1
|
Murayama K, Ikegami I, Kamekura R, Sakamoto H, Yanagi M, Kamiya S, Sato T, Sato A, Shigehara K, Yamamoto M, Takahashi H, Takano KI, Ichimiya S. CD4+CD8+ T follicular helper cells regulate humoral immunity in chronic inflammatory lesions. Front Immunol 2022; 13:941385. [PMID: 36091071 PMCID: PMC9452889 DOI: 10.3389/fimmu.2022.941385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
T follicular helper (Tfh) cells drive humoral immunity by facilitating B cell responses at the initial and recall phases. Recent studies have indicated the possible involvement of Tfh cells in the process of chronic inflammation. However, the functional role of Tfh cells in persistent immune settings remains unclear. Here, we report that CD4+CD8+ (double-positive, DP; CD3+CD4+CD8+CXCR5hiPD-1hi) Tfh cells, a subset of germinal-center-type Tfh cells, were abundantly present in the fibroinflammatory lesions of patients with immunoglobulin G4-related disease (IgG4-RD). Transcriptome analyses showed that these DP-Tfh cells in the lesions of IgG4-RD preferentially expressed signature genes characteristic of cytotoxic CD8+ T cells, such as Eomes, CRTAM, GPR56, and granzymes, in addition to CD70. Scatter diagram analyses to examine the relationships between tissue-resident lymphocytes and various clinical parameters revealed that the levels of DP-Tfh cells were inversely correlated to the levels of serum IgG4 and local IgG4-expressing (IgG4+) memory B cells (CD19+CD27+IgD-) in patients with IgG4-RD. Cell culture experiments using autologous tonsillar lymphocytes further suggested that DP-Tfh cells possess a poor B-cell helper function and instead regulate memory B cells. Since CD4+ (single positive, SP; CD3+CD4+CD8-CXCR5hiPD-1hi) Tfh cells differentiated into DP-Tfh cells under stimulation with IL-2 and IL-7 as assessed by in vitro experiments, these data imply that SP-Tfh cells are a possible origin of DP-Tfh cells under persistent inflammation. These findings highlight the potential feedback loop mechanism of Tfh cells in immune tolerance under chronic inflammatory conditions. Further studies on DP-Tfh cells may facilitate control of unresolved humoral responses in IgG4-RD pathological inflammation.
Collapse
Affiliation(s)
- Kosuke Murayama
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ippei Ikegami
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Sakamoto
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masahiro Yanagi
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shiori Kamiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taiki Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akinori Sato
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Katsunori Shigehara
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Motohisa Yamamoto
- Department of Rheumatology and Allergy, IMSUT Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroki Takahashi
- Department of Clinical Immunology and Rheumatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ken-ichi Takano
- Department of Otolaryngology and Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- *Correspondence: Shingo Ichimiya,
| |
Collapse
|
2
|
Phillips-Farfán B, Gómez-Chávez F, Medina-Torres EA, Vargas-Villavicencio JA, Carvajal-Aguilera K, Camacho L. Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. Int J Mol Sci 2021; 22:ijms22158162. [PMID: 34360926 PMCID: PMC8348731 DOI: 10.3390/ijms22158162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The microbiota regulates immunological development during early human life, with long-term effects on health and disease. Microbial products include short-chain fatty acids (SCFAs), formyl peptides (FPs), polysaccharide A (PSA), polyamines (PAs), sphingolipids (SLPs) and aryl hydrocarbon receptor (AhR) ligands. Anti-inflammatory SCFAs are produced by Actinobacteria, Bacteroidetes, Firmicutes, Spirochaetes and Verrucomicrobia by undigested-carbohydrate fermentation. Thus, fiber amount and type determine their occurrence. FPs bind receptors from the pattern recognition family, those from commensal bacteria induce a different response than those from pathogens. PSA is a capsular polysaccharide from B. fragilis stimulating immunoregulatory protein expression, promoting IL-2, STAT1 and STAT4 gene expression, affecting cytokine production and response modulation. PAs interact with neonatal immunity, contribute to gut maturation, modulate the gut–brain axis and regulate host immunity. SLPs are composed of a sphingoid attached to a fatty acid. Prokaryotic SLPs are mostly found in anaerobes. SLPs are involved in proliferation, apoptosis and immune regulation as signaling molecules. The AhR is a transcription factor regulating development, reproduction and metabolism. AhR binds many ligands due to its promiscuous binding site. It participates in immune tolerance, involving lymphocytes and antigen-presenting cells during early development in exposed humans.
Collapse
Affiliation(s)
- Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (F.G.-C.); (J.A.V.-V.)
- Cátedras CONACyT-Instituto Nacional de Pediatría, México City 04530, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | | | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Luz Camacho
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
- Correspondence:
| |
Collapse
|
3
|
Dhariwala MO, Karthikeyan D, Vasquez KS, Farhat S, Weckel A, Taravati K, Leitner EG, Clancy S, Pauli M, Piper ML, Cohen JN, Ashouri JF, Lowe MM, Rosenblum MD, Scharschmidt TC. Developing Human Skin Contains Lymphocytes Demonstrating a Memory Signature. CELL REPORTS MEDICINE 2020; 1:100132. [PMID: 33294857 PMCID: PMC7691438 DOI: 10.1016/j.xcrm.2020.100132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022]
Abstract
Lymphocytes in barrier tissues play critical roles in host defense and homeostasis. These cells take up residence in tissues during defined developmental windows, when they may demonstrate distinct phenotypes and functions. Here, we utilized mass and flow cytometry to elucidate early features of human skin immunity. Although most conventional αβ T (Tconv) cells in fetal skin have a naive, proliferative phenotype, a subset of CD4+ Tconv and CD8+ cells demonstrate memory-like features and a propensity for interferon (IFN)γ production. Skin regulatory T cells dynamically accumulate over the second trimester in temporal and regional association with hair follicle development. These fetal skin regulatory T cells (Tregs) demonstrate an effector memory phenotype while differing from their adult counterparts in expression of key effector molecules. Thus, we identify features of prenatal skin lymphocytes that may have key implications for understanding antigen and allergen encounters in utero and in infancy. CyTOF reveals a complex lymphocyte landscape in developing human skin Developing skin contains CD45RO+ conventional T cells with propensity to produce IFNγ Regulatory T cells (Tregs) in skin before birth display effector memory properties Skin Tregs increase in conjunction with initial hair follicle morphogenesis
Collapse
Affiliation(s)
- Miqdad O Dhariwala
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dhuvarakesh Karthikeyan
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kimberly S Vasquez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sepideh Farhat
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Antonin Weckel
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Keyon Taravati
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elizabeth G Leitner
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sean Clancy
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mariela Pauli
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Merisa L Piper
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jarish N Cohen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Judith F Ashouri
- Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Margaret M Lowe
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tiffany C Scharschmidt
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Zhang F, Yang T, Ao H, Zhai L, Tan Z, Wang Y, Xing K, Zhao X, Wang Z, Yu Y, Wang C. Novel nucleotide variants in SLA-DOB and CD4 are associated with immune traits in pregnant sows. Gene 2019; 707:22-29. [PMID: 31026568 DOI: 10.1016/j.gene.2019.04.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/28/2019] [Accepted: 04/19/2019] [Indexed: 11/17/2022]
Abstract
Reinforcing the immunity of pregnant sows can not only improve their own health condition but also increase the survival rate and healthy status of their piglets. This study aims to find single-nucleotide polymorphism (SNP) and molecular markers that are associated with the immune traits of pregnant sows. SLA-DOB and CD4 were selected as candidate genes, and blood samples were randomly collected from pregnant Landrace sows and used to detect T-lymphocyte subsets, interferon alpha, interleukin 6, Toll-like receptor 3, serum antibody immunoglobulin G, and porcine reproductive and respiratory syndrome virus-specific antibody. Then, association analyses were conducted for the polymorphic sites of candidate genes with immune traits. We found 12 mutations in the two genes and conducted an association study with eight of them. Our results indicated that among the eight mutations, SNP1, SNP2, and SNP3 of the SLA-DOB gene and Ins9, SNP10, and SNP11 in the CD4 gene are newly discovered mutations. Except for SNP1, SNP3, and SNP11, the other five SNPs are associated with at least one immune trait tested. Especially, SNP2 and Ins9 are significantly associated with at least one of the T-lymphocyte subgroups and at least one antibody. These novel mutations have potential important effects on the polymorphic loci of the above immune traits in pregnant sows. The results suggest that the SLA-DOB and CD4 genes and their genetic mutations can be considered as important candidate genes and mutations for the immunity of pregnant sows.
