1
|
Rosenlehner T, Pennavaria S, Akçabozan B, Jahani S, O'Neill TJ, Krappmann D, Straub T, Kranich J, Obst R. Reciprocal regulation of mTORC1 signaling and ribosomal biosynthesis determines cell cycle progression in activated T cells. Sci Signal 2024; 17:eadi8753. [PMID: 39436996 DOI: 10.1126/scisignal.adi8753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/10/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
Ribosomal biosynthesis in nucleoli is an energy-demanding process driven by all RNA polymerases and hundreds of auxiliary proteins. We investigated how this process is regulated in activated T lymphocytes by T cell receptor (TCR) signals and the multiprotein complexes mTORC1 and mTORC2, both of which contain the kinase mTOR. Deficiency in mTORC1 slowed the proliferation of T cells, with further delays in each consecutive division, an effect not seen with deficiency in mTORC2. mTORC1 signaling was stimulated by components of conventional TCR signaling, and, reciprocally, TCR sensitivity was decreased by mTORC1 inhibition. The substantial increase in the amount of RNA per cell induced by TCR activation was reduced by 50% by deficiency in mTORC1, but not in mTORC2 or in S6 kinases 1 and 2, which are activated downstream of mTORC1. RNA-seq data showed that mTORC1 deficiency reduced the abundance of all RNA biotypes, although rRNA processing was largely intact in activated T cells. Imaging cytometry with FISH probes for nascent pre-rRNA revealed that deletion of mTORC1, but not that of mTORC2, reduced the number and expansion of nucleolar sites of active transcription. Protein translation was consequently decreased by 50% in the absence of mTORC1. Inhibiting RNA polymerase I blocked not only proliferation but also mTORC1 signaling. Our data show that TCR signaling, mTORC1 activity, and ribosomal biosynthesis in the nucleolus regulate each other during biomass production in clonally expanding T cells.
Collapse
Affiliation(s)
- Teresa Rosenlehner
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefanie Pennavaria
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Batuhan Akçabozan
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Shiva Jahani
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Thomas J O'Neill
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Reinhard Obst
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Nussinov R, Zhang W, Liu Y, Jang H. Mitogen signaling strength and duration can control cell cycle decisions. SCIENCE ADVANCES 2024; 10:eadm9211. [PMID: 38968359 PMCID: PMC11809619 DOI: 10.1126/sciadv.adm9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Decades ago, mitogen-promoted signaling duration and strength were observed to be sensed by the cell and to be critical for its decisions: to proliferate or differentiate. Landmark publications established the importance of mitogen signaling not only in the G1 cell cycle phase but also through the S and the G2/M transition. Despite these early milestones, how mitogen signal duration and strength, short and strong or weaker and sustained, control cell fate has been largely unheeded. Here, we center on cardinal signaling-related questions, including (i) how fluctuating mitogenic signals are converted into cell proliferation-differentiation decisions and (ii) why extended duration of weak signaling is associated with differentiation, while bursts of strong and short induce proliferation but, if too strong and long, induce irreversible senescence. Our innovative broad outlook harnesses cell biology and protein conformational ensembles, helping us to define signaling strength, clarify cell cycle decisions, and thus cell fate.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Wißfeld J, Hering M, Ten Bosch N, Cui G. The immunosuppressive drug cyclosporin A has an immunostimulatory function in CD8 + T cells. Eur J Immunol 2024; 54:e2350825. [PMID: 38650034 DOI: 10.1002/eji.202350825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Cyclosporin A is a well-established immunosuppressive drug used to treat or prevent graft-versus-host disease, the rejection of organ transplants, autoimmune disorders, and leukemia. It exerts its immunosuppressive effects by inhibiting calcineurin-mediated dephosphorylation of the nuclear factor of activated T cells (NFAT), thus preventing its nuclear entry and suppressing T cell activation. Here we report an unexpected immunostimulatory effect of cyclosporin A in activating the mammalian target of rapamycin complex 1 (mTORC1), a crucial metabolic hub required for T cell activation. Through screening a panel of tool compounds known to regulate mTORC1 activation, we found that cyclosporin A activated mTORC1 in CD8+ T cells in a 3-phosphoinositide-dependent protein kinase 1 (PDK1) and protein kinase B (PKB/AKT)-dependent manner. Mechanistically, cyclosporin A inhibited the calcineurin-mediated AKT dephosphorylation, thereby stabilizing mTORC1 signaling. Cyclosporin A synergized with mTORC1 pathway inhibitors, leading to potent suppression of proliferation and cytokine production in CD8+ T cells and an increase in the killing of acute T cell leukemia cells. Consequently, relying solely on CsA is insufficient to achieve optimal therapeutic outcomes. It is necessary to simultaneously target both the calcineurin-NFAT pathway and the mTORC1 pathway to maximize therapeutic efficacy.
Collapse
Affiliation(s)
- Jannis Wißfeld
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marvin Hering
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim (UMM), Mannheim, Germany
| | - Nora Ten Bosch
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guoliang Cui
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Germany
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Perez C, Plaza-Rojas L, Boucher JC, Nagy MZ, Kostenko E, Prajapati K, Burke B, Reyes MD, Austin AL, Zhang S, Le PT, Guevara-Patino JA. NKG2D receptor signaling shapes T cell thymic education. J Leukoc Biol 2024; 115:306-321. [PMID: 37949818 DOI: 10.1093/jleuko/qiad130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/11/2023] [Accepted: 09/30/2023] [Indexed: 11/12/2023] Open
Abstract
The role of natural killer group 2D (NKG2D) in peripheral T cells as a costimulatory receptor is well established. However, its contribution to T cell thymic education and functional imprint is unknown. Here, we report significant changes in development, receptor signaling, transcriptional program, and function in T cells from mice lacking NKG2D signaling. In C57BL/6 (B6) and OT-I mice, we found that NKG2D deficiency results in Vβ chain usage changes and stagnation of the double-positive stage in thymic T cell development. We found that the expression of CD5 and CD45 in thymocytes from NKG2D deficient mice were reduced, indicating a direct influence of NKG2D on the strength of T cell receptor (TCR) signaling during the developmental stage of T cells. Depicting the functional consequences of NKG2D, peripheral OT-I NKG2D-deficient cells were unresponsive to ovalbumin peptide stimulation. Paradoxically, while αCD3/CD28 agonist antibodies led to phenotypic T cell activation, their ability to produce cytokines remained severely compromised. We found that OT-I NKG2D-deficient cells activate STAT5 in response to interleukin-15 but were unable to phosphorylate ERK or S6 upon TCR engagement, underpinning a defect in TCR signaling. Finally, we showed that NKG2D is expressed in mouse and human thymic T cells at the double-negative stage, suggesting an evolutionarily conserved function during T cell development. The data presented in this study indicate that NKG2D impacts thymic T cell development at a fundamental level by reducing the TCR threshold and affecting the functional imprint of the thymic progeny. In summary, understanding the impact of NKG2D on thymic T cell development and TCR signaling contributes to our knowledge of immune system regulation, immune dysregulation, and the design of immunotherapies.
Collapse
Affiliation(s)
- Cynthia Perez
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Lourdes Plaza-Rojas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Justin C Boucher
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Mate Z Nagy
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Elena Kostenko
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Kushal Prajapati
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Brianna Burke
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Michael Delos Reyes
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Anna L Austin
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| | - Shubin Zhang
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - Phong T Le
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Microbiology and Immunology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
| | - José A Guevara-Patino
- Department of Cancer Biology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, United States
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States
| |
Collapse
|
5
|
Zuhair R, Eastwood M, Jones M, Cross A, Hester J, Issa F, Ginty F, Sailem H. Decoding mTOR signalling heterogeneity in the tumour microenvironment using multiplexed imaging and graph convolutional networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573693. [PMID: 38234756 PMCID: PMC10793449 DOI: 10.1101/2023.12.30.573693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Evaluating the contribution of the tumour microenvironment (TME) in tumour progression has proven a complex challenge due to the intricate interactions within the TME. Multiplexed imaging is an emerging technology that allows concurrent assessment of multiple of these components simultaneously. Here we utilise a highly multiplexed dataset of 61 markers across 746 colorectal tumours to investigate how complex mTOR signalling in different tissue compartments influences patient prognosis. We found that the signalling of mTOR pathway can have heterogeneous activation patterns in tumour and immune compartments which correlate with patient prognosis. Using graph neural networks, we determined the most predictive features of mTOR activity in immune cells and identified relevant cellular subpopulations. We validated our observations using spatial transcriptomics data analysis in an independent patient cohort. Our work provides a framework for studying complex cell signalling and reveals important insights for developing mTOR-based therapies.
Collapse
|
6
|
Jenkins BJ, Blagih J, Ponce-Garcia FM, Canavan M, Gudgeon N, Eastham S, Hill D, Hanlon MM, Ma EH, Bishop EL, Rees A, Cronin JG, Jury EC, Dimeloe SK, Veale DJ, Thornton CA, Vousden KH, Finlay DK, Fearon U, Jones GW, Sinclair LV, Vincent EE, Jones N. Canagliflozin impairs T cell effector function via metabolic suppression in autoimmunity. Cell Metab 2023; 35:1132-1146.e9. [PMID: 37230079 DOI: 10.1016/j.cmet.2023.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/03/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Augmented T cell function leading to host damage in autoimmunity is supported by metabolic dysregulation, making targeting immunometabolism an attractive therapeutic avenue. Canagliflozin, a type 2 diabetes drug, is a sodium glucose co-transporter 2 (SGLT2) inhibitor with known off-target effects on glutamate dehydrogenase and complex I. However, the effects of SGLT2 inhibitors on human T cell function have not been extensively explored. Here, we show that canagliflozin-treated T cells are compromised in their ability to activate, proliferate, and initiate effector functions. Canagliflozin inhibits T cell receptor signaling, impacting on ERK and mTORC1 activity, concomitantly associated with reduced c-Myc. Compromised c-Myc levels were encapsulated by a failure to engage translational machinery resulting in impaired metabolic protein and solute carrier production among others. Importantly, canagliflozin-treated T cells derived from patients with autoimmune disorders impaired their effector function. Taken together, our work highlights a potential therapeutic avenue for repurposing canagliflozin as an intervention for T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Benjamin J Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; University of Montreal, Maisonneuve-Rosemont Hospital Research Centre, 5414 Assomption Blvd, Montreal, QC H1T 2M4, Canada
| | - Fernando M Ponce-Garcia
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Mary Canavan
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin, Ireland
| | - Nancy Gudgeon
- Institute of Immunology and Immunotherapy, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Simon Eastham
- Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - David Hill
- Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Megan M Hanlon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin, Ireland
| | - Eric H Ma
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA; Rheos Medicines, Cambridge, MA, USA
| | - Emma L Bishop
- Institute of Immunology and Immunotherapy, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - April Rees
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Elizabeth C Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London, UK
| | - Sarah K Dimeloe
- Institute of Immunology and Immunotherapy, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin, Ireland
| | - Gareth W Jones
- Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - Linda V Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Emma E Vincent
- School of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol BS1 3NY, UK; Integrative Epidemiology Unit, School of Population Health Science, University of Bristol, Bristol BS8 2BN, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK.
