its epidemiological association with the frequency of coronavirus disease 2019 (COVID-19) patients in Villavicencio, Colombia. Methods: 300 dogs and 135 cats were randomly selected in a two-stage distribution by clusters according to COVID-19 cases (positive RT-qPCR for SARS-CoV-2) within the human population distributed within the eight communes of Villavicencio. Indirect enzyme-linked immunosorbent assay (ELISA) technique was applied in order to determine anti-SARS-CoV-2 IgG in sera samples. Kernel density estimation was used to compare the prevalence of COVID-19 cases with the seropositivity of dogs and cats. Results: The overall seroprevalence of anti-SARS-CoV-2 IgG was 4.6% (95% CI=3.2-7.4). In canines, 3.67% (95% CI=2.1-6.4) and felines 6.67% (95% CI=3.6-12.18). Kernel density estimation indicated that seropositive cases were concentrated in the southwest region of the city. There was a positive association between SARS-CoV-2 seropositivity in pet animals and their habitat in Commune 2 (adjusted OR=5.84; 95% CI=1.1-30.88). Spearman's correlation coefficients were weakly positive ( p=0.32) between the ratio of COVID-19 cases in November 2020 and the results for domestic dogs and cats from the eight communes of Villavicencio. Conclusions: In the present research cats were more susceptible to SARS-CoV-2 infection than dogs. This study provides the first positive results of anti-SARS-CoV-2 ELISA serological tests in domestic dogs and cats in Colombia with information about the virus transmission dynamics in Latin America during the COVID-19 pandemic.
Collapse
Affiliation(s)
| | - María Clara Chacón
- Programa de Medicina Veterinaria y Zootecnia, Escuela de Ciencias Animales, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - María Alejandra Velásquez
- Programa de Medicina Veterinaria y Zootecnia, Escuela de Ciencias Animales, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - Adolfo Vásquez-Trujillo
- Escuela de Ciencias Animales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - Ana Patricia Sánchez
- Secretaria de Salud Municipal, Alcaldía de Villavicencio, Villavicencio, Meta, 110221, Colombia
| | - Luis Fabian Salazar Garces
- Research and Development Department (DIDE), Faculty of Health Sciences, Technical University of Ambato, Ambato, Ambato, Av. Colombia and Chile s/n, Ecuador
| | - Gina Lorena García
- Escuela de Ciencias Animales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | | | - Luz Natalia Pedraza
- Escuela de Ciencias Animales, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| | - Lida Carolina Lesmes-Rodríguez
- Departamento de Biología & Química, Facultad de Ciencias Básicas e Ingeniería, Universidad de los Llanos, Villavicencio, Meta, 1745, Colombia
| |
Collapse
|
4
|
High seroprevalence of SARS-CoV-2 antibodies in household cats and dogs of Lebanon. Res Vet Sci 2023; 157:13-16. [PMID: 36842247 PMCID: PMC9942449 DOI: 10.1016/j.rvsc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
The COVID-19 pandemic has been declared in late 2019. It is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Flu-like symptoms and acute respiratory illnesses are the main manifestations of the disease. Recent studies have confirmed the susceptibility of domestic animals to SARS-CoV-2 infection. However, the seroprevalence of SARS-CoV-2 in household pets and the importance of pets in the epidemiology of this infection remain unknown. In Lebanon, there is no epidemiological data regarding SARS-CoV-2 infection in companion animals. Thus, this investigation aimed to determine the seroprevalence of SARS-CoV-2 antibodies in household pets of Lebanon during the COVID-19 pandemic. A cross-sectional study was carried out between April 2020 and February 2021. Blood samples from 145 cats and 180 dogs were collected from 12 veterinary clinics located in the North, Mount, and Beirut governorates. A validated ELISA assay was used to detect the anti- SARS-CoV-2 in the sera of the tested animals. An overall seroprevalence of 16.92% (55/325) was reported; 13.79% seroprevalence was found in cats (20/145) and 19.44% (35/180) in dogs. The young age and the cold season were significantly associated with an increased seropositivity rate to SARS-CoV-2 infection (P < 0.01). These results confirm the circulation of SARS-CoV-2 in household pets, in various geographical regions in Lebanon. Although, there is a lack of evidence to suggest that naturally infected pets could transmit the SARS-CoV-2 infection. Yet, owners diagnosed with COVID-19 should limit their contact with their animals during the course of the disease to curb the risk of transmission.
Collapse
|
5
|
Low Prevalence of SARS-CoV-2 Antibodies in Canine and Feline Serum Samples Collected during the COVID-19 Pandemic in Hong Kong and Korea. Viruses 2023; 15:v15020582. [PMID: 36851796 PMCID: PMC9967295 DOI: 10.3390/v15020582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide since its emergence in 2019. Knowing the potential capacity of the virus to adapt to other species, the serological surveillance of SARS-CoV-2 infection in susceptible animals is important. Hong Kong and Seoul are two of Asia's most densely populated urban cities, where companion animals often live in close contact with humans. Sera collected from 1040 cats and 855 dogs during the early phase of the pandemic in Hong Kong and Seoul were tested for SARS-CoV-2 antibodies using an ELISA that detects antibodies against the receptor binding domain of the viral spike protein. Positive sera were also tested for virus neutralizing antibodies using a surrogate virus neutralization (sVNT) and plaque reduction neutralization test (PRNT). Among feline sera, 4.51% and 2.54% of the samples from Korea and Hong Kong, respectively, tested ELISA positive. However, only 1.64% of the samples from Korea and 0.18% from Hong Kong tested positive by sVNT, while only 0.41% of samples from Korea tested positive by PRNT. Among canine samples, 4.94% and 6.46% from Korea and Hong Kong, respectively, tested positive by ELISA, while only 0.29% of sera from Korea were positive on sVNT and no canine sera tested positive by PRNT. These results confirm a low seroprevalence of SARS-CoV-2 exposure in companion animals in Korea and Hong Kong. The discordance between the RBD-ELISA and neutralization tests may indicate possible ELISA cross-reactivity with other coronaviruses, especially in canine sera.
Collapse
|
6
|
Kuhlmeier E, Chan T, Agüí CV, Willi B, Wolfensberger A, Beisel C, Topolsky I, Beerenwinkel N, Stadler T, Jones S, Tyson G, Hosie MJ, Reitt K, Hüttl J, Meli ML, Hofmann-Lehmann R. Detection and Molecular Characterization of the SARS-CoV-2 Delta Variant and the Specific Immune Response in Companion Animals in Switzerland. Viruses 2023; 15:245. [PMID: 36680285 PMCID: PMC9864232 DOI: 10.3390/v15010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
In human beings, there are five reported variants of concern of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). However, in contrast to human beings, descriptions of infections of animals with specific variants are still rare. The aim of this study is to systematically investigate SARS-CoV-2 infections in companion animals in close contact with SARS-CoV-2-positive owners ("COVID-19 households") with a focus on the Delta variant. Samples, obtained from companion animals and their owners were analyzed using a real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and next-generation sequencing (NGS). Animals were also tested for antibodies and neutralizing activity against SARS-CoV-2. Eleven cats and three dogs in nine COVID-19-positive households were RT-qPCR and/or serologically positive for the SARS-CoV-2 Delta variant. For seven animals, the genetic sequence could be determined. The animals were infected by one of the pangolin lineages B.1.617.2, AY.4, AY.43 and AY.129 and between zero and three single-nucleotide polymorphisms (SNPs) were detected between the viral genomes of animals and their owners, indicating within-household transmission between animal and owner and in multi-pet households also between the animals. NGS data identified SNPs that occur at a higher frequency in the viral sequences of companion animals than in viral sequences of humans, as well as SNPs, which were exclusively found in the animals investigated in the current study and not in their owners. In conclusion, our study is the first to describe the SARS-CoV-2 Delta variant transmission to animals in Switzerland and provides the first-ever description of Delta-variant pangolin lineages AY.129 and AY.4 in animals. Our results reinforce the need of a One Health approach in the monitoring of SARS-CoV-2 in animals.