Collapse
Affiliation(s)
- Fengxia Zhang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Ting Yang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hong Ao
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liwei Zhai
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zhen Tan
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Yuan Wang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Kai Xing
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xitong Zhao
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Ying Yu
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China..
| | - Chuduan Wang
- National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China..
| |
Collapse
|
5
|
Overgaard NH, Cruz JL, Bridge JA, Nel HJ, Frazer IH, La Gruta NL, Blumenthal A, Steptoe RJ, Wells JW. CD4 +CD8β + double-positive T cells in skin-draining lymph nodes respond to inflammatory signals from the skin. J Leukoc Biol 2017. [PMID: 28637895 DOI: 10.1189/jlb.1ab0217-065r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
CD4+CD8+ double-positive (DP), mature, peripheral T cells are readily detectable in a variety of species and tissues. Despite a common association with autoimmune and malignant skin disorders, however, little is understood about their role or function. Herein, we show that DP T cells are readily detectable in the blood, spleen, and peripheral lymph nodes of naïve C57BL/6 mice. DP T cells were also present in Jα18-/- and CD1d-/- mice, indicating that these cells are not NK-T cells. After skin administration of CASAC adjuvant, but not Quil A adjuvant, both total DP T cells and skin-infiltrating DP T cells increased in number. We explored the possibility that DP T cells could represent aggregates between CD4+ and CD8+ single-positive T cells and found strong evidence that a large proportion of apparent DP T cells were indeed aggregates. However, the existence of true CD4+CD8+ DP T cells was confirmed by Amnis ImageStream (Millipore Sigma, Billerica, MA, USA) imaging. Multiple rounds of FACS sorting separated true DP cells from aggregates and indicated that conventional analyses may lead to ∼10-fold overestimation of DP T cell numbers. The high degree of aggregate contamination and overestimation of DP abundance using conventional analysis techniques may explain discrepancies reported in the literature for DP T cell origin, phenotype, and function.
Collapse
Affiliation(s)
- Nana H Overgaard
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark; and
| | - Jazmina L Cruz
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jennifer A Bridge
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hendrik J Nel
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - James W Wells
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia;
| |
Collapse
|
6
|
Parrot T, Oger R, Benlalam H, Raingeard de la Blétière D, Jouand N, Coutolleau A, Preisser L, Khammari A, Dréno B, Guardiola P, Delneste Y, Labarrière N, Gervois N. CD40L confers helper functions to human intra-melanoma class-I-restricted CD4 +CD8 + double positive T cells. Oncoimmunology 2016; 5:e1250991. [PMID: 28123891 PMCID: PMC5214764 DOI: 10.1080/2162402x.2016.1250991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 12/02/2022] Open
Abstract
Although CD4+CD8+ double positive (DP) T cells represent a small fraction of peripheral T lymphocytes in healthy human donors, their frequency is often increased under pathological conditions (in blood and targeted tissues). In solid cancers such as melanoma, we previously demonstrated an enrichment of tumor reactive CD4lowCD8highαβ DP T cells among tumor-infiltrating lymphocytes of unknown function. Similarly to their single positive (SP) CD8+ counterparts, intra-melanoma DP T cells recognized melanoma cell lines in an HLA-class-I restricted context. However, they presented a poor cytotoxic activity but a strong production of diverse Th1 and Th2 cytokines. The aim of this study was to clearly define the role of intra-melanoma CD4lowCD8highαβ DP T cells in the antitumor immune response. Based on a comparative transcriptome analysis between intra-melanoma SP CD4+, SP CD8+ and DP autologous melanoma-infiltrating T-cell compartments, we evidenced an overexpression of the CD40L co-stimulatory molecule on activated DP T cells. We showed that, like SP CD4+ T cells, and through CD40L involvement, DP T cells are able to induce both proliferation and differentiation of B lymphocytes and maturation of functional DCs able to efficiently prime cytotoxic melanoma-specific CD8 T-cell responses. Taken together, these results highlight the helper potential of atypical DP T cells and their role in potentiating antitumor response.
Collapse
Affiliation(s)
- Tiphaine Parrot
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Romain Oger
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Houssem Benlalam
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Diane Raingeard de la Blétière
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; SNP Transcriptome & Epigenomics Facility, Centre Hospitalier Universitaire, Angers, France
| | - Nicolas Jouand
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Anne Coutolleau
- SNP Transcriptome & Epigenomics Facility, Centre Hospitalier Universitaire , Angers, France
| | - Laurence Preisser
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Amir Khammari
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; Unit of Skin Cancer, Centre Hospitalier Universitaire, Nantes, France
| | - Brigitte Dréno
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; Unit of Skin Cancer, Centre Hospitalier Universitaire, Nantes, France; GMP Unit of Cellular Therapy, Centre Hospitalier Universitaire, Nantes, France
| | - Philippe Guardiola
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France; SNP Transcriptome & Epigenomics Facility, Centre Hospitalier Universitaire, Angers, France
| | - Yves Delneste
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Nathalie Labarrière
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Nadine Gervois
- CRCNA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
7
|
Yu HR, Tain YL, Sheen JM, Tiao MM, Chen CC, Kuo HC, Hung PL, Hsieh KS, Huang LT. Prenatal Dexamethasone and Postnatal High-Fat Diet Decrease Interferon Gamma Production through an Age-Dependent Histone Modification in Male Sprague-Dawley Rats. Int J Mol Sci 2016; 17:ijms17101610. [PMID: 27669212 PMCID: PMC5085643 DOI: 10.3390/ijms17101610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/11/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
Overexposure to prenatal glucocorticoid (GC) disturbs hypothalamic-pituitary-adrenocortical axis-associated neuroendocrine metabolism and susceptibility to metabolic syndrome. A high-fat (HF) diet is a major environmental factor that can cause metabolic syndrome. We aimed to investigate whether prenatal GC plus a postnatal HF diet could alter immune programming in rat offspring. Pregnant Sprague-Dawley rats were given intraperitoneal injections of dexamethasone or saline at 14-21 days of gestation. Male offspring were then divided into four groups: vehicle, prenatal dexamethasone exposure, postnatal HF diet (VHF), and prenatal dexamethasone exposure plus a postnatal HF diet (DHF). The rats were sacrificed and adaptive immune function was evaluated. Compared to the vehicle, the DHF group had lower interferon gamma (IFN-γ) production by splenocytes at postnatal day 120. Decreases in H3K9 acetylation and H3K36me3 levels at the IFN-γ promoter correlated with decreased IFN-γ production. The impaired IFN-γ production and aberrant site-specific histone modification at the IFN-γ promoter by prenatal dexamethasone treatment plus a postnatal HF diet resulted in resilience at postnatal day 180. Prenatal dexamethasone and a postnatal HF diet decreased IFN-γ production through a site-specific and an age-dependent histone modification. These findings suggest a mechanism by which prenatal exposure to GC and a postnatal environment exert effects on fetal immunity programming.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - You-Lin Tain
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Mao-Meng Tiao
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Chih-Cheng Chen
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Ho-Chang Kuo
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Pi-Lien Hung
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| | - Li-Tung Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
8
|
Parrot T, Allard M, Oger R, Benlalam H, Raingeard de la Blétière D, Coutolleau A, Preisser L, Desfrançois J, Khammari A, Dréno B, Labarrière N, Delneste Y, Guardiola P, Gervois N. IL-9 promotes the survival and function of human melanoma-infiltrating CD4+CD8+double-positive T cells. Eur J Immunol 2016; 46:1770-82. [DOI: 10.1002/eji.201546061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/09/2016] [Accepted: 04/15/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Tiphaine Parrot
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université de Nantes; Nantes France
| | - Mathilde Allard
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université de Nantes; Nantes France
| | - Romain Oger
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université de Nantes; Nantes France
| | - Houssem Benlalam
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université de Nantes; Nantes France
| | - Diane Raingeard de la Blétière
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université d'Angers; Angers France
- SNP Transcriptome & Epigenomics Facility; Centre Hospitalier Universitaire; Angers France
| | - Anne Coutolleau
- SNP Transcriptome & Epigenomics Facility; Centre Hospitalier Universitaire; Angers France
| | - Laurence Preisser
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université d'Angers; Angers France