| |
Collapse
|
7
|
Jiang Y, Jin X, Chi Z, Bai Y, Manthiram K, Mudd P, Zhu K, Wang L, Schwartzberg PL, Han Y, Gao X, Lu L, Xu Q. Protein phosphatase 2A propels follicular T helper cell development in lupus. J Autoimmun 2023; 136:103028. [PMID: 37001432 PMCID: PMC10327577 DOI: 10.1016/j.jaut.2023.103028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/09/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Follicular helper T (Tfh) cells are important for generating humoral immune responses by helping B cells form germinal centers (GCs) and the production of high-affinity antibodies. However, aberrant Tfh cell expansion also contributes to the generation of self-reactive autoantibodies and promotes autoantibody-mediated autoimmune diseases such as systemic lupus erythematosus (SLE). Protein phosphatase 2A catalytic subunit alpha isoform (PP2A Cα) expression levels are elevated in peripheral T cells of SLE patients and positively correlate with autoantibody titers and disease activity. Here, we demonstrate a critical role of PP2A in Tfh differentiation by using T cell restricted PP2A Cα deficient mice. We observed impaired Tfh differentiation and GC response in two different classical Tfh induction models. Mechanistic studies revealed that downregulation of protein translation of the Tfh lineage transcription factor BCL6 in PP2A deficient T cells. Importantly, we found that PP2A deficiency by either gene knockout or chemical inhibition alleviated lupus severity in mice. Lastly, we confirmed a positive correlation between PP2A Cα and BCL6 protein levels in human CD4+ T cells from patients with SLE. In summary, our study revealed a critical role of PP2A in regulating Tfh cells and suggests it is a potential therapeutic target for lupus.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Xuexiao Jin
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Zhexu Chi
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China; Department of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Yadan Bai
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Kalpana Manthiram
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pamela Mudd
- Division of Pediatric Otolaryngology, Children's National Hospital, Washington, DC, USA; Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kaixiang Zhu
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China; Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China
| | - Lie Wang
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yongmei Han
- Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Xiang Gao
- Key Laboratory of Model Animals for Disease Study of the Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, 210061, PR China
| | - Linrong Lu
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China; Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200127, China.
| | - Qin Xu
- Institute of Immunology, and Department of Rheumatology in Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, PR China; Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
8
|
Champagne J, Mordente K, Nagel R, Agami R. Slippy-Sloppy translation: a tale of programmed and induced-ribosomal frameshifting. Trends Genet 2022; 38:1123-1133. [PMID: 35641342 DOI: 10.1016/j.tig.2022.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/24/2023]
Abstract
Programmed ribosomal frameshifting (PRF) is a key mechanism that viruses use to generate essential proteins for replication, and as a means of regulating gene expression. PRF generally involves recoding signals or frameshift stimulators to elevate the occurrence of frameshifting at shift-prone 'slippery' sequences. Given its essential role in viral replication, targeting PRF was envisioned as an attractive tool to block viral infection. However, in contrast to controlled-PRF mechanisms, recent studies have shown that ribosomes of many human cancer cell types are prone to frameshifting upon amino acid shortage; thus, these cells are deemed to be sloppy. The resulting products of a sloppy frameshift at the 'hungry' codons are aberrant proteins the degradation and display of which at the cell surface can trigger T cell activation. In this review, we address recent discoveries in ribosomal frameshifting and their functional consequences for the proteome in human cancer cells.
Collapse
Affiliation(s)
- Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Kelly Mordente
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands; Erasmus MC, Rotterdam University, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
HIF-1 stabilization in T cells hampers the control of Mycobacterium tuberculosis infection. Nat Commun 2022; 13:5093. [PMID: 36064840 PMCID: PMC9445005 DOI: 10.1038/s41467-022-32639-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
The hypoxia-inducible factors (HIFs) regulate the main transcriptional pathway of response to hypoxia in T cells and are negatively regulated by von Hippel-Lindau factor (VHL). But the role of HIFs in the regulation of CD4 T cell responses during infection with M. tuberculosis isn’t well understood. Here we show that mice lacking VHL in T cells (Vhl cKO) are highly susceptible to infection with M. tuberculosis, which is associated with a low accumulation of mycobacteria-specific T cells in the lungs that display reduced proliferation, altered differentiation and enhanced expression of inhibitory receptors. In contrast, HIF-1 deficiency in T cells is redundant for M. tuberculosis control. Vhl cKO mice also show reduced responses to vaccination. Further, VHL promotes proper MYC-activation, cell-growth responses, DNA synthesis, proliferation and survival of CD4 T cells after TCR activation. The VHL-deficient T cell responses are rescued by the loss of HIF-1α, indicating that the increased susceptibility to M. tuberculosis infection and the impaired responses of Vhl-deficient T cells are HIF-1-dependent. The role of hypoxia inducible factors in infection and immune response is unclear. Here, the authors study their impact on the regulation of T cells responses during Mycobacteria tuberculosis infection using transcriptomics, flow cytometry and in vivo infection.
Collapse
|
10
|
Hope HC, Pickersgill G, Ginefra P, Vannini N, Cook GP, Salmond RJ. TGFβ limits Myc-dependent TCR-induced metabolic reprogramming in CD8 + T cells. Front Immunol 2022; 13:913184. [PMID: 35958566 PMCID: PMC9360539 DOI: 10.3389/fimmu.2022.913184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/06/2022] [Indexed: 02/02/2023] Open
Abstract
T cell activation is dependent upon the integration of antigenic, co-stimulatory and cytokine-derived signals and the availability and acquisition of nutrients from the environment. Furthermore, T cell activation is accompanied by reprogramming of cellular metabolism to provide the energy and building blocks for proliferation, differentiation and effector function. Transforming growth factor β (TGFβ) has pleiotropic effects on T cell populations, having both an essential role in the maintenance of immune tolerance but also context-dependent pro-inflammatory functions. We set out to define the mechanisms underpinning the suppressive effects of TGFβ on mouse CD8+ T cell activation. RNA-sequencing analysis of TCR-stimulated T cells determined that Myc-regulated genes were highly enriched within gene sets downregulated by TGFβ. Functional analysis demonstrated that TGFβ impeded TCR-induced upregulation of amino acid transporter expression, amino acid uptake and protein synthesis. Furthermore, TCR-induced upregulation of Myc-dependent glycolytic metabolism was substantially inhibited by TGFβ treatment with minimal effects on mitochondrial respiration. Thus, our data suggest that inhibition of Myc-dependent metabolic reprogramming represents a major mechanism underpinning the suppressive effects of TGFβ on CD8+ T cell activation.
Collapse
Affiliation(s)
- Helen Carrasco Hope
- Leeds Institute of Medical Research at St James’s, University of Leeds, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds, United Kingdom
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Gabriella Pickersgill
- Leeds Institute of Medical Research at St James’s, University of Leeds, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds, United Kingdom
| | - Pierpaolo Ginefra
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Nicola Vannini
- Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Graham P. Cook
- Leeds Institute of Medical Research at St James’s, University of Leeds, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds, United Kingdom
| | - Robert J. Salmond
- Leeds Institute of Medical Research at St James’s, University of Leeds, Wellcome Trust Brenner Building, St James’s University Hospital, Leeds, United Kingdom
| |
Collapse
|
11
|
Marchingo JM, Cantrell DA. Protein synthesis, degradation, and energy metabolism in T cell immunity. Cell Mol Immunol 2022; 19:303-315. [PMID: 34983947 PMCID: PMC8891282 DOI: 10.1038/s41423-021-00792-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
T cell activation, proliferation, and differentiation into effector and memory states involve massive remodeling of T cell size and molecular content and create a massive increase in demand for energy and amino acids. Protein synthesis is an energy- and resource-demanding process; as such, changes in T cell energy production are intrinsically linked to proteome remodeling. In this review, we discuss how protein synthesis and degradation change over the course of a T cell immune response and the crosstalk between these processes and T cell energy metabolism. We highlight how the use of high-resolution mass spectrometry to analyze T cell proteomes can improve our understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Julia M Marchingo
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Doreen A Cantrell
- Cell Signalling and Immunology Division, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
12
|
Wilson RJ, Lyons SP, Koves TR, Bryson VG, Zhang H, Li T, Crown SB, Ding JD, Grimsrud PA, Rosenberg PB, Muoio DM. Disruption of STIM1-mediated Ca 2+ sensing and energy metabolism in adult skeletal muscle compromises exercise tolerance, proteostasis, and lean mass. Mol Metab 2022; 57:101429. [PMID: 34979330 PMCID: PMC8814391 DOI: 10.1016/j.molmet.2021.101429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane endoplasmic/sarcoplasmic reticulum (E/SR) protein recognized for its role in a store operated Ca2+ entry (SOCE), an ancient and ubiquitous signaling pathway. Whereas STIM1 is known to be indispensable during development, its biological and metabolic functions in mature muscles remain unclear. METHODS Conditional and tamoxifen inducible muscle STIM1 knock-out mouse models were coupled with multi-omics tools and comprehensive physiology to understand the role of STIM1 in regulating SOCE, mitochondrial quality and bioenergetics, and whole-body energy homeostasis. RESULTS This study shows that STIM1 is abundant in adult skeletal muscle, upregulated by exercise, and is present at SR-mitochondria interfaces. Inducible tissue-specific deletion of STIM1 (iSTIM1 KO) in adult muscle led to diminished lean mass, reduced exercise capacity, and perturbed fuel selection in the settings of energetic stress, without affecting whole-body glucose tolerance. Proteomics and phospho-proteomics analyses of iSTIM1 KO muscles revealed molecular signatures of low-grade E/SR stress and broad activation of processes and signaling networks involved in proteostasis. CONCLUSION These results show that STIM1 regulates cellular and mitochondrial Ca2+ dynamics, energy metabolism and proteostasis in adult skeletal muscles. Furthermore, these findings provide insight into the pathophysiology of muscle diseases linked to disturbances in STIM1-dependent Ca2+ handling.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Scott P Lyons
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Geriatrics, Duke University School of Medicine, Durham, NC 27705, USA
| | - Victoria G Bryson
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Hengtao Zhang
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - TianYu Li
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Scott B Crown
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Jin-Dong Ding
- Department of Medicine, Division of Ophthalmology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC 27705, USA
| | - Paul B Rosenberg
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC 27705, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|
13
|
Harder I, Münchhalfen M, Andrieux G, Boerries M, Grimbacher B, Eibel H, Maccari ME, Ehl S, Wienands J, Jellusova J, Warnatz K, Keller B. Dysregulated PI3K Signaling in B Cells of CVID Patients. Cells 2022; 11:cells11030464. [PMID: 35159274 PMCID: PMC8834633 DOI: 10.3390/cells11030464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/28/2022] Open
Abstract
The altered wiring of signaling pathways downstream of antigen receptors of T and B cells contributes to the dysregulation of the adaptive immune system, potentially causing immunodeficiency and autoimmunity. In humans, the investigation of such complex systems benefits from nature’s experiments in patients with genetically defined primary immunodeficiencies. Disturbed B-cell receptor (BCR) signaling in a subgroup of common variable immunodeficiency (CVID) patients with immune dysregulation and expanded T-bethighCD21low B cells in peripheral blood has been previously reported. Here, we investigate PI3K signaling and its targets as crucial regulators of survival, proliferation and metabolism by intracellular flow cytometry, imaging flow cytometry and RNAseq. We observed increased basal but disturbed BCR-induced PI3K signaling, especially in T-bethighCD21low B cells from CVID patients, translating into impaired activation of crucial downstream molecules and affecting proliferation, survival and the metabolic profile. In contrast to CVID, increased basal activity of PI3K in patients with a gain-of-function mutation in PIK3CD and activated PI3K delta syndrome (APDS) did not result in impaired BCR-induced AKT-mTOR-S6 phosphorylation, highlighting that signaling defects in B cells in CVID and APDS patients are fundamentally different and that assessing responses to BCR stimulation is an appropriate confirmative diagnostic test for APDS. The active PI3K signaling in vivo may render autoreactive T-bethighCD21low B cells in CVID at the same time to be more sensitive to mTOR or PI3K inhibition.
Collapse
Affiliation(s)
- Ina Harder
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Münchhalfen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany; (M.M.); (J.W.)
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (G.A.); (M.B.)
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (G.A.); (M.B.)
- German Cancer Consortium (DKTK), Partner site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; (B.G.); (M.E.M.); (S.E.)
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- DZIF—German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany
- RESIST—Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Hermann Eibel
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; (B.G.); (M.E.M.); (S.E.)
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; (B.G.); (M.E.M.); (S.E.)
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany; (M.M.); (J.W.)
| | - Julia Jellusova
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany;
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Correspondence: (K.W.); (B.K.); Tel.: +49-761-27077640 (K.W.); +49-761-27077691 (B.K.)