Collapse
Affiliation(s)
- Evelyn Kuhlmeier
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Tatjana Chan
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Cecilia Valenzuela Agüí
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Barbara Willi
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Aline Wolfensberger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Ivan Topolsky
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | | | - Sarah Jones
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Grace Tyson
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Katja Reitt
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland
| | - Julia Hüttl
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Zhou C, Wu A, Ye S, Zhou Z, Zhang H, Zhao X, Wang Y, Wu H, Ruan D, Chen S, Tang W, Xu S, Li Q, Su K. Possible transmission of COVID-19 epidemic by a dog as a passive mechanical carrier of SARS-CoV-2, Chongqing, China, 2022. J Med Virol 2023; 95:e28408. [PMID: 36519594 PMCID: PMC9877642 DOI: 10.1002/jmv.28408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) was reported in Yongchuan district of Chongqing, China in March 2022, while the source was unknown. We aimed to investigate the origin and transmission route of the virus in the outbreak. We conducted field investigations for all cases and collected their epidemiological and clinical data. We performed gene sequencing and phylogenetic analysis for the cases, and draw the epidemic curve and the case relationship chart to analyze interactions and possible transmission mode of the outbreak. A total of 11 cases of COVID-19, including 5 patients and 6 asymptomatic cases were laboratory-confirmed in the outbreak. The branch of the virus was Omicron BA.2 which was introduced into Yongchuan district by a traveler in early March. Patient F and asymptomatic case G had never contact with other positive-infected individuals, but close contact with their pet dog that sniffed the discarded cigarette butts and stepped on the sputum of patient B. Laboratory test results showed that the dog hair and kennel were positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the 10 isolates were highly homologous to an epidemic strain in a province of China. The investigation suggested that the contaminated dog by SARS-CoV-2 can act as a passive mechanical carrier of the virus and might transmit the virus to humans through close contact. Our findings suggest that during the COVID-19 pandemic, increasing hygiene measures and hand washing after close contact with pets is essential to minimize the risk of community spread of the virus.
Collapse
Affiliation(s)
- Chunbei Zhou
- Chongqing Center for Disease Control and PreventionChongqingChina,Army Medical University (Third Military Medical University)ChongqingChina
| | - Ailin Wu
- Chongqing Center for Disease Control and PreventionChongqingChina
| | - Sheng Ye
- Chongqing Center for Disease Control and PreventionChongqingChina,Chongqing Municipal Key Laboratory for High Pathogenic MicrobesChongqingChina
| | - Zongliang Zhou
- Yongchuan District Center for Disease Control and PreventionChongqingChina
| | - Hongjun Zhang
- Yongchuan District Center for Disease Control and PreventionChongqingChina
| | - Xiyou Zhao
- Community Health Service Center of Zhongshan Road, Yongchuan DistrictChongqingChina
| | - Ya Wang
- Yongchuan District Center for Disease Control and PreventionChongqingChina
| | - Huan Wu
- Yongchuan District Center for Disease Control and PreventionChongqingChina
| | - Dandan Ruan
- Yongchuan District Center for Disease Control and PreventionChongqingChina
| | - Shuang Chen
- Chongqing Center for Disease Control and PreventionChongqingChina,Chongqing Municipal Key Laboratory for High Pathogenic MicrobesChongqingChina
| | - Wenge Tang
- Chongqing Center for Disease Control and PreventionChongqingChina
| | - Shibin Xu
- Yongchuan District Center for Disease Control and PreventionChongqingChina
| | - Qin Li
- Chongqing Center for Disease Control and PreventionChongqingChina
| | - Kun Su
- Chongqing Center for Disease Control and PreventionChongqingChina,School of Public Health and ManagementChongqing Medical UniversityChongqingChina,Chongqing Public Health Medical CenterChongqingChina
| |
Collapse
|
8
|
Anderson BD, Barnes AN, Umar S, Guo X, Thongthum T, Gray GC. Reverse Zoonotic Transmission (Zooanthroponosis): An Increasing Threat to Animal Health. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:25-87. [DOI: 10.1007/978-3-031-27164-9_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Bellinati L, Campalto M, Mazzotta E, Ceglie L, Cavicchio L, Mion M, Lucchese L, Salomoni A, Bortolami A, Quaranta E, Magarotto J, Favarato M, Squarzon L, Natale A. One-Year Surveillance of SARS-CoV-2 Exposure in Stray Cats and Kennel Dogs from Northeastern Italy. Microorganisms 2022; 11:microorganisms11010110. [PMID: 36677401 PMCID: PMC9866628 DOI: 10.3390/microorganisms11010110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dogs and cats are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). During the pandemic, several studies have been performed on owned cats and dogs, whereas limited data are available on the exposure to stray animals. The objective of this study was to investigate the exposure to SARS-CoV-2 of feral cats and kennel dogs in northeastern Italy, through serological and molecular methods. From May 2021 to September 2022, public health veterinary services collected serum, oropharyngeal, and rectal swab samples from 257 free-roaming dogs newly introduced to shelters, and from 389 feral cats examined during the routinely trap-neutered-return programs. The swabs were analyzed for viral RNA through a real-time reverse transcriptase PCR (rRT-PCR), and sera were tested for the presence of the specific antibody against SARS-CoV-2 (enzyme-linked immunosorbent assay). Serology was positive in nine dogs (9/257) and three cats (3/389), while two asymptomatic cats tested positive to rRT-PCR. One cat turned out to be positive both for serology and molecular analysis. In addition, this study described the case of a possible human-to-animal SARS-CoV-2 transmission in a cat that travelled in close contact to a COVID-19-positive refugee from Ukraine. This study shows that SARS-CoV-2 can infect, in natural conditions, stray cats and kennel dogs in northeastern Italy, although with a low prevalence.
Collapse
Affiliation(s)
- Laura Bellinati
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Mery Campalto
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
- Correspondence:
| | - Elisa Mazzotta
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Letizia Ceglie
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Lara Cavicchio
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Monica Mion
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Laura Lucchese
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Angela Salomoni
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | - Erika Quaranta
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | | | - Mosè Favarato
- UOSD Genetica e Citogenetica e Diagnostica Molecolare-Azienda ULSS 3 Serenissima, 30174 Venice, Italy
| | - Laura Squarzon
- UOSD Genetica e Citogenetica e Diagnostica Molecolare-Azienda ULSS 3 Serenissima, 30174 Venice, Italy
| | - Alda Natale
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| |
Collapse
|
10
|
Pellegrini F, Omar AH, Buonavoglia C, Pratelli A. SARS-CoV-2 and Animals: From a Mirror Image to a Storm Warning. Pathogens 2022; 11:pathogens11121519. [PMID: 36558853 PMCID: PMC9782541 DOI: 10.3390/pathogens11121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), emerged in Wuhan city (Hubei province, China) in December 2019, and the World Health Organization (WHO) declared an international public health emergency on 11 March 2020 [...].
