1
|
Dasgupta S, Bhaumik P. Unraveling the Molecular Architecture of Mosquito D1-Like Dopamine Receptors: Insights Into Ligand Binding and Structural Dynamics for Insecticide Development. Proteins 2025; 93:1157-1170. [PMID: 39825718 DOI: 10.1002/prot.26783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/21/2024] [Accepted: 12/09/2024] [Indexed: 01/20/2025]
Abstract
Vector-borne diseases pose a severe threat to human life, contributing significantly to global mortality. Understanding the structure-function relationship of the vector proteins is pivotal for effective insecticide development due to their involvement in drug resistance and disease transmission. This study reports the structural and dynamic features of D1-like dopamine receptors (DARs) in disease-causing mosquito species, such as Aedes aegypti , Culex quinquefasciatus , Anopheles gambiae , and Anopheles stephensi. Through molecular modeling and simulations, we describe the common structural fold of mosquito DARs within the G-protein-coupled receptor family, highlighting the importance of an orthosteric and enlarged binding pocket. The orthosteric binding pocket, resembling a cage-like structure, is situated ~15 Å deep within the protein, with two serine residues forming the roof and an aspartate residue, along with two conserved water molecules (W1 and W2), forming the floor. The side walls are composed of two phenylalanine residues on one side and a valine residue on the other. The antagonist binding site, an enlarged binding pocket (EBP) near the entrance cavity, can accommodate ligands of varying sizes. The binding energy of dopamine is observed to be ~2-3 kcal/mol higher than that of the antagonist molecules amitriptyline, asenapine, and flupenthixol in mosquito DARs. These antagonist molecules bind to EBP, which obstructs dopamine movement toward the active site, thereby inhibiting signal transduction. Our findings elucidate the molecular architecture of the binding pockets and the versatility of DARs in accommodating diverse ligands, providing a foundational framework for future drug and insecticide development.
Collapse
Affiliation(s)
- Subrata Dasgupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
2
|
Perlin MH, Poulin R, de Bekker C. Invasion of the four kingdoms: the parasite journey across plant and non-plant hosts. Biol Rev Camb Philos Soc 2025; 100:936-968. [PMID: 39616537 DOI: 10.1111/brv.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 03/08/2025]
Abstract
Parasites have a rich and long natural history among biological entities, and it has been suggested that parasites are one of the most significant factors in the evolution of their hosts. However, it has been emphasized less frequently how co-evolution has undoubtedly also shaped the paths of parasites. It may seem safe to assume that specific differences among the array of potential hosts for particular parasites have restricted and diversified their evolutionary pathways and strategies for survival. Nevertheless, if one looks closely enough at host and parasite, one finds commonalities, both in terms of host defences and parasite strategies to out-manoeuvre them. While such analyses have been the source of numerous reviews, they are generally limited to interactions between, at most, one kingdom of parasite with two kingdoms of host (e.g. similarities in animal and plant host responses against fungi). With the aim of extending this view, we herein critically evaluate the similarities and differences across all four eukaryotic host kingdoms (plants, animals, fungi, and protists) and their parasites. In doing so, we show that hosts tend to share common strategies for defence, including both physical and behavioural barriers, and highly evolved immune responses, in particular innate immunity. Parasites have, similarly, evolved convergent strategies to counter these defences, including mechanisms of active penetration, and evading the host's innate and/or adaptive immune responses. Moreover, just as hosts have evolved behaviours to avoid parasites, many parasites have adaptations to manipulate host phenotype, physiologically, reproductively, and in terms of behaviour. Many of these strategies overlap in the host and parasite, even across wide phylogenetic expanses. That said, specific differences in host physiology and immune responses often necessitate different adaptations for parasites exploiting fundamentally different hosts. Taken together, this review facilitates hypothesis-driven investigations of parasite-host interactions that transcend the traditional kingdom-based research fields.
Collapse
Affiliation(s)
- Michael H Perlin
- Department of Biology, Program on Disease Evolution, University of Louisville, Louisville, Kentucky, 40208, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Charissa de Bekker
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584CH, Utrecht, the Netherlands
| |
Collapse
|
3
|
Xiao Y, Lei C, Wang X, Batool R, Yin F, Peng Z, Jing X, Li Z. Foraging in the darkness: Highly selective tuning of below-ground larval olfaction to Brassicaceae volatiles in striped flea beetle. INSECT MOLECULAR BIOLOGY 2025; 34:151-161. [PMID: 39306699 DOI: 10.1111/imb.12960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/16/2024] [Indexed: 01/11/2025]
Abstract
The olfactory system of above-ground insects is among the best described perceptual architectures. However, remarkably little is known about how below-ground insects navigate in the dark for foraging. Here, we investigated host plant preferences, olfactory sensilla and characterise olfactory proteins in below-ground larvae of the striped flea beetle (SFB) Phyllotreta striolata Fabricius (Coleoptera: Chrysomelidae). Both the adults and larvae of this coleopteran pest cause serious damage to Brassicaceous crops above and below ground, respectively. To elucidate the role of olfactory system in host location of below-ground larvae, we initially demonstrated that SFB larvae distinctly favoured Brassicaceae over other plant families by two-choice behavioural bioassay. Subsequently, scanning electron microscopy of sensilla in SFB larval head showed a significant reduction in the number of olfactory sensilla in larvae compared with adults. However, essential olfactory sensilla such as sensilla basiconica are underscoring the indispensability of the larval olfactory system. We selected four larval-specific odorant binding proteins for functional validation from our previous transcriptome data. Functional studies revealed that PstrOBP23 exhibits robust binding affinity to 24 volatiles of Brassicaceae plants, including seven isothiocyanate compounds. This suggests a pivotal role of PstrOBP23 in the foraging behaviour of the larvae below the ground. Moreover, two ligands displaying strong binding capacity exhibit apparent attractive or repellent activity towards SFB larvae. Our findings provide a crucial insight into the olfactory system of below-ground larvae in SFB, highlighting the highly selective tuning of larvae specific OBP to host plant volatiles. These results offer potential avenues for developing effective pest control strategies against SFB.
Collapse
Affiliation(s)
- Yong Xiao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunmei Lei
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xue Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Raufa Batool
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fei Yin
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhengke Peng
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiangfeng Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhenyu Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
4
|
Al-Osaimi HM, Kanan M, Marghlani L, Al-Rowaili B, Albalawi R, Saad A, Alasmari S, Althobaiti K, Alhulaili Z, Alanzi A, Alqarni R, Alsofiyani R, Shrwani R. A systematic review on malaria and dengue vaccines for the effective management of these mosquito borne diseases: Improving public health. Hum Vaccin Immunother 2024; 20:2337985. [PMID: 38602074 PMCID: PMC11017952 DOI: 10.1080/21645515.2024.2337985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Insect vector-borne diseases (VBDs) pose significant global health challenges, particularly in tropical and subtropical regions. The WHO has launched the "Global Vector Control Response (GVCR) 2017-2030" to address these diseases, emphasizing a comprehensive approach to vector control. This systematic review investigates the potential of malaria and dengue vaccines in controlling mosquito-borne VBDs, aiming to alleviate disease burdens and enhance public health. Following PRISMA 2020 guidelines, the review incorporated 39 new studies out of 934 identified records. It encompasses various studies assessing malaria and dengue vaccines, emphasizing the significance of vaccination as a preventive measure. The findings indicate variations in vaccine efficacy, duration of protection, and safety considerations for each disease, influencing public health strategies. The review underscores the urgent need for vaccines to combat the increasing burden of VBDs like malaria and dengue, advocating for ongoing research and investment in vaccine development.
Collapse
Affiliation(s)
- Hind M. Al-Osaimi
- Department of Pharmacy Services Administration, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Kanan
- Department of Clinical Pharmacy, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Lujain Marghlani
- Department of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Badria Al-Rowaili
- Pharmaceutical Services Department, Northern Area Armed Forces Hospital, King Khalid Military, Hafr Al Batin, Kingdom of Saudi Arabia
| | - Reem Albalawi
- Department of Medicine, Tabuk University, Tabuk, Kingdom of Saudi Arabia
| | - Abrar Saad
- Pharmacy Department, Royal Commission Hospital, Yanbu, Kingdom of Saudi Arabia
| | - Saba Alasmari
- Department of Clinical Pharmacy, King Khalid University, Jeddah, Kingdom of Saudi Arabia
| | - Khaled Althobaiti
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Zainab Alhulaili
- Department of Clinical Pharmacy, Dammam Medical Complex, Dammam, Kingdom of Saudi Arabia
| | - Abeer Alanzi
- Department of Medicine, King Abdulaziz Hospital, Makkah, Kingdom of Saudi Arabia
| | - Rawan Alqarni
- Department of Medicine and Surgery, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Razan Alsofiyani
- Department of Medicine, Taif University, Ta’if, Kingdom of Saudi Arabia
| | - Reem Shrwani
- Department of Clinical Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Li Y, Peng J, Li H, Zhang R, Chen J, Hou X, Yang G. Integrating pyriproxyfen into the incompatible insect technique enhances mosquito population suppression efficiency and eliminates the risk of population replacement. PEST MANAGEMENT SCIENCE 2024; 80:6117-6129. [PMID: 39072896 DOI: 10.1002/ps.8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/28/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The incompatible insect technique (IIT) has been used for Aedes mosquito population suppression to curb the transmission of dengue. However, its wide application is limited owing to the low output of male mosquitoes and the risk of population replacement from the release of fertile Wolbachia-infected females. This study aims to improve IIT efficiency for broader adoption. RESULTS We assessed the impact of 10% pyriproxyfen (PPF) sticky powder exposure on Wolbachia (from Culex molestus)-transinfected Aedes albopictus Guangzhou line (GUA line) (GC) mosquitoes. We found that the exposure caused chronic toxicity in adult mosquitoes without affecting the cytoplasmic incompatibility (CI)-inducing capability of males. The PPF-contaminated GC females exhibited significant sterilization and the ability to disseminate lethal doses of PPF to breeding sites. Subsequently, we conducted a field trial combining PPF with IIT aiming to suppress the Ae. albopictus population. This combined approach, termed boosted IIT (BIIT), showed a notable enhancement in population suppression efficiency. The improved efficacy of BIIT was attributed to the dispersion of PPF particles in the field via the released PPF-contaminated male mosquitoes. During the BIIT field trial, no Wolbachia wPip-positive Ae. albopictus larvae were detected, indicating the effective elimination of the risk of Wolbachia-induced population replacement. Additionally, the field trial of BIIT against Ae. albopictus resulted in the suppression of the nontarget mosquito species Culex quinquefasciatus. CONCLUSION Our results highlight the remarkable efficiency and feasibility of combining IIT with PPF in suppressing mosquito populations, facilitating the widespread implementation of IIT-based management of mosquito-borne diseases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiameng Peng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Haiying Li
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Ruiqi Zhang
- International School, Jinan University, Guangzhou, China
| | - Jiexia Chen
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuying Hou
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Lopez AD, Debnath T, Pinch M, Hansen IA. Phosphoproteomics analyses of Aedes aegypti fat body reveals blood meal-induced signaling and metabolic pathways. Heliyon 2024; 10:e40060. [PMID: 39634388 PMCID: PMC11615488 DOI: 10.1016/j.heliyon.2024.e40060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
The mosquito fat body is the principal source of yolk protein precursors (YPP) during mosquito egg development in female Aedes aegypti. To better understand the metabolic and signaling pathways involved in mosquito reproduction, we investigated changes in the mosquito fat body phosphoproteome at multiple time points after a blood meal. Using LC/MS, we identified 3570 phosphorylated proteins containing 14,551 individual phosphorylation sites. We observed protein phosphorylation changes in cellular pathways required for vitellogenesis, as well as proteins involved in primary cellular functions. Specifically, after a blood meal, proteins involved in ribosome synthesis, transcription, translation, and autophagy showed dynamic changes in their phosphorylation patterns. Our results provide new insight into blood meal-induced fat body dynamics and reveal potential proteins that can be targeted for interference with mosquito reproduction. Considering the devastating impact of mosquitoes on human health, worldwide, new approaches to control mosquitoes are urgently needed.