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; (I.H.); (H.E.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Correspondence: (K.W.); (B.K.); Tel.: +49-761-27077640 (K.W.); +49-761-27077691 (B.K.)
| |
Collapse
|
14
|
Fazil MHUT, Prasannan P, Wong BHS, Kottaiswamy A, Salim NSBM, Sze SK, Verma NK. GSK3β Interacts With CRMP2 and Notch1 and Controls T-Cell Motility. Front Immunol 2021; 12:680071. [PMID: 34975828 PMCID: PMC8718691 DOI: 10.3389/fimmu.2021.680071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022] Open
Abstract
The trafficking of T-cells through peripheral tissues and into afferent lymphatic vessels is essential for immune surveillance and an adaptive immune response. Glycogen synthase kinase 3β (GSK3β) is a serine/threonine kinase and regulates numerous cell/tissue-specific functions, including cell survival, metabolism, and differentiation. Here, we report a crucial involvement of GSK3β in T-cell motility. Inhibition of GSK3β by CHIR-99021 or siRNA-mediated knockdown augmented the migratory behavior of human T-lymphocytes stimulated via an engagement of the T-cell integrin LFA-1 with its ligand ICAM-1. Proteomics and protein network analysis revealed ongoing interactions among GSK3β, the surface receptor Notch1 and the cytoskeletal regulator CRMP2. LFA-1 stimulation in T-cells reduced Notch1-dependent GSK3β activity by inducing phosphorylation at Ser9 and its nuclear translocation accompanied by the cleaved Notch1 intracellular domain and decreased GSK3β-CRMP2 association. LFA-1-induced or pharmacologic inhibition of GSK3β in T-cells diminished CRMP2 phosphorylation at Thr514. Although substantial amounts of CRMP2 were localized to the microtubule-organizing center in resting T-cells, this colocalization of CRMP2 was lost following LFA-1 stimulation. Moreover, the migratory advantage conferred by GSK3β inhibition in T-cells by CHIR-99021 was lost when CRMP2 expression was knocked-down by siRNA-induced gene silencing. We therefore conclude that GSK3β controls T-cell motility through interactions with CRMP2 and Notch1, which has important implications in adaptive immunity, T-cell mediated diseases and LFA-1-targeted therapies.
Collapse
Affiliation(s)
| | - Praseetha Prasannan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- Interdisciplinary Graduate Programme, NTU Institute for Health Technologies (HealthTech NTU), Nanyang Technological University Singapore, Singapore, Singapore
| | - Amuthavalli Kottaiswamy
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
- *Correspondence: Navin Kumar Verma,
| |
Collapse
|
15
|
Carey ST, Gammon JM, Jewell CM. Biomaterial-enabled induction of pancreatic-specific regulatory T cells through distinct signal transduction pathways. Drug Deliv Transl Res 2021; 11:2468-2481. [PMID: 34611846 PMCID: PMC8581478 DOI: 10.1007/s13346-021-01075-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Autoimmune diseases-where the immune system mistakenly targets self-tissue-remain hindered by non-specific therapies. For example, even molecularly specific monoclonal antibodies fail to distinguish between healthy cells and self-reactive cells. An experimental therapeutic approach involves delivery of self-molecules targeted by autoimmunity, along with immune modulatory signals to produce regulatory T cells (TREG) that selectively stop attack of host tissue. Much has been done to increase the efficiency of signal delivery using biomaterials, including encapsulation in polymer microparticles (MPs) to allow for co-delivery and cargo protection. However, less research has compared particles encapsulating drugs that target different TREG inducing pathways. In this paper, we use poly (lactic-co-glycolide) (PLGA) to co-encapsulate type 1 diabetes (T1D)-relevant antigen and 3 distinct TREG-inducing molecules - rapamycin (Rapa), all-trans retinoic acid (atRA), and butyrate (Buty) - that target the mechanistic target of Rapa (mTOR), the retinoid pathway, and histone deacetylase (HDAC) inhibition, respectively. We show all formulations are effectively taken up by antigen presenting cells (APCs) and that antigen-containing formulations are able to induce proliferation in antigen-specific T cells. Further, atRA and Rapa MP formulations co-loaded with antigen decrease APC activation levels, induce TREG differentiation, and reduce inflammatory cytokines in pancreatic-reactive T cells.
Collapse
Affiliation(s)
- Sean T Carey
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA.
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA.
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
16
|
You KS, Yi YW, Cho J, Park JS, Seong YS. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:589. [PMID: 34207383 PMCID: PMC8233743 DOI: 10.3390/ph14060589] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive characteristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings. However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combination strategies have been explored as a promising approach to overcome the intrinsic resistance of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current knowledge and to provide potential therapeutic options for TNBC treatment.
Collapse
Affiliation(s)
- Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea;
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 3116, Chungcheongnam-do, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (J.C.)
| |
Collapse
|
17
|
Briner A, Götz J, Polanco JC. Fyn Kinase Controls Tau Aggregation In Vivo. Cell Rep 2021; 32:108045. [PMID: 32814048 DOI: 10.1016/j.celrep.2020.108045] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/14/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a proteinopathy exhibiting aggregation of β-amyloid (Aβ) as amyloid plaques and tau as neurofibrillary tangles (NFTs), whereas primary tauopathies display only a tau pathology. Aβ toxicity is mediated by Fyn kinase in a tau-dependent process; however, whether Fyn controls tau pathology in diseases that lack Aβ pathology remains unexplored. To address this, we generate the Tg/Fyn-/- mouse, which couples mutant tau overexpression with Fyn knockout. Surprisingly, Tg/Fyn-/- mice exhibit a near-complete ablation of NFTs, alongside reduced tau hyperphosphorylation, altered tau solubility, and diminished synaptic tau accumulation. Furthermore, Tg/Fyn-/- brain lysates elicit less tau seeding in tau biosensor cells. Lastly, the fibrillization of tau is boosted by its pseudophosphorylation at the Fyn epitope Y18. Together, this identifies Fyn as a key regulator of tau pathology independently of Aβ-induced toxicity and thereby represents a potentially valuable therapeutic target for not only AD but also tauopathies more generally.
Collapse
Affiliation(s)
- Adam Briner
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Juan Carlos Polanco
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
18
|
Hope HC, Brownlie RJ, Fife CM, Steele L, Lorger M, Salmond RJ. Coordination of asparagine uptake and asparagine synthetase expression modulates CD8+ T cell activation. JCI Insight 2021; 6:137761. [PMID: 33822775 PMCID: PMC8262305 DOI: 10.1172/jci.insight.137761] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
T cell receptor (TCR) triggering by antigen results in metabolic reprogramming that, in turn, facilitates the exit of T cells from quiescence. The increased nutrient requirements of activated lymphocytes are met, in part, by upregulation of cell surface transporters and enhanced uptake of amino acids, fatty acids, and glucose from the environment. However, the role of intracellular pathways of amino acid biosynthesis in T cell activation is relatively unexplored. Asparagine is a nonessential amino acid that can be synthesized intracellularly through the glutamine-hydrolyzing enzyme asparagine synthetase (ASNS). We set out to define the requirements for uptake of extracellular asparagine and ASNS activity in CD8+ T cell activation. At early time points of activation in vitro, CD8+ T cells expressed little or no ASNS, and, as a consequence, viability and TCR-stimulated growth, activation, and metabolic reprogramming were substantially impaired under conditions of asparagine deprivation. At later time points (more than 24 hours of activation), TCR-induced mTOR-dependent signals resulted in ASNS upregulation that endowed CD8+ T cells with the capacity to function independently of extracellular asparagine. Thus, our data suggest that the coordinated upregulation of ASNS expression and uptake of extracellular asparagine is involved in optimal T cell effector responses.
Collapse
|
19
|
Gern BH, Adams KN, Plumlee CR, Stoltzfus CR, Shehata L, Moguche AO, Busman-Sahay K, Hansen SG, Axthelm MK, Picker LJ, Estes JD, Urdahl KB, Gerner MY. TGFβ restricts expansion, survival, and function of T cells within the tuberculous granuloma. Cell Host Microbe 2021; 29:594-606.e6. [DOI: 10.1016/j.chom.2021.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 01/02/2023]
|
20
|
Pinheiro DF, Szenes-Nagy AB, Maurano MM, Lietzenmayer M, Klicznik MM, Holly R, Kirchmeier D, Kitzmueller S, Achatz-Straussberger G, Rosenblum MD, Thalhamer J, Abbas AK, Gratz IK. Cutting Edge: Tissue Antigen Expression Levels Fine-Tune T Cell Differentiation Decisions In Vivo. THE JOURNAL OF IMMUNOLOGY 2020; 205:2577-2582. [PMID: 33037141 DOI: 10.4049/jimmunol.1901094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/11/2020] [Indexed: 11/19/2022]
Abstract
Immune homeostasis in peripheral tissues is, to a large degree, maintained by the differentiation and action of regulatory T cells (Treg) specific for tissue Ags. Using a novel mouse model, we have studied the differentiation of naive CD4+ T cells into Foxp3+ Treg in response to a cutaneous Ag (OVA). We found that expression of OVA resulted in fatal autoimmunity and in prevention of peripheral Treg generation. Inhibiting mTOR activity with rapamycin rescued the generation of Foxp3+ T cells. When we varied the level of Ag expression to modulate TCR signaling, we found that low Ag concentrations promoted the generation of Foxp3+ T cells, whereas high levels expanded effector T cells and caused severe autoimmunity. Our findings indicate that the expression level of tissue Ag is a key determinant of the balance between tissue-reactive effector and peripheral Foxp3+ T cells, which determines the choice between tolerance and autoimmunity.
Collapse
Affiliation(s)
- Douglas F Pinheiro
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | | | - Megan M Maurano
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria.,Department of Pathology, University of California, San Francisco, San Francisco, CA 94143
| | | | - Maria M Klicznik
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Raimund Holly
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Daniel Kirchmeier
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Sophie Kitzmueller
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria.,EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143; and
| | - Josef Thalhamer
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Abul K Abbas
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143
| | - Iris K Gratz
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; .,EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria.,Benaroya Research Institute, Seattle, WA 98101
| |
Collapse
|
21
|
Sliz A, Locker KCS, Lampe K, Godarova A, Plas DR, Janssen EM, Jones H, Herr AB, Hoebe K. Gab3 is required for IL-2- and IL-15-induced NK cell expansion and limits trophoblast invasion during pregnancy. Sci Immunol 2020; 4:4/38/eaav3866. [PMID: 31375526 DOI: 10.1126/sciimmunol.aav3866] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
The scaffolding protein Grb2-associated binding protein 3 (Gab3) is a member of the Gab family, whose functions have remained elusive. Here, we identify Gab3 as a key determinant of peripheral NK cell expansion. Loss of Gab3 resulted in impaired IL-2 and IL-15-induced NK cell priming and expansion due to a selective impairment in MAPK signaling but not STAT5 signaling. In vivo, we found that Gab3 is required for recognition and elimination of "missing-self" and tumor targets. Unexpectedly, our studies also revealed that Gab3 plays an important role during pregnancy. Gab3-deficient mice exhibited impaired uterine NK cell expansion associated with abnormal spiral artery remodeling and increased trophoblast invasion in the decidua basalis. This coincided with stillbirth, retained placenta, maternal hemorrhage, and undelivered fetoplacental units at term. Thus, Gab3 is a key component required for cytokine-mediated NK cell priming and expansion that is essential for antitumor responses and limits trophoblast cell invasion during pregnancy.