Collapse
|
11
|
Spada E, Bruno F, Castelli G, Vitale F, Reale S, Biondi V, Migliazzo A, Perego R, Baggiani L, Proverbio D. Do Blood Phenotypes of Feline AB Blood Group System Affect the SARS-CoV-2 Antibody Serostatus in Cats? Viruses 2022; 14:2691. [PMID: 36560695 PMCID: PMC9783645 DOI: 10.3390/v14122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Cats are susceptible to coronavirus infections, including infection by human severe acute respiratory syndrome coronavirus (SARS-CoV). In human ABO system blood groups, alloantibodies can play a direct role in resistance to infectious diseases. Individuals with the AB blood type were over-represented in the SARS-CoV-2 infection group. Blood type AB individuals lack both anti-A and anti-B antibodies, and therefore lack the protective effect against SARS-CoV-2 infection given by these antibodies. Starting from this knowledge, this pilot preliminary study evaluated a possible association between feline blood phenotypes A, B, and AB and serostatus for SARS-CoV-2 antibodies in cats. We also investigated selected risk or protective factors associated with seropositivity for this coronavirus. A feline population of 215 cats was analysed for AB group system blood phenotypes and antibodies against the nucleocapsid (N-protein) SARS-CoV-2 antigen using a double antigen ELISA. SARS-CoV-2 seropositive samples were confirmed using a surrogate virus neutralization test (sVNT). Origin (stray colony/shelter/owned cat), breed (DSH/non DSH), gender (male/female), reproductive status (neutered/intact), age class (kitten/young adult/mature adult/senior), retroviruses status (seropositive/seronegative), and blood phenotype (A, B, and AB) were evaluated as protective or risk factors for SARS-CoV-2 seropositivity. Seropositivity for antibodies against the SARS-CoV-2 N-protein was recorded in eight cats, but only four of these tested positive with sVNT. Of these four SARS-CoV-2 seropositive cats, three were blood phenotype A and one was phenotype AB. Young adult age (1-6 years), FeLV seropositivity and blood type AB were significantly associated with SARS-CoV-2 seropositivity according to a univariate analysis, but only blood type AB (p = 0.0344, OR = 15.4, 95%CI: 1.22-194.39) and FeLV seropositivity (p = 0.0444, OR = 13.2, 95%CI: 1.06-163.63) were significant associated risk factors according to a logistic regression. Blood phenotype AB might be associated with seropositivity for SARS-CoV-2 antibodies. This could be due, as in people, to the protective effect of naturally occurring alloantibodies to blood type antigens which are lacking in type AB cats. The results of this pilot study should be considered very preliminary, and we suggest the need for further research to assess this potential relationship.
Collapse
Affiliation(s)
- Eva Spada
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| | - Federica Bruno
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Germano Castelli
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Fabrizio Vitale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Stefano Reale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Antonella Migliazzo
- Dipartimento di Prevenzione, Area Sanità Pubblica Veterinaria, UOC Sanità Animale, Igiene Degli Allevamenti e Produzioni Zootecniche, Asl Latina, 04100 Latina, Italy
| | - Roberta Perego
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| | - Luciana Baggiani
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| | - Daniela Proverbio
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
12
|
Villanueva-Saz S, Martínez M, Giner J, González A, Tobajas AP, Pérez MD, Lira-Navarrete E, González-Ramírez AM, Macías-León J, Verde M, Yzuel A, Hurtado-Guerrero R, Arias M, Santiago L, Aguiló-Gisbert J, Ruíz H, Lacasta D, Marteles D, Fernández A. A cross-sectional serosurvey of SARS-CoV-2 and co-infections in stray cats from the second wave to the sixth wave of COVID-19 outbreaks in Spain. Vet Res Commun 2022; 47:615-629. [PMID: 36229725 PMCID: PMC9560875 DOI: 10.1007/s11259-022-10016-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 is the causative agent of Coronavirus Disease 2019 in humans. Among domestic animals, cats are more susceptible to SARS-CoV-2 than dogs. The detection of anti-SARS-CoV-2 antibodies in seemingly healthy cats and/or infected cats which are in close contact with infected humans has been described. The presence of animals that tested positive by serology or molecular techniques could represent a potential transmission pathway of SARS-CoV-2 that can spill over into urban wildlife. This study analyses the seroprevalence variation of SARS-CoV-2 in stray cats from different waves of outbreaks in a geographical area where previous seroepidemiological information of SARS-CoV-2 was available and investigate if SARS-CoV-2-seropositive cats were exposed to other co-infections causing an immunosuppressive status and/or a chronic disease that could lead to a SARS-CoV-2 susceptibility. For this purpose, a total of 254 stray cats from Zaragoza (Spain) were included. This analysis was carried out by the enzyme-linked immunosorbent assay using the receptor binding domain of Spike antigen and confirmed by serum virus neutralization assay. The presence of co-infections including Toxoplasma gondii, Leishmania infantum, Dirofilaria immitis, feline calicivirus, feline herpesvirus type 1, feline leukemia virus and feline immunodeficiency virus, was evaluated using different serological methods. A seropositivity of 1.57% was observed for SARS-CoV-2 including the presence of neutralizing antibodies in three cats. None of the seropositive to SARS-CoV-2 cats were positive to feline coronavirus, however, four SARS-CoV-2-seropositive cats were also seropositive to other pathogens such as L. infantum, D. immitis and FIV (n = 1), L. infantum and D. immitis (n = 1) and L. infantum alone (n = 1).Considering other pathogens, a seroprevalence of 16.54% was detected for L. infantum, 30.31% for D. immitis, 13.78%, for T. gondii, 83.86% for feline calicivirus, 42.52% for feline herpesvirus type 1, 3.15% for FeLV and 7.87% for FIV. Our findings suggest that the epidemiological role of stray cats in SARS-CoV-2 transmission is scarce, and there is no increase in seropositivity during the different waves of COVID-19 outbreaks in this group of animals. Further epidemiological surveillances are necessary to determine the risk that other animals might possess even though stray cats do not seem to play a role in transmission.
Collapse
Affiliation(s)
- Sergio Villanueva-Saz
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain. .,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| | - Mariví Martínez
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Jacobo Giner
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Ana González
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Veterinary Teaching Hospital of the University of Zaragoza, Zaragoza, Spain
| | - Ana Pilar Tobajas
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Department of Animal Production and Sciences of the Food, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - María Dolores Pérez
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Department of Animal Production and Sciences of the Food, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Erandi Lira-Navarrete
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Andrés Manuel González-Ramírez
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Javier Macías-León
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain
| | - Maite Verde
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.,Veterinary Teaching Hospital of the University of Zaragoza, Zaragoza, Spain
| | - Andrés Yzuel
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain.,Aragon I+D Foundation (ARAID), Zaragoza, Spain.,Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Edificio I+D, Campus Rio Ebro, Zaragoza, Spain.,, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Maykel Arias
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Llipsy Santiago
- Aragon Health Research Institute (IIS Aragón), Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Aguiló-Gisbert
- Servicio de Análisis, Investigación, Gestión de Animales Silvestres (SAIGAS), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, Valencia, Spain
| | - Héctor Ruíz
- Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Delia Lacasta
- Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Diana Marteles
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain
| | - Antonio Fernández
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013, Zaragoza, Spain. .,Deparment of Animal Pathology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
13
|
Ramanujam H, Palaniyandi K. COVID-19 in animals: A need for One Health approach. Indian J Med Microbiol 2022; 40:485-491. [PMID: 35927142 PMCID: PMC9340561 DOI: 10.1016/j.ijmmb.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND SARS-CoV-2 has been identified as the cause of the COVID-19, which caused a global pandemic. It is a pathogen that causes respiratory disease and can easily navigate the interspecies barrier. A significant number of COVID-19 cases in animals have been reported worldwide, including but not limited to animals in farms, captivity, and household pets. Thus, assessing the affected population and anticipating 'at risk' population becomes essential. OBJECTIVES This article aims to emphasize the zoonotic potential of SARS- CoV-2 and discuss the One Health aspects of the disease. CONTENT This is a narrative review of recently published studies on animals infected with SARS-CoV-2, both experimental and natural. The elucidation of the mechanism of infection by binding SARS-CoV-2 spike protein to the ACE-2 receptor cells in humans has led to bioinformatic analysis that has identified a few other susceptible species in silico. While infections in animals have been extensively reported, no intermediary host has yet been identified for this disease. The articles collected in this review have been grouped into four categories; experimental inoculations, infection in wild animals, infection in farm animals and infection in pet animals, along with a review of literature in each category. The risk of infection transmission between humans and animals and vice versa and the importance of the One Health approach has been discussed at length in this article.
