1
|
van der Wulp W, Remst DFG, Koster CS, Wouters AK, Ressing ME, Schuurman J, van Kasteren SI, Bleijlevens B, Hoeben RC, Guelen L, Heemskerk MHM. Increasing the odds: antibody-mediated delivery of two distinct immunogenic T-cell epitopes with one antibody. Oncoimmunology 2025; 14:2508050. [PMID: 40426019 PMCID: PMC12118402 DOI: 10.1080/2162402x.2025.2508050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 05/15/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Antibody-epitope conjugates (AECs) proved to be a promising new therapeutic strategy to redirect virus-specific CD8+ T cells toward cancer cells by delivering T-cell epitopes. To be able to redirect a larger fraction of the virus-specific T-cell population, it is beneficial to deliver a broader selection of T-cell epitopes. We investigated two different methods to generate AECs with two distinct virus-specific T-cell epitopes fused to one antibody. Epitopes were either placed in a tandem-like fashion at the C-terminus of the AEC (t-AEC) or bispecific-AECs (bs-AECs) were generated via controlled Fab-arm exchange to generate bs-AECs with two identical antigen binding domains, but two distinct epitopes on each Fab-arm. Our study revealed that maintaining a free epitope terminus was required for efficient delivery of the virus-specific T-cell epitopes. Consequently, viral-epitope delivery using t-AECs was suboptimal as the concatenated epitopes were less effectively delivered to the target cells. However, well-defined bs-AECs containing both CMV and EBV epitopes were successfully generated and both in vitro and in vivo efficacy was evaluated. Our results demonstrate that bispecific-AECs can efficiently deliver EBV and CMV epitopes simultaneously to multiple cancer cell lines from different origins, thereby redirecting and activating two distinct populations of virus-specific T cells. Furthermore, our in vivo findings indicate that when both virus-specific T-cell populations are present and tumor cells express the proteases required for efficient epitope delivery, bs-AECs exhibit similar efficacy in reducing tumor burden compared to AECs. To conclude, our study demonstrates the feasibility of redirecting two groups of virus-specific T cells using a single antibody and highlights the potential of bs-AECs both in vitro and in vivo.
Collapse
Affiliation(s)
- Willemijn van der Wulp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dennis F. G. Remst
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carli S. Koster
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne K. Wouters
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike E. Ressing
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sander I. van Kasteren
- Division of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
2
|
Trier NH, Zivlaei N, Ostrowski SR, Sørensen E, Larsen M, Slibinskas R, Ciplys E, Frederiksen JL, Houen G. Virus-specific antibody responses in severe acute respiratory syndrome coronavirus 2-infected and vaccinated individuals. Immunol Lett 2025; 274:107004. [PMID: 40157431 DOI: 10.1016/j.imlet.2025.107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can have a serious course with many complications, especially in immunocompromised individuals. In such persons, other latent virus infections may contribute to disease pathology, in particular viruses which infect immune cells such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV). METHODS In this study, serology-based assays were conducted to analyse antibody responses to SARS-CoV-2 spike protein (SP), EBV Epstein-Barr nuclear antigen (EBNA)-1 and CMV phosphoprotein (pp)52 in naturally SARS-CoV-2-infected individuals, non-infected healthy controls (HCs) and vaccinated healthy controls (VHCs) to identify an association between SARS-CoV-2 antibodies and EBV and CMV antibodies in order to determine whether latent EBV and CMV infected individuals are more prone to become infected with SARS-CoV-2. Moreover, SARS-CoV-2, EBV, and CMV antibody responses were characterized in serum from patients with relapsing-remitting multiple sclerosis (RRMS), a chronic inflammatory disease strongly associated with EBV infections, to determine whether the serologic virus antibody profile varies in immunocompromised RRMS individuals upon SARS-CoV-2 vaccinations compared to VHCs. RESULTS Significantly elevated SP IgG, IgM and IgA levels were identified in SARS-CoV-2-infected immunocompetent individuals when compared to non-infected HCs. However, no correlation was found to serum antibodies between SARS-CoV-2, EBV, and CMV in individuals infected with SARS-CoV-2 and in VHCs, suggesting that latent infections with neither EBV nor CMV associates to SARS-CoV-2 infection. Moreover, no significant difference in SP IgG, IgA and IgM levels was observed between vaccinated RRMS patients and VHCs, indicating that the immune system of immune deficient RRMS patients and VHCs respond identical to SARS-CoV-2 vaccinations. CONCLUSION Collectively, SARS-CoV-2 SP antibody levels reflect the vaccination and infection history and do not associate with EBV and CMV serostatus.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark.
| | - Nadia Zivlaei
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark.
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, BLegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark.
| | - Margit Larsen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen OE, Denmark.
| | - Rimantas Slibinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Evaldas Ciplys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Jette Lautrup Frederiksen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, BLegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens vej 13, Glostrup, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55 5230 Odense M, Denmark.
| |
Collapse
|
3
|
Farrell PJ. EBV: The Viral Genome. Curr Top Microbiol Immunol 2025. [PMID: 40399574 DOI: 10.1007/82_2025_298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
The Epstein-Barr virus (EBV) genetic map underpins all our understanding of the virus biology and its role in disease. EBV was the first large DNA virus to be fully sequenced and this has been followed by many years of detailed mapping of viral genes and other genetic elements. The genetic map of EBV is based on the reference NC_007605 virus genome but now more than 1,000 EBV genomes have been sequenced. Some sequence variations that may be functionally significant either for the biological properties of EBV or its detection by diagnostic procedures are summarised here but are also considered in detail in other chapters in this book.
Collapse
Affiliation(s)
- Paul J Farrell
- Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
4
|
Athamneh RY, Swaity HA, Al Moman W, Al-Taweil HI, Benbraiek A, Khalifeh AH. Molecular Characterization of Epstein - Barr virus Based on EBNA3C Protein among Hematopoietic Stem Cell Transplant Recipients in Jordan. Mediterr J Hematol Infect Dis 2025; 17:e2025032. [PMID: 40375912 PMCID: PMC12081047 DOI: 10.4084/mjhid.2025.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/12/2025] [Indexed: 05/18/2025] Open
Abstract
Background Epstein-Barr virus (EBV), a human herpes virus, presents significant risks to hematopoietic stem cell transplant (HSCT) recipients due to immunosuppressive treatments. Two genotypes of EBV can infect humans: EBV1 and EBV2. These genotypes differ in their latent genes. One important latent protein is EBNA3, which plays a crucial role in immune evasion and pathogenesis of EBV. Objectives This study characterizes EBV genotypes among HSCT recipients in Jordan and examines the relationship between EBV positivity and demographic factors. Methods A retrospective observational study was conducted at the Jordanian Royal Medical Services Hospital (JRMS) from January to October 2024. Blood samples were collected from the virology department, and plasma was separated. EBV-DNA detection was performed using quantitative real-time PCR, while conventional PCR targeted EBNA3C genes for genotyping. Results Out of 93 EBV-positive HSCT recipients, 31 underwent genotyping analysis. The findings revealed a predominance of EBV2, detected in 26 samples (84%), while 5 samples (16%) exhibited mixed infections. Notably, EBV1 was not identified in any samples. A significant association was found between EBV positivity and male recipients, with a markedly higher prevalence in individuals under 18 years of age (P<0.0001). Conclusion EBV2 was the predominant genotype among HSCT recipients in Jordan, with coinfections of EBV1 and EBV2. Understanding the prevalent genotypes in transplant patients is crucial for managing EBV-related complications, ultimately improving patient outcomes. This study highlights the need for continuous monitoring and characterization of EBV genotypes in immunocompromised populations.
Collapse
Affiliation(s)
- Rabaa Y Athamneh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Hiba A Swaity
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Waleed Al Moman
- Department of Basic Pathological Sciences, Faculty of Medicine, Yarmouk University, Jordan
| | - Hayyan I Al-Taweil
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
| | - Assia Benbraiek
- Medical and Clinical Laboratory Technology, Faculty of Allied Medical Sciences, Allied Science Private University
| | - Anas H Khalifeh
- Department of Community & Mental Health Nursing, Faculty of Nursing, Zarqa University, Zarqa, Jordan
| |
Collapse
|
5
|
Shao H, Chen M, Xiao Y, Xu L, Cao H, Hong B, Qian Y. Establishing a Risk Prediction Model for Nasopharyngeal Carcinoma Based on Anti-BNLF2b Serological Biomarkers: A Retrospective Study. Int J Med Sci 2025; 22:2165-2173. [PMID: 40303496 PMCID: PMC12035835 DOI: 10.7150/ijms.110758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Purpose: This study aims to establish a suitable risk prediction model of NPC in regions with relatively low-incidence in southern China. Methods: We retrospectively analysed the data of 198 patients with NPC and 398 healthy individuals admitted to The Second Affiliated Hospital, Zhejiang University School of Medicine, from February 2023 to October 2024. The levels of different serum biomarkers (P85-Ab, VCA-IgA, VCA-IgM, VCA-IgG, Rta-IgG and EA-IgA) were compared between patients with NPC and healthy individuals. Binary logistic regression was used to construct a risk prediction model for NPC, and ROC curves were plotted to evaluate the performance of the model. Results: Compared with healthy individuals, patients with NPC exhibited significantly elevated levels of EA-IgA (P < 0.001), Rta-IgG (P < 0.001), P85-Ab (P < 0.001) and VCA-IgA (χ2 = 262.25; P < 0.001). Binary logistic regression showed that P85-Ab (HR = 572.225; P < 0.001), VCA-IgA (HR = 31.877; P < 0.001) and Rta-IgG (HR = 10.670; P = 0.004) were independent risk factors for NPC. The AUC of P85-Ab combined with Rta-IgG and VCA-IgA for predicting the risk of NPC was 0.977 (95% CI: 0.959-0.988), which was greater than the AUC values of Rta-IgG and VCA-IgA (P < 0.01 for all). The combination of P85-Ab with Rta-IgG and VCA-IgA had a sensitivity of 91.36% and a specificity of 99.25%. Conclusion: P85-Ab combined with VCA-IgA and Rta-IgG is an optimal serological biomarker for the diagnosis of NPC in low-incidence regions in southern China.
Collapse
Affiliation(s)
- Hengrong Shao
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengting Chen
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Li Xu
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Huaquan Cao
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
6
|
Blazquez AC, Fellner MD, Lorenzetti MA, Preciado MV. A Comparative Genomic Analysis of Epstein-Barr Virus Strains with a Focus on EBV2 Variability. Int J Mol Sci 2025; 26:2708. [PMID: 40141350 PMCID: PMC11943181 DOI: 10.3390/ijms26062708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/28/2025] Open
Abstract
Most genomic studies on Epstein-Barr virus variability have focused on the geographic and pathological associations of EBV1 genomes. In contrast, the variability of EBV2 genomes has been less explored, mainly due to their restricted geographic circulation and the lesser number of sequenced EBV2 isolates. In this study, we sequenced and analyzed twenty-eight EBV1 and ten EBV2 genomes and a potential recombinant from Argentina, which were combined with two-hundred-and-thirty-nine downloaded complete genomes from other geographic regions, to produce an initial multi-sample.vcf file comprising 278 EBV genomes. In this context, we identified 1093/4541 positions in the viral genome that contribute to variability between viral types, mainly located in the EBNA2 and EBNA3 family of genes and the adjacent BZLF1, BZLF2, and BLLF1 genes. We further described that this variability exhibits distinct patterns across Africa, South America, and Southeast Asia. Compared to EBV1 genomes, EBV2 genomes showed fewer variable positions relative to their reference genome (Wilcoxon test, p = 0.0001). Principal component analysis revealed that EBV2 genomes from Southeast Asia segregate independently from those from South America (Wilcoxon test, Bonferroni correction; p = 1.1 × 10-7) and Africa (Wilcoxon test, Bonferroni correction; p = 2.6 × 10-9). Additionally, we identified those precise variable positions with geographic segregation strength: 1135/3666 in EBV1 and 380/3276 in EBV2. Furthermore, the distribution of variable positions along the genome disclosed a close relation for EBV2 isolates from Africa and South America as compared to isolates from Southeast Asia. Although our analysis is limited to EBV2 genomes isolated from three geographic regions, this was, to the best of our knowledge, the first study to comprehensively characterize the geographic variability of the complete EBV2 genome. These findings underscore the geographic and genetic diversity of EBV2 genomes and contribute to understanding the EBV's evolutionary dynamics and potential regional adaptations. This research enhances our understanding of EBV2 genomic variability, supporting future epidemiological studies and advancing the knowledge base for targeted treatments and vaccine development for EBV-associated diseases.