Collapse
Affiliation(s)
- Anna Sliz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA.,Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Kathryn C S Locker
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA.,Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Kristin Lampe
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA.,Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Alzbeta Godarova
- Biomedical Informatics Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - David R Plas
- Vontz Center for Molecular Studies, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | - Helen Jones
- Division of General Pediatric and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Andrew B Herr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA.,Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | | |
Collapse
|
22
|
Ma CY, Marioni JC, Griffiths GM, Richard AC. Stimulation strength controls the rate of initiation but not the molecular organisation of TCR-induced signalling. eLife 2020; 9:e53948. [PMID: 32412411 PMCID: PMC7308083 DOI: 10.7554/elife.53948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of naïve T cells with different TCRs may interact with a peptide-MHC ligand, but very few will activate. Remarkably, this fine control is orchestrated using a limited set of intracellular machinery. It remains unclear whether changes in stimulation strength alter the programme of signalling events leading to T cell activation. Using mass cytometry to simultaneously measure multiple signalling pathways during activation of murine CD8+ T cells, we found a programme of distal signalling events that is shared, regardless of the strength of TCR stimulation. Moreover, the relationship between transcription of early response genes Nr4a1 and Irf8 and activation of the ribosomal protein S6 is also conserved across stimuli. Instead, we found that stimulation strength dictates the rate with which cells initiate signalling through this network. These data suggest that TCR-induced signalling results in a coordinated activation program, modulated in rate but not organization by stimulation strength.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Female
- Flow Cytometry
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- Kinetics
- Ligands
- Lymphocyte Activation/drug effects
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Ovalbumin/pharmacology
- Peptide Fragments/pharmacology
- Phosphorylation
- Receptors, Antigen, T-Cell/agonists
- Receptors, Antigen, T-Cell/metabolism
- Ribosomal Protein S6/metabolism
- Signal Transduction/drug effects
- Single-Cell Analysis
Collapse
Affiliation(s)
- Claire Y Ma
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome CampusCambridgeUnited Kingdom
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Arianne C Richard
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
23
|
Vališ K, Novák P. Targeting ERK-Hippo Interplay in Cancer Therapy. Int J Mol Sci 2020; 21:ijms21093236. [PMID: 32375238 PMCID: PMC7247570 DOI: 10.3390/ijms21093236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) is a part of the mitogen-activated protein kinase (MAPK) signaling pathway which allows the transduction of various cellular signals to final effectors and regulation of elementary cellular processes. Deregulation of the MAPK signaling occurs under many pathological conditions including neurodegenerative disorders, metabolic syndromes and cancers. Targeted inhibition of individual kinases of the MAPK signaling pathway using synthetic compounds represents a promising way to effective anti-cancer therapy. Cross-talk of the MAPK signaling pathway with other proteins and signaling pathways have a crucial impact on clinical outcomes of targeted therapies and plays important role during development of drug resistance in cancers. We discuss cross-talk of the MAPK/ERK signaling pathway with other signaling pathways, in particular interplay with the Hippo/MST pathway. We demonstrate the mechanism of cell death induction shared between MAPK/ERK and Hippo/MST signaling pathways and discuss the potential of combination targeting of these pathways in the development of more effective anti-cancer therapies.
Collapse
Affiliation(s)
- Karel Vališ
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| | - Petr Novák
- Correspondence: (K.V.); (P.N.); Tel.: +420-325873610 (P.N.)
| |
Collapse
|
24
|
Brown AS, Meera P, Quinones G, Magri J, Otis TS, Pulst SM, Oro AE. Receptor protein tyrosine phosphatases control Purkinje neuron firing. Cell Cycle 2020; 19:153-159. [PMID: 31876231 PMCID: PMC6961678 DOI: 10.1080/15384101.2019.1695995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/23/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022] Open
Abstract
Spinocerebellar ataxias (SCA) are a genetically heterogeneous family of cerebellar neurodegenerative diseases characterized by abnormal firing of Purkinje neurons and degeneration. We recently demonstrated the slowed firing rates seen in several SCAs share a common etiology of hyper-activation of the Src family of non-receptor tyrosine kinases (SFKs). However, the lack of clinically available neuroactive SFK inhibitors lead us to investigate alternative mechanisms to modulate SFK activity. Previous studies demonstrate that SFK activity can be enhanced by the removal of inhibitory phospho-marks by receptor-protein-tyrosine phosphatases (RPTPs). In this Extra View we show that MTSS1 inhibits SFK activity through the binding and inhibition of a subset of the RPTP family members, and lowering RPTP activity in cerebellar slices with peptide inhibitors increases the suppressed Purkinje neuron basal firing rates seen in two different SCA models. Together these results identify RPTPs as novel effectors of Purkinje neuron basal firing, extending the MTSS1/SFK regulatory circuit we previously described and expanding the therapeutic targets for SCA patients.
Collapse
Affiliation(s)
- Alexander S. Brown
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pratap Meera
- Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Gabe Quinones
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica Magri
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas S. Otis
- Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Stefan M. Pulst
- Department of Neurology, University of Utah Medical Center, Salt Lake City, UT, USA
| | - Anthony E. Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
25
|
DAPK1 (death associated protein kinase 1) mediates mTORC1 activation and antiviral activities in CD8 + T cells. Cell Mol Immunol 2019; 18:138-149. [PMID: 31541182 DOI: 10.1038/s41423-019-0293-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) regulates CD8+ T-cell differentiation and function. Despite the links between PI3K-AKT and mTORC1 activation in CD8+ T cells, the molecular mechanism underlying mTORC1 activation remains unclear. Here, we show that both the kinase activity and the death domain of DAPK1 are required for maximal mTOR activation and CD8+ T-cell function. We found that TCR-induced activation of calcineurin activates DAPK1, which subsequently interacts with TSC2 via its death domain and phosphorylates TSC2 to mediate mTORC1 activation. Furthermore, both the kinase domain and death domain of DAPK1 are required for CD8+ T-cell antiviral responses in an LCMV infection model. Together, our data reveal a novel mechanism of mTORC1 activation that mediates optimal CD8+ T-cell function and antiviral activity.
Collapse
|
26
|
NKG2D signaling certifies effector CD8 T cells for memory formation. J Immunother Cancer 2019; 7:48. [PMID: 30777125 PMCID: PMC6380053 DOI: 10.1186/s40425-019-0531-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The development of memory responses is an evolutionary function of the adaptive immune system. We propose that for the immune system to populate the memory compartment with the best-suited CD8 T cells it utilizes a process of certification or molecular accreditation mediated through Natural Killer Group 2D (NKG2D). This process of certification assures that the memory compartment is filled with CD8 T cells that have demonstrated their ability to kill their cognate targets through a two-step process that utilizes T cell receptor (TCR) and NKG2D signaling. METHODS One week after immunization with peptide-pulsed dendritic cells, NKG2D signaling was transiently blocked in vivo with a single injection of neutralizing antibodies. Under such conditions, we determined the importance of NKG2D signaling during the effector phase for memory formation without compromising NKG2D signaling at the memory phase. Both open (polyclonal) and closed (monoclonal) CD8 T cell repertoires were studied. RESULTS We show that signaling through NKG2D mediated this certification. Temporary blockade of NKG2D signaling during the effector phase resulted in the formation of highly defective memory CD8 T cells characterized by altered expression of the ribosomal protein S6 and epigenetic modifiers, suggesting modifications in the T cell translational machinery and epigenetic programming. Finally, these uncertified memory cells were not protective against a B16 tumor challenge. CONCLUSION Signaling through NKG2D during the effector phase (certification) favors the development of functional memory CD8 T cells, a previously undescribed role for NKG2D. Temporary blockade of NKG2D signaling during the effector phase results in the formation of highly defective memory CD8 T cells potentially by affecting the expression of the ribosomal protein S6 and epigenetic modifiers, suggesting alterations in T cell translational machinery and epigenetic programming.
Collapse
|
27
|
Chellappa S, Kushekhar K, Munthe LA, Tjønnfjord GE, Aandahl EM, Okkenhaug K, Taskén K. The PI3K p110δ Isoform Inhibitor Idelalisib Preferentially Inhibits Human Regulatory T Cell Function. THE JOURNAL OF IMMUNOLOGY 2019; 202:1397-1405. [PMID: 30692213 DOI: 10.4049/jimmunol.1701703] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/19/2018] [Indexed: 01/01/2023]
Abstract
In chronic lymphocytic leukemia (CLL), signaling through several prosurvival B cell surface receptors activates the PI3K signaling pathway. Idelalisib is a highly selective PI3K (PI3Kδ) isoform-specific inhibitor effective in relapsed/refractory CLL and follicular lymphoma. However, severe autoimmune adverse effects in association with the use of idelalisib in the treatment of CLL, particularly as a first-line therapy, gave indications that idelalisib may preferentially target the suppressive function of regulatory T cells (Tregs). On this background, we examined the effect of idelalisib on the function of human Tregs ex vivo with respect to proliferation, TCR signaling, phenotype, and suppressive function. Our results show that human Tregs are highly susceptible to PI3Kδ inactivation using idelalisib compared with CD4+ and CD8+ effector T cells (Teffs) as evident from effects on anti-CD3/CD28/CD2-induced proliferation (order of susceptibility [IC50]: Treg [.5 μM] > CD4+ Teff [2.0 μM] > CD8+ Teff [6.5 μM]) and acting at the level of AKT and NF-κB phosphorylation. Moreover, idelalisib treatment of Tregs altered their phenotype and reduced their suppressive function against CD4+ and CD8+ Teffs. Phenotyping Tregs from CLL patients treated with idelalisib supported our in vitro findings. Collectively, our data show that human Tregs are more dependent on PI3Kδ-mediated signaling compared with CD4+ and CD8+ Teffs. This Treg-preferential effect could explain why idelalisib produces adverse autoimmune effects by breaking Treg-mediated tolerance. However, balancing effects on Treg sensitivity versus CD8+ Teff insensitivity to idelalisib could still potentially be exploited to enhance inherent antitumor immune responses in patients.
Collapse
Affiliation(s)
- Stalin Chellappa
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway.,K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, N-0318 Oslo, Norway
| | - Kushi Kushekhar
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway.,K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, N-0318 Oslo, Norway
| | - Ludvig A Munthe
- K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0424 Oslo, Norway
| | - Geir E Tjønnfjord
- K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Department of Haematology, Oslo University Hospital, N-0424 Oslo, Norway
| | - Einar M Aandahl
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway.,K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, N-0318 Oslo, Norway.,Section for Transplantation Surgery, Oslo University Hospital, N-0424 Oslo, Norway; and
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Kjetil Taskén
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, N-0424 Oslo, Norway; .,K.G. Jebsen Centre for B Cell Malignancies, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, N-0424 Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, N-0318 Oslo, Norway
| |
Collapse
|
28
|
Petersburg J, Shen J, Csizmar CM, Murphy KA, Spanier J, Gabrielse K, Griffith TS, Fife B, Wagner CR. Eradication of Established Tumors by Chemically Self-Assembled Nanoring Labeled T Cells. ACS NANO 2018; 12:6563-6576. [PMID: 29792808 PMCID: PMC6506352 DOI: 10.1021/acsnano.8b01308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Our laboratory has developed chemically self-assembled nanorings (CSANs) as prosthetic antigen receptors (PARs) for the nongenetic modification of T cell surfaces. PARs have been successfully employed in vitro to activate T cells for the selective killing of leukemia cells. However, PAR efficacy has yet to be evaluated in vivo or against solid tumors. Therefore, we developed bispecific PARs that selectively target the human CD3 receptor and human epithelial cell adhesion molecule (EpCAM), which is overexpressed on multiple carcinomas and cancer stem cells. The αEpCAM/αCD3 PARs were found to stably bind T cells for >4 days, and treating EpCAM+ MCF-7 breast cancer cells with αEpCAM/αCD3 PAR-functionalized T cells resulted in the induction of IL-2, IFN-γ, and MCF-7 cytotoxicity. Furthermore, an orthotopic breast cancer model validated the ability of αEpCAM/αCD3 PAR therapy to direct T cell lytic activity toward EpCAM+ breast cancer cells in vivo, leading to tumor eradication. In vivo biodistribution studies demonstrated that PAR-T cells were formed in vivo and persist for over 48 h with rapid accumulation in tumor tissue. Following PAR treatment, the production of IL-2, IFN-γ, IL-6, and TNF-α could be significantly reduced by an infusion of clinically relevant concentrations of the FDA-approved antibiotic, trimethoprim, signaling pharmacologic PAR deactivation. Importantly, CSANs did not induce naïve T cell activation and thus exhibit a limited potential to induce naïve T cell anergy. In addition, murine immunogenicity studies demonstrated that CSANs do not induce a significant antibody response nor do they activate splenic cells. Collectively, our results demonstrate that bispecific CSANs are able to nongenetically generate reversibly modified T cells that are capable of eradicating targeted solid tumors.