Collapse
Affiliation(s)
- Harini Ramanujam
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai, India.
| |
Collapse
|
14
|
Islam A, Ferdous J, Islam S, Sayeed MA, Rahman MK, Saha O, Hassan MM, Shirin T. Transmission dynamics and susceptibility patterns of SARS-CoV-2 in domestic, farmed and wild animals: Sustainable One Health surveillance for conservation and public health to prevent future epidemics and pandemics. Transbound Emerg Dis 2022; 69:2523-2543. [PMID: 34694705 PMCID: PMC8662162 DOI: 10.1111/tbed.14356] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
The exact origin of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and source of introduction into humans has not been established yet, though it might be originated from animals. Therefore, we conducted a study to understand the putative reservoirs, transmission dynamics, and susceptibility patterns of SARS-CoV-2 in animals. Rhinolophus bats are presumed to be natural progenitors of SARS-CoV-2-related viruses. Initially, pangolin was thought to be the source of spillover to humans, but they might be infected by human or other animal species. So, the virus spillover pathways to humans remain unknown. Human-to-animal transmission has been testified in pet, farmed, zoo and free-ranging wild animals. Infected animals can transmit the virus to other animals in natural settings like mink-to-mink and mink-to-cat transmission. Animal-to-human transmission is not a persistent pathway, while mink-to-human transmission continues to be illuminated. Multiple companions and captive wild animals were infected by an emerging alpha variant of concern (B.1.1.7 lineage) whereas Asiatic lions were infected by delta variant, (B.1.617.2). To date, multiple animal species - cat, ferrets, non-human primates, hamsters and bats - showed high susceptibility to SARS-CoV-2 in the experimental condition, while swine, poultry, cattle showed no susceptibility. The founding of SARS-CoV-2 in wild animal reservoirs can confront the control of the virus in humans and might carry a risk to the welfare and conservation of wildlife as well. We suggest vaccinating pets and captive animals to stop spillovers and spillback events. We recommend sustainable One Health surveillance at the animal-human-environmental interface to detect and prevent future epidemics and pandemics by Disease X.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth AllianceNew YorkUnited States
- Centre for Integrative Ecology, School of Life and Environmental ScienceDeakin UniversityVictoriaAustralia
- Institute of EpidemiologyDisease Control and Research (IEDCR)DhakaBangladesh
| | - Jinnat Ferdous
- EcoHealth AllianceNew YorkUnited States
- Institute of EpidemiologyDisease Control and Research (IEDCR)DhakaBangladesh
| | - Shariful Islam
- EcoHealth AllianceNew YorkUnited States
- Institute of EpidemiologyDisease Control and Research (IEDCR)DhakaBangladesh
| | - Md. Abu Sayeed
- EcoHealth AllianceNew YorkUnited States
- Institute of EpidemiologyDisease Control and Research (IEDCR)DhakaBangladesh
| | - Md. Kaisar Rahman
- EcoHealth AllianceNew YorkUnited States
- Institute of EpidemiologyDisease Control and Research (IEDCR)DhakaBangladesh
| | - Otun Saha
- EcoHealth AllianceNew YorkUnited States
- Institute of EpidemiologyDisease Control and Research (IEDCR)DhakaBangladesh
- Department of MicrobiologyUniversity of DhakaDhakaBangladesh
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary MedicineChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - Tahmina Shirin
- Institute of EpidemiologyDisease Control and Research (IEDCR)DhakaBangladesh
| |
Collapse
|
15
|
Doliff R, Martens P. Cats and SARS-CoV-2: A Scoping Review. Animals (Basel) 2022; 12:1413. [PMID: 35681877 PMCID: PMC9179433 DOI: 10.3390/ani12111413] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, various animal species were found to be susceptible to SARS-CoV-2 infection. The close contact that exists between humans and cats warrants special attention to the role of this species. Therefore, a scoping review was performed to obtain a comprehensive overview of the existing literature, and to map key concepts, types of research, and possible gaps in the research. A systematic search of the databases PubMed, Google Scholar, and Scopus and the preprint servers medRxiv and bioRxiv was performed. After a two-step screening process, 27 peer-reviewed articles, 8 scientific communication items, and 2 unpublished pre-prints were included. The main themes discussed were susceptibility to SARS-CoV-2, induced immunity, prevalence of infection, manifestation of infection, interspecies transmission between humans and cats, and lastly, intraspecies transmission between cats. The main gaps in the research identified were a lack of large-scale studies, underrepresentation of stray, feral, and shelter cat populations, lack of investigation into cat-to-cat transmissions under non-experimental conditions, and the relation of cats to other animal species regarding SARS-CoV-2. Overall, cats seemingly play a limited role in the spread of SARS-CoV-2. While cats are susceptible to the virus and reverse zoonotic transmission from humans to cats happens regularly, there is currently no evidence of SARS-CoV-2 circulation among cats.
Collapse
Affiliation(s)
| | - Pim Martens
- University College Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
16
|
Palombieri A, Di Profio F, Fruci P, Sarchese V, Martella V, Marsilio F, Di Martino B. Emerging Respiratory Viruses of Cats. Viruses 2022; 14:663. [PMID: 35458393 PMCID: PMC9030917 DOI: 10.3390/v14040663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 12/07/2022] Open
Abstract
In recent years, advances in diagnostics and deep sequencing technologies have led to the identification and characterization of novel viruses in cats as protoparviruses and chaphamaparvoviruses, unveiling the diversity of the feline virome in the respiratory tract. Observational, epidemiological and experimental data are necessary to demonstrate firmly if some viruses are able to cause disease, as this information may be confounded by virus- or host-related factors. Also, in recent years, researchers were able to monitor multiple examples of transmission to felids of viruses with high pathogenic potential, such as the influenza virus strains H5N1, H1N1, H7N2, H5N6 and H3N2, and in the late 2019, the human hypervirulent coronavirus SARS-CoV-2. These findings suggest that the study of viral infections always requires a multi-disciplinary approach inspired by the One Health vision. By reviewing the literature, we provide herewith an update on the emerging viruses identified in cats and their potential association with respiratory disease.
Collapse
Affiliation(s)
- Andrea Palombieri
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Federica Di Profio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Paola Fruci
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Vittorio Sarchese
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Vito Martella
- Laboratory of Infectious Diseases, Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy;
| | - Fulvio Marsilio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Barbara Di Martino
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| |
Collapse
|
17
|
Fritz M, Nesi N, Denolly S, Boson B, Legros V, Rosolen SG, Briend‐Marchal A, Ar Gouilh M, Leroy EM. Detection of SARS-CoV-2 in two cats during the second wave of the COVID-19 pandemic in France. Vet Med Sci 2022; 8:14-20. [PMID: 34704394 PMCID: PMC8661769 DOI: 10.1002/vms3.638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although there are several reports in the literature of SARS-CoV-2 infection in cats, few SARS-CoV-2 sequences from infected cats have been published. In this study, SARS-CoV-2 infection was evaluated in two cats by clinical observation, molecular biology (qPCR and NGS), and serology (microsphere immunoassay and seroneutralization). Following the observation of symptomatic SARS-CoV-2 infection in two cats, infection status was confirmed by RT-qPCR and, in one cat, serological analysis for antibodies against N-protein and S-protein, as well as neutralizing antibodies. Comparative analysis of five SARS-CoV-2 sequence fragments obtained from one of the cats showed that this infection was not with one of the three recently emerged variants of SARS-CoV-2. This study provides additional information on the clinical, molecular, and serological aspects of SARS-CoV-2 infection in cats.
