1
|
|
Hu Y, Guo J, Jang H, Liu A, Ma L, Ren D, Wang F. Long Non-Coding RNA T Cell Leukemia/Lymphoma 6 Inhibits the Proliferation and Invasion of Breast Cancer Cells by Down-Regulating miR-665. J BIOMATER TISS ENG 2022; 12:1773-1780. [DOI: 10.1166/jbt.2022.3106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Breast cancer (BC), which is most commonly seen in women, has become the second most common cause of cancer death in the United States. The number of women dying from BC is increasing every year, especially in the developing countries that fall behind in terms of economy and technologies.
Therefore, it is of great necessity to find potential targets to effectively treat this disease. In this study, RT-qPCR was performed to detect the expressions of TCL6, miR-665, and CD82. CCK-8 and immunofluorescence assays were conducted for the assessment of BC cell proliferation. The invasion
and migration of BC cells were detected by transwell and wound healing assays, respectively. Luciferase reporter assay was used to verify the combination of TCL6 and miR-665, and the binding of miR-665 and CD82. Moreover, the proliferation and migration of related proteins were measured by
western blot. The results showed that TCL6 was low expressed in BC cells, but overexpression of TCL6 inhibited the proliferation, migration, and invasion of BC cells. On the contrary, miR-665 was highly expressed in BC cells, while its expression was negatively correlated with TCL6 as suggested
by RT-qPCR assay. Furthermore, the inhibitory effects of TCL6 overexpression on the proliferation, migration, and invasion of BC cells were reversed by miR-665 mimic. Afterwards, the binding sites between miR-665 and CD82 were verified by luciferase reporter assay. Overexpression of TCL6 increased
the level of CD82 in BC cells, but this effect was reversed by miR-665 mimic as well. In conclusion, the present study has presented the fact that TCL6 could enhance the expression of CD82 by down-regulating the expression of miR-665.
Collapse
Affiliation(s)
- Yaofeng Hu
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Jing Guo
- The Second Group of Geriatrics Department, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Hongnan Jang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Ailan Liu
- Clinical Laboratory, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Lijun Ma
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan Shanxi 030032, China
| | - Dongliang Ren
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| | - Fusheng Wang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan Shanxi 030001, China
| |
Collapse
|
2
|
|
Zou C, Lv X, Wei H, Wu S, Song J, Tang Z, Liu S, Li X, Ai Y. Long non-coding RNA LINC00472 inhibits oral squamous cell carcinoma via miR-4311/GNG7 axis. Bioengineered 2022; 13:6371-82. [PMID: 35240924 DOI: 10.1080/21655979.2022.2040768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Emerging studies indicate that long non-coding RNAs play important roles in oral squamous cell carcinoma (OSCC). However, the function of the majority of long non-coding RNAs is still unclear. Recently, LINC00472 has been reported to play crucial roles in multiple cancers. However, the role of LINC00472 in oral squamous cell carcinoma (OSCC) is still not clear. This study found that LncRNA LINC00472 was significantly down-regulated in several squamous cell carcinoma cancer tissues and OSCC cell lines. Over-expression of LINC00472 in OSCC cells inhibited OSCC progression and alleviated OSCC immune responses. Additionally, we confirmed that LINC00472 functioned as an hsa-miR-4311 sponge and regulated the expression of GNG7 (guanine nucleotide-binding protein, gamma 7). Also, we found that LINC00472 over-expression could suppress xenograft tumor growth in vivo. Our study provides evidence that LINC00472 plays an essential role in inhibiting oral squamous cell carcinoma progression and affecting immune responses by directly binding to hsa-miR-4311 to regulate the expression of GNG7 positively.