Collapse
Affiliation(s)
- Jacob Petersburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jingjing Shen
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Clifford M Csizmar
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Katherine A Murphy
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Justin Spanier
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kari Gabrielse
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Brian Fife
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Address correspondence to: , University of Minnesota, Department of Medicinal Chemistry, 2231 6th Street S.E., Cancer & Cardiovascular Research Building, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
29
|
Abel AM, Tiwari AA, Gerbec ZJ, Siebert JR, Yang C, Schloemer NJ, Dixon KJ, Thakar MS, Malarkannan S. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol 2018; 9:1168. [PMID: 29892299 PMCID: PMC5985319 DOI: 10.3389/fimmu.2018.01168] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play essential roles in mediating antitumor immunity. NK cells respond to various inflammatory stimuli including cytokines and stress-induced cellular ligands which activate germline-encoded activation receptors (NKRs), such as NKG2D. The signaling molecules activated downstream of NKRs are well defined; however, the mechanisms that regulate these pathways are not fully understood. IQ domain-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein. It regulates diverse cellular signaling programs in various physiological contexts, including immune cell activation and function. Therefore, we sought to investigate the role of IQGAP1 in NK cells. Development and maturation of NK cells from mice lacking IQGAP1 (Iqgap1-/- ) were mostly intact; however, the absolute number of splenic NK cells was significantly reduced. Phenotypic and functional characterization revealed a significant reduction in the egression of NK cells from the bone marrow of Iqagp1-/- mice altering their peripheral homeostasis. Lack of IQGAP1 resulted in reduced NK cell motility and their ability to mediate antitumor immunity in vivo. Activation of Iqgap1-/- NK cells via NKRs, including NKG2D, resulted in significantly reduced levels of inflammatory cytokines compared with wild-type (WT). This reduction in Iqgap1-/- NK cells is neither due to an impaired membrane proximal signaling nor a defect in gene transcription. The levels of Ifng transcripts were comparable between WT and Iqgap1-/- , suggesting that IQGAP1-dependent regulation of cytokine production is regulated by a post-transcriptional mechanism. To this end, Iqgap1-/- NK cells failed to fully induce S6 phosphorylation and showed significantly reduced protein translation following NKG2D-mediated activation, revealing a previously undefined regulatory function of IQGAP1 via the mechanistic target of rapamycin complex 1. Together, these results implicate IQGAP1 as an essential scaffold for NK cell homeostasis and function and provide novel mechanistic insights to the post-transcriptional regulation of inflammatory cytokine production.
Collapse
Affiliation(s)
- Alex M Abel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Aradhana A Tiwari
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Zachary J Gerbec
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Jason R Siebert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Chao Yang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Nathan J Schloemer
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kate J Dixon
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
30
|
Khan A, Southworth T, Worsley S, Sriskantharajah S, Amour A, Hessel EM, Singh D. An investigation of the anti-inflammatory effects and a potential biomarker of PI3Kδ inhibition in COPD T cells. Clin Exp Pharmacol Physiol 2018; 44:932-940. [PMID: 28508433 DOI: 10.1111/1440-1681.12784] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/28/2022]
Abstract
Lymphocyte numbers are increased in the lungs of chronic obstructive pulmonary disease (COPD) patients. Phosphatidylinositol-3-kinase delta (PI3Kδ) is involved in lymphocyte activation. We investigated the effect of PI3Kδ inhibition on cytokine release from COPD lymphocytes. We also evaluated phosphorylated ribosomal S6 protein (rS6) as a potential biomarker of PI3Kδ activation. Peripheral blood mononuclear cells (PBMCs) and bronchoalveolar lavage (BAL) cells isolated from healthy never smokers (HNS), smokers (S) and COPD patients were stimulated to induce a T cell receptor response. The effects of a PI3Kδ specific inhibitor (GSK045) on cytokine release and rS6 phosphorylation were measured by Luminex and flow cytometry respectively. The effects of GSK045 on cytokine production from PHA stimulated chopped lung samples were investigated. GSK045 reduced cytokine release from PBMCs, BAL cells and chopped lung. Inhibition was greatest in the chopped lung model, with approximately 80% inhibition of interferon (IFN) γ, interleukin (IL)-2, IL-17 and IL-10. PI3Kδ inhibition suppressed rS6 phosphorylation in unstimulated airway T-lymphocytes by up to 60%. Inhibition of PI3Kδ suppressed T cell cytokine production in COPD patients. rS6 phosphorylation shows potential as a biomarker to assess PI3Kδ activity.
Collapse
Affiliation(s)
- Abid Khan
- The University of Manchester, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK.,The University of Manchester, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester, UK
| | - Thomas Southworth
- The University of Manchester, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK
| | - Sally Worsley
- Refractory Respiratory Inflammation DPU, GlaxoSmithKline, Stevenage, UK
| | | | - Augustin Amour
- Refractory Respiratory Inflammation DPU, GlaxoSmithKline, Stevenage, UK
| | - Edith M Hessel
- Refractory Respiratory Inflammation DPU, GlaxoSmithKline, Stevenage, UK
| | - Dave Singh
- The University of Manchester, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, The University of Manchester, Manchester, UK
| |
Collapse
|
31
|
D’Lugos AC, Patel SH, Ormsby JC, Curtis DP, Fry CS, Carroll CC, Dickinson JM. Prior acetaminophen consumption impacts the early adaptive cellular response of human skeletal muscle to resistance exercise. J Appl Physiol (1985) 2018; 124:1012-1024. [DOI: 10.1152/japplphysiol.00922.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Resistance exercise (RE) is a powerful stimulus for skeletal muscle adaptation. Previous data demonstrate that cyclooxygenase (COX)-inhibiting drugs alter the cellular mechanisms regulating the adaptive response of skeletal muscle. The purpose of this study was to determine whether prior consumption of the COX inhibitor acetaminophen (APAP) alters the immediate adaptive cellular response in human skeletal muscle after RE. In a double-blinded, randomized, crossover design, healthy young men ( n = 8, 25 ± 1 yr) performed two trials of unilateral knee extension RE (8 sets, 10 reps, 65% max strength). Subjects ingested either APAP (1,000 mg/6 h) or placebo (PLA) for 24 h before RE (final dose consumed immediately after RE). Muscle biopsies (vastus lateralis) were collected at rest and 1 h and 3 h after exercise. Mammalian target of rapamycin (mTOR) complex 1 signaling was assessed through immunoblot and immunohistochemistry, and mRNA expression of myogenic genes was examined via RT-qPCR. At 1 h p-rpS6Ser240/244 was increased in both groups but to a greater extent in PLA. At 3 h p-S6K1Thr389 was elevated only in PLA. Furthermore, localization of mTOR to the lysosome (LAMP2) in myosin heavy chain (MHC) II fibers increased 3 h after exercise only in PLA. mTOR-LAMP2 colocalization in MHC I fibers was greater in PLA vs. APAP 1 h after exercise. Myostatin mRNA expression was reduced 1 h after exercise only in PLA. MYF6 mRNA expression was increased 1 h and 3 h after exercise only in APAP. APAP consumption appears to alter the early adaptive cellular response of skeletal muscle to RE. These findings further highlight the mechanisms through which COX-inhibiting drugs impact the adaptive response of skeletal muscle to exercise. NEW & NOTEWORTHY The extent to which the cellular reaction to acetaminophen impacts the mechanisms regulating the adaptive response of human skeletal muscle to resistance exercise is not well understood. Consumption of acetaminophen before resistance exercise appears to suppress the early response of mTORC1 activity to acute resistance exercise. These data also demonstrate, for the first time, that resistance exercise elicits fiber type-specific changes in the intracellular colocalization of mTOR with the lysosome in human skeletal muscle.
Collapse
Affiliation(s)
- Andrew C. D’Lugos
- Healthy Lifestyles Research Center, Exercise Science and Health Promotion, School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona
| | - Shivam H. Patel
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
- Midwestern University, Glendale, Arizona
| | - Jordan C. Ormsby
- Healthy Lifestyles Research Center, Exercise Science and Health Promotion, School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona
| | | | - Christopher S. Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Chad C. Carroll
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
- Midwestern University, Glendale, Arizona
| | - Jared M. Dickinson
- Healthy Lifestyles Research Center, Exercise Science and Health Promotion, School of Nutrition and Health Promotion, Arizona State University, Phoenix, Arizona
| |
Collapse
|
32
|
Sheikh MH, Solito E. Annexin A1: Uncovering the Many Talents of an Old Protein. Int J Mol Sci 2018; 19:E1045. [PMID: 29614751 PMCID: PMC5979524 DOI: 10.3390/ijms19041045] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022] Open
Abstract
Annexin A1 (ANXA1) has long been classed as an anti-inflammatory protein due to its control over leukocyte-mediated immune responses. However, it is now recognized that ANXA1 has widespread effects beyond the immune system with implications in maintaining the homeostatic environment within the entire body due to its ability to affect cellular signalling, hormonal secretion, foetal development, the aging process and development of disease. In this review, we aim to provide a global overview of the role of ANXA1 covering aspects of peripheral and central inflammation, immune repair and endocrine control with focus on the prognostic, diagnostic and therapeutic potential of the molecule in cancer, neurodegeneration and inflammatory-based disorders.
Collapse
Affiliation(s)
- Madeeha H Sheikh
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Egle Solito
- The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
33
|
Liu Y, Wang Z, Li J, Ban Y, Mao G, Zhang M, Wang M, Liu Y, Zhao B, Shen Q, Xu Q, Wang N. Inhibition of 5-Hydroxytryptamine Receptor 2B Reduced Vascular Restenosis and Mitigated the β-Arrestin2-Mammalian Target of Rapamycin/p70S6K Pathway. J Am Heart Assoc 2018; 7:e006810. [PMID: 29382665 PMCID: PMC5850233 DOI: 10.1161/jaha.117.006810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND As a monoamine neurotransmitter, 5-hydroxytryptamine (5-HT) or serotonin modulates mood, appetite, and sleep. Besides, 5-HT also has important peripheral functions. 5-HT receptor 2B (5-HT2BR) plays a key role in cardiovascular diseases, such as pulmonary arterial hypertension and cardiac valve disease. Percutaneous intervention has been used to restore blood flow in occlusive vascular disease. However, restenosis remains a significant problem. Herein, we investigated the role of 5-HT2BR in neointimal hyperplasia, a key pathological process in restenosis. METHODS AND RESULTS The expression of 5-HT2BR was upregulated in wire-injured mouse femoral arteries. In addition, BW723C86, a selective 5-HT2BR agonist, promoted the injury response during restenosis. 5-HT and BW723C86 stimulated migration and proliferation of rat aortic smooth muscle cells. Conversely, LY272015, a selective antagonist, attenuated the 5-HT-induced smooth muscle cell migration and proliferation. In vitro study showed that the promigratory effects of 5-HT2BR were mediated through the activation of mammalian target of rapamycin (mTOR)/p70S6K signaling in a β-arrestin2-dependent manner. Inhibition of mammalian target of rapamycin or p70S6K mitigated 5-HT2BR-mediated smooth muscle cell migration. Mice with deficiency of 5-HT2BR showed significantly reduced neointimal formation in wire-injured arteries. CONCLUSIONS These results demonstrated that activation of 5-HT2BR and β-arrestin2-biased downstream signaling are key pathological processes in neointimal formation, and 5-HT2BR may be a potential target for the therapeutic intervention of vascular restenosis.
