1
|
Casey AK, Stewart NM, Zaidi N, Gray HF, Cox A, Fields HA, Orth K. FicD regulates adaptation to the unfolded protein response in the murine liver. Biochimie 2024; 225:114-124. [PMID: 38740171 DOI: 10.1016/j.biochi.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The unfolded protein response (UPR) is a cellular stress response that is activated when misfolded proteins accumulate in the endoplasmic reticulum (ER). Regulation of the UPR response must be adapted to the needs of the cell as prolonged UPR responses can result in disrupted cellular function and tissue damage. Previously, we discovered that the enzyme FicD (also known as Fic or HYPE) through its AMPylation and deAMPylation activity can modulate the UPR response via post-translational modification of BiP. FicD AMPylates BiP during homeostasis and deAMPylates BiP during stress. We hypothesized that FicD regulation of the UPR will play a role in mitigating the deleterious effects of UPR activation in tissues with frequent physiological stress. Here, we explore the role of FicD in the murine liver. As seen in our pancreatic studies, livers lacking FicD exhibit enhanced UPR signaling in response to short term physiologic fasting and feeding stress. However, in contrast to studies on the pancreas, livers, as a more regenerative tissue, remained remarkably resilient in the absence of FicD. The livers of FicD-/- did not show marked changes in UPR signaling or damage after either chronic high fat diet (HFD) feeding or acute pathological UPR induction. Intriguingly, FicD-/- mice showed changes in UPR induction and weight loss patterns following repeated pathological UPR induction. These findings indicate that FicD regulates UPR responses during mild physiological stress and in adaptation to repeated stresses, but there are tissue specific differences in the requirement for FicD regulation.
Collapse
Affiliation(s)
- Amanda K Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Howard Hughes Medical Institute, Dallas, TX, 75390, USA
| | - Nathan M Stewart
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Howard Hughes Medical Institute, Dallas, TX, 75390, USA
| | - Naqi Zaidi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hillery F Gray
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Howard Hughes Medical Institute, Dallas, TX, 75390, USA
| | - Amelia Cox
- Washington and Lee University, Lexington, VA, 24450, USA
| | - Hazel A Fields
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Howard Hughes Medical Institute, Dallas, TX, 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Ingels A, Scott R, Hooper AR, van der Westhuyzen AE, Wagh SB, de Meester J, Maddau L, Marko D, Aichinger G, Berger W, Vermeersch M, Pérez-Morga D, Maslivetc VA, Evidente A, van Otterlo WAL, Kornienko A, Mathieu V. New hemisynthetic derivatives of sphaeropsidin phytotoxins triggering severe endoplasmic reticulum swelling in cancer cells. Sci Rep 2024; 14:14674. [PMID: 38918539 PMCID: PMC11199504 DOI: 10.1038/s41598-024-65335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Sphaeropsidins are iso-pimarane diterpenes produced by phytopathogenic fungi that display promising anticancer activities. Sphaeropsidin A, in particular, has been shown to counteract regulatory volume increase, a process used by cancer cells to avoid apoptosis. This study reports the hemi-synthesis of new lipophilic derivatives obtained by modifications of the C15,C16-alkene moiety. Several of these compounds triggered severe ER swelling associated with strong proteasomal inhibition and consequently cell death, a feature that was not observed with respect to mode of action of the natural product. Significantly, an analysis from the National Cancer Institute sixty cell line testing did not reveal any correlations between the most potent derivative and any other compound in the database, except at high concentrations (LC50). This study led to the discovery of a new set of sphaeropsidin derivatives that may be exploited as potential anti-cancer agents, notably due to their maintained activity towards multidrug resistant models.
Collapse
Affiliation(s)
- Aude Ingels
- Department of Pharmacotherapy and Pharmaceutics, Chemistry and Biochemistry, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
- ULB Cancer Research Center, U-CRC, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Scott
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Annie R Hooper
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Aletta E van der Westhuyzen
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Sachin B Wagh
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Joséphine de Meester
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Lucia Maddau
- Department of Agriculture, Section of Plant Pathology and Entomology, University of Sassari, Sassari, Italy
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Walter Berger
- Medical University of Vienna Center for Cancer Research, Vienna, Austria
| | - Marjorie Vermeersch
- Electron Microscopy Laboratory, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - David Pérez-Morga
- Electron Microscopy Laboratory, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Vladimir A Maslivetc
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Antonio Evidente
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland, Stellenbosch, 7600, South Africa
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Chemistry and Biochemistry, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium.
- ULB Cancer Research Center, U-CRC, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
3
|
Casey AK, Stewart NM, Zaidi N, Gray HF, Cox A, Fields HA, Orth K. FicD regulates adaptation to the unfolded protein response in the murine liver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589620. [PMID: 38659954 PMCID: PMC11042336 DOI: 10.1101/2024.04.15.589620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The unfolded protein response (UPR) is a cellular stress response that is activated when misfolded proteins accumulate in the endoplasmic reticulum (ER). The UPR elicits a signaling cascade that results in an upregulation of protein folding machinery and cell survival signals. However, prolonged UPR responses can result in elevated cellular inflammation, damage, and even cell death. Thus, regulation of the UPR response must be tuned to the needs of the cell, sensitive enough to respond to the stress but pliable enough to be stopped after the crisis has passed. Previously, we discovered that the bi-functional enzyme FicD can modulate the UPR response via post-translational modification of BiP. FicD AMPylates BiP during homeostasis and deAMPylates BiP during stress. We found this activity is important for the physiological regulation of the exocrine pancreas. Here, we explore the role of FicD in the murine liver. Like our previous studies, livers lacking FicD exhibit enhanced UPR signaling in response to short term physiologic fasting and feeding stress. However, the livers of FicD -/- did not show marked changes in UPR signaling or damage after either chronic high fat diet (HFD) feeding or acute pathological UPR induction. Intriguingly, FicD -/- mice showed changes in UPR induction and weight loss patterns following repeated pathological UPR induction. These findings show that FicD regulates UPR responses during mild physiological stress and may play a role in maintaining resiliency of tissue through adaptation to repeated ER stress.
Collapse
|
4
|
Ma K, Zhang Y, Zhao J, Zhou L, Li M. Endoplasmic reticulum stress: bridging inflammation and obesity-associated adipose tissue. Front Immunol 2024; 15:1381227. [PMID: 38638434 PMCID: PMC11024263 DOI: 10.3389/fimmu.2024.1381227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Obesity presents a significant global health challenge, increasing the susceptibility to chronic conditions such as diabetes, cardiovascular disease, and hypertension. Within the context of obesity, lipid metabolism, adipose tissue formation, and inflammation are intricately linked to endoplasmic reticulum stress (ERS). ERS modulates metabolism, insulin signaling, inflammation, as well as cell proliferation and death through the unfolded protein response (UPR) pathway. Serving as a crucial nexus, ERS bridges the functionality of adipose tissue and the inflammatory response. In this review, we comprehensively elucidate the mechanisms by which ERS impacts adipose tissue function and inflammation in obesity, aiming to offer insights into targeting ERS for ameliorating metabolic dysregulation in obesity-associated chronic diseases such as hyperlipidemia, hypertension, fatty liver, and type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Min Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Park JH, Kwon S, Park YM. Extracellular Vimentin Alters Energy Metabolism And Induces Adipocyte Hypertrophy. Diabetes Metab J 2024; 48:215-230. [PMID: 37750184 PMCID: PMC10995492 DOI: 10.4093/dmj.2022.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/19/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGRUOUND Previous studies have reported that oxidative stress contributes to obesity characterized by adipocyte hypertrophy. However, mechanism has not been studied extensively. In the current study, we evaluated role of extracellular vimentin secreted by oxidized low-density lipoprotein (oxLDL) in energy metabolism in adipocytes. METHODS We treated 3T3-L1-derived adipocytes with oxLDL and measured vimentin which was secreted in the media. We evaluated changes in uptake of glucose and free fatty acid, expression of molecules functioning in energy metabolism, synthesis of adenosine triphosphate (ATP) and lactate, markers for endoplasmic reticulum (ER) stress and autophagy in adipocytes treated with recombinant vimentin. RESULTS Adipocytes secreted vimentin in response to oxLDL. Microscopic evaluation revealed that vimentin treatment induced increase in adipocyte size and increase in sizes of intracellular lipid droplets with increased intracellular triglyceride. Adipocytes treated with vimentin showed increased uptake of glucose and free fatty acid with increased expression of plasma membrane glucose transporter type 1 (GLUT1), GLUT4, and CD36. Vimentin treatment increased transcription of GLUT1 and hypoxia-inducible factor 1α (Hif-1α) but decreased GLUT4 transcription. Adipose triglyceride lipase (ATGL), peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), diacylglycerol O-acyltransferase 1 (DGAT1) and 2 were decreased by vimentin treatment. Markers for ER stress were increased and autophagy was impaired in vimentin-treated adipocytes. No change was observed in synthesis of ATP and lactate in the adipocytes treated with vimentin. CONCLUSION We concluded that extracellular vimentin regulates expression of molecules in energy metabolism and promotes adipocyte hypertrophy. Our results show that vimentin functions in the interplay between oxidative stress and metabolism, suggesting a mechanism by which adipocyte hypertrophy is induced in oxidative stress.
