1
|
Qian J, Jiang Y, Hu H. Ginsenosides: an immunomodulator for the treatment of colorectal cancer. Front Pharmacol 2024; 15:1408993. [PMID: 38939839 PMCID: PMC11208871 DOI: 10.3389/fphar.2024.1408993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
Ginsenosides, the primary bioactive ingredients derived from the root of Panax ginseng, are eagerly in demand for tumor patients as a complementary and alternative drug. Ginsenosides have increasingly become a "hot topic" in recent years due to their multifunctional role in treating colorectal cancer (CRC) and regulating tumor microenvironment (TME). Emerging experimental research on ginsenosides in the treatment and immune regulation of CRC has been published, while no review sums up its specific role in the CRC microenvironment. Therefore, this paper systematically introduces how ginsenosides affect the TME, specifically by enhancing immune response, inhibiting the activation of stromal cells, and altering the hallmarks of CRC cells. In addition, we discuss their impact on the physicochemical properties of the tumor microenvironment. Furthermore, we discuss the application of ginsenosides in clinical treatment as their efficacy in enhancing tumor patient immunity and prolonging survival. The future perspectives of ginsenoside as a complementary and alternative drug of CRC are also provided. This review hopes to open up a new horizon for the cancer treatment of Traditional Chinese Medicine monomers.
Collapse
Affiliation(s)
- Jianan Qian
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Mohammed YHI, Shamkh IM, Alharthi NS, Shanawaz MA, Alzahrani HA, Jabbar B, Beigh S, Alghamdi S, Alsakhen N, Khidir EB, Alhuthali HM, Karamalla THE, Rabie AM. Discovery of 1-(5-bromopyrazin-2-yl)-1-[3-(trifluoromethyl)benzyl]urea as a promising anticancer drug via synthesis, characterization, biological screening, and computational studies. Sci Rep 2023; 13:22824. [PMID: 38129413 PMCID: PMC10739849 DOI: 10.1038/s41598-023-44662-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer and different types of tumors are still the most resistant diseases to available therapeutic agents. Finding a highly effective anticancer drug is the first target and concern of thousands of drug designers. In our attempts to address this concern, a new pyrazine derivative, 1-(5-bromopyrazin-2-yl)-1-[3-(trifluoromethyl)benzyl]urea (BPU), was designed via structural optimization and synthesized to investigate its anticancer/antitumor potential. The in-vitro anticancer properties of BPU were evaluated by MTT assay using selected cell lines, including the Jurkat, HeLa, and MCF-7 cells. The Jurkat cells were chosen to study the effect of BPU on cell cycle analysis using flow cytometry technique. BPU exhibited an effective cytotoxic ability in all the three cell lines assessed. It was found to be more prominent with the Jurkat cell line (IC50 = 4.64 ± 0.08 µM). When it was subjected to cell cycle analysis, this compound effectively arrested cell cycle progression in the sub-G1 phase. Upon evaluating the antiangiogenic potential of BPU via the in-vivo/ex-vivo shell-less chick chorioallantoic membrane (CAM) assays, the compound demonstrated very significant findings, revealing a complementary supportive action for the compound to act as a potent anticancer agent through inhibiting blood vessel formation in tumor tissues. Moreover, the docking energy of BPU computationally scored - 9.0 kcal/mol with the human matrix metalloproteinase 2 (MMP-2) and - 7.8 kcal/mol with the human matrix metalloproteinase 9 (MMP-9), denoting promising binding results as compared to the existing drugs for cancer therapy. The molecular dynamics (MD) simulation outcomes showed that BPU could effectively bind to the previously-proposed catalytic sites of both MMP-2 and MMP-9 enzymes with relatively stable statuses and good inhibitory binding abilities and parameters. Our findings suggest that the compound BPU could be a promising anticancer agent since it effectively inhibited cell proliferation and can be selected for further in-vitro and in-vivo investigations. In addition, the current results can be extensively validated by conducting wet-lab analysis so as to develop novel and better derivatives of BPU for cancer therapy with much less side effects and higher activities.
Collapse
Affiliation(s)
- Yasser Hussein Issa Mohammed
- Department of Biochemistry, Faculty of Applied Science, University of Hajjah, Hajjah, Yemen.
- Department of Pharmacy, Faculty of Medicine and Medical Science, University of Al-Razi, Sana'a, Yemen.
| | - Israa M Shamkh
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Chemo and Bioinformatics Lab, Bio Search Research Institution (BSRI), Giza, Egypt
| | - Nahed S Alharthi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mohammed A Shanawaz
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| | - Hind A Alzahrani
- Department of Basic Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| | - Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Saba Beigh
- Department of Public Health, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nada Alsakhen
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Elshiekh B Khidir
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | | | - Amgad M Rabie
- Head of Drug Discovery and Clinical Research Department, Dikernis General Hospital (DGH), Magliss El-Madina Street, Dikernis City 35744, Dikernis, Dakahlia Governorate, Egypt.
| |
Collapse
|
3
|
Zhang Y, Hao R, Chen J, Li S, Huang K, Cao H, Farag MA, Battino M, Daglia M, Capanoglu E, Zhang F, Sun Q, Xiao J, Sun Z, Guan X. Health benefits of saponins and its mechanisms: perspectives from absorption, metabolism, and interaction with gut. Crit Rev Food Sci Nutr 2023; 64:9311-9332. [PMID: 37216483 DOI: 10.1080/10408398.2023.2212063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Saponins, consisting of sapogenins as their aglycones and carbohydrate chains, are widely found in plants and some marine organisms. Due to the complexity of the structure of saponins, involving different types of sapogenins and sugar moieties, investigation of their absorption and metabolism is limited, which further hinders the explanation of their bioactivities. Large molecular weight and complex structures limit the direct absorption of saponins rendering their low bioavailability. As such, their major modes of action may be due to interaction with the gastrointestinal environment, such as enzymes and nutrients, and interaction with the gut microbiota. Many studies have reported the interaction between saponins and gut microbiota, that is, the effects of saponins on changing the composition of gut microbiota, and gut microbiota playing an indispensable role in the biotransformation of saponins into sapogenins. However, the metabolic routes of saponins by gut microbiota and their mutual interactions are still sparse. Thus, this review summarizes the chemistry, absorption, and metabolic pathways of saponins, as well as their interactions with gut microbiota and impacts on gut health, to better understand how saponins exert their health-promoting functions.
Collapse
Affiliation(s)
- Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Ruojie Hao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Junda Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, China
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Daglia
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, China
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Esra Capanoglu
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Fan Zhang
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Qiqi Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Zhenliang Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| |
Collapse
|
4
|
Tam DNH, Nam NH, Cuong NTK, Hung DT, Soa DT, Altom A, Tran L, Elhadad H, Huy NT. Compound K: A systematic review of its anticancer properties and probable mechanisms. Fundam Clin Pharmacol 2023. [PMID: 36691721 DOI: 10.1111/fcp.12874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Panax ginseng is a common natural product, which is well-known to have a wide range of pharmacological activities in cancer. Its metabolite, compound K (CK), has been reported to have anticancer activity. We aimed to systematically review the literature for evidence of anticancer effects of CK. We conducted a systematic search in eight databases. We included all in vitro and in vivo studies investigating the anticancer effects of CK with no restrictions. Quality assessment was applied by ToxRTool. Fifty-four articles were included in our study. The purity of CK in our included studies was at least 95%. The in vitro studies reported that CK had a potential anticancer activity on several cell lines including human lung cancer cell lines (A549, PC-9), nasopharyngeal carcinoma cell line (Hk-1), liver cancer cell line (BEL 7402), and pediatric acute myeloid leukemia cell lines (Kasumi-1, MV4-11). The in vivo studies reported a significant decrease in tumor volume in mice treated with CK. CK is a potential supplementary treatment in cancer chemotherapies. The safety and further clinical trials of CK should be explored for future drug development.
Collapse
Affiliation(s)
- Dao Ngoc Hien Tam
- Asia Shine Trading & Service Co., Ltd., Ho Chi Minh City, 700000, Vietnam.,Online Research Club (https://www.onlineresearchclub.org/), Nagasaki, Japan
| | - Nguyen Hai Nam
- Online Research Club (https://www.onlineresearchclub.org/), Nagasaki, Japan.,Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nguyen The Ky Cuong
- Online Research Club (https://www.onlineresearchclub.org/), Nagasaki, Japan.,Oncology Department, Thu Duc City Hospital, Ho Chi Minh City, 700000, Vietnam
| | - Dang The Hung
- Online Research Club (https://www.onlineresearchclub.org/), Nagasaki, Japan.,Faculty of Medicine, University of Medicine and Pharmacy Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Dang Thi Soa
- Online Research Club (https://www.onlineresearchclub.org/), Nagasaki, Japan.,Faculty of Pharmacy, Vinh Medical University, Nghe An, 43000-44000, Vietnam
| | - Ahmad Altom
- Online Research Club (https://www.onlineresearchclub.org/), Nagasaki, Japan.,Department of Internal Medicine, Faculty of Medicine, Damascus University, Damascus, Syrian Arab Republic
| | - Linh Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang City, 550000, Vietnam
| | - Heba Elhadad
- Online Research Club (https://www.onlineresearchclub.org/), Nagasaki, Japan.,Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Nguyen Tien Huy
- Online Research Club (https://www.onlineresearchclub.org/), Nagasaki, Japan.,School of Tropical Medicine and Global Health (TMGH), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
5
|
Wan Y, Liu D, Xia J, Xu JF, Zhang L, Yang Y, Wu JJ, Ao H. Ginsenoside CK, rather than Rb1, possesses potential chemopreventive activities in human gastric cancer via regulating PI3K/AKT/NF-κB signal pathway. Front Pharmacol 2022; 13:977539. [PMID: 36249752 PMCID: PMC9556731 DOI: 10.3389/fphar.2022.977539] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ginsenoside Rb1, a main component of ginseng, is often transformed into ginsenoside CK by intestinal flora to exert various pharmacological activity. However, it remains unclear whether ginsenoside CK is responsible for the anti-gastric cancer effect of ginsenoside Rb1 in vivo. In this study, network pharmacology was applied to predict the key signal pathways of ginsenoside Rb1 and ginsenoside CK when treating gastric cancer. The anti-proliferative effects of ginsenoside Rb1 and ginsenoside CK and the underlying mechanism in gastric cancer cells were explored by MTT, Hoechst3328 staining, ELISA, RT-qPCR and Western blotting. The results showed that PI3K-AKT/NF-κB signal pathway was the common important pathway of ginsenoside Rb1 and CK in the treatment of gastric cancer. The results of MTT assay showed that ginsenoside Rb1 could hardly inhibit the proliferation of HGC-27 cells, whereas ginsenoside CK could inhibit the proliferation of HGC-27 cells. Hoechst3328 staining showed that cells in the ginsenoside CK group were densely stained bright blue and nuclear fragmented, indicating that apoptosis occurred. ELISA results showed that ginsenoside CK could effectively downregulate the levels of cyclin CyclinB1 and CyclinD1, but ginsenoside Rb1 had no significant effect. Also, the results of Western blot and RT-qPCR showed that ginsenoside CK inhibited the expressions of anti-apoptosis-related protein Bcl-2 and apoptosis-related pathway PI3K/AKT/NF-κB, and promoted the expression of pro-apoptosis proteins Bax and Caspase 3, whereas ginsenoside Rb1 exerted no effect. In short, ginsenoside Rb1 had no anti-gastric cancer cell activity in vitro, but ginsenoside CK could effectively inhibit cell proliferation and induce cell apoptosis in HGC-27 cells. The mechanism might relate to the inhibitory effect of ginsenoside CK on the PI3K/AKT/NF-κB pathway. These results suggest that ginsenoside CK might be the in vivo material basis for the anti-gastric cancer activity of ginsenosides.
Collapse
Affiliation(s)
- Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Hui Ao,
| |
Collapse
|
6
|
Huang J, Gong MJ, Bai JQ, Su H, Gong L, Huang ZH, Qiu XH, Xu W, Zhang J. Differential Metabolic Profiles of Ginsenosides in Artificial Gastric Juice Using ultra-high-pressure Liquid Chromatography Coupled with Linear ion trap-Orbitrap Mass Spectrometry. Biomed Chromatogr 2022; 36:e5493. [PMID: 36044184 DOI: 10.1002/bmc.5493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022]
Abstract
Ginsenosides have poor bioavailability of oral administration and undergo rapid biologic transformation in the complex gastrointestinal environment. Most studies on the metabolism of ginsenosides has focused on gut bacteria, yet gastric juice remains as a non-negligible factor. Metabolic profiles of ginsenoside monomers formed in artificial gastric juice were separately investigated and qualitatively identified by UHPLC-LTQ-Orbitrap MSn . A common pattern of their metabolic pathways was established, showing that ginsenosides were transformed via deglycosylation, hydration and dehydration pathways. Two major structure types, PPTs and PPDs, basically shared similar transformation pathways and yielded deglycosylated, hydrated and dehydrated products. Fragmentation patterns of major ginsenosides were also discussed. Consequently, gastric juice, as the primary link in ginsenoside metabolism and as important as the intestinal flora, produces considerable amount of degraded ginsenosides, providing a partial explanation for the low bioavailabilities of primary ginsenosides.
