1
|
Pavlova A, Kocikova B, Dolinska MU, Jackova A. Hepatitis E Virus in the Role of an Emerging Food-Borne Pathogen. Microorganisms 2025; 13:885. [PMID: 40284721 PMCID: PMC12029509 DOI: 10.3390/microorganisms13040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Viral hepatitis E represents an important global health problem caused by the hepatitis E virus (HEV). Cases of HEV infection are increasingly associated with food-borne transmissions after the consumption of raw or undercooked food products from infected animals in high-income regions. Although most cases of infection are asymptomatic, severe courses of infection have been reported in specific groups of people, predominantly among pregnant women and immunocompromised patients. The viral nucleic acid of HEV is increasingly being reported in food-producing animals and different products of an animal origin. Even though the incubation period for HEV infection is long, several direct epidemiological links between human cases and the consumption of HEV-contaminated meat and meat products have been described. In this article, we review the current knowledge on human HEV infections, HEV in different food-producing animals and products of an animal origin, as well as the accumulation and resistance to HEV in farm and slaughterhouse environments. We also provide preventive measures to help eliminate HEV from animals, the human population, and the environment.
Collapse
Affiliation(s)
| | | | | | - Anna Jackova
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 041 81 Kosice, Slovakia; (A.P.); (B.K.); (M.U.D.)
| |
Collapse
|
2
|
Daniel R, Zelber-Sagi S, Barak M, Zuckerman E. The Epidemiology of Hepatitis E in Israel and Potential Risk Factors: A Cross-Sectional Population-Based Serological Survey of Hepatitis E Virus in Northern Israel. Viruses 2025; 17:536. [PMID: 40284979 PMCID: PMC12031424 DOI: 10.3390/v17040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatitis E Virus (HEV) has gained public health attention as one of the causative agents of viral hepatitis. Our study aimed to provide data about HEV seropositivity in the Israeli general population, including its seroprevalence geographical distribution, and to identify variables as possible risk factors for HEV exposure. A seroprevalence cross-sectional study was conducted: HEV serological status was determined in 716 blood samples collected from the routine check-up blood samples. Demographic information was available for all samples. The overall prevalence of HEV IgG in an apparently healthy population in the north of Israel was 10.5%, with no evidence of positive HEV IgM. There was a significant association between HEV seropositivity and elderly age and low socioeconomic status (SES). The age-adjusted seroprevalence was significantly lower among Jews compared to Arabs with a rate ratio of 2.02. We identified clusters (hot spots) of HEV infection in three regions under study. Our results confirmed a high prevalence of anti-HEV in the country where clinical hepatitis E is not endemic. For the first time, this study showed that a hot spot analysis was able to provide new knowledge about actual exposure zones. As HEV infection is not a notifiable disease, it is probably underdiagnosed. Thus, better awareness among physicians is warranted.
Collapse
Affiliation(s)
- Rasha Daniel
- Haifa and Western Galilee Central Laboratories, Clalit Health Services, Nesher 20300, Israel
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Mira Barak
- Head of Medical Laboratory Sciences, Zefat Academic College, Safed 13206, Israel;
| | - Eli Zuckerman
- Liver Unit, Carmel Medical Center, Faculty of Medicine, Technion Institute, Haifa 3498838, Israel
| |
Collapse
|
3
|
Wielick C, Ludwig-Begall L, Ribbens S, Thiry É, Faes C, Saegerman C. Biosecurity Risk Factors and Predictive Index for Hepatitis E Virus Serological Status in Belgian Pig Farms: Conventional and Free-Range Systems. Viruses 2025; 17:432. [PMID: 40143359 PMCID: PMC11946260 DOI: 10.3390/v17030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/08/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Hepatitis E viruses (HEV) cause hepatitis E in humans. In industrialized countries, sporadic HEV infections, typically caused by HEV genotypes 3 or 4, can become chronic and progress to liver cirrhosis in immunocompromised individuals. Pigs are a significant animal reservoir, implicating raw or undercooked pork products as potential sources of human infection. To better understand HEV dissemination in the Belgian pig population, potential risk factors were investigated by linking farm-level HEV serological status to biosecurity questionnaire data. Farrow-to-finish herd type, free-range systems, and poor boot hygiene were significantly associated with higher within-herd prevalences. This enabled an initial risk profiling of various farming types and the development of predictions for all Belgian pig farms. When combined with the census of the Belgian wild boar population, the predicted HEV status of all professional Belgian pig farms (based on these associations) does not suggest that the proximity of wild boars is a main source of HEV in free-ranging herds. Identifying risk factors for increased circulation of HEV between and within pig farms is critical to controlling its spread and reducing human infection.
Collapse
Affiliation(s)
- Constance Wielick
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR ULiège), FARAH Research Centre, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
- FARAH Research Centre, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium; (L.L.-B.); (É.T.)
| | - Louisa Ludwig-Begall
- FARAH Research Centre, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium; (L.L.-B.); (É.T.)
| | - Stefaan Ribbens
- Animal Health Service Flanders (DGZ Vlaanderen), 8820 Torhout, Belgium;
| | - Étienne Thiry
- FARAH Research Centre, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium; (L.L.-B.); (É.T.)
| | - Christel Faes
- Center for Statistics, Data Science Institute, Hasselt University, 3500 Hasselt, Belgium;
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR ULiège), FARAH Research Centre, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
4
|
Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, Guo Y, Wang H, Dong E, Xiao J. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduct Target Ther 2025; 10:33. [PMID: 39904973 PMCID: PMC11794951 DOI: 10.1038/s41392-024-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
As a highly complex organ with digestive, endocrine, and immune-regulatory functions, the liver is pivotal in maintaining physiological homeostasis through its roles in metabolism, detoxification, and immune response. Various factors including viruses, alcohol, metabolites, toxins, and other pathogenic agents can compromise liver function, leading to acute or chronic injury that may progress to end-stage liver diseases. While sharing common features, liver diseases exhibit distinct pathophysiological, clinical, and therapeutic profiles. Currently, liver diseases contribute to approximately 2 million deaths globally each year, imposing significant economic and social burdens worldwide. However, there is no cure for many kinds of liver diseases, partly due to a lack of thorough understanding of the development of these liver diseases. Therefore, this review provides a comprehensive examination of the epidemiology and characteristics of liver diseases, covering a spectrum from acute and chronic conditions to end-stage manifestations. We also highlight the multifaceted mechanisms underlying the initiation and progression of liver diseases, spanning molecular and cellular levels to organ networks. Additionally, this review offers updates on innovative diagnostic techniques, current treatments, and potential therapeutic targets presently under clinical evaluation. Recent advances in understanding the pathogenesis of liver diseases hold critical implications and translational value for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Aier Institute of Ophthalmology, Central South University, Changsha, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jinhang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangxin Kong
- Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yangkun Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Erdan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
5
|
Odoom A, Boamah I, Sagoe KWC, Kotey FCN, Donkor ES. Zoonotic and Food-Related Hazards Due to Hepatitis A and E in Africa: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241299370. [PMID: 39575136 PMCID: PMC11580081 DOI: 10.1177/11786302241299370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024]
Abstract
Introduction Foodborne infections are caused by a wide spectrum of microbial pathogens, and they pose a significant global health threat, resulting in millions of cases and thousands of fatalities annually. Among these pathogens, human viruses, including Hepatitis A virus (HAV) and Hepatitis E virus (HEV), play a significant role in foodborne viral outbreaks, especially in Africa. This systematic review determined the prevalence of these viruses in livestock and produce in Africa. Method A systematic search strategy was implemented following the PRISMA guidelines. Databases such as African Journal Online, Web of Science, Scopus, and PubMed were searched from their inception until November 30, 2023. Descriptive statistics and a proportional meta-analysis utilising a random-effects model with a 95% confidence interval were employed in the data analysis. The Cochrane risk-of-bias tool (ROB2) was utilised to evaluate the potential for bias in each study. Results The search identified 27 articles that met the inclusion criteria, among which seven focused on HAV, comprising a total of 309 samples, whereas 20 studies focused on HEV, comprising a total of 4238 samples. Egypt had the highest number of studies, followed by Cameroon and Nigeria. The meta-analysis revealed an overall prevalence of 33.8% (95% CI: 17.0-50.6) for HAV in ducks and shellfish and 22.0% (95% CI: 12.1-31.8) for HEV in various livestock. Genotype 3 was identified as the predominant genotype, for both HAV and HEV. Conclusion This review revealed a high prevalence of HAV and HEV in livestock populations in Africa, shedding light on the potential risks associated with zoonotic and/or food-related infections. There is a need for continued surveillance and monitoring of these viruses in both animals and food products to mitigate the risk of foodborne outbreaks and protect human health.
Collapse
Affiliation(s)
- Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | - Isaac Boamah
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | - Kwamena WC Sagoe
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | - Fleischer CN Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra, Ghana
| |
Collapse
|
6
|
Di Cola G, Fantilli AC, Rodríguez-Lombardi G, Rucci KA, Castro G, Mirazo S, Nates SV, Pisano MB, Ré VE. Assessment of Hepatitis E Virus RNA Detection in Meat Samples: Optimization of Pre-analytical Conditions. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 17:1. [PMID: 39580366 DOI: 10.1007/s12560-024-09617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024]
Abstract
Hepatitis E virus (HEV) is primarily transmitted via the fecal-oral route and is considered an anthropozoonosis. Genotypes with zoonotic potential (mainly HEV-3 and HEV-4) can be transmitted through the consumption of raw or undercooked pork, wild boar, deer meat, or processed products. This study aims to explore methodologies for processing meat samples to establish a protocol for HEV detection in meat. The analysis of pre-analytical conditions involved comparing homogenization with PBS versus TRIzol, comparing tissue disruption methods (ultra-turrax versus mortar and pestle), and assessing nucleic acid extraction techniques (spin columns and magnetic beads) across three types of artificially contaminated meat matrices: pork, salmon (fish-meat), and salami. Each test included a process control virus (PP7) and an HEV transcript. Molecular detection was performed via RT-qPCR. Results indicated that TRIzol provided better recovery rates for homogenization, while spin columns were the most effective option for RNA extraction. Both the ultra-turrax homogenizer and the mortar-pestle methods were effective for pork and fish-meat homogenization, while the use of the UT yielded superior results for salami. HEV recovery rates were 36.7%, 26.3%, and 34.1% for salami, salmon, and pork meat, respectively. In conclusion, we reached a simple and reliable protocol for the detection of RNA-HEV from three meat matrices. This method, which includes homogenization with TRIzol, mechanical tissue disruption, and RNA extraction using spin columns followed by real-time PCR, can be applied in future studies to evaluate HEV prevalence in food sources and contribute to the discussion about HEV detection methodologies.
Collapse
Affiliation(s)
- Guadalupe Di Cola
- Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Universidad Nacional de Córdoba, Enfermera Gordillo Gómez S/N, Ciudad Universitaria, 5016, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| | - Anabella C Fantilli
- Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Universidad Nacional de Córdoba, Enfermera Gordillo Gómez S/N, Ciudad Universitaria, 5016, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Gonzalo Rodríguez-Lombardi
- Laboratorio de Hemoderivados, Área Desarrollo de Productos y Procesos, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Kevin A Rucci
- Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Universidad Nacional de Córdoba, Enfermera Gordillo Gómez S/N, Ciudad Universitaria, 5016, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Gonzalo Castro
- Laboratorio Central, Ministerio de Salud de La Provincia de Córdoba, Córdoba, Argentina
| | - Santiago Mirazo
- Departamento de Bacteriología y Virología, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
- Sección Virología, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
| | - Silvia Viviana Nates
- Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Universidad Nacional de Córdoba, Enfermera Gordillo Gómez S/N, Ciudad Universitaria, 5016, Córdoba, Argentina
| | - María Belén Pisano
- Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Universidad Nacional de Córdoba, Enfermera Gordillo Gómez S/N, Ciudad Universitaria, 5016, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Viviana E Ré
- Facultad de Ciencias Médicas, Instituto de Virología "Dr. J. M. Vanella", Universidad Nacional de Córdoba, Enfermera Gordillo Gómez S/N, Ciudad Universitaria, 5016, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
7
|
Ribeiro LB, Reche LA, Nastri ACDSS, Malta FDM, Amgarten DE, Casadio LVB, Gonzalez MP, Ono SK, Mendes-Correa MC, Carrilho FJ, Pinho JRR, Gomes-Gouvêa MS. Acute Hepatitis Related to Hepatitis E Virus Genotype 3f Infection in Brazil. J Med Virol 2024; 96:e70024. [PMID: 39530268 DOI: 10.1002/jmv.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The hepatitis E virus (HEV) is an important causative agent of acute hepatitis (AH). Despite reports of human infection in Brazil, the investigation is not routinely conducted, even in cases of elevated liver enzymes. This study evaluated two groups: group 1-patients with acute hepatitis A (n = 44); group 2-patients with nonA-C AH (n = 47). They were tested by enzyme immunoassay for anti-HEV IgM/IgG and real-time PCR for HEV RNA detection. The positive sample for HEV RNA was submitted for sequencing. The seroprevalence of anti-HEV IgM and IgG in group 1 was 4% (2/44) and 14.5% (7/44), respectively. Viral RNA was not detected in any sample. In group 2, the anti-HEV IgM positivity was 4.3% (2/47), and IgG 14.9% (7/47). RNA was detectable in one case, which presented a viral load of 222.4 IU/μL and positive anti-HEV IgM/IgG. In the phylogenetic analysis, the genotype identified was HEV-3f. These results indicate that HEV infection should be considered a possible diagnosis in cases of non-A-C AH. The patient identified with acute hepatitis E had recently traveled to the Northeast region of Brazil (Garanhuns city in Pernambuco state), where there are reports of high HEV seroprevalence among pigs. The close phylogenetic relationship observed between the sequence characterized in this study and strains isolated from pigs in nearby cities where the patient went suggested a possible zoonotic transmission in this region. This study highlights the importance of expanding studies and improving surveillance to understand better and manage HEV infections nationwide.