Collapse
MESH Headings
- Animals
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Femoral Artery/drug effects
- Femoral Artery/enzymology
- Femoral Artery/injuries
- Femoral Artery/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Organic Chemicals/pharmacology
- Rats
- Receptor, Serotonin, 5-HT2B/drug effects
- Receptor, Serotonin, 5-HT2B/genetics
- Receptor, Serotonin, 5-HT2B/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/genetics
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Vascular Remodeling/drug effects
- Vascular System Injuries/drug therapy
- Vascular System Injuries/enzymology
- Vascular System Injuries/genetics
- Vascular System Injuries/pathology
- beta-Arrestin 2/genetics
- beta-Arrestin 2/metabolism
Collapse
Affiliation(s)
- Yahan Liu
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Zhipeng Wang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Jing Li
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Yiqian Ban
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Guangmei Mao
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Man Zhang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Mo Wang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Yan Liu
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Beilei Zhao
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Qiang Shen
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Qingbo Xu
- Cardiovascular Division, King's College London King's British Heart Foundation (BHF) Centre, London, United Kingdom
| | - Nanping Wang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
34
|
Braud VM, Biton J, Becht E, Knockaert S, Mansuet-Lupo A, Cosson E, Damotte D, Alifano M, Validire P, Anjuère F, Cremer I, Girard N, Gossot D, Seguin-Givelet A, Dieu-Nosjean MC, Germain C. Expression of LLT1 and its receptor CD161 in lung cancer is associated with better clinical outcome. Oncoimmunology 2018; 7:e1423184. [PMID: 29721382 PMCID: PMC5927544 DOI: 10.1080/2162402x.2017.1423184] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
Co-stimulatory and inhibitory receptors expressed by immune cells in the tumor microenvironment modulate the immune response and cancer progression. Their expression and regulation are still not fully characterized and a better understanding of these mechanisms is needed to improve current immunotherapies. Our previous work has identified a novel ligand/receptor pair, LLT1/CD161, that modulates immune responses. Here, we extensively characterize its expression in non-small cell lung cancer (NSCLC). We show that LLT1 expression is restricted to germinal center (GC) B cells within tertiary lymphoid structures (TLS), representing a new hallmark of the presence of active TLS in the tumor microenvironment. CD161-expressing immune cells are found at the vicinity of these structures, with a global enrichment of NSCLC tumors in CD161+ CD4+ and CD8+ T cells as compared to normal distant lung and peripheral blood. CD161+ CD4+ T cells are more activated and produce Th1-cytokines at a higher frequency than their matched CD161-negative counterparts. Interestingly, CD161+ CD4+ T cells highly express OX40 co-stimulatory receptor, less frequently 4-1BB, and display an activated but not completely exhausted PD-1-positive Tim-3-negative phenotype. Finally, a meta-analysis revealed a positive association of CLEC2D (coding for LLT1) and KLRB1 (coding for CD161) gene expression with favorable outcome in NSCLC, independently of the size of T and B cell infiltrates. These data are consistent with a positive impact of LLT1/CD161 on NSCLC patient survival, and make CD161-expressing CD4+ T cells ideal candidates for efficient anti-tumor recall responses.
Collapse
Affiliation(s)
- Véronique M. Braud
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Jérôme Biton
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Etienne Becht
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Samantha Knockaert
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Audrey Mansuet-Lupo
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Pathology, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Estelle Cosson
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Diane Damotte
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Pathology, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Marco Alifano
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Thoracic Surgery, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Pierre Validire
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- Department of Pathology, Institut Mutualiste Montsouris, Paris, France
| | - Fabienne Anjuère
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Isabelle Cremer
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Nicolas Girard
- University of Lyon, University Lyon 1, Lyon, France
- Institut du Thorax Curie-Montsouris, Institut Curie, Paris, France
| | - Dominique Gossot
- Thoracic Department, Institut du Thorax Curie-Montsouris, Institut Mutualiste Montsouris, Paris, France
| | - Agathe Seguin-Givelet
- Thoracic Department, Institut du Thorax Curie-Montsouris, Institut Mutualiste Montsouris, Paris, France
- Paris 13 University, Sorbonne Paris Cité, Faculty of Medicine SMBH, Bobigny, France
| | - Marie-Caroline Dieu-Nosjean
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Claire Germain
- Laboratory “Immune Microenvironment and Tumors”, Department “Cancer, Immunology, Immunotherapy”, INSERM UMRS 1138, Cordeliers Research Center, Paris, France
- University Pierre and Marie Curie/Paris VI, Paris, France
- University Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
35
|
Li Y, Liu C, Tang K, Chen Y, Tian K, Feng Z, Chen J. Novel multi‑kinase inhibitor, T03 inhibits Taxol‑resistant breast cancer. Mol Med Rep 2017; 17:2373-2383. [PMID: 29207185 PMCID: PMC5783483 DOI: 10.3892/mmr.2017.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/26/2017] [Indexed: 11/06/2022] Open
Abstract
Activation of kinase-associated signaling pathways is one of the leading causes of various malignant phenotypes in breast tumors. Strategies of drug discovery and development have investigated approaches to target the inhibition of protein kinase signaling. In the current study, the anti‑tumor activities of a novel multi‑kinase inhibitor, T03 were evaluated in breast cancer. T03 inhibited Taxol‑resistant breast cancer cell proliferation and induced cell cycle arrest and apoptosis in vitro and in vivo. The current results demonstrated that T03 downregulated c‑Raf, platelet‑derived growth factor receptor‑β and other kinases, thus inhibited Raf/mitogen‑activated protein kinase kinase/extracellular signal‑regulated kinase and Akt/mechanistic target of rapamycin survival pathways in MCF‑7 and MCF‑7/Taxol xenograft tumors. At a dose of 100 mg/kg, T03 inhibited tumor growth by 62.90 and 59.98% in tumor weight in MX‑1 and MX‑1/T xenograft models, respectively and by 62.60 and 60.22% in MCF‑7 and MCF‑7/T tumors, respectively. These data indicate that the novel multi‑kinase inhibitor, T03, may present as a potential compound to develop novel treatments against breast cancer and Taxol‑resistant breast tumors.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Chunxia Liu
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Ke Tang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yan Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Kang Tian
- Department of Synthetic Medicinal Chemistry, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Zhiqiang Feng
- Department of Synthetic Medicinal Chemistry, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jindong Chen
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
36
|
Sabins NC, Chornoguz O, Leander K, Kaplan F, Carter R, Kinder M, Bachman K, Verona R, Shen S, Bhargava V, Santulli-Marotto S. TIM-3 Engagement Promotes Effector Memory T Cell Differentiation of Human Antigen-Specific CD8 T Cells by Activating mTORC1. THE JOURNAL OF IMMUNOLOGY 2017; 199:4091-4102. [PMID: 29127145 DOI: 10.4049/jimmunol.1701030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023]
Abstract
T cell expression of TIM-3 following Ag encounter has been associated with a continuum of functional states ranging from effector memory T cells to exhaustion. We have designed an in vitro culture system to specifically address the impact of anti-TIM-3/TIM-3 engagement on human Ag-specific CD8 T cells during a normal response to Ag and found that anti-TIM-3 treatment enhances T cell function. In our in vitro T cell culture system, MART1-specific CD8 T cells were expanded from healthy donors using artificial APCs. To ensure that the T cells were the only source of TIM-3, cells were rechallenged with peptide-loaded artificial APCs in the presence of anti-TIM-3 Ab. In these conditions, anti-TIM-3 treatment promotes generation of effector T cells as shown by acquisition of an activated phenotype, increased cytokine production, enhanced proliferation, and a transcription program associated with T cell differentiation. Activation of mTORC1 has been previously demonstrated to enhance CD8 T cell effector function and differentiation. Anti-TIM-3 drives CD8 T cell differentiation through activation of the mTORC1 as evidenced by increased levels of phosphorylated S6 protein and rhebl1 transcript. Altogether these findings suggest that anti-TIM-3, together with Ag, drives differentiation in favor of effector T cells via the activation of mTOR pathway. To our knowledge, this is the first report demonstrating that TIM-3 engagement during Ag stimulation directly influences T cell differentiation through mTORC1.
Collapse
Affiliation(s)
- Nina Chi Sabins
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Olesya Chornoguz
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Karen Leander
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Fred Kaplan
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Richard Carter
- Janssen Biotherapeutics, Janssen Research and Development, Spring House, PA 19477
| | - Michelle Kinder
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Kurtis Bachman
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Raluca Verona
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Shixue Shen
- Oncology, Janssen Research and Development, Spring House, PA 19477
| | - Vipul Bhargava
- Computational and Systems Biology, Janssen Research and Development, Spring House, PA 19477; and
| | | |
Collapse
|
37
|
Li C, Götz J. Somatodendritic accumulation of Tau in Alzheimer's disease is promoted by Fyn-mediated local protein translation. EMBO J 2017; 36:3120-3138. [PMID: 28864542 DOI: 10.15252/embj.201797724] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
The cause of protein accumulation in neurodegenerative disease is incompletely understood. In Alzheimer's disease (AD), the axonally enriched protein Tau forms hyperphosphorylated aggregates in the somatodendritic domain. Consequently, a process of subcellular relocalization driven by Tau phosphorylation and detachment from microtubules has been proposed. Here, we reveal an alternative mechanism of de novo protein synthesis of Tau and its hyperphosphorylation in the somatodendritic domain, induced by oligomeric amyloid-β (Aβ) and mediated by the kinase Fyn that activates the ERK/S6 signaling pathway. Activation of this pathway is demonstrated in a range of cellular systems, and in vivo in brains from Aβ-depositing, Aβ-injected, and Fyn-overexpressing mice with Tau accumulation. Both pharmacological inhibition and genetic deletion of Fyn abolish the Aβ-induced Tau overexpression via ERK/S6 suppression. Together, these findings present a more cogent mechanism of Tau aggregation in disease. They identify a prominent role for neuronal Fyn in integrating signal transduction pathways that lead to the somatodendritic accumulation of Tau in AD.
Collapse
Affiliation(s)
- Chuanzhou Li
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, Qld, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
38
|
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K Pathway in Human Disease. Cell 2017; 170:605-635. [PMID: 28802037 PMCID: PMC5726441 DOI: 10.1016/j.cell.2017.07.029] [Citation(s) in RCA: 1828] [Impact Index Per Article: 228.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) activity is stimulated by diverse oncogenes and growth factor receptors, and elevated PI3K signaling is considered a hallmark of cancer. Many PI3K pathway-targeted therapies have been tested in oncology trials, resulting in regulatory approval of one isoform-selective inhibitor (idelalisib) for treatment of certain blood cancers and a variety of other agents at different stages of development. In parallel to PI3K research by cancer biologists, investigations in other fields have uncovered exciting and often unpredicted roles for PI3K catalytic and regulatory subunits in normal cell function and in disease. Many of these functions impinge upon oncology by influencing the efficacy and toxicity of PI3K-targeted therapies. Here we provide a perspective on the roles of class I PI3Ks in the regulation of cellular metabolism and in immune system functions, two topics closely intertwined with cancer biology. We also discuss recent progress developing PI3K-targeted therapies for treatment of cancer and other diseases.
Collapse
Affiliation(s)
- David A Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| | - Honyin Chiu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| | - Benjamin D Hopkins
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Shubha Bagrodia
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646/CB4 Science Center Drive, San Diego, CA 92121, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY 10021, USA
| | - Robert T Abraham
- Oncology R&D Group, Pfizer Worldwide Research and Development, 10646/CB4 Science Center Drive, San Diego, CA 92121, USA
| |
Collapse
|
39
|
Influence of the RPL34 gene on the growth and metastasis of oral squamous cell carcinoma cells. Arch Oral Biol 2017; 83:40-46. [PMID: 28697409 DOI: 10.1016/j.archoralbio.2017.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) accounts for almost 3% of all malignant tumors all over the world. This study aims to investigate the correlation of RPL34 with the cell growth and metastasis of oral squamous cell carcinoma (OSCC) as well as its clinical prognosis. METHOD Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry were conducted to determine the RPL34 expression in 85 OSCC tissues and 30 normal oral mucosa tissues. Besides, OSCC cell lines SCC-4 were divided into blank group, negative control (NC) group and RPL34-shRNA group. The qRT-PCR and western blot were performed to measure RPL34 expression, CCK-8 and flow cytometry to observe cell growth and apoptosis, and wound healing and transwell to detect cell migration and invasion. RESULTS The RPL34 gene expression was up-regulated in OSCC tissues and cells. The RPL34 expression was significantly correlated with differentiation degree, TNM stage and lymph node metastasis. Patients with positive RPL34 expression had a poorer prognosis. After inhibition of RPL34 expression, the proliferation of SCC-4 cells was slowed down at 24h, 48h, 72h and 96h respectively, and both the migration distance and the number of invasive cells were reduced, while there was an increase in the ratio of cells at G0/G1 stage and cell apoptosis. CONCLUSION The RPL34 gene was highly expressed in OSCC, while silencing RPL34 could block cell proliferation and metastasis, but promote cell apoptosis, suggesting the RPL34 gene to be a new promising clinical target for OSCC therapy.