Collapse
Affiliation(s)
- Ana Catalina Blazquez
- Laboratorio de Biología Molecular, División Patología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Buenos Aires C1425EFD, Argentina;
| | - María Dolores Fellner
- Servicio Virus Oncogénicos, Laboratorio Nacional de Referencia de Virus Epstein-Barr, Departamento Virología, Instituto Nacional de Enfermedades Infecciosas (INEI)—ANLIS, “Dr C. Malbrán”, Buenos Aires C1425EFD, Argentina;
| | - Mario Alejandro Lorenzetti
- Laboratorio de Biología Molecular, División Patología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Buenos Aires C1425EFD, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - María Victoria Preciado
- Laboratorio de Biología Molecular, División Patología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, Buenos Aires C1425EFD, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| |
Collapse
|
7
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
8
|
Lu X, Han Q, Li P, Huang K, Ji X, Chen S, Lin R, Wang X. Detection of the 30-bp deletion and protein expression of Epstein-Barr virus latent membrane protein 1 in extranodal NK/T cell lymphoma and its clinicopathological significance. Diagn Pathol 2025; 20:18. [PMID: 39948602 PMCID: PMC11823043 DOI: 10.1186/s13000-025-01607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Extranodal natural killer/T-cell lymphoma (ENKTCL) is strongly associated with Epstein-Barr virus (EBV) infection. A 30-base-pair deletion in latent membrane protein 1 (del-LMP1) represents the most common variant in the EBV genome, but its clinicopathological significance in ENKTCL remains poorly elucidated. Some scholars suggested that the LMP1 protein product carrying the deletion gene reduced immunogenicity, allowed it to escape immune surveillance in immunocompetent hosts and confer a survival advantage. Therefore, simultaneous assessment of del-LMP1 and LMP1 protein expression may provide deeper insights into the potential role of LMP1 in ENKTCL tumorigenesis and progression. This study aimed to investigate the impact of del-LMP1 and LMP1 protein expression on the clinicopathological manifestations and prognosis of ENKTCL patients in Wenzhou. METHODS The clinical and histological characteristics of 42 ENKTCL cases were retrospectively evaluated. Del-LMP1 was detected using a nested polymerase chain reaction and Sanger sequencing, while LMP1 protein expression was assessed via immunohistochemistry. Overall survival (OS) was analyzed. RESULTS The LMP1 gene was identified in 37/42 ENKTCL cases, including 2 wild-type (wt-LMP1), 35 del-LMP1 cases. LMP1 protein expression was positive in 21/42 cases. In the control group, the LMP1 gene was detected in 6/10 cases, all of which were del-LMP1, and the LMP1 protein was positive in 4/10 cases. Fisher's exact test revealed no significant differences between the two groups in the LMP1 gene, del-LMP1, or LMP1 protein expression. Additionally, there was no significant correlation between del-LMP1 and LMP1 protein expression and clinical characteristics such as age, gender, or vascular invasion. However, LMP1 protein expression was significantly higher in necrotic tissues (p = 0.030) and younger patients with del-LMP1 (p = 0.004). Survival analysis showed no significant difference in OS between wt-LMP1 and del-LMP1 patients (p = 0.331) or between LMP1-positive and -negative cases (p = 0.592). CONCLUSION In this retrospective cohort, we demonstrated that del-LMP1 might be the predominant variant rather than a phenotype-associated polymorphism in ENKTCL from a molecular epidemiological perspective. Moreover, LMP1 protein expression was associated with necrotic tissue and younger patients with del-LMP1, possibly due to the enhanced pathogenic effect of the mutated LMP1 isolate protein.
Collapse
Affiliation(s)
- Xingmei Lu
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Qingsong Han
- Department of Animal Science, Wenzhou Vocational College of Scienc & Technology, Wenzhou, Zhejiang, 325006, China
| | - Peng Li
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kate Huang
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiuhuan Ji
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Suidan Chen
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Rixu Lin
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiaoyu Wang
- Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
9
|
Zhong LY, Xie C, Zhang LL, Yang YL, Liu YT, Zhao GX, Bu GL, Tian XS, Jiang ZY, Yuan BY, Li PL, Wu PH, Jia WH, Münz C, Gewurz BE, Zhong Q, Sun C, Zeng MS. Research landmarks on the 60th anniversary of Epstein-Barr virus. SCIENCE CHINA. LIFE SCIENCES 2025; 68:354-380. [PMID: 39505801 DOI: 10.1007/s11427-024-2766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 11/08/2024]
Abstract
Epstein-Barr virus (EBV), the first human oncovirus discovered in 1964, has become a focal point in virology, immunology, and oncology because of its unique biological characteristics and significant role in human diseases. As we commemorate the 60th anniversary of EBV's discovery, it is an opportune moment to reflect on the major advancements in our understanding of this complex virus. In this review, we highlight key milestones in EBV research, including its virion structure and life cycle, interactions with the host immune system, association with EBV-associated diseases, and targeted intervention strategies.
Collapse
Affiliation(s)
- Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Le-Le Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan-Lin Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuan-Tao Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ge-Xin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xian-Shu Tian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zi-Ying Jiang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bo-Yu Yuan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng-Lin Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pei-Huang Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, 8092, Switzerland
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Schaal DL, Amucheazi AA, Jones SC, Nkadi EH, Scott RS. Epstein-Barr virus replication within differentiated epithelia requires pRb sequestration of activator E2F transcription factors. J Virol 2024; 98:e0099524. [PMID: 39291960 PMCID: PMC11494884 DOI: 10.1128/jvi.00995-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Epstein-Barr virus (EBV) co-infections with human papillomavirus (HPV) have been observed in oropharyngeal squamous cell carcinoma. Modeling EBV/HPV co-infection in organotypic epithelial raft cultures revealed that HPV16 E7 inhibited EBV productive replication through the facilitated degradation of the retinoblastoma protein pRb/p105. To further understand how pRb is required for EBV productive replication, we generated CRISPR-Cas9 pRb knockout (KO) normal oral keratinocytes (NOKs) in the context of wild-type and mutant K120E p53. EBV replication was examined in organotypic rafts as a physiological correlate for epithelial differentiation. In pRb KO rafts, EBV DNA copy number was statistically decreased compared to vector controls, regardless of p53 context. Loss of pRb did not affect EBV binding or internalization of calcium-treated NOKs or early infection of rafts. Rather, the block in EBV replication correlated with impaired immediate early gene expression. An EBV infection time course in rafts with mutant p53 demonstrated that pRb-positive basal cells were initially infected with delayed replication occurring in differentiated layers. Loss of pRb showed increased S-phase progression makers and elevated activator E2F activity in raft tissues. Complementation with a panel of pRb/E2F binding mutants showed that wild type or pRb∆685 mutant capable of E2F binding reduced S-phase marker gene expression, rescued EBV DNA replication, and restored BZLF1 expression in pRb KO rafts. However, pRb KO complemented with pRb661W mutant, unable to bind E2Fs, failed to rescue EBV replication in raft culture. These findings suggest that EBV productive replication in differentiated epithelium requires pRb inhibition of activator E2Fs to restrict S-phase progression.IMPORTANCEA subset of human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma is co-positive for Epstein-Barr virus (EBV). Potential oncogenic viral interactions revealed that HPV16 E7 inhibited productive EBV replication within the differentiated epithelium. As E7 mediates the degradation of pRb, we aimed to establish how pRb is involved in EBV replication. In the context of differentiated epithelium using organotypic raft culture, we evaluated how the loss of pRb affects EBV lytic replication to better comprehend EBV contributions to carcinogenesis. In this study, ablation of pRb interfered with EBV replication at the level of immediate early gene expression. Loss of pRb increased activator E2Fs and associated S-phase gene expression throughout the differentiated epithelium. Complementation studies showed that wild type and pRb mutant capable of binding to E2F rescued EBV replication, while pRb mutant lacking E2F binding did not. Altogether, these studies support that in differentiated tissues, HPV16 E7-mediated degradation of pRb inhibits EBV replication through unregulated E2F activity.
Collapse
Affiliation(s)
- Danielle L. Schaal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Akajiugo A. Amucheazi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Sarah C. Jones
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
11
|
Furlano PL, Böhmig GA, Puchhammer-Stöckl E, Vietzen H. Mechanistic Understanding of EBV+Lymphoproliferative Disease Development After Transplantation. Transplantation 2024; 108:1867-1881. [PMID: 39166902 DOI: 10.1097/tp.0000000000004919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Posttransplant lymphoproliferative disorders (PTLDs) are among the most common malignant complications after transplantation, leading to a drastic reduction in patient survival rates. The majority of PTLDs are tightly linked to Epstein-Barr virus (EBV+PTLDs) and are the result of an uncontrolled proliferation of EBV-infected cells. However, although EBV infections are a common finding in transplant recipients, most patients with high EBV loads will never develop EBV+PTLD. Natural killer cells and EBV-specific CD8+ T lymphocytes are critical for controlling EBV-infected cells, and the impairment of these cytotoxic immune responses facilitates the unfettered proliferation of EBV-infected cells. Recent years have seen a considerable increase in available literature aiming to describe novel risk factors associated with the development of EBV+PTLD, which may critically relate to the strength of EBV-specific natural killer cell and EBV-CD8+ T lymphocyte responses. The accumulation of risk factors and the increased risk of developing EBV+PTLD go hand in hand. On the one hand, most of these risk factors, such as the level of immunosuppression or the EBV donor and recipient serologic mismatch, and distinct genetic risk factors are host related and affect cytotoxic EBV-specific immune responses. On the other hand, there is growing evidence that distinct EBV variants may have an increased malignant potential and are thus more likely to induce EBV+PTLD. Here, we aim to review, from a mechanistic point of view, the risk factors for EBV+PTLD in the host and the infecting EBV variants that may explain why only a minority of transplant recipients develop EBV+PTLD.
Collapse
Affiliation(s)
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Vietzen
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Obraitis D, Li D. Blood virome research in myalgic encephalomyelitis/chronic fatigue syndrome: challenges and opportunities. Curr Opin Virol 2024; 68-69:101437. [PMID: 39537445 PMCID: PMC11795702 DOI: 10.1016/j.coviro.2024.101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/22/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with a complex clinical presentation and an unknown etiology. Various viral infections have been proposed as potential triggers of ME/CFS onset, but no specific pathogen has been identified in all cases of postinfectious ME/CFS. The symptomatology of the postacute sequelae of SARS-CoV-2, or long COVID, mirrors that of ME/CFS, with nearly half of long COVID patients meeting ME/CFS diagnostic criteria. The influx of newly diagnosed patients has reinvigorated interest in ME/CFS pathogenesis research, with an emphasis on viral triggers. This review summarizes the current understanding of ME/CFS research on viral triggers, including blood virome screening studies. To further elucidate the molecular basis of ME/CFS, there is a need to develop innovative bioinformatics tools capable of analyzing complex virome data and integrating multiomics information.
Collapse
Affiliation(s)
- Dominic Obraitis
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neuroscience and Behavior Program, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Dawei Li
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
13
|
Mukhopadhyay SS, Swan KF, Pridjian G, Kolls JK, Zhuang Y, Yin Q, Lasky JA, Flemington E, Morris CA, Lin Z, Morris GF. Gammaherpesvirus Infection Stimulates Lung Tumor-Promoting Inflammation. Pathogens 2024; 13:747. [PMID: 39338937 PMCID: PMC11434807 DOI: 10.3390/pathogens13090747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Lung tumor-promoting environmental exposures and γherpesvirus infections are associated with Type 17 inflammation. To test the effect of γherpesvirus infection in promoting lung tumorigenesis, we infected mutant K-Ras-expressing (K-RasLA1) mice with the murine γherpesvirus MHV68 via oropharyngeal aspiration. After 7 weeks, the infected mice displayed a more than 2-fold increase in lung tumors relative to their K-RasLA1 uninfected littermates. Assessment of cytokines in the lung revealed that expression of Type 17 cytokines (Il-6, Cxcl1, Csf3) peaked at day 7 post-infection. These observations correlated with the post-infection appearance of known immune mediators of tumor promotion via IL-17A in the lungs of tumor-bearing mice. Surprisingly, Cd84, an immune cell marker mRNA, did not increase in MHV68-infected wild-type mice lacking lung tumors. Csf3 and Cxcl1 protein levels increased more in the lungs of infected K-RasLA1 mice relative to infected wild-type littermates. Flow cytometric and transcriptomic analyses indicated that the infected K-RasLA1 mice had increased Ly6Gdim/Ly6Chi immune cells in the lung relative to levels seen in uninfected control K-RasLA1 mice. Selective methylation of adenosines (m6A modification) in immune-cell-enriched mRNAs appeared to correlate with inflammatory infiltrates in the lung. These observations implicate γherpesvirus infection in lung tumor promotion and selective accumulation of immune cells in the lung that appears to be associated with m6A modification of mRNAs in those cells.