Collapse
Affiliation(s)
- Juan Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ming Jiong Gong
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Qi Bai
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - He Su
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Gong
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi Hai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiao Hui Qiu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wen Xu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dept Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jing Zhang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Wang CZ, Luo Y, Huang WH, Zeng J, Zhang CF, Lager M, Du W, Xu M, Yuan CS. Falcarindiol and dichloromethane fraction are bioactive components in Oplopanax elatus: Colorectal cancer chemoprevention via induction of apoptosis and G2/M cell cycle arrest mediated by cyclin A upregulation. J Appl Biomed 2021; 19:113-124. [PMID: 34754259 DOI: 10.32725/jab.2021.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Oplopanax elatus (Nakai) Nakai has a long history of use as an ethnomedicine by the people living in eastern Asia. However, its bioactive constituents and cancer chemopreventive mechanisms are largely unknown. The aim of this study was to prepare O. elatus extracts, fractions, and single compounds and to investigate the herb's antiproliferative effects on colon cancer cells and the involved mechanisms of action. Two polyyne compounds were isolated from O. elatus, falcarindiol and oplopandiol. Based on our HPLC analysis, falcarindiol and oplopandiol are major constituents in the dichloromethane (CH2Cl2) fraction. For the HCT-116 cell line, the dichloromethane fraction showed significant effects. Furthermore, the IC50 for falcarindiol and oplopandiol was 1.7 μM and 15.5 μM, respectively. In the mechanistic study, after treatment with 5 μg/ml for 48 h, dichloromethane fraction induced cancer cell apoptosis by 36.5% (p < 0.01% vs. control of 3.9%). Under the same treatment condition, dichloromethane fraction caused cell cycle arrest at the G2/M phase by 32.6% (p < 0.01% vs. control of 23.4%), supported by upregulation of key cell cycle regulator cyclin A to 21.6% (p < 0.01% vs. control of 8.6%). Similar trends were observed by using cell line HT-29. Data from this study filled the gap between phytochemical components and the cancer chemoprevention of O. elatus. The dichloromethane fraction is a bioactive fraction, and falcarindiol is identified as an active constituent. The mechanisms involved in cancer chemoprevention by O. elatus were apoptosis induction and G2/M cell cycle arrest mediated by a key cell cycle regulator cyclin A.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Nanchang, P.R. China.,University of Chicago, Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, Chicago, Illinois, USA
| | - Yun Luo
- Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Nanchang, P.R. China.,University of Chicago, Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, Chicago, Illinois, USA
| | - Wei-Hua Huang
- University of Chicago, Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, Chicago, Illinois, USA
| | - Jinxiang Zeng
- University of Chicago, Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, Chicago, Illinois, USA
| | - Chun-Feng Zhang
- University of Chicago, Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, Chicago, Illinois, USA
| | - Mallory Lager
- University of Chicago, Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, Chicago, Illinois, USA
| | - Wei Du
- University of Chicago, Ben May Department for Cancer Research, Chicago, Illinois, USA
| | - Ming Xu
- University of Chicago, Committee on Clinical Pharmacology and Pharmacogenomics, Chicago, Illinois, USA
| | - Chun-Su Yuan
- University of Chicago, Tang Center for Herbal Medicine Research, and Department of Anesthesia and Critical Care, Chicago, Illinois, USA.,University of Chicago, Committee on Clinical Pharmacology and Pharmacogenomics, Chicago, Illinois, USA
| |
Collapse
|
8
|
Personalized bioconversion of Panax notoginseng saponins mediated by gut microbiota between two different diet-pattern healthy subjects. Chin Med 2021; 16:60. [PMID: 34301288 PMCID: PMC8306348 DOI: 10.1186/s13020-021-00476-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/20/2021] [Indexed: 01/09/2023] Open
Abstract
Background Panax notoginseng saponins (PNS) as the main effective substances from P. notoginseng with low bioavailability could be bio-converted by human gut microbiota. In our previous study, PNS metabolic variations mediated by gut microbiota have been observed between high fat, high protein (HF-HP) and low fat, plant fiber-rich (LF-PF) dietary subjects. In this study, we aimed to correspondingly characterize the relationship between distinct gut microbial species and PNS metabolites. Methods Gut microbiota were collected from HF-HP and LF-PF dietary healthy adults and profiled by 16S rRNA gene sequencing. PNS were incubated with gut microbiota in vitro. A LC–MS/MS method was developed to quantify the five main metabolites yields including ginsenoside F1 (GF1), ginsenoside Rh2 (GRh2), ginsenoside compound K (GC-K), protopanaxatriol (PPT) and protopanaxadiol (PPD). The selected microbial species, Bifidobacterium adolescentis and Lactobacillus rhamnosus, were employed to metabolize PNS for the corresponding metabolites. Results The five main metabolites were significantly different between the two diet groups. Compared with HF-HP group, the microbial genus Blautia, Bifidobacterium, Clostridium, Corynebacterium, Dorea, Enhydrobacter, Lactobacillus, Roseburia, Ruminococcus, SMB53, Streptococcus, Treponema and Weissella were enriched in LF-PF group, while Phascolarctobacterium and Oscillospira were relatively decreased. Furthermore, Spearman’s correlative analysis revealed gut microbials enriched in LF-PF and HF-HP groups were positively and negatively associated with the five metabolites, respectively. Conclusions Our data showed gut microbiota diversity led to the personalized bioconversion of PNS. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00476-5. Panax notoginseng saponins could be biotransformed to generate five main metabolites, including GF1, GRh2, GC-K, PPT and PPD, by human gut microbiota. Gut microbiota profiles were significantly different in high protein, high fat and low fat, plant fiber-rich diet-pattern groups. Correlation analysis revealed potential relationships between metabolites and gut microbial species. Bifidobacterium adolescentis and Lactobacillus rhamnosus were selected as a representative species to metabolize PNS for the concerned metabolites.
Collapse
|
9
|
Choi TY, Kim JH, Jo S, Lee S, Na HG, Choi YS, Song SY, Kim YD, Bae CH. Ginsenoside Rb1 Attenuates TGF-β1-Induced MUC4/5AC Expression and Epithelial-Mesenchymal Transition in Human Airway Epithelial Cells. KOREAN JOURNAL OF OTORHINOLARYNGOLOGY-HEAD AND NECK SURGERY 2021; 64:232-239. [DOI: 10.3342/kjorl-hns.2020.00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/01/2020] [Indexed: 07/25/2023]
Abstract
Background and Objectives Ginsenoside Rb1 is the main metabolite of Panax ginseng. It is known to have many beneficial properties including anti-inflammatory, antitumoral and antioxidant effects. However, the therapeutic effects of ginenoside Rb1 on inflammatory airway diseases have not been elucidated. Therefore, we investigated the effects of ginsenoside Rb1 on the TGF-β1-induced mucin gene expression and epithelial-mesenchymal transition (EMT) in human airway epithelial cells.Materials and Method We evaluated the effects of ginsenoside Rb1 on the changes of MUC4, MUC5AC, occludin, claudin 4, claudin 18, neural (N)-cadherin, and epithelial (E)-cadherin expression by TGF-β1 in NCI-H292 cells using reverse, real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and western blot.Results TGF-β1 significantly increased MUC4/5AC expression. Rb1 inhibited TGF-β1- induced MUC4/5AC expression. In addition, TGF-β1 significantly attenuated occludin, claudin 18, and E-cadherin expressions but induced claudin 4 and N-cadherin expressions. On the other hand, Rb1 reversed changes in the TGF-β1- mediated expressions of cell junction molecules.Conclusion These results suggest that ginsenoside Rb1 attenuates TGF-β1-induced MUC4/5AC expressions and EMT in the human airway epithelial cells. These findings are important data demonstrating the potential of ginsenoside Rb1 as a therapeutic agent for inflammatory airway diseases.
Collapse
|
10
|
Guo YP, Shao L, Wang L, Chen MY, Zhang W, Huang WH. Bioconversion variation of ginsenoside CK mediated by human gut microbiota from healthy volunteers and colorectal cancer patients. Chin Med 2021; 16:28. [PMID: 33731196 PMCID: PMC7968294 DOI: 10.1186/s13020-021-00436-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 01/04/2023] Open
Abstract
Background Ginsenoside CK (GCK) serves as the potential anti-colorectal cancer (CRC) protopanaxadiol (PPD)-type saponin, which could be mainly bio-converted to yield PPD by gut microbiota. Meanwhile, the anti-CRC effects of GCK could be altered by gut microbiota due to their different diversity in CRC patients. We aimed to investigate the bioconversion variation of GCK mediated by gut microbiota from CRC patients by comparing with healthy subjects. Methods Gut microbiota profiled by 16S rRNA gene sequencing were collected from healthy volunteers and CRC patients. GCK was incubated with gut microbiota in vitro. A LC-MS/MS method was validated to quantify GCK and PPD after incubation at different time points. Results The bioconversion of GCK in healthy subjects group was much faster than CRC group, as well as the yield of PPD. Moreover, significant differences of PPD concentration between healthy subjects group and CRC group could be observed at 12 h, 48 h and 72 h check points. According to 16S rRNA sequencing, the profiles of gut microbiota derived from healthy volunteers and CRC patients significantly varied, in which 12 differentially abundant taxon were found, such as Bifidobacterium, Roseburia, Bacteroides and Collinsella. Spearman’s correlation analysis showed bacteria enriched in healthy subjects group were positively associated with the biotransformation of GCK, while bacteria enriched in CRC group displayed non correlation character. Among them, Roseburia which could secrete β-glycosidase showed the strongest positive association with the bioconversion of GCK. Conclusions The bioconversion of GCK in healthy subjects was much faster than CRC patients mediated by gut microbiota, which might alter the anti-CRC effects of GCK. ![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00436-z.
Collapse
Affiliation(s)
- Yin-Ping Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, 410008, Changsha, China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410128, Hunan, China
| | - Li Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, 410008, Changsha, China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, 410008, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, 410008, Changsha, China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, 410008, Changsha, China. .,NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
11
|
Chen S, Ye H, Gong F, Mao S, Li C, Xu B, Ren Y, Yu R. Ginsenoside compound K exerts antitumour effects in renal cell carcinoma via regulation of ROS and lncRNA THOR. Oncol Rep 2021; 45:38. [PMID: 33649829 PMCID: PMC7905530 DOI: 10.3892/or.2021.7989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 12/30/2020] [Indexed: 02/03/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common type of kidney cancer that lacks effective therapeutic options. Ginsenoside compound K (CK), an active metabolite of ginsenosides, has been reported to induce apoptosis in various types of cancer cells. However, the effects of CK in RCC remain to be elucidated. Thus, the aim of the present study was to investigate the antitumor effects of CK on RCC cells. The effects of CK on the proliferation, migration, invasion, cell cycle and apoptosis of RCC cell lines (Caki-1 and 768-O) were investigated using MTT, wound healing, Transwell and flow cytometry assays, respectively. Changes in the expression levels of long non-coding RNAs (lncRNAs) and proteins were measured via reverse transcription-quantitative PCR and western blotting, respectively. Transfections with testis associated oncogenic (THOR) small interfering RNA and pcDNA were performed to knock down and overexpress lncRNA THOR, respectively. It was found that CK could effectively inhibit the proliferation, migration and invasion of RCC cells. CK also induced cell cycle arrest and caspase-dependent apoptosis in RCC cells. Furthermore, the generation of reactive oxygen species and inhibition of the lncRNA THOR played important roles in the antitumour effects of CK in RCC cells. The present data revealed that CK was a potent antitumour agent against RCC.
Collapse
Affiliation(s)
- Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Haihong Ye
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Fanger Gong
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Suming Mao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Cong Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Bin Xu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yu Ren
- Department of Urology, Ningbo Urology and Nephrology Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University, Ningbo, Zhejiang 315210, P.R. China
| |
Collapse
|
12
|
Luo Y, Wang CZ, Sawadogo R, Yuan J, Zeng J, Xu M, Tan T, Yuan CS. 4-Vinylguaiacol, an Active Metabolite of Ferulic Acid by Enteric Microbiota and Probiotics, Possesses Significant Activities against Drug-Resistant Human Colorectal Cancer Cells. ACS OMEGA 2021; 6:4551-4561. [PMID: 33644563 PMCID: PMC7905800 DOI: 10.1021/acsomega.0c04394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/29/2021] [Indexed: 05/04/2023]
Abstract
Ferulic acid, a hydroxycinnamic acid, is abundant in vegetables, grains, and medicinal plants. Emerging evidence suggests that ferulic acid may exert beneficial effects against colorectal cancer. However, the anticancer activity of ferulic acid is relatively low, and its metabolism after oral administration is largely unknown. In this study, mimicking the enteric environment, human intestinal microflora and commercial probiotics were used to metabolize ferulic acid to its metabolites, and their anticancer activities were evaluated. Ferulic acid can be biotransformed to 4-vinylguaiacol (2-methoxy-4-vinylphenol), and the contents of ferulic acid and 4-vinylguaiacol in bio-transformed extracts were determined by high-performance liquid chromatography (HPLC). Using the chemotherapy-sensitive cell line HCT-116 and the chemo-resistant cell line HT-29, the cell proliferation was determined by the modified trichrome stain assay. The cell cycle and induction of apoptosis were assayed using flow cytometry. HPLC data showed that there was a marked transformation from ferulic acid to 4-vinylguaiacol, and the conversion rates of intestinal microflora and four probiotics were from 1.3 to 36.8%. Both ferulic acid and 4-vinylguaiacol possessed dose- and time-related anticancer activities on the two cell lines, while 4-vinylguaiacol showed more potent effects than ferulic acid. Interestingly, 4-vinylguaiacol exhibited significantly higher antiproliferative effects on the HT-29 cell line than that on HCT-116. The IC50 of the metabolite 4-vinylguaiacol on HT-29 cells was 350 μM, 3.7-fold higher than its parent compound. The potential of cancer cell growth inhibition of 4-vinylguaiacol was mediated by cell cycle arrest at the G1 phase and induction of apoptosis. Data from this study indicate that the oral administration of ferulic acid offers a promising approach to increase its anticancer activity through gut microbial conversion to 4-vinylguaiacol, and the biotransformation could also be achieved by selected commercial probiotics. 4-Vinylguaiacol is a potential anticancer metabolite from ferulic acid for chemotherapy-resistant colon cancer cells.