Collapse
Affiliation(s)
| | | | - Matthew Pinch
- New Mexico State University, Las Cruces, NM, 88003, USA
- The University of Texas at El Paso, El Paso, TX, 79968, USA
| | | |
Collapse
|
7
|
Cuniolo A, Martin MV, Berón CM. Ferroptotic cyanobacteria as biocontrol agent of the southern house mosquito Culex quinquefasciatus. J Invertebr Pathol 2024; 207:108225. [PMID: 39455051 DOI: 10.1016/j.jip.2024.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Culex quinquefasciatus is a hematophagous mosquito, widely distributed around the world, that plays a crucial role in public and veterinary health. As an efficient vector of etiological agents, it exhibits a marked preference for urban environments and human blood. Despite advances in mosquito-borne disease control, managing mosquito populations remains an economically efficient and safe strategy to reduce the impact of epidemic outbreaks. However, achieving this goal requires ecologically acceptable tools that ensure sustainability and minimize adverse environmental impacts. In the present work, we investigated the effect of a non-toxigenic model cyanobacterium on Cx. quinquefasciatus larvae through regulated cell death. We observed that heat stress treatment of Synechocystis PCC 6803 inducing ferroptosis, results in larval lipid oxidation, leading to their death. This effect can be mitigated by rearing larvae in an environment containing canonical inhibitors of ferroptosis, such as ferrostatin 1, or antioxidants, like glutathione and ascorbic acid. Furthermore, larval cell death induced by ferroptotic cyanobacteria is closely linked to oxidative dysregulation and lipid peroxidation, both hallmarks of ferroptosis. Moreover, while ferroptotic Synechocystis significantly affects larval development, it does not influence oviposition site selection by gravid females.
Collapse
Affiliation(s)
- Antonella Cuniolo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina.
| | - Corina M Berón
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina.
| |
Collapse
|
8
|
Özokan G, Bilginer A, Mızrak Z, Işıkoğlu S, Beler M, Ünal İ, Cansız D, Alturfan AA, Emekli-Alturfan E. Comparison of the cytotoxicity and zebrafish embryo toxicity of insect repellent ingredients: p-Menthane-3,8-diol synthesized by green chemistry from Eucalyptus citriodora and N,N-diethyl-meta-toluamide. Drug Chem Toxicol 2024; 47:1193-1204. [PMID: 38738628 DOI: 10.1080/01480545.2024.2350664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024]
Abstract
Bio-sourced insect repellents are becoming more popular due to their safer applications. Known for its strong fly-repellent property, Cis, trans-para-menthane-3,8-diol (PMD) is the main component of the lemon eucalyptus essential oil and is synthesized from citronellal. In April 2005, US Centers for Disease Control approved two fly repellents that do not contain N,N-diethyl-meta-toluamide (DEET), including PMD. Due to the intentional and pervasive human exposure caused by DEET as insect repellent, concerns have been raised about its toxicological profile and potential harm to people. We hypothesized PMD would have a different toxicological profile than DEET. We synthesized PMD from Eucalyptus citriodora using green chemistry methods and analyzed its structures by 1H-NMR,13C-NMR, and GC/MS spectral methods. We used MTS assay to determine the percentage inhibition of PMD and DEET on keratinocyte (human epidermal keratinocyte [HaCaT]) cells. The xCelligence system was used and followed at real time. Effects of PMD and DEET on zebrafish embryo development were monitored and levels of lipid peroxidation, glutathione-S-transferase (GST), superoxide dismutase (SOD), and acetylcholinesterase (AchE) were evaluated at 72 h post-fertilization using spectrophotometric methods. Our results showed that while DEET inhibited human keratinocyte cell growth, while imporved cell viability and proliferation was exposed in PMD exposed group. In zebrafish embryos, PMD was less toxic in terms of development, oxidant-antioxidant status, and AChE activities than DEET. Based on these results we suggest an efficient method using green chemistry for the synthesis of PMD, which is found to be less toxic in zebrafish embryos and human keratinocyte cells.
Collapse
Affiliation(s)
- Gökhan Özokan
- BioArge Laboratories, Yıldız Technical University Technocity, Istanbul, Turkey
| | - Abdulkerim Bilginer
- BioArge Laboratories, Yıldız Technical University Technocity, Istanbul, Turkey
| | - Zülal Mızrak
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Semanur Işıkoğlu
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Merih Beler
- Department of Biochemistry, Institute of Health Sciences, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - İsmail Ünal
- Medical Biochemistry Department, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - Derya Cansız
- Medical Biochemistry Department, Faculty of Medicine, Medipol University, Istanbul, Turkey
| | - A Ata Alturfan
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
9
|
Odebisi-Omokanye MB, Suleiman MM, Sulaiman MK, Atolagbe SA. Seropositivity of West Nile virus among acute febrile patients in Ilorin, Nigeria. Vopr Virusol 2024; 69:320-328. [PMID: 39361926 DOI: 10.36233/0507-4088-241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION West Nile Virus (WNV), a member of Flaviviridae family, is one of the most widely distributed arboviruses in the world. In developing countries like Nigeria, fever resulting from the WNV infection is often presumptively ascribed to malaria or typhoid due to misdiagnosis and low-level awareness of the viral infection. This study determined the prevalence of WNV IgM and IgG antibodies among febrile patients in the Ilorin metropolis. MATERIALS AND METHODS A total of two hundred (200) blood samples were collected from consenting patients and each serum was screened for anti-WNV IgM and IgG antibodies using indirect enzyme-linked immunosorbent assay (ELISA). Statistical correlation and logistic regression analysis were conducted. RESULTS Overall, 6% (12/200) anti-WNV IgM seropositivity rate was recorded amongst the acute febrile patients with higher prevalence (6.30%) in females than in males (5.45%). Anti-WNV IgG positivity rate of 52% (104/200) was recorded, with 50.67% positivity rate in males and 38.95% in female participants. The convalescence phase posited by the 5.4% (11/200) co-detection of anti-WNV IgG and IgM antibodies among the participants was recorded. A statistical correlation was noticed with the age and religion of respondents to WNV serological positivity while gender, occupation, use of mosquito nets and formal education had no positive correlation at p < 0.05. However, based on odd ratio at 95% CI and logistic regression coefficients, the evaluated risk factors such as blood transfusion, residency, malaria parasite, and proximity to stagnant water and bush were significant to anti-WNV IgG and IgM positivity. CONCLUSION The findings of this study show the circulation of WNV in the study area. There is an urgent need for clinicians/physicians to include screening for the West Nile virus in cases of febrile patients before the commencement of treatment.
Collapse
|
10
|
Colston SM, Barbato RA, Goodson MS, Karl JP, Kokoska RJ, Leary DD, Racicot K, Varaljay V, Soares JW. Current advances in microbiome sciences within the US Department of Defense: part 2 - enabling technologies and environmental microbiomes. BMJ Mil Health 2024; 170:435-439. [PMID: 37336582 DOI: 10.1136/military-2022-002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/25/2023] [Indexed: 06/21/2023]
Abstract
Microbiomes involve complex microbial communities wherein the micro-organisms interact with one another as well as their associated hosts or environmental niches. Much of the characterisation of these communities and the associations have been achieved through 'omics' technologies, such as metagenomics, metaproteomics and metametabolomics, and model systems. Recent research in host-associated microbiomes has been aimed at understanding the role microbes may play in host fitness or conversely how host activities/conditions may perturb the microbial community, which can further affect host health. These studies have led to the investigation of detection, intervention or modulation methods, which may serve to provide benefits to the host and advance our understanding of microbiome associations. With the clear implications on human health and disease, the US Department of Defense (DoD) has made microbiome research a priority, with the founding of the Tri-Service Microbiome Consortium (TSMC) to enhance collaboration, coordination,and communication of microbiome research among DoD organisations and partners in academia and industry. DoD microbiome research focuses mainly on the following themes: (1) human health and performance, (2) environmental microbiomes and (3) enabling technologies. This review provides an update of current DoD microbiome research efforts centred on enabling technologies and environmental microbiomes and highlights innovative research being done in academia and industry that can be leveraged by the DoD. These topics were also communicated and further discussed in the Fifth Annual TSMC Symposium. This paper forms part of the special issue of BMJ Military Health dedicated to personalised digital technology for mental health in the Armed Forces.
Collapse
Affiliation(s)
- Sophie M Colston
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, District of Columbia, USA
| | - R A Barbato
- Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center, Hanover, New Hampshire, USA
| | - M S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - J P Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - R J Kokoska
- Physical Sciences Directorate, US Army Research Office, Research Triangle Park, North Carolina, USA
| | - D D Leary
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, District of Columbia, USA
| | - K Racicot
- Soldier Effectiveness Directorate, US Army Combat Capabilities and Development Command Soldier Center, Natick, Massachusetts, USA
| | - V Varaljay
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - J W Soares
- Soldier Effectiveness Directorate, US Army Combat Capabilities and Development Command Soldier Center, Natick, Massachusetts, USA
| |
Collapse
|
11
|
Yeo H, Lin J, Yeoh TX, Puniamoorthy N. Resolution of cryptic mosquito species through wing morphometrics. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105647. [PMID: 39067583 DOI: 10.1016/j.meegid.2024.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Mosquitoes are medically important insects, and accurate species identification is crucial to understanding vector biology, forming the cornerstone of successful vector control programs. Identification is difficult owing to morphologically similar species. Wing morphometrics can provide a simple, fast, and accurate way to classify species, and using it as a method to differentiate vector species among its cryptic congeners has been underexplored. Using a total of 227 mosquitoes and 20 landmarks per specimen, we demonstrated the utility of wing morphometrics in differentiating species two groups occurring in sympatry - Culex (Culex) vishnui group and Culex (Lophoceraomyia) subgenus, as well as explored population-level variation in the wing shape of Aedes albopictus across habitats. Cytochrome oxidase subunit I (COI) gene region was sequenced to validate the morphological and morphometric identification. Procrustes ANOVA regression and CVA based on wing shape reflected that the wing landmarks across all species differed significantly, and leave-one-out cross validation revealed an overall high accuracy of >97% for the two Culex groups. Wing morphometrics uncovered population-level variation within Aedes albopictus, but cross validation accuracy was low. Overall, we show that wing geomorphometric analysis is able to resolve cryptic Culex species (including vectors) occurring sympatrically, and is a robust tool for identifying mosquitoes reliably.
Collapse
Affiliation(s)
- Huiqing Yeo
- Department of Biological Sciences, National University of Singapore, Singapore.
| | - Jiawei Lin
- Department of Biological Sciences, National University of Singapore, Singapore.
| | - Tze Xuan Yeoh
- Department of Biological Sciences, National University of Singapore, Singapore.
| | - Nalini Puniamoorthy
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Laojun S, Sontigun N, Chaiphongpachara T. Influence of insular conditions on wing phenotypic variation in two dominant mosquito vectors, Aedes albopictus and Armigeres subalbatus (Diptera: Culicidae), in the border archipelagos of Thailand. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:349-360. [PMID: 38641881 DOI: 10.1111/mve.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
Insects geographically separated into island and mainland populations often exhibit phenotypic variations, a phenomenon known as insular conditions. These conditions can lead to rapid evolutionary changes that affect the morphological characteristics of mosquito vectors. Nevertheless, studies that specifically examine phenotype differences between island and mainland mosquito populations have been limited. In this study, wing variation in size and shape was investigated using the geometric morphometric (GM) technique in two dominant mosquito vectors, Aedes albopictus and Armigeres subalbatus, in the Ranong and Trat archipelagos of Thailand. Significant differences in average wing centroid size (CS) were found in 6 out of 15 population pairs for Ae. albopictus (p < 0.05) and in 5 population pairs for Ar. subalbatus (p < 0.05). After removing the allometric effect, canonical variate analyses (CVA) based on wing shape analysis revealed overlap across all populations for both Ae. albopictus and Ar. subalbatus. However, the statistical analysis indicated that Ar. subalbatus exhibited wing shape differences across all populations (p < 0.05), and most Ae. albopictus populations also displayed distinct wing shapes (p < 0.05), except for the populations from Chang Island and the mainland of Ranong, which showed no significant differences (p > 0.05). These findings enhance our understanding of mosquito adaptability in island regions and provide valuable data for the surveillance and monitoring of vector evolution.