| | | | - Amir Khammari
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université de Nantes; Nantes France
- Unit of Skin Cancer; Centre Hospitalier Universitaire; Nantes France
- GMP Unit of Cellular Therapy; Centre Hospitalier Universitaire; Nantes France
| | - Brigitte Dréno
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université de Nantes; Nantes France
- Unit of Skin Cancer; Centre Hospitalier Universitaire; Nantes France
- GMP Unit of Cellular Therapy; Centre Hospitalier Universitaire; Nantes France
| | - Nathalie Labarrière
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université de Nantes; Nantes France
| | - Yves Delneste
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université d'Angers; Angers France
| | - Philippe Guardiola
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université d'Angers; Angers France
- SNP Transcriptome & Epigenomics Facility; Centre Hospitalier Universitaire; Angers France
| | - Nadine Gervois
- INSERM; U892 Nantes France
- CNRS; UMR 6299 Nantes France
- Université de Nantes; Nantes France
| |
Collapse
|
9
|
Arsenović-Ranin N, Kosec D, Nacka-Aleksić M, Pilipović I, Stojić-Vukanić Z, Djikić J, Bufan B, Leposavić G. Ovarian hormone level alterations during rat post-reproductive life-span influence CD8 + T-cell homeostasis. Exp Biol Med (Maywood) 2015; 240:1319-32. [PMID: 25716018 DOI: 10.1177/1535370215570817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/21/2014] [Indexed: 01/01/2023] Open
Abstract
The study examined the putative role of ovarian hormones in shaping of rat peripheral T-cell compartment during post-reproductive period. In 20-month-old rats ovariectomized (Ox) at the very end of reproductive period, thymic output, cellularity and composition of major TCRαβ + peripheral blood lymphocyte and splenocyte subsets were analyzed. Ovariectomy led to the enlargement of CD8 + peripheral blood lymphocyte and splenocyte subpopulations. This reflected: (i) a more efficient thymic generation of CD8 + cells as indicated by increased number of CD4+CD8 + double positive and the most mature CD4-CD8+TCRαβ(high) thymocytes and CD8 + recent thymic emigrants (RTEs) in peripheral blood, but not in the spleen of Ox rats, and (ii) the expansion of CD8 + memory/activated peripheral blood lymphocytes and splenocytes. The latter was consistent with a greater frequency of proliferating cells among freshly isolated memory/activated CD8 + peripheral blood lymphocytes and splenocytes and increased proliferative response of CD8 + splenocytes to stimulation with plate-bound anti-CD3 antibody. The former could be related to the rise in splenic IL-7 and IL-15 mRNA expression. Although ovariectomy affected the overall number of CD4 + T cells in none of the examined compartments, it increased CD4+FoxP3 + peripheral blood lymphocyte and splenocyte counts by enhancing their generation in periphery. Collectively, the results suggest that ovariectomy-induced long-lasting disturbances in ovarian hormone levels (mirrored in diminished progesterone serum level in 20-month-old rats) affects both thymic CD8 + cell generation and peripheral homeostasis and leads to the expansion of CD4+FoxP3 + cells in the periphery, thereby enhancing autoreactive cell control on account of immune system efficacy to combat infections and tumors.
Collapse
Affiliation(s)
- Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 11221 Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
10
|
Overgaard NH, Jung JW, Steptoe RJ, Wells JW. CD4+/CD8+ double-positive T cells: more than just a developmental stage? J Leukoc Biol 2014; 97:31-8. [PMID: 25360000 DOI: 10.1189/jlb.1ru0814-382] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
CD4(+)/CD8(+) DP thymocytes are a well-described T cell developmental stage within the thymus. However, once differentiated, the CD4(+) lineage or the CD8(+) lineage is generally considered to be fixed. Nevertheless, mature CD4(+)/CD8(+) DP T cells have been described in the blood and peripheral lymphoid tissues of numerous species, as well as in numerous disease settings, including cancer. The expression of CD4 and CD8 is regulated by a very strict transcriptional program involving the transcription factors Runx3 and ThPOK. Initially thought to be mutually exclusive within CD4(+) and CD8(+) T cells, CD4(+)/CD8(+) T cell populations, outside of the thymus, have recently been described to express concurrently ThPOK and Runx3. Considerable heterogeneity exists within the CD4(+)/CD8(+) DP T cell pool, and the function of CD4(+)/CD8(+) T cell populations remains controversial, with conflicting reports describing cytotoxic or suppressive roles for these cells. In this review, we describe how transcriptional regulation, lineage of origin, heterogeneity of CD4 and CD8 expression, age, species, and specific disease settings influence the functionality of this rarely studied T cell population.
Collapse
Affiliation(s)
- Nana H Overgaard
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; and Center for Cancer Immune Therapy, Department of Hematology, Copenhagen University Hospital, Herlev, Denmark
| | - Ji-Won Jung
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; and
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; and
| | - James W Wells
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia; and
| |
Collapse
|
11
|
Nehete PN, Hanley PW, Nehete BP, Yang G, Ruiz JC, Williams L, Abee CR, Sastry KJ. Phenotypic and functional characterization of lymphocytes from different age groups of Bolivian squirrel monkeys (Saimiri boliviensis boliviensis). PLoS One 2013; 8:e79836. [PMID: 24282512 PMCID: PMC3839916 DOI: 10.1371/journal.pone.0079836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/29/2013] [Indexed: 12/22/2022] Open
Abstract
Due to many physiological and genetic characteristic similarities to humans, squirrel monkeys provide an ideal animal model specifically for studying malaria, and transmissible spongiform encephalopathies (Creutzfeldt-Jacob disease). While squirrel monkeys three years and older are generally considered adult subjects suitable for use in medical research studies, little is known about the functional properties of lymphocytes in relation to the age of these animals, which could significantly impact the quality and quantity of innate and adaptive immune responses. In this study, we investigated differences in the phenotype and function of lymphocytes subsets of young (3–4 years), adult (8–10 years) and aged (16–19 years) squirrel monkeys. In general, animals in all three age groups exhibited comparable numbers of different lymphocyte subsets except for CD20+ B cells that were significantly lower in aged relative to young animals and T cells subsets expressing both CD4 and CD8 (double positive) were significantly higher in aged relative to young animals. With increasing age, phenotypic differences in central and effector memory T cells subsets were observed, that were more pronounced for the CD8+ T cells. Despite equal proportions of CD3+ T cells among the three age groups, responses of peripheral blood mononuclear cells to T cell mitogens PHA and Con A showed lower IFN-γ producing cells in the aged group than that in the young group. Furthermore, aged animals showed significantly higher plasma levels of inflammatory cytokines IL-6, IFN-γ, TNF-α, IL-10 and IL-12. These findings suggest that while the squirrel monkeys in general share phenotypic and functional similarities of lymphocyte subsets with humans in relation to age, specific differences exist in immune function of lymphocytes between young and old animals that could potentially impact experimental outcomes for which the measurement of immunologic endpoints are critical.
Collapse
Affiliation(s)
- Pramod N. Nehete
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
- * E-mail:
| | - Patrick W. Hanley
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Bharti P. Nehete
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Guojun Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center Houston, Texas, United States of America
| | - Julio C. Ruiz
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Lawrence Williams
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - Christian R. Abee
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, United States of America
| | - K. Jagannadha Sastry
- Department of Immunology, The University of Texas MD Anderson Cancer Center Houston, Texas, United States of America
| |
Collapse
|
12
|
Affiliation(s)
- Pamela J. Fink
- Department of Immunology, University of Washington, Seattle, Washington 98195;
| |
Collapse
|
13
|
In vitro immunomodulatory effects of an oleanolic acid-enriched extract of Ligustrum lucidum fruit (Ligustrum lucidum supercritical CO2 extract) on piglet immunocytes. Int Immunopharmacol 2012; 14:758-63. [PMID: 23099145 DOI: 10.1016/j.intimp.2012.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 02/08/2023]
Abstract
This study was conducted to evaluate the in vitro immunomodulatory effects of supercritical CO(2)Ligustrum lucidum extract (LLE) on the immune cells of piglets. The results showed that the LLE enhanced the proliferative activity of piglet blood lymphocytes and up-regulated the CD4(+) CD8(+) and CD4(+) CD8(-) cell populations. The LLE also regulated the expression of Th1- and Th2-related cytokines; elevated the levels of IL-2, IFN-γ and TNF-α, which were produced by Th1 lymphocytes; and decreased the levels of IL-4 and IL-10, which were produced by Th2 lymphocytes. Furthermore, the LLE stimulated the NO secretion of lymphocytes. These results indicated that LLE might have potential immunomodulatory effects on the immune system of piglets and provided scientific and experimental foundations for the development of a new kind of LLE immune adjuvant in the pig production.