Collapse
Affiliation(s)
- Yun Luo
- Key
Laboratory of Modern Preparation of Traditional Chinese Medicine,
Ministry of Education, Jiangxi University
of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, People’s Republic of China
- Tang
Center for Herbal Medicine Research and Department of Anesthesia &
Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Chong-Zhi Wang
- Tang
Center for Herbal Medicine Research and Department of Anesthesia &
Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Richard Sawadogo
- Tang
Center for Herbal Medicine Research and Department of Anesthesia &
Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
- Institute
for Health Science Research, 03 BP 7192 Ouagadougou, Burkina
Faso
| | - Jinbin Yuan
- Key
Laboratory of Modern Preparation of Traditional Chinese Medicine,
Ministry of Education, Jiangxi University
of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, People’s Republic of China
| | - Jinxiang Zeng
- Key
Laboratory of Modern Preparation of Traditional Chinese Medicine,
Ministry of Education, Jiangxi University
of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, People’s Republic of China
| | - Ming Xu
- Tang
Center for Herbal Medicine Research and Department of Anesthesia &
Critical Care, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Ting Tan
- Key
Laboratory of Modern Preparation of Traditional Chinese Medicine,
Ministry of Education, Jiangxi University
of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, People’s Republic of China
- . Phone: 86-791-8711-9027. Fax: 86-791-8711-8658
| | - Chun-Su Yuan
- Tang
Center for Herbal Medicine Research and Department of Anesthesia &
Critical Care, Committee on Clinical Pharmacology and Pharmacogenomics,
Pritzker School of Medicine, University
of Chicago, Chicago, Illinois 60637, United
States
- . Phone: 1-773-702-1916. Fax: 1-773-834-0601
| |
Collapse
|
13
|
Lee YC, Wong WT, Li LH, Chu LJ, Menon MP, Ho CL, Chernikov OV, Lee SL, Hua KF. Ginsenoside M1 Induces Apoptosis and Inhibits the Migration of Human Oral Cancer Cells. Int J Mol Sci 2020; 21:ijms21249704. [PMID: 33352689 PMCID: PMC7766606 DOI: 10.3390/ijms21249704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for 5.8% of all malignancies in Taiwan, and the incidence of OSCC is on the rise. OSCC is also a common malignancy worldwide, and the five-year survival rate remains poor. Therefore, new and effective treatments are needed to control OSCC. In the present study, we prepared ginsenoside M1 (20-O-beta-d-glucopyranosyl-20(S)-protopanaxadiol), a major deglycosylated metabolite of ginsenoside, through the biotransformation of Panax notoginseng leaves by the fungus SP-LSL-002. We investigated the anti-OSCC activity and associated mechanisms of ginsenoside M1 in vitro and in vivo. We demonstrated that ginsenoside M1 dose-dependently inhibited the viability of human OSCC SAS and OEC-M1 cells. To gain further insight into the mode of action of ginsenoside M1, we demonstrated that ginsenoside M1 increased the expression levels of Bak, Bad, and p53 and induced apoptotic DNA breaks, G1 phase arrest, PI/Annexin V double-positive staining, and caspase-3/9 activation. In addition, we demonstrated that ginsenoside M1 dose-dependently inhibited the colony formation and migration ability of SAS and OEC-M1 cells and reduced the expression of metastasis-related protein vimentin. Furthermore, oral administration or subcutaneous injection of ginsenoside M1 significantly reduced tumor growth in SAS xenograft mice. These results indicate that ginsenoside M1 can be translated into a potential therapeutic against OSCC.
Collapse
Affiliation(s)
- Yu-Chieh Lee
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260007, Taiwan; (Y.-C.L.); (W.-T.W.); (M.P.M.)
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260007, Taiwan; (Y.-C.L.); (W.-T.W.); (M.P.M.)
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei 10844, Taiwan;
- National Defense Medical Center, Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan 33302, Taiwan
| | - Mridula P. Menon
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260007, Taiwan; (Y.-C.L.); (W.-T.W.); (M.P.M.)
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei 100051, Taiwan;
| | - Oleg V. Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS, 690022 Vladivostok, Russia;
| | - Sheau-Long Lee
- Wellhead Biological Technology Corporation, Taoyuan 325, Taiwan;
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260007, Taiwan; (Y.-C.L.); (W.-T.W.); (M.P.M.)
- National Defense Medical Center, Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Correspondence: ; Tel.: +886-3931-7626
| |
Collapse
|
14
|
Yang L, Hou A, Zhang J, Wang S, Man W, Yu H, Zheng S, Wang X, Liu S, Jiang H. Panacis Quinquefolii Radix: A Review of the Botany, Phytochemistry, Quality Control, Pharmacology, Toxicology and Industrial Applications Research Progress. Front Pharmacol 2020; 11:602092. [PMID: 33381041 PMCID: PMC7768635 DOI: 10.3389/fphar.2020.602092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
On January 2, 2020, The National Health Commission and the State Administration for Market Regulation listed Panacis Quinquefolii Radix (PQR) as a medicinal and food homologous product. PQR is the dry root of Panax quinquefolium L., which has the functions of replenishing qi and nourishing Yin, clearing heat and producing body fluid. It is often used for qi deficiency and Yin deficiency, heat exhaustion, asthma and phlegm, dry mouth and pharynx. PQR is sweet, slightly bitter and cool in nature, and enter the heart, lung and kidney meridian exerts the remedial and hygienical effect. At present, active components such as saponins, flavonoids, fatty acids, polyalkynes, volatile oils and other nutrients such as amino acids, carbohydrates, vitamins and trace elements have been isolated from PQR. Modern pharmacological studies have shown that PQR has the effects of hypoglycemic, antihypertensive, anti fatigue, anti-oxidation, anti-tumor, immunomodulatory, neuroprotective and so on. In addition, PQR is recognized as a health care product to strengthen the body and dispel diseases. It is not only the raw material of Traditional Chinese medicine preparations, but also the treasure of dietary therapy and herbal cuisine. This study not only reviewed the botany, phytochemistry and pharmacology of PQR, but also summarized its quality control, toxicity and industrial applications for the first time. This paper not only summarizes the development status of PQR, but also analyzes the shortcomings of the current research on PQR, and puts forward the corresponding solutions, in order to provide reference for future scholars to study PQR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Songtao Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hai Jiang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
15
|
Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota. J Ginseng Res 2020; 45:334-343. [PMID: 33841014 PMCID: PMC8020290 DOI: 10.1016/j.jgr.2020.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/13/2020] [Accepted: 08/02/2020] [Indexed: 12/02/2022] Open
Abstract
Background Gut microbiota mainly function in the biotransformation of primary ginsenosides into bioactive metabolites. Herein, we investigated the effects of three prebiotic fibers by targeting gut microbiota on the metabolism of ginsenoside Rb1 in vivo. Methods Sprague Dawley rats were administered with ginsenoside Rb1 after a two-week prebiotic intervention of fructooligosaccharide, galactooligosaccharide, and fibersol-2, respectively. Pharmacokinetic analysis of ginsenoside Rb1 and its metabolites was performed, whilst the microbial composition and metabolic function of gut microbiota were examined by 16S rRNA gene amplicon and metagenomic shotgun sequencing. Results The results showed that peak plasma concentration and area under concentration time curve of ginsenoside Rb1 and its intermediate metabolites, ginsenoside Rd, F2, and compound K (CK), in the prebiotic intervention groups were increased at various degrees compared with those in the control group. Gut microbiota dramatically responded to the prebiotic treatment at both taxonomical and functional levels. The abundance of Prevotella, which possesses potential function to hydrolyze ginsenoside Rb1 into CK, was significantly elevated in the three prebiotic groups (P < 0.05). The gut metagenomic analysis also revealed the functional gene enrichment for terpenoid/polyketide metabolism, glycolysis, gluconeogenesis, propanoate metabolism, etc. Conclusion These findings imply that prebiotics may selectively promote the proliferation of certain bacterial stains with glycoside hydrolysis capacity, thereby, subsequently improving the biotransformation and bioavailability of primary ginsenosides in vivo.
Collapse
Key Words
- ANOVA, analysis of variance
- AUC, area under the concentration-time curve
- Bioavailability
- Biotransformation
- CAT, CAZymes Analysis Toolkit
- CAZymes, carbohydrate active enzymes
- CK, compound K
- Cmax, peak plasma concentration
- FDR, false discovery rate
- FOS, fructooligosaccharide
- GOS, galactooligosaccharide
- Ginsenoside
- Gut microbiota
- IS, internal standard
- KEGG, the Kyoto Encyclopaedia of Genes and Genomes
- LCA, lowest common ancestor
- LDA, linear discriminant analysis
- LEfSe, LDA effect size
- LLOQs, lower limits of quantifications
- MANOVA, multivariate ANOVA
- MRM, multiple reaction monitoring
- NMDS, non-metric multidimensional scaling
- PCA, principal component analysis
- PCoA, principal coordinates analysis
- Prebiotic
- SD, Sprague Dawley
- SRA, Sequence Read Archive
- Tmax, time of maximum plasma concentration
- UPLC-ESI-QqQ-MS/MS, ultra-high pressure liquid chromatography coupled to an electrospray ionization source and a triple-quadrupole mass spectrometer
Collapse
|
16
|
Guo YP, Shao L, Chen MY, Qiao RF, Zhang W, Yuan JB, Huang WH. In Vivo Metabolic Profiles of Panax notoginseng Saponins Mediated by Gut Microbiota in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6835-6844. [PMID: 32449854 DOI: 10.1021/acs.jafc.0c01857] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Panax notoginseng saponins (PNSs) are the major health-beneficial components of P. notoginseng with very low oral bioavailability, which could be biotransformed by gut microbiota in vitro. However, in vivo biotransformation of PNS mediated by gut microbiota is not well known. This study aimed to characterize the in vivo metabolic profiles of PNS mediated by gut microbiota. The saponins and yielded metabolites in rat feces were identified and relatively quantified by ultra-performance liquid chromatography tandem/quadrupole time-of-flight mass spectrometry. Seventy-three PNS metabolites had been identified in the normal control group, but only 11 PNS metabolites were determined in the pseudo germ-free (GF) group. In addition, the main biotransformation pathway of PNS metabolism was hydrolytic and dehydration reactions. The results indicated that a significant metabolic difference was observed between the normal control group and pseudo GF group, while gut microbiota played a profound role in the biotransformation of PNS in vivo.