Collapse
Affiliation(s)
- Leidiane B Ribeiro
- Laboratório de Gastroenterologia e Hepatologia Tropical, LIM-07, Instituto de Medicina Tropical, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Luciana A Reche
- Laboratório de Gastroenterologia e Hepatologia Tropical, LIM-07, Instituto de Medicina Tropical, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana C de Seixas Santos Nastri
- Departamento de Doenças Infecciosas e Parasitárias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Luciana V B Casadio
- Departamento de Doenças Infecciosas e Parasitárias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Suzane K Ono
- Departamento de Gastroenterologia, Divisão de Gastroenterologia e Hepatologia Clinica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria C Mendes-Correa
- Departamento de Doenças Infecciosas e Parasitárias, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
- Laboratório de Virologia, LIM-52, Instituto de Medicina Tropical, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Flair J Carrilho
- Departamento de Gastroenterologia, Divisão de Gastroenterologia e Hepatologia Clinica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - João R R Pinho
- Laboratório de Gastroenterologia e Hepatologia Tropical, LIM-07, Instituto de Medicina Tropical, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Departamento de Gastroenterologia, Divisão de Gastroenterologia e Hepatologia Clinica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Michele S Gomes-Gouvêa
- Laboratório de Gastroenterologia e Hepatologia Tropical, LIM-07, Instituto de Medicina Tropical, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Departamento de Gastroenterologia, Divisão de Gastroenterologia e Hepatologia Clinica, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
Al Beloushi M, Saleh H, Ahmed B, Konje JC. Congenital and Perinatal Viral Infections: Consequences for the Mother and Fetus. Viruses 2024; 16:1698. [PMID: 39599813 PMCID: PMC11599085 DOI: 10.3390/v16111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Viruses are the most common congenital infections in humans and an important cause of foetal malformations, neonatal morbidity, and mortality. The effects of these infections, which are transmitted in utero (transplacentally), during childbirth or in the puerperium depend on the timing of the infections. These vary from miscarriages (usually with infections in very early pregnancy), congenital malformations (when the infections occur during organogenesis) and morbidity (with infections occurring late in pregnancy, during childbirth or after delivery). The most common of these viruses are cytomegalovirus, hepatitis, herpes simplex type-2, parvovirus B19, rubella, varicella zoster and zika viruses. There are currently very few efficacious antiviral agents licensed for use in pregnancy. For most of these infections, therefore, prevention is mainly by vaccination (where there is a vaccine). The administration of immunoglobulins to those exposed to the virus to offer passive immunity or appropriate measures to avoid being infected would be options to minimise the infections and their consequences. In this review, we discuss some of the congenital and perinatal infections and their consequences on both the mother and fetus and their management focusing mainly on prevention.
Collapse
Affiliation(s)
- Mariam Al Beloushi
- Women’s Wellness and Research Centre Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.B.); (H.S.)
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Huda Saleh
- Women’s Wellness and Research Centre Hamad Medical Corporation, Doha P.O. Box 3050, Qatar; (M.A.B.); (H.S.)
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Badreldeen Ahmed
- Department of Obstetrics and Gynaecology, Qatar University, Doha P.O. Box 2713, Qatar;
- Feto Maternal Centre, Al Markhiya Doha, Doha P.O. Box 34181, Qatar
- Department of Obstetrics and Gynaecology Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
| | - Justin C. Konje
- Feto Maternal Centre, Al Markhiya Doha, Doha P.O. Box 34181, Qatar
- Department of Obstetrics and Gynaecology Weill Cornell Medicine, Doha P.O. Box 24144, Qatar
- Department of Health Sciences, University of Leicester, P.O. Box 7717, Leicester LE2 7LX, UK
| |
Collapse
|
9
|
Liu C, Tang D, Shi J, Chen G, Gong L. Hepatitis E virus and SARS-CoV-2 co-infection in an immunocompromised patient: A case report. Diagn Microbiol Infect Dis 2024; 110:116471. [PMID: 39079189 DOI: 10.1016/j.diagmicrobio.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Hepatitis E virus (HEV) is a major cause of acute viral hepatitis. Since the coronavirus disease 2019 (COVID-19) pandemic, immunocompromised individuals face an increased risk of HEV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) co-infection, posing a threat of liver failure and prolonged illness. A 69-year-old male, with a history of chronic lymphocytic leukemia, was co-infected with HEV and SARS-CoV-2. Given the progressive decline in liver function post-admission, steroid therapy was initiated, which led to treatment-related complications. Additionally, the patient experienced an aggravation of COVID-19 symptoms due to persistent SARS-CoV-2 infection, effectively managed through a combination of antiviral medications and corticosteroids. This case describes the intricate clinical trajectory and therapeutic approach for managing HEV and SARS-CoV-2 co-infection, underscoring the potential efficacy of short-term corticosteroid intervention alongside comprehensive antiviral treatment.
Collapse
Affiliation(s)
- Chun Liu
- Medical School, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Dong Tang
- Department of Medical Imaging (Radiology), The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junping Shi
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Gongying Chen
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ling Gong
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Castagna F, Liguori G, Lombardi R, Bava R, Costagliola A, Giordano A, Quintiliani M, Giacomini D, Albergo F, Gigliotti A, Lupia C, Ceniti C, Tilocca B, Palma E, Roncada P, Britti D. Hepatitis E and Potential Public Health Implications from a One-Health Perspective: Special Focus on the European Wild Boar ( Sus scrofa). Pathogens 2024; 13:840. [PMID: 39452712 PMCID: PMC11510200 DOI: 10.3390/pathogens13100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The hepatitis E virus (HEV) has become increasingly important in recent years in terms of risk for public health, as the main causative agent of acute viral hepatitis. It is a foodborne disease transmitted to humans through the consumption of contaminated water or contaminated food. Human-to-human transmission is sporadic and is linked to transfusions or transplants. The main reservoirs of the hepatitis E virus are domestic pigs and wild boars, although, compared to pigs, wild boars represent a lesser source of risk since their population is smaller and the consumption of derived products is more limited. These peculiarities often make the role of the wild boar reservoir in the spread of the disease underestimated. As a public health problem that involves several animal species and humans, the management of the disease requires an interdisciplinary approach, and the concept of "One Health" must be addressed. In this direction, the present review intends to analyze viral hepatitis E, with a particular focus on wild boar. For this purpose, literature data have been collected from different scientific search engines: PubMed, MEDLINE, and Google scholar, and several keywords such as "HEV epidemiology", "Extrahepatic manifestations of Hepatitis E", and "HEV infection control measures", among others, have been used. In the first part, the manuscript provides general information on the disease, such as epidemiology, transmission methods, clinical manifestations and implications on public health. In the second part, it addresses in more detail the role of wild boar as a reservoir and the implications related to the virus epidemiology. The document will be useful to all those who intend to analyze this infectious disease from a "One-Health" perspective.
Collapse
Affiliation(s)
- Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Giovanna Liguori
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Local Health Authority, ASL, 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, 80100 Naples, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, 1900 N 12th Street, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnology, University of Siena, 10100 Siena, Italy
| | | | | | - Francesco Albergo
- Department of Management, Finance and Technology, University LUM Giuseppe Degennaro, 70100 Casamassima, Italy;
| | - Andrea Gigliotti
- Interregional Park of Sasso Simone and Simoncello, 61021 Carpegna, Italy;
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy;
| | - Carlotta Ceniti
- ASL Napoli 3 SUD, Department of Prevention, 80053 Castellammare di Stabia, Italy;
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (F.C.); (B.T.); (E.P.); (P.R.); (D.B.)
| |
Collapse
|
11
|
Gu T, Zheng CY, Deng YQ, Yang XF, Bao WM, Tang YM. Systematic Evaluation of Guidelines for the Diagnosis and Treatment of Hepatitis E Virus Infection. J Clin Transl Hepatol 2024; 12:739-749. [PMID: 39130619 PMCID: PMC11310757 DOI: 10.14218/jcth.2023.00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024] Open
Abstract
Background and Aims The hepatitis E virus (HEV) is a zoonotic disease, and infection with HEV in humans primarily causes acute infections and can progress to chronic manifestation in immunocompromised individuals. Over the past decade, guidelines for diagnosing and treating HEV infection have been developed. This study aimed to systematically assess the quality of current guidelines for diagnosing and treating HEV infection, and we analyzed the differences in guideline quality and primary recommendations and explored possible reasons for these differences. Methods Guidelines published between 2013 and 2022 were searched, and studies were identified using selection criteria. The study assessed the quality of the included guidelines using the Appraisal of Guidelines for Research and Evaluation tool, extracted the primary recommendations in the guidelines, determined the highest level of evidence supporting the recommendations, and reclassified the evidence using the Oxford Centre for Evidence-Based Medicine grading system. Results Seven guidelines were included in the final analysis. The quality of the guidelines varied widely. The discrepancies may have been caused by the lack of external experts, the failure to consider influencing factors in guideline application, and the lack of consideration of the public's opinion. Analysis of the heterogeneity in primary recommendations revealed differences in algorithms for managing chronic HEV infection, the dosage of ribavirin, and a low level of evidence supporting the primary recommendations. Conclusions Guideline quality and primary recommendations vary considerably. Refinement by guideline developers and researchers would facilitate updating and applying guidelines for diagnosing and treating HEV infection.
Collapse
Affiliation(s)
- Ting Gu
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Cai-Ying Zheng
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan-Qin Deng
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiao-Feng Yang
- Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei-Min Bao
- Department of Colorectal Surgery, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ying-Mei Tang
- Department of Gastroenterology, Second Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Letafati A, Taghiabadi Z, Roushanzamir M, Memarpour B, Seyedi S, Farahani AV, Norouzi M, Karamian S, Zebardast A, Mehrabinia M, Ardekani OS, Fallah T, Khazry F, Daneshvar SF, Norouzi M. From discovery to treatment: tracing the path of hepatitis E virus. Virol J 2024; 21:194. [PMID: 39180020 PMCID: PMC11342613 DOI: 10.1186/s12985-024-02470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The hepatitis E virus (HEV) is a major cause of acute viral hepatitis worldwide. HEV is classified into eight genotypes, labeled HEV-1 through HEV-8. Genotypes 1 and 2 exclusively infect humans, while genotypes 3, 4, and 7 can infect both humans and animals. In contrast, genotypes 5, 6, and 8 are restricted to infecting animals. While most individuals with a strong immune system experience a self-limiting infection, those who are immunosuppressed may develop chronic hepatitis. Pregnant women are particularly vulnerable to severe illness and mortality due to HEV infection. In addition to liver-related complications, HEV can also cause extrahepatic manifestations, including neurological disorders. The immune response is vital in determining the outcome of HEV infection. Deficiencies in T cells, NK cells, and antibody responses are linked to poor prognosis. Interestingly, HEV itself contains microRNAs that regulate its replication and modify the host's antiviral response. Diagnosis of HEV infection involves the detection of HEV RNA and anti-HEV IgM/IgG antibodies. Supportive care is the mainstay of treatment for acute infection, while chronic HEV infection may be cleared with the use of ribavirin and pegylated interferon. Prevention remains the best approach against HEV, focusing on sanitation infrastructure improvements and vaccination, with one vaccine already licensed in China. This comprehensive review provides insights into the spread, genotypes, prevalence, and clinical effects of HEV. Furthermore, it emphasizes the need for further research and attention to HEV, particularly in cases of acute hepatitis, especially among solid-organ transplant recipients.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Zahra Taghiabadi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mahshid Roushanzamir
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Pharmacological and Biomolecular Science, University of Milan, Milan, Italy
| | - Bahar Memarpour
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saba Seyedi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Masoomeh Norouzi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Saeideh Karamian
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Arghavan Zebardast
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Marzieh Mehrabinia
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Tina Fallah
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Khazry
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Samin Fathi Daneshvar
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
13
|
Doukouré B, Le Pennec Y, Troupin C, Grayo S, Eiden M, Groschup MH, Tordo N, Roques P. Seroprevalence and Phylogenetic Characterization of Hepatitis E Virus ( Paslahepevirus balayani) in Guinean Pig Population. Vector Borne Zoonotic Dis 2024; 24:540-545. [PMID: 38651618 DOI: 10.1089/vbz.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Background: Hepatitis E virus (HEV) is transmitted by the fecal route, usually through contaminated water in humans and/or infected animals, especially pigs. The objective of this study was to evaluate the level of anti-HEV antibodies in a panel of pig sera and to identify HEV in pig feces in farms. Methodology: The presence of HEV antibodies was tested by an in-house ELISA and a commercial ELISA IDvet. HEV genome was assessed by nested RT-PCR, and then, genotype was identified by sequencing (MinION Nanopore technology). Results: In 2017-2019, the 43% seroprevalence found in Forest Guinea was significantly higher than the 7% found in the Lower region (p < 0.01). Presence of HEV genotype 3c was demonstrated during a secondary study in the Lower region (Conakry) in 2022. Conclusion: The presence of HEV-3c in pigs calls for an evaluation of seroprevalence in human populations and for a HEV genotype human circulation check. Contribution Heading: This study is the first report, to our knowledge, of seroprevalence and characterization of HEV infection in pigs in Guinea.