Collapse
Affiliation(s)
- Chen Zou
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Xiaozhi Lv
- Department of Oral and Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou, China
| | - Haigang Wei
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Siyuan Wu
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Jing Song
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Zhe Tang
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Shiwei Liu
- Department of Stomatology, Foshan First People's Hospital, Foshan, Guangdong, China
| | - Xia Li
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Yilong Ai
- Foshan Stomatological Hospital, School of Medicine, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
3
|
|
Lee JW, Hur J, Kwon YW, Chae CW, Choi JI, Hwang I, Yun JY, Kang JA, Choi YE, Kim YH, Lee SE, Lee C, Jo DH, Seok H, Cho BS, Baek SH, Kim HS. KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state. J Hematol Oncol 2021; 14:148. [PMID: 34530889 DOI: 10.1186/s13045-021-01147-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Little is known about endogenous inhibitors of angiogenic growth factors. In this study, we identified a novel endogenous anti-angiogenic factor expressed in pericytes and clarified its underlying mechanism and clinical significance. Methods Herein, we found Kai1 knockout mice showed significantly enhanced angiogenesis. Then, we investigated the anti-angiogenic roll of Kai1 in vitro and in vivo. Results KAI1 was mainly expressed in pericytes rather than in endothelial cells. It localized at the membrane surface after palmitoylation by zDHHC4 enzyme and induced LIF through the Src/p53 pathway. LIF released from pericytes in turn suppressed angiogenic factors in endothelial cells as well as in pericytes themselves, leading to inhibition of angiogenesis. Interestingly, KAI1 had another mechanism to inhibit angiogenesis: It directly bound to VEGF and PDGF and inhibited activation of their receptors. In the two different in vivo cancer models, KAI1 supplementation significantly inhibited tumor angiogenesis and growth. A peptide derived from the large extracellular loop of KAI1 has been shown to have anti-angiogenic effects to block the progression of breast cancer and retinal neovascularization in vivo. Conclusions KAI1 from PC is a novel molecular regulator that counterbalances the effect of angiogenic factors. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01147-6.
Collapse
Affiliation(s)
- Jin-Woo Lee
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheong-Whan Chae
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae-Il Choi
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Injoo Hwang
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-Yeon Yun
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin-A Kang
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Young-Eun Choi
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Hyun Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sang Eun Lee
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heeyoung Seok
- Genomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byong Seung Cho
- ExoCoBio Inc, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08594, Republic of Korea
| | - Sung Hee Baek
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea. .,Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea. .,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea.
| |
Collapse
|
4
|
|
Viera M, Yip GWC, Shen HM, Baeg GH, Bay BH. Targeting CD82/KAI1 for Precision Therapeutics in Surmounting Metastatic Potential in Breast Cancer. Cancers (Basel) 2021; 13:4486. [PMID: 34503296 DOI: 10.3390/cancers13174486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metastasis is the main cause of mortality in breast cancer patients. There is an unmet need to develop therapies that can impede metastatic spread. Precision oncology has shown great promise for the treatment of cancers, as the therapeutic approach is tailored to a specific group of patients who are likely to benefit from the treatment, rather than the traditional approach of "one size fits all". CD82, also known as KAI1, a glycoprotein belonging to the tetraspanin family and an established metastasis suppressor, could potentially be exploited to hinder metastases in breast cancer. This review explores the prospect of targeting CD82 as an innovative therapeutic approach in precision medicine for breast cancer patients, with the goal of preventing cancer progression and metastasis. Such an approach would entail the selection of a subset of breast cancer patients with low levels of CD82, and instituting an appropriate treatment scheme tailored towards restoring the levels of CD82 in this group of patients. Proposed precision treatment regimens include current modalities of treating breast cancer, in combination with either clinically approved drugs that could restore the levels of CD82, CD82 peptide mimics or non-coding RNA-based therapeutics.
Collapse
Affiliation(s)
- Maximillian Viera
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
| | - George Wai Cheong Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China
- Correspondence: (G.H.B.); (B.H.B.)
