1
|
Chen K, Wang N, Zhang X, Wang M, Liu Y, Shi Y. Potentials of saponins-based adjuvants for nasal vaccines. Front Immunol 2023; 14:1153042. [PMID: 37020548 PMCID: PMC10067588 DOI: 10.3389/fimmu.2023.1153042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Respiratory infections are a major public health concern caused by pathogens that colonize and invade the respiratory mucosal surface. Nasal vaccines have the advantage of providing protection at the primary site of pathogen infection, as they induce higher levels of mucosal secretory IgA antibodies and antigen-specific T and B cell responses. Adjuvants are crucial components of vaccine formulation that enhance the immunogenicity of the antigen to confer long-term and effective protection. Saponins, natural glycosides derived from plants, shown potential as vaccine adjuvants, as they can activate the mammalian immune system. Several licensed human vaccines containing saponins-based adjuvants administrated through intramuscular injection have demonstrated good efficacy and safety. Increasing evidence suggests that saponins can also be used as adjuvants for nasal vaccines, owing to their safety profile and potential to augment immune response. In this review, we will discuss the structure-activity-relationship of saponins, their important role in nasal vaccines, and future prospects for improving their efficacy and application in nasal vaccine for respiratory infection.
Collapse
Affiliation(s)
- Kai Chen
- Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyu Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yun Shi,
| |
Collapse
|
2
|
Kang YF, Zhang X, Yu XH, Zheng Q, Liu Z, Li JP, Sun C, Kong XW, Zhu QY, Chen HW, Huang Y, Xu M, Zhong Q, Zeng YX, Zeng MS. Immunization with a Self-Assembled Nanoparticle Vaccine Elicits Potent Neutralizing Antibody Responses against EBV Infection. NANO LETTERS 2021; 21:2476-2486. [PMID: 33683126 DOI: 10.1021/acs.nanolett.0c04687] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epstein-Barr virus (EBV) infection is a global health concern infecting over 90% of the population. However, there is no currently available vaccine. EBV primarily infects B cells, where the major glycoprotein 350 (gp350) is the main target of neutralizing antibodies. Given the advancement of nanoparticle vaccines, we describe rationally designed vaccine modalities presenting 60 copies of gp350 on self-assembled nanoparticles in a repetitive array. In a mouse model, gp350s on lumazine synthase (LS) and I3-01 adjuvanted with MF59 or aluminum hydroxide (Alhydrogel) elicited over 65- to 133-fold higher neutralizing antibody titers than the corresponding gp350 monomer to EBV. Furthermore, immunization with gp350D123-LS and gp350D123-I3-01 vaccine induced a Th2-biased response. For the nonhuman primate model, gp350D123-LS in MF59 elicited higher titers of total IgG and neutralizing antibodies than the monomeric gp350D123. Overall, these results support gp350D123-based nanoparticle vaccine design as a promising vaccine candidate for potent protection against EBV infection.
Collapse
Affiliation(s)
- Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xiao-Hui Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Zhe Liu
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, P. R. China
| | - Jiang-Ping Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xiang-Wei Kong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Hai-Wen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yang Huang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen 361102, P. R. China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| |
Collapse
|
3
|
Huang CH, Huang CY, Ho HM, Lee CH, Lai PT, Wu SC, Liu SJ, Huang MH. Nanoemulsion adjuvantation strategy of tumor-associated antigen therapy rephrases mucosal and immunotherapeutic signatures following intranasal vaccination. J Immunother Cancer 2020; 8:jitc-2020-001022. [PMID: 33037116 PMCID: PMC7549439 DOI: 10.1136/jitc-2020-001022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Emulsion adjuvants are a potent tool for effective vaccination; however, the size matters on mucosal signatures and the mechanism of action following intranasal vaccination remains unclear. Here, we launch a mechanistic study to address how mucosal membrane interacts with nanoemulsion of a well-defined size at cellular level and to elucidate the impact of size on tumor-associated antigen therapy. METHODS The squalene-based emulsified particles at the submicron/nanoscale could be elaborated by homogenization/extrusion. The mucosal signatures following intranasal delivery in mice were evaluated by combining whole-mouse genome microarray and immunohistochemical analysis. The immunological signatures were tested by assessing their ability to influence the transportation of a model antigen ovalbumin (OVA) across nasal mucosal membranes and drive cellular immunity in vivo. Finally, the cancer immunotherapeutic efficacy is monitored by assessing tumor-associated antigen models consisting of OVA protein and tumor cells expressing OVA epitope. RESULTS Uniform structures