Collapse
Affiliation(s)
- Matthieu Fritz
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Université de MontpellierIRD 224 ‐ CNRS 5290Institut de Recherche pour le Développement (IRD)MontpellierFrance
| | - Nicolas Nesi
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0)Normandie UniversitéUNICAENUNIROUENEA2656CaenFrance
| | - Solène Denolly
- CIRI – Centre International de Recherche en InfectiologieTeam EVIRUniv LyonUniversité Claude Bernard Lyon 1InsermU111CNRSUMR5308ENS LyonLyonFrance
| | - Bertrand Boson
- CIRI – Centre International de Recherche en InfectiologieTeam EVIRUniv LyonUniversité Claude Bernard Lyon 1InsermU111CNRSUMR5308ENS LyonLyonFrance
| | - Vincent Legros
- CIRI – Centre International de Recherche en InfectiologieTeam EVIRUniv LyonUniversité Claude Bernard Lyon 1InsermU111CNRSUMR5308ENS LyonLyonFrance
- Campus vétérinaire de LyonVetAgro SupUniversité de LyonMarcy‐l'EtoileFrance
| | - Serge G. Rosolen
- Sorbonne UniversitéINSERMCNRSInstitut de la VisionParisFrance
- Clinique vétérinaire voltaireAsnièresFrance
| | | | - Meriadeg Ar Gouilh
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0)Normandie UniversitéUNICAENUNIROUENEA2656CaenFrance
- Laboratoire de VirologieCentre Hospitalo‐UniversitaireCaenFrance
| | - Eric M. Leroy
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Université de MontpellierIRD 224 ‐ CNRS 5290Institut de Recherche pour le Développement (IRD)MontpellierFrance
| |
Collapse
|
18
|
The SARS-CoV-2 Reproduction Number R 0 in Cats. Viruses 2021; 13:v13122480. [PMID: 34960749 PMCID: PMC8704225 DOI: 10.3390/v13122480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Domestic cats are susceptible to SARS-CoV-2 virus infection and given that they are in close contact with people, assessing the potential risk cats represent for the transmission and maintenance of SARS-CoV-2 is important. Assessing this risk implies quantifying transmission from humans-to-cats, from cats-to-cats and from cats-to-humans. Here we quantified the risk of cat-to-cat transmission by reviewing published literature describing transmission either experimentally or under natural conditions in infected households. Data from these studies were collated to quantify the SARS-CoV-2 reproduction number R0 among cats. The estimated R0 was significantly higher than one, hence cats could play a role in the transmission and maintenance of SARS-CoV-2. Questions that remain to be addressed are the risk of transmission from humans-to-cats and cats-to-humans. Further data on household transmission and data on virus levels in both the environment around infected cats and their exhaled air could be a step towards assessing these risks.
Collapse
|
19
|
Zoccola R, Beltramo C, Magris G, Peletto S, Acutis P, Bozzetta E, Radovic S, Zappulla F, Porzio AM, Gennero MS, Dondo A, Pasqualini C, Griglio B, Ferrari A, Ru G, Goria M. First detection of an Italian human-to-cat outbreak of SARS-CoV-2 Alpha variant - lineage B.1.1.7. One Health 2021; 13:100295. [PMID: 34316508 PMCID: PMC8299139 DOI: 10.1016/j.onehlt.2021.100295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of new SARS-CoV-2 variants and their rapid spread pose a threat to both human and animal health and may conceal unknown risks. This report describes an Italian human-to-cat outbreak of SARS-CoV-2 lineage B.1.1.7 (the Alpha variant) . On March 7th, 2021, approximately ten days after COVID-19 appeared in the family, the onset of respiratory signs in a cat by COVID-19-affected owners led to an in-depth diagnostic investigation, combining clinical and serological data with rt-qPCR-based virus detection and whole genome sequencing. The Alpha variant was confirmed first in the owners and a few days later in the cat that was then monitored weekly: the course was similar with one-week lag time in the cat. In addition, based on comparative analysis of genome sequences from our study and from 200 random Italian cases of Alpha variant, the familial cluster was confirmed. The temporal sequence along with the genomic data support a human-to-animal transmission. Such an event emphasizes the importance of studying the circulation and dynamics of SARS-CoV-2 variants in humans and animals to better understand and prevent potential spillover risks or unwarranted alerts involving our pet populations.
Collapse
Affiliation(s)
- Roberto Zoccola
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Chiara Beltramo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Gabriele Magris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine I-33100, Italy
- Istituto di Genomica Applicata, Udine I-33100, Italy
| | - Simone Peletto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Pierluigi Acutis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | | | - Francesco Zappulla
- Regione Piemonte - Local Health Unit Novara - Department of Prevention, Health Service - Veterinary Services, Arona (No), I-28041, Italy
| | | | - Maria Silvia Gennero
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Alessandro Dondo
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Chiara Pasqualini
- Regione Piemonte - Regional Service for Surveillance and Control of Infectious Diseases (SEREMI), I-15121 Alessandria, Italy
| | | | - Angelo Ferrari
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Giuseppe Ru
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| | - Maria Goria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin I-10154, Italy
| |
Collapse
|
20
|
Yaglom HD, Hecht G, Goedderz A, Jasso-Selles D, Ely JL, Ruberto I, Bowers JR, Engelthaler DM, Venkat H. Genomic investigation of a household SARS-CoV-2 disease cluster in Arizona involving a cat, dog, and pet owner. One Health 2021; 13:100333. [PMID: 34604494 PMCID: PMC8479377 DOI: 10.1016/j.onehlt.2021.100333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Arizona's COVID-19 and Pets Program is a prospective surveillance study being conducted to characterize how SARS-CoV-2 impacts companion animals living in households with SARS-CoV-2-positive individuals. Among the enrolled pets, we identified a SARS-CoV-2-infected cat and dog from the same household; both animals were asymptomatic but had close contact with the symptomatic and SARS-CoV-2-positive owner. Whole genome sequencing of animal and owner specimens revealed identical viral genomes of the B.1.575 lineage, suggesting zoonotic transmission of SARS-CoV-2 from human to at least one pet. This is the first report of the B.1.575 lineage in companion animals. Genetically linking SARS-CoV-2 between people and animals, and tracking changes in SARS-CoV-2 genomes is essential to detect any cross-species SARS-CoV-2 transmission that may lead to more transmissible or severe variants that can affect humans. Surveillance studies, including genomic analyses of owner and pet specimens, are needed to further our understanding of how SARS-CoV-2 impacts companion animals.
Collapse
Affiliation(s)
- Hayley D. Yaglom
- Translational Genomics Research Institute, Pathogen and Microbiome Institute, 3051 W. Shamrell Blvd Ste. 106, Flagstaff, AZ 86005, USA
| | - Gavriella Hecht
- Arizona Department of Health Services, Office of Infectious Disease Services, 150 North 18th Avenue, Suite 140, Phoenix, AZ 85007, United States of America
| | - Andrew Goedderz
- Translational Genomics Research Institute, Pathogen and Microbiome Institute, 3051 W. Shamrell Blvd Ste. 106, Flagstaff, AZ 86005, USA
| | - Daniel Jasso-Selles
- Translational Genomics Research Institute, Pathogen and Microbiome Institute, 3051 W. Shamrell Blvd Ste. 106, Flagstaff, AZ 86005, USA
| | - Jennifer L. Ely
- Translational Genomics Research Institute, Pathogen and Microbiome Institute, 3051 W. Shamrell Blvd Ste. 106, Flagstaff, AZ 86005, USA
| | - Irene Ruberto
- Arizona Department of Health Services, Office of Infectious Disease Services, 150 North 18th Avenue, Suite 140, Phoenix, AZ 85007, United States of America
| | - Jolene R. Bowers
- Translational Genomics Research Institute, Pathogen and Microbiome Institute, 3051 W. Shamrell Blvd Ste. 106, Flagstaff, AZ 86005, USA
| | - David M. Engelthaler
- Translational Genomics Research Institute, Pathogen and Microbiome Institute, 3051 W. Shamrell Blvd Ste. 106, Flagstaff, AZ 86005, USA
| | - Heather Venkat
- Arizona Department of Health Services, Office of Infectious Disease Services, 150 North 18th Avenue, Suite 140, Phoenix, AZ 85007, United States of America
- Centers for Disease Control and Prevention, Center for Preparedness and Response, Career Epidemiology Field Officer Program, 1600 Clifton Rd, Atlanta, GA 30333, USA
| |
Collapse
|
21
|
Miró G, Regidor-Cerrillo J, Checa R, Diezma-Díaz C, Montoya A, García-Cantalejo J, Botías P, Arroyo J, Ortega-Mora LM. SARS-CoV-2 Infection in One Cat and Three Dogs Living in COVID-19-Positive Households in Madrid, Spain. Front Vet Sci 2021; 8:779341. [PMID: 34901253 PMCID: PMC8660077 DOI: 10.3389/fvets.2021.779341] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, we describe SARS-CoV-2 infection dynamics in one cat and three dogs from households with confirmed human cases of COVID-19 living in the Madrid Community (Spain) at the time of expansion (December 2020 through June 2021) of the alpha variant (lineage B.1.1.7). A thorough physical exam and nasopharyngeal, oropharyngeal, and rectal swabs were collected for real-time reverse-transcription PCR (RT-qPCR) SARS-CoV-2 testing on day 0 and in successive samplings on days 7, 14, 21, and 47 during monitoring. Blood was also drawn to determine complete blood counts, biochemical profiles, and serology of the IgG response against SARS-CoV-2. On day 0, the cat case 1 presented with dyspnea and fever associated with a mild bronchoalveolar pattern. The dog cases 2, 3, and 4 were healthy, but case 2 presented with coughing, dyspnea, and weakness, and case 4 exhibited coughing and bilateral nasal discharge 3 and 6 days before the clinical exam. Case 3 (from the same household as case 2) remained asymptomatic. SARS-CoV-2 detection by RT-qPCR showed that the cat case 1 and the dog case 2 exhibited the lowest cycle threshold (Ct) (Ct < 30) when they presented clinical signs. Viral detection failed in successive samplings. Serological analyses revealed a positive IgG response in cat case 1 and dog cases 3 and 4 shortly after or simultaneously to virus shedding. Dog case 2 was seronegative, but seroconverted 21 days after SARS-CoV-2 detection. SARS-CoV-2 genome sequencing was attempted, and genomes were classified as belonging to the B.1.1.7 lineage.