Collapse
Affiliation(s)
- Yin-Ping Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha 410008, China
| | - Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410128, China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha 410008, China
| | - Ri-Fa Qiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha 410008, China
| | - Jin-Bin Yuan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 110, Changsha 410008, China
| |
Collapse
|
17
|
Oh JM, Kim E, Chun S. Ginsenoside Compound K Induces Ros-Mediated Apoptosis and Autophagic Inhibition in Human Neuroblastoma Cells In Vitro and In Vivo. Int J Mol Sci 2019; 20:ijms20174279. [PMID: 31480534 PMCID: PMC6747534 DOI: 10.3390/ijms20174279] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy can result in cellular adaptation, as well as cell survival or cell death. Modulation of autophagy is increasingly regarded as a promising cancer therapeutic approach. Ginsenoside compound K (CK), an active metabolite of ginsenosides isolated from Panax ginseng C.A. Meyer, has been identified to inhibit growth of cancer cell lines. However, the molecular mechanisms of CK effects on autophagy and neuroblastoma cell death have not yet been investigated. In the present study, CK inhibited neuroblastoma cell proliferation in vitro and in vivo. Treatment by CK also induced the accumulation of sub-G1 population, and caspase-dependent apoptosis in neuroblastoma cells. In addition, CK promotes autophagosome accumulation by inducing early-stage autophagy but inhibits autophagic flux by blocking of autophagosome and lysosome fusion, the step of late-stage autophagy. This effect of CK appears to be mediated through the induction of intracellular reactive oxygen species (ROS) and mitochondria membrane potential loss. Moreover, chloroquine, an autophagy flux inhibitor, further promoted CK-induced apoptosis, mitochondrial ROS induction, and mitochondria damage. Interestingly, those promoted phenomena were rescued by co-treatment with a ROS scavenging agent and an autophagy inducer. Taken together, our findings suggest that ginsenoside CK induced ROS-mediated apoptosis and autophagic flux inhibition, and the combination of CK with chloroquine, a pharmacological inhibitor of autophagy, may be a novel therapeutic potential for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Jung-Mi Oh
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Eunhee Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Sungkun Chun
- Department of Physiology, Chonbuk National University Medical School, Jeonju 54907, Korea.
| |
Collapse
|
18
|
Chen X, Li H, Yang Q, Lan X, Wang J, Cao Z, Shi X, Li J, Kan M, Qu X, Li N. Ginsenoside compound K ameliorates Alzheimer's disease in HT22 cells by adjusting energy metabolism. Mol Biol Rep 2019; 46:5323-5332. [PMID: 31364016 DOI: 10.1007/s11033-019-04988-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
Energy metabolism disorders have been shown to exert detrimental effects on the pathology of Alzheimer's disease (AD). The ginsenoside compound K (CK), a major intestinal metabolite underlying the pharmacological actions of orally administered ginseng, has an ameliorating effect against AD, but the relevant molecular mechanism remains unclear. We hypothesized that the improvement of AD by CK is mediated by the energy metabolism signaling pathway induced by amyloid β peptide (Aβ) and tested this hypothesis in HT22 cells. HT22 cells were incubated with CK and exposed to Aβ. Cell viability was analyzed using the MTT assay. Cell growth curves were derived from real-time cell analysis. Apoptosis was determined by flow cytometry, Aβ localization and expression by immunofluorescence, and ATP content by a specific assay kit. The expression of proteins related to the energy metabolism signaling pathway was analyzed using Western blotting. CK treatment improved cell viability, cell growth, and apoptosis induced by Aβ, and the cellular localization and expression of Aβ. Moreover, CK increased ATP content by promoting the activity of glucose transporters (GLUTs). Therefore, the neuroprotective effect of CK against Aβ injury was mainly realized through the activation of the energy metabolism signaling pathway. CK treatment inhibits neuronal damage caused by Aβ through the activation of the energy metabolism signaling pathway, revealing that CK might be one of the key bioactive ingredients of ginseng in the treatment of Alzheimer's disease and may serve as a preventive or therapeutic agent for Alzheimer's disease.
Collapse
Affiliation(s)
- Xijun Chen
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Hui Li
- Qian Wei Hospital of Jilin Province, Changchun, 130117, Jilin, China
| | - Qing Yang
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xingcheng Lan
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Jifeng Wang
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhanhong Cao
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xiaozheng Shi
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Jing Li
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Mo Kan
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xiaobo Qu
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Na Li
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| |
Collapse
|
19
|
Enhancing Immunomodulatory Function of Red Ginseng Through Fermentation Using Bifidobacterium animalis Subsp. lactis LT 19-2. Nutrients 2019; 11:nu11071481. [PMID: 31261829 PMCID: PMC6682942 DOI: 10.3390/nu11071481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/19/2023] Open
Abstract
Removal of sugar moieties from ginsenosides has been proposed to increase their biological effects in various disease models. In order to identify strains that can increase aglycone contents, we performed a screening using bacteria isolated from the feces of infants focusing on acid tolerance and β-glucosidase activity. We isolated 565 bacteria and selected Bifidobacterium animalis subsp. lactis LT 19-2 (LT 19-2), which exhibited the highest β-glucosidase activity with strong acid tolerance. As red ginseng (RG) has been known to exert immunomodulatory functions, we fermented RG using LT 19-2 (FRG) and investigated whether this could alter the aglycone profile of ginsenosides and improve its immunomodulatory effect. FRG increased macrophage activity more potently compared to RG, demonstrated by higher TNF-α and IL-6 production. More importantly, the FRG treatment stimulated the proliferation of mouse splenocytes and increased TNF-α levels in bone marrow-derived macrophages, confirming that the enhanced immunomodulatory function can be recapitulated in primary immune cells. Examination of the molecular mechanism revealed that F-RG could induce phosphorylations of ERK, p38, JNK, and NF-κB. Analysis of the ginsenoside composition showed a decrease in Rb1, Re, Rc, and Rb3, accompanied by an increase in Rd, Rh1, F2, and Rg3, the corresponding aglycone metabolites, in FRG compared to RG. Collectively, LT 19-2 maybe used as a probiotic strain to improve the bioactivity of functional foods through modifying the aglycone/glycoside profile.
Collapse
|
20
|
Szczuka D, Nowak A, Zakłos-Szyda M, Kochan E, Szymańska G, Motyl I, Blasiak J. American Ginseng ( Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties. Nutrients 2019; 11:E1041. [PMID: 31075951 PMCID: PMC6567205 DOI: 10.3390/nu11051041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Panax quinquefolium L. (American Ginseng, AG) is an herb characteristic for regions of North America and Asia. Due to its beneficial properties it has been extensively investigated for decades. Nowadays, it is one of the most commonly applied medical herbs worldwide. Active compounds of AG are ginsenosides, saponins of the glycosides group that are abundant in roots, leaves, stem, and fruits of the plant. Ginsenosides are suggested to be primarily responsible for health-beneficial effects of AG. AG acts on the nervous system; it was reported to improve the cognitive function in a mouse model of Alzheimer's disease, display anxiolytic activity, and neuroprotective effects against neuronal damage resulting from ischemic stroke in animals, demonstrate anxiolytic activity, and induce neuroprotective effects against neuronal damage in ischemic stroke in animals. Administration of AG leads to inhibition of hypertrophy in heart failure by regulation of reactive oxygen species (ROS) in mice as well as depletion of cardiac contractile function in rats. It also has an anti-diabetic and anti-obesity potential as it increases insulin sensitivity and inhibits formation of adipose tissue. AG displays anti-cancer effect by induction of apoptosis of cancer cells and reducing local inflammation. It exerts antimicrobial effects against several pathogenic strains of bacteria. Therefore, AG presents a high potential to induce beneficial health effects in humans and should be further explored to formulate precise nutritional recommendations, as well as to assess its value in prevention and therapy of some disorders, including cancer.
Collapse
Affiliation(s)
- Daria Szczuka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Małgorzata Zakłos-Szyda
- Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland.
| | - Ewa Kochan
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Grażyna Szymańska
- Pharmaceutical Biotechnology Department, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Ilona Motyl
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
21
|
Jin HR, Du CH, Wang CZ, Yuan CS, Du W. Ginseng metabolite protopanaxadiol interferes with lipid metabolism and induces endoplasmic reticulum stress and p53 activation to promote cancer cell death. Phytother Res 2018; 33:610-617. [PMID: 30537241 DOI: 10.1002/ptr.6249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 01/13/2023]
Abstract
Protopanaxadiol (PPD), a ginseng metabolite generated by the gut bacteria, was shown to induce colorectal cancer cell death and enhance the anticancer effect of chemotherapeutic agent 5-FU. However, the mechanism by which PPD promotes cancer cell death is not clear. In this manuscript, we showed that PPD activated p53 and endoplasmic reticulum (ER) stress and induced expression of BH3-only proteins Puma and Noxa to promote cell death. Induction of Puma by PPD was p53-dependent, whereas induction of Noxa was p53-independent. On the other hand, PPD also induced prosurvival mechanisms including autophagy and expression of Bcl2 family apoptosis regulator Mcl-1. Inhibition of autophagy or knockdown of Mcl-1 significantly enhanced PPD-induced cell death. Interestingly, PPD inhibited expression of genes involved in fatty acid and cholesterol biosynthesis and induced synergistic cancer cell death with fatty acid synthase inhibitor cerulenin. As PPD-induced ER stress was not significantly affected by inhibition of new protein synthesis, we suggest PPD may induce ER stress directly through causing lipid disequilibrium.
Collapse
Affiliation(s)
- Hong Ri Jin
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Charles H Du
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois, USA.,Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois, USA.,Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Wei Du
- The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Wang CZ, Wan JY, Zhang CF, Lu F, Chen L, Yuan CS. Deglycosylation of wogonoside enhances its anticancer potential. J Cancer Res Ther 2018; 14:S594-S599. [PMID: 30249874 DOI: 10.4103/0973-1482.183218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Scutellaria baicalensis is commonly used in Asia as an herbal medicine to treat a variety of ailments, including cancer. Wogonoside, one major constituent of S. baicalensis, can be primarily converted to wogonin through deglycosylation via enteric microbiome metabolism. Materials and Methods The antiproliferative effects of the glycoside (wogonoside) and its deglycosylated compound (wogonin) on a panel of human cancer cell lines from the most common solid tumors were evaluated using the MTS colorimetric assay. Cell cycle and apoptosis were determined using flow cytometry. Enzymatic activities of caspases were measured, and the interactions of wogonin and caspases were explored by a docking analysis. Results Wogonoside did not have obvious antiproliferative effects on the cancer cells. In contrast, wogonin showed significant antiproliferative activities on all the tested cancer cells. Wogonin arrested the cells in the G1 phase and significantly induced cell apoptosis. The compound also activated the expression of caspases 3 and 9. The docking results suggest that the compound forms hydrogen bonds with Phe250 and Ser251, and π-π interactions with Phe256 in caspase 3, and with Asp228 in caspase 9. Conclusions After wogonoside deglycosylation, wogonin significantly enhanced its anticancer potential as a potent anticancer compound derived from S. baicalensis.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Jin-Yi Wan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA; Department of Traditional Chinese Medicine and Pharmaceutical Sciences, School of Pharmacy, Jiangsu University, Zhenjiang, JS 212013, China
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, University of Chicago; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Fang Lu
- Tang Center for Herbal Medicine Research, University of Chicago; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Lina Chen
- Tang Center for Herbal Medicine Research, University of Chicago; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago; Department of Anesthesia and Critical Care, University of Chicago; Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Wan JY, Yao H, Zhang CF, Huang WH, Zhang Q, Liu Z, Bi Y, Williams S, Wang CZ, Yuan CS. Red American ginseng enhances the effect of fluorouracil on human colon cancer cells via both paraptosis and apoptosis pathways. J Appl Biomed 2018; 16:311-319. [PMID: 30976156 PMCID: PMC6456072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
INTRODUCTION As a commonly used chemotherapeutic agent, fluorouracil (5-FU) has serious dose-limiting side effects. In this study, we evaluated the synergy between red American ginseng (RAG) and 5-FU on human colorectal cancer cells, and explored the potential mechanisms. METHODS Ginsenoside contents of white American ginseng (WAG) and RAG were determined by HPLC. Cell proliferation was evaluated by MTS assay. Combination Index (CI) analysis was executed using CompuSyn software. Paraptotic events were observed after crystal violet staining. Cell cycle distribution, cyclin A expression and apoptotic induction were analyzed using flow cytometry. RESULTS We observed the heat treatment remarkably increased levels of ginsenoside Rg3, 20R-Rg3, Rk1 and Rg5. When the combinations of 5-FU and RAG were applied, cell proliferation inhibition rates were notably increased, indicating that RAG significantly enhanced 5-FU's effect. Additionally, CI analysis suggested that there was a synergistic action of 5-FU and RAG when combined. The cell cycle data indicated 5-FU induced S phase arrest, and the combination of 5-FU and RAG increased G1 phase. Further, the RAG's ability to enhance the anti-cancer effects of 5-FU was linked to both paraptosis and apoptosis inductions. CONCLUSION RAG may have clinical utility to decrease the dosage of 5-FU in colorectal cancer therapeutics.
Collapse
Affiliation(s)
- Jin-Yi Wan
- School of Pharmacy, Jiangsu University, Zhenjiang, JS 212013, China
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Haiqiang Yao
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Wei-Hua Huang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Qihui Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Zhi Liu
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Yi Bi
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Stephanie Williams
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
- Comprehensive Cancer Center, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
24
|
Probiotic Lactobacillus paracasei A221 improves the functionality and bioavailability of kaempferol-glucoside in kale by its glucosidase activity. Sci Rep 2018; 8:9239. [PMID: 29915223 PMCID: PMC6006151 DOI: 10.1038/s41598-018-27532-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
The interplay between food components and gut microbiota has been considered an important factor affecting the functionality of health-promoting foods. In this study, the effects of the probiotic Lactobacillus paracasei A221 on the functionality and bioavailability of kaempferol-3-o-sophroside (KP3S), a kaempferol-glucoside contained in kale, were investigated in vitro and in vivo. Unlike the type strain NBRC15889, the A221 strain converted standard KP3S as well as the kaempferol-glucosides in kale extract into kaempferol (KP). Using an intestinal barrier model, treatment with A221 significantly improved the effects of kale extract on the barrier integrity in vitro. KP, but not KP3S, clearly induced similar effects, suggesting that KP contributes to the functional improvement of the kale extract by A221. Pharmacokinetics analyses revealed that the co-administration of A221 and KP3S significantly enhanced the amount of deconjugated KP in murine plasma samples at 3 h post-administration. Finally, the oral administration of KP to Sod1-deficinet mice, which is a good mouse model of age-related disease, clearly ameliorated various pathologies, including skin thinning, fatty liver and anemia. These findings suggest that Lactobacillus paracasei A221 is effective for enhancing the anti-aging properties of kaempferol-glucosides by modulating their functionality and bioavailability through the direct bioconversion.