Collapse
Affiliation(s)
- Sudurika S. Mukhopadhyay
- Departments of Microbiology & Immunology and Pathology & Laboratory Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Kenneth F. Swan
- Department of Obstetrics & Gynecology, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (K.F.S.); (G.P.)
| | - Gabriella Pridjian
- Department of Obstetrics & Gynecology, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (K.F.S.); (G.P.)
| | - Jay K. Kolls
- Departments of Medicine & Pediatrics, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Yan Zhuang
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Qinyan Yin
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Joseph A. Lasky
- Division of Pulmonary, Critical Care and Environmental Medicine, Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70118, USA; (Y.Z.); (Q.Y.); (J.A.L.)
| | - Erik Flemington
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| | - Cindy A. Morris
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70118, USA;
| | - Zhen Lin
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| | - Gilbert F. Morris
- Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA; (E.F.); (Z.L.)
| |
Collapse
|
14
|
Oladipo EK, Akinleye TM, Adeyemo SF, Akinboade MW, Siyanbola KF, Adetunji VA, Arowosegbe OA, Olatunji VK, Adaramola EO, Afolabi HO, Ajani CD, Siyanbola TP, Folakanmi EO, Irewolede BA, Okesanya OJ, Ajani OF, Ariyo OE, Jimah EM, Iwalokun BA, Kolawole OM, Oloke JK, Onyeaka H. mRNA vaccine design for Epstein-Barr virus: an immunoinformatic approach. In Silico Pharmacol 2024; 12:68. [PMID: 39070665 PMCID: PMC11269547 DOI: 10.1007/s40203-024-00244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/14/2024] [Indexed: 07/30/2024] Open
Abstract
Epstein-Barr Virus (EBV), structurally similar to other herpes viruses, possess significant global health challenges as it causes infectious mononucleosis and is also associated with various cancers. Due to this widespread impact, an effective messenger RNA (mRNA) vaccine is paramount to help curb its spread, further underscoring the need for its development. This study, following an immunoinformatic approach, aimed to design a comprehensive mRNA vaccine against the EBV by selecting antigenic proteins, predicting Linear B-cell epitopes, cytotoxic T-cell lymphocyte (CTL) and helper T-cell lymphocyte (HTL) epitopes, and assessing vaccine characteristics. Seventy-nine EBV isolates from diverse geographical regions were examined. Additionally, the vaccine construct's physicochemical properties, transmembrane domains, solubility, and secondary structures were analysed. Molecular docking was conducted with Toll-Like Receptor 5 (TLR-5). Population coverage was assessed for selected major histocompatibility complex (MHC) alleles, and immune response was simulated. The result of this study highlighted a vaccine construct with high antigenicity, non-toxicity, and non-allergenicity and possessed favourable physicochemical properties. The vaccine's 3D structure is native-like and strongly binds with TLR-5, indicating a solid affinity with TLR-5. The selected MHC alleles provided broad universal population coverage of 89.1%, and the immune simulations suggested a robust and wide-ranging immunogenic response, activating critical immune cells, antibodies, and cytokines. These findings provide a solid foundation for further development and testing of the EBV candidate vaccine, offering potential solutions for combating EBV infections.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Laboratory of Molecular Biology, Immunology and Bioinformatics, Department of Microbiology, Adeleke University, Ede, Osun State Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Oyo State Nigeria
| | - Temitope Michael Akinleye
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Oyo State Nigeria
- Department of Anatomy and Advanced Research Center for Tumor Immunology, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan, 47392 Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | - Olalekan John Okesanya
- Faculty of Medicine, Department of Public Health and Maritime Transport, Laboratory of Hygiene and Epidemiology, University of Thessaly, Papakyriazi 22, Larissa, 41222 Greece
| | - Olumide Faith Ajani
- African Centre for Disease Control and Prevention (African CDC), Addis Ababa, Ethiopia
| | - Olumuyiwa Elijah Ariyo
- Department of Medicine, Infectious Diseases and Tropical Medicine Unit, Federal Teaching Hospital, Ido-Ekiti, Ekiti State Nigeria
| | | | - Bamidele Abiodun Iwalokun
- Molecular Biology and Biotechnology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
| | | | - Julius Kola Oloke
- Department of Natural Science, Precious Cornerstone, Ibadan, 200132 Nigeria
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
15
|
Müller-Durovic B, Jäger J, Engelmann C, Schuhmachers P, Altermatt S, Schlup Y, Duthaler U, Makowiec C, Unterstab G, Roffeis S, Xhafa E, Assmann N, Trulsson F, Steiner R, Edwards-Hicks J, West J, Turner L, Develioglu L, Ivanek R, Azzi T, Dehio P, Berger C, Kuzmin D, Saboz S, Mautner J, Löliger J, Geigges M, Palianina D, Khanna N, Dirnhofer S, Münz C, Bantug GR, Hess C. A metabolic dependency of EBV can be targeted to hinder B cell transformation. Science 2024; 385:eadk4898. [PMID: 38781354 DOI: 10.1126/science.adk4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
After infection of B cells, Epstein-Barr virus (EBV) engages host pathways that mediate cell proliferation and transformation, contributing to the propensity of the virus to drive immune dysregulation and lymphomagenesis. We found that the EBV protein EBNA2 initiates nicotinamide adenine dinucleotide (NAD) de novo biosynthesis by driving expression of the metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in infected B cells. Virus-enforced NAD production sustained mitochondrial complex I activity, to match adenosine triphosphate (ATP) production with bioenergetic requirements of proliferation and transformation. In transplant patients, IDO1 expression in EBV-infected B cells, and a serum signature of increased IDO1 activity, preceded development of lymphoma. In humanized mice infected with EBV, IDO1 inhibition reduced both viremia and lymphomagenesis. Virus-orchestrated NAD biosynthesis is therefore a druggable metabolic vulnerability of EBV-driven B cell transformation, opening therapeutic possibilities for EBV-related diseases.
Collapse
Affiliation(s)
- Bojana Müller-Durovic
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Jessica Jäger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick Schuhmachers
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sabine Altermatt
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Yannick Schlup
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Urs Duthaler
- Clinical Pharmacology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Celia Makowiec
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Gunhild Unterstab
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Sarah Roffeis
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Erta Xhafa
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Nadine Assmann
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
- Axolabs GmbH, Kulmbach, Germany
| | - Fredrik Trulsson
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Rebekah Steiner
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Joy Edwards-Hicks
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - James West
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lorinda Turner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Leyla Develioglu
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Robert Ivanek
- Bioinformatics Facility, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Tarik Azzi
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zürich, Zürich, Switzerland
- Children's Research Center, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Philippe Dehio
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Berger
- Experimental Infectious Diseases and Cancer Research, University Children's Hospital of Zürich, Zürich, Switzerland
| | - Dmitry Kuzmin
- Hornet Therapeutics Ltd, London, UK
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Sophie Saboz
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Josef Mautner
- Department of Gene Vectors, Helmholtz Centre Munich, Munich, Germany
| | - Jordan Löliger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Marco Geigges
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Darya Palianina
- Laboratory of Infection Biology, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Laboratory of Infection Biology, Department of Biomedicine, University Basel and University Hospital of Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Glenn R Bantug
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Naughton P, Enright F, Lucey B. Infectious mononucleosis: new concepts in clinical presentation, epidemiology, and host response. Curr Opin Infect Dis 2024; 37:157-163. [PMID: 38529804 DOI: 10.1097/qco.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Infectious mononucleosis (IM) is an infectious disease that presents clinically in only a small percentage of individuals despite almost universal infection with the causative agent. Here, we review the latest concepts in the clinical presentation, epidemiology, and host response of this disease. RECENT FINDINGS Several recently published papers/reviews describe IM as a condition caused by one of several etiologic agents including, cytomegalovirus (HHV-5), Roseola virus (HHV-6) and Toxoplasmosis amongst others; this review focuses on IM as solely caused by the human herpes virus 4 (HHV-4). Since the initial discovery of the virus in the 1960s and its subsequent discovery as the primary etiologic agent for IM it has been associated with several human cancers and autoimmune disorders. Recent published findings show a correlation between HHV-4 and the autoimmune disorder, multiple sclerosis (MS), suggesting earlier IM could possibly act as a causative factor. Considering the important links being made with IM to so many cancers and autoimmune disorders it is surprising that a standard investigative procedure has yet to be determined for this disease. A standard approach to the investigation of IM would ensure more cases are diagnosed, particularly atypical cases, this would benefit epidemiological studies, and more immediately help practitioners distinguish viral from bacterial throat infections, enabling them to treat accordingly. SUMMARY The understanding of the latest concepts in clinical presentation, epidemiology and host response to IM would benefit greatly from the introduction of a standard procedure for its investigation and diagnosis.
Collapse
Affiliation(s)
- Patrick Naughton
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown
- Department of Haematology
| | - Frances Enright
- Department of Paediatrics, Mercy University Hospital, Grenville Place, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown
| |
Collapse
|
17
|
Alanazi AE, Alhumaidy AA, Almutairi H, Awadalla ME, Alkathiri A, Alarjani M, Aldawsari MA, Maniah K, Alahmadi RM, Alanazi BS, Eifan S, Alosaimi B. Evolutionary analysis of LMP-1 genetic diversity in EBV-associated nasopharyngeal carcinoma: Bioinformatic insights into oncogenic potential. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 120:105586. [PMID: 38508363 DOI: 10.1016/j.meegid.2024.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
EBV latent membrane protein 1 (LMP-1) is an important oncogene involved in the induction and maintenance of EBV infection and the activation of several cell survival and proliferative pathways. The genetic diversity of LMP-1 has an important role in immunogenicity and tumorigenicity allowing escape from host cell immunity and more metastatic potential of LMP-1 variants. This study explored the evolutionary of LMP-1 in EBV-infected patients at an advanced stage of nasopharyngeal carcinoma (NPC). Detection of genetic variability in LMP-1 genes was carried out using Sanger sequencing. Bioinformatic analysis was conducted for translation and nucleotide alignment. Phylogenetic analysis was used to construct a Bayesian tree for a deeper understanding of the genetic relationships, evolutionary connections, and variations between sequences. Genetic characterization of LMP-1 in NPC patients revealed the detection of polymorphism in LMP-1 Sequences. Motifs were identified within three critical LMP-1 domains, such as PQQAT within CTAR1 and YYD within CTAR2. The presence of the JACK3 region at specific sites within CTAR3, as well as repeat regions at positions (122-132) and (133-143) within CTAR3, was also annotated. Additionally, several mutations were detected including 30 and 69 bp deletions, 33 bp repeats, and 15 bp insertion. Although LMP-1 strains appear to be genetically diverse, they are closely related to 3 reference strains: prototype B95.8, Med- 30 bp deletion, and Med + 30 bp deletion. In our study, one of the strains harboring the 30 bp deletion had both bone and bone marrow metastasis which could be attributed to the fact that LMP-1 is involved in tumor metastasis, evasion and migration of NPC cells. This study provided valuable insights into genetic variability in LMP-1 sequences of EBV in NPC patients. Further functional studies would provide a more comprehensive understanding of the molecular characteristics, epidemiology, and clinical implications of LMP-1 polymorphisms in EBV-related malignancies.