Collapse
Affiliation(s)
- Ji-Hae Park
- Department of Medicine, Graduate School, Ewha Womans University, Seoul, Korea
| | - Soyeon Kwon
- Department of Medicine, Graduate School, Ewha Womans University, Seoul, Korea
| | - Young Mi Park
- Department of Medicine, Graduate School, Ewha Womans University, Seoul, Korea
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Shin S, Kim J, Lee JY, Kim J, Oh CM. Mitochondrial Quality Control: Its Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J Obes Metab Syndr 2023; 32:289-302. [PMID: 38049180 PMCID: PMC10786205 DOI: 10.7570/jomes23054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 12/06/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, is characterized by hepatic steatosis and metabolic dysfunction and is often associated with obesity and insulin resistance. Recent research indicates a rapid escalation in MASLD cases, with projections suggesting a doubling in the United States by 2030. This review focuses on the central role of mitochondria in the pathogenesis of MASLD and explores potential therapeutic interventions. Mitochondria are dynamic organelles that orchestrate hepatic energy production and metabolism and are critically involved in MASLD. Dysfunctional mitochondria contribute to lipid accumulation, inflammation, and liver fibrosis. Genetic associations further underscore the relationship between mitochondrial dynamics and MASLD susceptibility. Although U.S. Food and Drug Administration-approved treatments for MASLD remain elusive, ongoing clinical trials have highlighted promising strategies that target mitochondrial dysfunction, including vitamin E, metformin, and glucagon-like peptide-1 receptor agonists. In preclinical studies, novel therapeutics, including nicotinamide adenine dinucleotide+ precursors, urolithin A, spermidine, and mitoquinone, have shown beneficial effects, such as improving mitochondrial quality control, reducing oxidative stress, and ameliorating hepatic steatosis and inflammation. In conclusion, mitochondrial dysfunction is central to MASLD pathogenesis. The innovative mitochondria-targeted approaches discussed in this review offer a promising avenue for reducing the burden of MASLD and improving global quality of life.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaeyoung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ju Yeon Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
7
|
Hinzman CP, Singh B, Bansal S, Li Y, Iliuk A, Girgis M, Herremans KM, Trevino JG, Singh VK, Banerjee PP, Cheema AK. A multi-omics approach identifies pancreatic cancer cell extracellular vesicles as mediators of the unfolded protein response in normal pancreatic epithelial cells. J Extracell Vesicles 2022; 11:e12232. [PMID: 35656858 PMCID: PMC9164146 DOI: 10.1002/jev2.12232] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/22/2022] [Accepted: 04/30/2022] [Indexed: 02/06/2023] Open
Abstract
Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promoting cancer progression events, their precise effect on neighbouring normal cells is unknown. In this study, we investigated the impact of pancreatic cancer ductal adenocarcinoma (PDAC) derived EVs on recipient non-tumourigenic pancreatic normal epithelial cells upon internalization. We demonstrate that cEVs are readily internalized and induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in treated normal pancreatic epithelial cells within 24 h. We further show that PDAC cEVs increase cell proliferation, migration, and invasion and that these changes are regulated at least in part, by the UPR mediator DDIT3. Subsequently, these cells release several inflammatory cytokines. Leveraging a layered multi-omics approach, we analysed EV cargo from a panel of six PDAC and two normal pancreas cell lines, using multiple EV isolation methods. We found that cEVs were enriched for an array of biomolecules which can induce or regulate ER stress and the UPR, including palmitic acid, sphingomyelins, metabolic regulators of tRNA charging and proteins which regulate trafficking and degradation. We further show that palmitic acid, at doses relevant to those found in cEVs, is sufficient to induce ER stress in normal pancreas cells. These results suggest that cEV cargo packaging may be designed to disseminate proliferative and invasive characteristics upon internalization by distant recipient normal cells, hitherto unreported. This study is among the first to highlight a major role for PDAC cEVs to induce stress in treated normal pancreas cells that may modulate a systemic response leading to altered phenotypes. These findings highlight the importance of EVs in mediating disease aetiology and open potential areas of investigation toward understanding the role of cEV lipids in promoting cell transformation in the surrounding microenvironment.
Collapse
Affiliation(s)
- Charles P. Hinzman
- Department of BiochemistryMolecular and Cellular BiologyGeorgetown University Medical CentreWashingtonDCUSA
| | - Baldev Singh
- Department of OncologyLombardi Comprehensive Cancer CenterGeorgetown University Medical CentreWashingtonDCUSA
| | - Shivani Bansal
- Department of OncologyLombardi Comprehensive Cancer CenterGeorgetown University Medical CentreWashingtonDCUSA
| | - Yaoxiang Li
- Department of OncologyLombardi Comprehensive Cancer CenterGeorgetown University Medical CentreWashingtonDCUSA
| | - Anton Iliuk
- Tymora Analytical OperationsWest LafayetteINUSA
| | - Michael Girgis
- Department of OncologyLombardi Comprehensive Cancer CenterGeorgetown University Medical CentreWashingtonDCUSA
| | | | - Jose G. Trevino
- Division of Surgical OncologyVCU Massey Cancer CentreRichmondVAUSA
| | - Vijay K. Singh
- Department of Pharmacology and Molecular TherapeuticsSchool of MedicineUniformed Services University of the Health SciencesBethesdaMDUSA
- Armed Forces Radiobiology Research InstituteUniformed Services University of the Health SciencesBethesdaMDUSA
| | - Partha P. Banerjee
- Department of BiochemistryMolecular and Cellular BiologyGeorgetown University Medical CentreWashingtonDCUSA
| | - Amrita K. Cheema
- Department of BiochemistryMolecular and Cellular BiologyGeorgetown University Medical CentreWashingtonDCUSA
- Department of OncologyLombardi Comprehensive Cancer CenterGeorgetown University Medical CentreWashingtonDCUSA
| |
Collapse
|
8
|
Im GB, Kim YG, Jo IS, Yoo TY, Kim SW, Park HS, Hyeon T, Yi GR, Bhang SH. Effect of polystyrene nanoplastics and their degraded forms on stem cell fate. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128411. [PMID: 35149489 DOI: 10.1016/j.jhazmat.2022.128411] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Several studies have examined the effects of micro- and nanoplastics on microbes, cells, and the environment. However, only a few studies have examined their effects-especially, those of their reduced cohesiveness-on cell viability and physiology. We synthesized surfactant-free amine-functionalized polystyrene (PS) nanoparticles (NPs) and PS-NPs with decreased crosslinking density (DPS-NPs) without changing other factors, such as size, shape, and zeta potential and examined their effects on cell viability and physiology. PS- and DPS-NPs exhibited reactive oxygen species (ROS) scavenging activity by upregulating GPX3 expression and downregulating HSP70 (ROS-related gene) and XBP1 (endoplasmic reticulum stress-related gene) expression in human bone marrow-derived mesenchymal stem cells (hBM-MSCs). Additionally, they led to upregulation of MFN2 (mitochondrial fusion related gene) expression and downregulation of FIS1 (mitochondrial fission related gene) expression, indicating enhanced mitochondrial fusion in hBM-MSCs. Cell-cycle analysis revealed that PS- and DPS-NPs increased the proportion of cells in the S phase, indicating that they promoted cell proliferation and, specifically, the adipogenic differentiation of hBM-MSCs. However, the cytotoxicity of DPS-NPs against hBM-MSCs was higher than that of PS-NPs after long-term treatment under adipogenic conditions.
Collapse
Affiliation(s)
- Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Seong Jo
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, Pessac, France
| | - Tae Yong Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
9
|
Wadgaonkar P, Bi Z, Wan J, Fu Y, Zhang Q, Almutairy B, Zhang W, Qiu Y, Thakur C, Hüttemann M, Chen F. Arsenic Activates the ER Stress-Associated Unfolded Protein Response via the Activating Transcription Factor 6 in Human Bronchial Epithelial Cells. Biomedicines 2022; 10:967. [PMID: 35625704 PMCID: PMC9139116 DOI: 10.3390/biomedicines10050967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Arsenic is a well-known human carcinogen associated with a number of cancers, including lung cancers. We have previously shown that long-term exposure to an environmentally relevant concentration of inorganic arsenic (As3+) leads to the malignant transformation of the BEAS2B cells, and some of the transformed cells show cancer stem-like features (CSCs) with a significant upregulation of glycolysis and downregulation of mitochondrial oxidative phosphorylation. In the present report, we investigate the short-term effect of As3+ on the endoplasmic reticulum (ER) stress response-the "unfolded protein response (UPR)" and metabolism in human bronchial epithelial cell line BEAS-2B cells. Treatment of the cells with inorganic As3+ upregulated both glycolysis and mitochondrial respiration. Analysis of ER UPR signaling pathway using a real-time human UPR array revealed that As3+ induced a significant up-regulation of some UPR genes, including ATF6, CEBPB, MAPK10, Hsp70, and UBE2G2. Additional tests confirmed that the induction of ATF6, ATF6B and UBE2G2 mRNAs and/or proteins by As3+ is dose dependent. Chromosome immunoprecipitation and global sequencing indicated a critical role of Nrf2 in mediating As3+-induced expression of these UPR genes. In summary, our data suggest that As3+ is able to regulate the ER stress response, possibly through activating the ATF6 signaling.
Collapse
Affiliation(s)
- Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (Q.Z.); (B.A.)
| | - Zhuoyue Bi
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 E. Canfield Avenue, Detroit, MI 48201, USA; (J.W.); (M.H.)
| | - Yao Fu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
| | - Qian Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (Q.Z.); (B.A.)
| | - Bandar Almutairy
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (Q.Z.); (B.A.)
- College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Riyadh P.O. Box 11961, Saudi Arabia
| | - Wenxuan Zhang
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
| | - Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 E. Canfield Avenue, Detroit, MI 48201, USA; (J.W.); (M.H.)
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA; (P.W.); (Q.Z.); (B.A.)
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY 11794, USA; (Z.B.); (Y.F.); (W.Z.); (Y.Q.); (C.T.)
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, 101, Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
10
|
Quercetin Reduces Lipid Accumulation in a Cell Model of NAFLD by Inhibiting De Novo Fatty Acid Synthesis through the Acetyl-CoA Carboxylase 1/AMPK/PP2A Axis. Int J Mol Sci 2022; 23:ijms23031044. [PMID: 35162967 PMCID: PMC8834998 DOI: 10.3390/ijms23031044] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of de novo lipogenesis (DNL) has recently gained strong attention as being one of the critical factors that contribute to the assessment of non-alcoholic fatty liver disease (NAFLD). NAFLD is often diagnosed in patients with dyslipidemias and type 2 diabetes; thus, an interesting correlation can be deduced between high hematic free fatty acids and glucose excess in the DNL dysregulation. In the present study, we report that, in a cellular model of NAFLD, the coexistence of elevated glucose and FFA conditions caused the highest cellular lipid accumulation. Deepening the molecular mechanisms of the DNL dysregulation—RT-qPCR and immunoblot analysis demonstrated increased expression of mitochondrial citrate carrier (CiC), cytosolic acetyl-CoA carboxylase 1 (ACACA), and diacylglycerol acyltransferase 2 (DGAT2) involved in fatty acids and triglycerides synthesis, respectively. XBP-1, an endoplasmic reticulum stress marker, and SREBP-1 were the transcription factors connected to the DNL activation. Quercetin (Que), a flavonoid with strong antioxidant properties, and noticeably reduced the lipid accumulation and the expression of SREBP-1 and XBP-1, as well as of their lipogenic gene targets in steatotic cells. The anti-lipogenic action of Que mainly occurs through a strong phosphorylation of ACACA, which catalyzes the committing step in the DNL pathway. The high level of ACACA phosphorylation in Que-treated cells was explained by the intervention of AMPK together with the reduction of enzymatic activity of PP2A phosphatase. Overall, our findings highlight a direct anti-lipogenic effect of Que exerted through inhibition of the DNL pathway by acting on ACACA/AMPK/PP2A axis; thus, suggesting this flavonoid as a promising molecule for the NAFLD treatment.