Collapse
|
14
|
Chauhan NK, Vajpayee M, Mojumdar K, Singh R, Singh A. Study of CD4+CD8+ Double positive T-lymphocyte phenotype and function in Indian patients infected with HIV-1. J Med Virol 2012; 84:845-56. [DOI: 10.1002/jmv.23289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Frahm MA, Picking RA, Kuruc JD, McGee KS, Gay CL, Eron JJ, Hicks CB, Tomaras GD, Ferrari G. CD4+CD8+ T cells represent a significant portion of the anti-HIV T cell response to acute HIV infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:4289-96. [PMID: 22461689 DOI: 10.4049/jimmunol.1103701] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have revealed that HIV-infected individuals possess circulating CD4(+)CD8(+) double-positive (DP) T cells specific for HIV Ags. In the present study, we analyzed the proliferation and functional profile of circulating DP T cells from 30 acutely HIV-infected individuals and 10 chronically HIV-infected viral controllers. The acutely infected group had DP T cells that showed more proliferative capability and multifunctionality than did both their CD4(+) and CD8(+) T cells. DP T cells were found to exhibit greater proliferation and higher multifunctionality compared with CD4 T cells in the viral controller group. The DP T cell response represented 16% of the total anti-HIV proliferative response and >70% of the anti-HIV multifunctional response in the acutely infected subjects. Proliferating DP T cells of the acutely infected subjects responded to all HIV Ag pools with equal magnitude. Conversely, the multifunctional response was focused on the pool representing Nef, Rev, Tat, VPR, and VPU. Meanwhile, the controllers' DP T cells focused on Gag and the Nef, Rev, Tat, VPR, and VPU pool for both their proliferative and multifunctional responses. Finally, we show that the presence of proliferating DP T cells following all HIV Ag stimulations is well correlated with proliferating CD4 T cells whereas multifunctionality appears to be largely independent of multifunctionality in other T cell compartments. Therefore, DP T cells represent a highly reactive cell population during acute HIV infection, which responds independently from the traditional T cell compartments.
Collapse
Affiliation(s)
- Marc A Frahm
- Center for AIDS Research, Duke University Medical Center, Durham, NC 22710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lymphocyte phenotypes in wild-caught rats suggest potential mechanisms underlying increased immune sensitivity in post-industrial environments. Cell Mol Immunol 2012; 9:163-74. [PMID: 22327212 DOI: 10.1038/cmi.2011.61] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The immune systems of wild rats and of laboratory rats can been utilized as models of the human immune system in pre-industrial and post-industrial societies, respectively. In this study, lymphocyte phenotypes in wild rats were broadly characterized, and the results were compared to those obtained by us and by others using cells derived from various strains of laboratory rats. Although not expected, the production of regulatory T cells was not apparently different in wild rats compared to laboratory rats. On the other hand, differences in expression of markers involved in complement regulation, adhesion, signaling and maturation suggest increased complement regulation and decreased sensitivity in wild-caught rats compared to laboratory rats, and point toward complex differences between the maturation of T cells. The results potentially lend insight into the pathogenesis of post-industrial epidemics of allergy and autoimmune disease.
Collapse
|
17
|
Domingues A, Sartori A, Valente LMM, Golim MA, Siani AC, Viero RM. Uncaria tomentosa aqueous-ethanol extract triggers an immunomodulation toward a Th2 cytokine profile. Phytother Res 2011; 25:1229-35. [PMID: 21656603 DOI: 10.1002/ptr.3549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 05/07/2011] [Indexed: 11/08/2022]
Abstract
Uncaria tomentosa (Willd.) DC (Rubiaceae) is a large woody vine that is native to the Amazon and Central American rainforests and is used widely in traditional medicine for its immunomodulatory and antiinflammatory activities. The present work used in vivo immunotoxic and in vitro immunomodulatory experiments to investigate the effects of a pentacyclic oxindole alkaloid extract from U. tomentosa bark on lymphocyte phenotype, Th1/Th2 cytokine production, cellular proliferation and cytotoxicity. For the in vivo immunotoxicity testing, BALB/c male mice were treated once a day with 125, 500 or 1250 mg/kg of U. tomentosa extract for 28 days. For the in vitro protocol, lymphocytes were cultured with 10-500 μg/mg of the extract for 48 h. The extract increased the cellularity of splenic white pulp and the thymic medulla and increased the number of T helper lymphocytes and B lymphocytes. Also, a large stimulatory effect on lymphocyte viability was observed. However, mitogen-induced T lymphocyte proliferation was significantly inhibited at higher concentrations of U. tomentosa extract. Furthermore, an immunological polarization toward a Th2 cytokine profile was observed. These results suggest that the U. tomentosa aqueous-ethanol extract was not immunotoxic to mice and was able to modulate distinct patterns of the immune system in a dose-dependent manner.
Collapse
Affiliation(s)
- Alexandre Domingues
- Department of Pathology, Medical School, São Paulo State University, Botucatu, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
18
|
Nascimbeni M, Pol S, Saunier B. Distinct CD4+ CD8+ double-positive T cells in the blood and liver of patients during chronic hepatitis B and C. PLoS One 2011; 6:e20145. [PMID: 21647449 PMCID: PMC3102078 DOI: 10.1371/journal.pone.0020145] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/19/2011] [Indexed: 01/10/2023] Open
Abstract
CD4+ and CD8+ T cells, the main effectors of adaptive cellular immune responses, differentiate from immature, non-functional CD4+CD8+ double-positive T (DPT) cells in the thymus. Increased proportions of circulating DPT lymphocytes have been observed during acute viral infections; in chronic viral diseases, the role and repartition of extra-thymic DPT cells remain largely uncharacterized. We performed a phenotypic analysis of DPT cells in blood and liver from patients chronically infected by hepatitis C (HCV) or B (HBV) viruses. The highest percentages of DPT cells, predominantly CD4highCD8low, were observed in patients infected by HCV, while HBV-infected patients mostly displayed CD4lowCD8high and CD4highCD8high DPT cells. All proportions of DPT cells were higher in liver than in blood with, for each subpopulation referred to above, a correlation between their frequencies in these two compartments. In HCV patients, intra-hepatic DPT cells displayed more heterogeneous activation, differentiation and memory phenotypes than in the blood; most of them expressed CD1a, a marker of T cell development in the thymus. Ex vivo, the inoculation of liver slices with HCV produced in cell culture was accompanied by a disappearance of CD8high cells, suggesting a direct effect of the virus on the phenotype of DPT cells in the liver. Our results suggest that, in half of the patients, chronic HCV infection promotes the production of DPT cells, perhaps by their re-induction in the thymus and selection in the liver.
Collapse
Affiliation(s)
- Michelina Nascimbeni
- Faculty of Medicine, Paris-Descartes University, Paris, France
- Institut Cochin, UMR8104 of the Centre National de la Recherche Scientific (CNRS), Paris, France
- U1016 of the Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France
| | - Stanislas Pol
- Faculty of Medicine, Paris-Descartes University, Paris, France
- Institut Cochin, UMR8104 of the Centre National de la Recherche Scientific (CNRS), Paris, France
- U1016 of the Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France
- Hepatology Unit of Cochin Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Bertrand Saunier
- Faculty of Medicine, Paris-Descartes University, Paris, France
- Institut Cochin, UMR8104 of the Centre National de la Recherche Scientific (CNRS), Paris, France
- U1016 of the Institut National de la Santé et de la Recherche Médicale (Inserm), Paris, France
- * E-mail:
| |
Collapse
|
19
|
Wang XL, Zhao GH, Zhang J, Shi QY, Guo WX, Tian XL, Qiu JZ, Yin LZ, Deng XM, Song Y. Immunomodulatory effects of cinobufagin isolated from Chan Su on activation and cytokines secretion of immunocyte in vitro. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2011; 13:383-392. [PMID: 21534035 DOI: 10.1080/10286020.2011.565746] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The objective of this study was to evaluate the immunomodulatory effects of cinobufagin (CBG) isolated from Chan Su (Venenum Bufonis) in vitro. In this paper, our results show that CBG significantly stimulated cell proliferation of splenocytes and peritoneal macrophages (PMΦ) and markedly enhanced the phagocytic activation of PMΦ. CBG also significantly increased CD4(+)CD8(+) double-positive T-cell populations and the percentage of S-phase cells of splenic lymphocytes. The levels of several Th1 cytokines, including interferon-γ and tumor necrosis factor-α, are significantly increased after CBG treatment, whereas the levels of the Th2 cytokine interleukin-4 and interleukin-10 are significantly decreased. As a result, the ratio of Th1/Th2 also increased. Taken together, these results indicated that CBG had potential immune system regulatory effects and suggested that this compound could be developed as a novel immunotherapeutic agent to treat immune-mediated diseases such as cancer.