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
- Correspondence: (G.H.B.); (B.H.B.)
| |
Collapse
|
5
|
|
Lai CC, Chen TJ, Chan TC, Li WS, He HL. Prognostic significance of OXR1 in urothelial carcinoma: low OXR1 expression is associated with worse survival. Future Oncol 2021; 17:4145-56. [PMID: 34467778 DOI: 10.2217/fon-2021-0184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Bioinformatic analysis has revealed that OXR1 is significantly downregulated in muscle-invasive bladder cancer. Patients & methods: The expression of OXR1 in patients with urothelial carcinoma was evaluated by immunohistochemistry, including 340 cases with urothelial carcinoma in the upper urinary tract and 295 in the urinary bladder. Results: Low expression of OXR1 was significantly correlated with adverse pathological parameters including high primary tumor (pT) stage, high node stage, high histological grade, high mitotic activity and increased vascular or perineural invasion (all p < 0.05). Low expression of OXR1 independently predicted worse metastasis-free survival (p = 0.033) in urothelial carcinoma of the upper urinary tract and worse disease-specific survival (p = 0.022) and metastasis-free survival (p < 0.001) in urothelial carcinoma of the urinary bladder. Conclusion: Low expression of OXR1 is an adverse prognostic factor in urothelial carcinoma.
Collapse
Affiliation(s)
- Chien-Cheng Lai
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Ti-Chun Chan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan 704016, Taiwan
| | - Wan-Shan Li
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
| | - Hong-Lin He
- Department of Pathology, Chi Mei Medical Center, Tainan 71004, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan.,Department of Pathology, E-DA Hospital & E-DA Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
6
|
|
Ferreira KP, de Almeida BC, Dos Anjos LG, Baiocchi G, Soares FA, Rocha RM, Baracat EC, Dobroff AS, Carvalho KC. Assessment of TSPAN Expression Profile and Their Role in the VSCC Prognosis. Int J Mol Sci 2021; 22:5015. [PMID: 34065085 DOI: 10.3390/ijms22095015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The role and prognostic value of tetraspanins (TSPANs) in vulvar squamous cell carcinoma (VSCC) remain poorly understood. We sought to primarily determine, at both the molecular and tissue level, the expression profile of the TSPANs CD9, CD63, CD81, and CD82 in archived VSCC samples (n = 117) and further investigate their clinical relevance as prognostic markers. Our studies led us to identify CD63 as the most highly expressed TSPAN, at the gene and protein levels. Multicomparison studies also revealed that the expression of CD9 was associated with tumor size, whereas CD63 upregulation was associated with histological diagnosis and vascular invasion. Moreover, low expression of CD81 and CD82 was associated with worse prognosis. To determine the role of TSPANs in VSCC at the cellular level, we assessed the mRNA levels of CD63 and CD82 in established metastatic (SW962) and non-metastatic (SW954) VSCC human cell lines. CD82 was found to be downregulated in SW962 cells, thus supporting its metastasis suppressor role. However, CD63 was significantly upregulated in both cell lines. Silencing of CD63 by siRNA led to a significant decrease in proliferation of both SW954 and SW962. Furthermore, in SW962 particularly, CD63-siRNA also remarkably inhibited cell migration. Altogether, our data suggest that the differential expression of TSPANs represents an important feature for prognosis of VSCC patients and indicates that CD63 and CD82 are likely potential therapeutic targets in VSCC.
Collapse
|
7
|
|
Xiao D, Dong Z, Zhen L, Xia G, Huang X, Wang T, Guo H, Yang B, Xu C, Wu W, Zhao X, Xu H. Combined Exosomal GPC1, CD82, and Serum CA19-9 as Multiplex Targets: A Specific, Sensitive, and Reproducible Detection Panel for the Diagnosis of Pancreatic Cancer. Mol Cancer Res 2020; 18:300-10. [PMID: 31662449 DOI: 10.1158/1541-7786.MCR-19-0588] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/17/2019] [Accepted: 10/25/2019] [Indexed: 01/16/2023]
Abstract
Pancreatic cancer is a highly lethal malignancy with poor prognosis due to the lack of early symptoms and resultant late diagnosis. Thus, it is extremely urgent to establish a simple and effective method for the early diagnosis of pancreatic cancer. Although some studies have provided positive evidence for the use of exosomal surface protein glypican-1 (GPC1) as a biomarker for early screening, its clinical application is still controversial. Here, we systematically verified the role of exosomal GPC1 as a potential screening biomarker. First, bottleneck problems of a stable detection method and an identification standard were systematically studied, and a Python-based standardized data processing method was established to analyze exosomal GPC1 expression. Second, a detection panel consisting of exosomal GPC1, exosomal cluster of differentiation 82 (CD82), and serum carbohydrate antigen 19-9 (CA19-9) was employed for pancreatic cancer detection. This panel exhibited excellent diagnostic results (AUC = 0.942) and could effectively distinguish healthy people from patients with pancreatic cancer (P value threshold = 0.2282) and patients with pancreatitis from patients with pancreatic cancer (P value threshold = 0.5467). IMPLICATIONS: These results indicate that the combined detection of exosomal GPC1, exosomal CD82, and serum CA19-9 shows great promise as a standard method for pancreatic cancer detection and that this panel could be further applied for screening pancreatic cancer in Chinese populations.