Collapse
|
11
|
Chen HK, Rosset SL, Wang LH, Chen CS. The characteristics of host lipid body biogenesis during coral-dinoflagellate endosymbiosis. PeerJ 2021; 9:e11652. [PMID: 34221732 PMCID: PMC8234918 DOI: 10.7717/peerj.11652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 11/25/2022] Open
Abstract
Intracellular lipid body (LB) biogenesis depends on the symbiosis between coral hosts and their Symbiodinaceae. Therefore, understanding the mechanism(s) behind LB biosynthesis in corals can portentially elucide the drivers of cellular regulation during endosymbiosis. This study assessed LB formation in the gastrodermal tissue layer of the hermatypic coral Euphyllia glabrescens. Diel rhythmicity in LB size and distribution was observed; solar irradiation onset at sunrise initiated an increase in LB formation, which continued throughout the day and peaked after sunset at 18:00. The LBs migrated from the area near the mesoglea to the gastrodermal cell border near the coelenteron. Micro-LB biogenesis occurred in the endoplasmic reticulum (ER) of the host gastrodermal cells. A transcriptomic analysis of genes related to lipogenesis indicated that binding immunoglobulin protein (BiP) plays a key role in metabolic signaling pathways. The diel rhythmicity of LB biogenesis was correlated with ER-localized BiP expression. BiP expression peaked during the period with the largest increase in LB formation, thereby indicating that the chaperoning reaction of abnormal protein folding inside the host ER is likely involved in LB biosynthesis. These findings suggest that the host ER, central to LB formation, potentially facilitates the regulation of endosymbiosis between coral hosts and Symbiodiniaceae.
Collapse
Affiliation(s)
- Hung-Kai Chen
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Sabrina L Rosset
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Li-Hsueh Wang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.,Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, Taiwan
| | - Chii-Shiarng Chen
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan.,Graduate Institute of Marine Biology, National Dong-Hwa University, Pingtung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021; 10:antiox10020174. [PMID: 33530432 PMCID: PMC7911109 DOI: 10.3390/antiox10020174] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OxS) is considered a major factor in the pathophysiology of inflammatory chronic liver diseases, including non-alcoholic liver disease (NAFLD). Chronic impairment of lipid metabolism is closely related to alterations of the oxidant/antioxidant balance, which affect metabolism-related organelles, leading to cellular lipotoxicity, lipid peroxidation, chronic endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Increased OxS also triggers hepatocytes stress pathways, leading to inflammation and fibrogenesis, contributing to the progression of non-alcoholic steatohepatitis (NASH). The antioxidant response, regulated by the Nrf2/ARE pathway, is a key component in this process and counteracts oxidative stress-induced damage, contributing to the restoration of normal lipid metabolism. Therefore, modulation of the antioxidant response emerges as an interesting target to prevent NAFLD development and progression. This review highlights the link between disturbed lipid metabolism and oxidative stress in the context of NAFLD. In addition, emerging potential therapies based on antioxidant effects and their likely molecular targets are discussed.
Collapse
|
13
|
Targeting Autophagy to Counteract Obesity-Associated Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10010102. [PMID: 33445755 PMCID: PMC7828170 DOI: 10.3390/antiox10010102] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) operate as key regulators of cellular homeostasis within a physiological range of concentrations, yet they turn into cytotoxic entities when their levels exceed a threshold limit. Accordingly, ROS are an important etiological cue for obesity, which in turn represents a major risk factor for multiple diseases, including diabetes, cardiovascular disorders, non-alcoholic fatty liver disease, and cancer. Therefore, the implementation of novel therapeutic strategies to improve the obese phenotype by targeting oxidative stress is of great interest for the scientific community. To this end, it is of high importance to shed light on the mechanisms through which cells curtail ROS production or limit their toxic effects, in order to harness them in anti-obesity therapy. In this review, we specifically discuss the role of autophagy in redox biology, focusing on its implication in the pathogenesis of obesity. Because autophagy is specifically triggered in response to redox imbalance as a quintessential cytoprotective mechanism, maneuvers based on the activation of autophagy hold promises of efficacy for the prevention and treatment of obesity and obesity-related morbidities.
Collapse
|
14
|
Singh P, Reza MI, Syed AA, Garg R, Husain A, Katekar R, Goand UK, Riyazuddin M, Gupta AP, Gayen JR. PSTi8 with metformin ameliorates perimenopause induced steatohepatitis associated ER stress by regulating SIRT-1/SREBP-1c axis. Heliyon 2020; 6:e05826. [PMID: 33426334 PMCID: PMC7779780 DOI: 10.1016/j.heliyon.2020.e05826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Aims Hepatic steatosis in women confronting menopause is the manifestation of substantial fructose consumption and forms a positive feedback loop to develop endoplasmic reticulum (ER) stress. Previously pancreastatin inhibitor peptide-8 (PSTi8) and Metformin (Met) combination effectively ameliorated hepatic lipid accumulation in high fructose diet (HFrD) fed diabetic mice models at reduced doses. Moreover, SIRT-1 plays a crucial role in the regulation of SREBP-1c. Hence we hypothesized that Met and PSTi8 in combination (at therapeutic lower doses) could mitigate hepatic steatosis linked ER stress by activating SIRT-1 and precluding SREBP-1c in HFrD fed 4-Vinylcyclohexenediepoxide (HVCD) induced perimenopausal rats. Main methods HVCD rats were fed HFrD for 12 weeks, accompanied by 14 days of treatment with Met, PSTi8, and combination. We confirmed model establishment by estrus cycle study, estradiol level, and intraperitoneal glucose tolerance test. Plasma lipid profile and liver function were determined. Also, mRNA and protein expressions were examined. Moreover, distribution of SIRT-1 and SREBP-1c was detected in HepG2 cells by immunofluorescence staining. Key findings HVCD group displayed augmented insulin resistance (IR), lipogenesis, and ER stress in the liver. Combination therapy improved the estrus cyclicity, estradiol, and lipid profile of HVCD rats. Met and PSTi8 combination reduced hepatic SREBP-1c and triggered SIRT-1 expression in high fructose-induced insulin-resistant HepG2 cells; consequently, combination therapy attenuated ER stress. Significance Succinctly, present research promotes impetus concerning the remedial impact of Met with PSTi8 at lower therapeutic doses to ameliorate hepatic IR, steatosis, and associated ER stress by revamping the SIRT-1/SREBP-1c axis in perimenopausal rats.
Collapse
Affiliation(s)
- Pragati Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Mohammad Irshad Reza
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anees A Syed
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Richa Garg
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athar Husain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammed Riyazuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anand P Gupta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Song Q, Chen Y, Wang J, Hao L, Huang C, Griffiths A, Sun Z, Zhou Z, Song Z. ER stress-induced upregulation of NNMT contributes to alcohol-related fatty liver development. J Hepatol 2020; 73:783-793. [PMID: 32389809 PMCID: PMC8301603 DOI: 10.1016/j.jhep.2020.04.038] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS N-nicotinamide methyltransferase (NNMT) is emerging as an important enzyme in the regulation of metabolism. NNMT is highly expressed in the liver. However, the exact regulatory mechanism(s) underlying NNMT expression remains unclear and its potential involvement in alcohol-related liver disease (ALD) is completely unknown. METHODS Both traditional Lieber-De Carli and the NIAAA mouse models of ALD were employed. A small-scale chemical screening assay and a chromatin immunoprecipitation assay were performed. NNMT inhibition was achieved via both genetic (adenoviral short hairpin RNA delivery) and pharmacological approaches. RESULTS Chronic alcohol consumption induces endoplasmic reticulum (ER) stress and upregulates NNMT expression in the liver. ER stress inducers upregulated NNMT expression in both AML12 hepatocytes and mice. PERK-ATF4 pathway activation is the main contributor to ER stress-mediated NNMT upregulation in the liver. Alcohol consumption fails to upregulate NNMT in liver-specific Atf4 knockout mice. Both adenoviral NNMT knockdown and NNMT inhibitor administration prevented fatty liver development in response to chronic alcohol feeding; this was also associated with the downregulation of an array of genes involved in de novo lipogenesis, including Srebf1, Acaca, Acacb and Fasn. Further investigations revealed that activation of the lipogenic pathway by NNMT was independent of its NAD+-enhancing action; however, increased cellular NAD+, resulting from NNMT inhibition, was associated with marked liver AMPK activation. CONCLUSIONS ER stress, specifically PERK-ATF4 pathway activation, is mechanistically involved in hepatic NNMT upregulation in response to chronic alcohol exposure. Overexpression of NNMT in the liver plays an important role in the pathogenesis of ALD. LAY SUMMARY In this study, we show that nicotinamide methyltransferase (NNMT) - the enzyme that catalyzes nicotinamide degradation - is a pathological regulator of alcohol-related fatty liver development. NNMT inhibition protects against alcohol-induced fatty liver development and is associated with suppressed de novo lipogenic activity and enhanced AMPK activation. Thus, our data suggest that NNMT may be a potential therapeutic target for the treatment of alcohol-related liver disease.