with ~200 nm in size induce the emergence of membranous epithelial cells and natural killer cells in nasal mucosal tissues, facilitate the delivery of protein antigen across the nasal mucosal membrane and drive broad-spectrum antigen-specific T-cell immunity in nasal mucosal tissues as well as in the spleen. Further, intranasal vaccination of the nanoemulsion could assist the antigen to generate potent antigen-specific CD8+ cytotoxic T-lymphocyte response. When combined with immunotherapeutic models, such an effective antigen-specific cytotoxic activity allowed the tumor-bearing mice to reach up to 50% survival 40 days after tumor inoculation; moreover, the optimal formulation significantly attenuated lung metastasis. CONCLUSIONS In the absence of any immunostimulator, only 0.1% content of squalene-based nanoemulsion could rephrase the mucosal signatures following intranasal vaccination and induce broad-spectrum antigen-specific cellular immunity, thereby improving the efficacy of tumor-associated antigen therapy against in situ and metastatic tumors. These results provide critical mechanistic insights into the adjuvant activity of nanoemulsion and give directions for the design and optimization of mucosal delivery for vaccine and immunotherapy.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Chiung-Yi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hui-Min Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Hung Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Pang-Ti Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Persson J, Zhang Y, Olafsdottir TA, Thörn K, Cairns TM, Wegmann F, Sattentau QJ, Eisenberg RJ, Cohen GH, Harandi AM. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs. Front Immunol 2016; 7:640. [PMID: 28082979 PMCID: PMC5183738 DOI: 10.3389/fimmu.2016.00640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes.
Collapse
Affiliation(s)
- Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Yuan Zhang
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Thorunn A Olafsdottir
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Karolina Thörn
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Frank Wegmann
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | | | - Roselyn J Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
5
|
|
6
|
El Sahly H. MF59™ as a vaccine adjuvant: a review of safety and immunogenicity. Expert Rev Vaccines 2011; 9:1135-41. [PMID: 20923265 DOI: 10.1586/erv.10.111] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Approximately 70 years passed between the licensing of alum salts as vaccine adjuvants and that of MF59™ MF59, an oil-in-water emulsion, is currently licensed for use in the elderly as an adjuvant in seasonal influenza vaccines. Its mechanism of action is not fully understood, but enhancement of the interaction between the antigen and the dendritic cell seems to be involved. When used with seasonal influenza vaccines, an increase occurs in the hemagglutination inhibition antibody titers against some, but not all, seasonal vaccine influenza strains. The adjuvant effect is more pronounced when MF59 is combined with novel influenza antigens such as H9 and H5. The use of the adjuvant is associated with an increase in the frequency of local and systemic early post-vaccine adverse events (3-7 days), but no increase in adverse events was observed thereafter. Currently, MF59 is under evaluation as an adjuvant with other antigens such as pandemic influenza antigens and cytomegalovirus antigens.
Collapse
Affiliation(s)
- Hana El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
7
|
McNeela EA, Lavelle EC. Recent Advances in Microparticle and Nanoparticle Delivery Vehicles for Mucosal Vaccination. Curr Top Microbiol Immunol 2011; 354:75-99. [DOI: 10.1007/82_2011_140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
|
9
|
Abstract
Mucosal vaccination offers the advantage of blocking pathogens at the portal of entry, improving patient's compliance, facilitating vaccine delivery, and decreasing the risk of unwanted spread of infectious agents via contaminated syringes.Recent advances in vaccinology have created an array of vaccine constructs that can be delivered to mucosal surfaces of the respiratory, gastrointestinal, and genitourinary tracts using intranasal, oral, and vaginal routes. Due to the different characteristics of mucosal immune response, as compared with systemic response, mucosal immunization requires particular methods of antigen presentation. Well-tolerated adjuvants that enhance the efficacy of such vaccines will play an important role in mucosal immunization. Among promising mucosal adjuvants, mutants of cholera toxin and the closely related heat-labile enterotoxin (LT) of enterotoxigenic Escherichia coli present powerful tools, augmenting the local and systemic serum antibody response to co-administered antigens.In this chapter, we describe the formulation and application of vaccines using the genetically modified LTK63 mutant as a prototype of the family of these mucosal adjuvants and the tools to determine its activity in the mouse model.