Collapse
Affiliation(s)
- Xiao-Liang Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lewis DB, Haines C, Ross D. Protein tyrosine kinase 7: a novel surface marker for human recent thymic emigrants with potential clinical utility. J Perinatol 2011; 31 Suppl 1:S72-81. [PMID: 21448210 DOI: 10.1038/jp.2010.187] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent thymic emigrants (RTEs) are antigenically naive T cells that have recently completed intrathymic maturation and have emigrated from the thymus to the periphery. RTEs are clinically and immunologically important as they are essential for maintaining peripheral T cells in sufficient numbers in order to recognize, by their αβT-cell receptors (TCRs), a diverse array of foreign peptide antigens. However, RTE frequency and function has been poorly understood because of a lack of surface markers to distinguish them from older non-RTE naive T cells. This review summarizes the biology of the intrathymic generation and function of RTEs, including the recent identification of protein tyrosine kinase 7 (PTK7) as a novel marker for human RTEs of the CD4 (helper) T-cell lineage. PTK7+ RTEs in adults have a reduced capacity for activation-induced proliferation and cytokine production (interleukin-2 and interferon-γ) than older PTK7- naive CD4 T cells. Importantly, this immaturity in CD4 RTE effector function may contribute to the reduced adaptive immune responses observed in situations in which CD4 RTEs predominate, including the fetus, neonate and young infant, and following immune reconstitution, such as post-hematopoietic stem cell transplant. The ability to identify viable CD4+ RTEs based on PTK7 surface staining may be particularly useful in the infant for better defining the impact of nutritional and environmental factors on thymic output, peripheral T-cell function and adaptive immune responses to vaccination and infection.
Collapse
Affiliation(s)
- D B Lewis
- Division of Immunology and Allergy, Department of Pediatrics, The Institute for Immunology, Transplantation, and Infectious Diseases, The Interdepartmental Program Immunology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
21
|
McDonald KG, Leach MR, Huang C, Wang C, Newberry RD. Aging impacts isolated lymphoid follicle development and function. IMMUNITY & AGEING 2011; 8:1. [PMID: 21214915 PMCID: PMC3023758 DOI: 10.1186/1742-4933-8-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/07/2011] [Indexed: 01/19/2023]
Abstract
BACKGROUND Immunosenescence is the age-related decline and dysfunction of protective immunity leading to a marked increase in the risk of infections, autoimmune disease, and cancer. The majority of studies have focused on immunosenescence in the systemic immune system; information concerning the effect of aging on intestinal immunity is limited. Isolated lymphoid follicles (ILFs) are newly appreciated dynamic intestinal lymphoid structures that arise from nascent lymphoid tissues, or cryptopatches (CP), in response to local inflammatory stimuli. ILFs promote "homeostatic" responses including the production of antigen-specific IgA, thus playing a key role in mucosal immune protection. ILF dysfunction with aging could contribute to immunosenescence of the mucosal system, and accordingly we examined phenotypic and functional aspects of ILFs from young (2 month old) and aged (2 year old) mice. RESULTS We observed that aged mice have increased numbers of ILFs and increased numbers of structures corresponding to an early stage of CPs transforming into ILFs. The cellular composition of ILFs in aged mice is altered with a smaller B-lymphocyte population and an increased T-lymphocyte population. The ILF T-lymphocyte population is notable by the presence of CD4+ CD8αα+ T-lymphocytes, which are absent from the systemic compartment. The smaller B-lymphocyte population in ILFs from aged mice is directly correlated with decreased mRNA and protein expression of CCL20 and CXCL13, two chemokines that play crucial roles in recruiting B-lymphocytes into ILFs. Aged mice had elevated levels of serum and fecal immunoglobulins and despite the decreased B-lymphocyte population, ILFs from aged mice displayed increased IgA production. The immunoglobulin repertoire was skewed in aged mice, and ILFs demonstrated a repertoire usage similar to that of the systemic pool in both young and aged mice. CONCLUSIONS Here we observed that ILF development, cellular composition, and immunoglobulin production are altered with aging suggesting that ILF dysfunction contributes to mucosal immunosenescence.
Collapse
Affiliation(s)
- Keely G McDonald
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Matthew R Leach
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Conway Huang
- University of Texas Southwestern Medical School, Austin Texas, 78701, USA
| | - Caihong Wang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
22
|
Leposavić G, Pilipović I, Perišić M. Age-associated remodeling of neural and nonneural thymic catecholaminergic network affects thymopoietic productivity. Neuroimmunomodulation 2011; 18:290-308. [PMID: 21952681 DOI: 10.1159/000329499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Ageing is associated with a progressive decline in thymic cytoarchitecture followed by a less efficient T cell development and decreased emigration of naïve T cells to the periphery. These thymic changes are linked to increased morbidity and mortality from infectious, malignant and autoimmune diseases in old age. Therefore, it is of paramount importance to understand the thymic homeostatic processes across the life span, as well as to identify factors and elucidate mechanisms driving or contributing to the thymic involution. Catecholamines (CAs) derived from sympathetic nerves and produced locally by thymic cells represent an important component of the thymic microenvironment. In young rats, they provide a subtle tonic suppressive influence on T cell development acting via β(2)- and α(1)-adrenoceptors (ARs) expressed on thymic nonlymphoid cells and thymocytes. In the face of thymic involution, a progressive increase in the thymic noradrenaline level, reflecting a rise in the density of noradrenergic nerve fibers and CA-synthesizing cells, occurs. In addition, the density of β(2)- and α(1)-AR-expressing thymic nonlymphoid cells and the α(1)-AR thymocyte surface density also exhibit a pronounced increase with age. The data obtained from studies investigating effects of AR blockade on T cell development indicated that age-related changes in CA-mediated thymic communications, certainly those involving α(1)-ARs, may contribute to diminished thymopoietic efficiency in the elderly. Having in mind thymic plasticity in the course of ageing, and broadening possibilities for pharmacological modulation of CA signaling, we here present and discuss the progress in research related to a role of CAs in thymic homeostasis and age-related decay in the thymic naïve T cell output.
Collapse
Affiliation(s)
- Gordana Leposavić
- Immunology Research Centre 'Branislav Janković', Institute of Virology, Vaccines and Sera 'Torlak', Belgrade, Serbia. Gordana.Leposavic @ pharmacy.bg.ac.rs
| | | | | |
Collapse
|
23
|
Both tacrolimus and sirolimus decrease Th1/Th2 ratio, and increase regulatory T lymphocytes in the liver after ischemia/reperfusion. J Transl Med 2009; 89:433-45. [PMID: 19188906 DOI: 10.1038/labinvest.2009.3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The protective effects of immunosuppressants against ischemia/reperfusion (I/R) injury have been attributed to their non-specific anti-inflammatory effect. However, these effects may also depend on their effect on T lymphocytes, which are increasingly considered to be key players in I/R. Here, we studied the effects of tacrolimus and sirolimus on lymphocyte subpopulations in an I/R rat model. The animals were treated with tacrolimus, sirolimus or vehicle, before undergoing a 60-min ischemia event of the right hepatic lobe, followed by excision of the remaining liver. After 2 h, I/R rats showed increased mortality, plasma lactate dehydrogenase (LDH) levels, hepatocyte apoptosis, liver histological injury and parenchymal infiltration by neutrophils, macrophages, NK cells and T lymphocytes. Most of the changes were antagonized by both immunosuppressants. Tacrolimus augmented the proportion of cycling cells in I/R rats, whereas sirolimus showed the opposite effect. The increased Th1/Th2 ratio found in I/R livers after 2 h was reverted by immunosuppressants, which also amplified the proportion of CD4(+)CD25(+)Foxp3(+) regulatory T lymphocytes at 24 h. The protective effects of both tacrolimus and sirolimus correlated well with a decreased ratio of proinflammatory to anti-inflammatory T lymphocytes, and with an increase in the Treg proportion. This suggests a new mechanism to explain the known beneficial effect shown by immunosuppressants early after I/R.