Collapse
Affiliation(s)
- Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Yingli Chen
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, Heilongjiang, PR. China
| | - Jun Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,Department of Gastroenterology, Tongji Medical College and The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, Hubei, PR. China
| | - Liuyi Hao
- Center for Translational Biomedical Research and Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Chuyi Huang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexandra Griffiths
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhangxiang Zhou
- Center for Translational Biomedical Research and Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Valenzuela R, Ortiz M, Hernández-Rodas MC, Echeverría F, Videla LA. Targeting n-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease. Curr Med Chem 2020; 27:5250-5272. [PMID: 30968772 DOI: 10.2174/0929867326666190410121716] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/14/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by abnormal hepatic accumulation of triacylglycerides in the absence of alcohol consumption, in association with Oxidative Stress (OS), a pro-inflammatory state and Insulin Resistance (IR), which are attenuated by n-3 long-chain polyunsaturated Fatty Acids (FAs) C20-C22 (LCPUFAs) supplementation. Main causes of NAFLD comprise high caloric intake and a sedentary lifestyle, with high intakes of saturated FAs. METHODS The review includes several searches considering the effects of n-3 LCPUFAs in NAFLD in vivo and in vitro models, using the PubMed database from the National Library of Medicine- National Institutes of Health. RESULT The LCPUFAs eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n- 3, DHA) have a positive effect in diminishing liver steatosis, OS, and the levels of aspartate aminotransferase, alanine aminotransferase and pro-inflammatory cytokines, with improvement of insulin sensitivity and adiponectin levels. The molecular pathways described for n-3 LCPUFAs in cellular and animal models and humans include peroxisome proliferator-activated receptor-α activation favouring FA oxidation, diminution of lipogenesis due to sterol responsive element binding protein-1c downregulation and inflammation resolution. Besides, nuclear factor erythroid-2-related factor-2 activation is elicited by n-3 LCPUFA-derived oxidation products producing direct and indirect antioxidant responses, with concomitant anti-fibrogenic action. CONCLUSION The discussed effects of n-3 LCPUFA supplementation support its use in NAFLD, although having a limited value in NASH, a contention that may involve n-3 LCPUFA oxygenated derivatives. Clinical trials establishing optimal dosages, intervention times, type of patients and possible synergies with other natural products are needed in future studies.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Macarena Ortiz
- Nutrition and Dietetics School, Faculty of Health Sciences, Catholic University of Maule, Merced 333, Curicó 3340000, Chile
| | - María Catalina Hernández-Rodas
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Francisca Echeverría
- Department of Nutrition, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| | - Luis Alberto Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago 8380453, Chile
| |
Collapse
|
17
|
Zhang J, Yang P, Wang H, Huang Q, Chen T, Li N, Zhang H, Liu Z. N-3 PUFAs inhibited hepatic ER stress induced by feeding of a high-saturated fat diet accompanied by the expression LOX-1. J Nutr Biochem 2020; 88:108481. [PMID: 32853678 DOI: 10.1016/j.jnutbio.2020.108481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Excessive consumption of saturated fat leads to non-alcoholic fatty liver disease (NAFLD), which is attenuated by supplementation of n-3 polyunsaturated fatty acids (PUFAs). Endoplasmic reticulum (ER) stress is crucial in the development of NAFLD, but how high-saturated fat diet (HFD) causes ER stress and NAFLD remains unclear. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is involved in hepatic ER stress. We aimed to explore the roles of LOX-1 in HFD-induced ER stress. Male Sprague-Dawley rats were fed an HFD without or with supplementation of fish oil for 16 weeks. The effects of n-3 PUFAs on hepatic ER stress degrees and the expression levels of LOX-1 were examined. Then human L02 hepatoma cells were treated with palmitate or palmitate and DHA to determine the ER stress and LOX-1 expression levels in vitro. After that the expression of LOX-1 in L02 cells was either knocked-down or overexpressed to analyze the roles of LOX-1 in palmitate-induced ER stress. The feeding of HFD induced NAFLD development and ER stress in the liver, and LOX-1 expressing level, which were all reversed by fish oil supplementation. In vitro, DHA treatment reduced the expression of LOX-1, and palmitate-induced ER stress. SiRNA-mediated knock-down of LOX-1 inhibited palmitate-induced ER stress, whereas overexpression of LOX-1 dramatically induced ER stress in L02 cells.LOX-1 is critical for HFD-induced ER stress, and inhibition of its expression under the treatment of n-3 PUFAs could ameliorate HFD-induced NAFLD.
Collapse
Affiliation(s)
- Junlin Zhang
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Pu Yang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Hualin Wang
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiang Huang
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ting Chen
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Na Li
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyu Zhang
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhiguo Liu
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
18
|
Ortiz M, Soto-Alarcón SA, Orellana P, Espinosa A, Campos C, López-Arana S, Rincón MA, Illesca P, Valenzuela R, Videla LA. Suppression of high-fat diet-induced obesity-associated liver mitochondrial dysfunction by docosahexaenoic acid and hydroxytyrosol co-administration. Dig Liver Dis 2020; 52:895-904. [PMID: 32620521 DOI: 10.1016/j.dld.2020.04.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Obesity-induced by high-fat diet (HFD) is associated with liver steatosis, oxidative stress and mitochondrial dysfunction, which can be eluded by the co-administration of the lipid metabolism modulator docosahexaenoic acid (DHA) and the antioxidant hydroxytyrosol (HT). METHODS C57BL/6J mice fed a HFD were orally administered either with vehicle, DHA, HT or DHA+HT for 12 weeks. We measured parameters related to insulin resistance, serum lipid levels, liver fatty acid (FA) content and steatosis score, concomitantly with those associated with mitochondrial energy functions modulated by the transcriptional coactivator PGC-1a. RESULTS HFD induced insulin resistance, liver steatosis with n-3 FA depletion, and loss of mitochondrial respiratory functions with diminished NAD+/NADH ratio and ATP levels compared with CD, with the parallel decrease in the expression of the components of the PGC-1α cascade, namely, PPAR-α, FGF21 and AMPK, effects that were not observed in mice subjected to DHA and HT co-administration. CONCLUSIONS Data presented indicate that the combination of DHA and HT prevents the development of liver steatosis and the associated mitochondrial dysfunction induced by HFD, thus strengthening the significance of this protocol as a therapeutic strategy avoiding disease evolution into more irreversible forms characterised by the absence of adequate pharmacological therapy in human obesity.
Collapse
Affiliation(s)
- Macarena Ortiz
- Nutrition and Dietetics School, Faculty of Health Sciences, Catholic University of Maule, Curico, Chile
| | - Sandra A Soto-Alarcón
- Nutrition Department, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70000, Santiago, Chile
| | - Paula Orellana
- Nutrition Department, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70000, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Cristian Campos
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra López-Arana
- Nutrition Department, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70000, Santiago, Chile
| | - Miguel A Rincón
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Paola Illesca
- Biochemistry Department, Faculty of Biochemistry, University of Litoral, Santa Fe, Argentina
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70000, Santiago, Chile.
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
19
|
Valenzuela R, Videla LA. Impact of the Co-Administration of N-3 Fatty Acids and Olive Oil Components in Preclinical Nonalcoholic Fatty Liver Disease Models: A Mechanistic View. Nutrients 2020; 12:E499. [PMID: 32075238 PMCID: PMC7071322 DOI: 10.3390/nu12020499] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is present in approximately 25% of the population worldwide. It is characterized by the accumulation of triacylglycerol in the liver, which can progress to steatohepatitis with different degrees of fibrosis, stages that lack approved pharmacological therapies and represent an indication for liver transplantation with consistently increasing frequency. In view that hepatic steatosis is a reversible condition, effective strategies preventing disease progression were addressed using combinations of natural products in the preclinical high-fat diet (HFD) protocol (60% of fat for 12 weeks). Among them, eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:5n-3, DHA), DHA and extra virgin olive oil (EVOO), or EPA plus hydroxytyrosol (HT) attained 66% to 83% diminution in HFD-induced steatosis, with the concomitant inhibition of the proinflammatory state associated with steatosis. These supplementations trigger different molecular mechanisms that modify antioxidant, antisteatotic, and anti-inflammatory responses, and in the case of DHA and HT co-administration, prevent NAFLD. It is concluded that future studies in NAFLD patients using combined supplementations such as DHA plus HT are warranted to prevent liver steatosis, thus avoiding its progression into more unmanageable stages of the disease.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Nutritional Sciences Department, Faculty of Medicine, University of Toronto, Toronto, ON M2J4A6, Canada
| | - Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile;
| |
Collapse
|
20
|
Barrera C, Valenzuela R, Rincón MA, Espinosa A, López-Arana S, González-Mañan D, Romero N, Vargas R, Videla LA. Iron-induced derangement in hepatic Δ-5 and Δ-6 desaturation capacity and fatty acid profile leading to steatosis: Impact on extrahepatic tissues and prevention by antioxidant-rich extra virgin olive oil. Prostaglandins Leukot Essent Fatty Acids 2020; 153:102058. [PMID: 32007744 DOI: 10.1016/j.plefa.2020.102058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
The administration of iron induces liver oxidative stress and depletion of long-chain polyunsaturated fatty acids (LCPUFAs), n-6/n-3 LCPUFA ratio enhancement and fat accumulation, which may be prevented by antioxidant-rich extra virgin olive oil (AR-EVOO) supplementation. Male Wistar rats were subjected to a control diet (50 mg iron/kg diet) or iron-rich diet (IRD; 200 mg/kg diet) with alternate AR-EVOO for 21 days. Liver fatty acid (FA) analysis was performed by gas-liquid chromatography (GLC) after lipid extraction and fractionation, besides Δ-5 desaturase (Δ-5 D) and Δ6-D mRNA expression (qPCR) and activity (GLC) measurements. The IRD significantly (p < 0.05) increased hepatic total fat, triacylglycerols, free FA contents and serum transaminases levels, with diminution in those of n-6 and n-3 LCPUFAs, higher n-6/n-3 ratios, lower unsaturation index and Δ5-D and Δ6-D activities, whereas the mRNA expression of both desaturases was enhanced over control values, changes that were prevented by concomitant AR-EVOO supplementation. N-6 and n-3 LCPUFAs were also decreased by IRD in extrahepatic tissues and normalized by AR-EVOO. In conclusion, AR-EVOO supplementation prevents IRD-induced changes in parameters related to liver FA metabolism and steatosis, an effect that may have a significant impact in the treatment of iron-related pathologies or metabolic disorders such as non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile.
| | - Miguel A Rincón
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra López-Arana
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile
| | | | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Romina Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
21
|
Soto-Alarcón SA, Ortiz M, Orellana P, Echeverría F, Bustamante A, Espinosa A, Illesca P, Gonzalez-Mañán D, Valenzuela R, Videla LA. Docosahexaenoic acid and hydroxytyrosol co-administration fully prevents liver steatosis and related parameters in mice subjected to high-fat diet: A molecular approach. Biofactors 2019; 45:930-943. [PMID: 31454114 DOI: 10.1002/biof.1556] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
Abstract
Attenuation of high-fat diet (HFD)-induced liver steatosis is accomplished by different nutritional interventions. Considering that the n-3 PUFA docosahexaenoic acid (DHA) modulates lipid metabolism and the antioxidant hydroxytyrosol (HT) diminishes oxidative stress underlying fatty liver, it is hypothesized that HFD-induced steatosis is suppressed by DHA and HT co-administration. Male C57BL/6J mice were fed a control diet (CD; 10% fat, 20% protein, 70% carbohydrates) or a HFD (60% fat, 20% protein, 20% carbohydrates) for 12 weeks, without and with supplementation of DHA (50 mg/kg/day), HT (5 mg/kg/day) or both. The combined DHA + HT protocol fully prevented liver steatosis and the concomitant pro-inflammatory state induced by HFD, with suppression of lipogenic and oxidative stress signaling, recovery of fatty acid oxidation capacity and enhancement in resolvin availability affording higher inflammation resolution capability. Abrogation of HFD-induced hepatic steatosis by DHA and HT co-administration represents a crucial therapeutic strategy eluding disease progression into stages lacking efficacious handling at present time.