Collapse
|
10
|
Xiaowen Z, Qinghua Y, Xiaofei Z, Qian Y. Co-administration of inactivated avian influenza virus with CpG or rIL-2 strongly enhances the local immune response after intranasal immunization in chicken. Vaccine 2009; 27:5628-32. [PMID: 19647063 DOI: 10.1016/j.vaccine.2009.07.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 11/15/2022]
Abstract
Intranasal delivery of vaccines is the most effective means of inducing effective immunity in the upper respiratory tract as well as other mucosal lymphoid tissues. To evaluate the effects of the H5N2 inactivated virus with adjuvant, 120 one-day-old chicks were intranasal immunized with the H5N2 inactivated virus respectively mixed with adjuvant CpG or recombinant IL-2 (rIL-2). The local immunocompetent cells on the respiratory tract were detected. The results showed that the number of intraepithelial lymphocytes (IELs), CD3(+) T lymphocytes and mast cells in respiratory tract increased significantly respectively and the number of IgA and IgG secreting cells increased significantly after immunization. However, there was no significant change in the immunocompetent cells of the animals administrated H5N2 inactivated virus alone compared to the control group. Our results indicated that intranasal administration of H5N2 inactivated virus with adjuvant CpG or rIL-2 could be beneficial to the local immune response in the respiratory tract.
Collapse
Affiliation(s)
- Zhang Xiaowen
- Key laboratory of animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
11
|
Single dose intranasal immunization with ISCOMATRIX™ vaccines to elicit antibody-mediated clearance of influenza virus requires delivery to the lower respiratory tract. Vaccine 2009; 27:2475-82. [DOI: 10.1016/j.vaccine.2009.02.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 01/07/2009] [Accepted: 02/18/2009] [Indexed: 11/15/2022]
|
12
|
Csaba N, Garcia-Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv Drug Deliv Rev 2009; 61:140-57. [PMID: 19121350 DOI: 10.1016/j.addr.2008.09.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 09/22/2008] [Indexed: 12/13/2022]
Abstract
The great interest in mucosal vaccine delivery arises from the fact that mucosal surfaces represent the major site of entry for many pathogens. Among other mucosal sites, nasal delivery is especially attractive for immunization, as the nasal epithelium is characterized by relatively high permeability, low enzymatic activity and by the presence of an important number of immunocompetent cells. In addition to these advantageous characteristics, the nasal route could offer simplified and more cost-effective protocols for vaccination with improved patient compliance. The use of nanocarriers provides a suitable way for the nasal delivery of antigenic molecules. Besides improved protection and facilitated transport of the antigen, nanoparticulate delivery systems could also provide more effective antigen recognition by immune cells. These represent key factors in the optimal processing and presentation of the antigen, and therefore in the subsequent development of a suitable immune response. In this sense, the design of optimized vaccine nanocarriers offers a promising way for nasal mucosal vaccination.
Collapse
Affiliation(s)
- Noemi Csaba
- Drug Formulation and Delivery Group, Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
13
|
Dynamics of acute and memory mucosal and systemic immune responses against HIV-1 envelope following immunizations through single or combinations of mucosal and systemic routes. Vaccine 2008; 26:2796-806. [DOI: 10.1016/j.vaccine.2007.11.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/22/2007] [Accepted: 11/29/2007] [Indexed: 11/20/2022]
|
14
|
Abstract
The development of more advanced and effective vaccines is of great interest in modern medicine. These new-generation vaccines, based on recombinant proteins or DNA, are often less reactogenic and immunogenic than traditional vaccines. Thus, there is an urgent need for the development of new and improved adjuvants. Besides many other immunostimulatory components, the bacterial ghost (BG) system is currently under investigation as a potent vaccine delivery system with intrinsic adjuvant properties. BGs are nonliving cell envelope preparations from Gram-negative cells, devoid of cytoplasmic contents, while their cellular morphology and native surface antigenic structures remain preserved. Owing to the particulate nature of BGs and the fact that they contain many well known immune-stimulating compounds, BGs have the potential to enhance immune responses against ghost-delivered target antigens.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Chemistry, Pharmaceutical
- Drug Carriers
- Genetic Vectors
- Gram-Negative Bacteria/genetics
- Gram-Negative Bacteria/immunology
- Humans
- Immunity, Mucosal
- Technology, Pharmaceutical/trends
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Eva M Riedmann
- Department of Chromosome Biology, Max F Perutz Laboratories, University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
15
|
O'Hagan DT, Singh M, Ulmer JB. Microparticle-based technologies for vaccines. Methods 2007; 40:10-9. [PMID: 16997709 DOI: 10.1016/j.ymeth.2006.05.017] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 05/12/2006] [Indexed: 11/19/2022] Open
Abstract
Microparticles have been effectively used for many years as delivery systems for drugs and therapeutic proteins. Their application to the delivery of vaccines is not as extensive, but is growing. Utility has been demonstrated for the delivery of various types of vaccines (e.g., recombinant proteins, plasmid DNA, and peptides) and other vaccine components (e.g., immune potentiators). With respect to delivery of immune potentiators, synergistic effects are often observed whereby much more potent immune responses are induced with a combination than with either component alone. Hence, the prospects for broad application of microparticle-based delivery systems for vaccines are excellent.