Collapse
Affiliation(s)
- Dong Xiao
- Department of Oncological Surgery, Hanzhong 3201 Hospital Affiliated to Xi'an Jiaotong University, Hanzhong, China
| | - Zhanjun Dong
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Linqing Zhen
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China.,School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Guanggai Xia
- Department of General Surgery, Shanghai Jiao Tong University Affiliated 6th Hospital, Shanghai, China
| | - Xinyu Huang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated 6th Hospital, Shanghai, China
| | - Tiezhong Wang
- Department of General Surgery, Linfen People's Hospital, Linfen, China
| | - Huaibin Guo
- Department of General Surgery, Hebei General Hospital, Shijiazhuang, China
| | - Binhui Yang
- Department of Orthopedics, Hanzhong 3201 Hospital Affiliated to Xi'an Jiaotong University, Hanzhong, China
| | - Cheng Xu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Weiwei Wu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Xiaoyu Zhao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China. .,State Key Laboratory of Genetic Engineerings, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Xu
- School of Biomedical Engineering/Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
|
Wang Y, Yang R, Wang X, Ci H, Zhou L, Zhu B, Wu S, Wang D. Evaluation of the correlation of vasculogenic mimicry, Notch4, DLL4, and KAI1/CD82 in the prediction of metastasis and prognosis in non-small cell lung cancer. Medicine (Baltimore) 2018; 97:e13817. [PMID: 30593175 DOI: 10.1097/MD.0000000000013817] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vasculogenic mimicry (VM) is a new blood supply style in tumors and has long been treated as a useful factor in malignant tumor metastasis and prognosis. Notch4 (a marker of Notch signaling pathway receptors), DLL4 (a marker of Notch signaling pathway ligands) and KAI1/CD82 (a suppressor gene of tumor metastasis) are all effective predictive factors for tumor metastasis. In this study, we analyzed correlations among VM, Notch4, DLL4, and KAI1/CD82 in non-small cell lung cancer (NSCLC), and their respective associations with patients' clinicopathological parameters and survival rate in NSCLC.Positive rates of VM, Notch4, DLL4, and KAI1/CD82 in 189 whole NSCLC specimens were detected by histochemical and immunohistochemical staining. Moreover, patients' clinicopathological information was also collected.Positive rates of VM, Notch4, and DLL4 were significantly higher, and levels of KAI1/CD82 were significantly lower in NSCLC than in normal lung tissues. Positive rates of VM, Notch4, and DLL4 were positively associated with tumor size, lymph node metastasis (LNM), distant metastasis (DM) and tumor-node-metastasis (TNM) stage, and inversely with patients, overall survival (OS) time and positive rate of DLL4 were positively associated with tumor grade. Levels of KAI1/CD82 were negatively associated with tumor size, LNM, DM, and TNM stage. The KAI1/CD82+ subgroup had significantly longer OS time than did the KAI1/CD82- subgroup. In multivariate analysis, high VM, Notch4, DLL4 levels, tumor size, LNM, DM, TNM stage, and low KAI1/CD82 levels were potential to be independent prognostic factors for overall survival time (OST) in NSCLC patients.VM and the expression of Notch4, DLL4, and KAI1/CD82 represent promising markers for tumor metastasis and prognosis, and maybe potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Ruixue Yang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xiaolin Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lei Zhou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Bo Zhu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|
9
|
|
Abstract