Collapse
Affiliation(s)
| | - Macarena Ortiz
- Nutrition and Dietetics School, Faculty of Health Sciences, Catholic University of Maule, Curicó, Chile
| | - Paula Orellana
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Andrés Bustamante
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Illesca
- Biochemistry Department, Faculty of Biochemistry, University of Litoral, Santa Fe, Argentina
| | | | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
22
|
Bedia C, Badia M, Muixí L, Levade T, Tauler R, Sierra A. GM2-GM3 gangliosides ratio is dependent on GRP94 through down-regulation of GM2-AP cofactor in brain metastasis cells. Sci Rep 2019; 9:14241. [PMID: 31578452 PMCID: PMC6775165 DOI: 10.1038/s41598-019-50761-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023] Open
Abstract
GRP94 is an ATP-dependent chaperone able to regulate pro-oncogenic signaling pathways. Previous studies have shown a critical role of GRP94 in brain metastasis (BrM) pathogenesis and progression. In this work, an untargeted lipidomic analysis revealed that some lipid species were altered in GRP94-deficient cells, specially GM2 and GM3 gangliosides. The catalytic pathway of GM2 is affected by the low enzymatic activity of β-Hexosaminidase (HexA), responsible for the hydrolysis of GM2 to GM3. Moreover, a deficiency of the GM2-activator protein (GM2-AP), the cofactor of HexA, is observed without alteration of gene expression, indicating a post-transcriptional alteration of GM2-AP in the GRP94-ablated cells. One plausible explanation of these observations is that GM2-AP is a client of GRP94, resulting in defective GM2 catabolic processing and lysosomal accumulation of GM2 in GRP94-ablated cells. Overall, given the role of gangliosides in cell surface dynamics and signaling, their imbalance might be linked to modifications of cell behaviour acquired in BrM progression. This work indicates that GM2-AP could be an important factor in ganglioside balance maintenance. These findings highlight the relevance of GM3 and GM2 gangliosides in BrM and reveal GM2-AP as a promising diagnosis and therapeutic target in BrM research.
Collapse
Affiliation(s)
- Carmen Bedia
- Laboratory of Molecular and Translational Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS, Centre de Recerca Biomèdica CELLEX, Barcelona, E-08036, Spain.
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | - Miriam Badia
- Laboratory of Molecular and Translational Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS, Centre de Recerca Biomèdica CELLEX, Barcelona, E-08036, Spain
| | - Laia Muixí
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, E-08908, Spain
| | - Thierry Levade
- INSERM UMR 1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), 31037, Toulouse, France
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Angels Sierra
- Laboratory of Molecular and Translational Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS, Centre de Recerca Biomèdica CELLEX, Barcelona, E-08036, Spain
- Centre d'Estudis Sanitaris i Socials-CESS, University of Vic - Central University of Catalonia (UVic-UCC), Vic, E-08500, Spain
| |
Collapse
|
23
|
Cırrık S, Hacioglu G, Abidin İ, Aydın-Abidin S, Noyan T. Endoplasmic reticulum stress in the livers of BDNF heterozygous knockout mice. Arch Physiol Biochem 2019; 125:378-386. [PMID: 30039987 DOI: 10.1080/13813455.2018.1489850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context: Involvement of endoplasmic reticulum (ER) stress and brain-derived neurotrophic factor (BDNF) in hepatic lipid metabolism has been reported previously. Objective: The effects of chronic BDNF deficiency on ER stress response in the livers were examined in this study. Methods: BDNF(+/-) mice, characterised by BDNF deficiency, and their wild-type (WT) littermates were used. The ER stress was induced by tunicamycin (Tm) (0.5 mg/kg, intraperitoneal). Animals were divided into four groups; WT, WT + Tm, BDNF(+/-), and BDNF(+/-)+Tm. Results: At the basal conditions, BDNF deficiency did not affect hepatic cell death or lipid accumulation. However, during ER stress, BDNF(+/-)+Tm group showed increased apoptosis, GADD153 immunostaining, sterol regulatory element-binding protein-1c (SREBP-1c) level, and steatosis compared to the WT + Tm group. Conclusion: Endogenous BDNF might be protective against apoptosis through GADD153 suppression and steatosis via SREBP-1c suppression during ER stress. This effect of BDNF might be clinically important for type 2 diabetes and obesity, which are related with both ER stress and BDNF deficiency.
Collapse
Affiliation(s)
- Selma Cırrık
- a Department of Physiology, Faculty of Medicine, Ordu University , Ordu , Turkey
| | - Gulay Hacioglu
- b Department of Physiology, Faculty of Medicine, Giresun University , Giresun , Turkey
| | - İsmail Abidin
- c Department of Biophysics, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - Selcen Aydın-Abidin
- c Department of Biophysics, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - Tevfik Noyan
- d Department of Medical Biochemistry, Faculty of Medicine, Ordu University , Ordu , Turkey
| |
Collapse
|
24
|
Santana-Codina N, Marcé-Grau A, Muixí L, Nieva C, Marro M, Sebastián D, Muñoz JP, Zorzano A, Sierra A. GRP94 Is Involved in the Lipid Phenotype of Brain Metastatic Cells. Int J Mol Sci 2019; 20:ijms20163883. [PMID: 31395819 PMCID: PMC6720951 DOI: 10.3390/ijms20163883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
Metabolic adaptation may happen in response to the pressure exerted by the microenvironment and is a key step in survival of metastatic cells. Brain metastasis occurs as a consequence of the systemic dissemination of tumor cells, a fact that correlates with poor prognosis and high morbidity due to the difficulty in identifying biomarkers that allow a more targeted therapy. Previously, we performed transcriptomic analysis of human breast cancer patient samples and evaluated the differential expression of genes in brain metastasis (BrM) compared to lung, bone and liver metastasis. Our network approach identified upregulation of glucose-regulated protein 94 (GRP94) as well as proteins related to synthesis of fatty acids (FA) in BrM. Here we report that BrM cells show an increase in FA content and decreased saturation with regard to parental cells measured by Raman spectroscopy that differentiate BrM from other metastases. Moreover, BrM cells exerted a high ability to oxidize FA and compensate hypoglycemic stress due to an overexpression of proteins involved in FA synthesis and degradation (SREBP-1, LXRα, ACOT7). GRP94 ablation restored glucose dependence, down-regulated ACOT7 and SREBP-1 and decreased tumorigenicity in vivo. In conclusion, GRP94 is required for the metabolic stress survival of BrM cells, and it might act as a modulator of lipid metabolism to favor BrM progression.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, E-08908 Barcelona, Spain.
- Universitat Autònoma de Barcelona (UAB), Campus Bellaterra, Cerdanyola del Vallés, E-08193 Barcelona, Spain.
| | - Anna Marcé-Grau
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, E-08908 Barcelona, Spain
| | - Laia Muixí
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, E-08908 Barcelona, Spain
| | - Claudia Nieva
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, E-08908 Barcelona, Spain
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Carl Friedrich Gauss 3, 08036 Barcelona, Spain
| | - Mónica Marro
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Carl Friedrich Gauss 3, 08036 Barcelona, Spain
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Juan Pablo Muñoz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Angels Sierra
- Laboratory of Molecular and Translational Oncology, Centre de Recerca Biomèdica CELLEX-CRBC-Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS, E-08036 Barcelona, Spain.
| |
Collapse
|
25
|
Šrámková V, Koc M, Krauzová E, Kračmerová J, Šiklová M, Elkalaf M, Langin D, Štich V, Rossmeislová L. Expression of lipogenic markers is decreased in subcutaneous adipose tissue and adipocytes of older women and is negatively linked to GDF15 expression. J Physiol Biochem 2019; 75:253-262. [PMID: 30912009 DOI: 10.1007/s13105-019-00676-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/10/2019] [Indexed: 12/25/2022]
Abstract
In aging, the capacity of subcutaneous adipose tissue (SAT) to store lipids decreases and this results in metabolically unfavorable fat redistribution. Triggers of this age-related SAT dysfunction may include cellular senescence or endoplasmic reticulum (ER) stress. Therefore, we compared lipogenic capacity of SAT between young and older women and investigated its relation to senescence and ER stress markers. Samples of SAT and corresponding SAT-derived primary preadipocytes were obtained from two groups of women differing in age (36 vs. 72 years, n = 15 each) but matched for fat mass. mRNA levels of selected genes (lipogenesis: ACACA, FASN, SCD1, DGAT2, ELOVL6; senescence: p16, p21, NOX4, GDF15; ER stress-ATF4, XBP1s, PERK, HSPA5, GADD34, HYOU1, CHOP, EDEM1, DNAJC3) were assessed by qPCR, protein levels of GDF15 by ELISA, and mitochondrial function by the Seahorse Analyzer. Compared to the young, SAT and in vitro differentiated adipocytes from older women exhibited reduced mRNA expression of lipogenic enzymes. Out of analyzed senescence and ER stress markers, the only gene, whose expression correlated negatively with the expression of lipogenic enzymes in both SAT and adipocytes, was GDF15, a marker of not only senescence but also mitochondrial dysfunction. In line with this, inhibition of mitochondrial ATP synthase in adipocytes strongly upregulated GDF15 while reduced expression of lipogenic enzymes. Moreover, adipocytes from older women had a tendency for diminished mitochondrial capacity. Thus, a reduced lipogenic capacity of adipocytes in aged SAT appears to be linked to mitochondrial dysfunction rather than to ER stress or accumulation of senescent cells.