Collapse
Affiliation(s)
- Derek T O'Hagan
- Vaccines Research, Novartis Vaccines and Diagnostics, Inc., 4560 Horton Street, Mail Stop 4.3, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
16
|
Abstract
It is well-established that most pathogens that cause infectious diseases enter the host via mucosal membranes of the respiratory, digestive and genital tracts. Some parenterally administered vaccines induce protection against mucosal pathogens. However, there is increasing evidence that mucosal protection is better afforded by mucosal vaccination, particularly for the induction of memory responses. Mucosal vaccines must pass several difficult hurdles before entering the host and inducing an effective and protective immune response. This review deals with present and past efforts in devising effective mucosal vaccines using delivery systems and immunopotentiating adjuvants for protein-based vaccines. The paper will conclude with the authors' opinion on how the field will or should progress in the future and what will be the required components of ideal future mucosal vaccines that can induce immunological memory.
Collapse
Affiliation(s)
- Michael Vajdy
- Chiron Vaccines, 4560 Horton Street, Emeryville, California 94608, USA.
| | | |
Collapse
|
17
|
Abstract
HIV poses a serious health threat in the world. Mucosal transmission of HIV through the genitourinary tract may be the most important route of transmission. Intranasal immunisations induce vaginal and systemic immune responses. Various protein-, DNA- and RNA-based immunopotentiating adjuvants/delivery systems and live bacterial and viral vectors are available for intranasal immunisations, and these systems may differ in their ability to induce a specific type of immune response (e.g., a cytotoxic T cell versus an antibody response). As the protection against HIV may require both cytotoxic T cell and antibodies, a combination of adjuvants/delivery systems for combinations of mucosal and parenteral immunisations may be required in order to develop a protective anti-HIV vaccine.
Collapse
Affiliation(s)
- Michael Vajdy
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA.
| | | |
Collapse
|
18
|
Vajdy M. Current Efforts on Generation of Optimal Immune Responses against HIV through Mucosal Immunisations. Drugs R D 2006; 7:267-88. [PMID: 16922589 DOI: 10.2165/00126839-200607050-00001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Currently, over 40 million HIV-infected individuals are found around the globe, with an additional 15,000 daily infections. There is a general consensus that the most effective way to prevent new infections is to introduce a prophylactic vaccine. It is also generally agreed that both cytotoxic T lymphocytes (CTLs) and neutralising antibodies are important to mediate protection. The neutralising antibodies must be broadly reactive to neutralise multiple primary isolates. There is also increasing agreement that CTLs and neutralising antibodies should be present at mucosal sites of HIV entry, the draining lymph nodes and systemically. The route of immunisation is important when determining the site where protection is desired, i.e. the female genitourinary tract versus the male or female rectum versus systemic tissues, as are the type of HIV-related antigens, immunopotentiating adjuvants and delivery systems. Finally, multiple vaccine delivery systems may be required to be administered through both mucosal and parenteral routes to induce optimal immune responses and protection against HIV infection through rectal, vaginal or systemic routes of transmission. This review discusses current efforts on the generation of optimal immune responses against HIV in the genitourinary and intestinal tracts using mucosal immunisations alone or combinations of mucosal and parenteral immunisations.
Collapse
Affiliation(s)
- Michael Vajdy
- Novartis Vaccines and Diagnostics, Emeryville, California 94608, USA.
| |
Collapse
|
19
|
Crouch CF, Daly J, Henley W, Hannant D, Wilkins J, Francis MJ. The use of a systemic prime/mucosal boost strategy with an equine influenza ISCOM vaccine to induce protective immunity in horses. Vet Immunol Immunopathol 2005; 108:345-55. [PMID: 16098611 DOI: 10.1016/j.vetimm.2005.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 04/21/2005] [Accepted: 06/16/2005] [Indexed: 11/30/2022]
Abstract
In horses, natural infection confers long lasting protective immunity characterised by mucosal IgA and humoral IgGa and IgGb responses. In order to investigate the potential of locally administered vaccine to induce a protective IgA response, responses generated by vaccination with an immunostimulating complex (ISCOM)-based vaccine for equine influenza (EQUIP F) containing A/eq/Newmarket/77 (H7N7), A/eq/Borlänge/91 (H3N8) and A/eq/Kentucky/98 (H3N8) using a systemic prime/mucosal boost strategy were studied. Seven ponies in the vaccine group received EQUIP F vaccine intranasally 6 weeks after an initial intramuscular immunisation. Following intranasal boosting a transient increase in virus-specific IgA was detected in nasal wash secretions. Aerosol challenge with the A/eq/Newmarket/1/93 reference strain 4 weeks after the intranasal booster resulted in clinical signs of infection and viral shedding in seven of seven influenza-naive control animals whereas the seven vaccinated ponies had statistically significantly reduced clinical signs and duration of virus excretion. Furthermore, following this challenge, significantly enhanced levels of virus-specific IgA were detected in the nasal washes from vaccinated ponies compared with the unvaccinated control animals. These data indicate that the intranasal administration of EQUIP F vaccine primes the mucosal system for an enhanced IgA response following exposure to live influenza virus.