Collapse
Affiliation(s)
- Guadalupe Miró
- Pet Parasite Lab, Department of Animal Health, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain,*Correspondence: Guadalupe Miró
| | - Javier Regidor-Cerrillo
- Saluvet-Innova S.L., Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Rocio Checa
- Pet Parasite Lab, Department of Animal Health, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Carlos Diezma-Díaz
- Saluvet-Innova S.L., Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Ana Montoya
- Pet Parasite Lab, Department of Animal Health, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
| | - Jesús García-Cantalejo
- Unidad de Genómica, Centro de Asistencia a la Investigación-Técnicas Biológicas, Complutense University of Madrid, Madrid, Spain
| | - Pedro Botías
- Unidad de Genómica, Centro de Asistencia a la Investigación-Técnicas Biológicas, Complutense University of Madrid, Madrid, Spain
| | - Javier Arroyo
- Unidad de Genómica, Centro de Asistencia a la Investigación-Técnicas Biológicas, Complutense University of Madrid, Madrid, Spain
| | - Luis-Miguel Ortega-Mora
- Saluvet, Department of Animal Health, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain,Luis-Miguel Ortega-Mora
| |
Collapse
|
22
|
Meekins DA, Gaudreault NN, Richt JA. Natural and Experimental SARS-CoV-2 Infection in Domestic and Wild Animals. Viruses 2021; 13:1993. [PMID: 34696423 PMCID: PMC8540328 DOI: 10.3390/v13101993] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is the etiological agent responsible for the ongoing COVID-19 pandemic, which continues to spread with devastating effects on global health and socioeconomics. The susceptibility of domestic and wild animal species to infection is a critical facet of SARS-CoV-2 ecology, since reverse zoonotic spillover events resulting in SARS-CoV-2 outbreaks in animal populations could result in the establishment of new virus reservoirs. Adaptive mutations in the virus to new animal species could also complicate ongoing mitigation strategies to combat SARS-CoV-2. In addition, animal species susceptible to SARS-CoV-2 infection are essential as standardized preclinical models for the development and efficacy testing of vaccines and therapeutics. In this review, we summarize the current findings regarding the susceptibility of different domestic and wild animal species to experimental SARS-CoV-2 infection and provide detailed descriptions of the clinical disease and transmissibility in these animals. In addition, we outline the documented natural infections in animals that have occurred at the human-animal interface. A comprehensive understanding of animal susceptibility to SARS-CoV-2 is crucial to inform public health, veterinary, and agricultural systems, and to guide environmental policies.
Collapse
Affiliation(s)
- David A. Meekins
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (D.A.M.); (N.N.G.)
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (D.A.M.); (N.N.G.)
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (D.A.M.); (N.N.G.)
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502, USA
| |
Collapse
|
23
|
Valencak TG, Csiszar A, Szalai G, Podlutsky A, Tarantini S, Fazekas-Pongor V, Papp M, Ungvari Z. Animal reservoirs of SARS-CoV-2: calculable COVID-19 risk for older adults from animal to human transmission. GeroScience 2021; 43:2305-2320. [PMID: 34460063 PMCID: PMC8404404 DOI: 10.1007/s11357-021-00444-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
The current COVID-19 pandemic, caused by the highly contagious respiratory pathogen SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has already claimed close to three million lives. SARS-CoV-2 is a zoonotic disease: it emerged from a bat reservoir and it can infect a number of agricultural and companion animal species. SARS-CoV-2 can cause respiratory and intestinal infections, and potentially systemic multi-organ disease, in both humans and animals. The risk for severe illness and death with COVID-19 significantly increases with age, with older adults at highest risk. To combat the pandemic and protect the most susceptible group of older adults, understanding the human-animal interface and its relevance to disease transmission is vitally important. Currently high infection numbers are being sustained via human-to-human transmission of SARS-CoV-2. Yet, identifying potential animal reservoirs and potential vectors of the disease will contribute to stronger risk assessment strategies. In this review, the current information about SARS-CoV-2 infection in animals and the potential spread of SARS-CoV-2 to humans through contact with domestic animals (including dogs, cats, ferrets, hamsters), agricultural animals (e.g., farmed minks), laboratory animals, wild animals (e.g., deer mice), and zoo animals (felines, non-human primates) are discussed with a special focus on reducing mortality in older adults.
Collapse
Affiliation(s)
- Teresa G Valencak
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor Szalai
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Andrej Podlutsky
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vince Fazekas-Pongor
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Magor Papp
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
24
|
Flegr J. Toxoplasmosis is a risk factor for acquiring SARS-CoV-2 infection and a severe course of COVID-19 in the Czech and Slovak population: a preregistered exploratory internet cross-sectional study. Parasit Vectors 2021; 14:508. [PMID: 34583758 PMCID: PMC8477627 DOI: 10.1186/s13071-021-05021-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Latent toxoplasmosis, i.e. a lifelong infection with the protozoan parasite Toxoplasma gondii, affects about a third of the human population worldwide. In the past 10 years, numerous studies have shown that infected individuals have a significantly higher incidence of mental and physical health problems and are more prone to exhibiting the adverse effects of various diseases. Methods A cross-sectional internet study was performed on a population of 4499 (786 Toxoplasma-infected) participants and looked for factors which positively or negatively affect the risk of SARS-CoV-2 infection and likelihood of a severe course of COVID-19. Results Logistic regression and partial Kendall correlation controlling for sex, age, and size of the place of residence showed that latent toxoplasmosis had the strongest effect on the risk of infection (OR = 1.50) before sport (OR = 1.30) and borreliosis (1.27). It also had the strongest effect on the risk of severe course of infection (Tau = 0.146), before autoimmunity, immunodeficiency, male sex, keeping a cat, being overweight, borreliosis, higher age, or chronic obstructive pulmonary disease. Toxoplasmosis augmented the adverse effects of other risk factors but was not the proximal cause of the effect of cat-keeping on higher likelihood of COVID infection and higher severity of the course of infection because the effect of cat-keeping was also observed (and in particular) in a subset of Toxoplasma-infected respondents (Tau = 0.153). Effects of keeping a cat were detected only in respondents from multi-member families, suggesting that a cat could be a vector for the transmission of SARS-CoV-2 within a family. Conclusions Toxoplasmosis is currently not considered a risk factor for COVID-19, and Toxoplasma-infected individuals are neither informed about their higher risk nor prioritised in vaccination programs. Because toxoplasmosis affects a large segment of the human population, its impact on COVID-19-associated effects on public health could be considerable. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jaroslav Flegr
- Laboratory of Evolutionary Biology, Division of Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, Prague 2, 128 00, Czech Republic. .,National Institute of Mental Health, Klecany, 250 67, Czech Republic.