Collapse
|
24
|
Haines CJ, Giffon TD, Lu LS, Lu X, Tessier-Lavigne M, Ross DT, Lewis DB. Human CD4+ T cell recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. ACTA ACUST UNITED AC 2009; 206:275-85. [PMID: 19171767 PMCID: PMC2646563 DOI: 10.1084/jem.20080996] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CD4+ recent thymic emigrants (RTEs) comprise a clinically and immunologically important T cell population that indicates thymic output and that is essential for maintaining a diverse αβ–T cell receptor (TCR) repertoire of the naive CD4+ T cell compartment. However, their frequency and function are poorly understood because no known surface markers distinguish them from older non-RTE naive CD4+ T cells. We demonstrate that protein tyrosine kinase 7 (PTK7) is a novel marker for human CD4+ RTEs. Consistent with their recent thymic origin, human PTK7+ RTEs contained higher levels of signal joint TCR gene excision circles and were more responsive to interleukin (IL)-7 compared with PTK7− naive CD4+ T cells, and rapidly decreased after complete thymectomy. Importantly, CD4+ RTEs proliferated less and produced less IL-2 and interferon-γ than PTK7− naive CD4+ T cells after αβ-TCR/CD3 and CD28 engagement. This immaturity in CD4+ RTE effector function may contribute to the reduced CD4+ T cell immunity observed in contexts in which CD4+ RTEs predominate, such as in the fetus and neonate or after immune reconstitution. The ability to identify viable CD4+ RTEs by PTK7 staining should be useful for monitoring thymic output in both healthy individuals and in patients with genetic or acquired CD4+ T cell immunodeficiencies.
Collapse
Affiliation(s)
- Christopher J Haines
- Department of Pediatrics and the Immunology Program, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Intestinal double-positive CD4+CD8+ T cells of neonatal rhesus macaques are proliferating, activated memory cells and primary targets for SIVMAC251 infection. Blood 2008; 112:4981-90. [PMID: 18820133 DOI: 10.1182/blood-2008-05-160077] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peripheral blood and thymic double-positive (DP) CD4(+)CD8(+) T cells from neonates have been described earlier, but the function and immunophenotypic characteristics of other tissue-derived DP T cells are not clearly understood. Here, we demonstrate the functional and immunophenotypic characteristics of DP cells in 6 different tissues, including thymus from normal neonatal rhesus macaques (Macaca mulatta) between 0 and 21 days of age. In general, intestinal DP T cells of neonates have higher percentages of memory markers (CD28(+)CD95(+)CD45RA(low)CD62L(low)) and proliferation compared with single-positive (SP) CD4(+) and CD8(+) T cells. In addition, percentages of DP T cells increase and CD62L expression decreases as animals mature, suggesting that DP cells mature and proliferate with maturity and/or antigen exposure. Consistent with this, intestinal DP T cells in neonates express higher levels of CCR5 and are the primary targets in simian immunodeficiency virus (SIV) infection. Finally, DP T cells produce higher levels of cytokine in response to mitogen stimulation compared with SP CD4(+) or CD8(+) T cells. Collectively, these findings demonstrate that intestinal DP T cells of neonates are proliferating, activated memory cells and are likely involved in regulating immune responses, in contrast to immature DP T cells in the thymus.
Collapse
|
26
|
Krawczyk P, Adamczyk-Korbel M, Kieszko R, Korobowicz E, Milanowski J. Immunological system status and the appearance of respiratory system disturbances in thymectomized patients. Arch Immunol Ther Exp (Warsz) 2007; 55:49-56. [PMID: 17277895 PMCID: PMC3234138 DOI: 10.1007/s00005-007-0004-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 10/06/2006] [Indexed: 01/04/2023]
Abstract
Introduction Adult-onset thymoma may be responsible for several diseases, such as pure red cell aplasia, myasthenia gravis, and immunodeficiency (Good’s syndrome). Thymectomy does not always improve the patient’s condition, and may even produce additional symptoms. Its pathogenesis is still not entirely understood, but autoimmunological processes and bone marrow defect are the most frequently suggested. Materials and Methods Eleven patients (mean age: 56.2 ± 15.5 years) were analyzed 6 months to 10 years after thymectomy due to thymoma as were 25 healthy persons serving as controls. Enzyme-linked immunosorbent assay (ELISA) and flow cytometry techniques were used to evaluate the immunological status of the subjects. Results Good’s syndrome was diagnosed in one patient, 4 subjects suffered from myasthenia gravis, and recurrent infections of upper and lower respiratory tract appeared in 9 patients. The immunological analyses (ELISA and flow cytometry) revealed a significantly lower IgG level (p < 0.05), percentage of peripheral blood B lymphocytes (p < 0.0005), and CD4:CD8 ratio (p < 0.05) in thymectomized patients compared with the healthy controls. The percentages of CD4+ and CD8+ T lymphocytes expressing CD28 antigen were significantly lower in thymectomized patients than in healthy subjects (p < 0.005 and p < 0.01, respectively). The percentage of naïve T helper lymphocytes was significantly lower in the patients than in the control group (p < 0.05). Conclusions Immunodeficiency and recurrent infections may be the first symptoms of immunological disturbances after thymectomy in adults. It is suggested that regular medical monitoring of these patients is important in preventing further complications, which may result in irreversible lung tissue destruction.
Collapse
Affiliation(s)
- Paweł Krawczyk
- Department of Pneumonology, Oncology, and Allergology, Medical University of Lublin, Poland.
| | | | | | | | | |
Collapse
|
27
|
Tutaj M, Szczepanik M. Epicutaneous (EC) immunization with myelin basic protein (MBP) induces TCRalphabeta+ CD4+ CD8+ double positive suppressor cells that protect from experimental autoimmune encephalomyelitis (EAE). J Autoimmun 2007; 28:208-15. [PMID: 17442539 DOI: 10.1016/j.jaut.2007.02.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) chronic inflammatory autoimmune disease with limited treatment modalities. Oral tolerance is one of the experimental methods that protects from autoimmune diseases. However, this method failed to be therapeutic in clinical trials. In our previous work we found that epicutaneous (EC) immunization with protein antigen induced a state of profound immunosuppression that inhibited inflammatory response in contact sensitivity, in experimental autoimmune encephalomyelitis (EAE) and in allogeneic skin graft rejection. In our current work, we precisely determined the phenotype of EC induced T suppressor (Ts) cells that reduce the progress of EAE. Employing TCRdelta-/-, CD1d-/- mice, we showed that EC induced Ts cells do not belong either to the population of TCRgammadelta cells or CD1d restricted NKT cells. Moreover, we noticed that a lack of CD1d-/- restricted NKT lymphocytes resulted in the induction of much stronger suppression of EAE than in wild type mice. This might suggest that NKT cells could interfere with the induction of Ts cells. Using beta2m-/- mice, negative selection and positive selection of EC induced Ts cells, we showed that Ts cells protecting from EAE belong to the population of TCRalphabeta+ CD4+ CD8+ double positive lymphocytes.
Collapse
MESH Headings
- Animals
- Antigens, CD1/genetics
- Antigens, CD1/immunology
- Antigens, CD1d
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Guinea Pigs
- Immunization
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Inflammation/prevention & control
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Mice
- Mice, Knockout
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/prevention & control
- Myelin Basic Protein/immunology
- Myelin Basic Protein/pharmacology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Skin Transplantation
- Transplantation, Homologous
- beta 2-Microglobulin/deficiency
- beta 2-Microglobulin/immunology
Collapse
Affiliation(s)
- Monika Tutaj
- Department of Human Developmental Biology, Jagiellonian University College of Medicine, ul. Kopernika 7, 31-034 Kraków, Poland
| | | |
Collapse
|
28
|
Brinkman RR, Gasparetto M, Lee SJJ, Ribickas AJ, Perkins J, Janssen W, Smiley R, Smith C. High-content flow cytometry and temporal data analysis for defining a cellular signature of graft-versus-host disease. Biol Blood Marrow Transplant 2007; 13:691-700. [PMID: 17531779 PMCID: PMC2000975 DOI: 10.1016/j.bbmt.2007.02.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 02/07/2007] [Indexed: 11/17/2022]
Abstract
Acute graft-versus-host disease (GVHD) is diagnosed by clinical and histologic criteria that are often nonspecific and typically apparent only after the disease is well established. Because GvHD is mediated by donor T cells and other immune effector cells, we sought to determine whether changes within a wide array of peripheral blood lymphocyte populations could predict the development of GvHD. Peripheral blood samples from 31 patients undergoing allogeneic blood and marrow transplant were analyzed for the proportion of 121 different subpopulations defined by 4-color combinations of lymphocyte phenotypic and activation markers at progressive time points posttransplant. Samples were processed using a newly developed high content flow cytometry technique and subjected to a spline- and functional linear discriminant analysis (FLDA)-based temporal analysis technique. This strategy identified a consistent posttransplant increase in the proportion and extent of fluctuation of CD3+CD4+CD8beta+ cells in patients who developed GVHD compared to those that did not. Although larger prospective clinical studies will be necessary to validate these results, this study demonstrates that high-content flow cytometry coupled with temporal analysis is a powerful approach for developing new diagnostic tools, and may be useful for developing a sensitive and specific predictive test for GVHD.