Collapse
|
25
|
Yao H, Wan JY, Zeng J, Huang WH, Sava-Segal C, Li L, Niu X, Wang Q, Wang CZ, Yuan CS. Effects of compound K, an enteric microbiome metabolite of ginseng, in the treatment of inflammation associated colon cancer. Oncol Lett 2018; 15:8339-8348. [PMID: 29805567 PMCID: PMC5950138 DOI: 10.3892/ol.2018.8414] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/16/2018] [Indexed: 01/26/2023] Open
Abstract
Ginsenoside Rb1, a major component of different ginseng species, can be bioconverted into compound K by gut microbiota, and the latter possess much stronger cancer chemopreventive potential. However, while the initiation and progression of colorectal cancer is closely associated with gut inflammation, to date, the effects of compound K on inflammation-linked cancer chemoprevention have not been reported. In the present study, liquid chromatography quadrupole time-of-flight mass spectrometry analysis was applied to evaluate the biotransformation of Rb1 in American ginseng by human enteric microflora. The in vitro inhibitory effects of Rb1 and compound K were compared using the HCT-116 and HT-19 human colorectal cancer cell lines by a MTS assay. Cell cycle and cell apoptosis were assayed using flow cytometry. Using ELISA, the anti-inflammatory effects of Rb1 and compound K were compared for their inhibition of interleukin-8 secretion in HT-29 cells, induced by lipopolysaccharide. The results revealed that compound K is the major intestinal microbiome metabolite of Rb1. When compared with Rb1, compound K had significantly stronger anti-proliferative effects in HCT-116 and HT-29 cell lines (P<0.01). Compound K significantly arrested HCT-116 and HT-29 cells in the G1 phase, and induced cell apoptosis (P<0.01). By contrast, Rb1 did not markedly influence the cell cycle or apoptosis. Furthermore, compound K exerted significant anti-inflammatory effects even at low concentrations (P<0.05), while Rb1 did not have any distinct effects. The data obtained from the present study demonstrated that compound K, an intestinal microbiome metabolite of Rb1, may have a potential clinical value in the prevention of inflammatory-associated colorectal cancer.
Collapse
Affiliation(s)
- Haiqiang Yao
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Jin-Yi Wan
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Jinxiang Zeng
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Wei-Hua Huang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Clara Sava-Segal
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Lingru Li
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xin Niu
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Qi Wang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.,Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA.,Comprehensive Cancer Center, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
26
|
Chen L, Zhou L, Huang J, Wang Y, Yang G, Tan Z, Wang Y, Zhou G, Liao J, Ouyang D. Single- and Multiple-Dose Trials to Determine the Pharmacokinetics, Safety, Tolerability, and Sex Effect of Oral Ginsenoside Compound K in Healthy Chinese Volunteers. Front Pharmacol 2018; 8:965. [PMID: 29375375 PMCID: PMC5769417 DOI: 10.3389/fphar.2017.00965] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Background and objectives: Ginsenoside compound K (CK) is a candidate drug for rheumatoid arthritis therapy. The objective of this study was to investigate the pharmacokinetic properties, safety and tolerability of CK. Methods: In randomized, double-blind trials, 76 healthy Chinese subjects received 1 of 7 single oral doses (25, 50, 100, 200, 400, 600, 800 mg) of CK or placebo under fasting condition, and another 36 subjects received repeated oral doses (100, 200, or 400 mg) of CK or placebo for up to 9 days a week after a corresponding single dose, after breakfast. Both sexes were equally represented in the two trials. Pharmacokinetic parameters of CK and its metabolite 20(S)-protopanaxadiol (PPD) were calculated and statistically analyzed according to the plasma concentration data. Tolerability was evaluated by adverse events (AEs) and laboratory examinations. Results: The range of time to maximum concentration (Tmax) was 1.5–6.0 h, with a linear increase in the exposure of CK over the dose range of 100–400 mg. Steady state was reached after the 7th administration, and the accumulation index range was 2.60–2.78. Sex differences were characterized by a higher exposure in females than males with the single administration after breakfast. In addition, no severe AEs were observed. Conclusion: CK was safe and well-tolerated over the treatment period. The sex- and food-related impacts on CK pharmacokinetics need further investigations to be validated. (Registration number: ChiCTR-TRC-14004824 and ChiCTR-IPR-15006107, http://www.chictr.org.cn/index.aspx).
Collapse
Affiliation(s)
- Lulu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Luping Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jie Huang
- Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Guoping Yang
- Center of Clinical Pharmacology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Yicheng Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Jianwei Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Central South University, Changsha, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, China
| |
Collapse
|
27
|
White JD, Lin H, Jia L, Wu RS, Lam S, Li J, Dou J, Kumar N, Lin L, Lao L. Proceedings of the Strategy Meeting for the Development of an International Consortium for Chinese Medicine and Cancer. J Glob Oncol 2017; 3:814-822. [PMID: 29244995 PMCID: PMC5735960 DOI: 10.1200/jgo.2016.005710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
On November 3, 2014, in Bethesda, MD, the Office of Cancer Complementary and Alternative Medicine of the National Cancer Institute held a meeting to examine the potential utility and feasibility of establishing an international consortium for Chinese medicine and cancer. There is significant interest in the West in using components of Chinese medicine (CM) -such as botanicals and herbal medicines, acupuncture and acupressure, and qigong-in the field of oncology, as potential anticancer agents, for symptom management, and to improve quality of life. The proposal for a consortium on CM came from the Chinese Academy of Chinese Medical Sciences, with the aims of improving scientific communications and collaborations and modernizing the studies of CM for cancer. The US National Cancer Institute's Office of Cancer Complementary and Alternative Medicine agreed to work with Chinese Academy of Chinese Medical Sciences to explore the feasibility of establishing an international consortium for Chinese medicine and cancer. At the meeting, participants from the United States, China, Canada, Australia, and Korea discussed issues in CM and cancer research, treatment, and management, including potential mechanisms of action, proof of efficacy, adverse effects, regulatory issues, and the need for improving the quality of randomized clinical trials of CM treatments and supportive care interventions. Presented in these proceedings are some of the main issues and opportunities discussed by workshop participants.
Collapse
Affiliation(s)
- Jeffrey D. White
- Jeffrey D. White, Libin Jia, and Roy S. Wu, National Cancer Institute, Rockville; Jinhui Dou, Food and Drug Administration, Silver Spring, MD; Hongsheng Lin and Jie Li, China Academy of Chinese Medical Sciences, Beijing; Lizhu Lin, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Lixing Lao, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China; Stephen Lam, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; and Nagi Kumar, Moffitt Cancer Center, University of South Florida, Tampa, FL
| | - Hongsheng Lin
- Jeffrey D. White, Libin Jia, and Roy S. Wu, National Cancer Institute, Rockville; Jinhui Dou, Food and Drug Administration, Silver Spring, MD; Hongsheng Lin and Jie Li, China Academy of Chinese Medical Sciences, Beijing; Lizhu Lin, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Lixing Lao, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China; Stephen Lam, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; and Nagi Kumar, Moffitt Cancer Center, University of South Florida, Tampa, FL
| | - Libin Jia
- Jeffrey D. White, Libin Jia, and Roy S. Wu, National Cancer Institute, Rockville; Jinhui Dou, Food and Drug Administration, Silver Spring, MD; Hongsheng Lin and Jie Li, China Academy of Chinese Medical Sciences, Beijing; Lizhu Lin, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Lixing Lao, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China; Stephen Lam, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; and Nagi Kumar, Moffitt Cancer Center, University of South Florida, Tampa, FL
| | - Roy S. Wu
- Jeffrey D. White, Libin Jia, and Roy S. Wu, National Cancer Institute, Rockville; Jinhui Dou, Food and Drug Administration, Silver Spring, MD; Hongsheng Lin and Jie Li, China Academy of Chinese Medical Sciences, Beijing; Lizhu Lin, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Lixing Lao, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China; Stephen Lam, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; and Nagi Kumar, Moffitt Cancer Center, University of South Florida, Tampa, FL
| | - Stephen Lam
- Jeffrey D. White, Libin Jia, and Roy S. Wu, National Cancer Institute, Rockville; Jinhui Dou, Food and Drug Administration, Silver Spring, MD; Hongsheng Lin and Jie Li, China Academy of Chinese Medical Sciences, Beijing; Lizhu Lin, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Lixing Lao, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China; Stephen Lam, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; and Nagi Kumar, Moffitt Cancer Center, University of South Florida, Tampa, FL
| | - Jie Li
- Jeffrey D. White, Libin Jia, and Roy S. Wu, National Cancer Institute, Rockville; Jinhui Dou, Food and Drug Administration, Silver Spring, MD; Hongsheng Lin and Jie Li, China Academy of Chinese Medical Sciences, Beijing; Lizhu Lin, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Lixing Lao, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China; Stephen Lam, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; and Nagi Kumar, Moffitt Cancer Center, University of South Florida, Tampa, FL
| | - Jinhui Dou
- Jeffrey D. White, Libin Jia, and Roy S. Wu, National Cancer Institute, Rockville; Jinhui Dou, Food and Drug Administration, Silver Spring, MD; Hongsheng Lin and Jie Li, China Academy of Chinese Medical Sciences, Beijing; Lizhu Lin, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Lixing Lao, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China; Stephen Lam, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; and Nagi Kumar, Moffitt Cancer Center, University of South Florida, Tampa, FL
| | - Nagi Kumar
- Jeffrey D. White, Libin Jia, and Roy S. Wu, National Cancer Institute, Rockville; Jinhui Dou, Food and Drug Administration, Silver Spring, MD; Hongsheng Lin and Jie Li, China Academy of Chinese Medical Sciences, Beijing; Lizhu Lin, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Lixing Lao, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China; Stephen Lam, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; and Nagi Kumar, Moffitt Cancer Center, University of South Florida, Tampa, FL
| | - Lizhu Lin
- Jeffrey D. White, Libin Jia, and Roy S. Wu, National Cancer Institute, Rockville; Jinhui Dou, Food and Drug Administration, Silver Spring, MD; Hongsheng Lin and Jie Li, China Academy of Chinese Medical Sciences, Beijing; Lizhu Lin, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Lixing Lao, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China; Stephen Lam, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; and Nagi Kumar, Moffitt Cancer Center, University of South Florida, Tampa, FL
| | - Lixing Lao
- Jeffrey D. White, Libin Jia, and Roy S. Wu, National Cancer Institute, Rockville; Jinhui Dou, Food and Drug Administration, Silver Spring, MD; Hongsheng Lin and Jie Li, China Academy of Chinese Medical Sciences, Beijing; Lizhu Lin, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou; Lixing Lao, The University of Hong Kong, Pokfulam, Hong Kong, Special Administrative Region, People’s Republic of China; Stephen Lam, British Columbia Cancer Agency, Vancouver, British Columbia, Canada; and Nagi Kumar, Moffitt Cancer Center, University of South Florida, Tampa, FL
| |
Collapse
|
28
|
Role of intestinal microbiome in American ginseng-mediated colon cancer prevention in high fat diet-fed AOM/DSS mice [corrected]. Clin Transl Oncol 2017; 20:302-312. [PMID: 28808878 DOI: 10.1007/s12094-017-1717-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Chronic intestinal inflammation is a risk factor for colorectal cancer (CRC) initiation and development. Diets that are rich in Western style fats have been shown to promote CRC. This study was conducted to investigate the role of intestinal microbiome in American ginseng-mediated CRC chemoprevention in a mouse model. The population and diversity of enteric microbiome were evaluated after the ginseng treatment. METHODS Using an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced gut inflammation and tumorigenesis mouse model, the effects of oral American ginseng on high fat diet-associated enteric pathology were determined. After establishment of a 16S rRNA illumina library from fecal samples, MiSeq sequencing was carried out to reveal the microbial population. The alpha and beta diversities of microbiome were analyzed. RESULTS American ginseng significantly attenuated AOM/DSS-induced colon inflammation and tumorigenesis by reducing the colitis score and colon tumor multiplicity. The MiSeq results showed that the majority of sequences fell into three phyla: Firmicutes, Bacteroidetes and Verrucomicrobia. Further, two significant abundance shifts at the family level, Bacteroidaceae and Porphyromonadaceae, were identified to support ginseng's anti-colitis and anti-tumor effects. In addition, alpha and beta diversity data demonstrated that ginseng led to a profound recovery from the AOM/DSS-induced dysbiosis in the microbial community. CONCLUSION Our results suggest that the CRC chemopreventive effects of American ginseng are mediated through enteric microbiome population-shift recovery and dysbiosis restoration. Ginseng's regulation of the microbiome balance contributes to the maintenance of enteric homeostasis.