Collapse
Affiliation(s)
- Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand
| | - Narin Sontigun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand
| |
Collapse
|
13
|
Mbigha Donfack KC, De Coninck L, Ghogomu SM, Matthijnssens J. Aedes Mosquito Virome in Southwestern Cameroon: Lack of Core Virome, But a Very Rich and Diverse Virome in Ae. africanus Compared to Other Aedes Species. Viruses 2024; 16:1172. [PMID: 39066334 PMCID: PMC11281338 DOI: 10.3390/v16071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In Cameroon, Aedes mosquitoes transmit various arboviruses, posing significant health risks. We aimed to characterize the Aedes virome in southwestern Cameroon and identify potential core viruses which might be associated with vector competence. A total of 398 Aedes mosquitoes were collected from four locations (Bafoussam, Buea, Edea, and Yaounde). Aedes albopictus dominated all sites except for Bafoussam, where Aedes africanus prevailed. Metagenomic analyses of the mosquitoes grouped per species into 54 pools revealed notable differences in the eukaryotic viromes between Ae. africanus and Ae. albopictus, with the former exhibiting greater richness and diversity. Thirty-seven eukaryotic virus species from 16 families were identified, including six novel viruses with near complete genome sequences. Seven viruses were further quantified in individual mosquitoes via qRT-PCR. Although none of them could be identified as core viruses, Guangzhou sobemo-like virus and Bafoussam mosquito solemovirus, were highly prevalent regionally in Ae. albopictus and Ae. africanus, respectively. This study highlights the diverse eukaryotic virome of Aedes species in southwestern Cameroon. Despite their shared genus, Aedes species exhibit limited viral sharing, with varying viral abundance and prevalence across locations. Ae. africanus, an understudied vector, harbors a rich and diverse virome, suggesting potential implications for arbovirus vector competence.
Collapse
Affiliation(s)
- Karelle Celes Mbigha Donfack
- Laboratory of Viral Metagenomics, Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Department of Biochemistry and Molecular Biology, University of Buea, Buea P.O. Box 63, Cameroon
| | - Lander De Coninck
- Laboratory of Viral Metagenomics, Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Stephen Mbigha Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Department of Biochemistry and Molecular Biology, University of Buea, Buea P.O. Box 63, Cameroon
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Rahman MM, Morshed MN, Adnan SM, Howlader MTH. Assessment of biorational larvicides and botanical oils against Culex quinquefasciatus Say (Diptera: Culicidae) larvae in laboratory conditions. Heliyon 2024; 10:e31453. [PMID: 38832263 PMCID: PMC11145214 DOI: 10.1016/j.heliyon.2024.e31453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Mosquitoes are known vectors that transmit deadly diseases to millions of people across the globe. The reliance on synthetic insecticides has been the sole way to combat mosquito vectors for decades. In recent years, the extensive use of conventional insecticides in mosquito suppression has led to significant pesticide resistance and serious human health hazards. In this light, investigating the potential application of biorational compounds for vector management has drawn significant attention. We, hereby, evaluated the efficacy of three microbial derivative biorational insecticides, abamectin, spinosad, and buprofezin, and two botanical oils, neem (Azadirachta indica A. Juss) and karanja oil (Pongamia pinnata Linn.) against the Culex quinquefasciatus under laboratory conditions. The fourth-instar C. quinquefasciatus larvae were exposed to different concentrations of the selected larvicides and lethality was estimated based on LC50 and LT50 with Probit analysis. All larvicides showed concentration-dependent significant effects on survival and demonstrated larvicidal activity against C. quinquefasciatus larvae. However, abamectin exerted the highest toxicity (LC50 = 10.36 ppm), exhibited statistically significant effects on C. quinquefasciatus larval mortality, followed by spinosad (LC50 = 21.32 ppm) and buprofezin (LC50 = 56.34 ppm). Abamectin caused larval mortality ranged from 30.00 to 53.33 % and 53.00-70.00 % at 06 and 07 h after treatment (HAT), respectively. In the case of botanicals, karanja oil (LC50 = 216.61 ppm) was more lethal (more than 1.5 times) and had a shorter lethal time than neem oil (LC50 = 330.93 ppm) and showed a classic pattern of relationship between concentrations and mortality over time. Overall, the present study highlighted the potential of deploying new generation biorational pesticides and botanicals in mosquito vector control programs.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Lecturer, Department of Entomology, EXIM Bank Agricultural University Bangladesh, Nawabganj-6300, Bangladesh
| | - Md Niaz Morshed
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Scientific Officer, Adaptive Research Division, Bangladesh Rice Research Institute (BRRI), Gazipur-1701, Bangladesh
| | - Saleh Mohammad Adnan
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Research Entomologist, New South Wales Department of Primary Industries, Australia
| | | |
Collapse
|
15
|
Prakash M, Kavitha HP, Arulmurugan S, Vennila JP, Abinaya S, Lohita D, Suresh R. Ag-doped Bi2O3 nanoparticles: synthesis, characterization, antibacterial, larvicidal, and photocatalytic properties. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2024; 110:807-818. [DOI: 10.1007/s10971-024-06400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/22/2024] [Indexed: 01/04/2025]
|
16
|
Chae K, Contreras B, Romanowski JS, Dawson C, Myles KM, Adelman ZN. Transgene removal using an in cis programmed homing endonuclease via single-strand annealing in the mosquito Aedes aegypti. Commun Biol 2024; 7:660. [PMID: 38811748 PMCID: PMC11137009 DOI: 10.1038/s42003-024-06348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
While gene drive strategies have been proposed to aid in the control of mosquito-borne diseases, additional genome engineering technologies may be required to establish a defined end-of-product-life timeline. We previously demonstrated that single-strand annealing (SSA) was sufficient to program the scarless elimination of a transgene while restoring a disrupted gene in the disease vector mosquito Aedes aegypti. Here, we extend these findings by establishing that complete transgene removal (four gene cassettes comprising ~8-kb) can be programmed in cis. Reducing the length of the direct repeat from 700-bp to 200-bp reduces, but does not eliminate, SSA activity. In contrast, increasing direct repeat length to 1.5-kb does not increase SSA rates, suggesting diminishing returns above a certain threshold size. Finally, we show that while the homing endonuclease Y2-I-AniI triggered both SSA and NHEJ at significantly higher rates than I-SceI at one genomic locus (P5-EGFP), repair events are heavily skewed towards NHEJ at another locus (kmo), suggesting the nuclease used and the genomic region targeted have a substantial influence on repair outcomes. Taken together, this work establishes the feasibility of engineering temporary transgenes in disease vector mosquitoes, while providing critical details concerning important operational parameters.
Collapse
Affiliation(s)
- Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Bryan Contreras
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph S Romanowski
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Chanell Dawson
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Kevin M Myles
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
17
|
Bušić N, Klobučar A, Landeka N, Žitko T, Vignjević G, Turić N, Sudarić Bogojević M, Merdić E, Kučinić M, Bruvo Mađarić B. A DNA barcode reference library of Croatian mosquitoes (Diptera: Culicidae): implications for identification and delimitation of species, with notes on the distribution of potential vector species. Parasit Vectors 2024; 17:216. [PMID: 38734639 PMCID: PMC11088778 DOI: 10.1186/s13071-024-06291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.
Collapse
Affiliation(s)
- Nataša Bušić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| | - Ana Klobučar
- Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Nediljko Landeka
- Teaching Institute for Public Health of the Istrian County, Pula, Croatia
| | - Toni Žitko
- Teaching Institute for Public Health, Split-Dalmatia County, Split, Croatia
| | - Goran Vignjević
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Nataša Turić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Teaching Institute for Public Health of the Osijek-Baranja County, Osijek, Croatia
| | | | - Enrih Merdić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Mladen Kučinić
- Faculty of Science, Department of Biology, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
18
|
Samantsidis GR, Kwon H, Wendland M, Fonder C, Smith RC. TNF signaling mediates cellular immune function and promotes malaria parasite killing in the mosquito Anopheles gambiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592209. [PMID: 38746363 PMCID: PMC11092648 DOI: 10.1101/2024.05.02.592209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Tumor Necrosis Factor-α (TNF-α) is a proinflammatory cytokine and a master regulator of immune cell function in vertebrates. While previous studies have implicated TNF signaling in invertebrate immunity, the roles of TNF in mosquito innate immunity and vector competence have yet to be explored. Herein, we confirm the identification of a conserved TNF-α pathway in Anopheles gambiae consisting of the TNF-α ligand, Eiger, and its cognate receptors Wengen and Grindelwald. Through gene expression analysis, RNAi, and in vivo injection of recombinant TNF-α, we provide direct evidence for the requirement of TNF signaling in regulating mosquito immune cell function by promoting granulocyte midgut attachment, increased granulocyte abundance, and oenocytoid rupture. Moreover, our data demonstrate that TNF signaling is an integral component of anti-Plasmodium immunity that limits malaria parasite survival. Together, our data support the existence of a highly conserved TNF signaling pathway in mosquitoes that mediates cellular immunity and influences Plasmodium infection outcomes, offering potential new approaches to interfere with malaria transmission by targeting the mosquito host.
Collapse
Affiliation(s)
| | - Hyeogsun Kwon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Megan Wendland
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Catherine Fonder
- Molecular, Cellular and Developmental Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA, USA
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
19
|
Naeem B, Saleem J, Haider Naqvi ASA, Kausar S, Arshad A, Kumar K, Khalid A, Kumar P. Systematic review of clinical manifestations, management and outcome following accidental ingestion of liquid mosquito repellent vaporiser in children. BMJ Paediatr Open 2024; 8:e002476. [PMID: 38555100 PMCID: PMC10982783 DOI: 10.1136/bmjpo-2023-002476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Pyrethroid-based mosquito repellents are widely used to control mosquito-borne diseases. Liquid mosquito-repellent vaporisers are effective modes of pyrethroid delivery but can also pose significant health risks if ingested or used improperly. OBJECTIVE This systematic review was performed to assess the demographic distribution, clinical presentation, management strategies and outcomes in children resulting from accidental ingestion of liquid mosquito repellent vaporiser. METHODS The study adheres to the reporting standards outlined in the PRISMA Statement for Systematic Reviews and was prospectively registered with PROSPERO (record # CRD42023413937) to enhance transparency and minimise reporting bias. A comprehensive search was conducted on PubMed, Scopus and Google Scholar using specific MeSH terms related to insecticides, mosquito repellents, pyrethroids, ingestion, poisoning, toxicity and prevention. The reference lists of the included studies were also reviewed for additional relevant articles. The inclusion criteria involved studies published in peer-reviewed journals between 2000 and 2023 that focused on children under 18 years old with a history of mosquito-repellent ingestion based on primary data. RESULTS Twelve studies met the inclusion criteria; these were primarily case reports from India, China and the UAE. Male children were predominantly affected, and symptoms included vomiting, convulsions, cough and respiratory distress. Management primarily involved supportive and symptomatic measures, including atropine for salivation and antiepileptic drugs for seizures. Respiratory support was provided for respiratory complications. CONCLUSION Despite the known risks and diverse presentations of pyrethroid poisoning caused by liquid mosquito repellent vaporiser in children, the limited substantial evidence in the literature underscores the urgent need for comprehensive research to refine management approaches and enhance preventive measures.