Collapse
Affiliation(s)
- Abdullah E Alanazi
- Comprehensive Cancer Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 11525, Saudi Arabia
| | | | - Hatim Almutairi
- Bioinformatics Laboratory, Public Health Authority, Riyadh 11451, Saudi Arabia
| | - Maaweya E Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Heath Cluster, Riyadh 11525, Saudi Arabia
| | - Abdulrahman Alkathiri
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Modhi Alarjani
- Research Center, King Fahad Medical City, Riyadh Second Heath Cluster, Riyadh 11525, Saudi Arabia
| | - Mesfer Abdullah Aldawsari
- Department of Health Education, Alyamamah Hospital, Riyadh Second Heath Cluster, Riyadh 11525, Saudi Arabia
| | - Khalid Maniah
- Department of Biology, King Khalid Military Academy, Riyadh 22140, Saudi Arabia
| | - Reham M Alahmadi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bader S Alanazi
- Research Center, King Fahad Medical City, Riyadh Second Heath Cluster, Riyadh 11525, Saudi Arabia
| | - Saleh Eifan
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Heath Cluster, Riyadh 11525, Saudi Arabia.
| |
Collapse
|
18
|
Alves PD, Rohan P, Hassan R, Abdelhay E. Lytic and Latent Genetic Diversity of the Epstein-Barr Virus Reveals Raji-Related Variants from Southeastern Brazil Associated with Recombination Markers. Int J Mol Sci 2024; 25:5002. [PMID: 38732219 PMCID: PMC11084898 DOI: 10.3390/ijms25095002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus etiologically associated with benign and malignant diseases. Since the pathogenic mechanisms of EBV are not fully understood, understanding EBV genetic diversity is an ongoing goal. Therefore, the present work describes the genetic diversity of the lytic gene BZLF1 in a sampling of 70 EBV-positive cases from southeastern Brazil. Additionally, together with the genetic regions previously characterized, the aim of the present study was to determine the impact of viral genetic factors that may influence EBV genetic diversity. Accordingly, the phylogenetic analysis of the BZLF1 indicated two main clades with high support, BZ-A and BZ-B (PP > 0.85). Thus, the BZ-A clade was the most diverse clade associated with the main polymorphisms investigated, including the haplotype Type 1 + V3 (p < 0.001). Furthermore, the multigene phylogenetic analysis (MLA) between BZLF1 and the oncogene LMP1 showed specific clusters, revealing haplotypic segregation that previous single-gene phylogenies from both genes failed to demonstrate. Surprisingly, the LMP1 Raji-related variant clusters were shown to be more diverse, associated with BZ-A/B and the Type 2/1 + V3 haplotypes. Finally, due to the high haplotypic diversity of the Raji-related variants, the number of DNA recombination-inducing motifs (DRIMs) was evaluated within the different clusters defined by the MLA. Similarly, the haplotype BZ-A + Raji was shown to harbor a greater number of DRIMs (p < 0.001). These results call attention to the high haplotype diversity of EBV in southeast Brazil and strengthen the hypothesis of the recombinant potential of South American Raji-related variants via the LMP1 oncogene.
Collapse
Affiliation(s)
- Paula D. Alves
- Oncovirology Laboratory, Division of Specialized Laboratories, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil
- Stem Cell Laboratory, Division of Specialized Laboratories, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil
| | - Paulo Rohan
- Oncovirology Laboratory, Division of Specialized Laboratories, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil
- Stem Cell Laboratory, Division of Specialized Laboratories, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil
| | - Rocio Hassan
- Oncovirology Laboratory, Division of Specialized Laboratories, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil
| | - Eliana Abdelhay
- Stem Cell Laboratory, Division of Specialized Laboratories, Instituto Nacional de Câncer (INCA), Rio de Janeiro 20230-130, RJ, Brazil
| |
Collapse
|
19
|
Salnikov MY, MacNeil KM, Mymryk JS. The viral etiology of EBV-associated gastric cancers contributes to their unique pathology, clinical outcomes, treatment responses and immune landscape. Front Immunol 2024; 15:1358511. [PMID: 38596668 PMCID: PMC11002251 DOI: 10.3389/fimmu.2024.1358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Epstein-Barr virus (EBV) is a pathogen known to cause a number of malignancies, often taking years for them to develop after primary infection. EBV-associated gastric cancer (EBVaGC) is one such malignancy, and is an immunologically, molecularly and pathologically distinct entity from EBV-negative gastric cancer (EBVnGC). In comparison with EBVnGCs, EBVaGCs overexpress a number of immune regulatory genes to help form an immunosuppressive tumor microenvironment (TME), have improved prognosis, and overall have an "immune-hot" phenotype. This review provides an overview of the histopathology, clinical features and clinical outcomes of EBVaGCs. We also summarize the differences between the TMEs of EBVaGCs and EBVnGCs, which includes significant differences in cell composition and immune infiltration. A list of available EBVaGC and EBVnGC gene expression datasets and computational tools are also provided within this review. Finally, an overview is provided of the various chemo- and immuno-therapeutics available in treating gastric cancers (GCs), with a focus on EBVaGCs.
Collapse
Affiliation(s)
- Mikhail Y. Salnikov
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Department of Otolaryngology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
20
|
Viel KCMF, Parameswaran S, Donmez OA, Forney CR, Hass MR, Yin C, Jones SH, Prosser HK, Diouf AA, Gittens OE, Edsall LE, Chen X, Rowden H, Dunn KA, Guo R, VonHandorf A, Leong MML, Ernst K, Kaufman KM, Lawson LP, Gewurz B, Zhao B, Kottyan LC, Weirauch MT. Shared and distinct interactions of type 1 and type 2 Epstein-Barr Nuclear Antigen 2 with the human genome. BMC Genomics 2024; 25:273. [PMID: 38475709 PMCID: PMC10935964 DOI: 10.1186/s12864-024-10183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.
Collapse
Affiliation(s)
- Kenyatta C M F Viel
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Carmy R Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew R Hass
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Cailing Yin
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sydney H Jones
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hayley K Prosser
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Arame A Diouf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Olivia E Gittens
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lee E Edsall
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hope Rowden
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Katelyn A Dunn
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin Ernst
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lucinda P Lawson
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ben Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
21
|
Naaldijk Y, Fernández B, Fasiczka R, Fdez E, Leghay C, Croitoru I, Kwok JB, Boulesnane Y, Vizeneux A, Mutez E, Calvez C, Destée A, Taymans JM, Aragon AV, Yarza AB, Padmanabhan S, Delgado M, Alcalay RN, Chatterton Z, Dzamko N, Halliday G, Ruiz-Martínez J, Chartier-Harlin MC, Hilfiker S. A potential patient stratification biomarker for Parkinson´s disease based on LRRK2 kinase-mediated centrosomal alterations in peripheral blood-derived cells. NPJ Parkinsons Dis 2024; 10:12. [PMID: 38191886 PMCID: PMC10774440 DOI: 10.1038/s41531-023-00624-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Parkinson´s disease (PD) is a common neurodegenerative movement disorder and leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for disease intervention. However, the ability to stratify patients who will benefit from such treatment modalities based on shared etiology is critical for the success of disease-modifying therapies. Ciliary and centrosomal alterations are commonly associated with pathogenic LRRK2 kinase activity and can be detected in many cell types. We previously found centrosomal deficits in immortalized lymphocytes from G2019S-LRRK2 PD patients. Here, to investigate whether such deficits may serve as a potential blood biomarker for PD which is susceptible to LRKK2 inhibitor treatment, we characterized patient-derived cells from distinct PD cohorts. We report centrosomal alterations in peripheral cells from a subset of early-stage idiopathic PD patients which is mitigated by LRRK2 kinase inhibition, supporting a role for aberrant LRRK2 activity in idiopathic PD. Centrosomal defects are detected in R1441G-LRRK2 and G2019S-LRRK2 PD patients and in non-manifesting LRRK2 mutation carriers, indicating that they accumulate prior to a clinical PD diagnosis. They are present in immortalized cells as well as in primary lymphocytes from peripheral blood. These findings indicate that analysis of centrosomal defects as a blood-based patient stratification biomarker may help nominate idiopathic PD patients who will benefit from LRRK2-related therapeutics.
Collapse
Affiliation(s)
- Yahaira Naaldijk
- Department. of Anesthesiology and Department. of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Belén Fernández
- Institute of Parasitology and Biomedicine ´López-Neyra¨, Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Rachel Fasiczka
- Department. of Anesthesiology and Department. of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Elena Fdez
- Institute of Parasitology and Biomedicine ´López-Neyra¨, Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Coline Leghay
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Ioana Croitoru
- Biodonostia Health Research Institute (IIS Biodonostia), San Sebastain, Spain
| | - John B Kwok
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Yanisse Boulesnane
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Amelie Vizeneux
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Eugenie Mutez
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Camille Calvez
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Alain Destée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | | | - Alberto Bergareche Yarza
- Biodonostia Health Research Institute (IIS Biodonostia), San Sebastain, Spain
- Donostia University Hospital, San Sebastian, Spain
| | | | - Mario Delgado
- Institute of Parasitology and Biomedicine ´López-Neyra¨, Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Roy N Alcalay
- Department. of Neurology, Colsumbia University Medical Center, New York, NY, USA
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zac Chatterton
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Glenda Halliday
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Javier Ruiz-Martínez
- Biodonostia Health Research Institute (IIS Biodonostia), San Sebastain, Spain
- Donostia University Hospital, San Sebastian, Spain
| | | | - Sabine Hilfiker
- Department. of Anesthesiology and Department. of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
22
|
Akolbire DA, Akolbire D, Delapenha R. A Case Report of a Rapidly Progressive Epstein-Barr Virus Encephalitis Infection in an Adult With HIV on Highly Active Antiretroviral Therapy. Cureus 2024; 16:e52392. [PMID: 38361681 PMCID: PMC10869129 DOI: 10.7759/cureus.52392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Epstein-Barr virus (EBV) encephalitis is a rare complication of EBV infection, with most cases described in children. Although some cases of EBV encephalitis have been reported in adults, they have occurred in the presence of other central nervous system infections, superimposed on an underlying neurocognitive disorder, or in immunocompromised states. We present herein a rare case of rapidly progressive EBV encephalitis in an adult male with HIV infection on highly active antiretroviral therapy (HAART) with no pre-existing neurocognitive symptoms. A 52-year-old African American man with HIV infection on HAART presented with acute altered mental status and weakness. On admission, he had normal muscle tone and reflexes, with no signs of meningism. Head CT without contrast showed no acute intracranial pathology. Blood and urine cultures were negative. CSF analysis was suggestive of a viral infection. Viral studies were positive only for EBV DNA by PCR in CSF. The patient received IV acyclovir for two weeks, followed by four weeks of oral valacyclovir with full recovery. Clinicians should consider a diagnosis of EBV encephalitis in HIV-positive patients on HAART who present with acute altered mental status. Treatment with antiviral therapy should be considered in patients with EBV encephalitis.
Collapse
Affiliation(s)
| | - Doris Akolbire
- Internal Medicine, Howard University Hospital, Washington, USA
| | | |
Collapse
|
23
|
Alves P, Emmel V, Stefanoff G, Krsticevic F, Ezpeleta J, Murillo J, Tapia E, Delatorre E, Abdelhay E, Hassan R. Unique synapomorphies and high diversity in South American Raji-related Epstein-Barr virus genomes. Mem Inst Oswaldo Cruz 2023; 118:e230122. [PMID: 37937604 PMCID: PMC10629697 DOI: 10.1590/0074-02760230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a human gammaherpesvirus etiologically linked to several benign and malignant diseases. EBV-associated malignancies exhibit an unusual global distribution that might be partly attributed to virus and host genetic backgrounds. OBJECTIVES To assemble a new genome of EBV (CEMO3) from a paediatric Burkitt's lymphoma from Rio de Janeiro State (Southeast Brazil). In addition, to perform global phylogenetic analysis using complete EBV genomes, including CEMO3, and investigate the genetic relationship of some South American (SA) genomes through EBV subgenomic targets. METHODS CEMO3 was sequenced through next generation sequencing and its coverage and gaps were corrected through the Sanger method. CEMO3 and 67 EBV genomes representing diverse geographic regions were evaluated through maximum likelihood phylogenetic analysis. Further, the polymorphism of subgenomic regions of some SA EBV genomes were assessed. FINDINGS The whole bulk tumour sequencing yielded 23,217 reads related to EBV, which 172,713 base pairs of the newly EBV genome CEMO3 was assembled. The CEMO3 and most SA EBV genomes clustered within the SA subclade closely related to the African Raji strain, forming the South American/Raji clade. Notably, these Raji-related genomes exhibit significant genetic diversity, characterised by distinctive synapomorphies at some gene levels absent in the original Raji strain. CONCLUSION The CEMO3 represents a new South American EBV genome assembled. Albeit the majority of EBV genomes from SA are Raji-related, it harbours a high diversity different from the original Raji strain.