Collapse
Affiliation(s)
- C F Crouch
- Schering-Plough Animal Health, Breakspear Road South, Harefield, Uxbridge, Middlesex UB9 6LS, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Gupta S, Janani R, Bin Q, Luciw P, Greer C, Perri S, Legg H, Donnelly J, Barnett S, O'Hagan D, Polo JM, Vajdy M. Characterization of human immunodeficiency virus Gag-specific gamma interferon-expressing cells following protective mucosal immunization with alphavirus replicon particles. J Virol 2005; 79:7135-45. [PMID: 15890953 PMCID: PMC1112144 DOI: 10.1128/jvi.79.11.7135-7145.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A safe, replication-defective viral vector that can induce mucosal and systemic immune responses and confer protection against many infectious pathogens, such as human immunodeficiency virus type 1 (HIV-1), may be an ideal vaccine platform. Accordingly, we have generated and tested alphavirus replicon particles encoding HIV-1 Gag from Sindbis virus (SIN-Gag) and Venezuelan equine encephalitis virus (VEE-Gag), as well as chimeras between the two (VEE/SIN-Gag). Following intramuscular (i.m.), intranasal (i.n.), or intravaginal (IVAG) immunization with VEE/SIN-Gag and an IVAG challenge with vaccinia virus encoding HIV Gag (VV-Gag), a larger number of Gag-specific CD8+ intracellular gamma interferon-expressing cells (iIFNEC) were detected in iliac lymph nodes (ILN), which drain the vaginal/uterine mucosa (VUM), than were observed after immunizations with SIN-Gag. Moreover, a single i.n. or IVAG immunization with VEE/SIN-Gag induced a larger number of cells expressing HIV Gag in ILN, and immunizations with VEE/SIN-Gag through any route induced better protective responses than immunizations with SIN-Gag. In VUM, a larger percentage of iIFNEC expressed alpha4beta7 or alpha(Ebeta)7 integrin than expressed CD62L integrin. However, in spleens (SP), a larger percentage of iIFNEC expressed alpha4beta7 or CD62L than expressed alpha(Ebeta)7. Moreover, a larger percentage of iIFNEC expressed the chemokine receptor CCR5 in VUM and ILN than in SP. These results demonstrate a better induction of cellular and protective responses following immunizations with VEE/SIN-Gag than that following immunizations with SIN-Gag and also indicate a differential expression of homing and chemokine receptors on iIFNEC in mucosal effector and inductive sites versus systemic lymphoid tissues.
Collapse
Affiliation(s)
- Soumi Gupta
- Department of Pathology and Center for Comparative Medicine, University of California, Davis, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Induction of immune responses following oral immunization is frequently dependent upon the co-administration of appropriate adjuvants that can initiate and support the transition from innate to adaptive immunity. The three bacterial products with the greatest potential to function as mucosal adjuvants are the ADP-ribosylating enterotoxins (cholera toxin and the heat-labile enterotoxin of Escherichia coli), synthetic oligodeoxynucleotides containing unmethylated CpG dinucleotides (CpG ODN), and monophosphoryl lipid A (MPL). The mechanism of adjuvanticity of the ADP-ribosylating enterotoxins is the subject of considerable debate. Our own view is that adjuvanticity is an outcome and not an event. It is likely that these molecules exert their adjuvant function by interacting with a variety of cell types, including epithelial cells, dendritic cells, macrophages, and possibly B- and T-lymphocytes. The adjuvant activities of CpG and MPL are due to several different effects they have on innate and adaptive immune responses and both MPL and CpG act through MyD88-dependent and -independent pathways. This presentation will summarize the probable mechanisms of action of these diverse mucosal adjuvants and discuss potential synergy between these molecules for use in conjunction with plant-derived vaccines.