Collapse
Affiliation(s)
- Babar Naeem
- Allama Iqbal Medical College, Lahore, Pakistan
| | - Junaid Saleem
- Federal Medical and Dental College, Islamabad, Pakistan
| | | | - Sidra Kausar
- Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Aqdas Arshad
- Mohi-ud-Din Islamic Medical College, Mirpur, Azad Kashmir, Pakistan
| | | | - Aashar Khalid
- Federal Medical and Dental College, Islamabad, Pakistan
| | - Parkash Kumar
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| |
Collapse
|
20
|
Wu-Chuang A, Rojas A, Bernal C, Cardozo F, Valenzuela A, Romero C, Mateos-Hernández L, Cabezas-Cruz A. Influence of microbiota-driven natural antibodies on dengue transmission. Front Immunol 2024; 15:1368599. [PMID: 38558802 PMCID: PMC10978734 DOI: 10.3389/fimmu.2024.1368599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Dengue has had a significant global health impact, with a dramatic increase in incidence over the past 50 years, affecting more than 100 countries. The absence of a specific treatment or widely applicable vaccine emphasizes the urgent need for innovative strategies. This perspective reevaluates current evidence supporting the concept of dual protection against the dengue virus (DENV) through natural antibodies (NAbs), particularly anti-α-Gal antibodies induced by the host's gut microbiome (GM). These anti-α-Gal antibodies serve a dual purpose. Firstly, they can directly identify DENV, as mosquito-derived viral particles have been observed to carry α-Gal, thereby providing a safeguard against human infections. Secondly, they possess the potential to impede virus development in the vector by interacting with the vector's microbiome and triggering infection-refractory states. The intricate interplay between human GM and NAbs on one side and DENV and vector microbiome on the other suggests a novel approach, using NAbs to directly target DENV and simultaneously disrupt vector microbiome to decrease pathogen transmission and vector competence, thereby blocking DENV transmission cycles.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Rojas
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cynthia Bernal
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Fátima Cardozo
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Adriana Valenzuela
- Universidad Nacional de Asunción, Instituto de Investigaciones en Ciencias de la Salud, San Lorenzo, Paraguay
| | - Cristina Romero
- Universidad Nacional de Asunción, Facultad de Ciencias Químicas, San Lorenzo, Paraguay
| | - Lourdes Mateos-Hernández
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
21
|
Steck MR, Arheart KL, Xue RD, Aryaprema VS, Peper ST, Qualls WA. Insights and Challenges for the Development of Mosquito Control Action Thresholds Using Historical Mosquito Surveillance and Climate Datasets. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2024; 40:50-70. [PMID: 38353588 DOI: 10.2987/23-7121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Strategies to advance action threshold development can benefit both civilian and military vector control operations. The Anastasia Mosquito Control District (AMCD) has curated an extensive record database of surveillance programs and operational control activities in St. Johns County, Florida, since 2004. A thorough exploratory data analysis was performed on historical mosquito surveillance and county-wide climate data to identify climate predictors that could be used in constructing proactive threshold models for initiating control of Aedes, Culex, and Anopheles vector mosquitoes. Species counts pulled from Centers for Disease Control and Prevention (CDC) light trap (2004-2019) and BG trap (2014-2019) collection records and climate parameters of temperature (minimum, maximum, average), rainfall, and relative humidity were used in two iterations of generalized linear models. Climate readings were incorporated into models 1) in the form of continuous measurements, or 2) for categorization into number of "hot," "wet," or "humid" days by exceedance of selected biological index threshold values. Models were validated with tests of residual error, comparison of model effects, and predictive capability on testing data from the two recent surveillance seasons 2020 and 2021. Two iterations of negative binomial regression models were constructed for 6 species groups: container Aedes (Ae. aegypti, Ae. albopictus), standing water Culex (Cx. nigripalpus, Cx. quinquefasciatus), floodwater Aedes (Ae. atlanticus, Ae. infirmatus), salt-marsh Aedes (Ae. taeniorhyncus, Ae. sollicitans), swamp water Anopheles (An. crucians), and a combined Total Mosquitoes group. Final significant climate predictors varied substantially between species groups. Validation of models with testing data displayed limited predictive abilities of both model iterations. The most significant climate predictors for floodwater Aedes, the dominant and operationally influential species group in the county, were either total precipitation or frequency of precipitation events (number of "wet" days) at two to four weeks before trap collection week. Challenges hindering the construction of threshold models were discussed. Insights gained from these models provide initial feedback for streamlining the AMCD mosquito control program and analytical recommendations for future modelling efforts of interested mosquito control programs, in addition to generalized guidance for deployed armed forces personnel with needs of mosquito control but lacking active surveillance programs.
Collapse
|
22
|
Cruz KG, Eron MH, Makhaik S, Savinov S, Hardy JA. A Non-Active-Site Inhibitor with Selectivity for Zika Virus NS2B-NS3 Protease. ACS Infect Dis 2024; 10:412-425. [PMID: 38265226 PMCID: PMC11099878 DOI: 10.1021/acsinfecdis.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Flavivirus infection usually results in fever accompanied by headache, arthralgia, and, in some cases, rash. Although the symptoms are mild, full recovery can take several months. Flaviviruses encode seven nonstructural proteins that represent potential drug targets for this viral family. Focusing on the Zika virus NS2B-NS3 protease, we uncovered a unique inhibitor, MH1, composed of aminothiazolopyridine and benzofuran moieties. MH1 inhibits ZVP with a biochemical IC50 of 440 nM and effectively blocks cleavage of ZVP substrates in cells. Surprisingly, MH1 inhibits the other flaviviral proteases at least 18-fold more weakly. This same phenomenon was observed in assays of the viral cytopathic effect, where only Zika virus showed sensitivity to MH1. This selectivity was unexpected since flaviviral proteases have high similarity in sequence and protein structure. MH1 binds at an allosteric site, as demonstrated by its ability to stabilize ZVP synergistically with an active site inhibitor. To understand its selectivity, we constructed a series of hybrid proteases composed of select segments of ZVP, which is sensitive to MH1, and dengue virus protease, which is essentially insensitive to MH1. Our results suggest that MH1 binds to the NS3 protease domain, disrupting its interaction with NS2B. These interactions are essential for substrate binding and cleavage. In particular, the unique dynamic properties of NS2B from Zika seem to be required for the function of MH1. Insights into the mechanism of MH1 function will aid us in developing non-active-site-directed, pan-flaviviral inhibitors, by highlighting the importance of evaluating and considering the dynamics of the NS2B regions.
Collapse
Affiliation(s)
| | | | - Sparsh Makhaik
- Department of Chemistry, University of Massachusetts Amherst, MA, US 01002
| | | | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts Amherst, MA, US 01002
| |
Collapse
|
23
|
Lamichhane B, Brockway C, Evasco K, Nicholson J, Neville PJ, Levy A, Smith D, Imrie A. Metatranscriptomic Sequencing of Medically Important Mosquitoes Reveals Extensive Diversity of RNA Viruses and Other Microbial Communities in Western Australia. Pathogens 2024; 13:107. [PMID: 38392845 PMCID: PMC10892203 DOI: 10.3390/pathogens13020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Mosquitoes harbor a wide diversity of microorganisms, including viruses that are human pathogens, or that are insect specific. We used metatranscriptomics, an unbiased high-throughput molecular approach, to describe the composition of viral and other microbial communities in six medically important mosquito species from across Western Australia: Aedes vigilax, Culex annulirostris, Cx. australicus, Cx. globocoxitus, Cx. pipiens biotype molestus, and Cx. quinquefasciatus. We identified 42 viral species, including 13 novel viruses, from 19 families. Culex mosquitoes exhibited a significantly higher diversity of viruses than Aedes mosquitoes, and no virus was shared between the two genera. Comparison of mosquito populations revealed a heterogenous distribution of viruses between geographical regions and between closely related species, suggesting that geography and host species may play a role in shaping virome composition. We also detected bacterial and parasitic microorganisms, among which Wolbachia bacteria were detected in three members of the Cx. pipiens complex, Cx. australicus, Cx. pipiens biotype molestus, and Cx. quinquefasciatus. In summary, our unbiased metatranscriptomics approach provides important insights into viral and other microbial diversity in Western Australian mosquitoes that vector medically important viruses.
Collapse
Affiliation(s)
- Binit Lamichhane
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Craig Brockway
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Kimberly Evasco
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Jay Nicholson
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Peter J. Neville
- Biological and Applied Environmental Health Hazards, Department of Health, Perth, WA 6000, Australia; (C.B.); (K.E.); (J.N.); (P.J.N.)
| | - Avram Levy
- PathWest Laboratory Medicine, Nedlands, WA 6009, Australia; (A.L.); (D.S.)
| | - David Smith
- PathWest Laboratory Medicine, Nedlands, WA 6009, Australia; (A.L.); (D.S.)
- UWA Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Allison Imrie
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| |
Collapse
|
24
|
Mendis BAN, Peiris V, Harshani WAK, Fernando HSD, de Silva BGDNK. Fine-scale monitoring of insecticide resistance in Aedes aegypti (Diptera: Culicidae) from Sri Lanka and modeling the phenotypic resistance using rational approximation. Parasit Vectors 2024; 17:18. [PMID: 38216956 PMCID: PMC10785423 DOI: 10.1186/s13071-023-06100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND The unplanned and intensified use of insecticides to control mosquito-borne diseases has led to an upsurge of resistance to commonly used insecticides. Aedes aegypti, the main vector of dengue, chikungunya, and Zika virus, is primarily controlled through the application of adulticides (pyrethroid insecticides) and larvicides (temephos). Fine spatial-scale analysis of resistance may reveal important resistance-related patterns, and the application of mathematical models to determine the phenotypic resistance status lessens the cost and usage of resources, thus resulting in an enhanced and successful control program. METHODS The phenotypic resistance for permethrin, deltamethrin, and malathion was monitored in the Ae. aegypti populations using the World Health Organization (WHO) adult bioassay method. Mosquitoes' resistance to permethrin and deltamethrin was evaluated for the commonly occurring base substitutions in the voltage-gated sodium channel (vgsc) gene. Rational functions were used to determine the relationship between the kdr alleles and the phenotypic resistant percentage of Ae. aegypti in Sri Lanka. RESULTS The results of the bioassays revealed highly resistant Ae. aegypti populations for the two pyrethroid insecticides (permethrin and deltamethrin) tested. All populations were susceptible to 5% malathion insecticide. The study also revealed high frequencies of C1534 and G1016 in all the populations studied. The highest haplotype frequency was detected for the haplotype CC/VV, followed by FC/VV and CC/VG. Of the seven models obtained, this study suggests the prediction models using rational approximation considering the C allele frequencies and the total of C, G, and P allele frequencies and phenotypic resistance as the best fits for the area concerned. CONCLUSIONS This is the first study to our knowledge to provide a model to predict phenotypic resistance using rational functions considering kdr alleles. The flexible nature of the rational functions has revealed the most suitable association among them. Thus, a general evaluation of kdr alleles prior to insecticide applications would unveil the phenotypic resistance percentage of the wild mosquito population. A site-specific strategy is recommended for monitoring resistance with a mathematical approach and management of insecticide applications for the vector population.