Collapse
|
29
|
Li Z, Ji GE. Ginseng fermented by mycotoxin non-producing Aspergillus niger: ginsenoside analysis and anti-proliferative effects. Food Sci Biotechnol 2017; 26:987-991. [PMID: 30263628 DOI: 10.1007/s10068-017-0117-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/31/2017] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
Korean ginseng was fermented using Aspergillus niger (A. niger) FMB S494 and mycotoxins such as ochratoxin and fumonisin were not detected in the fermented ginseng. Protopanaxadiol-type ginsenosides such as glycosylated forms of Rb1, Rb2, Rc, and Rd decreased to 0 while compound K (cK) increased from 0 to 9 × 104 ppm in the extract of fermented ginseng. Protopanaxtriol-type ginsenosides such as Re and Rg1 decreased from 7.1 × 104 to 3.0 × 104 ppm and 6.8 × 104 to 4.6 × 104 ppm, respectively. Rg2 and Rh1 increased from 0 to 1.9 × 104 ppm and 0 to 2.7 × 104 ppm, respectively. We can demonstrate that A. niger was more inclined to transform protopanaxadiol-type ginsenosides. Moreover, fermented ginseng extract showed a dramatically enhanced anti-proliferative effect on human HT-29 cell line with a minimum effective concentration of about 1 µg/mL, which might be attributed to the high degree of biotransformation of ginsenosides, especially the high output of ginsenoside cK.
Collapse
Affiliation(s)
- Zhipeng Li
- 1Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea
| | - Geun Eog Ji
- 1Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Korea.,Research Institute, Bifido Co., Ltd., Hongchun, Gangwon 25117 Korea
| |
Collapse
|
30
|
Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res 2017; 42:455-462. [PMID: 30337805 PMCID: PMC6187096 DOI: 10.1016/j.jgr.2017.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/03/2022] Open
Abstract
Background Ginsenoside Rh2 has been known to enhance the activity of immune cells, as well as to inhibit the growth of tumor cells. Although the repertoire of genes regulated by Rh2 is well-known in many cancer cells, the epigenetic regulation has yet to be determined, especially for comprehensive approaches to detect methylation changes. Methods The effect of Rh2 on genome-wide DNA methylation changes in breast cancer cells was examined by treating cultured MCF-7 with Rh2. Pyrosequencing analysis was carried out to measure the methylation level of a global methylation marker, LINE1. Genome-wide methylation analysis was carried out to identify epigenetically regulated genes and to elucidate the most prominent signaling pathway affected by Rh2. Apoptosis and proliferation were monitored to examine the cellular effect of Rh2. Results LINE1 showed induction of hypomethylation at specific CpGs by 1.6–9.1% (p < 0.05). Genome-wide methylation analysis identified the “cell-mediated immune response”-related pathway as the top network. Cell proliferation of MCF-7 was retarded by Rh2 in a dose-dependent manner. Hypermethylated genes such as CASP1, INSL5, and OR52A1 showed downregulation in the Rh2-treated MCF-7, while hypomethylated genes such as CLINT1, ST3GAL4, and C1orf198 showed upregulation. Notably, a higher survival rate was associated with lower expression of INSL5 and OR52A1 in breast cancer patients, while with higher expression of CLINT1. Conclusion The results indicate that Rh2 induces epigenetic methylation changes in genes involved in immune response and tumorigenesis, thereby contributing to enhanced immunogenicity and inhibiting the growth of cancer cells.
Collapse
Affiliation(s)
- Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
31
|
Wan JY, Wang CZ, Zhang QH, Liu Z, Musch MW, Bissonnette M, Chang EB, Li P, Qi LW, Yuan CS. Significant difference in active metabolite levels of ginseng in humans consuming Asian or Western diet: The link with enteric microbiota. Biomed Chromatogr 2017; 31:10.1002/bmc.3851. [PMID: 27606833 PMCID: PMC5339059 DOI: 10.1002/bmc.3851] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/29/2016] [Accepted: 09/06/2016] [Indexed: 01/17/2023]
Abstract
After ingestion of ginseng, the bioavailability of its parent compounds is low and enteric microbiota plays an important role in parent compound biotransformation to their metabolites. Diet type can influence the enteric microbiota profile. When human subjects on different diets ingest ginseng, their different gut microbiota profiles may influence the metabolism of ginseng parent compounds. In this study, the effects of different diet type on gut microbiota metabolism of American ginseng saponins were investigated. We recruited six healthy adults who regularly consumed different diet types. These subjects received 7 days' oral American ginseng, and their biological samples were collected for LC-Q-TOF-MS analysis. We observed significant ginsenoside Rb1 (a major parent compound) and compound K (a major active metabolite) level differences in the samples from the subjects consuming different diets. Subjects on an Asian diet had much higher Rb1 levels but much lower compound K levels compared with those on a Western diet. Since compound K possesses much better cancer chemoprevention potential, our data suggested that consumers on a Western diet should obtain better cancer prevention effects with American ginseng intake compared with those on an Asian diet. Ginseng compound levels could be enhanced or reduced via gut microbiota manipulation for clinical utility.
Collapse
Affiliation(s)
- Jin-Yi Wan
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Qi-Hui Zhang
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Zhi Liu
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Mark W. Musch
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL 60637, USA
| | - Marc Bissonnette
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL 60637, USA
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL 60637, USA
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Hasebe T, Matsukawa J, Ringus D, Miyoshi J, Hart J, Kaneko A, Yamamoto M, Kono T, Fujiya M, Kohgo Y, Wang CZ, Yuan CS, Bissonnette M, Musch MW, Chang EB. Daikenchuto (TU-100) Suppresses Tumor Development in the Azoxymethane and APC min/+ Mouse Models of Experimental Colon Cancer. Phytother Res 2017; 31:90-99. [PMID: 27730672 PMCID: PMC5590753 DOI: 10.1002/ptr.5735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/26/2016] [Accepted: 09/18/2016] [Indexed: 02/06/2023]
Abstract
Chemopreventative properties of traditional medicines and underlying mechanisms of action are incompletely investigated. This study demonstrates that dietary daikenchuto (TU-100), comprised of ginger, ginseng, and Japanese pepper effectively suppresses intestinal tumor development and progression in the azoxymethane (AOM) and APCmin/+ mouse models. For the AOM model, TU-100 was provided after the first of six biweekly AOM injections. Mice were sacrificed at 30 weeks. APCmin/+ mice were fed diet without or with TU-100 starting at 6 weeks, and sacrificed at 24 weeks. In both models, dietary TU-100 decreased tumor size. In APC min/+ mice, the number of small intestinal tumors was significantly decreased. In the AOM model, both TU-100 and Japanese ginseng decreased colon tumor numbers. Decreased Ki-67 and β-catenin immunostaining and activation of numerous transduction pathways involved in tumor initiation and progression were observed. EGF receptor expression and stimulation/phosphorylation in vitro were investigated in C2BBe1 cells. TU-100, ginger, and 6-gingerol suppressed EGF receptor induced Akt activation. TU-100 and ginseng and to a lesser extent ginger or 6-gingerol inhibited EGF ERK1/2 activation. TU-100 and some of its components and metabolites of these components inhibit tumor progression in two mouse models of colon cancer by blocking downstream pathways of EGF receptor activation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Takumu Hasebe
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Jun Matsukawa
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Daina Ringus
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - John Hart
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura and Co., Ami, Ibaraki, Japan
| | | | - Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan
- Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Chong-Zi Wang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, USA
| | - Marc Bissonnette
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Mark W. Musch
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Jeong MK, Cho CK, Yoo HS. General and Genetic Toxicology of Enzyme-Treated Ginseng Extract: Toxicology of Ginseng Rh2. J Pharmacopuncture 2016; 19:213-224. [PMID: 27695630 PMCID: PMC5043085 DOI: 10.3831/kpi.2016.19.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Ginseng Rh2+ is enzyme-treated ginseng extract containing high amounts of converted ginsenosides, such as compound k, Rh2, Rg3, which have potent anticancer activity. We conducted general and genetic toxicity tests to evaluate the safety of ginseng Rh2+. METHODS An acute oral toxicity test was performed at a high-level dose of 4,000 mg/kg/day in Sprague-Dawley (SD) rats. A 14-day range-finding study was also conducted to set dose levels for the 90-day study. A subchronic 90-day toxicity study was performed at dose levels of 1,000 and 2,000 mg/kg/day to investigate the no-observed-adverse-effect level (NOAEL) of ginseng Rh2+ and target organs. To identify the mutagenic potential of ginseng Rh2+, we conducted a bacterial reverse mutation test (Ames test) using amino-acid-requiring strains of Salmonella typhimurium and Escherichia coli (E. coli), a chromosome aberration test with Chinese hamster lung (CHL) cells, and an in vivo micronucleus test using ICR mice bone marrow as recommended by the Korean Ministry of Food and Drug Safety. RESULTS According to the results of the acute oral toxicity study, the approximate lethal dose (ALD) of ginseng Rh2+ was estimated to be higher than 4,000 mg/kg. For the 90-day study, no toxicological effect of ginseng Rh2+ was observed in body-weight changes, food consumption, clinical signs, organ weights, histopathology, ophthalmology, and clinical pathology. The NOAEL of ginseng Rh2+ was established to be 2,000 mg/kg/day, and no target organ was found in this test. In addition, no evidence of mutagenicity was found either on the in vitro genotoxicity tests, including the Ames test and the chromosome aberration test, or on the in vivo in mice bone marrow micronucleus test. CONCLUSION On the basis of our findings, ginseng Rh2+ is a non-toxic material with no genotoxicity. We expect that ginseng Rh2+ may be used as a novel adjuvant anticancer agent that is safe for long-term administration.
Collapse
Affiliation(s)
- Mi-Kyung Jeong
- East West Cancer Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, Korea
| | - Chong-Kwan Cho
- East West Cancer Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, Korea
| | - Hwa-Seung Yoo
- East West Cancer Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, Korea
| |
Collapse
|
34
|
Wang CZ, Yu C, Wen XD, Chen L, Zhang CF, Calway T, Qiu Y, Wang Y, Zhang Z, Anderson S, Wang Y, Jia W, Yuan CS. American Ginseng Attenuates Colitis-Associated Colon Carcinogenesis in Mice: Impact on Gut Microbiota and Metabolomics. Cancer Prev Res (Phila) 2016; 9:803-811. [PMID: 27443884 DOI: 10.1158/1940-6207.capr-15-0372] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease is a risk factor for colorectal cancer initiation and development. In this study, the effects of American ginseng on chemically induced colitis and colon carcinogenesis were evaluated using an azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model. During the acute phase on day 15, the oral administration of ginseng (15 and 30 mg/kg/day) significantly suppressed AOM/DSS-induced colitis, as demonstrated by the disease activity index and colon tissue histology. During the chronic phase in week 13, AOM/DSS-induced tumor multiplicity was significantly suppressed by ginseng. Ginseng significantly attenuated the increase of inflammatory cytokines, such as IL1α, IL1β, IL6, G-CSF, and GM-CSF. Serum metabolomics data in the PCA plots showed good separation between the AOM/DSS model and ginseng-treated mice, and the most important endogenous metabolite changes were identified. The 16S rRNA data showed that after AOM/DSS, the microbiome community in the model group was obviously changed, and ginseng inhibited these changes. Fecal metabolomics analysis supported these findings. In conclusion, oral ginseng significantly decreased AOM/DSS-induced colitis and colon carcinogenesis by inhibiting inflammatory cytokines and restoring the metabolomics and microbiota profiles accordingly. Selective endogenous small molecules could be used as biomarkers to elucidate the effects of ginseng treatment. Cancer Prev Res; 9(10); 803-11. ©2016 AACR.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois
| | - Chunhao Yu
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. School of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xiao-Dong Wen
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Lina Chen
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tyler Calway
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois
| | - Yunping Qiu
- Einstein-Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yunwei Wang
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Zhiyu Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois
| | - Samantha Anderson
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, Illinois. Department of Anesthesia & Critical Care, University of Chicago, Chicago, Illinois. Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois.
| |
Collapse
|
35
|
Ma WK, Li H, Dong CL, He X, Guo CR, Zhang CF, Yu CH, Wang CZ, Yuan CS. Palmatine from Mahonia bealei attenuates gut tumorigenesis in ApcMin/+ mice via inhibition of inflammatory cytokines. Mol Med Rep 2016; 14:491-8. [PMID: 27175745 PMCID: PMC4918606 DOI: 10.3892/mmr.2016.5285] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 02/12/2016] [Indexed: 01/05/2023] Open
Abstract
Mahonia bealei is a Chinese folk medicine used to treat various ailments, in particular gastrointestinal inflammation‑related illnesses, and palmatine is one of its active constituents. In this study, ApcMin/+ mice, a genetically engineered model, were used to investigate the effects of palmatine on the initiation and progression of gut inflammation and tumorigenesis enhanced by a high‑fat diet. The in vitro antiproliferation and anti‑inflammation effects of palmatine were evaluated on HT‑29 and SW‑480 human colorectal cancer cell lines. The concentration‑related antiproliferative effects of palmatine on both cell lines (P<0.01) were observed. Palmatine significantly inhibited lipopolysaccharide‑induced increase in cytokine interleukin (IL)‑8 levels in the HT‑29 cells (P<0.01). In the in vivo studies with ApcMin/+ mice, after 10 or 20 mg/kg/day oral palmatine treatment, tumor numbers were significantly reduced in the small intestine and colon in a dose‑dependent manner (P<0.01 compared with the model group). The results were supported by tumor distribution data, body weight changes and organ index. The effect on survival was also dose‑dependent. Both the low‑ and high‑dose palmatine treatments significantly increased the life span of the mice (P<0.01). The gut histology from the model group showed a prominent adenomatous change along with inflammatory lesions. With palmatine treatment, however, the dysplastic changes were greatly reduced in the small intestine and colon tissue. Reverse transcription‑quantitative polymerase chain reaction analysis of interleukin (IL)‑1α, IL1‑β, IL‑8, granulocyte‑colony stimulating factor and granulocyte macrophage colony‑stimulating factor in the gut tissue showed that these inflammatory cytokines were reduced significantly following treatment (all P<0.01); serum cytokine levels were also decreased. Data suggests that palmatine has a clinical value in colorectal cancer therapeutics, and this action is likely linked to the inhibition of inflammatory cytokines.