Collapse
Affiliation(s)
- L C Freytag
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
22
|
Abstract
The immunostimulating complex or 'iscom' was first described 20 years ago as an antigen delivery system with powerful immunostimulating activity. Iscoms are cage-like structures, typically 40 nm in diameter, that are comprised of antigen, cholesterol, phospholipid and saponin. ISCOM-based vaccines have been shown to promote both antibody and cellular immune responses in a variety of experimental animal models. This review focuses on the evaluation of ISCOM-based vaccines in animals over the past 10 years, as well as examining the progress that has been achieved in the development of human vaccines based on ISCOM adjuvant technology.
Collapse
Affiliation(s)
- Megan T Sanders
- Department of Microbiology and Immunology, The University of Melbourne, Australia
| | | | | | | |
Collapse
|
23
|
Vajdy M, Singh M, Kazzaz J, Soenawan E, Ugozzoli M, Zhou F, Srivastava I, Bin Q, Barnett S, Donnelly J, Luciw P, Adamson L, Montefiori D, O'Hagan DT. Mucosal and systemic anti-HIV responses in rhesus macaques following combinations of intranasal and parenteral immunizations. AIDS Res Hum Retroviruses 2004; 20:1269-81. [PMID: 15588349 DOI: 10.1089/aid.2004.20.1269] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is an urgent need to develop vaccines that can elicit immunological memory responses against HIV. Using the rhesus macaque model and a combination of intranasal (IN) and parenteral immunizations with DNA or protein adsorbed to microparticles or mixed with mucosal adjuvants we sought to induce anti-HIV memory-type immune responses in both the mucosal and systemic compartments. Prime/boost immunizations were performed through five IN immunizations alone with HIV-env oligomeric gp140 (Ogp140) or HIV-gag-p24 mixed with Escherichia coli heat labile-derived mutant adjuvants or two parenteral immunizations with DNA encoding HIV-env or -gag adsorbed to microparticles followed by three IN immunizations with p24 gag protein and the mutant adjuvants. Both modes of immunizations induced anti-gp140 plasma and vaginal IgG and IgA as well as interferon (IFN)-gamma secreting peripheral blood mononuclear cells (PBMC) after HIV-env and -gag peptide restimulation. After a resting period of 4 months, when the levels of humoral and cellular responses had decreased, intramuscular (IM) booster immunizations with p55-gag protein adsorbed to microparticles and Ogp140 in MF59 oil in water emulsion significantly enhanced anti-HIV plasma and vaginal antibody, as well as peripheral blood IFN-gamma responses in all groups of vaccinated macaques. Importantly, plasma neutralization activity against both homologous and heterologous HIV strains was observed in all groups following the IM booster immunizations with protein. These findings show that IN priming alone or combinations of parenteral and IN immunizations followed by IM booster immunizations hold promise to significantly enhance mucosal and systemic memory-type immune responses against HIV-1 antigens.
Collapse
Affiliation(s)
- Michael Vajdy
- Chiron Corporation, Vaccine Research, Emeryville, California 94608, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Aurelian L. Herpes simplex virus type 2 vaccines: new ground for optimism? CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:437-45. [PMID: 15138167 PMCID: PMC404574 DOI: 10.1128/cdli.11.3.437-445.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of effective prophylactic and therapeutic vaccines against genital herpes has proven problematic. Difficulties are associated with the complexity of the virus life cycle (latency) and our relatively poor understanding of the mechanism of immune control of primary and recurrent disease. The types of effector cells and the mechanisms responsible for their activation and regulation are particularly important. Studies from my and other laboratories have shown that recurrent disease is prevented by virus-specific T helper 1 (Th1) cytokines (viz., gamma interferon) and activated innate immunity. Th2 cytokines (viz., interleukin-10 [IL-10]) and regulatory (suppressor) T cells downregulate this immune profile, thereby allowing unimpeded replication of reactivated virus and recurrent disease. Accordingly, an effective therapeutic vaccine must induce Th1 immunity and be defective in Th2 cytokine production, at least IL-10. These concepts are consistent with the findings of the most recent clinical trials, which indicate that (i) a herpes simplex virus type 2 (HSV-2) glycoprotein D (gD-2) vaccine formulated with a Th1-inducing adjuvant has prophylactic activity in HSV-2- and HSV-1-seronegative females, an activity attributed to the adjuvant function, and (ii) a growth-defective HSV-2 mutant (ICP10DeltaPK), which is deleted in the Th2-polarizing gene ICP10PK, induces Th1 immunity and has therapeutic activity in both genders. The ICP10DeltaPK vaccine prevents recurrent disease in 44% of treated subjects and reduces the frequency and severity of recurrences in the subjects that are not fully protected. Additional studies to evaluate these vaccines are warranted.