Collapse
Affiliation(s)
- Bakary Doukouré
- Institut Pasteur de Guinée, Conakry, Guinea
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | | | | | - Martin Eiden
- Friedrich Loeffler Institute, Greifswald, Germany
| | | | - Noël Tordo
- Institut Pasteur de Guinée, Conakry, Guinea
| | | |
Collapse
|
14
|
Yun Z, Li P, Wang J, Lin F, Li W, Weng M, Zhang Y, Wu H, Li H, Cai X, Li X, Fu X, Wu T, Gao Y. Spatial-temporal analysis of hepatitis E in Hainan Province, China (2013-2022): insights from four major hospitals. Front Public Health 2024; 12:1381204. [PMID: 38993698 PMCID: PMC11236752 DOI: 10.3389/fpubh.2024.1381204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Objective Exploring the Incidence, Epidemic Trends, and Spatial Distribution Characteristics of Sporadic Hepatitis E in Hainan Province from 2013 to 2022 through four major tertiary hospitals in the Province. Methods We collected data on confirmed cases of hepatitis E in Hainan residents admitted to the four major tertiary hospitals in Haikou City from January 2013 to December 2022. We used SPSS software to analyze the correlation between incidence rate and economy, population density and geographical location, and origin software to draw a scatter chart and SAS 9.4 software to conduct a descriptive analysis of the time trend. The distribution was analyzed using ArcMap 10.8 software (spatial autocorrelation analysis, hotspot identification, concentration, and dispersion trend analysis). SAS software was used to build an autoregressive integrated moving average model (ARIMA) to predict the monthly number of cases in 2023 and 2024. Results From 2013 to 2022, 1,922 patients with sporadic hepatitis E were treated in the four hospitals of Hainan Province. The highest proportion of patients (n = 555, 28.88%) were aged 50-59 years. The annual incidence of hepatitis E increased from 2013 to 2019, with a slight decrease in 2020 and 2021 and an increase in 2022. The highest number of cases was reported in Haikou, followed by Dongfang and Danzhou. We found that there was a correlation between the economy, population density, latitude, and the number of cases, with the correlation coefficient |r| value fluctuating between 0.403 and 0.421, indicating a linear correlation. At the same time, a scatter plot shows the correlation between population density and incidence from 2013 to 2022, with r2 values fluctuating between 0.5405 and 0.7116, indicating a linear correlation. Global Moran's I, calculated through spatial autocorrelation analysis, showed that each year from 2013 to 2022 all had a Moran's I value >0, indicating positive spatial autocorrelation (p < 0.01). Local Moran's I analysis revealed that from 2013 to 2022, local hotspots were mainly concentrated in the northern part of Hainan Province, with Haikou, Wenchang, Ding'an, and Chengmai being frequent hotspot regions, whereas Baoting, Qiongzhong, and Ledong were frequent cold-spot regions. Concentration and dispersion analysis indicated a clear directional pattern in the average density distribution, moving from northeast to southwest. Time-series forecast modeling showed that the forecast number of newly reported cases per month remained relatively stable in 2023 and 2024, fluctuating between 17 and 19. Conclusion The overall incidence of hepatitis E in Hainan Province remains relatively stable. The incidence of hepatitis E in Hainan Province increased from 2013 to 2019, with a higher clustering of cases in the northeast region and a gradual spread toward the southwest over time. The ARIMA model predicted a relatively stable number of new cases each month in 2023 and 2024.
Collapse
Affiliation(s)
- Zhi Yun
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Panpan Li
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Jinzhong Wang
- Intensive Care Unit, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Feng Lin
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Wenting Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Minhua Weng
- Department of Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanru Zhang
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Huazhi Wu
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Hui Li
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Xiaofang Cai
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| | - Xiaobo Li
- Department of Neurosurgery, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Xianxian Fu
- Clinical Lab, Haikou Municipal People’s Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Tao Wu
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
- National Health Commission Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| | - Yi Gao
- Department of Infectious Diseases, Affiliated Hainan Hospital of Hainan Medical University (Hainan General Hospital), Haikou, China
| |
Collapse
|
15
|
Tene SD, Diouara AAM, Kane A, Sané S, Coundoul S, Thiam F, Nguer CM, Diop M, Mbaye MN, Mbengue M, Lo S, Diop Ndiaye H, Toure Kane C, Ayouba A. Detection of Hepatitis E Virus (HEV) in Pork Sold in Saint-Louis, the North of Senegal. Life (Basel) 2024; 14:512. [PMID: 38672782 PMCID: PMC11050832 DOI: 10.3390/life14040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The hepatitis E virus (HEV) is a zoonotic pathogen with various hosts, including pigs, which act as reservoirs. In industrialized countries, sporadic cases caused by genotype 3, contracted by ingesting contaminated uncooked or undercooked meat, have been reported. However, in developing countries, HEV infection is mainly dominated by genotype 2 and often associated with poor hygiene conditions and drinking water supplies. HEV infection and its circulation in domestic fauna in West Africa are poorly documented. This study aimed to assess the presence of HEV in pork sold in Saint-Louis, Senegal. Meat products (250 g samples, n = 74) were purchased in August 2022 from three locations. Then, 2 g/sample was minced to extract total nucleic acids using the Purelink™ Viral DNA/RNA kit. RT-PCR reactions were performed using the One-Taq™ One-Step RT-PCR kit targeting the HEV ORF2 genomic region. The products obtained were visualized on a 1% agarose gel. Of a total of 74 samples, divided into pork meat (n = 65) and pork liver (n = 9), 5.4% (n = 4) tested positive for HEV. In both cases, two samples were positive, representing a rate of 3.1% and 22.2% for meat and pork liver, respectively. All new viral sequences were obtained from a monophyletic group within HEV genotype 3. This study is the first to report the presence of HEV in pork sold in Senegal and the results reveal a potential circulation of HEV in the pig population. The high proportion of contamination in the pork liver samples highlights a major risk associated with their consumption.
Collapse
Affiliation(s)
- Sophie Deli Tene
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Abou Abdallah Malick Diouara
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Alé Kane
- Laboratoire des Sciences Biologiques, Agronomiques, Alimentaires et de Modélisation des Systèmes Complexes (LABAAM), UFR S2ATA, Université Gaston Berger, Saint-Louis 234, Senegal;
| | - Sarbanding Sané
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Seynabou Coundoul
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Fatou Thiam
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Cheikh Momar Nguer
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Mamadou Diop
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Mame Ndew Mbaye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal; (S.D.T.); (S.S.); (S.C.); (F.T.); (C.M.N.); (M.D.); (M.N.M.)
| | - Malick Mbengue
- Laboratoire de Microbiologie Appliquée et de Génie Industriel, École Supérieure Polytechnique (ESP), Université Cheikh Anta Diop, Dakar 5085, Senegal;
| | - Seynabou Lo
- Unité de Formation et de Recherche Science de la Santé (UFR 2S), Université Gaston Berger, Saint-Louis 234, Senegal;
| | - Halimatou Diop Ndiaye
- Laboratoire de Bactériologie Virologie CHU Aristide le Dantec, Université Cheikh Anta DIOP, Dakar 5005, Senegal;
| | - Coumba Toure Kane
- Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation (IRESSEF), Pole Urbain Diamniadio, Dakar 7325, Senegal;
- Université Sine Saloum El Hadj Ibrahima Niass (USSEIN), Kaolack 55, Senegal
| | - Ahidjo Ayouba
- Recherches Translationnelles sur le VIH et Maladies Infectieuses, Institut de Recherche pour le Développement, Université de Montpellier/INSERM U1175, 34000 Montpellier, France;
| |
Collapse
|
16
|
Wu H, Zhou L, Wang F, Chen Z, Lu Y. Molecular epidemiology and phylogeny of the emerging zoonotic virus Rocahepevirus: A global genetic analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105557. [PMID: 38244748 DOI: 10.1016/j.meegid.2024.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Human infections with Rocahepevirus ratti genotype C1 (HEV-C1) in Hong Kong of China, Canada, Spain, and France have drawn worldwide concern towards Rocahepevirus. This study conducted a global genetic analysis of Rocahepevirus, aiming to furnish comprehensive molecular insights and promote further research. We retrieved 817 Rocahepevirus sequences from the GenBank database through October 31, 2023, categorizing them according to research, sample collection area and date, genotype, host, and sequence length. Subsequently, we conducted descriptive epidemiological, phylogenetic evolutionary, and protein polymorphism (in length and identity) analyses on these sequences. Rocahepevirus genomes were identified across twenty-eight countries, predominantly in Asia (71.73%, 586/817) and Europe (26.44%, 216/817). The HEV-C1 dominates Rocahepevirus (77.2%, 631/817), while newly discovered Rocahepevirus genotypes (C3/C4/C5 and other unclassified genotypes) were primarily identified in Europe (25/120) and China (91/120). Muridae animals (72.5%, 592/817) serve as the primary hosts for Rocahepevirus, with other hosts encompassing species from the families Soricidae, Hominidae, Mustelidae, and Cricetidae. Additionally, Rocahepevirus genomes (C1 genotype) were identified in sewage samples recently. The phylogenetic evolution of Rocahepevirus exhibits considerable variation. Specifically, HEV-C1 can be classified into at least six genetic groups (G1 to G6), with human HEV-C1 distributed across multiple evolutionary clades. The overall ORF1 and ORF2 amino acid sequence lengths were significantly different (P < 0.001) across Rocahepevirus genotypes. HEV-C1/C2/C3 and HEV-C4/C5 displayed substantial differences in amino acid sequence identity (58.4%-59.6%). The identification of Rocahepevirus genomes has expanded across numerous countries, particularly in European and Asian countries, coinciding with an expanding host range and emergence of new genotypes. The evolutionary path of Rocahepevirus is intricate, where the HEV-C1 dominates globally and internally forms multiple evolutionary groups (G1 to G6), exhibiting diverse genetic variation within human HEV-C1. Significant differences exist in the protein polymorphism (in length and identity) across Rocahepevirus genotypes. Given Rocahepevirus's shift from an animal virus to a zoonotic pathogen, worldwide cooperation in monitoring Rocahepevirus genomes is vital.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Fengge Wang
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Zixiang Chen
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
Milojević L, Velebit B, Janković V, Mitrović R, Betić N, Simunović S, Dimitrijević M. Prevalence, Genetic Diversity, and Quantification of the RNA Genome of the Hepatitis E Virus in Slaughtered Pigs in Serbia. Animals (Basel) 2024; 14:586. [PMID: 38396554 PMCID: PMC10886375 DOI: 10.3390/ani14040586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The goal of this study conducted in Serbia was to detect HEV in pig liver samples from slaughterhouses, retail outlets, and environmental swabs over the course of a year. All positive HEV samples were measured and expressed as HEV gene copy numbers per gram of sample, and a representative number of samples were sequenced using the Sanger approach. A total of 45 HEV-positive samples were re-amplified using nested RT-PCR employing CODEHOP primers targeting ORF2 (493 nucleotides). The average prevalence of the HEV genotype 3 in all pig liver samples from the slaughterhouses was 29%, while HEV prevalence was 44% in liver samples from animals younger than 3 months. HEV RNA was found in thirteen out of sixty (22%) environmental swab samples that were taken from different surfaces along the slaughter line. Our findings confirmed seasonal patterns in HEV prevalence, with two picks (summer and winter periods) during the one-year examination. Among HEV-positive samples, the average viral particles for all positive liver samples was 4.41 ± 1.69 log10 genome copies per gram. Phylogenetic analysis revealed the majority of HEV strains (43/45) from Serbia were grouped in the HEV-3a subtype, while two strains were classified into the HEV-3c subtype, and one strain could not be classified into any of the HEV-3 subtypes.
Collapse
Affiliation(s)
- Lazar Milojević
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Branko Velebit
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Vesna Janković
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Radmila Mitrović
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Nikola Betić
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Sara Simunović
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11040 Belgrade, Serbia; (B.V.); (V.J.); (R.M.); (S.S.)
| | - Mirjana Dimitrijević
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
18
|
Olaimat AN, Taybeh AO, Al-Nabulsi A, Al-Holy M, Hatmal MM, Alzyoud J, Aolymat I, Abughoush MH, Shahbaz H, Alzyoud A, Osaili T, Ayyash M, Coombs KM, Holley R. Common and Potential Emerging Foodborne Viruses: A Comprehensive Review. Life (Basel) 2024; 14:190. [PMID: 38398699 PMCID: PMC10890126 DOI: 10.3390/life14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Human viruses and viruses from animals can cause illnesses in humans after the consumption of contaminated food or water. Contamination may occur during preparation by infected food handlers, during food production because of unsuitably controlled working conditions, or following the consumption of animal-based foods contaminated by a zoonotic virus. This review discussed the recent information available on the general and clinical characteristics of viruses, viral foodborne outbreaks and control strategies to prevent the viral contamination of food products and water. Viruses are responsible for the greatest number of illnesses from outbreaks caused by food, and risk assessment experts regard them as a high food safety priority. This concern is well founded, since a significant increase in viral foodborne outbreaks has occurred over the past 20 years. Norovirus, hepatitis A and E viruses, rotavirus, astrovirus, adenovirus, and sapovirus are the major common viruses associated with water or foodborne illness outbreaks. It is also suspected that many human viruses including Aichi virus, Nipah virus, tick-borne encephalitis virus, H5N1 avian influenza viruses, and coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) also have the potential to be transmitted via food products. It is evident that the adoption of strict hygienic food processing measures from farm to table is required to prevent viruses from contaminating our food.