Collapse
|
40
|
Predominant contribution of DGKζ over DGKα in the control of PKC/PDK‐1‐regulated functions in T cells. Immunol Cell Biol 2017; 95:549-563. [DOI: 10.1038/icb.2017.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
|
41
|
Deng W, Yang J, Lin X, Shin J, Gao J, Zhong XP. Essential Role of mTORC1 in Self-Renewal of Murine Alveolar Macrophages. THE JOURNAL OF IMMUNOLOGY 2016; 198:492-504. [PMID: 27881705 DOI: 10.4049/jimmunol.1501845] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/02/2016] [Indexed: 12/24/2022]
Abstract
Alveolar macrophages (AMϕ) have the capacity of local self-renewal through adult life; however, mechanisms that regulate AMϕ self-renewal remain poorly understood. We found that myeloid-specific deletion of Raptor, an essential component of the mammalian/mechanistic target of rapamycin complex (mTORC)1, resulted in a marked decrease of this population of cells accompanying altered phenotypic features and impaired phagocytosis activity. We demonstrated further that Raptor/mTORC1 deficiency did not affect AMϕ development, but compromised its proliferative activity at cell cycle entry in the steady-state as well as in the context of repopulation in irradiation chimeras. Mechanically, mTORC1 confers AMϕ optimal responsiveness to GM-CSF-induced proliferation. Thus, our results demonstrate an essential role of mTORC1 for AMϕ homeostasis by regulating proliferative renewal.
Collapse
Affiliation(s)
- Wenhai Deng
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Jialong Yang
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Xingguang Lin
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinwook Shin
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China;
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710; .,Department of Immunology, Duke University Medical Center, Durham, NC 27710; and.,Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
42
|
Zwang NA, Zhang R, Germana S, Fan MY, Hastings WD, Cao A, Turka LA. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant 2016; 16:2624-38. [PMID: 27017850 PMCID: PMC5007157 DOI: 10.1111/ajt.13805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/29/2016] [Accepted: 03/20/2016] [Indexed: 01/25/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated (MEK) signaling are central to the survival and proliferation of many cell types. Multiple lines of investigation in murine models have shown that control of the PI3K pathway is particularly important for regulatory T cell (Treg) stability and function. PI3K and MEK inhibitors are being introduced into the clinic, and we hypothesized that pharmacologic inhibition of PI3K, and possibly MEK, in mixed cultures of human mononuclear cells would preferentially affect CD4(+) and CD8(+) lymphocytes compared with Tregs. We tested this hypothesis using four readouts: proliferation, activation, functional suppression, and signaling. Results showed that Tregs were less susceptible to inhibition by both δ and α isoform-specific PI3K inhibitors and by an MEK inhibitor compared with their conventional CD4(+) and CD8(+) counterparts. These studies suggest less functional reliance on PI3K and MEK signaling in Tregs compared with conventional CD4(+) and CD8(+) lymphocytes. Therefore, the PI3K and MEK pathways are attractive pharmacologic targets for transplantation and treatment of autoimmunity.
Collapse
Affiliation(s)
- N. A. Zwang
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
- Massachusetts General Hospital/Brigham and Women’s Hospital Nephrology Joint Fellowship Program, Boston, MA
| | - R. Zhang
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - S. Germana
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | - M. Y. Fan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| | | | - A. Cao
- Novartis Pharmaceuticals, Cambridge, MA
| | - L. A. Turka
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
43
|
Cammann C, Rath A, Reichl U, Lingel H, Brunner-Weinzierl M, Simeoni L, Schraven B, Lindquist JA. Early changes in the metabolic profile of activated CD8(+) T cells. BMC Cell Biol 2016; 17:28. [PMID: 27387758 PMCID: PMC4937576 DOI: 10.1186/s12860-016-0104-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/17/2016] [Indexed: 01/11/2023] Open
Abstract
Background Antigenic stimulation of the T cell receptor (TCR) initiates a change from a resting state into an activated one, which ultimately results in proliferation and the acquisition of effector functions. To accomplish this task, T cells require dramatic changes in metabolism. Therefore, we investigated changes of metabolic intermediates indicating for crucial metabolic pathways reflecting the status of T cells. Moreover we analyzed possible regulatory molecules required for the initiation of the metabolic changes. Results We found that proliferation inducing conditions result in an increase in key glycolytic metabolites, whereas the citric acid cycle remains unaffected. The upregulation of glycolysis led to a strong lactate production, which depends upon AKT/PKB, but not mTOR. The observed upregulation of lactate dehydrogenase results in increased lactate production, which we found to be dependent on IL-2 and to be required for proliferation. Additionally we observed upregulation of Glucose-transporter 1 (GLUT1) and glucose uptake upon stimulation, which were surprisingly not influenced by AKT inhibition. Conclusions Our findings suggest that AKT plays a central role in upregulating glycolysis via induction of lactate dehydrogenase expression, but has no impact on glucose uptake of T cells. Furthermore, under apoptosis inducing conditions, T cells are not able to upregulate glycolysis and induce lactate production. In addition maintaining high glycolytic rates strongly depends on IL-2 production. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0104-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clemens Cammann
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, Magdeburg, Germany.
| | - Alexander Rath
- Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, Magdeburg, Germany.,Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jonathan A Lindquist
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, Magdeburg, Germany.,Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
44
|
Abdel-Kahaar E, Kabakchiev M, Hartmann B, Wieland E, Shipkova M. Performance of a phosphoflow assay to determine phosphorylation of S6 ribosomal protein as a pharmacodynamic read out for mTOR inhibition. Clin Biochem 2016; 49:1181-1187. [PMID: 27372285 DOI: 10.1016/j.clinbiochem.2016.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/09/2016] [Accepted: 06/26/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The S6 ribosomal protein (S6RP) is phosphorylated by the mammalian target of rapamycin (mTOR). The objective of this study was to assess the analytical suitability of a commercial kit-based phosphoflow cytometry protocol using whole blood (WBS) to measure the level of phosphorylated S6RP (p-S6RP) in T-cell subsets to study the pharmacodynamic effects of mTOR inhibitors (mTORi). DESIGN AND METHODS A kit was used for fixation and permeabilization of mitogen-stimulated cells, and p-S6RP was assessed separately in CD3+CD4+ and CD3+CD8+ cells by employing an anti-phospho-Ser235/236 antibody. Specificity, linearity, within-run precision and stability were investigated in either WBS spiked with everolimus and non-mTORi immunosuppressants or in WBS from patients on immunosuppressive therapy (n=56). In addition, healthy controls (n=10) and patients without immunosuppression (n=10) were included. A comparison (n=15) with an established western blot method based on anti-phospho p70S6 kinase (Thr389) was made by splitting WBS. RESULTS Everolimus decreased p-S6RP in vitro concentration dependently (0.00-27.4μg/L). This effect was also confirmed in vivo after a single dose of everolimus to healthy volunteers (n=3). However, spiking WBS with 500μg/L cyclosporine also decreased p-S6RP. The within-run coefficient of variation was <18% in transplant patients and <27% in healthy controls for both cell subsets. Sample stability for p-S6RP analysis was limited (<24h). p-S6RP was significantly decreased in CD3+CD8+ cells of patients treated with sirolimus (p=0.02) but not with everolimus. No significant correlation between the phosphoflow- and western blot method was noted. CONCLUSION The phosphoflow assay of p-S6RP performed well analytically, but sample stability, specificity, and method comparison results question its fitness for clinical purposes.
Collapse
Affiliation(s)
- Emaad Abdel-Kahaar
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Kriegsbergstrasse 62, D-70174 Stuttgart, Germany.
| | - Mariana Kabakchiev
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Kriegsbergstrasse 62, D-70174 Stuttgart, Germany.
| | - Bertram Hartmann
- MVZ Waiblingen, Praxis für Nieren- und Hochdruckerkrankungen, Beinsteiner Strasse 8/3, D-71334 Waiblingen, Germany.
| | - Eberhard Wieland
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Kriegsbergstrasse 62, D-70174 Stuttgart, Germany.
| | - Maria Shipkova
- Central Institute for Clinical Chemistry and Laboratory Medicine, Klinikum Stuttgart, Kriegsbergstrasse 62, D-70174 Stuttgart, Germany.
| |
Collapse
|
45
|
Palmer CS, Hussain T, Duette G, Weller TJ, Ostrowski M, Sada-Ovalle I, Crowe SM. Regulators of Glucose Metabolism in CD4 + and CD8 + T Cells. Int Rev Immunol 2015; 35:477-488. [PMID: 26606199 DOI: 10.3109/08830185.2015.1082178] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Much like cancer cells, activated T cells undergo various metabolic changes that allow them to grow and proliferate rapidly. By adopting aerobic glycolysis upon activation, T cells effectively prioritize efficiency in biosynthesis over energy generation. There are distinct differences in the way CD4+ and CD8+ T cells process activation signals. CD8+ effector T cells are less dependent on Glut1 and oxygen levels compared to their CD4+ counterparts. Similarly the downstream signaling by TCR also differs in both effector T cell types. Recent studies have explored PI3K/Akt, mTORC, HIF1α, p70S6K and Bcl-6 signaling in depth providing definition of the crucial roles of these regulators in glucose metabolism. These new insights may allow improved therapeutic manipulation against inflammatory conditions that are associated with dysfunctional T-cell metabolism such as autoimmune disorders, metabolic syndrome, HIV, and cancers.
Collapse
Affiliation(s)
- Clovis S Palmer
- a Centre for Biomedical Research, Burnet Institute , Melbourne , Australia.,b Department of Infectious Diseases , Monash University , Melbourne , Australia
| | - Tabinda Hussain
- a Centre for Biomedical Research, Burnet Institute , Melbourne , Australia
| | - Gabriel Duette
- c Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina , Buenos Aires , Argentina
| | - Thomas J Weller
- d Department of Immunology , Monash University , Melbourne , Australia
| | - Matias Ostrowski
- c Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Facultad de Medicina , Buenos Aires , Argentina
| | - Isabel Sada-Ovalle
- e Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael CosÃ-o Villegas , Mexico City , Mexico
| | - Suzanne M Crowe
- a Centre for Biomedical Research, Burnet Institute , Melbourne , Australia.,b Department of Infectious Diseases , Monash University , Melbourne , Australia.,f Infectious Diseases Department , The Alfred Hospital , Melbourne , Australia
| |
Collapse
|
46
|
Torres A, Luke JD, Kullas AL, Kapilashrami K, Botbol Y, Koller A, Tonge PJ, Chen EI, Macian F, van der Velden AWM. Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming. J Leukoc Biol 2015; 99:387-98. [PMID: 26497246 DOI: 10.1189/jlb.4a0615-252r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/02/2015] [Indexed: 01/09/2023] Open
Abstract
Salmonellae are pathogenic bacteria that induce immunosuppression by mechanisms that remain largely unknown. Previously, we showed that a putative type II l-asparaginase produced by Salmonella Typhimurium inhibits T cell responses and mediates virulence in a murine model of infection. Here, we report that this putative L-asparaginase exhibits L-asparagine hydrolase activity required for Salmonella Typhimurium to inhibit T cells. We show that L-asparagine is a nutrient important for T cell activation and that L-asparagine deprivation, such as that mediated by the Salmonella Typhimurium L-asparaginase, causes suppression of activation-induced mammalian target of rapamycin signaling, autophagy, Myc expression, and L-lactate secretion. We also show that L-asparagine deprivation mediated by the Salmonella Typhimurium L-asparaginase causes suppression of cellular processes and pathways involved in protein synthesis, metabolism, and immune response. Our results advance knowledge of a mechanism used by Salmonella Typhimurium to inhibit T cell responses and mediate virulence, and provide new insights into the prerequisites of T cell activation. We propose a model in which l-asparagine deprivation inhibits T cell exit from quiescence by causing suppression of activation-induced metabolic reprogramming.