PHD Finger Protein 2 (PHF2), as a protein code and a transcription regulatory gene, is a member of the Jumonji-C domain (JmjC). PHF2 is located at human chromosome 9q22.31 and is frequently decreased in various malignancies. However, the definite role of PHF2 in breast cancer remains unclear. To detect the expression and function of PHF2 in breast cancer, a q-PCR assay was used to detect the mRNA expression of PHF2 in breast cancer cell lines and paired breast cancer tissues, and immunohistochemistry was used to test the protein expression in breast cancer tissues and adjacent tissues. In addition, an adenovirus vector system was utilized to upregulate the expression of PHF2 in breast cancer cells. In our study, we found that PHF2 was down-expressed in breast cancer on both the mRNA and protein levels and the low expression of PHF2 was significantly associated with lymph node metastasis, Ki67 positive rate, ER negative expression and poor prognosis in breast cancer patients. The ectopic expression of PHF2 obviously inhibited the proliferation of breast cancer cell lines and the growth of xenograft tumors. Due to the tumor suppressor signature of PHF2 in breast cancer, we have reasons to believe that it could be a promoting marker and target for the prognosis and therapy of breast cancer. The role of PHD Finger Protein 2 (PHF2) as a promoting marker and target for the prognosis and therapy of breast cancer was investigated.![]()
Collapse
Affiliation(s)
- Lu Zhang
- Department of Oncology, Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University China
| | - Tian-Li Hui
- Department of Oncology, Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University China
| | - Yu-Xian Wei
- Department of Endocrine Surgery and Breast Cancer Center, The First Affiliated Hospital of Chongqing Medical University #1 YouYi Road, YuZhong District Chongqing 400016 China
| | - Zhu-Min Cao
- Department of Oncology, The Seventh People's Hospital of Chongqing 400016 China
| | - Fan Feng
- Department of Breast Surgery, Hangzhou Women's Hospital Zhejiang 310000 China
| | - Guo-Sheng Ren
- Department of Oncology, Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University China.,Department of Endocrine Surgery and Breast Cancer Center, The First Affiliated Hospital of Chongqing Medical University #1 YouYi Road, YuZhong District Chongqing 400016 China
| | - Fan Li
- Department of Endocrine Surgery and Breast Cancer Center, The First Affiliated Hospital of Chongqing Medical University #1 YouYi Road, YuZhong District Chongqing 400016 China
| |
Collapse
|
10
|
|
Pehkonen H, Lento M, von Nandelstadh P, Filippou A, Grénman R, Lehti K, Monni O. Liprin-α1 modulates cancer cell signaling by transmembrane protein CD82 in adhesive membrane domains linked to cytoskeleton. Cell Commun Signal 2018; 16:41. [PMID: 30005669 DOI: 10.1186/s12964-018-0253-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Background PPFIA1 is located at the 11q13 region commonly amplified in cancer. The protein liprin-α1 encoded by PPF1A1 contributes to the adhesive and invasive structures of cytoskeletal elements and is located at the invadosomes in cancer cells. However, the precise mechanism of liprin-α1 function in cancer progression has remained elusive. Methods Invasion regulating activity of liprin-α1 was examined by analyzing the functions of squamous cell carcinoma of head and neck (HNSCC) cell lines in three-dimensional collagen I after RNAi mediated gene knockdown. Transcriptome profiling and Gene Set Enrichment Analysis from HNSCC and breast cancer cells were used to identify expression changes relevant to specific cellular localizations, biological processes and signaling pathways after PPFIA1 knockdown. The significance of the results was assessed by relevant statistical methods (Wald and Benjamini-Hochberg). Localization of proteins associated to liprin-α1 was studied by immunofluorescence in 2D and 3D conditions. The association of PPFIA1 amplification to HNSCC patient survival was explored using The Cancer Genome Atlas data. Results In this study, we show that liprin-α1 regulates biological processes related to membrane microdomains in breast carcinoma, as well as protein trafficking, cell-cell and cell-substrate contacts in HNSCC cell lines cultured in three-dimensional matrix. Importantly, we show that in all these cancer cells liprin-α1 knockdown leads to the upregulation of transmembrane protein CD82, which is a suppressor of metastasis in several solid tumors. Conclusions Our results provide novel information regarding the function of liprin-α1 in biological processes essential in cancer progression. The results reveal liprin-α1 as a novel regulator of CD82, linking liprin-α1 to the cancer cell invasion and metastasis pathways. Electronic supplementary material The online version of this article (10.1186/s12964-018-0253-y) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