Collapse
Affiliation(s)
- Veronika Šrámková
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic
| | - Michal Koc
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic
| | - Eva Krauzová
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic.,Second Department of Internal Medicine, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jana Kračmerová
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic
| | - Michaela Šiklová
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic
| | - Moustafa Elkalaf
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dominique Langin
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic.,INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,Paul Sabatier University, Toulouse, France.,Department of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - Vladimír Štich
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic.,Second Department of Internal Medicine, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Lenka Rossmeislová
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic. .,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
26
|
Lee HY, Lee GH, Yoon Y, Chae HJ. R. verniciflua and E. ulmoides Extract (ILF-RE) Protects against Chronic CCl₄-Induced Liver Damage by Enhancing Antioxidation. Nutrients 2019; 11:nu11020382. [PMID: 30759889 PMCID: PMC6412399 DOI: 10.3390/nu11020382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed to characterize the protective effects of R. verniciflua extract (ILF-R) and E. ulmoides extract (ILF-E), the combination called ILF-RE, against chronic CCl4-induced liver oxidative injury in rats, as well as to investigate the mechanism underlying hepatoprotection by ILF-RE against CCl4-induced hepatic dysfunction. Chronic hepatic stress was induced via intraperitoneal (IP) administration of a mixture of CCl4 (0.2 mL/100 g body weight) and olive oil [1:1(v/v)] twice a week for 4 weeks to rats. ILF-RE was administered orally at 40, 80, and 120 mg/kg to rats for 4 weeks. Alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transpeptidase (GGT), and lipid peroxidation assays were performed, and total triglyceride, cholesterol, and LDL-cholesterol levels were quantified. Furthermore, ER stress and lipogenesis-related gene expression including sterol regulatory element-binding transcription factor 1 (SREBP-1), fatty acid synthase (FAS), and P-AMPK were assessed. ILF-RE markedly protected against liver damage by inhibiting oxidative stress and increasing antioxidant enzyme activity including glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase. Furthermore, hepatic dyslipidemia was regulated after ILF-RE administration. Moreover, hepatic lipid accumulation and its associated lipogenic genes, including those encoding SREBP-1 and FAS, were regulated after ILF-RE administration. This was accompanied by regulation of ER stress response signaling, suggesting a mechanism underlying ILF-RE-mediated hepatoprotection against lipid accumulation. The present results indicate that ILF-RE exerts hepatoprotective effects against chronic CCl4-induced dysfunction by suppressing hepatic oxidative stress and lipogenesis, suggesting that ILF-RE is a potential preventive/therapeutic natural product in treating hepatoxicity and associated dysfunction.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk 561-180, Korea.
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk 561-180, Korea.
| | - Young Yoon
- Imsil Cheese & Food Research Institute, Doin 2-gil, Seongsu-myeon, Imsil-gun, Chonbuk 55918, Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk 561-180, Korea.
- Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk 561-180, Korea.
| |
Collapse
|
27
|
Illesca P, Valenzuela R, Espinosa A, Echeverría F, Soto-Alarcon S, Ortiz M, Videla LA. Hydroxytyrosol supplementation ameliorates the metabolic disturbances in white adipose tissue from mice fed a high-fat diet through recovery of transcription factors Nrf2, SREBP-1c, PPAR-γ and NF-κB. Biomed Pharmacother 2019; 109:2472-2481. [DOI: 10.1016/j.biopha.2018.11.120] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022] Open
|
28
|
Mahzari A, Zeng XY, Zhou X, Li S, Xu J, Tan W, Vlahos R, Robinson S, YE JM. Repurposing matrine for the treatment of hepatosteatosis and associated disorders in glucose homeostasis in mice. Acta Pharmacol Sin 2018; 39:1753-1759. [PMID: 29980742 DOI: 10.1038/s41401-018-0016-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022]
Abstract
The present study investigated the efficacy of the hepatoprotective drug matrine (Mtr) for its new application for hepatosteatosis and associated disorders in glucose homeostasis. The study was performed in two nutritional models of hepatosteatosis in mice with various abnormal glucose homeostasis: (1) high-fructose diet (HFru) induced hepatosteatosis and glucose intolerance from hepatic, and (2) hepatosteatosis and hyperglycemia induced by high-fat (HF) diet in combination with low doses of streptozotocin (STZ). Administration of Mtr (100 mg/kg every day in diet for 4 weeks) abolished HFru-induced hepatosteatosis and glucose intolerance. These effects were associated with the inhibition of HFru-stimulated de novo lipogenesis (DNL) without altering hepatic fatty acid oxidation. Further investigation revealed that HFru-induced endoplasmic reticulum (ER) stress was inhibited, whereas heat-shock protein 72 (an inducible chaperon protein) was increased by Mtr. In a type 2 diabetic model induced by HF-STZ, Mtr reduced hepatosteatosis and improved attenuated hyperglycemia. The hepatoprotective drug Mtr may be repurposed for the treatment of hepatosteatosis and associated disorders in glucose homeostasis. The inhibition of ER stress associated DNL and fatty acid influx appears to play an important role in these metabolic effects.
Collapse
|
29
|
Barrera C, Valenzuela R, Rincón MÁ, Espinosa A, Echeverria F, Romero N, Gonzalez-Mañan D, Videla LA. Molecular mechanisms related to the hepatoprotective effects of antioxidant-rich extra virgin olive oil supplementation in rats subjected to short-term iron administration. Free Radic Biol Med 2018; 126:313-321. [PMID: 30153476 DOI: 10.1016/j.freeradbiomed.2018.08.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/27/2022]
Abstract
Enhanced iron levels in liver are associated with oxidative stress development and damage with increased fat accumulation. The aim of this work was to assess the hypothesis that antioxidant-rich extra virgin olive oil (AR-EVOO) counteracts iron-rich diet (IRD)-induced oxidative stress hindering hepatic steatosis. Male Wistar rats were fed and IRD (200 mg iron/kg diet) versus a control diet (CD; 50 mg iron/kg diet) with alternate AR-EVOO supplementation (100 mg/day) for 21 days. IRD induced liver steatosis and oxidative stress (higher levels of protein oxidation and lipid peroxidation with glutathione depletion), mitochondrial dysfunction (decreased citrate synthase and complex I and II activities) and loss of polyunsaturated fatty acids (PUFAs), with a drastic enhancement in the sterol regulatory element-binding protein-1c (SREBP-1c)/peroxisome proliferator-activated receptor-α (PPAR-α) ratio upregulating the expression of lipogenic enzymes (acetyl-CoA carboxylase, fatty acid (FA) synthase and stearoyl desaturase 2) and downregulating those involved in FA oxidation (carnitine palmitoyl transferase and acyl-CoA oxidase) over values in the CD group. IRD also upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and its target genes. AR-EVOO supplementation alone did not modify the studied parameters, however, IRD combined with AR-EVOO administration returned IRD-induced changes to baseline levels of the CD group. It is concluded that IRD-induced non-alcoholic fatty liver disease (NAFLD) is prevented by AR-EVOO supplementation, which might be related to the protective effects of its components such as hydroxytyrosol, oleic acid, tocopherols and/or PUFAs, thus representing a suitable anti-steatotic strategy to avoid progression into more severe stages of the disease, underlying NAFLD associated with iron overloading pathologies or obesity.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile; Lipid Center, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile.
| | - Miguel Ángel Rincón
- Lipid Center, Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | | | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago-7, Chile
| |
Collapse
|
30
|
Attenuation of High-Fat Diet-Induced Rat Liver Oxidative Stress and Steatosis by Combined Hydroxytyrosol- (HT-) Eicosapentaenoic Acid Supplementation Mainly Relies on HT. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5109503. [PMID: 30057681 PMCID: PMC6051008 DOI: 10.1155/2018/5109503] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
Pharmacological therapy for nonalcoholic fatty liver disease (NAFLD) is not approved at the present time. For this purpose, the effect of combined eicosapentaenoic acid (EPA; 50 mg/kg/day) modulating hepatic lipid metabolism and hydroxytyrosol (HT; 5 mg/kg/day) exerting antioxidant actions was evaluated on hepatic steatosis and oxidative stress induced by a high-fat diet (HFD; 60% fat, 20% protein, and 20% carbohydrates) compared to a control diet (CD; 10% fat, 20% protein, and 70% carbohydrates) in mice fed for 12 weeks. HFD-induced liver steatosis (i) was reduced by 32% by EPA, without changes in oxidative stress-related parameters and mild recovery of Nrf2 functioning affording antioxidation and (ii) was decreased by 42% by HT, concomitantly with total regain of the glutathione status diminished by HFD, 42% to 59% recovery of lipid peroxidation and protein oxidation enhanced by HFD, and regain of Nrf2 functioning, whereas (iii) combined EPA + HT supplementation elicited 74% reduction in liver steatosis, with total recovery of the antioxidant potential in a similar manner than HT. It is concluded that combined HT + EPA drastically decreases NAFLD development, an effect that shows additivity in HT and EPA effects that mainly relies on HT, strengthening the impact of oxidative stress as a central mechanism underlying liver steatosis in obesity.
Collapse
|
31
|
Namkoong S, Cho CS, Semple I, Lee JH. Autophagy Dysregulation and Obesity-Associated Pathologies. Mol Cells 2018; 41:3-10. [PMID: 29370691 PMCID: PMC5792710 DOI: 10.14348/molcells.2018.2213] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/02/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
Autophagy is one of the major degradative mechanisms that can eliminate excessive nutrients, toxic protein aggregates, damaged organelles and invading microorganisms. In response to obesity and obesity-associated lipotoxic, proteotoxic and oxidative stresses, autophagy plays an essential role in maintaining physiological homeostasis. However, obesity and its associated stress insults can often interfere with the autophagic process through various mechanisms, which result in further aggravation of obesity-related metabolic pathologies in multiple metabolic organs. Paradoxically, inhibition of autophagy, within specific contexts, indirectly produces beneficial effects that can alleviate several detrimental consequences of obesity. In this minireview, we will provide a brief discussion about our current understanding of the impact of obesity on autophagy and the role of autophagy dysregulation in modulating obesity-associated pathological outcomes.