Collapse
Affiliation(s)
- Wei-Kun Ma
- Teaching and Research Section of Traditional Chinese Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Hui Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Cui-Lan Dong
- Department of Traditional Chinese Medicine, People's Hospital of Zhangqiu, Zhangqiu, Jinan, Shandong 250200, P.R. China
| | - Xin He
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Chang-Run Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Chun-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Chun-Hao Yu
- Tang Center of Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
36
|
Determination of American ginseng saponins and their metabolites in human plasma, urine and feces samples by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1015-1016:62-73. [PMID: 26896573 DOI: 10.1016/j.jchromb.2016.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
Abstract
American ginseng is a commonly consumed herbal medicine in the United States and other countries. Ginseng saponins are considered to be its active constituents. We have previously demonstrated in an in vitro experiment that human enteric microbiota metabolize ginseng parent compounds into their metabolites. In this study, we analyzed American ginseng saponins and their metabolites in human plasma, urine and feces samples by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). Six healthy male volunteers ingested 1 g of American ginseng twice a day for 7 days. On day 7, biological samples were obtained and pretreated with solid phase extraction. The ginseng constituents and their metabolites were characterized, including 5 ginseng metabolites in plasma, 10 in urine, and 26 in feces. For the plasma, urine and feces samples, the levels of ginsenoside Rb1 (a major parent compound) were 8.6, 56.8 and 57.7 ng/mL, respectively, and the levels of compound K (a major metabolite) were 58.4 ng/mL, 109.8 ng/mL and 10.06 μg/mL, respectively. It suggested that compound K had a remarkably high level in all three samples. Moreover, in human feces, ginsenoside Rk1 and Rg5, Rk3 and Rh4, Rg6 and F4 were detected as the products of dehydration. Further studies are needed to evaluate the pharmacological activities of the identified ginseng metabolites.
Collapse
|
37
|
Wang CZ, Zhang CF, Chen L, Anderson S, Lu F, Yuan CS. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin. Int J Oncol 2015; 47:1749-58. [PMID: 26398706 PMCID: PMC4599184 DOI: 10.3892/ijo.2015.3173] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022] Open
Abstract
Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal microbiota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anticancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Feng Zhang
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | - Lina Chen
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | - Samantha Anderson
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | - Fang Lu
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| | - Chun-Su Yuan
- Τang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
38
|
Abstract
Cancer is a leading cause of death in the United States. Angiogenesis inhibitors have been introduced for the treatment of cancer. Based on the fact that many anticancer agents have been developed from botanical sources, there is a significant untapped resource to be found in natural products. American ginseng is a commonly used herbal medicine in the U.S., which possesses antioxidant properties. After oral ingestion, natural ginseng saponins are biotransformed to their metabolites by the enteric microbiome before being absorbed. The major metabolites, ginsenoside Rg3 and compound K, showed significant potent anticancer activity compared to that of their parent ginsenosides Rb1, Rc, and Rd. In this review, the molecular mechanisms of ginseng metabolites on cancer chemoprevention, especially apoptosis and angiogenic inhibition, are discussed. Ginseng gut microbiome metabolites showed significant anti-angiogenic effects on pulmonary, gastric and ovarian cancers. This review suggests that in addition to the chemopreventive effects of ginseng compounds, as angiogenic inhibitors, ginsenoside metabolites could be used in combination with other cancer chemotherapeutic agents in cancer management.
Collapse
|
39
|
Determination of ginsenoside compound K in human plasma by liquid chromatography-tandem mass spectrometry of lithium adducts. Acta Pharm Sin B 2015; 5:461-6. [PMID: 26579476 PMCID: PMC4629438 DOI: 10.1016/j.apsb.2015.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/19/2015] [Accepted: 05/07/2015] [Indexed: 01/12/2023] Open
Abstract
Ginsenoside compound K (GCK), the main metabolite of protopanaxadiol constituents of Panax ginseng, easily produces alkali metal adduct ions during mass spectrometry particularly with lithium. Accordingly, we have developed a rapid and sensitive liquid chromatography–tandem mass spectrometric method for analysis of GCK in human plasma based on formation of a lithium adduct. The analyte and paclitaxel (internal standard) were extracted from 50 µL human plasma using methyl tert-butyl ether. Chromatographic separation was performed on a Phenomenex Gemini C18 column (50 mm×2.0 mm; 5 μm) using stepwise gradient elution with acetonitrile–water and 0.2 mmol/L lithium carbonate at a flow rate of 0.5 mL/min. Detection was performed in the positive ion mode using multiple reaction monitoring of the transitions at m/z 629→449 for the GCK-lithium adduct and m/z 860→292 for the adduct of paclitaxel. The assay was linear in the concentration range 1.00–1000 ng/mL (r2>0.9988) with intra- and inter-day precision of ±8.4% and accuracy in the range of −4.8% to 6.5%. Recovery, stability and matrix effects were all satisfactory. The method was successfully applied to a pharmacokinetic study involving administration of a single GCK 50 mg tablet to healthy Chinese volunteers.
Collapse
|
40
|
Ginseng Purified Dry Extract, BST204, Improved Cancer Chemotherapy-Related Fatigue and Toxicity in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:197459. [PMID: 25945105 PMCID: PMC4405287 DOI: 10.1155/2015/197459] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/21/2015] [Accepted: 01/24/2015] [Indexed: 01/01/2023]
Abstract
Cancer related fatigue (CRF) is one of the most common side effects of cancer and its treatments. A large proportion of cancer patients experience cancer-related physical and central fatigue so new strategies are needed for treatment and improved survival of these patients. BST204 was prepared by incubating crude ginseng extract with ginsenoside-β-glucosidase. The purpose of the present study was to examine the effects of BST204, mixture of ginsenosides on 5-fluorouracil (5-FU)-induced CRF, the glycogen synthesis, and biochemical parameters in mice. The mice were randomly divided into the following groups: the naïve normal (normal), the HT-29 cell inoculated (xenograft), xenograft and 5-FU treated (control), xenograft + 5-FU + BST204-treated (100 and 200 mg/kg) (BST204), and xenograft + 5-FU + modafinil (13 mg/kg) treated group (modafinil). Running wheel activity and forced swimming test were used for evaluation of CRF. Muscle glycogen, serum inflammatory cytokines, aspartic aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CRE), white blood cell (WBC), neutrophil (NEUT), red blood cell (RBC), and hemoglobin (HGB) were measured. Treatment with BST204 significantly increased the running wheel activity and forced swimming time compared to the control group. Consistent with the behavioral data, BST204 markedly increased muscle glycogen activity and concentrations of WBC, NEUT, RBC, and HGB. Also, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), AST, ALT, and CRE levels in the serum were significantly reduced in the BST204-treated group compared to the control group. This result suggests that BST204 may improve chemotherapy-related fatigue and adverse toxic side effects.
Collapse
|
41
|
Wang CZ, Zhang Z, Wan JY, Zhang CF, Anderson S, He X, Yu C, He TC, Qi LW, Yuan CS. Protopanaxadiol, an active ginseng metabolite, significantly enhances the effects of fluorouracil on colon cancer. Nutrients 2015; 7:799-814. [PMID: 25625815 PMCID: PMC4344561 DOI: 10.3390/nu7020799] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023] Open
Abstract
In this study, we evaluated the effects of protopanaxadiol (PPD), a gut microbiome induced ginseng metabolite, in increasing the anticancer effects of a chemotherapeutic agent fluorouracil (5-FU) on colorectal cancer. An in vitro HCT-116 colorectal cancer cell proliferation test was conducted to observe the effects of PPD, 5-FU and their co-administration and the related mechanisms of action. Then, an in vivo xenografted athymic mouse model was used to confirm the in vitro data. Our results showed that the human gut microbiome converted ginsenoside compound K to PPD as a metabolite. PPD and 5-FU significantly inhibited HCT-116 cell proliferation in a concentration-dependent manner (both p < 0.01), and the effects of 5-FU were very significantly enhanced by combined treatment with PPD (p < 0.01). Cell cycle evaluation demonstrated that 5-FU markedly induced the cancer cell S phase arrest, while PPD increased arrest in G1 phase. Compared to the control, 5-FU and PPD increased apoptosis, and their co-administration significantly increased the number of apoptotic cells (p < 0.01). Using bioluminescence imaging, in vivo data revealed that 5-FU significantly reduced the tumor growth up to Day 20 (p < 0.05). PPD and 5-FU co-administration very significantly reduced the tumor size in a dose-related manner (p < 0.01 compared to the 5-FU alone). The quantification of the tumor size and weight changes for 43 days supported the in vivo imaging data. Our results demonstrated that the co-administration of PPD and 5-FU significantly inhibited the tumor growth, indicating that PPD significantly enhanced the anticancer action of 5-FU, a commonly used chemotherapeutic agent. PPD may have a clinical value in 5-FU’s cancer therapeutics.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.
| | - Zhiyu Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.
| | - Jin-Yi Wan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.
| | - Chun-Feng Zhang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.
| | - Samantha Anderson
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.
| | - Xin He
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.
| | - Chunhao Yu
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.
| | - Tong-Chuan He
- Department of Orthopedic Surgery, University of Chicago, Chicago, IL 60637, USA.
| | - Lian-Wen Qi
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
American ginseng significantly reduced the progression of high-fat-diet-enhanced colon carcinogenesis in Apc (Min/+) mice. J Ginseng Res 2015. [PMID: 26199554 PMCID: PMC4506368 DOI: 10.1016/j.jgr.2014.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of death worldwide. Chronic gut inflammation is recognized as a risk factor for tumor development, including CRC. American ginseng is a very commonly used ginseng species in the West. METHODS A genetically engineered Apc (Min/+) mouse model was used in this study. We analyzed the saponin composition of American ginseng used in this project, and evaluated its effects on the progression of high-fat-diet-enhanced CRC carcinogenesis. RESULTS After oral ginseng administration (10-20 mg/kg/d for up to 32 wk), experimental data showed that, compared with the untreated mice, ginseng very significantly reduced tumor initiation and progression in both the small intestine (including the proximal end, middle end, and distal end) and the colon (all p < 0.01). This tumor number reduction was more obvious in those mice treated with a low dose of ginseng. The tumor multiplicity data were supported by body weight changes and gut tissue histology examinations. In addition, quantitative real-time polymerase chain reaction analysis showed that compared with the untreated group, ginseng very significantly reduced the gene expression of inflammatory cytokines, including interleukin-1α (IL-1α), IL-1β, IL-6, tumor necrosis factor-α, granulocyte-colony stimulating factor, and granulocyte-macrophage colony-stimulating factor in both the small intestine and the colon (all p < 0.01). CONCLUSION Further studies are needed to link our observed effects to the actions of the gut microbiome in converting the parent ginsenosides to bioactive ginseng metabolites. Our data suggest that American ginseng may have potential value in CRC chemoprevention.
Collapse
|
43
|
Kang S, Kim JE, Song NR, Jung SK, Lee MH, Park JS, Yeom MH, Bode AM, Dong Z, Lee KW. The ginsenoside 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol induces autophagy and apoptosis in human melanoma via AMPK/JNK phosphorylation. PLoS One 2014; 9:e104305. [PMID: 25137374 PMCID: PMC4138097 DOI: 10.1371/journal.pone.0104305] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022] Open
Abstract
Studies have shown that a major metabolite of the red ginseng ginsenoside Rb1, called 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol (GPD), exhibits anticancer properties. However, the chemotherapeutic effects and molecular mechanisms behind GPD action in human melanoma have not been previously investigated. Here we report the anticancer activity of GPD and its mechanism of action in melanoma cells. GPD, but not its parent compound Rb1, inhibited melanoma cell proliferation in a dose-dependent manner. Further investigation revealed that GPD treatment achieved this inhibition through the induction of autophagy and apoptosis, while Rb1 failed to show significant effect at the same concentrations. The inhibitory effect of GPD appears to be mediated through the induction of AMPK and the subsequent attenuation of mTOR phosphorylation. In addition, GPD activated c-Jun by inducing JNK phosphorylation. Our findings suggest that GPD suppresses melanoma growth by inducing autophagic cell death and apoptosis via AMPK/JNK pathway activation. GPD therefore has the potential to be developed as a chemotherapeutic agent for the treatment of human melanoma.