Collapse
Affiliation(s)
- AnnMarie Torres
- *Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Graduate Program in Genetics, Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Proteomics Center, and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; and Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joanna D Luke
- *Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Graduate Program in Genetics, Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Proteomics Center, and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; and Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Amy L Kullas
- *Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Graduate Program in Genetics, Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Proteomics Center, and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; and Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kanishk Kapilashrami
- *Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Graduate Program in Genetics, Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Proteomics Center, and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; and Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yair Botbol
- *Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Graduate Program in Genetics, Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Proteomics Center, and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; and Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Antonius Koller
- *Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Graduate Program in Genetics, Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Proteomics Center, and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; and Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Peter J Tonge
- *Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Graduate Program in Genetics, Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Proteomics Center, and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; and Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Emily I Chen
- *Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Graduate Program in Genetics, Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Proteomics Center, and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; and Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Fernando Macian
- *Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Graduate Program in Genetics, Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Proteomics Center, and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; and Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Adrianus W M van der Velden
- *Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, Graduate Program in Genetics, Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Proteomics Center, and Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA; and Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
47
|
Chen B, Tan Z, Gao J, Wu W, Liu L, Jin W, Cao Y, Zhao S, Zhang W, Qiu Z, Liu D, Mo X, Li W. Hyperphosphorylation of ribosomal protein S6 predicts unfavorable clinical survival in non-small cell lung cancer. J Exp Clin Cancer Res 2015; 34:126. [PMID: 26490682 PMCID: PMC4618148 DOI: 10.1186/s13046-015-0239-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/07/2015] [Indexed: 02/07/2023] Open
Abstract
Background Ribosomal protein S6 (rpS6), a component of the 40S ribosomal subunit, is involved in multiple cellular bioactivities. However, its clinicopathological significance in non-small cell lung cancer (NSCLC) is poorly understood. Methods Expressions of total rpS6 (t-rpS6) and phosphorylated rpS6 (Ser235/236, p-rpS6) were detected immunohistochemically in 316 NSCLC tissues and 82 adjacent controls, followed by statistical evaluation of the relationship between proteins expressions and patients’ survivals to identify their prognostic values. Cytological experiments with overexpressing or silencing rpS6 by lentivirus in human bronchial epithelial (HBE) and NSCLC cell lines were performed to explore potential mechanisms by which rpS6 affects the clinical development of NSCLC. Additionally, specific RNA interference for Akt1, Akt2, Akt3, Akt inhibitor and subsequent cellular bioactivity tests were employed as well to investigate the upstream regulation of rpS6. Results Positive rates of t-rpS6 and p-rpS6 were both significantly increased in NSCLC tissues, compared with controls (82.91 vs 62.20 % for t-rpS6; 52.22 vs 21.95 % for p-rpS6; both P < 0.001). However, only hyperphosphorylation of rpS6, expressed as either elevated p-rpS6 alone or the ratio of p-rpS6 to t-rpS6 (p-rpS6/t-rpS6) no less than 0.67, was greatly associated with the unfavorable survival of NSCLC patients, especially for cases at stage I (all P < 0.001). The independent adverse prognostic value of hyperphosphorylated rpS6 was confirmed by multivariate Cox regression analysis (hazard ratios for elevated p-rpS6 alone and p-rpS6/t-rpS6 no less than 0.67 were 2.403, 4.311 respectively, both P < 0.001). Overexpression or knockdown of rpS6, along with parallel alterations of p-rpS6, led to increased or decreased cells proliferations respectively, which were dependent on redistributions of cell cycles (all P < 0.05). Cells migration and invasion also changed with rpS6 interference (all P < 0.05). Furthermore, upstream overexpression or knockdown of Akt2 or Akt2 phosphorylation inhibition, rather than Akt1 or Akt3, resulted in striking hyperphosphorylation or dephosphorylation of mTOR, p70S6K and rpS6 (all P < 0.05), without any change in total proteins expressions. Further tests showed markedly accompanied variation of cells proliferation, cell cycle distribution and invasion (all P < 0.05). Conclusion Hyperphosphorylation of rpS6, probably regulated by the Akt2/mTOR/p70S6K signaling pathway, is closely relevant to the progression of NSCLC and it might be served as a promising therapeutic target for NSCLC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0239-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bojiang Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China
| | - Zhi Tan
- Inspectiong and Quarantine Technical Center of Sichuan Entry-Exit Inspection and Quarantine Bureau, Chengdu, China
| | - Jun Gao
- Department of Toxicological Inspection, Sichuan Center for Disease Prevention and Control, Chengdu, China
| | - Wei Wu
- Department of Outpatient, West China Hospital of Sichuan University, Chengdu, China
| | - Lida Liu
- Department of Toxicological Inspection, Sichuan Center for Disease Prevention and Control, Chengdu, China
| | - Wei Jin
- Department of Toxicological Inspection, Sichuan Center for Disease Prevention and Control, Chengdu, China
| | - Yidan Cao
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Shuang Zhao
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China
| | - Wen Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China.,Department of Respiratory Medicine, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhixin Qiu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, West China Hospital of Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Street, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
48
|
Salmond RJ, Brownlie RJ, Meyuhas O, Zamoyska R. Mechanistic Target of Rapamycin Complex 1/S6 Kinase 1 Signals Influence T Cell Activation Independently of Ribosomal Protein S6 Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2015; 195:4615-22. [PMID: 26453749 PMCID: PMC4635570 DOI: 10.4049/jimmunol.1501473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022]
Abstract
Ag-dependent activation of naive T cells induces dramatic changes in cellular metabolism that are essential for cell growth, division, and differentiation. In recent years, the serine/threonine kinase mechanistic target of rapamycin (mTOR) has emerged as a key integrator of signaling pathways that regulate these metabolic processes. However, the role of specific downstream effectors of mTOR function in T cells is poorly understood. Ribosomal protein S6 (rpS6) is an essential component of the ribosome and is inducibly phosphorylated following mTOR activation in eukaryotic cells. In the current work, we addressed the role of phosphorylation of rpS6 as an effector of mTOR function in T cell development, growth, proliferation, and differentiation using knockin and TCR transgenic mice. Surprisingly, we demonstrate that rpS6 phosphorylation is not required for any of these processes either in vitro or in vivo. Indeed, rpS6 knockin mice are completely sensitive to the inhibitory effects of rapamycin and an S6 kinase 1 (S6K1)–specific inhibitor on T cell activation and proliferation. These results place the mTOR complex 1-S6K1 axis as a crucial determinant of T cell activation independently of its ability to regulate rpS6 phosphorylation.
Collapse
Affiliation(s)
- Robert J Salmond
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; and
| | - Rebecca J Brownlie
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; and
| | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, 91120 Jerusalem, Israel
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; and
| |
Collapse
|
49
|
Shao J, Stout I, Hendriksen PJM, van Loveren H, Peijnenburg AACM, Volger OL. Protein phosphorylation profiling identifies potential mechanisms for direct immunotoxicity. J Immunotoxicol 2015; 13:97-107. [PMID: 25715851 DOI: 10.3109/1547691x.2015.1016635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Signaling networks are essential elements that are involved in diverse cellular processes. One group of fundamental components in various signaling pathways concerns protein tyrosine kinases (PTK). Various toxicants have been demonstrated to exert their toxicity via modulation of tyrosine kinase activity. The present study aimed to identify common cellular signaling pathways that are involved in chemical-induced direct immunotoxicity. To this end, an antibody array-based profiling approach was applied to assess effects of five immunotoxicants, two immunosuppressive drugs and two non-immunotoxic control chemicals on the phosphorylation of 28 receptor tyrosine kinases and 11 crucial signaling nodes in Jurkat T-cells. The phosphorylation of ribosomal protein S6 (RPS6) and of kinases Akt, Src and p44/42 were found to be commonly regulated by immunotoxicants and/or immunosuppressive drugs (at least three compounds), with the largest effect observed upon RPS6. Flow cytometry and Western blotting were used to further examine the effect of the model immunotoxicant TBTO on the components of the mTOR-p70S6K-RPS6 pathway. These analyses revealed that both TBTO and the mTOR inhibitor rapamycin inactivate RPS6, but via different mechanisms. Finally, a comparison of the protein phosphorylation data to previously obtained transcriptome data of TBTO-treated Jurkat cells resulted in a good correlation at the pathway level and indicated that TBTO affects ribosome biogenesis and leukocyte migration. The effect of TBTO on the latter process was confirmed using a CXCL12 chemotaxis assay.
Collapse
Affiliation(s)
- Jia Shao
- a RIKILT-Institute of Food Safety, Wageningen University and Research Centre , Wageningen , the Netherlands .,b Department of Toxicogenomics , Maastricht University , the Netherlands .,c Netherlands Toxicogenomics Centre , the Netherlands , and
| | - Inge Stout
- a RIKILT-Institute of Food Safety, Wageningen University and Research Centre , Wageningen , the Netherlands
| | - Peter J M Hendriksen
- a RIKILT-Institute of Food Safety, Wageningen University and Research Centre , Wageningen , the Netherlands .,c Netherlands Toxicogenomics Centre , the Netherlands , and
| | - Henk van Loveren
- b Department of Toxicogenomics , Maastricht University , the Netherlands .,c Netherlands Toxicogenomics Centre , the Netherlands , and.,d National Institute for Public Health and the Environment (RIVM) , Bilthoven , the Netherlands
| | - Ad A C M Peijnenburg
- a RIKILT-Institute of Food Safety, Wageningen University and Research Centre , Wageningen , the Netherlands .,c Netherlands Toxicogenomics Centre , the Netherlands , and
| | - Oscar L Volger
- a RIKILT-Institute of Food Safety, Wageningen University and Research Centre , Wageningen , the Netherlands .,c Netherlands Toxicogenomics Centre , the Netherlands , and
| |
Collapse
|
50
|
Pearce VQ, Bouabe H, MacQueen AR, Carbonaro V, Okkenhaug K. PI3Kδ Regulates the Magnitude of CD8+ T Cell Responses after Challenge with Listeria monocytogenes. THE JOURNAL OF IMMUNOLOGY 2015; 195:3206-17. [PMID: 26311905 PMCID: PMC4574522 DOI: 10.4049/jimmunol.1501227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/24/2015] [Indexed: 12/26/2022]
Abstract
PI3Ks regulate diverse immune cell functions by transmitting intracellular signals from Ag, costimulatory receptors, and cytokine receptors to control cell division, differentiation, survival, and migration. In this study, we report the effect of inhibiting the p110δ subunit of PI3Kδ on CD8(+) T cell responses to infection with the intracellular bacteria Listeria monocytogenes. A strong dependency on PI3Kδ for IFN-γ production by CD8(+) T cells in vitro was not recapitulated after Listeria infection in vivo. Inactivation of PI3Kδ resulted in enhanced bacterial elimination by the innate immune system. However, the magnitudes of the primary and secondary CD8 +: T cell responses were reduced. Moreover, PI3Kδ activity was required for CD8(+) T cells to provide help to other responding CD8(+) cells. These findings identify PI3Kδ as a key regulator of CD8(+) T cell responses that integrates extrinsic cues, including those from other responding cells, to determine the collective behavior of CD8(+) T cell populations responding to infection.
Collapse
Affiliation(s)
- Verity Q Pearce
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Hicham Bouabe
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Amy R MacQueen
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Valentina Carbonaro
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| |
Collapse
|