Collapse
Affiliation(s)
- L Aurelian
- Virology and Immunology Laboratories, Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
25
|
McKenzie BS, Brady JL, Lew AM. Mucosal immunity: overcoming the barrier for induction of proximal responses. Immunol Res 2004; 30:35-71. [PMID: 15258310 DOI: 10.1385/ir:30:1:035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Vaccination represents one of the most efficacious and cost-effective medical interventions. It is the only medical intervention proven to eliminate disease at a global level. Many of the pathogens against which we most require adequate vaccines infect via the highly exposed mucosal surfaces. For this reason the mucosa is often considered the first, and sometimes only, line of defense. Therefore, responses that protect the local mucosa are vital. In this review, we first explore the immunological mechanisms that protect the mucosa. We then review the literature of mucosal vaccines within the principles of antigenic composition, dose, and danger, highlighting the need and niche for the next generation of mucosal vaccines.
Collapse
Affiliation(s)
- Brent S McKenzie
- The Walter and Eliza Hall Institute of Medical Research and Co-operative Research Centre for Vaccine Technology, 1G Royal Parade, Parkville, 3050, Australia
| | | | | |
Collapse
|
26
|
Vajdy M, Singh M, Ugozzoli M, Briones M, Soenawan E, Cuadra L, Kazzaz J, Ruggiero P, Peppoloni S, Norelli F, Del Giudice G, O'Hagan D. Enhanced mucosal and systemic immune responses to Helicobacter pylori antigens through mucosal priming followed by systemic boosting immunizations. Immunology 2003; 110:86-94. [PMID: 12941145 PMCID: PMC1783019 DOI: 10.1046/j.1365-2567.2003.01711.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is estimated that Helicobacter pylori infects the stomachs of over 50% of the world's population and if not treated may cause chronic gastritis, peptic ulcer disease, gastric adenocarcinoma and gastric B-cell lymphoma. The aim of this study was to enhance the mucosal and systemic immune responses against the H. pylori antigens cytotoxin-associated gene A (CagA) and neutrophil-activating protein (NAP), through combinations of mucosal and systemic immunizations in female BALB/c mice. We found that oral or intranasal (i.n.) followed by i.m. immunizations induced significantly higher serum titres against NAP and CagA compared to i.n. alone, oral alone, i.m. alone, i.m. followed by i.n. or i.m. followed by oral immunizations. However, only oral followed by i.m. immunizations induced anti-NAP antibody-secreting cells in the stomach. Moreover, mucosal immunizations alone or in combination with i.m., but not i.m. immunizations alone, induced mucosal immunoglobulin A (IgA) responses in faeces. Any single route or combination of immunization routes with NAP and CagA preferentially induced antigen-specific splenic interleukin-4-secreting cells and far fewer interferon-gamma-secreting cells in the spleen. Moreover, i.n. immunizations alone or in combination with i.m. immunizations induced predominantly serum IgG1 and far less serum IgG2a. Importantly, we found that while both i.n. and i.m. recall immunizations induced similar levels of serum antibody responses, mucosal IgA responses in faeces were only achieved through i.n. recall immunization. Collectively, our data show that mucosal followed by systemic immunization significantly enhanced local and systemic immune responses and that i.n. recall immunization is required to induce both mucosal and systemic memory type responses.
Collapse
Affiliation(s)
- Michael Vajdy
- Immunology and Infectious DiseasesEmeryville, CA, USA
| | | | | | | | | | - Lina Cuadra
- Immunology and Infectious DiseasesEmeryville, CA, USA
| | - Jina Kazzaz
- Immunology and Infectious DiseasesEmeryville, CA, USA
| | | | | | | | | | - Derek O'Hagan
- Immunology and Infectious DiseasesEmeryville, CA, USA
| |
Collapse
|
27
|
de Lorimier AJ, Byrd W, Hall ER, Vaughan WM, Tang D, Roberts ZJ, McQueen CE, Cassels FJ. Murine antibody response to intranasally administered enterotoxigenic Escherichia coli colonization factor CS6. Vaccine 2003; 21:2548-55. [PMID: 12744890 DOI: 10.1016/s0264-410x(03)00101-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of bacterial diarrhea worldwide and is an important cause of infant morbidity and mortality in developing nations. ETEC colonization factors (CF) are virulence determinants that appear to be protective antigens in humans and are the major target of vaccine efforts. One of the most prevalent CF, CS6, is expressed by about 30% of ETEC worldwide. This study was designed to compare the immunogenicity between encapsulated CS6 (CS6-PLG) and unencapsulated CS6. Recombinant CS6 was purified and encapsulated in biodegradable poly(DL-lactide-co-glycolide) (PLG) microspheres using current Good Manufacturing Practices (cGMP). CS6-PLG and CS6 were administered intranasally (IN) to BALB/c mice in three vaccinations 4 weeks apart. Enzyme linked immunosorbent assay (ELISA) was used to measure the anti-CS6 response in serum and mucosal secretions following each of the three inoculations. Mice vaccinated with two or three doses of CS6-PLG demonstrated a significantly greater rise in serum anti-CS6 IgG and mucosal IgA titer values than those immunized with two or three doses of CS6 alone. Three doses of CS6-PLG led to anti-CS6 serum IgG and mucosal IgA titer values 14-fold and 4.4-fold greater, respectively, than three doses of CS6 (P<0.02). IN administered CS6 to mice is safe and highly immunogenic either alone or when encapsulated in microspheres. PLG microsphere encapsulation of CS6 significantly augments the antibody response to that antigen when administered to a mucosal surface.