Collapse
Affiliation(s)
- Soouk Kang
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Jong-Eun Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Nu Ry Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea
| | - Sung Keun Jung
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America; Functional Food Resources Research Group, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Mee Hyun Lee
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Jun Seong Park
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Myeong-Hun Yeom
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Ki Won Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea; Advanced Institutes of Convergence Technology, Seoul National University, Suwon, Republic of Korea; Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| |
Collapse
|
44
|
Ueno N, Hasebe T, Kaneko A, Yamamoto M, Fujiya M, Kohgo Y, Kono T, Wang CZ, Yuan CS, Bissonnette M, Chang EB, Musch MW. TU-100 (Daikenchuto) and ginger ameliorate anti-CD3 antibody induced T cell-mediated murine enteritis: microbe-independent effects involving Akt and NF-κB suppression. PLoS One 2014; 9:e97456. [PMID: 24857966 PMCID: PMC4032249 DOI: 10.1371/journal.pone.0097456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/14/2014] [Indexed: 01/09/2023] Open
Abstract
The Japanese traditional medicine daikenchuto (TU-100) has anti-inflammatory activities, but the mechanisms remain incompletely understood. TU-100 includes ginger, ginseng, and Japanese pepper, each component possessing bioactive properties. The effects of TU-100 and individual components were investigated in a model of intestinal T lymphocyte activation using anti-CD3 antibody. To determine contribution of intestinal bacteria, specific pathogen free (SPF) and germ free (GF) mice were used. TU-100 or its components were delivered by diet or by gavage. Anti-CD3 antibody increased jejunal accumulation of fluid, increased TNFα, and induced intestinal epithelial apoptosis in both SPF and GF mice, which was blocked by either TU-100 or ginger, but not by ginseng or Japanese pepper. TU-100 and ginger also blocked anti-CD3-stimulated Akt and NF-κB activation. A co-culture system of colonic Caco2BBE and Jurkat-1 cells was used to examine T-lymphocyte/epithelial cells interactions. Jurkat-1 cells were stimulated with anti-CD3 to produce TNFα that activates epithelial cell NF-κB. TU-100 and ginger blocked anti-CD3 antibody activation of Akt in Jurkat cells, decreasing their TNFα production. Additionally, TU-100 and ginger alone blocked direct TNFα stimulation of Caco2BBE cells and decreased activation of caspase-3 and polyADP ribose. The present studies demonstrate a new anti-inflammatory action of TU-100 that is microbe-independent and due to its ginger component.
Collapse
Affiliation(s)
- Nobuhiro Ueno
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois, United States of America
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takumu Hasebe
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois, United States of America
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura and Co., Ami, Ibaraki, Japan
| | | | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toru Kono
- Center for Clinical and Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Hokkaido, Japan
- Division of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois, United States of America
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, Department of Anesthesia and Critical Care, University of Chicago, Chicago, Illinois, United States of America
| | - Marc Bissonnette
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois, United States of America
| | - Eugene B. Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois, United States of America
| | - Mark W. Musch
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
45
|
Park SY, Kim HB, Kim JH, Lee JM, Kim SR, Shin HS, Yi TH. Immunostimulatory effect of fermented red ginseng in the mouse model. Prev Nutr Food Sci 2014; 19:10-8. [PMID: 24772404 PMCID: PMC3999803 DOI: 10.3746/pnf.2014.19.1.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/14/2014] [Indexed: 11/23/2022] Open
Abstract
In this study, Woongjin fermented red ginseng extract (WFRG) was evaluated for its potential ability to act as an adjuvant for the immune response of mice. For the in vitro study, macrophages were treated with serial concentrations (1 μg/mL, 10 μg/mL, and 100 μg/mL) of WFRG. For in vivo studies, mice were administered different concentrations (10 mg/kg/day, 100 mg/kg/day, and 200 mg/kg/day) of WFRG orally for 21 days. In vitro, the production of nitric oxide and TNF-α by RAW 264.7 cells increased in a dose-dependent manner. In vivo, WFRG enhanced the proliferation of splenocytes induced by two mitogens (i.e., concanavalin A and lipopolysaccharide [LPS]) and increased LPS-induced production of TNF-α and IL-6, but not IL-1β. In conclusion, WFRG has the potential to modulate immune function and should be further investigated as an immunostimulatory agent.
Collapse
Affiliation(s)
- Sang-Yong Park
- Department of Oriental Medicinal Materials & Processing, Kyung Hee University, Gyeonggi 446-701, Korea
| | - Ho-Bin Kim
- Woongjin Food Co., Ltd., Seoul 100-705, Korea
| | | | - Joo-Mi Lee
- Woongjin Food Co., Ltd., Seoul 100-705, Korea
| | | | - Heon-Sub Shin
- Department of Oriental Medicinal Materials & Processing, Kyung Hee University, Gyeonggi 446-701, Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Materials & Processing, Kyung Hee University, Gyeonggi 446-701, Korea
| |
Collapse
|
46
|
Kim HK. Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean Red Ginseng extract. J Ginseng Res 2013; 37:451-6. [PMID: 24235859 PMCID: PMC3825860 DOI: 10.5142/jgr.2013.37.451] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 11/20/2022] Open
Abstract
Compound K is a major metabolite of ginsenoside Rb1, which has various pharmacological activities in vivo and in vitro. However, previous studies have focused on the pharmacokinetics of a single metabolite or the parent compound and have not described the pharmacokinetics of both compounds in humans. To investigate the pharmacokinetics of ginsenoside Rb1 and compound K, we performed an open-label, single-oral dose pharmacokinetic study using Korean Red Ginseng extract. We enrolled 10 healthy Korean male volunteers in this study. Serial blood samples were collected during 36 h after Korean Red Ginseng extract administration to determine plasma concentrations of ginsenoside Rb1 and compound K. The mean maximum plasma concentration of compound K was 8.35±3.19 ng/mL, which was significantly higher than that of ginsenoside Rb1 (3.94±1.97 ng/mL). The half-life of compound K was 7 times shorter than that of ginsenoside Rb1. These results suggest that the pharmacokinetics, especially absorption, of compound K are not influenced by the pharmacokinetics of its parent compound, except the time to reach the maximum plasma concentration The delayed absorption of compound K support the evidence that the intestinal microflora play an important role in the transformation of ginsenoside Rb1 to compound K.
Collapse
Affiliation(s)
- Hyung-Ki Kim
- Department of Clinical Pharmacology, Soonchunhyang University College of Medicine, Cheonan 331-090, Korea
| |
Collapse
|
47
|
Choi SH, Lee BH, Kim HJ, Jung SW, Hwang SH, Nah SY. Differential effects of ginsenoside metabolites on slowly activating delayed rectifier K(+) and KCNQ1 K(+) channel currents. J Ginseng Res 2013; 37:324-31. [PMID: 24198658 PMCID: PMC3818959 DOI: 10.5142/jgr.2013.37.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/27/2013] [Accepted: 05/27/2013] [Indexed: 11/18/2022] Open
Abstract
Channels formed by the co-assembly of the KCNQ1 subunit and the mink (KCNE1) subunit underline the slowly activating delayed rectifier K+ channels (IKs) in the heart. This K+ channel is one of the main pharmacological targets for the development of drugs against cardiovascular disease. Panax ginseng has been shown to exhibit beneficial cardiovascular effects. In a previous study, we showed that ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interactions with the K318 and V319 residues. However, little is known about the effects of ginsenoside metabolites on KCNQ1 K+ alone or the KCNQ1 + KCNE1 K+ (IKs) channels. In the present study, we examined the effect of protopanaxatriol (PPT) and compound K (CK) on KCNQ1 K+ and IKs channel activity expressed in Xenopus oocytes. PPT more strongly inhibited the IKs channel currents than the currents of KCNQ1 K+ alone in concentration- and voltage-dependent manners. The IC50 values on IKs and KCNQ1 alone currents for PPT were 5.18±0.13 and 10.04±0.17 μM, respectively. PPT caused a leftward shift in the activation curve of IKs channel activity, but minimally affected KCNQ1 alone. CK exhibited slight inhibition on IKs and KCNQ1 alone K+ channel currents. These results indicate that ginsenoside metabolites show limited effects on IKs channel activity, depending on the structure of the ginsenoside metabolites.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Wang CZ, Zhang Z, Huang WH, Du GJ, Wen XD, Calway T, Yu C, Nass R, Zhao J, Du W, Li SP, Yuan CS. Identification of potential anticancer compounds from Oplopanax horridus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:999-1006. [PMID: 23746754 PMCID: PMC3729876 DOI: 10.1016/j.phymed.2013.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/18/2013] [Accepted: 04/19/2013] [Indexed: 05/20/2023]
Abstract
Oplopanax horridus is a plant native to North America. Previous reports have demonstrated that this herb has antiproliferative effects on cancer cells but study mostly focused on its extract or fractions. Because there has been limited phytochemical study on this herb, its bioactive compounds are largely unknown. We recently isolated and identified 13 compounds, including six polyynes, three sesquiterpenes, two steroids, and two phenolic acids, of which five are novel compounds. In this study, we systemically evaluated the anticancer effects of compounds isolated from O. horridus. Their antiproliferative effects on a panel of human colorectal and breast cancer cells were determined using the MTS assay. Cell cycle distribution and apoptotic effects were analyzed by flow cytometry. The in vivo antitumor effect was examined using a xenograft tumor model. Among the 13 compounds, strong antiproliferative effects were observed from falcarindiol and a novel compound oplopantriol A. Falcarindiol showed the most potent antiproliferative effects, significantly inducing pro-apoptosis and cell cycle arrest in the S and G2/M phases. The anticancer potential of falcarindiol was further verified in vivo, significantly inhibiting HCT-116 tumor growth in an athymic nude mouse model at 15 mg/kg. We also analyzed the relationship between polyyne structures and their pharmacological activities. We observed that both the terminal hydroxyl group and double bond obviously affected their anticancer potential. Results from this study supplied valuable information for future semi-synthesis of polyyne derivatives to develop novel cancer chemopreventive agents.
Collapse
Affiliation(s)
- Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Zhiyu Zhang
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Wei-Hua Huang
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guang-Jian Du
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Xiao-Dong Wen
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Tyler Calway
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Chunhao Yu
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Rachael Nass
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Du
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Corresponding authors: Chun-Su Yuan Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, Illinois 60637, USA. Tel: +1-773-702-1916; Fax: +1-773-834-0601; Shao-Ping Li State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China. Tel.: +853-8397-4692; Fax: +853-2884-1358;
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
- Corresponding authors: Chun-Su Yuan Tang Center for Herbal Medicine Research, and Department of Anesthesia & Critical Care, University of Chicago, 5841 South Maryland Avenue, MC 4028, Chicago, Illinois 60637, USA. Tel: +1-773-702-1916; Fax: +1-773-834-0601; Shao-Ping Li State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China. Tel.: +853-8397-4692; Fax: +853-2884-1358;
| |
Collapse
|
49
|
Synthesis of esters of ginsenoside metabolite M1 and their cytotoxicity on MGC80-3 cells. Molecules 2013; 18:3689-702. [PMID: 23529029 PMCID: PMC6270463 DOI: 10.3390/molecules18043689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 01/22/2023] Open
Abstract
Monoesters of ginsenoside metabolite M1 at the 3-OH, 4-OH and 6-OH positions of the glucose moiety at M1 were synthesized via the reaction of M1 with acyl chloride, or acid-N,N'-diisopropylcarbodiimide in the presence of DMAP. Their structures were fully characterized by spectral methods. The cytotoxicity of these compounds against then MGC80-3 human gastric cancer cell line was also assessed. High inhibitory effects were found at a concentration of 100 μg/mL.
Collapse
|
50
|
Lin G, Yu X, Wang J, Qu S, Sui D. Beneficial effects of 20(S)-protopanaxadiol on antitumor activity and toxicity of cyclophosphamide in tumor-bearing mice. Exp Ther Med 2012; 5:443-447. [PMID: 23407364 PMCID: PMC3570184 DOI: 10.3892/etm.2012.820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 11/07/2012] [Indexed: 01/29/2023] Open
Abstract
20(S)-protopanaxadiol (PPD) is an extract of Panax quinquefolius L. The aim of this study was to investigate the effect of PPD on the antitumor activity and toxicity of cyclophosphamide (CTX) in tumor-bearing mice. C57BL/6 mice bearing Lewis lung carcinoma cells were treated with PPD (50 mg/kg) alone, CTX (20 mg/kg) alone or PPD (50 mg/kg) in combination with CTX (20 mg/kg), respectively. The results showed that PPD alone has no significant antitumor activity but synergistically enhanced the antitumor activity of CTX. PPD significantly increased the peripheral white blood cell count, bone marrow cell count, interleukin-2 and interferon-γ in CTX-treated tumor-bearing mice. The lowered levels of spleen index, splenocyte proliferation and natural killer cell activity in tumor-bearing mice following CTX treatment were also increased by PPD administration. PPD may be a beneficial supplement during CTX chemotherapy for enhancing the antitumor efficacy and reducing the toxicity of CTX.
Collapse
Affiliation(s)
- Guangzhu Lin
- Department of Pharmacology, School of Pharmacy; China-Japan Union Hospital, Jilin University, Changchun 130021, P.R. China ; Department of Cardiovascular Medicine, First Hospital; China-Japan Union Hospital, Jilin University, Changchun 130021, P.R. China
| | | | | | | | | |
Collapse
|