|
Malla RR, Pandrangi S, Kumari S, Gavara MM, Badana AK. Exosomal tetraspanins as regulators of cancer progression and metastasis and novel diagnostic markers. Asia Pac J Clin Oncol 2018; 14:383-91. [PMID: 29575602 DOI: 10.1111/ajco.12869] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022]
Abstract
Exosomes are cell-cell communicators emerging as a new paradigm for noninvasive diagnosis and prognosis of treatment response. Exosomal tetraspanin proteins like CD63, CD9 and CD81 play a critical role in sorting, selective recruitment of biomolecules, target selection, cell-specific entry, capturing, angiogenesis and vasculogenesis. These tetraspanins are being used as markers for oral, colorectal and colon cancers and glioblastoma. However, exosomal markers with robust specificity for early detection of carcinomas are the furthest along. EXO CARTA database shows the presence of CD151 in exosomes of colorectal, melanoma, ovarian and prostate cancers. CD151 preferentially targets exosomes to lung, lymph node and stroma cells. The present review discussed the possible role of tetraspanins in the formation, cargo selection, target selection and uptake of exosomes and suggests exciting new directions for future research.
Collapse
Affiliation(s)
- Rama Rao Malla
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Santhi Pandrangi
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Seema Kumari
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Murali Mohan Gavara
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| | - Anil Kumar Badana
- Department of Biochemistry, Cancer Biology Lab, Institute of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be university), Visakhapatnam, India
| |
Collapse
|
12
|
|
Zhu J, Liang C, Hua Y, Miao C, Zhang J, Xu A, Zhao K, Liu S, Tian Y, Dong H, Zhang C, Li P, Su S, Qin C, Wang Z. The metastasis suppressor CD82/KAI1 regulates cell migration and invasion via inhibiting TGF-β 1/Smad signaling in renal cell carcinoma. Oncotarget 2017; 8:51559-68. [PMID: 28881668 DOI: 10.18632/oncotarget.18086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022] Open
Abstract
The tetraspanin KAI1/CD82 was identified as a tumor metastasis suppressor that downregulated in various malignant cell types. However, the function of CD82 and its underlying anti-metastasis role in renal cell carcinoma (RCC) is still unraveled. Here, we investigated the expression of CD82 in RCC and explored its regulatory mechanism in RCC cell lines. We found that CD82 was down-regulated in RCC tissues and cells and its expression was significantly associated with histological grade(p=0.041), tumour stage (p=0.036) and tumor size(p=0.020) by analyzing tissue microarrays. After upregulation of CD82 through lentivirus, reduced ability of migration and invasion in Caki-1 cells were detected. In contrast, gene silencing of CD82 by small interfering RNA promoted metastatic and invasive potential of 786-O cells. Furthermore, Western blot was performed to identify the influence of CD82 on MMP family and TGF-β1/Smad pathway in RCC. Subsequently, upregulating protein level of TGF-β1 with the overexpression of CD82 could rescue the malignant behaviors inhibited by CD82 which indicated that CD82 played its inhibitory role in RCC partially by attenuating the expression of TGF-β1. Taken together, CD82 played a prominent role in migration and invasion of RCC cells and it might exhibit its inhibitory role in RCC metastasis via block TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Jundong Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yibo Hua
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pu Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shifeng Su
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|