Collapse
Affiliation(s)
- Paula Alves
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
- Universidad Nacional de Rosario, Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina
| | - Vanessa Emmel
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
| | - Gustavo Stefanoff
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
- Instituto Nacional de Câncer, Coordenação de Pesquisa Clínica, Rio de Janeiro, RJ, Brasil
| | - Flavia Krsticevic
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
- Universidad Nacional de Rosario, Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina
| | - Joaquín Ezpeleta
- Universidad Nacional de Rosario, Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina
| | - Javier Murillo
- Universidad Nacional de Rosario, Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina
| | - Elizabeth Tapia
- Universidad Nacional de Rosario, Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas, Rosario, Argentina
| | - Edson Delatorre
- Universidade Federal do Espírito Santo, Centro de Ciências da Saúde, Departamento de Patologia, Laboratório de Genômica e Ecologia Viral, Vitória, ES, Brasil
| | - Eliana Abdelhay
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
| | - Rocio Hassan
- Instituto Nacional de Câncer, Centro de Transplante de Medula Óssea, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
24
|
Zealiyas K, Teshome S, Haile AF, Weigel C, Alemu A, Amogne W, Yimer G, Abebe T, Berhe N, Ahmed EH, Baiocchi RA. Genotype characterization of Epstein-Barr virus among adults living with human immunodeficiency virus in Ethiopia. Front Microbiol 2023; 14:1270824. [PMID: 38029140 PMCID: PMC10644458 DOI: 10.3389/fmicb.2023.1270824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Epstein-Barr virus (EBV) is a human lymphotropic herpesvirus with a causative agent in cancer. There are two genotypes of EBV (EBV genotype 1 and EBV genotype 2) that have been shown to infect humans. This study aimed to characterize the EBV genotype among people with human immunodeficiency virus (PWH) and HIV-negative individuals in Ethiopia. Methods DNA was extracted from peripheral blood mononuclear cells (PBMCs). Conventional polymerase chain reaction (cPCR) targeting EBNA3C genes was performed for genotyping. A quantitative real-time PCR (q-PCR) assay for EBV DNA (EBNA1 ORF) detection and viral load quantification was performed. Statistical significance was determined at a value of p < 0.05. Result In this study, 155 EBV-seropositive individuals were enrolled, including 128 PWH and 27 HIV-negative individuals. Among PWH, EBV genotype 1 was the most prevalent (105/128, 82.0%) genotype, followed by EBV genotype 2 (17/128, 13.3%), and mixed infection (6/128, 4.7%). In PWH, the median log10 of EBV viral load was 4.23 copies/ml [interquartile range (IQR): 3.76-4.46], whereas it was 3.84 copies/ml (IQR: 3.74-4.02) in the HIV-negative group. The EBV viral load in PWH was significantly higher than that in HIV-negative individuals (value of p = 0.004). In PWH, the median log10 of EBV viral load was 4.25 copies/ml (IQR: 3.83-4.47) in EBV genotype 1 and higher than EBV genotype 2 and mixed infection (p = 0.032). Conclusion In Ethiopia, EBV genotype 1 was found to be the most predominant genotype, followed by EBV genotype 2. Understanding the genotype characterization of EBV in PWH is essential for developing new and innovative strategies for preventing and treating EBV-related complications in this population.
Collapse
Affiliation(s)
- Kidist Zealiyas
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Seifegebriel Teshome
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aklilu Feleke Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Christoph Weigel
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ayinalem Alemu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Wondwossen Amogne
- Department of Internal Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Getnet Yimer
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Genetics, Penn Center for Global Genomics & Health Equity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nega Berhe
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Elshafa Hassan Ahmed
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
| | - Robert A. Baiocchi
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
25
|
Wessels E, Albert E, Vreeswijk T, Claas ECJ, Giménez E, Reinhardt B, Sasaki MM, Navarro D. Multi-site performance evaluation of the Alinity m Molecular assay for quantifying Epstein-Barr virus DNA in plasma samples. J Clin Microbiol 2023; 61:e0047223. [PMID: 37728343 PMCID: PMC10654093 DOI: 10.1128/jcm.00472-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/07/2023] [Indexed: 09/21/2023] Open
Abstract
Detection and monitoring of acute infection or reactivation of Epstein-Barr virus (EBV) are critical for treatment decision-making and to reduce the risk of EBV-related malignancies and other associated diseases in immunocompromised individuals. The analytical and clinical performance of the Alinity m EBV assay was evaluated at two independent study sites; analytical performance was assessed by evaluating precision with a commercially available 5-member EBV verification panel, while the clinical performance of the Alinity m EBV assay was compared to the RealTime EBV assay and a laboratory-developed test (LDT) as the routine test of record (TOR). Analytical analysis demonstrated standard deviation (SD) between 0.08 and 0.13 Log IU/mL. A total of 300 remnant plasma specimens were retested with the Alinity m EBV assay, and results were compared to those of the TOR at the respective study sites (n = 148 with the RealTime EBV assay and n = 152 with the LDT EBV assay). Agreement between Alinity m EBV and RealTime EBV or LDT EBV assays had kappa values of 0.88 and 0.84, respectively, with correlation coefficients r of 0.956 and 0.912, while the corresponding observed mean bias was -0.02 and -0.19 Log IU/mL. The Alinity m EBV assay had a short median onboard turnaround time of 2:40 h. Thus, the Alinity m system can shorten the time to results and, therefore, to therapy.
Collapse
Affiliation(s)
- Els Wessels
- Leiden University Medical Center, Leiden, the Netherlands
| | - Eliseo Albert
- Hospital Clinico Universitario de Valencia, Valencia, Spain
| | - Tom Vreeswijk
- Leiden University Medical Center, Leiden, the Netherlands
| | | | - Estela Giménez
- Hospital Clinico Universitario de Valencia, Valencia, Spain
| | | | | | - David Navarro
- Hospital Clinico Universitario de Valencia, Valencia, Spain
| |
Collapse
|
26
|
Teshome S, Ahmed EH, Zealiyas K, Abubeker A, Tadesse F, Weigel C, Baiocchi RA, Abebe T. Genotypes Distribution of Epstein-Barr Virus among Lymphoma Patients in Ethiopia. Int J Mol Sci 2023; 24:13891. [PMID: 37762195 PMCID: PMC10531361 DOI: 10.3390/ijms241813891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpes virus associated with several human malignancies. Two main EBV genotypes (type 1 and type 2) distinguished by the differences in EBV nuclear antigens are known. Geographic variability in these genetic differences has been observed in the incidence of some EBV-related tumors. Here, we investigated the genetic variation of EBV in lymphoma specimens collected in Ethiopia. A total of 207 DNA samples were used for EBV detection and typing, and EBNA1 and EBNA3C genes were used to detect and subtype the EBV genome, respectively. EBV genotype 1 was detected in 52.2% of lymphoma patients. EBV genotype 2 was detected in 38.2% of the lymphoma patients, and 9.7% were coinfected by both EBV genotypes. Overall, 52.8% of the Hodgkin's lymphoma (HL) patients and 51.8% of non-Hodgkin's lymphoma (NHL) patients showed the presence of genotype 1. Meanwhile, 42.8% and 2.3% of HL patients and 35.8% and 12.4% of NHL patients showed EBV genotype 2 and both genotypes, respectively. Significant associations between the age groups and EBV genotypes were observed (p = 0.027). However, no significant association was seen between EBV genotypes and other sociodemographic and clinical characteristics. This study showed that the distribution of EBV genotype 1 was higher in Ethiopian lymphoma patients.
Collapse
Affiliation(s)
- Seifegebriel Teshome
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| | - Elshafa Hassan Ahmed
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (C.W.)
| | - Kidist Zealiyas
- Ethiopian Public Health Institute (EPHI), Addis Ababa 1242, Ethiopia;
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Abdulaziz Abubeker
- Department of Internal Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia; (A.A.); (F.T.)
| | - Fisihatsion Tadesse
- Department of Internal Medicine, Addis Ababa University, Addis Ababa 9086, Ethiopia; (A.A.); (F.T.)
| | - Christoph Weigel
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (C.W.)
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Robert A. Baiocchi
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; (E.H.A.); (C.W.)
- Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa 9086, Ethiopia;
| |
Collapse
|
27
|
Bernal KDE, Whitehurst CB. Incidence of Epstein-Barr virus reactivation is elevated in COVID-19 patients. Virus Res 2023; 334:199157. [PMID: 37364815 PMCID: PMC10292739 DOI: 10.1016/j.virusres.2023.199157] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
COVID-19, an infectious respiratory illness, is caused by infection with the SARS-CoV-2 virus. Individuals with underlying medical conditions are at increased risk of developing serious illnesses such as long COVID. Recent studies have observed Epstein-Barr virus (EBV) reactivation in patients with severe illness or long COVID, which may contribute to associated symptoms. We determined the frequency of EBV reactivation in COVID-19 positive patients compared to COVID-19 negative patients. 106 blood plasma samples were collected from COVID-19 positive and negative patients and EBV reactivation was determined by detection of EBV DNA and antibodies against EBV lytic genes in individuals with previous EBV infection. 27.1% (13/48) of EBV reactivations, based on qPCR detection of EBV genomes, are from the COVID positive group while only 12.5% (6/48) of reactivations belonged to the negative group. 20/52 (42.30%) of the COVID PCR negative group had detectable antibodies against SARS-CoV-2 nucleoprotein (Np); indicative of past infection. A significantly higher SARS-CoV-2 Np protein level was found in the COVID-19 positive group. In conclusion, COVID-19 patients experienced increased reactivation of EBV in comparison to COVID negative patients.
Collapse
Affiliation(s)
- Keishanne Danielle E Bernal
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Basic Medical Sciences Building, 15 Dana Rd. Valhalla, NY 10595; Westlake High School, 825 Westlake Dr., Thornwood, NY 10594
| | - Christopher B Whitehurst
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Basic Medical Sciences Building, 15 Dana Rd. Valhalla, NY 10595.
| |
Collapse
|
28
|
Fadlallah S, Bitar ER, Hussein H, Jallad MA, Matar GM, Rahal EA. The interplay between Epstein-Barr virus DNA and gut microbiota in the development of arthritis in a mouse model. Microbiol Spectr 2023; 11:e0204223. [PMID: 37615438 PMCID: PMC10581075 DOI: 10.1128/spectrum.02042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/02/2023] [Indexed: 08/25/2023] Open
Abstract
Epstein-Barr virus (EBV) DNA may influence the development of autoimmune diseases by increasing the production of proinflammatory cytokines. Such cytokines have been associated with inducing the dysbiosis of colonic microbiota, which, in turn, is a risk factor for autoimmune diseases such as rheumatoid arthritis (RA). Therefore, we investigated the role that EBV DNA may play in modulating the intestinal microbiota and consequent exacerbation of arthritis in a mouse model. Mice were treated with collagen (arthritis-inducing agent), EBV DNA and collagen, EBV DNA, or water. Fecal samples were collected from arthritic and control mice, and 16S rRNA sequencing was performed to determine the effect of EBV DNA on the composition of colonic microbiota. EBV DNA causes a change in the alpha diversity of the microbiota resulting in an increased Chao1 microbial richness and decreased Shannon diversity index in the RA mouse model. In addition, the abundance of particular genera/genus clusters was significantly altered among the various groups, with the EBV DNA-exacerbated arthritic group having the highest number of altered genera/genus cluster abundances. This group also had the highest number of cells co-expressing IL-17A, FOXP3, and IFNγ in the colons. Antimicrobial-cleared mice transplanted with fecal samples from EBV DNA-exacerbated arthritic mice showed a higher incidence and enhanced severity of RA compared to those transplanted with fecal samples from water or collagen-treated mice. IMPORTANCE Epstein-Barr virus (EBV) DNA alters the composition and diversity of the gut microbiota in a rheumatoid arthritis (RA) mouse model. These induced changes are associated with enhanced severity of symptoms. This better understanding of the various factors involved in the development of RA will possibly help in creating individualized treatments for RA patients including target mediators triggered by viral DNA. Given that a large swathe of the population harbors EBV, a significant proportion of subjects with arthritis may benefit from possible approaches that target EBV or mediators triggered by this virus.