Collapse
Affiliation(s)
- Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Asma’ O. Taybeh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Anas Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Murad Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Jihad Alzyoud
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Mahmoud H. Abughoush
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
- Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates
| | - Hafiz Shahbaz
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Anas Alzyoud
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain 53000, United Arab Emirates;
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Richard Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
19
|
Ali MM, Gul M, Imran M, Ijaz M, Azeem S, Ullah A, Yaqub HMF. Molecular identification and genotyping of hepatitis E virus from Southern Punjab, Pakistan. Sci Rep 2024; 14:223. [PMID: 38167570 PMCID: PMC10762251 DOI: 10.1038/s41598-023-50514-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Hepatitis E is a global health concern. Hepatitis E virus (HEV) infection is endemic in Pakistan. HEV has four genotypes: HEV-1 through HEV-4. The genotypes HEV-1 and HEV-2 are associated with infection in humans, especially in countries with poor sanitation. The genotypes HEV-3 and HEV-4 are zoonotic and human infection takes place by consuming undercooked meat or being in contact with animals. The present study was designed to ascertain the presence of HEV in the Southern Punjab region of Pakistan. First, blood samples (n = 50) were collected from patients suspected of infection with the hepatitis E virus from the Multan District. The serum was separated and the samples were initially screened using an HEV IgM-ELISA. Second, the ELISA-positive samples were subjected to PCR and were genetically characterized. For PCR, the RNA extraction and complementary DNA synthesis were done using commercial kits. The HEV ORF2 (Open Reading Frame-2, capsid protein) was amplified using nested PCR targeting a 348 bp segment. The PCR amplicons were sequenced and an evolutionary tree was constructed using MEGA X software. A protein model was built employing the SWISS Model after protein translation using ExPASy online tool. The positivity rate of anti-HEV antibodies in serum samples was found as 56% (28/50). All Pakistani HEV showed homology with genotype 1 and shared common evolutionary origin and ancestry with HEV isolates of genotype 1 of London (MH504163), France (MN401238), and Japan (LC314158). Sequence analysis of motif regions assessment and protein structure revealed that the sequences had a similarity with the reference sequence. These data suggest that genotype 1 of HEV is circulating in Pakistan. This finding could be used for the diagnosis and control of HEV in the specific geographic region focusing on its prevalent genotype.
Collapse
Affiliation(s)
- Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| | - Mehek Gul
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shahan Azeem
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Arif Ullah
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiz Muhammad Farooq Yaqub
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
20
|
Di Cola G, Di Cola G, Fantilli A, Mamani V, Tamiozzo P, Martínez Wassaf M, Nates SV, Ré VE, Pisano MB. High circulation of hepatitis E virus (HEV) in pigs from the central region of Argentina without evidence of virus occurrence in pork meat and derived products. Res Vet Sci 2023; 164:105000. [PMID: 37708830 DOI: 10.1016/j.rvsc.2023.105000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Hepatitis E virus (HEV) is an emerging cause of viral hepatitis and pigs are considered a reservoir for the virus. HEV genotype 3 (HEV-3) has been reported in pigs, environmental matrices, and sporadic human cases in Argentina. We aimed to investigate HEV circulation in pigs from central Argentina and to assess the virus presence in pork meat and food products. Four types of samples obtained or derived from pigs collected in Córdoba province (Argentina) between 2019 and 2022, were tested: 276 serum samples were analyzed for anti-HEV antibody detection; stool (n = 20), pork meat (n = 71), and salami (n = 76) samples were studied for RNA-HEV detection, followed by sequencing and phylogenetic analyses. The positivity rate for anti-HEV antibodies was 80.1% (221/276). Eleven fecal samples (11/20) tested positive for RNA-HEV, from animals under 120 days of age. Three samples could be sequenced, and phylogenetic analyses revealed that they belonged to HEV-3 clade abchijklm, clustering close to strains previously detected in wastewater from Córdoba. None of the muscle meat or salami samples tested positive. A high HEV circulation in pigs was found, showing that these animals may play a significant role in the viral maintenance in the region, becoming a potential risk to the exposed population. Despite not detecting RNA-HEV in pork meat and salami in our study, we cannot rule out the possibility of foodborne transmission in Córdoba province.
Collapse
Affiliation(s)
- Guadalupe Di Cola
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Gabriel Di Cola
- Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta N° 36 - Km. 601, Río Cuarto, Córdoba, Argentina; Laboratorio de Salud Animal, Juan B. Justo 269, Río Cuarto, Córdoba, Argentina
| | - Anabella Fantilli
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Vanesa Mamani
- LACE Laboratorios, Av. Vélez Sarsfield 528, Córdoba, Argentina
| | - Pablo Tamiozzo
- Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta N° 36 - Km. 601, Río Cuarto, Córdoba, Argentina
| | | | - Silvia Viviana Nates
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina
| | - Viviana E Ré
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Belén Pisano
- Instituto de Virología "Dr. J.M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional Córdoba, Enfermera Gordillo Gomez S/N, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
21
|
Opere MW. Analysing the interplay of environmental virology, public health, and sanitation: a comprehensive review from a Kenyan perspective. Front Cell Infect Microbiol 2023; 13:1256822. [PMID: 37942480 PMCID: PMC10629379 DOI: 10.3389/fcimb.2023.1256822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
This comprehensive review examines the interplay between environmental virology, public health, and sanitation in the unique context of Kenya. The review sheds light on the specific viral threats faced by the country, including waterborne viruses, zoonotic infections, and emerging viral diseases, and their implications for public health. It explores the prevailing public health challenges in Kenya associated with environmental viromics, such as infectious viral diseases, and the rising burden of other infectious particles. The role of sanitation in mitigating viral infections is highlighted, emphasising the importance of clean water supply, proper waste management, and hygienic practises. The review also presents strategies for strengthening environmental virology research in Kenya, including enhancing laboratory capacities and leveraging technological advancements. Furthermore, the policy implications and recommendations derived from the review emphasise the need for multi-sectoral collaboration, evidence-based decision-making, and long-term investments in infrastructure and behaviour change interventions. Implementing these strategies can enhance the understanding of environmental virology, improve public health outcomes, and ensure sustainable sanitation practises in Kenya, ultimately contributing to the well-being of the population and sustainable development.
Collapse
Affiliation(s)
- Michael Wasonga Opere
- School of Pure and Applied Sciences, Kenyatta University, Nairobi, Kenya
- School of Biosciences, The University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
22
|
Turlewicz-Podbielska H, Augustyniak A, Wojciechowski J, Pomorska-Mól M. Hepatitis E Virus in Livestock-Update on Its Epidemiology and Risk of Infection to Humans. Animals (Basel) 2023; 13:3239. [PMID: 37893962 PMCID: PMC10603682 DOI: 10.3390/ani13203239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatitis E virus (HEV) is a public health problem worldwide and an important food pathogen known for its zoonotic potential. Increasing numbers of infection cases with human HEV are caused by the zoonotic transmission of genotypes 3 and 4, mainly by consuming contaminated, undercooked or raw porcine meat. Pigs are the main reservoir of HEV. However, it should be noted that other animal species, such as cattle, sheep, goats, and rabbits, may also be a source of infection for humans. Due to the detection of HEV RNA in the milk and tissues of cattle, the consumption of infected uncooked milk and meat or offal from these species also poses a potential risk of zoonotic HEV infections. Poultry infected by avian HEV may also develop symptomatic disease, although avian HEV is not considered a zoonotic pathogen. HEV infection has a worldwide distribution with different prevalence rates depending on the affected animal species, sampling region, or breeding system.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | - Agata Augustyniak
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| | | | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland; (H.T.-P.); (A.A.)
| |
Collapse
|
23
|
Oluremi AS, Casares-Jimenez M, Opaleye OO, Caballero-Gomez J, Ogbolu DO, Lopez-Lopez P, Corona-Mata D, Rivero-Juarez A, Rivero A. Butchering activity is the main risk factor for hepatitis E virus ( Paslahepevirus balayani) infection in southwestern Nigeria: a prospective cohort study. Front Microbiol 2023; 14:1247467. [PMID: 37822752 PMCID: PMC10562583 DOI: 10.3389/fmicb.2023.1247467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Paslahepevirus balayani (Hepatitis E virus; HEV) is an emerging virus that poses as a public health threat. The virus is now reported to be the leading cause of acute viral hepatitis, with a unique impact on African settings. Our aim was to evaluate the prevalence and risk factors for HEV infection in three cohorts (animal handlers, villagers, and students). Methods A prospective cross-sectional study was carried out on a total of 752 subjects from southwestern Nigeria. In all individuals, anti-HEV IgG and anti-HEV IgM antibodies were evaluated by using ELISA (confirming positive results via immunoblotting), and serum viral RNA was evaluated by using two RT-PCR assays. Results The overall seroprevalence of HEV IgG and HEV IgM was 14.9% (95% CI: 12.5-17.6%) and 1.3% (95% CI: 0.7-2.5%), respectively. We observed the highest seroprevalence among animal contact individuals, with butchers being the population with the highest HEV IgG seroprevalence (31.1%). Similarly, HEV IgM was higher in the animal contact group (2.2%) than in the non-animal contact cohort (0%). Discussions Viral RNA was not detected in any of the samples. Butchering was significantly associated with higher HEV prevalence. Although all efforts to prevent HEV in Africa have focused on the chlorination of water, our study suggests that most new infections could currently be linked to animal manipulation. Therefore, education and guidelines must be provided in southwest Nigeria to ensure that animal handling and processing methods are safe.
Collapse
Affiliation(s)
- Adeolu S. Oluremi
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Maria Casares-Jimenez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain
| | - Oluyinka O. Opaleye
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Javier Caballero-Gomez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - David Olusoga Ogbolu
- Department of Medical Laboratory Science, Osun State University, Ogbomoso, Nigeria
| | - Pedro Lopez-Lopez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Diana Corona-Mata
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain
| | - Antonio Rivero-Juarez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Rivero
- Unit of Infectious Diseases, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain
- CIBERINFEC, ISCIII – CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
24
|
Monini M, Di Bartolo I, De Sabato L, Ianiro G, Agostinelli F, Ostanello F. Hepatitis E Virus (HEV) in Heavy Pigs in Slaughterhouses of Northern Italy: Investigation of Seroprevalence, Viraemia, and Faecal Shedding. Animals (Basel) 2023; 13:2942. [PMID: 37760342 PMCID: PMC10525452 DOI: 10.3390/ani13182942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis E virus (HEV) is considered an emerging threat in Europe, owing to the increased number of human cases and the widespread presence of the virus in pigs at farms. Most cases in industrialized countries are caused by the zoonotic HEV-3 genotype. The main transmission route of HEV-3 in Europe is foodborne, through consumption of raw or undercooked liver pork and wild boar meat. Pigs become susceptible to HEV infection after the loss of maternal immunity, and the majority of adult pigs test positive for IgG anti-HEV antibodies. Nonetheless, HEV-infected pigs in terms of liver, faeces, and rarely blood are identified at slaughterhouses. The present study aimed to investigate the prevalence of HEV-positive batches of Italian heavy pigs at slaughterhouses, assessing the presence of animals still shedding HEV upon their arrival at the slaughterhouse by sampling faeces collected from the floor of the trucks used for their transport. The occurrence of viraemic animals and the seroprevalence of anti-HEV antibodies were also assessed. The results obtained indicated the presence of anti-HEV IgM (1.9%), and a high seroprevalence of anti-HEV total antibodies (IgG, IgM, IgA; 89.2%, n = 260). HEV RNA was not detected in either plasma or faecal samples. Nevertheless, seropositive animals were identified in all eight batches investigated, confirming the widespread exposure of pigs to HEV at both individual and farm levels. Future studies are needed to assess the factors associated with the risk of HEV presence on farms, with the aim to prevent virus introduction and spread within farms, thereby eliminating the risk at slaughterhouse.
Collapse
Affiliation(s)
- Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Francesca Agostinelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.M.); (L.D.S.); (G.I.); (F.A.)
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, 40064 Bologna, Italy;
| |
Collapse
|
25
|
Khuroo MS. Discovery of Hepatitis E and Its Impact on Global Health: A Journey of 44 Years about an Incredible Human-Interest Story. Viruses 2023; 15:1745. [PMID: 37632090 PMCID: PMC10459142 DOI: 10.3390/v15081745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The story of the discovery of hepatitis E originated in the late 1970s with my extreme belief that there was a hidden saga in the relationship between jaundice and pregnancy in developing countries and the opportunity for a massive epidemic of viral hepatitis, which hit the Gulmarg Kashmir region in November 1978. Based on data collected from a door-to-door survey, the existence of a new disease, epidemic non-A, non-B hepatitis, caused by a hitherto unknown hepatitis virus, was announced. This news was received by the world community with hype and skepticism. In the early 1980s, the world watched in awe as an extreme example of human self-experimentation led to the identification of VLP. In 1990, a cDNA clone from the virus responsible for epidemic non-A, non-B hepatitis was isolated. Over the years, we traversed three eras of ambiguity, hope, and hype of hepatitis E research and conducted several seminal studies to understand the biology of HEV and manifestations of hepatitis E. Many milestones have been reached on the long and winding road of hepatitis E research to understand the structure, biology, and diversity of the agent, changing the behavior of the pathogen in developed countries, and the discovery of a highly effective vaccine.