| |
Collapse
|
25
|
Report of One-Year Prospective Surveillance of SARS-CoV-2 in Dogs and Cats in France with Various Exposure Risks: Confirmation of a Low Prevalence of Shedding, Detection and Complete Sequencing of an Alpha Variant in a Cat. Viruses 2021; 13:v13091759. [PMID: 34578341 PMCID: PMC8473452 DOI: 10.3390/v13091759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the probable zoonotic origin of SARS-CoV-2, only limited research efforts have been made to understand the role of companion animals in SARS-CoV-2 epidemiology. According to recent serological prevalence studies, human-to-companion animal transmission is quite frequent, which led us to consider that the risk of SARS-CoV-2 transmission from animal to human, albeit negligible in the present context, may have been underestimated. In this study, we provide the results of a prospective survey that was conducted to evaluate the SARS-CoV-2 isolation rate by qRT-PCR in dogs and cats with different exposure risks and clinical statuses. From April 2020 to April 2021, we analyzed 367 samples and investigated the presence of SARS-CoV-2 RNA using qRT-PCR. Only four animals tested positive, all of them being cats. Three cats were asymptomatic and one presented a coryza-like syndrome. We describe in detail the infection in two cats and the associated clinical characteristics. Importantly, we obtained SARS-CoV-2 genomes from one infected animal and characterized them as Alpha variants. This represents the first identification of the SARS-CoV-2 Alpha variant in an infected animal in France.
Collapse
|
26
|
Sharun K, Saied AA, Tiwari R, Dhama K. SARS-CoV-2 infection in domestic and feral cats: current evidence and implications. Vet Q 2021; 41:228-231. [PMID: 34319851 PMCID: PMC8381979 DOI: 10.1080/01652176.2021.1962576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Current evidence indicates that cats play a limited role in COVID-19 epidemiology, and pets are probably dead-end hosts of SARS-CoV-2 and pose negligible risks of transmission to humans. Still, one health concept is to be adopted widely as a component of mitigation strategies to tackle the ongoing pandemic. Therefore, in terms of the magnitude of infection and potential to transmit SARS-CoV-2 to humans, our surveillance efforts should mainly focus on mustelids (especially minks, ferrets, and others) for early detection and control of infection. This will ensure that SARS-CoV-2 will not get established in the wild animal population of these susceptible species. We agree with Dr. Passarella Teixeira on the possibility of domestic and feral cats acting as an urban reservoir, subsequently transmitting the virus to human beings. However, it is less likely that such a phenomenon will be reported even if it has occurred due to the efficient and extensive human-to-human transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, Egypt.,Ministry of Tourism and Antiquities, Touristic Activities and Interior Offices Sector (Aswan Office), Aswan, Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
27
|
Klaus J, Zini E, Hartmann K, Egberink H, Kipar A, Bergmann M, Palizzotto C, Zhao S, Rossi F, Franco V, Porporato F, Hofmann-Lehmann R, Meli ML. SARS-CoV-2 Infection in Dogs and Cats from Southern Germany and Northern Italy during the First Wave of the COVID-19 Pandemic. Viruses 2021; 13:1453. [PMID: 34452319 PMCID: PMC8402904 DOI: 10.3390/v13081453] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/29/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people globally since its first detection in late 2019. Besides humans, cats and, to some extent, dogs were shown to be susceptible to SARS-CoV-2, highlighting the need for surveillance in a One Health context. Seven veterinary clinics from regions with high incidences of coronavirus disease (COVID-19) were recruited during the early pandemic (March to July 2020) for the screening of patients. A total of 2257 oropharyngeal and nasal swab specimen from 877 dogs and 260 cats (including 18 animals from COVID-19-affected households and 92 animals with signs of respiratory disease) were analyzed for the presence of SARS-CoV-2 RNA using reverse transcriptase real-time polymerase chain reaction (RT-qPCR) targeting the viral envelope (E) and RNA dependent RNA polymerase (RdRp) genes. One oropharyngeal swab from an Italian cat, living in a COVID-19-affected household in Piedmont, tested positive in RT-qPCR (1/260; 0.38%, 95% CI: 0.01-2.1%), and SARS-CoV-2 infection of the animal was serologically confirmed six months later. One oropharyngeal swab from a dog was potentially positive (1/877; 0.1%, 95% CI: 0.002-0.63%), but the result was not confirmed in a reference laboratory. Analyses of convenience sera from 118 animals identified one dog (1/94; 1.1%; 95% CI: 0.02-5.7%) from Lombardy, but no cats (0/24), as positive for anti-SARS-CoV-2 receptor binding domain (RBD) antibodies and neutralizing activity. These findings support the hypothesis that the prevalence of SARS-CoV-2 infection in pet cat and dog populations, and hence, the risk of zoonotic transmission to veterinary staff, was low during the first wave of the pandemic, even in hotspot areas.
Collapse
Affiliation(s)
- Julia Klaus
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.)
| | - Eric Zini
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.P.); (F.R.); (V.F.); (F.P.)
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell′Università 16, 35020 Legnaro, Padova, Italy
| | - Katrin Hartmann
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, LMU Munich, 80539 Munich, Germany; (K.H.); (M.B.)
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland;
| | - Michèle Bergmann
- Centre for Clinical Veterinary Medicine, Clinic of Small Animal Medicine, LMU Munich, 80539 Munich, Germany; (K.H.); (M.B.)
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.P.); (F.R.); (V.F.); (F.P.)
| | - Shan Zhao
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands; (H.E.); (S.Z.)
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Francesco Rossi
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.P.); (F.R.); (V.F.); (F.P.)
| | - Vittoria Franco
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.P.); (F.R.); (V.F.); (F.P.)
| | - Federico Porporato
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060 Granozzo con Monticello, Novara, Italy; (E.Z.); (C.P.); (F.R.); (V.F.); (F.P.)
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (R.H.-L.); (M.L.M.)
| |
Collapse
|
28
|
Lauzi S, Stranieri A, Giordano A, Lelli D, Elia G, Desario C, Ratti G, Decaro N, Paltrinieri S. Do Dogs and Cats Passively Carry SARS-CoV-2 on Hair and Pads? Viruses 2021; 13:1357. [PMID: 34372563 PMCID: PMC8310179 DOI: 10.3390/v13071357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/18/2022] Open
Abstract
The epidemiological role of domestic animals in the spread and transmission of SARS-CoV-2 to humans has been investigated in recent reports, but some aspects need to be further clarified. To date, only in rare cases have dogs and cats living with COVID-19 patients been found to harbour SARS-CoV-2, with no evidence of pet-to-human transmission. The aim of the present study was to verify whether dogs and cats act as passive mechanical carriers of SARS-CoV-2 when they live in close contact with COVID-19 patients. Cutaneous and interdigital swabs collected from 48 dogs and 15 cats owned by COVID-19 patients were tested for SARS-CoV-2 by qRT-PCR. The time elapsed between owner swab positivity and sample collection from pets ranged from 1 to 72 days, with a median time of 23 days for dogs and 39 days for cats. All samples tested negative, suggesting that pets do not passively carry SARS-CoV-2 on their hair and pads, and thus they likely do not play an important role in the virus transmission to humans. This data may contribute to confirming that the direct contact with the hair and pads of pets does not represent a route for the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Stefania Lauzi
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (S.L.); (A.S.); (G.R.); (S.P.)
| | - Angelica Stranieri
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (S.L.); (A.S.); (G.R.); (S.P.)
| | - Alessia Giordano
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (S.L.); (A.S.); (G.R.); (S.P.)