Collapse
Affiliation(s)
- Sukayna Fadlallah
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Elio R. Bitar
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Hadi Hussein
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Mary-Ann Jallad
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
| | - Ghassan M. Matar
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Elias A. Rahal
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
29
|
Wang C, Ramasamy A, Verduzco-Gutierrez M, Brode WM, Melamed E. Acute and post-acute sequelae of SARS-CoV-2 infection: a review of risk factors and social determinants. Virol J 2023; 20:124. [PMID: 37328773 PMCID: PMC10276420 DOI: 10.1186/s12985-023-02061-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/02/2023] [Indexed: 06/18/2023] Open
Abstract
SARS-CoV-2 infection leading to Coronavirus Disease 2019 (COVID-19) has caused more than 762 million infections worldwide, with 10-30% of patients suffering from post-acute sequelae of SARS-CoV-2 infections (PASC). Initially thought to primarily affect the respiratory system, it is now known that SARS-CoV-2 infection and PASC can cause dysfunction in multiple organs, both during the acute and chronic stages of infection. There are also multiple risk factors that may predispose patients to worse outcomes from acute SARS-CoV-2 infection and contribute to PASC, including genetics, sex differences, age, reactivation of chronic viruses such as Epstein Barr Virus (EBV), gut microbiome dysbiosis, and behavioral and lifestyle factors, including patients' diet, alcohol use, smoking, exercise, and sleep patterns. In addition, there are important social determinants of health, such as race and ethnicity, barriers to health equity, differential cultural perspectives and biases that influence patients' access to health services and disease outcomes from acute COVID-19 and PASC. Here, we review risk factors in acute SARS-CoV-2 infection and PASC and highlight social determinants of health and their impact on patients affected with acute and chronic sequelae of COVID-19.
Collapse
Affiliation(s)
- Chumeng Wang
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Akshara Ramasamy
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Monica Verduzco-Gutierrez
- Department of Physical Medicine and Rehabilitation, University of Texas at San Antonio, San Antonio, TX, USA
| | - W Michael Brode
- Department of Internal Medicine, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
30
|
Salnikov MY, Fonseca GJ, Mymryk JS. Differences in the Tumor Microenvironment of EBV-Associated Gastric Cancers Revealed Using Single-Cell Transcriptome Analysis. Cancers (Basel) 2023; 15:3178. [PMID: 37370788 DOI: 10.3390/cancers15123178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with nearly 10% of gastric cancers (GCs). These EBV-associated GCs (EBVaGCs) are molecularly, histopathologically, and clinically distinct from EBV-negative GCs (EBVnGCs). While viral genes in EBVaGCs contribute to the carcinogenesis process, viral proteins also represent foreign antigens that could trigger enhanced immune responses compared to EBVnGCs. Despite prior investigations of the EBVaGC tumor microenvironment (TME), the cellular composition has not been thoroughly explored. In this study, cellular subpopulations overrepresented in EBVaGCs were identified and molecularly characterized. Genes consistently expressed across both bulk tumor and single-cell RNA sequencing data were highlighted, with the expression across the identified cellular subpopulations analyzed. As expected, based on existing histopathological analysis, EBVaGC is characterized by abundant lymphocytic infiltration of the stroma. Our molecular analysis identified three unique immune cell subpopulations in EBVaGC: T and B cells expressing high levels of proliferation markers and B cells expressing T cell features. The proliferating T cell cluster also expressed markers of follicular T helper cells. Overall, EBVaGC also exhibited unique features indicative of a higher inflammatory response. These substantial differences within the TME suggest that further detailed exploration of the cellular composition of EBVaGCs is needed, which may identify cellular subpopulations and phenotypes associated with patient outcomes.
Collapse
Affiliation(s)
- Mikhail Y Salnikov
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Gregory J Fonseca
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Quantitative Life Sciences Program, McGill University, Montreal, QC H3A 0G4, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- Department of Otolaryngology, Western University, London, ON N6A 5W9, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
| |
Collapse
|
31
|
Favoino E, Grapsi E, Barbuti G, Liakouli V, Ruscitti P, Foti C, Giacomelli R, Perosa F. Systemic sclerosis and primary biliary cholangitis share an antibody population with identical specificity. Clin Exp Immunol 2023; 212:32-38. [PMID: 36715304 PMCID: PMC10081109 DOI: 10.1093/cei/uxad012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Anti-centromere (ACA) and antimitochondrial antibodies (AMA) are specific for limited-cutaneous systemic sclerosis (lcSSc) and primary biliary cholangitis (PBC), respectively, and can coexist in up to 25 and 30% of SSc and PBC patients. Here, we evaluated whether anti-centromeric protein A (CENP-A) antibodies cross-react with mitochondrial antigens. To this end, sera from two lcSSc patients (pt1 and pt4), one of them (pt4) also affected by PBC, were used as the source of ACA, previously shown to recognize different groups of amino acids (motifs) in the CENP-A region spanning amino acids 1-17 (Ap1-17). Pt1 and pt4 Ap1-17-specific IgG were purified by affinity-chromatography on insolubilized Ap1-17-peptide column and tested by western blotting with nuclear and cytoplasmic protein extract from HeLa cells. Immunoreactive proteins were identified by mass spectrometry and validated by immunodot. The results showed that affinity-purified SSc/PBC pt4 anti-Ap1-17 and not SSc pt1 anti-Ap1-17 Ab, specifically cross-reacted with the E2 component of the mitochondrial pyruvate dehydrogenase complex (PDC-E2), the major mitochondrial autoantigen in PBC. Sequence homology analysis indicated that the motif A-x-x-P-x-A-P recognized by pt4 anti-Ap1-17 IgG and shared by CENP-A and PDC-E2, is also expressed by some members of the Human Herpesvirus family, suggesting that they may trigger the production of these cross-reacting antibodies.
Collapse
Affiliation(s)
- Elvira Favoino
- Department of Interdisciplinary Medicine, Rheumatic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, Bari, Italy
| | - Ettore Grapsi
- Department of Interdisciplinary Medicine, Rheumatic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, Bari, Italy
| | - Giovanna Barbuti
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Vasiliki Liakouli
- Department of Precision Medicine, Rheumatology Section, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, University of L’Aquila, L’Aquila, Italy
| | - Caterina Foti
- Department of Biomedical Science and Human Oncology, Unit of Dermatology, University of Bari Medical School, Bari, Italy
| | - Roberto Giacomelli
- Department of Medicine, Rheumatology and Immunology Unit, University of Rome “Campus Biomedico”, Rome, Italy
| | - Federico Perosa
- Department of Interdisciplinary Medicine, Rheumatic and Systemic Autoimmune Diseases Unit, University of Bari Medical School, Bari, Italy
| |
Collapse
|
32
|
Chapman J. Immunodeficiency-Associated Epstein-Barr Virus-Positive B-cell Lymphoproliferative Disorders. Surg Pathol Clin 2023; 16:213-231. [PMID: 37149357 DOI: 10.1016/j.path.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Sources of immune deficiency and dysregulation (IDD) are being increasingly recognized and defined, as are IDD-related B-cell lymphoproliferative lesions and lymphomas occurring in these patients. In this review, basic biology of Epstein-Barr virus (EBV) as it relates to classification of EBV-positive B-cell lymphoproliferative disorders (LPDs) is reviewed. Also discussed is the new paradigm of classification of IDD-related LPDs adopted by the fifth edition World Health Organization classification. IDD-related EBV-positive B-cell hyperplasias, LPDs, and lymphomas are discussed with particular attention to unifying and unique features that assist with recognition of these IDD-related lesions and their classification scheme.
Collapse
Affiliation(s)
- Jennifer Chapman
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami Hospital/Sylvester Comprehensive Cancer Center, 1400 Northwest 12th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
33
|
Abstract
Solid organ transplantation is a life-saving treatment for people with end-stage organ disease. Immune-mediated transplant rejection is a common complication that decreases allograft survival. Although immunosuppression is required to prevent rejection, it also increases the risk of infection. Some infections, such as cytomegalovirus and BK virus, can promote inflammatory gene expression that can further tip the balance toward rejection. BK virus and other infections can induce damage that resembles the clinical pathology of rejection, and this complicates accurate diagnosis. Moreover, T cells specific for viral infection can lead to rejection through heterologous immunity to donor antigen directly mediated by antiviral cells. Thus, viral infections and allograft rejection interact in multiple ways that are important to maintain immunologic homeostasis in solid organ transplant recipients. Better insight into this dynamic interplay will help promote long-term transplant survival.
Collapse
Affiliation(s)
- Lauren E Higdon
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Jane C Tan
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Jonathan S Maltzman
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
- Geriatric Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
34
|
Thakur A, Kumar M. Integration of Human and Viral miRNAs in Epstein-Barr Virus-Associated Tumors and Implications for Drug Repurposing. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:93-108. [PMID: 36927073 DOI: 10.1089/omi.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Epstein-Barr virus (EBV) is associated with several tumors, and has substantial relevance for public health. Therapeutics innovation for EBV-related disorders is much needed. In this context, miRNAs are noncoding RNA molecules that play vital roles in EBV infection. miRNA-Seq and RNA-Seq data for EBV-associated clinical samples and cell lines have been generated, but their detailed integrative analyses, and exploitation for drug repurposing against EBV are lacking. Hence, we identified and analyzed the differentially expressed miRNAs (DEmiRs) in EBV-infected cell lines (28) and infected (28) and uninfected human tissue (20) samples using an in-house pipeline. We found significantly enriched host miRNAs like hsa-mir-3651, hsa-mir-1248, and hsa-mir-29c-3p in EBV-infected samples from EBV-associated nasopharyngeal carcinoma and Hodgkin's lymphoma, among others. Furthermore, we also identified significantly enriched novel miRNAs such as hsa-mir-29c-3p, hsa-mir-3651, and hsa-mir-98-3p, which were not previously reported in EBV-related tumors. Differentially expressed mRNAs (DEMs) were identified in EBV-infected cell lines (21) and uninfected human tissue (14) samples. We predicted and selected 1572 DEMs (upregulated) that are targeted by 547 DEmiRs (downregulated). These were further classified into essential (870) and nonessential (702) genes. Moreover, a miRNA-mRNA network was developed for the hub miRNAs. Importantly, we used the DEMs during EBV latent infection types I, II, and III to identify the candidate drugs for repurposing: Glyburide, Levodopa, Nateglinide, and Stiripentol, among others. To the best of our knowledge, this is the first integrative analyses that identified DEmiRs and DEMs as potential therapeutic targets and predicted drugs as potential candidates for repurposing against EBV-related tumors.
Collapse
Affiliation(s)
- Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
35
|
Duchen D, Vergara C, Thio CL, Kundu P, Chatterjee N, Thomas DL, Wojcik GL, Duggal P. Pathogen exposure misclassification can bias association signals in GWAS of infectious diseases when using population-based common control subjects. Am J Hum Genet 2023; 110:336-348. [PMID: 36649706 PMCID: PMC9943744 DOI: 10.1016/j.ajhg.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Genome-wide association studies (GWASs) have been performed to identify host genetic factors for a range of phenotypes, including for infectious diseases. The use of population-based common control subjects from biobanks and extensive consortia is a valuable resource to increase sample sizes in the identification of associated loci with minimal additional expense. Non-differential misclassification of the outcome has been reported when the control subjects are not well characterized, which often attenuates the true effect size. However, for infectious diseases the comparison of affected subjects to population-based common control subjects regardless of pathogen exposure can also result in selection bias. Through simulated comparisons of pathogen-exposed cases and population-based common control subjects, we demonstrate that not accounting for pathogen exposure can result in biased effect estimates and spurious genome-wide significant signals. Further, the observed association can be distorted depending upon strength of the association between a locus and pathogen exposure and the prevalence of pathogen exposure. We also used a real data example from the hepatitis C virus (HCV) genetic consortium comparing HCV spontaneous clearance to persistent infection with both well-characterized control subjects and population-based common control subjects from the UK Biobank. We find biased effect estimates for known HCV clearance-associated loci and potentially spurious HCV clearance associations. These findings suggest that the choice of control subjects is especially important for infectious diseases or outcomes that are conditional upon environmental exposures.
Collapse
Affiliation(s)
- Dylan Duchen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Candelaria Vergara
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Chloe L Thio
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Prosenjit Kundu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David L Thomas
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Wojcik
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
36
|
Gomes K, Goldman RD. Corticosteroids for infectious mononucleosis. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2023; 69:101-102. [PMID: 36813516 PMCID: PMC9945889 DOI: 10.46747/cfp.6902101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
QUESTION Infectious mononucleosis (IM) is a common viral infection year round, and we see patients with it in our family medicine clinic frequently. With fatigue, fever, pharyngitis, and cervical or generalized lymphadenopathy causing prolonged illness and school absences, we always look for treatments that will shorten the duration of symptoms. Does treatment with corticosteroids benefit these children? ANSWER Current evidence points to small and inconsistent benefits when using corticosteroids for symptom relief in children with IM. Corticosteroids alone or in combination with antiviral medications should not be given to children for common symptoms of IM. Corticosteroids should be reserved for those with impending airway obstruction, autoimmune complications, or other severe circumstances.