Collapse
Affiliation(s)
- Mohammad Sultan Khuroo
- Digestive Diseases Centre, Dr. Khuroo's Medical Clinic, Srinagar, Jammu & Kashmir 190010, India
| |
Collapse
|
26
|
Shi Y, Shen W, Liu W, Zhang X, Shang Q, Cheng X, Bao C. Analysis of the spatial-temporal distribution characteristics of hepatitis E in Jiangsu province from 2005 to 2020. Front Public Health 2023; 11:1225261. [PMID: 37614452 PMCID: PMC10442811 DOI: 10.3389/fpubh.2023.1225261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
Objective This study attempts to analyze the spatial clustering and spatial-temporal distribution characteristics of hepatitis E (HE) at the county (city and district) level in Jiangsu province to provide a scientific basis for the prevention and control of HE. Method The information on HE cases reported in the Chinese Center for Disease Control and Prevention Information System from 2005 to 2020 was collected for spatial autocorrelation analysis and spatial-temporal clustering analysis. Result From 2005 to 2020, 48,456 HE cases were reported in Jiangsu province, with an average annual incidence rate of 3.87/100,000. Male cases outnumbered female cases (2.46:1), and the incidence was highest in the 30-70 years of age group (80.50%). Farmers accounted for more than half of all cases (59.86%), and in terms of the average annual incidence, the top three cities were all in Zhenjiang city. Spatial autocorrelation analysis showed that Global Moran's I of HE incidence varied from 0.232 to 0.513 for the years. From 2005 to 2020, 31 counties (cities and districts) had high and statistically significant HE incidence, and two clustering areas were detected by spatial-temporal scanning. Conclusion HE incidence in Jiangsu province from 2005 to 2020 was stable, with age and gender differences, regional clustering, and spatial-temporal clustering. Further investigation of HE clustering areas is necessary to formulate corresponding targeted prevention and control measures.
Collapse
Affiliation(s)
- Yao Shi
- Taicang City Centre for Disease Control and Prevention, Suzhou, Jiangsu, China
- Jiangsu Field Epidemiology Training Program, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Wenqi Shen
- Jiangsu Provincial Centre for Disease Control and Prevention, Jiangsu Institution of Public Health, Nanjing, Jiangsu, China
| | - Wendong Liu
- Jiangsu Provincial Centre for Disease Control and Prevention, Jiangsu Institution of Public Health, Nanjing, Jiangsu, China
| | - Xuefeng Zhang
- Jiangsu Provincial Centre for Disease Control and Prevention, Jiangsu Institution of Public Health, Nanjing, Jiangsu, China
| | - Qingxiang Shang
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqing Cheng
- Jiangsu Provincial Centre for Disease Control and Prevention, Jiangsu Institution of Public Health, Nanjing, Jiangsu, China
| | - Changjun Bao
- Jiangsu Provincial Centre for Disease Control and Prevention, Jiangsu Institution of Public Health, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Cardoso M, Ragan I, Hartson L, Goodrich RP. Emerging Pathogen Threats in Transfusion Medicine: Improving Safety and Confidence with Pathogen Reduction Technologies. Pathogens 2023; 12:911. [PMID: 37513758 PMCID: PMC10383627 DOI: 10.3390/pathogens12070911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Emerging infectious disease threats are becoming more frequent due to various social, political, and geographical pressures, including increased human-animal contact, global trade, transportation, and changing climate conditions. Since blood products for transfusion are derived from donated blood from the general population, emerging agents spread by blood contact or the transfusion of blood products are also a potential risk. Blood transfusions are essential in treating patients with anemia, blood loss, and other medical conditions. However, these lifesaving procedures can contribute to infectious disease transmission, particularly to vulnerable populations. New methods have been implemented on a global basis for the prevention of transfusion transmissions via plasma, platelets, and whole blood products. Implementing proactive pathogen reduction methods may reduce the likelihood of disease transmission via blood transfusions, even for newly emerging agents whose transmissibility and susceptibility are still being evaluated as they emerge. In this review, we consider the Mirasol PRT system for blood safety, which is based on a photochemical method involving riboflavin and UV light. We provide examples of how emerging threats, such as Ebola, SARS-CoV-2, hepatitis E, mpox and other agents, have been evaluated in real time regarding effectiveness of this method in reducing the likelihood of disease transmission via transfusions.
Collapse
Affiliation(s)
- Marcia Cardoso
- Terumo BCT, Inc., TERUMO Böood and Cell Technologies, Zaventem, 41 1930 Brussels, Belgium
| | - Izabela Ragan
- Infectious Disease Research Center, Department of Biomedical Science, Colorado State University, Fort Collins, CO 80521, USA
| | - Lindsay Hartson
- Infectious Disease Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | - Raymond P Goodrich
- Infectious Disease Research Center, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
28
|
Zhao X, Li M, Haihambo N, Wang X, Wang B, Sun M, Guo M, Han C. Periodic Characteristics of Hepatitis Virus Infections From 2013 to 2020 and Their Association With Meteorological Factors in Guangdong, China: Surveillance Study. JMIR Public Health Surveill 2023; 9:e45199. [PMID: 37318858 PMCID: PMC10337419 DOI: 10.2196/45199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/18/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND In the past few decades, liver disease has gradually become one of the major causes of death and illness worldwide. Hepatitis is one of the most common liver diseases in China. There have been intermittent and epidemic outbreaks of hepatitis worldwide, with a tendency toward cyclical recurrences. This periodicity poses challenges to epidemic prevention and control. OBJECTIVE In this study, we aimed to investigate the relationship between the periodic characteristics of the hepatitis epidemic and local meteorological elements in Guangdong, China, which is a representative province with the largest population and gross domestic product in China. METHODS Time series data sets from January 2013 to December 2020 for 4 notifiable infectious diseases caused by hepatitis viruses (ie, hepatitis A, B, C, and E viruses) and monthly data of meteorological elements (ie, temperature, precipitation, and humidity) were used in this study. Power spectrum analysis was conducted on time series data, and correlation and regression analyses were performed to assess the relationship between the epidemics and meteorological elements. RESULTS The 4 hepatitis epidemics showed clear periodic phenomena in the 8-year data set in connection with meteorological elements. Based on the correlation analysis, temperature demonstrated the strongest correlation with hepatitis A, B, and C epidemics, while humidity was most significantly associated with the hepatitis E epidemic. Regression analysis revealed a positive and significant coefficient between temperature and hepatitis A, B, and C epidemics in Guangdong, while humidity had a strong and significant association with the hepatitis E epidemic, and its relationship with temperature was relatively weak. CONCLUSIONS These findings provide a better understanding of the mechanisms underlying different hepatitis epidemics and their connection to meteorological factors. This understanding can help guide local governments in predicting and preparing for future epidemics based on weather patterns and potentially aid in the development of effective prevention measures and policies.
Collapse
Affiliation(s)
- Xixi Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussel, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussel, Belgium
| | - Xinni Wang
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Bin Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Meirong Sun
- School of Psychology, Beijing Sport University, Beijing, China
| | - Mingrou Guo
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuanliang Han
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
29
|
Takakusagi S, Kakizaki S, Takagi H. The Diagnosis, Pathophysiology, and Treatment of Chronic Hepatitis E Virus Infection-A Condition Affecting Immunocompromised Patients. Microorganisms 2023; 11:1303. [PMID: 37317277 PMCID: PMC10220693 DOI: 10.3390/microorganisms11051303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Hepatitis E is a zoonosis caused by hepatitis E virus (HEV), which was first discovered 40 years ago. Twenty million HEV infections worldwide are estimated each year. Most hepatitis E cases are self-limiting acute hepatitis, but the virus has been recognized to cause chronic hepatitis. Following the first case report of chronic hepatitis E (CHE) in a transplant recipient, CHE has recently been identified as associated with chronic liver damage induced by HEV genotypes 3, 4, and 7-usually in immunocompromised patients such as transplant recipients. In addition, patients infected with HIV and those receiving chemotherapy for malignancy, along with patients with rheumatic disease and COVID-19, have recently been reported as having CHE. CHE can be easily misdiagnosed by usual diagnostic methods of antibody response, such as anti-HEV IgM or IgA, because of the low antibody response in the immunosuppressive condition. HEV RNA should be evaluated in these patients, and appropriate treatments-such as ribavirin-should be given to prevent progression to liver cirrhosis or liver failure. While still rare, cases of CHE in immunocompetent patients have been reported, and care must be taken not to overlook these instances. Herein, we conduct an overview of hepatitis E, including recent research developments and management of CHE, in order to improve our understanding of such cases. The early diagnosis and treatment of CHE should be performed to decrease instances of hepatitis-virus-related deaths around the world.
Collapse
Affiliation(s)
- Satoshi Takakusagi
- Department of Gastroenterology and Hepatology, Kusunoki Hospital, 607-22 Fujioka, Fujioka 375-0024, Gunma, Japan;
| | - Satoru Kakizaki
- Department of Clinical Research, National Hospital Organization Takasaki General Medical Center, 36 Takamatsu-cho, Takasaki 370-0829, Gunma, Japan
| | - Hitoshi Takagi
- Department of Gastroenterology and Hepatology, Kusunoki Hospital, 607-22 Fujioka, Fujioka 375-0024, Gunma, Japan;
| |
Collapse
|
30
|
Bhise N, Agarwal M, Thakur N, Akshay PS, Cherian S, Lole K. Repurposing of artesunate, an antimalarial drug, as a potential inhibitor of hepatitis E virus. Arch Virol 2023; 168:147. [PMID: 37115342 PMCID: PMC10141844 DOI: 10.1007/s00705-023-05770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023]
Abstract
Hepatitis E virus (HEV) is endemic in several developing countries of Africa and Asia. It mainly causes self-limiting waterborne infections, in either sporadic or outbreak form. Recently, HEV was shown to cause chronic infections in immunosuppressed individuals. Ribavirin and interferon, the current off-label treatment options for hepatitis E, have several side effects. Hence, there is a need for new drugs. We evaluated the antimalarial drug artesunate (ART) against genotype 1 HEV (HEV-1) and HEV-3 using a virus-replicon-based cell culture system. ART exhibited 59% and 43% inhibition of HEV-1 and HEV-3, respectively, at the highest nontoxic concentration. Computational molecular docking analysis showed that ART can bind to the helicase active site (affinity score, -7.4 kcal/mol), indicating its potential to affect ATP hydrolysis activity. An in vitro ATPase activity assay of the helicase indeed showed 24% and 55% inhibition at 19.5 µM (EC50) and 78 µM concentrations of ART, respectively. Since ATP is a substrate of RNA-dependent RNA polymerase (RdRp) as well, we evaluated the effect of ART on the enzymatic activity of the viral polymerase. Interestingly, ART showed 26% and 40% inhibition of the RdRp polymerase activity at 19.5 µM and 78 µM concentrations of ART, respectively. It could be concluded from these findings that ART inhibited replication of both HEV-1 and HEV-3 by directly targeting the activities of the viral enzymes helicase and RdRp. Considering that ART is known to be safe in pregnant women, we think this antimalarial drug deserves further evaluation in animal models.