Collapse
|
29
|
Zoller AL, Schnell FJ, Kersh GJ. Murine pregnancy leads to reduced proliferation of maternal thymocytes and decreased thymic emigration. Immunology 2007; 121:207-15. [PMID: 17250584 PMCID: PMC2265940 DOI: 10.1111/j.1365-2567.2006.02559.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During mammalian pregnancy the maternal thymus undergoes significant involution, and then recovers in size after birth. The mechanism behind this involution is not known, but it has been suggested that elevated levels of hormones during pregnancy induce the involution. We have recently shown that injection of 17beta-oestradiol into mice causes loss of early thymocyte precursors and inhibits proliferation of developing thymocytes. This suggests that elevated oestrogen in pregnancy may contribute to thymic involution. We have investigated this idea by examining the fate of thymocytes during mouse pregnancy in much greater detail than has been previously reported. Looking over a broad time-course, we find that pregnancy does not affect thymocyte precursor populations in the bone marrow, but induces a profound loss of early thymic progenitors in the thymus as early as day 12 x 5 of pregnancy. This loss is accompanied by decreased thymocyte proliferation, which returns to normal 2-4 days postpartum. No enhancement of apoptosis is detectable at any stage of pregnancy. We also find that there is a reduction in recent thymic emigrants after oestrogen treatment and at day 17 x 5 of pregnancy, suggesting that thymic involution during pregnancy influences the peripheral T-cell repertoire. The similarities between oestrogen-mediated involution and pregnancy-mediated involution suggest that oestrogen is a significant contributor to loss of thymocyte cellularity during pregnancy, and probably functions primarily by reducing thymocyte proliferation.
Collapse
Affiliation(s)
- Allison L Zoller
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
30
|
Jeklova E, Leva L, Faldyna M. Lymphoid organ development in rabbits: major lymphocyte subsets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:632-44. [PMID: 17126399 DOI: 10.1016/j.dci.2006.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/06/2006] [Accepted: 10/07/2006] [Indexed: 05/12/2023]
Abstract
Although rabbits represent an important animal model, little is known about the lymphoid organ development in this species. In the present study, lymphocyte subsets in peripheral blood, spleen, mesenteric and popliteal lymph nodes in newborn and 2-, 4-, 6- and 8-week old and adult were characterized. Lymphocyte subsets were detected using flow cytometry and monoclonal antibodies against rabbit CD4, CD8, T-cell-specific antigen and cross-reactive antibody against B-cell antigen CD79alpha. In neonates, lower numbers of T cells were detected in both peripheral blood and spleen than in mesenteric lymph nodes. In comparison with other compartments, CD79alpha(+) cells prevailed in the spleen. Post-natal development was characterized by a decreased CD4(+)/CD8(+) ratio due to increasing frequency of CD8(+) lymphocytes in all organs but mesenteric lymph nodes, where it was due to decreased numbers of CD4(+) lymphocytes. Another significant feature was the increase of B cells in peripheral blood and mesenteric lymph nodes.
Collapse
Affiliation(s)
- Edita Jeklova
- Department of Immunology, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic.
| | | | | |
Collapse
|
31
|
Pahar B, Lackner AA, Veazey RS. Intestinal double-positive CD4+CD8+ T cells are highly activated memory cells with an increased capacity to produce cytokines. Eur J Immunol 2006; 36:583-92. [PMID: 16506292 DOI: 10.1002/eji.200535520] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peripheral blood and intestinal CD4+CD8+ double-positive (DP) T cells have been described in several species including humans, but their function and immunophenotypic characteristics are still not clearly understood. Here we demonstrate that DP T cells are abundant in the intestinal lamina propria of normal rhesus macaques (Macaca mulatta). Moreover, DP T cells have a memory phenotype and are capable of producing different and/or higher levels of cytokines and chemokines in response to mitogen stimulation compared to CD4+ single-positive T cells. Intestinal DP T cells are also highly activated and have higher expression of CCR5, which makes them preferred targets for simian immunodeficiency virus/HIV infection. Increased levels of CD69, CD25 and HLA-DR, and lower CD62L expression were found on intestinal DP T cells populations compared to CD4+ single-positive T cells. Collectively, these findings demonstrate that intestinal and peripheral blood DP T cells are effector cells and may be important in regulating immune responses, which distinguishes them from the immature DP cells found in the thymus. Finally, these intestinal DP T cells may be important target cells for HIV infection and replication due to their activation, memory phenotype and high expression of CCR5.
Collapse
Affiliation(s)
- Bapi Pahar
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA.
| | | | | |
Collapse
|
32
|
Szczepanik M, Bryniarski K, Tutaj M, Ptak M, Skrzeczynska J, Askenase PW, Ptak W. Epicutaneous immunization induces alphabeta T-cell receptor CD4 CD8 double-positive non-specific suppressor T cells that inhibit contact sensitivity via transforming growth factor-beta. Immunology 2005; 115:42-54. [PMID: 15819696 PMCID: PMC1782121 DOI: 10.1111/j.1365-2567.2005.02127.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Since it was previously shown that protein antigens applied epicutaneously in mice induce allergic dermatitis mediated by production of T helper 2 (Th2) cytokines we postulated that this might induce suppression of Th1 immunity. Here we show that epicutaneous immunization of normal mice with a different protein antigen applied on the skin in the form of a patch induces a state of subsequent antigen-non-specific unresponsiveness caused by suppressor T cells (Ts) that inhibit sensitization and elicitation of effector T-cell responses. Suppression is transferable in vivo by alphabeta-T-cell receptor CD4(+) CD8(+) double positive lymphocytes harvested from lymphoid organs of skin patched animals and are not major histocompatibility complex-restricted nor antigen specific. Both CD25(+) and CD25(-) CD4(+) CD8(+) T cells are able to suppress adoptive transfer of Th1 effector cells mediating cutaneous contact sensitivity. In vivo treatment with monoclonal antibodies showed that the cytokines interleukin (IL)-4, IL-10 and transforming growth factor-beta (TGF-beta) are involved in the induction of the Ts cells. Additionally, using IL-10(-/-) mice we found that IL-10 is involved in skin induced tolerance. Further in vitro experiments showed that lymph node cells of skin tolerized mice non-specifically suppress [(3)H]thymidine incorporation by antigen-stimulated immune cells and this effect can be abolished by adding anti-TGF-beta, but not anti-IL-4 nor anti-IL-10 antibodies. These studies indicate the crucial role of TGF-beta in skin induced tolerance due to non-antigen-specific Ts cells and also show that IL-4, IL-10 and TGF-beta play an important role in the induction of epicutaneously induced Ts cell suppression.