Collapse
Affiliation(s)
- Sim Namkoong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| | - Chun-Seok Cho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| | - Ian Semple
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109-2200,
USA
| |
Collapse
|
32
|
Valenzuela R, Rincón-Cervera MÁ, Echeverría F, Barrera C, Espinosa A, Hernández-Rodas MC, Ortiz M, Valenzuela A, Videla LA. Iron-induced pro-oxidant and pro-lipogenic responses in relation to impaired synthesis and accretion of long-chain polyunsaturated fatty acids in rat hepatic and extrahepatic tissues. Nutrition 2018; 45:49-58. [DOI: 10.1016/j.nut.2017.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
|
33
|
Valenzuela R, Echeverria F, Ortiz M, Rincón-Cervera MÁ, Espinosa A, Hernandez-Rodas MC, Illesca P, Valenzuela A, Videla LA. Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice. Lipids Health Dis 2017; 16:64. [PMID: 28395666 PMCID: PMC5387240 DOI: 10.1186/s12944-017-0450-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/09/2017] [Indexed: 12/28/2022] Open
Abstract
Background Eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, C20:4n-6) are long-chain polyunsaturated fatty acids (LCPUFAs) with relevant roles in the organism. EPA and DHA are synthesized from the precursor alpha-linolenic acid (ALA, C18:3n-3), whereas AA is produced from linoleic acid (LA, C18:2n-6) through the action of Δ5 and Δ6-desaturases. High-fat diet (HFD) decreases the activity of both desaturases and LCPUFA accretion in liver and other tissues. Hydroxytyrosol (HT), a natural antioxidant, has an important cytoprotective effects in different cells and tissues. Methods Male mice C57BL/6 J were fed a control diet (CD) (10% fat, 20% protein, 70% carbohydrates) or a HFD (60% fat, 20% protein, 20% carbohydrates) for 12 weeks. Animals were daily supplemented with saline (CD) or 5 mg HT (HFD), and blood and the studied tissues were analyzed after the HT intervention. Parameters studied included liver histology (optical microscopy), activity of hepatic desaturases 5 and 6 (gas-liquid chromatography of methyl esters derivatives) and antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase by spectrophotometry), oxidative stress indicators (glutathione, thiobarbituric acid reactants, and the antioxidant capacity of plasma), gene expression assays for sterol regulatory element-binding protein 1c (SREBP-1c) (qPCR and ELISA), and LCPUFA profiles in liver, erythrocyte, brain, heart, and testicle (gas-liquid chromatography). Results HFD led to insulin resistance and liver steatosis associated with SREBP-1c upregulation, with enhancement in plasma and liver oxidative stress status and diminution in the synthesis and storage of n-6 and n-3 LCPUFAs in the studied tissues, compared to animals given control diet. HT supplementation significantly reduced fat accumulation in liver and plasma as well as tissue metabolic alterations induced by HFD. Furthermore, a normalization of desaturase activities, oxidative stress-related parameters, and tissue n-3 LCPUFA content was observed in HT-treated rats over control animals. Conclusions HT supplementation prevents metabolic alterations in desaturase activities, oxidative stress status, and n-3 LCPUFA content in the liver and extrahepatic tissues of mice fed HFD. Electronic supplementary material The online version of this article (doi:10.1186/s12944-017-0450-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile. .,Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.
| | - Francisca Echeverria
- Nutrition Department, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile
| | - Macarena Ortiz
- Nutrition Department, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile
| | | | - Alejandra Espinosa
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - Paola Illesca
- Biochemistry Department. Faculty of Biochemistry, University of Litoral, Santa Fe, Argentina
| | - Alfonso Valenzuela
- Lipid Center, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
34
|
Vannuvel K, Van Steenbrugge M, Demazy C, Ninane N, Fattaccioli A, Fransolet M, Renard P, Raes M, Arnould T. Effects of a Sublethal and Transient Stress of the Endoplasmic Reticulum on the Mitochondrial Population. J Cell Physiol 2016; 231:1913-31. [PMID: 26680008 DOI: 10.1002/jcp.25292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) and mitochondria are not discrete intracellular organelles but establish close physical and functional interactions involved in several biological processes including mitochondrial bioenergetics, calcium homeostasis, lipid synthesis, and the regulation of apoptotic cell death pathways. As many cell types might face a transient and sublethal ER stress during their lifetime, it is thus likely that the adaptive UPR response might affect the mitochondrial population. The aim of this work was to study the putative effects of a non-lethal and transient endoplasmic reticulum stress on the mitochondrial population in HepG2 cells. The results show that thapsigargin and brefeldin A, used to induce a transient and sublethal ER stress, rapidly lead to the fragmentation of the mitochondrial network associated with a decrease in mitochondrial membrane potential, O2 (•-) production and less efficient respiration. These changes in mitochondrial function are transient and preceded by the phosphorylation of JNK. Inhibition of JNK activation by SP600125 prevents the decrease in O2 (•-) production and the mitochondrial network fragmentation observed in cells exposed to the ER stress but has no impact on the reduction of the mitochondrial membrane potential. In conclusion, our data show that a non-lethal and transient ER stress triggers a rapid activation of JNK without inducing apoptosis, leading to the fragmentation of the mitochondrial network and a reduction of O2 (•-) production. J. Cell. Physiol. 231: 1913-1931, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kayleen Vannuvel
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Van Steenbrugge
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Catherine Demazy
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Noëlle Ninane
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
35
|
Ayuso M, Fernández A, Núñez Y, Benítez R, Isabel B, Barragán C, Fernández AI, Rey AI, Medrano JF, Cánovas Á, González-Bulnes A, López-Bote C, Ovilo C. Comparative Analysis of Muscle Transcriptome between Pig Genotypes Identifies Genes and Regulatory Mechanisms Associated to Growth, Fatness and Metabolism. PLoS One 2015; 10:e0145162. [PMID: 26695515 PMCID: PMC4687939 DOI: 10.1371/journal.pone.0145162] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Iberian ham production includes both purebred (IB) and Duroc-crossbred (IBxDU) Iberian pigs, which show important differences in meat quality and production traits, such as muscle growth and fatness. This experiment was conducted to investigate gene expression differences, transcriptional regulation and genetic polymorphisms that could be associated with the observed phenotypic differences between IB and IBxDU pigs. Nine IB and 10 IBxDU pigs were slaughtered at birth. Morphometric measures and blood samples were obtained and samples from Biceps femoris muscle were employed for compositional and transcriptome analysis by RNA-Seq technology. Phenotypic differences were evident at this early age, including greater body size and weight in IBxDU and greater Biceps femoris intramuscular fat and plasma cholesterol content in IB newborns. We detected 149 differentially expressed genes between IB and IBxDU neonates (p < 0.01 and Fold-Change > 1. 5). Several were related to adipose and muscle tissues development (DLK1, FGF21 or UBC). The functional interpretation of the transcriptomic differences revealed enrichment of functions and pathways related to lipid metabolism in IB and to cellular and muscle growth in IBxDU pigs. Protein catabolism, cholesterol biosynthesis and immune system were functions enriched in both genotypes. We identified transcription factors potentially affecting the observed gene expression differences. Some of them have known functions on adipogenesis (CEBPA, EGRs), lipid metabolism (PPARGC1B) and myogenesis (FOXOs, MEF2D, MYOD1), which suggest a key role in the meat quality differences existing between IB and IBxDU hams. We also identified several polymorphisms showing differential segregation between IB and IBxDU pigs. Among them, non-synonymous variants were detected in several transcription factors as PPARGC1B and TRIM63 genes, which could be associated to altered gene function. Taken together, these results provide information about candidate genes, metabolic pathways and genetic polymorphisms potentially involved in phenotypic differences between IB and IBxDU pigs associated to meat quality and production traits.
Collapse
Affiliation(s)
- Miriam Ayuso
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Rita Benítez
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | - Ana Isabel Rey
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Juan F. Medrano
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Ángela Cánovas
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | | | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Ovilo
- Departamento de Mejora Genética Animal, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
36
|
Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes. Biochem Biophys Res Commun 2015; 460:684-90. [DOI: 10.1016/j.bbrc.2015.03.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 01/06/2023]
|
37
|
Barbero-Camps E, Fernández A, Baulies A, Martinez L, Fernández-Checa JC, Colell A. Endoplasmic reticulum stress mediates amyloid β neurotoxicity via mitochondrial cholesterol trafficking. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2066-81. [PMID: 24815354 DOI: 10.1016/j.ajpath.2014.03.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 03/04/2014] [Accepted: 03/18/2014] [Indexed: 01/28/2023]
Abstract
Disrupted cholesterol homeostasis has been reported in Alzheimer disease and is thought to contribute to disease progression by promoting amyloid β (Aβ) accumulation. In particular, mitochondrial cholesterol enrichment has been shown to sensitize to Aβ-induced neurotoxicity. However, the molecular mechanisms responsible for the increased cholesterol levels and its trafficking to mitochondria in Alzheimer disease remain poorly understood. Here, we show that endoplasmic reticulum (ER) stress triggered by Aβ promotes cholesterol synthesis and mitochondrial cholesterol influx, resulting in mitochondrial glutathione (mGSH) depletion in older age amyloid precursor protein/presenilin-1 (APP/PS1) mice. Mitochondrial cholesterol accumulation was associated with increased expression of mitochondrial-associated ER membrane proteins, which favor cholesterol translocation from ER to mitochondria along with specific cholesterol carriers, particularly the steroidogenic acute regulatory protein. In vivo treatment with the ER stress inhibitor 4-phenylbutyric acid prevented mitochondrial cholesterol loading and mGSH depletion, thereby protecting APP/PS1 mice against Aβ-induced neurotoxicity. Similar protection was observed with GSH ethyl ester administration, which replenishes mGSH without affecting the unfolded protein response, thus positioning mGSH depletion downstream of ER stress. Overall, these results indicate that Aβ-mediated ER stress and increased mitochondrial cholesterol trafficking contribute to the pathologic progression observed in old APP/PS1 mice, and that ER stress inhibitors may be explored as therapeutic agents for Alzheimer disease.