Collapse
Affiliation(s)
- Neha Bhise
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Pune, India
| | - Megha Agarwal
- Bioinformatics and Data Management Group, Indian Council of Medical Research-National Institute of Virology, Dr. Ambedkar Road, Pune, India
| | - Nidhi Thakur
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Pune, India
| | - P S Akshay
- Hepatitis Group, Indian Council of Medical Research-National Institute of Virology, Microbial Containment Complex, Pune, India
| | - Sarah Cherian
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune, 411001, India.
| | - Kavita Lole
- Hepatitis Group, ICMR-National Institute of Virology, Microbial Containment Complex, Sus Road, Pashan, Pune, 411021, India.
| |
Collapse
|
31
|
Al-Eitan L, Alnemri M, Alkhawaldeh M, Mihyar A. Rodent-borne viruses in the region of Middle East. Rev Med Virol 2023:e2440. [PMID: 36924105 DOI: 10.1002/rmv.2440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Rodents are one of the most abundant mammal species in the world. They form more than two-fifth of all mammal species and there are approximately 4600 existing rodent species. Rodents are capable of transmitting deadly diseases, especially those that are caused by viruses. Viruses and their consequences have plagued the world for the last two centuries, three pandemics occurred during the last century only. The Middle East is situated at the crossroads of Africa and Asia, along with the Mediterranean Sea and the Indian Ocean, its geographic importance is gained through the diversity of topographies, biosphere, as well as climate aspects that make the region vulnerable to host emerging diseases. Refugee crises also play a major role in expected epidemic outbreaks in the region. Public health has always been the most important priority, and our aim in this review is to raise awareness among public health organisations across the Middle East about the dangers of rodent borne diseases that have been reported or are suspected to be found in the region.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Malek Alnemri
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Mishael Alkhawaldeh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad Mihyar
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
32
|
Phylodynamic Analysis Suggests That Deer Species May Be a True Reservoir for Hepatitis E Virus Genotypes 3 and 4. Microorganisms 2023; 11:microorganisms11020375. [PMID: 36838340 PMCID: PMC9967072 DOI: 10.3390/microorganisms11020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Hepatitis E virus (HEV) genotypes 3 and 4 (HEV-3 and HEV-4) cause zoonotic infection in humans, with domestic pigs and wild boars being the main reservoirs of infection. Other than suids, HEV-3 and HEV-4 are found in ruminants, most frequently in deer species. However, it is still debatable, whether HEV infection in deer is a spillover, or indicates a stable virus circulation in these host species. To explore the patterns of HEV-3 and HEV-4 transmission in deer and other host species, we performed a Bayesian analysis of HEV sequences available in GenBank. A total of 27 HEV sequences from different deer species were found in GenBank. Sequences from wild boars collected in the same territories, as well as sequences from all mammals that were most similar to sequences from deer in blast search, were added to the dataset, comprising 617 in total sequences. Due to the presence of partial genomic sequences, they were divided into four subsets (two ORF1 fragments and two ORF2 fragments) and analyzed separately. European HEV-3 sequences and Asian HEV-4 sequences collected from deer species demonstrated two transmission patterns. The first pattern was spillover infection, and the second pattern was deer-to-deer transmission, indicating stable HEV circulation in these species. However, all geographic HEV clusters that contained both deer and swine sequences originated from ancestral swine strains. HEV-3 and HEV-4 transmission patterns in ungulates reconstructed by means of Bayesian analysis indicate that deer species are a true host for HEV. However, wild and domestic swine are often the primary source of infection for ruminants living in the same areas. Complete HEV genomic sequences from different parts of the world are crucial for further understanding the HEV-3 and HEV-4 circulation patterns in wildlife.
Collapse
|
33
|
Montalvo Villalba MC, Snoeck CJ, Rodriguez Lay LDLA, Sausy A, Hernández López D, Corredor MB, Marrero Sanchéz B, Hübschen JM. Hepatitis E virus in Cuba: A cross-sectional serological and virological study in pigs and people occupationally exposed to pigs. Zoonoses Public Health 2023; 70:58-68. [PMID: 36114628 DOI: 10.1111/zph.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 01/07/2023]
Abstract
Surveillance of hepatitis E virus (HEV) in risk groups is an important strategy to monitor its circulation pattern and to timely detect changes thereof. The aims of this cross-sectional study were to estimate the prevalence of HEV infections in pigs and humans from different regions of the country, to identify risk factors for increasing anti-HEV IgG prevalence and to characterize HEV strains. The presence of anti-HEV antibodies was assessed by commercial ELISA in serum samples from the general population, farm and slaughterhouse employees, as well as pigs sampled in the three regions of Cuba from February to September 2016. Overall, individuals with occupational exposure to swine or swine products (70/248, 28.2%) were 4 times more likely to be seropositive compared to the general population (25/285, 8.7%; OR: 4.18; p < .001). Within the risk group, risk factors included age, number of years working in a professional activity with direct exposure to swine, geographic region and distance between residence and closest professional swine setting, while wearing gloves had a protective effect. Prevalence of total anti-HEV antibodies in swine was 88.2% (165/187) and HEV RNA was detected by real-time RT-PCR in 9.2% (16/173) swine stools. All HEV strains sequenced clustered within genotype 3. Some strains clearly belonged to subtype 3a, while another group of strains was related with subtypes 3b and 3 k but partial HEV sequences did not allow unequivocal subtype assignment. These findings suggest that the high HEV exposure in Cuban individuals with swine-related occupations could be due to enzootic HEV in certain regions, direct contact with infectious animals or their products as well as environmental contamination.
Collapse
Affiliation(s)
| | - Chantal J Snoeck
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Aurélie Sausy
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | | | | | - Judith M Hübschen
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
34
|
Barroso P, Acevedo P, Risalde MA, García-Bocanegra I, Montoro V, Martínez-Padilla AB, Torres MJ, Soriguer RC, Vicente J. Co-exposure to pathogens in wild ungulates from Doñana National Park, South Spain. Res Vet Sci 2023; 155:14-28. [PMID: 36608374 DOI: 10.1016/j.rvsc.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Multiple infections or co-exposure to pathogens should be considered systematically in wildlife to better understand the ecology and evolution of host-pathogen relationships, so as to better determine the potential use of multiple pathogens as indicators to guide health management. We describe the pattern of co-exposure to several pathogens (i.e. simultaneous positive diagnosis to pathogens in an individual considering Mycobacterium tuberculosis complex lesions, and the presence of antibodies against Toxoplasma gondii, bluetongue virus, and hepatitis E virus) and assessed their main drivers in the wild ungulate community from Doñana National Park (red deer, fallow deer, and wild boar) for a 13-years longitudinal study. The lower-than-expected frequency of co-exposure registered in all species was consistent with non-mutually exclusive hypotheses (e.g. antagonism or disease-related mortality), which requires further investigation. The habitat generalist species (red deer and wild boar) were exposed to a greater diversity of pathogens (frequency of co-exposure around 50%) and/or risk factors than fallow deer (25.0% ± CI95% 4.9). Positive relationships between pathogens were evidenced, which may be explained by common risk factors favouring exposure. The specific combination of pathogens in individuals was mainly driven by different groups of factors (individual, environmental, stochastic, and populational), as well as its interaction, defining a complex eco-epidemiological landscape. To deepen into the main determinants and consequences of co-infections in a complex assemblage of wild hosts, and at the interface with humans and livestock, there also is needed to expand the range of pathogens and compare diverse assemblages of hosts under different environmental and management circumstances.
Collapse
Affiliation(s)
- Patricia Barroso
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain.
| | - Pelayo Acevedo
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain
| | - María A Risalde
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain; Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Departamento de Sanidad Animal, Universidad de Córdoba, Córdoba, Spain
| | - Vidal Montoro
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain; Escuela Técnica Superior de Ingenieros Agrónomos, UCLM, 13071 Ciudad Real, Spain
| | | | - María J Torres
- Departamento de Microbiología, Universidad de Sevilla, 41009 Seville, Spain
| | - Ramón C Soriguer
- Estación Biológica Doñana, CSIC, 41092 Seville, Spain; Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP). Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquín Vicente
- Instituto de Investigación en Recursos Cinegéticos (IREC) CSIC-UCLM-JCCM, 13071 Ciudad Real, Spain; Escuela Técnica Superior de Ingenieros Agrónomos, UCLM, 13071 Ciudad Real, Spain
| |
Collapse
|
35
|
A Randomized Large-Scale Cross-Sectional Serological Survey of Hepatitis E Virus Infection in Belgian Pig Farms. Microorganisms 2023; 11:microorganisms11010129. [PMID: 36677421 PMCID: PMC9863458 DOI: 10.3390/microorganisms11010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E disease in humans. While sporadic HEV infections, which occur in industrialised countries and are typically due to HEV genotypes 3 or 4, are asymptomatic and self-limiting, a chronic form of the disease can lead to liver cirrhosis in immunocompromised individuals. Pigs share HEV 3 and 4 genotypes and are thus considered a major animal reservoir for human infection. A subset of animals has been shown to carry HEV particles at the age of slaughter, rendering raw or undercooked pig products potential vectors for human infection. To provide an overview of the current dissemination of HEV in Belgian pig herds, this study was designed as a randomized, robust, large-scale, cross-sectional, serological survey. HEV genotypes and subtypes recently circulating in Belgium (2020-2021) were investigated. Sample stratification as well as epidemiological investigation through the available demographic data of the sampled herds showed that HEV widely circulated in the Belgian pig population during this time and that a change in the circulating HEV strains may have occurred in the last decade. Herd size and type were identified as risk factors for HEV herd-seropositivity. Identifying farms at risk of being HEV-positive is an important step in controlling HEV spread and human infection.
Collapse
|
36
|
Geng Y, Shi T, Wang Y. Transmission of Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:73-92. [PMID: 37223860 DOI: 10.1007/978-981-99-1304-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transmission of hepatitis E virus (HEV) occurs predominantly by the fecal-oral route. Large epidemics of hepatitis E in the developing countries of Asia and Africa are waterborne and spread through contaminated drinking water. The reservoir of HEV in developed countries is believed to be in animals with zoonotic transmission to humans, possibly through direct contact or the consumption of undercooked contaminated meat. And HEV transmission through blood transfusion, organ transplantation, and vertical transmission has been reported.
Collapse
Affiliation(s)
- Yansheng Geng
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| | - Tengfei Shi
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| |
Collapse
|
37
|
Mikhailov MI, Karlsen AA, Potemkin IA, Isaeva OV, Kichatova VS, Malinnikova EY, Asadi Mobarkhan FA, Mullin EV, Lopatukhina MA, Manuylov VA, Mazunina EP, Bykonia EN, Kleymenov DA, Popova LI, Gushchin VA, Tkachuk AP, Polyakov AD, Eladly AM, Solonin SA, Gordeychuk IV, Kyuregyan KK. Geographic and Temporal Variability of Hepatitis E Virus Circulation in the Russian Federation. Viruses 2022; 15:37. [PMID: 36680077 PMCID: PMC9865877 DOI: 10.3390/v15010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The factors influencing hepatitis E virus (HEV) circulation remain largely unexplored. We investigated HEV seroprevalence in humans and the prevalence of infection in farm pigs and rabbits in different regions of the Russian Federation, as well as the genetic diversity and population dynamics of the HEV. The anti-HEV IgG antibody detection rates in the general population increase significantly with age, from 1.5% in children and adolescents under 20 years old to 4.8% in adults aged between 20 and 59 years old to 16.7% in people aged 60 years and older. HEV seroprevalence varies between regions, with the highest rate observed in Belgorod Region (16.4% compared with the national average of 4.6%), which also has the country's highest pig population. When compared with the archival data, both increases and declines in HEV seroprevalence have been observed within the last 10 years, depending on the study region. Virus shedding has been detected in 19 out of the 21 pig farms surveyed. On one farm, the circulation of the same viral strain for five years was documented. All the human and animal strains belonged to the HEV-3 genotype, with its clade 2 sequences being predominant in pigs. The sequences are from patients, pigs, and sewage from pig farms clustered together, suggesting a zoonotic infection in humans and possible environmental contamination. The HEV-3 population size that was predicted using SkyGrid reconstruction demonstrated exponential growth in the 1970s-1990s, with a subsequent decline followed by a short rise around the year 2010, the pattern being similar to the dynamics of the pig population in the country. The HEV-3 reproduction number (Re) that was predicted using birth-death skyline analysis has fluctuated around 1 over the past 20 years in Russia but is 10 times higher in Belgorod Region. In conclusion, the HEV-3 circulation varies both geographically and temporally, even within a single country. The possible factors contributing to this variability are largely related to the circulation of the virus among farm pigs.
Collapse
Affiliation(s)
- Mikhail I. Mikhailov
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
- Department of Viral Hepatitis, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
- Medical Faculty, Belgorod State National Research University, 308015 Belgorod, Russia
| | - Anastasia A. Karlsen
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
- Scientific and Educational Resource Center for High-Performance Methods of Genomic Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ilya A. Potemkin
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
- Department of Viral Hepatitis, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Olga V. Isaeva
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
- Department of Viral Hepatitis, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Vera S. Kichatova
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
- Department of Viral Hepatitis, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Elena Yu. Malinnikova
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
- Department of Viral Hepatitis, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Fedor A. Asadi Mobarkhan
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
- Department of Viral Hepatitis, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Eugeniy V. Mullin
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Maria A. Lopatukhina
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Victor A. Manuylov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Elena P. Mazunina
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Evgeniia N. Bykonia
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Denis A. Kleymenov
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Liubov I. Popova
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Vladimir A. Gushchin
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Artem P. Tkachuk
- Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Andrey D. Polyakov
- Skolkovo Territorial Department of Rospotrebnadzor in Moscow, 143026 Moscow, Russia
| | - Ahmed Mohammed Eladly
- Scientific and Educational Resource Center for High-Performance Methods of Genomic Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Sergey A. Solonin
- N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Health Department, 129090 Moscow, Russia
| | - Ilya V. Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Karen K. Kyuregyan
- Laboratory of Viral Hepatitis, Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
- Department of Viral Hepatitis, Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
- Scientific and Educational Resource Center for High-Performance Methods of Genomic Analysis, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
38
|
Shata MTM, Hetta HF, Sharma Y, Sherman KE. Viral hepatitis in pregnancy. J Viral Hepat 2022; 29:844-861. [PMID: 35748741 PMCID: PMC9541692 DOI: 10.1111/jvh.13725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/17/2021] [Accepted: 06/13/2022] [Indexed: 12/09/2022]
Abstract
Viral hepatitis is caused by a heterogenous group of viral agents representing a wide range of phylogenetic groups. Many viruses can involve the liver and cause liver injury but only a subset are delineated as 'hepatitis viruses' based upon their primary site of replication and tropism for hepatocytes which make up the bulk of the liver cell population. Since their discovery, beginning with the agent that caused serum hepatitis in the 1960s, the alphabetic designations have been utilized. To date, we have five hepatitis viruses, A through E, though it is postulated that others may exist. This chapter will focus on those viruses. Note that hepatitis D is included as a subset of hepatitis B, as it cannot exist without concurrent hepatitis B infection. Pregnancy has the potential to affect all aspects of these viral agents due to the unique immunologic and physiologic changes that occur during and after the gestational period. In this review, we will discuss the most common viral hepatitis and their effects during pregnancy.