Collapse
Affiliation(s)
- B A N Mendis
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - V Peiris
- Deakin University, 221 Burwood Hwy, Burwood, VIC, 3125, Australia
- Center for Optimization and Decision Science, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - W A K Harshani
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - H S D Fernando
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - B G D N K de Silva
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
- Genetics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
25
|
Muthukanagavel M, Vasanth N, Selvakumaran J, Ragavendran K, Anthonysamy M, Subramanian M, Ignacimuthu S, Alharbi NS, Thiruvengadam M, Ganesan P. Mosquitocidal Susceptibility and Non-Target Effects of Tricholoma equestre Mushroom (Agaricomycetes) on the Immature Stages of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. Int J Med Mushrooms 2024; 26:41-53. [PMID: 38505902 DOI: 10.1615/intjmedmushrooms.2024052514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The worldwide scientific community is well aware that mosquitoes are the sole agents responsible for transmitting various dreadful diseases and critical illnesses caused by vector-borne pathogens. The primary objective of this current research was to evaluate the effectiveness of methanol extract from Tricholoma equestre mushroom in controlling the early life stages of Culex quinquefasciatus Say, Anopheles stephensi Liston, and Aedes aegypti (Linnaeus in Hasselquist) mosquitoes. The larvae, pupae and eggs of these mosquitoes were exposed to four different concentrations (62.5 to 500 ppm). After 120 h of treatment, the methanol extract of T. equestre exhibited ovicidal activity ranging from 66% to 80% against the eggs of the treated mosquitoes. It also demonstrated promising larvicidal and pupicidal activity with LC50 values of 216-300 and 230-309 ppm against the early life stages of all three mosquito species. Extensive toxicity studies revealed that the methanol extract from T. equestre had no harmful effects on non-target organisms. The suitability index (SI) or predator safety factor (PSF) indicated that the methanol extract did not harm Poecilia reticulata Peters 1859, (predatory fish), Gambusia affinis S. F. Baird & Girard 1853, dragonfly nymph and Diplonychus indicus Venkatesan & Rao 1871 (water-bug). Gas chromatography-mass spectrometry (GCMS) analysis identified key compounds, including 3-butenenitrile, 2-methyl-(25.319%); 1-butanol, 2-nitro-(18.87%) and oxalic acid, heptyl propyl ester (21.82%) which may be responsible for the observed activity. Furthermore, the formulation based on the methanol extract demonstrated similar effectiveness against all treated mosquitoes at the laboratory level and was found to be non-toxic to mosquito predators. This groundbreaking research represents the first confirmation that methanol extract from T. equestre could be effectively employed in preventing mosquito-borne diseases through mosquito population control programs.
Collapse
Affiliation(s)
- Mariappan Muthukanagavel
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamil Nadu, 627 002, India
| | - Nayagam Vasanth
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamil Nadu, 627 002, India; Department of Botany, St. Xavier's College, (Affiliated to Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamil Nadu, 627 002, India
| | - Jeyaraj Selvakumaran
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamil Nadu, 627 002, India
| | - Kamaraj Ragavendran
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamil Nadu, 627 002, India
| | - Mathalaimuthu Anthonysamy
- Department of Botany, St. Xavier's College, (Affiliated to Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamil Nadu, 627 002, India
| | - Mutheeswaran Subramanian
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamil Nadu, 627 002, India
| | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Palayamkottai, Tamil Nadu - 627 002, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul 05029, South Korea
| | - Pathalam Ganesan
- Interdisciplinary Research Centre in Biology, Xavier Research Foundation, St Xavier's College (Manonmaniam Sundaranar University), Palayamkottai, Tirunelveli, Tamil Nadu, 627 002, India
| |
Collapse
|
26
|
Negri A, Pezzali G, Pitton S, Piazzoni M, Gabrieli P, Lazzaro F, Mastrantonio V, Porretta D, Lenardi C, Caccia S, Bandi C, Epis S. MosChito rafts as a promising biocontrol tool against larvae of the common house mosquito, Culex pipiens. PLoS One 2023; 18:e0295665. [PMID: 38096210 PMCID: PMC10721080 DOI: 10.1371/journal.pone.0295665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Mosquito control is of paramount importance, in particular, in light of the major environmental alterations associated with human activities, from climate change to the altered distribution of pathogens, including those transmitted by Arthropods. Here, we used the common house mosquito, Culex pipiens to test the efficacy of MosChito raft, a novel tool for mosquito larval control. MosChito raft is a floating hydrogel matrix, composed of chitosan, genipin and yeast cells, as bio-attractants, developed for the delivery of a Bacillus thuringiensis israeliensis (Bti)-based bioinsecticide to mosquito larvae. To this aim, larvae of Cx. pipiens were collected in field in Northern Italy and a novel colony of mosquito species (hereafter: Trescore strain) was established. MosChito rafts, containing the Bti-based formulation, were tested on Cx. pipiens larvae from the Trescore strain to determine the doses to be used in successive experiments. Thus, bioassays with MosChito rafts were carried out under semi-field conditions, both on larvae from the Trescore strain and on pools of larvae collected from the field, at different developmental stages. Our results showed that MosChito raft is effective against Cx. pipiens. In particular, the observed mortality was over 50% after two days exposure of the larvae to MosChito rafts, and over 70-80% at days three to four, in both laboratory and wild larvae. In conclusion, our results point to the MosChito raft as a promising tool for the eco-friendly control of a mosquito species that is not only a nuisance insect but is also an important vector of diseases affecting humans and animals.
Collapse
Affiliation(s)
- Agata Negri
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, Italy
| | - Giulia Pezzali
- Department of Biosciences, University of Milan, Milan, Italy
| | - Simone Pitton
- Department of Biosciences, University of Milan, Milan, Italy
| | - Marco Piazzoni
- Department of Physics, University of Milan, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Paolo Gabrieli
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, Italy
| | | | | | - Daniele Porretta
- Department of Environmental Biology, “La Sapienza” University of Rome, Rome, Italy
| | | | - Silvia Caccia
- Department of Biosciences, University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, Italy
| | - Sara Epis
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Clinical Research Center “Romeo ed Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, Italy
| |
Collapse
|
27
|
Petchampai N, Isoe J, Balaraman P, Oscherwitz M, Carter BH, Sánchez CG, Scaraffia PY. Pyruvate kinase is post-translationally regulated by sirtuin 2 in Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104015. [PMID: 37797713 PMCID: PMC10698509 DOI: 10.1016/j.ibmb.2023.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
We previously demonstrated that Aedes aegypti pyruvate kinase (AaPK) plays a key role in the regulation of both carbon and nitrogen metabolism in mosquitoes. To further elucidate whether AaPK can be post-translationally regulated by Ae. aegypti sirtuin 2 (AaSirt2), an NAD+-dependent deacetylase that catalyzes the removal of acetyl groups from acetylated lysine residues, we conducted a series of analysis in non-starved and starved female mosquitoes. Transcriptional and protein profiles of AaSirt2, analyzed by qPCR and western blots, indicated that the AaSirt2 is differentially modulated in response to sugar or blood feeding in mosquito tissues dissected at different times during the first gonotrophic cycle. We also found that AaSirt2 is localized in both cytosolic and mitochondrial cellular compartments of fat body and thorax. Multiple lysine-acetylated proteins were detected by western blotting in both cellular compartments. Furthermore, western blotting of immunoprecipitated proteins provided evidence that AaPK is lysine-acetylated and bound with AaSirt2 in the cytosolic fractions of fat body and thorax from non-starved and starved females. In correlation with these results, we also discovered that RNAi-mediated knockdown of AaSirt2 in the fat body of starved females significantly decreased AaPK protein abundance. Notably, survivorship of AaSirt2-deficient females maintained under four different nutritional regimens was not significantly affected. Taken together, our data reveal that AaPK is post-translationally regulated by AaSirt2.
Collapse
Affiliation(s)
- Natthida Petchampai
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jun Isoe
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Prashanth Balaraman
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Max Oscherwitz
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Brendan H Carter
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Cecilia G Sánchez
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Patricia Y Scaraffia
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
28
|
Polidori C, Ferrari A, Borruso L, Mattarelli P, Dindo ML, Modesto M, Carrieri M, Puggioli A, Ronchetti F, Bellini R. Aedes albopictus microbiota: Differences between wild and mass-reared immatures do not suggest negative impacts from a diet based on black soldier fly larvae and fish food. PLoS One 2023; 18:e0292043. [PMID: 37751428 PMCID: PMC10521979 DOI: 10.1371/journal.pone.0292043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
The "Sterile Insect Technique" (SIT), a promising method to control Aedes albopictus, the Asian tiger mosquito, is gaining increasing interest. Recently, the role of microbiota in mosquito fitness received attention, but the link between microbiota and larval diet in mass rearing programs for SIT remains largely unexplored. We characterized the microbiota of four larval instars, pupae and eggs of non-wild (NW) lab-reared Ae. albopictus fed with a diet based on Black soldier fly (Hermetia illucens) larvae powder and fish food KOI pellets. We compared it with wild (W) field-collected individuals and the bacterial community occurring in rearing water-diet (DIET). A total of 18 bacterial classes with > 0.10% abundance were found overall in the samples, with seven classes being especially abundant. Overall, the microbiota profile significantly differed among NW, W and DIET. Verrucomicrobiae were significantly more abundant in W and DIET, Bacteroidia were more abundant in NW and DIET, and Gammaproteobacteria were only more abundant in W than in DIET. W-eggs microbiota differed from all the other groups. Large differences also appeared at the bacterial genus-level, with the abundance of 14 genera differing among groups. Three ASVs of Acinetobacter, known to have positive effects on tiger mosquitoes, were more abundant in NW than in W, while Serratia, known to have negative or neutral effects on another Aedes species, was less abundant in NW than in W. The bacterial community of W-eggs was the richest in species, while dominance and diversity did not differ among groups. Our data show that the diet based on Black soldier fly powder and fish food KOI influences the microbiota of NW tiger mosquito immature stages, but not in a way that may suggest a negative impact on their quality in SIT programs.
Collapse
Affiliation(s)
- Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria, Milan, Italy
| | - Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria, Milan, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università, Bolzano, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, Bologna, Italy
| | - Maria Luisa Dindo
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, Bologna, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, Bologna, Italy
| | - Marco Carrieri
- Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Centre, Via Sant’Agata, Crevalcore, Italy
| | - Arianna Puggioli
- Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Centre, Via Sant’Agata, Crevalcore, Italy
| | - Federico Ronchetti
- Department of Biosciences and Pediatric Clinical Research Center “Romeo and Enrica Invernizzi”, University of Milan, Milan, Italy
- Italian Malaria Network, Inter University Center for Malaria Research, University of Milan, Milan, Italy
| | - Romeo Bellini
- Centro Agricoltura Ambiente “G. Nicoli”, IAEA Collaborating Centre, Via Sant’Agata, Crevalcore, Italy
| |
Collapse
|
29
|
Wang Y, Wang X, Brown DJ, An M, Xue RD, Liu N. Insecticide resistance: Status and potential mechanisms in Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105577. [PMID: 37666603 DOI: 10.1016/j.pestbp.2023.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Aedes aegypti, an important vector in the transmission of human diseases, has developed resistance to two commonly used classes of insecticides, pyrethroids and organophosphates, in populations worldwide. This study examined sensitivity/resistance to chlorpyrifos, fenitrothion, malathion, deltamethrin, permethrin, and β-cyfluthrin, along with possible metabolic detoxification and target site insensitivity, in three Aedes aegypti mosquito strains. The resistant strain (PR) had developed high levels of resistance to all three pyrethroid insecticides compared to a susceptible population, with 6, 500-, 3200- and 17,000-fold resistance to permethrin, β-cyfluthrin, and deltamethrin, respectively. A newly emerged Ae. aegypti population collected from St. Augustine, Florida (AeStA) showed elevated levels of resistance to malathion (12-fold) and permethrin (25-fold). Synergists DEF (S,S,S,-tributyl phosphorotrithioate) and DEM (diethyl maleate) showed no or minor effects on insecticide resistance in both the AeStA and PRG20strains, but PBO (piperonyl butoxide) completely abolished resistance to both malathion and permethrin in AeStA and partially suppressed resistance in PR. The voltage-gated sodium channel sequences were examined to explore the mechanism that only partially inhibited the suppression of resistance to PBO in PR. Two mutations, V1016G/I and F1534C substitutions, both of which are associated with the development of pyrethroid resistance, were identified in the PRG20 strain but not in AeStA. These results suggest that while cytochrome P450 mediated detoxification may not be solely responsible, it is the major mechanism governing the development of resistance in AeStA. Both P450 mediated detoxification and target site insensitivity through the mutations in the voltage-gated sodium channel contribute to the high levels of resistance in the PRG20 strain.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Xin Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Dylan J Brown
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Mengru An
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Rui-De Xue
- Anastasia Mosquito Control District of St. Johns County, 120 EOC Drive, St. Augustine, FL 32092, United States of America.