Collapse
|
37
|
Trinh CTH, Tran DN, Nguyen LTT, Tran NT, Nguyen MTG, Nguyen VTP, Vu NTH, Dang KD, Van Vo K, Chau HC, Phan PTP, Truc Phuong MH. LMP1-EBV Gene Deletion Mutations and HLA Genotypes of Nasopharyngeal Cancer Patients in Vietnam. PATHOPHYSIOLOGY 2023; 30:1-12. [PMID: 36649009 PMCID: PMC9844464 DOI: 10.3390/pathophysiology30010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/14/2022] [Accepted: 01/01/2023] [Indexed: 01/13/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common cancer among head and neck cancers in Vietnam. We aimed to identify the rate of a 30 bp deletion mutation of the LMP1-EBV gene in nasopharyngeal biopsy tissue samples, the HLA genotypes of NPC patients, and the relationship between these two targets. Patients with NPC at Can Tho Oncology Hospital from September 2014 to December 2018 were selected. A length of 30 bp of the del-LMP1-EBV gene was analyzed using a PCR technique, and the HLA genotypes in patients' blood samples were analyzed with PCR-SSO technology. HLA-B*15 gene carriers had the highest risk of 30 bp LMP1-EBV gene deletion mutation, which was found in 51 out of 70 patients (72.9%). Carriers of the HLA-B*15 allele had a 4.6-fold increased risk of a 30 bp del-LMP1-EBV gene compared with non-carriers of this allele. The initial identification of NPC was related to the 30 bp del-LMP1-EBV gene and high frequencies of the -A*02, -B*15, -DRB1*12, -DQB1*03, and -DQA1*01 HLA alleles. Our study results suggest an association of the 30 bp del-LMP1-EBV gene and the HLA-B*15 allele with NPC susceptibility.
Collapse
Affiliation(s)
- Cua Thi Hong Trinh
- Department of Pathophysiology and Immunology, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Dung Ngoc Tran
- Department of Pathophysiology and Immunology, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Linh Thi Thao Nguyen
- Department of Pathophysiology and Immunology, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Nghia Tin Tran
- Department of Pathophysiology and Immunology, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Minh Trinh Gia Nguyen
- Department of Pathophysiology and Immunology, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Vy Tran Phuong Nguyen
- Department of Pathophysiology and Immunology, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Nhung Thi Hong Vu
- Department of Pathophysiology and Immunology, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Khanh Duy Dang
- Department of Pharmacology and Clinical Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| | - Kha Van Vo
- Can Tho Oncology Hospital, Can Tho 900000, Vietnam
| | - Hoa Chieu Chau
- Can Tho Ear Nose Throat Hospital, Can Tho 900000, Vietnam
| | - Phi Thi Phi Phan
- Department of Physiopathology & Immunology, Ha Noi Medical University, Ha Noi 100000, Vietnam
| | - Mai Huynh Truc Phuong
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Vietnam
| |
Collapse
|
38
|
Enose-Akahata Y, Wang L, Almsned F, Johnson KR, Mina Y, Ohayon J, Wang XW, Jacobson S. The repertoire of CSF antiviral antibodies in patients with neuroinflammatory diseases. SCIENCE ADVANCES 2023; 9:eabq6978. [PMID: 36598996 PMCID: PMC9812372 DOI: 10.1126/sciadv.abq6978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Although various viruses have been proposed to contribute to MS pathology, the etiology of MS remains unknown. Since intrathecal antibody synthesis is well documented in chronic viral infection and neuroinflammatory diseases, we hypothesized whether the patterns of antigen-specific antibody responses associated with various viral exposures may define patients with CNS chronic immune dysregulation. The pan-viral antibody profiling in cerebrospinal fluid (CSF) and serum of patients with MS showed significant differences from those in healthy volunteers and a pattern of antibody responses against multiple viruses, including the previously identified Epstein-Barr virus. These findings demonstrate that virus-specific antibody signatures might be able to reflect disease-associated inflammatory milieu in CSF of subjects with neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yoshimi Enose-Akahata
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Limin Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fahad Almsned
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kory R. Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yair Mina
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joan Ohayon
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Ahmed N, Abusalah MAHA, Farzand A, Absar M, Yusof NY, Rabaan AA, AlSaihati H, Alshengeti A, Alwarthan S, Alsuwailem HS, Alrumaih ZA, Alsayyah A, Yean CY. Updates on Epstein-Barr Virus (EBV)-Associated Nasopharyngeal Carcinoma: Emphasis on the Latent Gene Products of EBV. Medicina (B Aires) 2022; 59:medicina59010002. [PMID: 36676626 PMCID: PMC9863520 DOI: 10.3390/medicina59010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an uncommon type of malignancy/cancer worldwide. However, NPC is an endemic disease in southeast Asia and southern China and the reasons behind the underlying for such changes are unclear. Even though the Epstein-Barr infection (EBV) has been suggested as an important reason for undistinguishable NPC, the EBV itself is not adequate to source this type of cancer. The risk factors, for example, genetic susceptibility, and environmental factors might be associated with EBV to undertake a part in the NPC carcinogenesis. Normal healthy people have a memory B cell pool where the EBV persists, and any disturbance of this connection leads to virus-associated B cell malignancies. Less is known about the relationship between EBV and epithelial cell tumors, especially the EBV-associated nasopharyngeal carcinoma (EBVaNPC) and EBV-associated gastric carcinoma (EBVaGC). Currently, it is believed that premalignant genetic changes in epithelial cells contribute to the aberrant establishment of viral latency in these tumors. The early and late phases of NPC patients' survival rates vary significantly. The presence of EBV in all tumor cells presents prospects for the development of innovative therapeutic and diagnostic techniques, despite the fact that the virus's exact involvement in the carcinogenic process is presently not very well known. EBV research continues to shed light on the carcinogenic process, which is important for a more comprehensive knowledge of tumor etiology and the development of targeted cancer therapeutics. In order to screen for NPC, EBV-related biomarkers have been widely used in a few high-incidence locations because of their close associations with the risks of NPC. The current review highlights the scientific importance of EBV and its possible association with NPC.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | - Anam Farzand
- Department of Allied Health Science, Superior University, Lahore 54000, Pakistan
| | - Muhammad Absar
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Haifa S. Alsuwailem
- Department of Medicine, College of Medicine, Princess Norah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Zainb A. Alrumaih
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
40
|
Agwati EO, Oduor CI, Ayieko C, Ong’echa JM, Moormann AM, Bailey JA. Profiling genome-wide recombination in Epstein Barr virus reveals type-specific patterns and associations with endemic-Burkitt lymphoma. Virol J 2022; 19:208. [PMID: 36482473 PMCID: PMC9733152 DOI: 10.1186/s12985-022-01942-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endemic Burkitt lymphoma (eBL) is potentiated through the interplay of Epstein Barr virus (EBV) and holoendemic Plasmodium falciparum malaria. To better understand EBV's biology and role in eBL, we characterized genome-wide recombination sites and patterns as a source of genetic diversity in EBV genomes in our well-defined population of eBL cases and controls from Western Kenya. METHODS EBV genomes representing 54 eBL cases and 32 healthy children from the same geographic region in Western Kenya that we previously sequenced were analyzed. Whole-genome multiple sequence alignment, recombination analyses, and phylogenetic inference were made using multiple alignment with fast Fourier transform, recombination detection program 4, and molecular evolutionary genetics analysis. RESULTS We identified 28 different recombination events and 71 (82.6%) of the 86 EBV genomes analyzed contained evidence of one or more recombinant segments. Associated recombination breakpoints were found to occur in a total of 42 different genes, with only 7 (16.67%) being latent genes. Recombination events were major drivers of clustering within genome-wide phylogenetic trees. The occurrence of recombination segments was comparable between genomes from male and female participants and across age groups. More recombinant segments were found in EBV type 1 genomes (p = 6.4e - 06) and the genomes from the eBLs (p = 0.037). Two recombination events were enriched in the eBLs; event 47 (OR = 4.07, p = 0.038) and event 50 (OR = 14.24, p = 0.012). CONCLUSIONS EBV genomes have extensive evidence of recombination likely acquired progressively and cumulatively over time. Recombination patterns display a heterogeneous occurrence rate across the genome with enrichment in lytic genes. Overall, recombination appears to be a major evolutionary force impacting EBV diversity and genome structure with evidence of the association of specific recombinants with eBL.
Collapse
Affiliation(s)
- Eddy O. Agwati
- grid.442486.80000 0001 0744 8172Department of Zoology, Maseno University, Maseno, Kenya ,grid.33058.3d0000 0001 0155 5938Center for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Cliff I. Oduor
- grid.40263.330000 0004 1936 9094Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903 USA
| | - Cyrus Ayieko
- grid.442486.80000 0001 0744 8172Department of Zoology, Maseno University, Maseno, Kenya
| | - John Michael Ong’echa
- grid.33058.3d0000 0001 0155 5938Center for Global Health Research (CGHR), Kenya Medical Research Institute, Kisumu, Kenya
| | - Ann M. Moormann
- grid.168645.80000 0001 0742 0364Program in Molecular Medicine and the Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Jeffrey A. Bailey
- grid.40263.330000 0004 1936 9094Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903 USA
| |
Collapse
|
41
|
Abstract
Epstein-Barr virus (EBV) is a lymphotropic virus responsible for numerous epithelial and lymphoid cell malignancies, including gastric carcinoma, Hodgkin's lymphoma, nasopharyngeal carcinoma, and Burkitt lymphoma. Hundreds of thousands of people worldwide get infected with this virus, and in most cases, this viral infection leads to cancer. Although researchers are trying to develop potential vaccines and drug therapeutics, there is still no effective vaccine to combat this virus. In this study, the immunoinformatics approach was utilized to develop a potential multiepitope subunit vaccine against the two most common subtypes of EBV, targeting three of their virulent envelope glycoproteins. Eleven cytotoxic T lymphocyte (CTL) epitopes, 11 helper T lymphocyte (HTL) epitopes, and 10 B-cell lymphocyte (BCL) epitopes were predicted to be antigenic, nonallergenic, nontoxic, and fully conserved among the two subtypes, and nonhuman homologs were used for constructing the vaccine after much analysis. Later, further validation experiments, including molecular docking with different immune receptors (e.g., Toll-like receptors [TLRs]), molecular dynamics simulation analyses (including root means square deviation [RMSD], root mean square fluctuation [RMSF], radius of gyration [Rg], principal-component analysis [PCA], dynamic cross-correlation [DCC], definition of the secondary structure of proteins [DSSP], and Molecular Mechanics Poisson-Boltzmann Surface Area [MM-PBSA]), and immune simulation analyses generated promising results, ensuring the safe and stable response of the vaccine with specific immune receptors after potential administration within the human body. The vaccine's high binding affinity with TLRs was revealed in the docking study, and a very stable interaction throughout the simulation proved the potential high efficacy of the proposed vaccine. Further, in silico cloning was also conducted to design an efficient mass production strategy for future bulk industrial vaccine production. IMPORTANCE Epstein-Barr virus (EBV) vaccines have been developing for over 30 years, but polyphyletic and therapeutic vaccines have failed to get licensed. Our vaccine surpasses the limitations of many such vaccines and remains very promising, which is crucial because the infection rate is higher than most viral infections, affecting a whopping 90% of the adult population. One of the major identifications covers a holistic analysis of populations worldwide, giving us crucial information about its effectiveness for everyone's unique immunological system. We targeted three glycoproteins that enhance the virulence of the virus to design an epitope-based polyvalent vaccine against two different strains of EBV, type 1 and 2. Our methodology in this study is nonconventional yet swift to show effective results while designing vaccines.