Collapse
MESH Headings
- Administration, Cutaneous
- Adoptive Transfer
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cytokines/immunology
- Dermatitis, Contact/immunology
- Dermatitis, Contact/prevention & control
- Dose-Response Relationship, Immunologic
- Immune Tolerance/immunology
- Immunization/methods
- Lymph Nodes/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred CBA
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Skin/immunology
- T-Lymphocytes, Regulatory/immunology
- Transforming Growth Factor beta/immunology
Collapse
Affiliation(s)
- Marian Szczepanik
- Department of Human Developmental Biology, Jagellonian University College of Medicine, Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
33
|
Matteucci E, Malvaldi G, Fagnani F, Evangelista I, Giampietro O. Redox status and immune function in type I diabetes families. Clin Exp Immunol 2004; 136:549-54. [PMID: 15147359 PMCID: PMC1809044 DOI: 10.1111/j.1365-2249.2004.02470.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Because abnormalities in redox balance cluster in type I diabetes families and the intracellular thiol redox status seems to modulate immune function, we aimed to investigate the relationship between oxidative stress and immunological features. We measured oxidative markers, serum proinflammatory cytokines, soluble cytokine receptors and subsets of peripheral blood lymphocytes (by varying combinations of CD4, CD8, CD23 or low-affinity IgE receptor, and CD25 or IL-2 receptor) from 38 type I patients, 76 low-risk (i.e. without underlying islet autoimmunity) non-diabetic first-degree relatives of diabetic patients, and 95 healthy subjects. In type I diabetes families, protein and lipid oxidation was confirmed by the presence of reduced sulphhydryl groups, increased advanced oxidation protein products, and increased plasma and erythrocyte malondialdehyde. Relatives had decreased counts of monocytes, of cells co-expressing CD23 and CD25 and of CD25(+) cells in peripheral blood. Patients with TIDM had similar defects and, in addition, showed decreased counts of peripheral CD4(+)CD8(+) lymphocytes and increased serum levels of soluble receptors for interleukin (IL)-6 and IL-2. Abnormal indicators of oxidative stress were related in part to immune abnormalities. In the whole study group, we found a correlation (multiple R 0.5, P < 0.001) of CD23(+)CD25(+) cells with blood counts of monocytes, CD4(+)CD8(+) cells, CD25(+) cells, basal haemolysis and plasma levels of thiols. In type I diabetics, anti-GAD65 antibody levels were associated (multiple R 0.6, P = 0.01) positively with sIL-6R, negatively with duration of diabetes and CD23(+)CD25(+) counts; plasma creatinine correlated positively (multiple R 0.6, P < 0.001) with both sIL-2R and tumour necrosis factor (TNF)-alpha concentration. Our study reports the first evidence that the oxidative stress observed in type I families is related to immunological hallmarks (decreased peripheral numbers of monocytes as well as cells bearing a CD4(+)CD8(+), CD23(+)CD25(+) and CD25(+) phenotype) from which the involvement of some immunoregulatory mechanisms could be suspected. It remains to be elucidated the course of events culminating in the loss of physiological immune homeostasis and disease pathology.
Collapse
Affiliation(s)
- E Matteucci
- Department of Internal Medicine, University of Pisa, Italy.
| | | | | | | | | |
Collapse
|
34
|
Nascimbeni M, Shin EC, Chiriboga L, Kleiner DE, Rehermann B. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 2004; 104:478-86. [PMID: 15044252 DOI: 10.1182/blood-2003-12-4395] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although an increased frequency of CD4(+)CD8(+) T cells has been observed in the peripheral blood during viral infections, their role, function, and biologic significance are still poorly understood. Here we demonstrate that the circulating CD4(+)CD8(+) T-cell population contains mature effector memory lymphocytes specific for antigens of multiple past, latent, and high-level persistent viral infections. Upon in vitro antigenic challenge, a higher frequency of CD4(+)CD8(+) than single-positive cells displayed a T helper 1/T cytotoxic 1 (Th1/Tc1) cytokine profile and proliferated. Ex vivo, more double-positive than single-positive cells exhibited a differentiated phenotype. Accordingly, their lower T-cell receptor excision circles (TREC) content and shorter telomeres proved they had divided more frequently than single-positive cells. Consistent with expression of the tissue-homing marker CXCR3, CD4(+)CD8(+) T cells were demonstrated in situ at the site of persistent viral infection (ie, in the liver during chronic hepatitis C). Finally, a prospective analysis of hepatitis C virus (HCV) infection in a chimpanzee, the only animal model for HCV infection, showed a close correlation between the frequency of activated CD4(+)CD8(+) T cells and viral kinetics. Collectively, these findings demonstrate that peripheral CD4(+)CD8(+) T cells take part in the adaptive immune response against infectious pathogens and broaden the perception of the T-cell populations involved in antiviral immune responses.
Collapse
Affiliation(s)
- Michelina Nascimbeni
- Liver Diseases Section, DDB, NIDDK, National Institutes of Health, DHHS 10 Center Drive, Bldg 10, Room 9B16, Bethesda, MD 20892-1800, USA
| | | | | | | | | |
Collapse
|
35
|
Louis I, Dulude G, Corneau S, Brochu S, Boileau C, Meunier C, Côté C, Labrecque N, Perreault C. Changes in the lymph node microenvironment induced by oncostatin M. Blood 2003; 102:1397-404. [PMID: 12702501 DOI: 10.1182/blood-2003-01-0316] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oncostatin M (OM) transforms the lymph node (LN) into a "super lymphoid organ" with 2 striking features: massive thymus-independent T-cell development and major expansion of the memory T-cell pool. We report that T-cell development in the LckOM LN is regulated by a cyclooxygenase-2 (COX-2)-dependent neoangiogenesis involving high endothelial venules (HEVs). That LN HEVs are particularlyrich in OM-receptor beta-chain provides aplausible explanation for the fact that extrathymic T-cell development in LckOM mice is limited to the LN. Moreover, we found that increased production of the CCL20 chemokine by LN stromal cells was instrumental in the expansion of the memory phenotype CD4 T-cell pool in LckOM mice. The generality of the latter finding was demonstrated by the fact that CCL20/CCR6 interactions increase the basal proliferation rate of CD62L(lo) CD4 T cells irrespective of their thymic (in non-OM-transgenic mice) or extrathymic (in LckOM mice) origin. To our knowledge, CCL20 is the first molecule found to increase the proliferation of memory phenotype CD4 T cells. These findings identify potential targets for the creation of thymic substitutes (LN HEVs) and for expansion of the CD4 memory T-cell compartment (CCL20).
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- Chemokine CCL20
- Chemokines/biosynthesis
- Chemokines/genetics
- Chemokines/metabolism
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Cyclooxygenase 2
- Cytokines/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Immunologic Memory/physiology
- Interleukin-7/biosynthesis
- Interleukin-7/genetics
- Isoenzymes/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymph Nodes/metabolism
- Macrophage Inflammatory Proteins/biosynthesis
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neovascularization, Physiologic/physiology
- Oncostatin M
- Peptides/deficiency
- Peptides/genetics
- Peptides/immunology
- Prostaglandin-Endoperoxide Synthases/metabolism
- Receptors, CCR6
- Receptors, Chemokine
- Receptors, Cytokine/biosynthesis
- Receptors, Cytokine/genetics
- Receptors, Cytokine/metabolism
- Stromal Cells/immunology
- Stromal Cells/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Isabelle Louis
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Blais ME, Louis I, Corneau S, Gérard G, Terra R, Perreault C. Extrathymic T-lymphocyte development. Exp Hematol 2003; 31:349-54. [PMID: 12763132 DOI: 10.1016/s0301-472x(03)00026-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Marie-Eve Blais
- Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
37
|
May E, Dorris ML, Satumtira N, Iqbal I, Rehman MI, Lightfoot E, Taurog JD. CD8 alpha beta T cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:1099-105. [PMID: 12517979 DOI: 10.4049/jimmunol.170.2.1099] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The class I MHC allele HLA-B27 is highly associated with the human spondyloarthropathies, but the basis for this association remains poorly understood. Transgenic rats with high expression of HLA-B27 develop a multisystem inflammatory disease that includes arthritis and colitis. To investigate whether CD8alphabeta T cells are needed in this disease, we depleted these cells in B27 transgenic rats before the onset of disease by adult thymectomy plus short-term anti-CD8alpha mAb treatment. This treatment induced profound, sustained depletion of CD8alphabeta T cells, but failed to suppress either colitis or arthritis. To address the role of CD8alpha(+)beta(-) cells, we studied four additional groups of B27 transgenic rats treated with: 1) continuous anti-CD8alpha mAb, 2) continuous isotype-matched control mAb, 3) the thymectomy/pulse anti-CD8alpha regimen, or 4) no treatment. Arthritis occurred in approximately 40% of each group, but was most significantly reduced in severity in the anti-CD8alpha-treated group. In addition to CD8alphabeta T cells, two sizeable CD8alpha(+)beta(-) non-T cell populations were also reduced by the anti-CD8alpha treatment: 1) NK cells, and 2) a CD4(+)CD8(+)CD11b/c(+)CD161a(+)CD172a(+) monocyte population that became expanded in diseased B27 transgenic rats. These data indicate that HLA-B27-retricted CD8(+) T cells are unlikely to serve as effector cells in the transgenic rat model of HLA-B27-associated disease, in opposition to a commonly invoked hypothesis concerning the role of B27 in the spondyloarthropathies. The data also suggest that one or more populations of CD8alpha(+)beta(-) non-T cells may play a role in the arthritis that occurs in these rats.
Collapse
Affiliation(s)
- Ekkehard May
- Harold C. Simmons Arthritis Research Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | | | | | | | |
Collapse
|