| | - Nannan Liu
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| |
Collapse
|
30
|
Sakdee S, Aroonkesorn A, Imtong C, Li HC, Angsuthanasombat C. Optimized high-yield preparation of alkaline-solubilizable crystalline inclusion of the Bacillus thuringiensis Cry4Aa δ-endotoxin expressed in Escherichia coli. Protein Expr Purif 2023; 210:106320. [PMID: 37301245 DOI: 10.1016/j.pep.2023.106320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
The native Cry4Aa δ-endotoxin produced exclusively in Bacillus thuringiensis during sporulation as a ∼130-kDa inactive protoxin is confined within the parasporal crystalline inclusion that dissolves at alkaline pH in the midgut lumen of mosquito larvae. Here, the recombinant Cry4Aa toxin over-expressed in Escherichia coli at 30 °C as an alkaline-sobubilizable inclusion was found inevitably lost during isolation from the cell lysate (pH ∼6.5) of which host cells were pre-suspended in distilled water (pH ∼5.5). When 100 mM KH2PO4 (pH 5.0) was used as host cell-suspending buffer, the cell lysate's pH became more acidic (pH 5.5), allowing the expressed protoxin to be entirely retained in the form of crystalline inclusion rather than a soluble form, and thus high-yield recovery of the partially purified inclusion was obtained. Upon dialysis of the alkaline-solubilized protoxin against the KH2PO4 buffer, the protoxin precipitate was efficiently recovered and still exhibited high toxicity to Aedes aegypti mosquito larvae. Additionally, the precipitated protoxin was completely resolubilized in 50 mM Na2CO3 buffer (pH 9.0) and proteolytically processed by trypsin to produce the 65-kDa activated toxin comprising ∼47- and ∼20-kDa fragments. In silico structural analysis suggested that His154, His388, His536 and His572 were involved in a dissolution of the Cry4Aa inclusion at pH 6.5, conceivably through interchain salt bridge breakage. Altogether, such an optimized protocol described herein was effective for the preparation of alkaline-solubilizable inclusions of the recombinant Cry4Aa toxin in large amounts (>25 mg per liter culture) that would pave the way for further structure-function relationship studies of different Cry toxins.
Collapse
Affiliation(s)
- Somsri Sakdee
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand
| | - Aratee Aroonkesorn
- Division of Health and Applied Sciences, Biochemistry Graduate Program, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90110, Thailand
| | - Chompounoot Imtong
- Biophysics Institute for Research and Development (BIRD), Chiang Mai, 50110, Thailand
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Chanan Angsuthanasombat
- Bacterial Toxin Research Innovation Laboratory, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom, 73170, Thailand; Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan; Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
31
|
Zhu Y, Yu X, Cheng G. Human skin bacterial microbiota homeostasis: A delicate balance between health and disease. MLIFE 2023; 2:107-120. [PMID: 38817619 PMCID: PMC10989898 DOI: 10.1002/mlf2.12064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/01/2024]
Abstract
As the largest organ of the body, the skin acts as a barrier to prevent diseases and harbors a variety of beneficial bacteria. Furthermore, the skin bacterial microbiota plays a vital role in health and disease. Disruption of the barrier or an imbalance between symbionts and pathogens can lead to skin disorders or even systemic diseases. In this review, we first provide an overview of research on skin bacterial microbiota and human health, including the composition of skin bacteria in a healthy state, as well as skin bacterial microbiota educating the immune system and preventing the invasion of pathogens. We then discuss the diseases that result from skin microbial dysbiosis, including atopic dermatitis, common acne, chronic wounds, psoriasis, viral transmission, cutaneous lupus, cutaneous lymphoma, and hidradenitis suppurativa. Finally, we highlight the progress that utilizes skin microorganisms for disease therapeutics, such as bacteriotherapy and skin microbiome transplantation. A deeper knowledge of the interaction between human health and disease and the homeostasis of the skin bacterial microbiota will lead to new insights and strategies for exploiting skin bacteria as a novel therapeutic target.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Xi Yu
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| | - Gong Cheng
- Tsinghua University‐Peking University Joint Center for Life Sciences, School of MedicineTsinghua UniversityBeijingChina
- Shenzhen Bay LaboratoryInstitute of Infectious DiseasesShenzhenChina
| |
Collapse
|
32
|
Munugoda K, Talagala T, Subasinghe S, Hettiarachchi D, Cooray A. Choice Modeling for the Commercial Cultivation of Underutilized Aromatic Plants for Producing Mosquito Repellents: Targeting Rural Sector Income Generation. ECONOMIC BOTANY 2023; 77:1-19. [PMID: 37359047 PMCID: PMC10211285 DOI: 10.1007/s12231-023-09573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
Tropical countries face considerable economic losses due to mosquito-borne diseases which can be effectively combatted using plant-based mosquito repellents. Therefore, using a questionnaire survey, we selected the 25 top-ranked common but underutilized aromatic plants with mosquito repellent ability in Sri Lanka to investigate the rural sector's willingness to cultivate and supply them. Cinnamomum verum, Citrus aurantiifolia, Citrus sinensis, Citrus reticulata, Aegle marmelos, and Ocimum tenuiflorum were the common species thus identified. The willingness to cultivate and supply aromatic plants with mosquito repellent ability varied between 88% and 60%. The Chi-squared test indicated a significant association between gender and willingness to cultivate and supply these plants. Men had a higher willingness (82%). Persons formally educated up to elementary school level had the highest willingness (85%). The willingness from households with many non-income-generating members was 100%. The random forest model developed in this study identifies farmers' willingness to cultivate and supply aromatic plants with mosquito repellent properties. It was trained using an upsampling strategy. Our findings aid in understanding the scenarios involved with introducing, cultivating, and supplying aromatic plants.
Collapse
Affiliation(s)
- K.D. Munugoda
- Centre for Forestry and Environment, Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Nugegoda, CO 10250 Sri Lanka
| | - T.S. Talagala
- Department of Statistics, University of Sri Jayewardenepura, Nugegoda, CO 10250 Sri Lanka
| | - S.M.C.U.P. Subasinghe
- Centre for Forestry and Environment, Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Nugegoda, CO 10250 Sri Lanka
| | | | - A.T. Cooray
- Department of Chemistry, University of Sri Jayewardenepura, Nugegoda, CO 10250 Sri Lanka
| |
Collapse
|
33
|
Cancino-Faure B, González CR, González AP, Salazar-Viedma M, Pastenes L, Valdés E, Bustos C, Lozada-Yavina R, Canals M. Northern and Central Chile still free of emerging flaviviruses in mosquitoes (Diptera: Culicidae). Acta Trop 2023; 243:106929. [PMID: 37086936 DOI: 10.1016/j.actatropica.2023.106929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Geographic isolation and strict control limits in border areas have kept Chile free from various pathogens, including Flavivirus. However, the scenario is changing mainly due to climate change, the reintroduction of more aggressive mosquitoes, and the great wave of migration of people from endemic countries in recent years. Hence, it is necessary to surveillance mosquitoes to anticipate a possible outbreak in the population and take action to control it. This study aimed to investigate the presence of Flavivirus RNA by molecular tools with consensus primers in mosquitoes collected in the extreme north and central Chile. From 2019 to 2021, a prospective study was carried out in localities of Northern and part of Central Chile. Larvae, pupae, and adults of mosquitoes were collected in rural and urban sites in each locality. The collected samples were pooled by species and geographical location and tested using RT-PCR and RT-qPCR to determine presence of Flavivirus. 3085 specimens were collected, the most abundant specie Culex quinquefasciatus in the North and Aedes (Ochlerotatus) albifasciatus in the Center of Chile. Both genera are associated with Flavivirus transmission. However, PCR and RT-PCR did not detect Flavivirus RNA in the mosquitoes studied. These negative results indicate we are still a free Flavivirus country, which is reaffirmed by the non-existence of endemic human cases. Despite this, routine surveillance of mosquitoes and the pathogens they carry is highly recommended to evaluate each area-specific risk of vector-borne transmission.
Collapse
Affiliation(s)
- Beatriz Cancino-Faure
- Laboratorio de Microbiología y Parasitología, Departamento de Ciencias Preclínicas, Universidad Católica del Maule, Talca, Chile.
| | - Christian R González
- Instituto de Entomología, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | - Alejandro Piñeiro González
- Laboratorio de Microbiología y Parasitología, Departamento de Ciencias Preclínicas, Universidad Católica del Maule, Talca, Chile; Laboratorio de Genética y Microevolución, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Marcela Salazar-Viedma
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Talca, Chile
| | - Luis Pastenes
- Laboratorio de Genética y Microevolución, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Elizabeth Valdés
- Doctorado en Biotecnología Traslacional, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Camila Bustos
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Rafael Lozada-Yavina
- Departamento de Matemáticas, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Mauricio Canals
- Programa de Salud Ambiental y Departamento de Medicina, Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
34
|
Yeh CT, Weng SC, Tsao PN, Shiao SH. The chaperone BiP promotes dengue virus replication and mosquito vitellogenesis in Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 155:103930. [PMID: 36921733 DOI: 10.1016/j.ibmb.2023.103930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 05/10/2023]
Abstract
Binding immunoglobulin protein (BiP, also known as GRP78), a chaperone and master regulator of the unfolded protein response (UPR) pathway, plays an essential role in several flavivirus infections, but its functional role in regulating dengue virus replication in the mosquito remains largely unknown. We here demonstrated the interaction between a dengue virus serotype 2 (DENV2) and BiP in Aedes aegypti and report the discovery of a novel functional role of BiP in mosquito vitellogenesis. Silencing Ae. aegypti BiP (AaBiP) expression resulted in the significant inhibition of DENV2 viral genome replication, viral protein production, and infectious viral particle biogenesis. Co-immunoprecipitation assays showed that the DENV2 non-structural protein 1 (NS1) interacts with the AaBiP protein, and silencing AaBiP expression led to enhanced DENV2 NS1 aggregation, indicating that AaBiP plays a role in viral protein stability. A kinetic study focusing on pulse treatment of MG132, a proteasome inhibitor, in AaBiP-silenced mosquitoes showed that DENV2 NS1 was drastically elevated, which further suggests that AaBiP-mediated viral protein degradation is mediated by proteasomal machinery. Silencing of AaBiP also resulted in a reduction in mosquito fertility and fecundity. Depletion of AaBiP inhibited mosquito vitellogenesis due to the reduction of vitellogenin mRNA and elevated aggregation of vitellogenin protein post blood meal, further suppressing ovary development and fecundity. Overall, our results suggest that AaBiP is a dual-function protein with roles in both the regulation of dengue virus replication and mosquito reproduction. Our findings will be useful in the establishment of more efficient strategies for vector-borne disease control.
Collapse
Affiliation(s)
- Chun-Ting Yeh
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine National Taiwan University, Taipei, Taiwan
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
35
|
Ali I, Alarcόn-Elbal PM, Mundle M, Noble SAA, Oura CAL, Anzinger JJ, Sandiford SL. The Others: A Systematic Review of the Lesser-Known Arboviruses of the Insular Caribbean. Viruses 2023; 15:843. [PMID: 37112824 PMCID: PMC10144105 DOI: 10.3390/v15040843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The Caribbean enjoys a long-standing eminence as a popular tourist destination; however, over the years it has also amassed the sobriquet "arbovirus hotspot". As the planet warms and vectors expand their habitats, a cognizant working knowledge of the lesser-known arboviruses and the factors that influence their emergence and resurgence becomes essential. The extant literature on Caribbean arboviruses is spread across decades of published literature and is quite often difficult to access, and, in some cases, is obsolete. Here, we look at the lesser-known arboviruses of the insular Caribbean and examine some of the drivers for their emergence and resurgence. We searched the scientific literature databases PubMed and Google Scholar for peer-reviewed literature as well as scholarly reports. We included articles and reports that describe works resulting in serological evidence of the presence of arboviruses and/or arbovirus isolations in the insular Caribbean. Studies without serological evidence and/or arbovirus isolations as well as those including dengue, chikungunya, Zika, and yellow fever were excluded. Of the 545 articles identified, 122 met the inclusion criteria. A total of 42 arboviruses were identified in the literature. These arboviruses and the drivers that affect their emergence/resurgence are discussed.