Collapse
Affiliation(s)
- Mohamed Tarek M. Shata
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Helal F. Hetta
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA,Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Yeshika Sharma
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Kenneth E. Sherman
- Division of Digestive Disease, Department of Internal MedicineUniversity of CincinnatiCincinnatiOhioUSA
| |
Collapse
|
39
|
Wong LP, Tay ST, Chua KH, Goh XT, Alias H, Zheng Z, Zhao Q, Wu T, Xia N, Hu Z, Lin Y. Serological Evidence of Hepatitis E Virus (HEV) Infection Among Ruminant Farmworkers: A Retrospective Study from Malaysia. Infect Drug Resist 2022; 15:5533-5541. [PMID: 36164335 PMCID: PMC9508706 DOI: 10.2147/idr.s367394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background As scant data are available about Hepatitis E virus (HEV) infection in Malaysia, this study aimed to determine the seroprevalence of HEV amongst ruminant farmworkers in Malaysia. Methods A total of 87 farmworkers provided serum samples, which were collected from eight farms. All serum samples were tested for anti-HEV IgG and anti-HEV IgM by an enzyme-linked immunosorbent assay (ELISA) using the Wantai HEV-IgG and HEV-IgM ELISA kits from Beijing Wantai Biological Pharmacy Enterprise Co., Ltd, Beijing, China. Results Farmworkers from six cattle farms, one sheep farm and one goat farm were investigated in this study. Only one farm practices zero-grazing, with the rest using rotational grazing. Of the 87 farmworkers, males comprised 83.9%, and almost half (47.1%) were aged 20-35 years old. By ethnic group, the vast majority were Malay. Most of the farmworkers have good hygiene practices; washing or changing their clothes and showering after dealing with farm animals were common. None of the farmworker serum samples had anti-HEV IgM and IgG detected (95% confidence interval (CI): 0, 0.0415). Conclusion The finding suggests that the farmworkers had no previous exposure to Hepatitis E, and were not at risk of occupational exposure to HEV infection. Our findings suggest that a zero seroprevalence of HEV infection among ruminant farmworkers in the Muslim majority country. Good farm management, hygiene practices and the absence of contact with swine-related contamination might have contributed to the no or minimal zoonotic risks of HEV amongst farmworkers surveyed in this study.
Collapse
Affiliation(s)
- Li Ping Wong
- Centre for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.,Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Xiang Ting Goh
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Haridah Alias
- Centre for Epidemiology and Evidence-Based Practice, Department of Social and Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361102, People's Republic of China.,The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| | - Yulan Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, People's Republic of China
| |
Collapse
|
40
|
Ehi Airiohuodion P, Wartel A, Yako AB, Mac PA. Seroprevalence and burden of hepatitis E viral infection among pregnant women in central Nigeria attending antenatal clinic at a Federal Medical Centre in Central Nigeria. Front Med (Lausanne) 2022; 9:888218. [PMID: 36117965 PMCID: PMC9478474 DOI: 10.3389/fmed.2022.888218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionHEV infection may be life threatening in pregnant women and has been linked with 20–30% mortality, especially in the third trimester of pregnancy. HEV infection leads to elevated levels of preterm labour and other immunological parameters. It is vertically transmitted and could lead to poor feto-maternal outcomes. especially in fulminating viral hepatitis where both the mother and foetus could be lost. There is currently no known treatment or vaccine for HEV. There is therefore a need to study HEV seroprevalence and burden among vulnerable groups, such as pregnant women and their newborns in Nigeria, where maternal mortality is highly significant.MethodsA total of 200 samples were collected from pregnant women attending antenatal clinic at Federal Medical Centre (FMC) Keffi, in central Nigeria, of which (156/200) samples were from HIV-negative pregnant women and (44/200) were from HIV-positive pregnant women, using a simple random sampling method.ResultsIn total, 200 pregnant women [78.0% (156/200) HIV-negative pregnant women and 22.0% (44/200) HIV-positive pregnant women] were recruited for this study. The ages of the pregnant women ranged from 15-49 years, with a mean age of 26.4 years (± 6.23). The overall HEV IgG seropositivity in the study population was 31.5% (63/200); 95% CI (30-33).ConclusionThis study highlighted an unexpectedly high seroprevalence of HEV and poor feto-maternal outcomes in pregnant women residing in a rural and urban setting of central Nigeria. The study showed that the inherently high HEV seropositivity and poor feto-maternal outcomes may not be attributed to HEV viral hepatitis only but may be a combination of extrinsic and intrinsic factors.
Collapse
Affiliation(s)
- Philomena Ehi Airiohuodion
- Faculty of Medicine, Centre for Medicine, and Society, University of Freiburg, Freiburg, Germany
- Special Programme for Research & Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Anh Wartel
- International Vaccine Research Institute, Seoul, South Korea
| | - Andrew B. Yako
- Department of Zoology, Nasarawa State University, Keffi, Nigeria
| | - Peter Asaga Mac
- Faculty of Medicine, Centre for Medicine, and Society, University of Freiburg, Freiburg, Germany
- Institute of Virology, Universitätsklinikum Freiburg, Freiburg, Germany
- *Correspondence: Peter Asaga Mac, ;
| |
Collapse
|
41
|
Takuissu GR, Kenmoe S, Ndip L, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Oyono MG, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko'o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Nkie Esemu S, Veneri C, Mancini P, Bonanno Ferraro G, Iaconelli M, Suffredini E, La Rosa G. Hepatitis E Virus in Water Environments: A Systematic Review and Meta-analysis. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:223-235. [PMID: 36036329 PMCID: PMC9458591 DOI: 10.1007/s12560-022-09530-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 06/01/2023]
Abstract
Hepatitis E virus (HEV) is responsible for acute hepatitis in humans, through foodborne, zoonotic, and waterborne transmission routes. This study aimed to assess the prevalence of HEV in water matrices. Six categories were defined: untreated and treated wastewater, surface water (river, lake, and seawater), drinking water, groundwater, and other water environments (irrigation water, grey water, reservoir water, flood water, and effluent of pig slaughterhouse). We searched PubMed, Web of Science, Global Index Medicus, and Excerpta Medica Database. Study selection and data extraction were performed by at least two independent investigators. Heterogeneity (I2) was assessed using the χ2 test on the Cochran Q statistic and H parameter. Sources of heterogeneity were explored by subgroup analysis. This study is registered with PROSPERO, number CRD42021289116. We included 87 prevalence studies from 58 papers, 66.4% of which performed in Europe. The overall prevalence of HEV in water was 9.8% (95% CI 6.4-13.7). The prevalence was higher in untreated wastewater (15.1%) and lower in treated wastewater (3.8%) and in drinking water (4.7%). In surface water, prevalence was 7.4%, and in groundwater, the percentage of positive samples, from only one study available, was 8.3%. Overall, only 36.8% of the studies reported the genotype of HEV, with genotype 3 (HEV-3) prevalent (168 samples), followed by HEV-1 (148 sample), and HEV-4 (2 samples). High-income countries were the most represented with 59/87 studies (67.8%), while only 3/87 (3.5%) of the studies were performed in low-income countries. The overall prevalence obtained of this study was generally higher in industrialized countries. Risk of bias was low in 14.9% of the studies and moderate in 85.1%. The results of this review showed the occurrence of HEV in different waters environments also in industrialized countries with sanitation and safe water supplies. While HEV transmission to humans through water has been widely demonstrated in developing countries, it is an issue still pending in industrialized countries. Better knowledge on the source of pollution, occurrence, survival in water, and removal by water treatment is needed to unravel this transmission path.
Collapse
Affiliation(s)
- G R Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - S Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - L Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - J T Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - C Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala, Cameroon
| | - D S Mbaga
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - M G Oyono
- Centre for Research on Health and Priority Pathologies, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - R Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaoundé, Cameroon
| | - S Tchatchouang
- Scientific Direction, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - J Kenfack-Zanguim
- Department of Biochemistry, The University of Yaounde I, Yaoundé, Cameroon
| | - R Lontuo Fogang
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | - E Zeuko'o Menkem
- Department of Biomedical Sciences, University of Buea, Buea, Cameroon
| | - G I Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | | | - S Nkie Esemu
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - C Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
42
|
Ahmad T, Jin H, Dhama K, Yatoo MI, Tiwari R, Bilal M, Dhawan M, Emran TB, Alestad JH, Alhani HM, BinKhalaf HK, Rabaan AA. Hepatitis E virus in pigs and the environment: An updated review of public health concerns. NARRA J 2022; 2:e78. [PMID: 38449702 PMCID: PMC10914032 DOI: 10.52225/narra.v2i2.78] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 09/01/2023]
Abstract
Hepatitis E virus (HEV) is an important public health problem and is responsible for both acute and chronic viral hepatitis. Public health implications of HEV are derived from its transmission route, either water-borne or food-borne, and its zoonotic potential. Not only in developing countries, but HEV cases are also found in a high number in developed countries. The spread of HEV to the environment might pollute surface waters, which could act as the source of infection for both humans and animals. Identification of the virus in animal products suggests the circulation of HEV within water and food chains. High seroprevalence and circulation of HEV in livestock, in particular pigs, as well as in environmental samples warrants further investigation into pig markets. HEV virulence in different environments and meat supply chains could shed light on the possible sources of infection in humans and the degree of occupational risk. The purpose of this review is to discuss HEV infections with an emphasis on livestock- and environment-related risk factors, and food-borne, water-borne, and zoonotic transmissions.
Collapse
Affiliation(s)
- Tauseef Ahmad
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing,Chinas
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing,Chinas
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mohd. Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, Indias
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, United Kingdom
| | - Talha B. Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Jeehan H. Alestad
- Immunology and Infectious Microbiology, Glasgow, United Kingdom
- Collage of medicine, Microbiology, Jabriya, Kuwait
- Kuwait Chair Madam in Antimicrobial Resistance Committee, Alternative Permanent Representative of Kuwait to the United Nation Agencies, Rome, Italys
| | - Hatem M. Alhani
- Department of Pediatric Infectious Disease, Maternity and Children Hospital, Dammam, Saudi Arabia
- Department of Infection Control, Maternity and Children Hospital, Dammam, Saudi Arabia
- Department of Preventive Medicine and Infection Prevention and Control, Directorate of Ministry of Health, Eastern Region, Dammam, Saudi Arabia
| | - Habib K. BinKhalaf
- Department of Molecular Laboratory, King Fahad Hospital, Hofuf, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| |
Collapse
|
43
|
Rivero-Juarez A, Frias M, Perez AB, Pineda JA, Reina G, Fuentes-Lopez A, Freyre-Carrillo C, Ramirez-Arellano E, Alados JC, Rivero A. Orthohepevirus C infection as an emerging cause of acute hepatitis in Spain: First report in Europe. J Hepatol 2022; 77:326-331. [PMID: 35167911 DOI: 10.1016/j.jhep.2022.01.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIM Hepatitis E virus (HEV) was considered the only member of the Hepeviridae family with zoonotic potential. Nevertheless, this consideration has been reassessed owing to several reported cases of acute and chronic hepatitis linked to the Orthohepevirus C genus. Because the circulation of Orthohepevirus C in rodents has been described worldwide, the risk of zoonotic transmission is plausibly global. METHODS Orthohepevirus C RNA was retrospectively evaluated in 2 cohorts of patients in Spain. The first cohort included patients with acute hepatitis without etiological diagnosis after screening for hepatotropic virus infection. The second cohort included patients diagnosed with acute HEV infection, defined as positivity for anti-HEV-IgM antibodies and/or detectable HEV RNA in serum. RESULTS Cohort 1 comprised 169 patients (64.4% male, median age 43 years) and cohort 2 comprised 98 individuals (68.3% male, median age 45 years). Of the individuals included in Cohort 1, two (1.18%; 95% CI 0.2-3.8) had detectable Orthohepevirus C RNA in serum. In Cohort 2, of the 98 included patients, 58 showed detectable HEV RNA, while 40 only showed positivity for IgM antibodies. Among those bearing only IgM antibodies, Orthohepevirus C RNA was detected in 1 (2.5%; 95% CI 0.06-13.1) individual. All strains were consistent with genotype C1. The infection resulted in mild self-limiting acute hepatitis in 2 patients. Infection caused severe acute hepatitis in the remaining patient who died as a result of liver and renal failure. CONCLUSIONS We described 3 cases of Orthohepevirus C in patients with acute hepatitis, resulting in the first description of this infection in Europe. The prevalence obtained in our study suggests that Orthohepevirus C could be an emerging disease in Europe. LAY SUMMARY We describe the first cases of acute hepatitis related to rat hepatitis E virus in Europe. The prevalence found in our study suggest that rat hepatitis E virus could be considered an emerging disease in Europe.