Collapse
Affiliation(s)
- Elisabet Barbero-Camps
- Department of Cell Death and Proliferation, Biomedical Research Institute of Barcelona - Higher Council for Scientific Research (IIBB-CSIC), Barcelona, Spain; Liver Unit, Hospital Clinic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), the Center for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Anna Fernández
- Department of Cell Death and Proliferation, Biomedical Research Institute of Barcelona - Higher Council for Scientific Research (IIBB-CSIC), Barcelona, Spain; Liver Unit, Hospital Clinic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), the Center for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain.
| | - Anna Baulies
- Department of Cell Death and Proliferation, Biomedical Research Institute of Barcelona - Higher Council for Scientific Research (IIBB-CSIC), Barcelona, Spain; Liver Unit, Hospital Clinic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), the Center for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Laura Martinez
- Department of Cell Death and Proliferation, Biomedical Research Institute of Barcelona - Higher Council for Scientific Research (IIBB-CSIC), Barcelona, Spain; Liver Unit, Hospital Clinic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), the Center for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain
| | - Jose C Fernández-Checa
- Department of Cell Death and Proliferation, Biomedical Research Institute of Barcelona - Higher Council for Scientific Research (IIBB-CSIC), Barcelona, Spain; Liver Unit, Hospital Clinic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), the Center for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain; Southern California Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California.
| | - Anna Colell
- Department of Cell Death and Proliferation, Biomedical Research Institute of Barcelona - Higher Council for Scientific Research (IIBB-CSIC), Barcelona, Spain; Liver Unit, Hospital Clinic, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), the Center for Biomedical Research in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Spain.
| |
Collapse
|
38
|
Epple LM, Dodd RD, Merz AL, Dechkovskaia AM, Herring M, Winston BA, Lencioni AM, Russell RL, Madsen H, Nega M, Dusto NL, White J, Bigner DD, Nicchitta CV, Serkova NJ, Graner MW. Induction of the unfolded protein response drives enhanced metabolism and chemoresistance in glioma cells. PLoS One 2013; 8:e73267. [PMID: 24039668 PMCID: PMC3748289 DOI: 10.1371/journal.pone.0073267] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 07/22/2013] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) is an endoplasmic reticulum (ER)-based cytoprotective mechanism acting to prevent pathologies accompanying protein aggregation. It is frequently active in tumors, but relatively unstudied in gliomas. We hypothesized that UPR stress effects on glioma cells might protect tumors from additional exogenous stress (ie, chemotherapeutics), postulating that protection was concurrent with altered tumor cell metabolism. Using human brain tumor cell lines, xenograft tumors, human samples and gene expression databases, we determined molecular features of glioma cell UPR induction/activation, and here report a detailed analysis of UPR transcriptional/translational/metabolic responses. Immunohistochemistry, Western and Northern blots identified elevated levels of UPR transcription factors and downstream ER chaperone targets in gliomas. Microarray profiling revealed distinct regulation of stress responses between xenograft tumors and parent cell lines, with gene ontology and network analyses linking gene expression to cell survival and metabolic processes. Human glioma samples were examined for levels of the ER chaperone GRP94 by immunohistochemistry and for other UPR components by Western blotting. Gene and protein expression data from patient gliomas correlated poor patient prognoses with increased expression of ER chaperones, UPR target genes, and metabolic enzymes (glycolysis and lipogenesis). NMR-based metabolomic studies revealed increased metabolic outputs in glucose uptake with elevated glycolytic activity as well as increased phospholipid turnover. Elevated levels of amino acids, antioxidants, and cholesterol were also evident upon UPR stress; in particular, recurrent tumors had overall higher lipid outputs and elevated specific UPR arms. Clonogenicity studies following temozolomide treatment of stressed or unstressed cells demonstrated UPR-induced chemoresistance. Our data characterize the UPR in glioma cells and human tumors, and link the UPR to chemoresistance possibly via enhanced metabolism. Given the role of the UPR in the balance between cell survival and apoptosis, targeting the UPR and/or controlling metabolic activity may prove beneficial for malignant glioma therapeutics.
Collapse
Affiliation(s)
- Laura M. Epple
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- Cell and Molecular Biology Program, Cancer Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Rebecca D. Dodd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrea L. Merz
- Cancer Center Metabolomics Core, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Anjelika M. Dechkovskaia
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew Herring
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Benjamin A. Winston
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Alex M. Lencioni
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Rae L. Russell
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Helen Madsen
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Meheret Nega
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Nathaniel L. Dusto
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Jason White
- Department of Neurosurgery, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Darell D. Bigner
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher V. Nicchitta
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Natalie J. Serkova
- Cancer Center Metabolomics Core, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Anesthesiology, Anschutz Medical Center, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Michael W. Graner
- Cell and Molecular Biology Program, Cancer Biology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
39
|
Miller CN, Della-Fera MA, Baile CA. The Mediation of Hepatic Lipogenesis Through Estrogens. POSTDOC JOURNAL : A JOURNAL OF POSTDOCTORAL RESEARCH AND POSTDOCTORAL AFFAIRS 2013; 1:27-38. [PMID: 27904876 PMCID: PMC5125724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Estrogens have been shown to protect against various diseases and disastrous metabolic consequences of poor diets. Although a large body of research demonstrates estrogen's ability to control food intake, adipogenesis, and oxidative stress, research regarding the effects of estrogens on hepatic lipogenesis, steatosis, and non-alcoholic fatty liver disease is only now accumulating. Estrogen deficiency in both human and rodent models directly results in the upregulation of hepatic lipogenic signaling - in both serum and hepatic triglyceride content - which leads to the development of fatty liver. In all models, estrogen replacement completely reverses these outcomes. Similar to the endogenous estrogen hormone, plant-derived phytoestrogens also appear to have beneficial effects related to prevention of hepatic lipogenic signaling and steatosis in rodent models. Additionally, such compounds can completely overcome the hepatic consequences that result from estrogen deficiency. While published research strongly supports that estrogens, both endogenous and exogenous, can protect against hepatic lipogenic signaling that can contribute to the development of non-alcoholic fatty liver diseases and adverse weight gain, little research exists on elucidating the mechanism behind this protection. Various pathways have been suggested, including manipulation of both leptin and signal transducer and activator of transcription 3 (STAT3) signaling. However, the discovery of x-box protein 1 elicits the identification of another potential pathway through which estrogen may be working. While the supportive work is strong, further research is needed to determine the mechanism behind the protection by estrogens from hepatic lipogenesis and associated diseases.
Collapse
Affiliation(s)
- Colette N. Miller
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia
| | | | - Clifton A. Baile
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia
- Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
40
|
Videla LA, Pettinelli P. Misregulation of PPAR Functioning and Its Pathogenic Consequences Associated with Nonalcoholic Fatty Liver Disease in Human Obesity. PPAR Res 2012; 2012:107434. [PMID: 23304111 PMCID: PMC3526338 DOI: 10.1155/2012/107434] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/06/2012] [Indexed: 12/22/2022] Open
Abstract
Nonalcoholic fatty liver disease in human obesity is characterized by the multifactorial nature of the underlying pathogenic mechanisms, which include misregulation of PPARs signaling. Liver PPAR-α downregulation with parallel PPAR-γ and SREBP-1c up-regulation may trigger major metabolic disturbances between de novo lipogenesis and fatty acid oxidation favouring the former, in association with the onset of steatosis in obesity-induced oxidative stress and related long-chain polyunsaturated fatty acid n-3 (LCPUFA n-3) depletion, insulin resistance, hypoadiponectinemia, and endoplasmic reticulum stress. Considering that antisteatotic strategies targeting PPAR-α revealed that fibrates have poor effectiveness, thiazolidinediones have weight gain limitations, and dual PPAR-α/γ agonists have safety concerns, supplementation with LCPUFA n-3 appears as a promising alternative, which achieves both significant reduction in liver steatosis scores and a positive anti-inflammatory outcome. This latter aspect is of importance as PPAR-α downregulation associated with LCPUFA n-3 depletion may play a role in increasing the DNA binding capacity of proinflammatory factors, NF-κB and AP-1, thus constituting one of the major mechanisms for the progression of steatosis to steatohepatitis.
Collapse
Affiliation(s)
- Luis A. Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Casilla 70000, Santiago 7, Chile
| | - Paulina Pettinelli
- Ciencias de la Salud, Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| |
Collapse
|
41
|
Guantario B, Conigliaro A, Amicone L, Sambuy Y, Bellovino D. The new murine hepatic 3A cell line responds to stress stimuli by activating an efficient Unfolded Protein Response (UPR). Toxicol In Vitro 2011; 26:7-15. [PMID: 22001960 DOI: 10.1016/j.tiv.2011.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/21/2011] [Accepted: 09/26/2011] [Indexed: 01/22/2023]
Abstract
In the present study we have investigated the properties of a novel cell line (3A cells) obtained from the liver of 14.5 days post coitum (dpc) wild-type mouse embryo. 3A cells morphology was characterized by fluorescent localization of F-actin and β-catenin. The expression of specific genes and proteins essential to liver function in these cells was comparable or even more efficient then in the differentiated hepatocytic cell line MMH-D6. 3A cells also showed the capability to excrete molecules in extracellular spaces resembling functional bile canaliculi, glycogen storage activity and the ability to control retinol-binding protein 4 secretion in response to retinol deprivation. Their response to the exogenous stress stimulus induced by tunicamycin was analysed by PCR Pathway Array containing 84 genes involved in the Unfolded Protein Response (UPR). 3A cells were shown to activate the UPR following a typical stressful event, indicating that this cellular model could be further exploited to investigate hepatic proteins secretion and specific reaction to different injuries.
Collapse
Affiliation(s)
- Barbara Guantario
- National Research Institute on Food and Nutrition (INRAN), Rome, Italy
| | | | | | | | | |
Collapse
|
42
|
Promlek T, Ishiwata-Kimata Y, Shido M, Sakuramoto M, Kohno K, Kimata Y. Membrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways. Mol Biol Cell 2011; 22:3520-32. [PMID: 21775630 PMCID: PMC3172275 DOI: 10.1091/mbc.e11-04-0295] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Eukaryotic cells activate the unfolded-protein response (UPR) upon endoplasmic reticulum (ER) stress, where the stress is assumed to be the accumulation of unfolded proteins in the ER. Consistent with previous in vitro studies of the ER-luminal domain of the mutant UPR initiator Ire1, our study show its association with a model unfolded protein in yeast cells. An Ire1 luminal domain mutation that compromises Ire1's unfolded-protein-associating ability weakens its ability to respond to stress stimuli, likely resulting in the accumulation of unfolded proteins in the ER. In contrast, this mutant was activated like wild-type Ire1 by depletion of the membrane lipid component inositol or by deletion of genes involved in lipid homeostasis. Another Ire1 mutant lacking the authentic luminal domain was up-regulated by inositol depletion as strongly as wild-type Ire1. We therefore conclude that the cytosolic (or transmembrane) domain of Ire1 senses membrane aberrancy, while, as proposed previously, unfolded proteins accumulating in the ER interact with and activate Ire1.
Collapse
Affiliation(s)
- Thanyarat Promlek
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|