Collapse
Affiliation(s)
- Inshan Ali
- Department of Microbiology, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Pedro M. Alarcόn-Elbal
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Valencia, Spain
| | - Marcia Mundle
- Department of Natural Sciences, Faculty of Science and Technology, The Mico University College, Kingston 5, Jamaica
| | - Simmoy A. A. Noble
- Department of Microbiology, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Chris A. L. Oura
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago
| | - Joshua J. Anzinger
- Department of Microbiology, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
- Global Virus Network, Baltimore, MD 21201, USA
| | - Simone L. Sandiford
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston 7, Jamaica
- Mosquito Control and Research Unit, The University of the West Indies, Mona, Kingston 7, Jamaica
| |
Collapse
|
36
|
Onen H, Luzala MM, Kigozi S, Sikumbili RM, Muanga CJK, Zola EN, Wendji SN, Buya AB, Balciunaitiene A, Viškelis J, Kaddumukasa MA, Memvanga PB. Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. INSECTS 2023; 14:221. [PMID: 36975906 PMCID: PMC10059804 DOI: 10.3390/insects14030221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Mosquitoes act as vectors of pathogens that cause most life-threatening diseases, such as malaria, Dengue, Chikungunya, Yellow fever, Zika, West Nile, Lymphatic filariasis, etc. To reduce the transmission of these mosquito-borne diseases in humans, several chemical, biological, mechanical, and pharmaceutical methods of control are used. However, these different strategies are facing important and timely challenges that include the rapid spread of highly invasive mosquitoes worldwide, the development of resistance in several mosquito species, and the recent outbreaks of novel arthropod-borne viruses (e.g., Dengue, Rift Valley fever, tick-borne encephalitis, West Nile, yellow fever, etc.). Therefore, the development of novel and effective methods of control is urgently needed to manage mosquito vectors. Adapting the principles of nanobiotechnology to mosquito vector control is one of the current approaches. As a single-step, eco-friendly, and biodegradable method that does not require the use of toxic chemicals, the green synthesis of nanoparticles using active toxic agents from plant extracts available since ancient times exhibits antagonistic responses and broad-spectrum target-specific activities against different species of vector mosquitoes. In this article, the current state of knowledge on the different mosquito control strategies in general, and on repellent and mosquitocidal plant-mediated synthesis of nanoparticles in particular, has been reviewed. By doing so, this review may open new doors for research on mosquito-borne diseases.
Collapse
Affiliation(s)
- Hudson Onen
- Department of Entomology, Uganda Virus Research Institute, Plot 51/59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Miryam M. Luzala
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Stephen Kigozi
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Rebecca M. Sikumbili
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Department of Chemistry, Faculty of Science, University of Kinshasa, Kinshasa B.P. 190, Democratic Republic of the Congo
| | - Claude-Josué K. Muanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Eunice N. Zola
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Sébastien N. Wendji
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aristote B. Buya
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| | - Aiste Balciunaitiene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Jonas Viškelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Martha A. Kaddumukasa
- Department of Biological Sciences, Faculty of Science, Kyambogo University, Kampala P.O. Box 1, Uganda
| | - Patrick B. Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
- Centre de Recherche et d’Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, Kinshasa B.P. 212, Democratic Republic of the Congo
| |
Collapse
|
37
|
MosChito rafts as effective and eco-friendly tool for the delivery of a Bacillus thuringiensis-based insecticide to Aedes albopictus larvae. Sci Rep 2023; 13:3041. [PMID: 36810640 PMCID: PMC9944263 DOI: 10.1038/s41598-023-29501-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Adult mosquito females, through their bites, are responsible for the transmission of different zoonotic pathogens. Although adult control represents a pillar for the prevention of disease spread, larval control is also crucial. Herein we characterized the effectiveness of a suitable tool, named "MosChito raft", for the aquatic delivery of a Bacillus thuringiensis var. israelensis (Bti) formulate, a bioinsecticide active by ingestion against mosquito larvae. MosChito raft is a floating tool composed by chitosan cross-linked with genipin in which a Bti-based formulate and an attractant have been included. MosChito rafts (i) resulted attractive for the larvae of the Asian tiger mosquito Aedes albopictus, (ii) induced larval mortality within a few hours of exposure and, more importantly, (iii) protected the Bti-based formulate, whose insecticidal activity was maintained for more than one month in comparison to the few days residual activity of the commercial product. The delivery method was effective in both laboratory and semi-field conditions, demonstrating that MosChito rafts may represent an original, eco-based and user-friendly solution for larval control in domestic and peri-domestic aquatic habitats such as saucers and artificial containers in residential or urban environments.
Collapse
|
38
|
Contreras B, Adelman ZN, Chae K. Evaluating the Mating Competency of Genetically Modified Male Mosquitoes in Laboratory Conditions. FRONTIERS IN TROPICAL DISEASES 2023; 4:1106671. [PMID: 37860147 PMCID: PMC10586724 DOI: 10.3389/fitd.2023.1106671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Efforts to eradicate mosquito-borne diseases have increased the demand for genetic control strategies, many of which involve the release of genetically modified (GM) mosquito males into natural populations. The first hurdle for GM males is to compete with their wild-type counterparts for access to females. Here, we introduce an eye color-based mating assay, in which both Lvp wild-type and kynurenine 3-monooxygenase (kmo)-null males compete for access to kmo-null females, and therefore the eye color phenotype (black or white) of the progeny is dependent on the parental mating pair. A series of tests addressed that male mating competitiveness between the two strains can significantly be influenced by adult density, light intensity, and mating duration. Interestingly, the mating competitiveness of males was not correlated with body size, which was negatively influenced by a high larval density. Lastly, this eye color-associated assay was applied to characterize GM mosquitoes in their mating competitiveness, establishing this method as a fast and precise way of benchmarking this fitness parameter for laboratory-raised males.
Collapse
Affiliation(s)
- Bryan Contreras
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Keun Chae
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
39
|
Su T, Su H. Laboratory and semi-field evaluation on OmniPrene ™ G against Aedes, Anopheles and Culex mosquitoes. JOURNAL OF THE EUROPEAN MOSQUITO CONTROL ASSOCIATION 2022. [DOI: 10.52004/jemca2022.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the current existing, emerging, and resurging mosquito species and mosquito-borne diseases, and very low availability of mosquito control products, exploration of novel active ingredients and innovative formulations based on available active ingredients are crucial to ensure the sustainable mosquito control interventions. The larviciding by applying biorational mosquito larvicides with microbial and insect growth regulator origins is a routine practice in most areas. The current paper evaluated an innovated granular S-methoprene formulation, namely OmniPrene™ in the laboratory bioassays, as well as outdoor microcosms at 2.8, 5.6 and 11.2 kg/ha with 30.5 cm water depth, and at 2.8 kg/ha with shallow water (15.25 cm) against Aedes aegypti, Anopheles hermsi and Culex quinquefasciatus. Over 90% efficacy was achieved against Aedes and Anopheles for at least 49 days, and against Culex for up to 42 days at 2.8, 5.6 and 11.2 kg/ha when water depth was 30.5 cm. The control levels were further elevated when water depth was 15.25 cm, where over 90% control was observed for 63 days against Aedes and Anopheles, but 56 days against Culex. The high initial and residual efficacy were attributable to the unique diatomaceous earth carrier granules and proprietary binding process. With well documented bioactivity and safety of S-methoprene, demonstrated performance of the OmniPrene G, plus the unique feature of the formulation to render vegetation penetration, even coverage, and other advantages of dry granules, it would be reasonable to recommend this product as one of the routine larvicidal tools in a wide variety of habitats against mosquito species of public health importance while complying with the local regulations.
Collapse
Affiliation(s)
- T. Su
- EcoZone International LLC, 7237 Boice Ln., Riverside, CA 92506, USA
| | - H. Su
- Synergetica International Inc., 9 Inverness Dr., Marlboro, NJ 07746, USA
| |
Collapse
|
40
|
Potent Bioactivity of Endophytic Fungi Isolated from Moringa oleifera Leaves. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2461021. [PMID: 36567913 PMCID: PMC9779999 DOI: 10.1155/2022/2461021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022]
Abstract
Plant species are known to harbor large number of endophytes, which stays in plant tissues as symbionts. These endophytes secrete large array of bioactive compounds that have potency against certain diseases with no side effects. We have collected leaf samples of the Moringa oleifera plant from the Pakistan Forest Institute, Khyber Pakhtunkhwa, Pakistan for the isolation of beneficial endophytes. The strains isolated from the leaves of M. oleifera were coded with MOL and tested for antimicrobial, antifungal, germicidal, phytotoxic, insecticidal, cytotoxic, and anti-inflammatory activities. The isolates, MOL1, MOL16, MOL19, and MOL21, possessed antibacterial activity against Staphylococcus aureus, whereas MOL7 inhibited 55% of the growth of Escherichia coli. MOL3 inhibited the growth of E. coli, S. aureus, and Pseudomonas aeruginosa. The strains, MOL1 and MOL7, showed antifungal activity against Candida albicans and Saccharomyces cerevisiae, while the strains, MOL11 and MOL17, showed activity against Verticillium chlamydosporium. The isolates, MOL3, MOL7, MOL9, MOL15, MOL17, MOL18, and MOL19, inhibited the growth of Lemna minor (duckweed) at 100 μg/ml. MOL2 exhibited strong activity in the brine shrimp assay, while MOL1, MOL2, MOL5, MOL6, MOL12, MOL17, MOL19, and MOL20 showed insecticidal, and MOL3 demonstrated larvicidal and antileishmanial activity. The isolated potent endophytes were identified as Aspergillus, Penicillium, Fusarium, Tricoderma, Rhizoctonia, Mucor, Alternaria, Pestalotiopsis, Acremonium, and Cladosporium through morphological and microscopic characteristics of the colonies.
Collapse
|
41
|
Narayanan M, Priya S, Natarajan D, Alahmadi TA, Alharbi SA, Krishnan R, Chi NTL, Pugazhendhi A. Phyto-fabrication of Silver nanoparticle using leaf extracts of Aristolochia bracteolata Lam and their mosquito larvicidal potential. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Hodges CW, Marshall BM, Hill JG, Strine CT. Malayan kraits (Bungarus candidus) show affinity to anthropogenic structures in a human dominated landscape. Sci Rep 2022; 12:7139. [PMID: 35504946 PMCID: PMC9065047 DOI: 10.1038/s41598-022-11255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/07/2022] [Indexed: 11/22/2022] Open
Abstract
Animal movement can impact human-wildlife conflict by influencing encounter and detection rates. We assess the movement and space use of the highly venomous and medically important Malayan krait (Bungarus candidus) on a suburban university campus. We radio-tracked 14 kraits for an average of 114 days (min: 19, max: 218), during which we located individuals an average of 106 times (min: 21, max: 229) each. Most individuals displayed some level of attraction to buildings (n = 10) and natural areas (n = 12); we identified a similar unambiguous pattern of attraction to buildings and natural areas at the population level (of our sample). Snakes remained in shelter sites for long durations (max: 94 days) and revisited sites on average every 15.45 days. Over 50% of locations were within human settlements and 37.1% were associated with buildings. We found generally seasonal patterns of activity, with higher activity in wet seasons, and lower activity in the hot season. These results show frequent proximity between Malayan kraits and humans at the university; thereby, suggesting a near constant potential for human-wildlife conflict. Despite the fact that no snakebites from this species occurred at the university during our study period, substantial education and awareness training should be considered to ensure continued coexistence on campus.