Collapse
|
42
|
Solomai TV, Malakhova MV, Shitikov EA, Bespyatykh DA, Veselovskii VA, Semenenko TA, Smirnova DI, Gracheva AV, Faizuloev EB. Epstein–Barr Virus: Evaluation of gp350 and EBNA2 Gene Variability. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2022. [DOI: 10.3103/s0891416822030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Epstein–Barr Virus and Human Herpesvirus-6 Reactivation in Acute COVID-19 Patients. Viruses 2022; 14:v14091872. [PMID: 36146679 PMCID: PMC9504756 DOI: 10.3390/v14091872] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 01/08/2023] Open
Abstract
Beyond their pulmonary disease, many COVID-19 patients experience a complex constellation of characteristics, including hyperinflammatory responses, autoimmune disorders, and coagulopathies. However, the pathogenesis of these aspects of COVID-19 is obscure. More than 90% of people are latently infected with the lymphotropic herpesviruses Epstein–Barr Virus (EBV) and/or Human Herpesvirus-6 (HHV-6). Some of the inflammatory features of COVID-19 resemble clinical syndromes seen during EBV and HHV-6 infection, and these latent viruses can be reactivated by inflammatory mediators. We hypothesized that EBV and HHV-6 reactivation might be a common feature of early COVID-19, particularly in patients with more inflammation. We tested for EBV and HHV-6 reactivation in 67 patients acutely hospitalized with COVID-19 using previously validated quantitative PCR assays on the plasma. In our cohort, we found that 15/67 (22.4%) patients had detectable EBV and 3/67 (4.5%) had detectable HHV-6. This frequency of activation is somewhat more than the frequency reported for some healthy cohorts, such as blood donors and other healthy control cohorts. There was no association between EBV or HHV-6 and markers indicative of more inflammatory disease. We conclude that EBV and HHV-6 activation at about day 7 of hospitalization occurred in a modest fraction of our cohort of COVID-19 patients and was not associated with high levels of inflammation. In the modest fraction of patients, EBV and HHV-6 reactivation could contribute to some features of acute disease and pre-disposition to post-acute sequelae in a subset of patients.
Collapse
|
44
|
Alves P, Larrate M, Garcia-Costa A, Rohan P, Gama BE, Abdelhay E, Delatorre E, Hassan R. Spatial Dispersal of Epstein-Barr Virus in South America Reveals an African American Variant in Brazilian Lymphomas. Viruses 2022; 14:v14081762. [PMID: 36016384 PMCID: PMC9412316 DOI: 10.3390/v14081762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Epstein−Barr virus (EBV) is a saliva-borne ɣ-herpesvirus associated with benign and malignant lymphoproliferation. EBV-mediated tumorigenic mechanisms are not fully understood and may be related to viral genetic variations. In this work, we characterize the genetic diversity of EBV from Brazil, assessing 82 samples derived from saliva from asymptomatic carriers (n = 45), biopsies of benign reactive hyperplasia (n = 4), and lymphomas (n = 33). Phylogenetic and phylogeographic analysis of the entire coding region of the LMP-1 was performed. Additionally, type 1/type 2 distinction by the EBNA3C gene and Zp variants were evaluated. Our results revealed a high diversity of EBV in Brazil, with the co-circulation of four main clades, described here as: Mediterranean (40.2%, n = 33), Raji/Argentine (39%, n = 32), B95-8 (6.1%, n = 5), and Asian II (1.2%, n = 1). The Raji/Argentine and Mediterranean clades were the most prevalent in South America (45% and 28%, respectively). The Raji/Argentine clade was associated with polymorphisms I124V/I152L, del30 bp, and ins15 bp (p < 0.0001, to all clades) and with a high haplotype diversity related to EBV type and Zp variants. We found that a Raji/Argentine subclade spread primarily from Brazil and later to other South American countries. Although no LMP1 variant has been directly associated with disease, the Raji/Argentine clade was predominantly clustered with lymphomas (61%) and the Mediterranean clade with non-malignant cases (59%) (p = 0.1). These data highlight the high genetic diversity of EBV circulating in Brazil, calling attention to a Raji-related variant with great recombination potential in Brazilian lymphomas.
Collapse
Affiliation(s)
- Paula Alves
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
- Correspondence: (P.A.); (E.D.)
| | - Marcella Larrate
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| | - Aruanã Garcia-Costa
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| | - Paulo Rohan
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| | - Bianca Ervatti Gama
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| | - Eliana Abdelhay
- Laboratório de Células Tronco, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| | - Edson Delatorre
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre 29500-000, Brazil
- Correspondence: (P.A.); (E.D.)
| | - Rocio Hassan
- Laboratório de Oncovirologia, Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer “José Alencar Gomes da Silva” (INCA), Ministério da Saúde, Rio de Janeiro 20230-130, Brazil
| |
Collapse
|
45
|
Rapid single-cell identification of Epstein-Barr virus-specific T-cell receptors for cellular therapy. Cytotherapy 2022; 24:818-826. [PMID: 35525797 DOI: 10.1016/j.jcyt.2022.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Epstein-Barr virus (EBV) is associated with solid and hematopoietic malignancies. After allogeneic stem cell transplantation, EBV infection or reactivation represents a potentially life-threatening condition with no specific treatment available in clinical routine. In vitro expansion of naturally occurring EBV-specific T cells for adoptive transfer is time-consuming and influenced by the donor's T-cell receptor (TCR) repertoire and requires a specific memory compartment that is non-existent in seronegative individuals. The authors present highly efficient identification of EBV-specific TCRs that can be expressed on human T cells and recognize EBV-infected cells. METHODS AND RESULTS Mononuclear cells from six stem cell grafts were expanded in vitro with three HLA-B*35:01- or four HLA-A*02:01-presented peptides derived from six EBV proteins expressed during latent and lytic infection. Epitope-specific T cells expanded on average 42-fold and were single-cell-sorted and TCRαβ-sequenced. To confirm specificity, 11 HLA-B*35:01- and six HLA-A*02:01-restricted dominant TCRs were expressed on reporter cell lines, and 16 of 17 TCRs recognized their presumed target peptides. To confirm recognition of virus-infected cells and assess their value for adoptive therapy, three selected HLA-B*35:01- and four HLA-A*02:01-restricted TCRs were expressed on human peripheral blood lymphocytes. All TCR-transduced cells recognized EBV-infected lymphoblastoid cell lines. CONCLUSIONS The authors' approach provides sets of EBV epitope-specific TCRs in two different HLA contexts. Resulting cellular products do not require EBV-seropositive donors, can be adjusted to cell subsets of choice with exactly defined proportions of target-specific T cells, can be tracked in vivo and will help to overcome unmet clinical needs in the treatment and prophylaxis of EBV reactivation and associated malignancies.
Collapse
|
46
|
Mueller M, Poller W, Klingel K, Neumann T, Landmesser U, Heidecker B. Eosinophilic granulomatosis with polyangiitis (EGPA) with low activity EBV replication during the COVID 19 pandemic. IJC HEART & VASCULATURE 2022; 39:100968. [PMID: 35165658 PMCID: PMC8828429 DOI: 10.1016/j.ijcha.2022.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Melina Mueller
- Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, German
| | - Wolfgang Poller
- Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, German
| | - Karin Klingel
- Cardiopathology, Institute for Pathology, University Hospital Tübingen, Tübingen, Germany
| | | | - Ulf Landmesser
- Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Corresponding author.
| |
Collapse
|
47
|
Bian J, Niu Y, Ma Y, Chen F, Ma N. A Review on the Application of PD-1 Blockade in EBV-Associated Nasopharyngeal Carcinoma Immunotherapy. Appl Bionics Biomech 2022; 2022:8537966. [PMID: 35126664 PMCID: PMC8813251 DOI: 10.1155/2022/8537966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Epstein-Barr virus (EBV) linked with nasopharyngeal carcinoma (NPC) is considered to be one of the most prevalent head and neck malignancies in East and Southeast Asia. Although radiotherapy and chemotherapy are effective treatments for NPC, they have immunosuppressive effects. Immunotherapy has got considerable attention of clinicians for cancer treatment in recent years due to proven success of PD-1/PD-L 1 inhibition in solid tumors trials. The distinct immunological environment of EBV-associated NPC presents a reasonable therapeutic target for PD-1/PD-L 1 inhibition. Immune checkpoint blockade therapy targeting the programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L 1) receptors have shown efficacy in early phase I clinical trials, with ongoing phase III clinical trials. Herein, we have extensively addressed the role of the PD-1/PD-L1 axis in the immunotherapy of EBV-associated NPC. Immunotherapeutic strategies are anticipated to enter mainstream clinical practise and provide long-term remissions in patients with severe NPC.
Collapse
Affiliation(s)
- Jin Bian
- Department of Otorhinolaryngology, The Central Hospital of Panzhihua, Panzhihua, Sichuan 617000, China
| | - Yan Niu
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, China
| | - Yanli Ma
- Department of Otorhinolaryngology, The Central Hospital of Panzhihua, Panzhihua, Sichuan 617000, China
| | - Fuhua Chen
- Department of Otorhinolaryngology, The Central Hospital of Panzhihua, Panzhihua, Sichuan 617000, China
| | - Ning Ma
- Department of Otorhinolaryngology, The Central Hospital of Panzhihua, Panzhihua, Sichuan 617000, China
| |
Collapse
|
48
|
Epstein–Barr Virus (EBV) Genotypes Associated with the Immunopathological Profile of People Living with HIV-1: Immunological Aspects of Primary EBV Infection. Viruses 2022; 14:v14020168. [PMID: 35215762 PMCID: PMC8880155 DOI: 10.3390/v14020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The aim of the present study was to evaluate the immunological profile of adult HIV-1+ patients coinfected with primary Epstein–Barr virus (EBV) infection who were free of antiretroviral drugs and inhabitants of the Brazilian Amazon region. Materials and methods: Primary EBV infection was screened by the semiquantitative detection of IgM and IgG anti-VCA. Genotypes were determined by conventional PCR. EBV and HIV viral load (VL) were quantified by real-time PCR. Cytokine dosage and cell quantification were performed by cytometry. Results: Only HIV-1+ individuals had primary EBV infection (7.12%). The EBV-1 genotype was the most prevalent (47.37%). The VL of HIV-1 was lower in the HIV/EBV-2 group. CD4+ T lymphocytes were inversely proportional to the VL of EBV in HIV/EBV-1/2 multi-infected patients. The HIV/EBV-2 group had the lowest cytokine levels, especially IFN-γ and IL-4. Different correlations were proposed for each coinfection. The late search for specific care related to HIV infection directly affected the cytokine profile and the number of CD8+ T lymphocytes. Symptoms were associated with the increase in VL of both viruses and cytokine profile. Conclusions: Different immunological profiles were associated with EBV genotypes in primary infection, with EBV-2 being more frequent in patients with low levels of HIV viral load. With late infection monitoring and consequent delay in the initiation of HAART, clinical changes and effects on the maintenance of the immune response were observed.
Collapse
|
49
|
Venkataraman T, Valencia C, Mangino M, Morgenlander W, Clipman SJ, Liechti T, Valencia A, Christofidou P, Spector T, Roederer M, Duggal P, Larman HB. Analysis of antibody binding specificities in twin and SNP-genotyped cohorts reveals that antiviral antibody epitope selection is a heritable trait. Immunity 2022; 55:174-184.e5. [PMID: 35021055 PMCID: PMC8852220 DOI: 10.1016/j.immuni.2021.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 01/13/2023]
Abstract
Human immune responses to viral infections are highly variable, but the genetic factors that contribute to this variability are not well characterized. We used VirScan, a high-throughput epitope scanning technology, to analyze pan-viral antibody reactivity profiles of twins and SNP-genotyped individuals. Using these data, we determined the heritability and genomic loci associated with antibody epitope selection, response breadth, and control of Epstein-Barr virus (EBV) viral load. 107 EBV peptide reactivities were heritable and at least two Epstein-Barr nuclear antigen 2 (EBNA-2) reactivities were associated with variants in the MHC class II locus. We identified an EBV serosignature that predicted viral load in peripheral blood mononuclear cells and was associated with variants in the MHC class I locus. Our study illustrates the utility of epitope profiling to investigate the genetics of pathogen immunity, reports heritable features of the antibody response to viruses, and identifies specific HLA loci important for EBV epitope selection.
Collapse
Affiliation(s)
- Thiagarajan Venkataraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Cristian Valencia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King’s College of London, London, UK,NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London SE1 9RT, UK
| | - William Morgenlander
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Steven J. Clipman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Ana Valencia
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Paraskevi Christofidou
- Department of Twin Research & Genetic Epidemiology, King’s College of London, London, UK
| | - Tim Spector
- Department of Twin Research & Genetic Epidemiology, King’s College of London, London, UK
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA,Lead contact,Correspondence: (H.B.L)
| |
Collapse
|
50
|
Epstein-Barr Virus Infection and Infectious Mononucleosis. Fam Med 2022. [DOI: 10.1007/978-3-030-54441-6_179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|