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna “Bruno Ubertini”, 25124 Brescia, Italy;
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Valenzano, 70010 Bari, Italy; (G.E.); (C.D.); (N.D.)
| | - Costantina Desario
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Valenzano, 70010 Bari, Italy; (G.E.); (C.D.); (N.D.)
| | - Gabriele Ratti
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (S.L.); (A.S.); (G.R.); (S.P.)
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Valenzano, 70010 Bari, Italy; (G.E.); (C.D.); (N.D.)
| | - Saverio Paltrinieri
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (S.L.); (A.S.); (G.R.); (S.P.)
| |
Collapse
|
29
|
Stranieri A, Lauzi S, Giordano A, Galimberti L, Ratti G, Decaro N, Brioschi F, Lelli D, Gabba S, Amarachi NL, Lorusso E, Moreno A, Trogu T, Paltrinieri S. Absence of SARS-CoV-2 RNA and anti-SARS-CoV-2 antibodies in stray cats. Transbound Emerg Dis 2021; 69:2089-2095. [PMID: 34170624 PMCID: PMC8446966 DOI: 10.1111/tbed.14200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 11/27/2022]
Abstract
SARS‐CoV‐2 positive or seropositive owned cats have been reported worldwide. The detection of seropositive stray cats in the proximity of farms of infected minks, coupled with the demonstration of cat‐to‐cat transmission in experimental settings, raise the question whether stray cats may have an epidemiological role in the COVID‐19 pandemic and may act as sentinel for the circulation of SARS‐CoV‐2. The aim of this study was to evaluate the presence of SARS‐CoV‐2 RNA and anti‐SARS‐CoV‐2 antibodies in free roaming cats belonging to colonies located in an area highly affected by the COVID‐19 pandemic and to correlate the results with the positivity rate in people sharing the same area. Interdigital, cutaneous, oropharyngeal, nasal and rectal swabs, as well as blood samples, were collected from 99 cats living in colonies and admitted to our hospital for neutering. This caseload corresponds to the 24.2% of the feline population living in the 25 sampled colonies and to the 5.6% of all the free‐roaming registered cats. The presence of SARS‐CoV‐2 RNA in swabs was assessed using real time RT‐PCR. Anti‐SARS‐CoV‐2 serum antibodies were assessed using commercially available ELISA kits and confirmed by serum virus neutralization. In people, the SARS‐CoV‐2 positivity rate ranged from 3.0% to 5.1% (mean rate: 4.1%) and the seropositive rate from 12.1% to 16.3% (mean rate: 14.2%). Most of the colonies were in urban areas and resident cats had frequent contacts with external cats or people. A COVID‐19 positive caretaker was found, whereas all the cats were negative for SARS‐CoV‐2 RNA and seronegative. Although the negative results cannot exclude previous infections followed by decrease of antibodies, this study suggests that colony cats do not have an important epidemiological role in SARS‐CoV‐2 transmission dynamics. Further studies on larger caseloads are warranted, also in the light of the emerging new viral variants, on a One Health perspective.
Collapse
Affiliation(s)
- Angelica Stranieri
- Department of Veterinary Medicine, University of Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Italy
| | - Stefania Lauzi
- Department of Veterinary Medicine, University of Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Italy
| | - Alessia Giordano
- Department of Veterinary Medicine, University of Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Italy
| | - Luigi Galimberti
- Agenzia di Tutela della Salute - ATS città metropolitana di Milano Distretto Veterinario Alto Lodigiano, Sant'Angelo Lodigiano, Lodi, Italy
| | - Gabriele Ratti
- Department of Veterinary Medicine, University of Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Bari, Italy
| | - Federica Brioschi
- Department of Veterinary Medicine, University of Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Italy
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | | | - Ndiana Linda Amarachi
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Bari, Italy
| | - Eleonora Lorusso
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Bari, Italy
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Brescia, Italy
| | - Saverio Paltrinieri
- Department of Veterinary Medicine, University of Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Italy
| |
Collapse
|
30
|
Dróżdż M, Krzyżek P, Dudek B, Makuch S, Janczura A, Paluch E. Current State of Knowledge about Role of Pets in Zoonotic Transmission of SARS-CoV-2. Viruses 2021; 13:1149. [PMID: 34208484 PMCID: PMC8234912 DOI: 10.3390/v13061149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Pets play a crucial role in the development of human feelings, social life, and care. However, in the era of the prevailing global pandemic of COVID-19 disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many questions addressing the routes of the virus spread and transmission to humans are dramatically emerging. Although cases of SARS-CoV-2 infection have been found in pets including dogs, cats, and ferrets, to date there is no strong evidence for pet-to-human transmission or sustained pet-to-pet transmission of SARS-CoV-2. However, an increasing number of studies reporting detection of SARS-CoV-2 in farmed minks raises suspicion of potential viral transmission from these animals to humans. Furthermore, due to the high susceptibility of cats, ferrets, minks and hamsters to COVID-19 infection under natural and/or experimental conditions, these animals have been extensively explored as animal models to study the SARS-CoV-2 pathogenesis and transmission. In this review, we present the latest reports focusing on SARS-CoV-2 detection, isolation, and characterization in pets. Moreover, based on the current literature, we document studies aiming to broaden the knowledge about pathogenicity and transmissibility of SARS-CoV-2, and the development of viral therapeutics, drugs and vaccines. Lastly, considering the high rate of SARS-CoV-2 evolution and replication, we also suggest routes of protection against the virus.
Collapse
Affiliation(s)
- Mateusz Dróżdż
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Paweł Krzyżek
- Department of Microbiology, Wrocław Medical University, St. T. Chałubińskiego 4, 50-376 Wrocław, Poland; (P.K.); (A.J.)
| | - Barbara Dudek
- Laboratory of Microbiology, Private Health Care Institution, St. Jana Pawła II, 41-100 Siemianowice Śląskie, Poland;
| | - Sebastian Makuch
- Department of Pathology, Wrocław Medical University, St. K. Marcinkowskiego 1, 50-368 Wrocław, Poland;
| | - Adriana Janczura
- Department of Microbiology, Wrocław Medical University, St. T. Chałubińskiego 4, 50-376 Wrocław, Poland; (P.K.); (A.J.)
| | - Emil Paluch
- Department of Microbiology, Wrocław Medical University, St. T. Chałubińskiego 4, 50-376 Wrocław, Poland; (P.K.); (A.J.)
| |
Collapse
|
31
|
Bessière P, Fusade-Boyer M, Walch M, Lèbre L, Brun J, Croville G, Boullier S, Cadiergues MC, Guérin JL. Household Cases Suggest That Cats Belonging to Owners with COVID-19 Have a Limited Role in Virus Transmission. Viruses 2021; 13:v13040673. [PMID: 33919936 PMCID: PMC8070925 DOI: 10.3390/v13040673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for COVID-19 and spread rapidly following its emergence in Wuhan in 2019. Although cats are, among other domestic animals, susceptible to SARS-CoV-2 infection, little is known about their epidemiological role in the dynamics of a household infection. In this study, we monitored five cats for viral shedding daily. Each cat was confined with its COVID-19 positive owners in separate households. Low loads of viral nucleic acid were found in two cats, but only one developed anti-SARS-CoV-2 antibodies, which suggests that cats have a limited role in COVID-19 epidemiology.
Collapse
Affiliation(s)
- Pierre Bessière
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
- Correspondence:
| | - Maxime Fusade-Boyer
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
| | - Mathilda Walch
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
| | - Laetitia Lèbre
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
| | - Jessie Brun
- Small Animal Clinic, Université de Toulouse, ENVT, 31300 Toulouse, France; (J.B.); (M.-C.C.)
| | - Guillaume Croville
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
| | - Séverine Boullier
- InTheRes, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France;
| | - Marie-Christine Cadiergues
- Small Animal Clinic, Université de Toulouse, ENVT, 31300 Toulouse, France; (J.B.); (M.-C.C.)
- Infinity, Université de Toulouse, INSERM, CNRS, UT3, ENVT, 31300 Toulouse, France
| | - Jean-Luc Guérin
- IHAP, Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; (M.F.-B.); (M.W.); (L.L.); (G.C.); (J.-L.G.)
| |
Collapse
|