Collapse
Affiliation(s)
- Cameron Wesley Hodges
- School of Biology, Institute of Science, Suranaree University of Technology, Muang Nakhon Ratchasima, Nakhon Ratchasima, 30000, Thailand.
| | - Benjamin Michael Marshall
- School of Biology, Institute of Science, Suranaree University of Technology, Muang Nakhon Ratchasima, Nakhon Ratchasima, 30000, Thailand
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Jacques George Hill
- Science and Math Division, Northwest Arkansas Community College, Bentonville, AR, 72703, USA
| | - Colin Thomas Strine
- School of Biology, Institute of Science, Suranaree University of Technology, Muang Nakhon Ratchasima, Nakhon Ratchasima, 30000, Thailand.
- Department of Natural Science, Dickinson State University, North Dakota, 58601, USA.
| |
Collapse
|
43
|
Konstantinidis K, Dovrolis N, Kouvela A, Kassela K, Rosa Freitas MG, Nearchou A, de Courcy Williams M, Veletza S, Karakasiliotis I. Defining Virus-Carrier Networks that Shape the Composition of the Mosquito Core Virome of a Local Ecosystem. Virus Evol 2022; 8:veac036. [PMID: 35505691 PMCID: PMC9055857 DOI: 10.1093/ve/veac036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Mosquitoes are the most important vectors of emerging infectious diseases. During the past decade, our understanding of the diversity of viruses they carry has greatly expanded. Most of these viruses are considered mosquito-specific, but there is increasing evidence that these viruses may affect the vector competence of mosquitoes. Metagenomics approaches have focused on specific mosquito species for the identification of what is called the core virome. Despite the fact that, in most ecosystems, multiple species may participate in virus emergence and circulation, there is a lack of understanding of the virus-carrier/host network for both vector-borne and mosquito-specific viruses. Here, we studied the core virome of mosquitoes in a diverse local ecosystem that had 24 different mosquito species. The analysis of the viromes of these 24 mosquito species resulted in the identification of 34 viruses, which included 15 novel viruses, as determined according to the species demarcation criteria of the respective virus families. Most of the mosquito species had never been analysed previously, and a comparison of the individual viromes of the 24 mosquito species revealed novel relationships among mosquito species and virus families. Groups of related viruses and mosquito species from multiple genera formed a complex web in the local ecosystem. Furthermore, analyses of the virome of mixed-species pools of mosquitoes from representative traps of the local ecosystem showed almost complete overlap with the individual-species viromes identified in the study. Quantitative analysis of viruses’ relative abundance revealed a linear relationship to the abundance of the respective carrier/host mosquito species, supporting the theory of a stable core virome in the most abundant species of the local ecosystem. Finally, our study highlights the importance of using a holistic approach to investigating mosquito viromes relationships in rich and diverse ecosystems.
Collapse
Affiliation(s)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Adamantia Kouvela
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Katerina Kassela
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Goreti Rosa Freitas
- Laboratório de Mosquitoes Transmissores de Hematozoários, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andreas Nearchou
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Stavroula Veletza
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
44
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
45
|
Yu S, Wang J, Luo X, Zheng H, Wang L, Yang X, Wang Y. Transmission-Blocking Strategies Against Malaria Parasites During Their Mosquito Stages. Front Cell Infect Microbiol 2022; 12:820650. [PMID: 35252033 PMCID: PMC8889032 DOI: 10.3389/fcimb.2022.820650] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is still the most widespread parasitic disease and causes the most infections globally. Owing to improvements in sanitary conditions and various intervention measures, including the use of antimalarial drugs, the malaria epidemic in many regions of the world has improved significantly in the past 10 years. However, people living in certain underdeveloped areas are still under threat. Even in some well-controlled areas, the decline in malaria infection rates has stagnated or the rates have rebounded because of the emergence and spread of drug-resistant malaria parasites. Thus, new malaria control methods must be developed. As the spread of the Plasmodium parasite is dependent on the part of its life cycle that occurs in mosquitoes, to eliminate the possibility of malaria infections, transmission-blocking strategies against the mosquito stage should be the first choice. In fact, after the gametocyte enters the mosquito body, it undergoes a series of transformation processes over a short period, thus providing numerous potential blocking targets. Many research groups have carried out studies based on targeting the blocking of transmission during the mosquito phase and have achieved excellent results. Meanwhile, the direct killing of mosquitoes could also significantly reduce the probability of malaria infections. Microorganisms that display complex interactions with Plasmodium, such as Wolbachia and gut flora, have shown observable transmission-blocking potential. These could be used as a biological control strategy and play an important part in blocking the transmission of malaria.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luhan Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- *Correspondence: Ying Wang,
| |
Collapse
|
46
|
Release of Sterile Mosquitoes with Drones in Urban and Rural Environments under the European Drone Regulation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, several countries have developed the use of sterile insect techniques (SIT) to fight against mosquitoes that transmit diseases. From a technical and economic point of view, the use of drones in the aerial release of sterile mosquitoes leads to important improvements in aerial coverage and savings in operational costs due to the requirement of fewer release sites and field staff. However, these operations are under the European drone regulation, one of the most advanced in the world. The main contribution and novelty of this paper with respect to previous work is the analysis of the SIT application with drones under the European risk-based regulation in two scenarios: urban and rural areas. The specific operations risk assessment (SORA) methodology has been applied to assess the risk of drone operations in these scenarios. The paper presents the operational requirements for aerial release of mosquitoes with drones along with the regulatory considerations that must be applied. Finally, an overview of the conditions in operation that could relax risks and mitigation measures is also discussed.
Collapse
|
47
|
Sharifi-Rad J, Quispe C, Kumar M, Akram M, Amin M, Iqbal M, Koirala N, Sytar O, Kregiel D, Nicola S, Ertani A, Victoriano M, Khosravi-Dehaghi N, Martorell M, Alshehri MM, Butnariu M, Pentea M, Rotariu LS, Calina D, Cruz-Martins N, Cho WC. Hyssopus Essential Oil: An Update of Its Phytochemistry, Biological Activities, and Safety Profile. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8442734. [PMID: 35069979 PMCID: PMC8776447 DOI: 10.1155/2022/8442734] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/28/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
The genus Hyssopus is widespread in central Asia, East Mediterranean, and Mongolian areas. It has six main species which are used as herbal remedies, such as Hyssopus officinalis which is used as a condiment and flavoring agent in food industry. The other five species are H. ambiguus, H. cuspidatus, H. latilabiatus, H. macranthus, and H. seravschanicus. Its species are used in the treatment of various ailments such as cold, cough, loss of appetite, fungal infection, and spasmodic condition. Its constituents especially essential oils are popularly used as an additive in beverages, foods, and cosmetics. The volatile constituents are used for aroma in the food industry, cosmetic industry, and household products. The important active constituents in its essential oils are β-pinene, pinocamphone, isopinocamphone, and other terpenoids. Hyssopus genus is also bundled with other secondary metabolites including flavonoids luteolin, quercetin, apigenin, and their glucosides, as well as phenolic compounds including ferulic, p-hydroxy-benzoic acid, protocatechuic acid, chlorogenic, and caffeic acid. Combinedly, the extracts of Hyssopus are reported to have potential antiviral and antifungal activities proven using in vitro studies, whereas in vivo investigations have reported the crucial role of Hyssopus extracts in plasma membrane relaxation, cytotoxic, and sedative effects. This plant is believed to be relatively safe at levels commonly used in foods; nevertheless, more studies are needed to determine the safety profile.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, 400019, Mumbai, India
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Mewish Amin
- Department of Eastern Medicine, Government College University Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal
- Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra A. Hlinku 2, 94976 Nitra, Slovakia
| | - Dorota Kregiel
- Technical University of Lodz, Faculty of Biotechnology and Food Sciences, 90-924 Lodz, Poland Wolczanska 171/173
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | - Andrea Ertani
- Department of Agricultural, Forest and Food Sciences, University of Turin, Italy
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
| | - Nafiseh Khosravi-Dehaghi
- Evidence-Based Phytotherapy & Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
- Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Mohammed M. Alshehri
- Department of Pharmaceutical Care, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, 300645, Calea 119, Timis, Romania
| | - Marius Pentea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, 300645, Calea 119, Timis, Romania
| | - Lia Sanda Rotariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, 300645, Calea 119, Timis, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
48
|
Vinogradov DD, Sinev AY, Tiunov AV. Predators as Control Agents of Mosquito Larvae in Micro-Reservoirs (Review). INLAND WATER BIOLOGY 2022; 15:39-53. [PMID: 35311016 PMCID: PMC8917826 DOI: 10.1134/s1995082922010138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/26/2021] [Accepted: 04/22/2021] [Indexed: 05/10/2023]
Abstract
UNLABELLED The article reviews predators that are able to control populations of mosquito larvae (Culicidae) in phytotelmata and their anthropogenic analogs. The spectrum of mosquito larva consumers in micro-reservoirs is listed. It includes flatworms, crustaceans, arachnids, insects, vertebrates, and carnivorous plants. The biology and practical use of the two most effective biological control agents, predatory mosquitoes Toxorhynchites and copepods, are considered in more detail. Prospects of invertebrate predators as controlling agents for the mosquito larvae in micro-reservoirs in temperate climate zones are briefly discussed. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1134/S1995082922010138.
Collapse
Affiliation(s)
- D. D. Vinogradov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | | - A. V. Tiunov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
49
|
Natural larvicide mixed lime leaf extract and galangal rhizome to mortality Aedes aegypti larvae. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Chakraborti S, Chhibber-Goel J, Sharma A. Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue. Parasit Vectors 2021; 14:605. [PMID: 34895309 PMCID: PMC8665550 DOI: 10.1186/s13071-021-05106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases have a devastating impact on human civilization. A few species of Anopheles mosquitoes are responsible for malaria transmission, and while there has been a reduction in malaria-related deaths worldwide, growing insecticide resistance is a cause for concern. Aedes mosquitoes are known vectors of viral infections, including dengue, yellow fever, chikungunya, and Zika. Aminoacyl-tRNA synthetases (aaRSs) are key players in protein synthesis and are potent anti-infective drug targets. The structure-function activity relationship of aaRSs in mosquitoes (in particular, Anopheles and Aedes spp.) remains unexplored. METHODS We employed computational techniques to identify aaRSs from five different mosquito species (Anopheles culicifacies, Anopheles stephensi, Anopheles gambiae, Anopheles minimus, and Aedes aegypti). The VectorBase database ( https://vectorbase.org/vectorbase/app ) and web-based tools were utilized to predict the subcellular localizations (TargetP-2.0, UniProt, DeepLoc-1.0), physicochemical characteristics (ProtParam), and domain arrangements (PfAM, InterPro) of the aaRSs. Structural models for prolyl (PRS)-, and phenylalanyl (FRS)-tRNA synthetases-were generated using the I-TASSER and Phyre protein modeling servers. RESULTS Among the vector species, a total of 37 (An. gambiae), 37 (An. culicifacies), 37 (An. stephensi), 37 (An. minimus), and 35 (Ae. aegypti) different aaRSs were characterized within their respective mosquito genomes. Sequence identity amongst the aaRSs from the four Anopheles spp. was > 80% and in Ae. aegypti was > 50%. CONCLUSIONS Structural analysis of two important aminoacyl-tRNA synthetases [prolyl (PRS) and phenylanalyl (FRS)] of Anopheles spp. suggests structural and sequence similarity with potential antimalarial inhibitor [halofuginone (HF) and bicyclic azetidine (BRD1369)] binding sites. This suggests the potential for repurposing of these inhibitors against the studied Anopheles spp. and Ae. aegypti.
Collapse
Affiliation(s)
| | - Jyoti Chhibber-Goel
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, National Institute of Malaria Research, New Delhi, India
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|