Collapse
Affiliation(s)
- Antonio Rivero-Juarez
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Mario Frias
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belen Perez
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Clinical Microbiology Unit, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | - Juan Antonio Pineda
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases and Microbiology, Hospital Universitario de Valme, Seville, Spain
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, STUN, Institute of Tropical Health, Universidad de Navarra, diSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana Fuentes-Lopez
- CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Clinical Microbiology Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| | | | - Encarnación Ramirez-Arellano
- Infectious Diseases, Microbiology and Preventive Medicine Unit, Virgen Macarena Univ. Hospital, and Department of Medicine, University of Sevilla / Biomedicine Institute of Sevilla, Sevilla, Spain
| | - Juan Carlos Alados
- Clinical Microbiology Unit, Hospital Universitario de Jerez, Cádiz, Spain
| | - Antonio Rivero
- Unit of Infectious Diseases, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba (UCO), Córdoba, Spain; CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
44
|
Wu J, Xu Y, Cui Y, Bortolanza M, Wang M, Jiang B, Yan M, Liang W, Yao Y, Pan Q, Yang J, Yu J, Wang D, Cao H, Li L. Dynamic changes of serum metabolites associated with infection and severity of patients with acute hepatitis E infection. J Med Virol 2022; 94:2714-2726. [PMID: 35199373 DOI: 10.1002/jmv.27669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022]
Abstract
Dynamic changes in metabolites may affect liver disease progression, and provide new methods for predicting liver damage. We used ultra-performance liquid chromatography-mass spectroscopy to assess serum metabolites in healthy controls (HC), and patients with acute hepatitis E (AHE) or hepatitis E virus acute liver failure (HEV-ALF). The principal component analysis, partial least squares discriminant analysis, and discriminant analysis of orthogonal projections to latent structures models illustrated significant differences in the metabolite components between AHE patients and HCs, or between HEV-ALF and AHE patients. In pathway enrichment analysis, we further identified two altered pathways, including linoleic acid metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis, when comparing AHE patients with HCs. Linoleic acid metabolism and porphyrin and chlorophyll metabolism pathways were significantly different in HEV-ALF when compared with AHE patients. The discriminative performances of differential metabolites showed that taurocholic acid, glycocholic acid, glycochenodeoxycholate-3-sulfate, and docosahexaenoic acid could be used to distinguish HEV-ALF from AHE patients. The serum levels of glycocholic acid, taurocholic acid, deoxycholic acid glycine conjugate, and docosahexaenoic acid were associated with the prognosis of HEV-ALF patients. Dynamic changes in serum metabolites were associated with AHE infection and severity. The identified metabolites can be used to diagnose and predict the prognosis of HEV-ALF.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yanping Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yubao Cui
- Department of Clinical Laboratory, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Mariza Bortolanza
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Minjie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Jiang
- Department of Laboratory Medicine, The Central Blood Station of Yancheng City, Yancheng, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wei Liang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yiwen Yao
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Qiaoling Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfeng Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Wang
- Department of Infectious Diseases, The Second People's Hospital of Yancheng City, Yancheng, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
45
|
Hosseini SY, Joharinia N, Hosseini SA, Firoozi Ghahestani S, Ghojoghi R, Dorost K, Moghadami M, Gheshlaghi A, Jaberi O, Khoshbakht R, Sarvari J. Serosurvey of hepatitis A virus and E virus infection among municipal sweepers working in the largest city in the south of Iran. J Immunoassay Immunochem 2022; 43:493-501. [PMID: 35341459 DOI: 10.1080/15321819.2022.2052088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study was conducted to determine the exposure rate of Hepatitis A and Hepatitis E viruses in urban solid waste collectors/sweepers in the south of Iran. The 385 samples (serums) were collected from Shiraz Municipality waste sweepers.. A questionnaire was used to gather data on their demographic and occupational characteristics, as well as their awareness of viral hepatitis disease. The viral seroprevalence was determined by commercial IgG ELISA kit. All participants were male, mean age of 41 ± 8 years. ELISA assay showed that all of them were positive for anti-HAV IgG. Also, 62 out of 385 individuals were positive for anti-HEV IgG. The statistical analysis showed that the frequency of HEV IgG antibody among age groups 20-30, 31-40, 41-50 and >50 years old had an increasing trend, 4.5%, 10.1%, 17.4%, and 36.7%, respectively, indicating age factor significance (p = .001). Based on some investigated factors including the duration of work experience, current and previous jobs, habitation, personal hygiene status, and knowledge on viral hepatitis diseasees/their transmission, there was no statistically significant difference between anti-HEV IgG positive versus negative sweepers. The results indicated a slighty higher frequency of anti-HAV and anti-HEV IgG among sweepers compared to other pre-investigated population. It doesn't seem that garbage collecting/sweeping could be a significant risk factor for HAV and HEV infection.
Collapse
Affiliation(s)
- Seyed Younes Hosseini
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Joharinia
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Hosseini
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Firoozi Ghahestani
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rozita Ghojoghi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kourosh Dorost
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Abolfazl Gheshlaghi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Jaberi
- Occupational Health Engineering, HSE Unit, Shiraz Waste Management Organization, Shiraz, Iran
| | - Rohollah Khoshbakht
- Occupational Health Engineering, HSE Unit, Shiraz Waste Management Organization, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
46
|
Simani OE, Seipone TP, Selabe G, Seheri LM, Mphahlele MJ, Mayaphi SH, Steele AD. Low seroprevalence of hepatitis E virus in pregnant women in an urban area near Pretoria, South Africa. IJID REGIONS 2022; 2:70-73. [PMID: 35757069 PMCID: PMC9216388 DOI: 10.1016/j.ijregi.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
|
47
|
Raji YE, Toung OP, Taib NM, Sekawi ZB. Hepatitis E Virus: An emerging enigmatic and underestimated pathogen. Saudi J Biol Sci 2022; 29:499-512. [PMID: 35002446 PMCID: PMC8716866 DOI: 10.1016/j.sjbs.2021.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is an RNA virus causing hepatitis E disease. The virus is of one serotype but has diverse genotypes infecting both humans and animals. Based on evidence from seroprevalence studies, about 2 billion people are estimated to have been infected with HEV globally. HEV, therefore, poses a significant public health and economic challenge worldwide. HEV was discovered in the 1980s and was traced back to the 1955 - 1956 outbreak of hepatitis that occurred in India. Subsequently, several HEV epidemics involving thousands of individuals have occurred nearly annually in different countries in Asia and Africa. Initially, the virus was thought to be only enterically transmitted, and endemic in developing countries. Due to the environmental hygiene and sanitation challenges in those parts of the world. However, recent studies have suggested otherwise with the report of autochthonous cases in industrialised countries with no history of travel to the so-called endemic countries. Thus, suggesting that HEV has a global distribution with endemicity in both developing and industrialised nations. Studies have also revealed that HEV has multiple risk factors, and modes of transmission as well as zoonotic potentials. Additionally, recent findings have shown that HEV leads to severe disease, particularly among pregnant women. In contrast to the previous narration of a strictly mild and self-limiting infection. Studies have likewise demonstrated chronic HEV infection among immunocompromised persons. Consequent to these recent discoveries, this pathogen is considered a re - emerging virus, particularly in the developed nations. However, despite the growing public health challenges of this pathogen, the burden is still underestimated. The underestimation is often attributed to poor awareness among clinicians and a lack of routine checks for the disease in the hospitals. Thus, leading to misdiagnosis and underdiagnosis. Hence, this review provides a concise overview of epidemiology, diagnosis, and prevention of hepatitis E.
Collapse
Affiliation(s)
- Yakubu Egigogo Raji
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
- Faculty of Natural and Applied Sciences Ibrahim Badamasi Babangida University, Lapai, Nigeria
| | - Ooi Peck Toung
- Department of Veterinary Clinical Studies Faculty of Veterinary Medicine, Universiti Putra Malaysia 2, Malaysia
| | - Niazlin Mohd Taib
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
| | - Zamberi Bin Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 1, Malaysia
| |
Collapse
|
48
|
Kamani L, Padhani ZA, Das JK. Hepatitis E: Genotypes, strategies to prevent and manage, and the existing knowledge gaps. JGH Open 2021; 5:1127-1134. [PMID: 34621997 PMCID: PMC8485408 DOI: 10.1002/jgh3.12646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/02/2021] [Accepted: 08/14/2021] [Indexed: 12/23/2022]
Abstract
Hepatitis E virus (HEV) is considered an emergent source of viral hepatitis worldwide, with an increasing burden of jaundice, liver failure, extrahepatic illnesses, and deaths in developed countries. With the scarcity of data from efficient animal models, there are still open-ended questions about designing new models to study pathogenesis, types, virology, and evolution of these viruses. With an emphasis on available data and updates, there is still enough information to understand the HEV life cycle, pathogen interaction with the host, and the valuation of the role of vaccine and new anti-HEV therapies. However, the World Health Organization (WHO) and the European Association for the Study of the Liver (EASL) preferred to stress prevention and control measures of HEV infections in animals, zoonotic transmission, and foodborne transmission. It is being reviewed that with current knowledge on HEV and existing prevention tools, there is an excellent room for in-depth information about the virus strains, their replication, pathogenicity, and virulence. The current knowledge set also has gaps regarding standardized and validated diagnostic tools, efficacy and safety of the vaccine, and extrahepatic manifestations specifically in pregnant females, immunocompromised patients, and others. This review highlights the areas for more research exploration, focusing on enlisted research questions based on HEV infection to endorse the need for significant improvement in the current set of knowledge for this public health problem.
Collapse
Affiliation(s)
- Lubna Kamani
- Associate Professor & Director, GI Residency Program, Department of GastroenterologyLiaquat National Hospital and Medical CollegeKarachiPakistan
- ConsultantAga Khan University HospitalKarachiPakistan
| | - Zahra Ali Padhani
- Health Policy and Management, Manager (Research)Aga Khan University HospitalKarachiPakistan
| | - Jai K Das
- Assistant Professor and Head, Section of Public Health and EpidemiologyAga Khan University HospitalKarachiPakistan
| |
Collapse
|
49
|
Al Dossary RA, Alnafie AN, Aljaroodi SA, Rahman JU, Hunasemarada BC, Alkharsah KR. Prevalence of Hepatitis E Virus Infection Among Blood Donors in the Eastern Province of Saudi Arabia. J Multidiscip Healthc 2021; 14:2381-2390. [PMID: 34475765 PMCID: PMC8407670 DOI: 10.2147/jmdh.s328029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Hepatitis E virus (HEV) causes acute hepatitis in humans and constitutes a major problem for immunocompromised patients, patients with hematological diseases, and pregnant women. It is transmitted mainly through fecal oral route; however, transmission through blood and blood products is reported globally and becoming a health concern. We sought to determine the prevalence of HEV among blood donors in the Eastern Province of Saudi Arabia using molecular as well as serological assays to assess the safety of blood transfusion and the need for HEV screening among blood donors. PATIENTS AND METHODS A total of 806 whole blood samples were collected from blood donors between May and November 2020 and tested for anti-HEV IgG and IgM antibodies by ELISA and for HEV RNA by RT-PCR. RESULTS The overall seroprevalence of HEV IgG antibodies was 3.2% with no statistically significant difference between the non-Saudis (3.28%) and Saudis (3.17%) (p value 0.929) or between males (3.14%) and females (4.88%) (p value 0.527). None of the IgG positive individuals had IgM antibodies. HEV RNA was not detected in any of the blood donors. CONCLUSION HEV seroprevalence is low among blood donors in the Eastern Province of Saudi Arabia and may constitute minimal risk for transfusion associated infections.
Collapse
Affiliation(s)
- Reem A Al Dossary
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Awatif N Alnafie
- Department of Pathology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Salma Ali Aljaroodi
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Basavaraj C Hunasemarada
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Khaled R Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| |
Collapse
|
50
|
Torre P, Aglitti A, Masarone M, Persico M. Viral hepatitis: Milestones, unresolved issues, and future goals. World J Gastroenterol 2021; 27:4603-4638. [PMID: 34366625 PMCID: PMC8326259 DOI: 10.3748/wjg.v27.i28.4603] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
In this review the current overall knowledge on hepatitis A, B, C, D, and E will be discussed. These diseases are all characterized by liver inflammation but have significant differences in distribution, transmission routes, and outcomes. Hepatitis B virus and hepatitis C virus are transmitted by exposure to infected blood, and in addition to acute infection, they can cause chronic hepatitis, which in turn can evolve into cirrhosis. It is estimated that more than 300 million people suffer from chronic hepatitis B or C worldwide. Hepatitis D virus, which is also transmitted by blood, only affects hepatitis B virus infected people, and this dual infection results in worse liver-related outcomes. Hepatitis A and E spread via the fecal-oral route, which corresponds mainly to the ingestion of food or water contaminated with infected stools. However, in developed countries hepatitis E is predominantly a zoonosis. Although hepatitis A virus and hepatitis E virus are usually responsible for a self-limiting hepatitis, a serious, rarely fatal illness is also possible, and in immunosuppressed patients, such as organ transplant recipients, hepatitis E virus infection can become chronic. The description of goals achieved, unresolved issues, and the latest research on this topic may make it possible to speculate on future scenarios in the world of viral hepatitis.
Collapse
Affiliation(s)
- Pietro Torre
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana,” University of Salerno, Salerno 84081, Italy
| | - Andrea Aglitti
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana,” University of Salerno, Salerno 84081, Italy
| | - Mario Masarone
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana,” University of Salerno, Salerno 84081, Italy
| | - Marcello Persico
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana,” University of Salerno, Salerno 84081, Italy
| |
Collapse
|