Collapse
Affiliation(s)
- Arthur J de Lorimier
- Division of Pediatric Gastroenterology and Nutrition, Walter Reed Army Medical Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Balmelli C, Demotz S, Acha-Orbea H, De Grandi P, Nardelli-Haefliger D. Trachea, lung, and tracheobronchial lymph nodes are the major sites where antigen-presenting cells are detected after nasal vaccination of mice with human papillomavirus type 16 virus-like particles. J Virol 2002; 76:12596-602. [PMID: 12438585 PMCID: PMC136716 DOI: 10.1128/jvi.76.24.12596-12602.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccination by the nasal route has been successfully used for the induction of immune responses. Either the nasal-associated lymphoid tissue (NALT), the bronchus-associated lymphoid tissue, or lung dendritic cells have been mainly involved. Following nasal vaccination of mice with human papillomavirus type 16 (HPV16) virus-like-particles (VLPs), we have previously shown that interaction of the antigen with the lower respiratory tract was necessary to induce high titers of neutralizing antibodies in genital secretions. However, following a parenteral priming, nasal vaccination with HPV16 VLPs did not require interaction with the lung to induce a mucosal immune response. To evaluate the contribution of the upper and lower respiratory tissues and associated lymph nodes (LN) in the induction of humoral responses against HPV16 VLPs after nasal vaccination, we localized the immune inductive sites and identified the antigen-presenting cells involved using a specific CD4(+) T-cell hybridoma. Our results show that the trachea, the lung, and the tracheobronchial LN were the major sites responsible for the induction of the immune response against HPV16 VLP, while the NALT only played a minor role. Altogether, our data suggest that vaccination strategies aiming to induce efficient immune responses against HPV16 VLP in the female genital tract should target the lower respiratory tract.
Collapse
Affiliation(s)
- Carole Balmelli
- Department of Gynecology, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Simms JR, Jennings R, Richardson VJ, Heath AW. Large-scale comparison of experimental adjuvants with herpes simplex virus vaccine reveals a correlation of protection with IgG2a and IgG2b responses. J Med Virol 2002; 68:82-91. [PMID: 12210434 DOI: 10.1002/jmv.10173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The potential of a large number of commercial and experimental adjuvant preparations to enhance the immunogenicity of an HSV-1 glycoprotein subunit vaccine was investigated. Evaluation was based on toxicity, HSV-specific antibody production, and protection against lethal challenge. All adjuvants tested increased the titer of antigen specific Ig levels when compared to subunit vaccine alone. However, following challenge, a broad range of protective responses were noted. Statistically significant correlations were observed between IgG antibody levels post immunization and the observed protection and these were particularly associated with antibodies of the IgG2a and IgG2b subclasses. The results emphasize the requirement of adjuvants for vaccine formulation when using subunit preparations, and demonstrate that the magnitude and efficacy of the induced immune response varies greatly with the choice of adjuvant.
Collapse
Affiliation(s)
- John R Simms
- Division of Genomic Medicine, Infection and Immunity, University of Sheffield Medical School, Sheffield, England, United Kingdom.
| | | | | | | |
Collapse
|
30
|
Abstract
New generation vaccines, particularly those based on recombinant proteins and DNA, are likely to be less reactogenic than traditional vaccines but are also less immunogenic. Therefore, there is an urgent need for the development of new and improved vaccine adjuvants. Adjuvants can be broadly separated into two classes based on their principal mechanisms of action: vaccine delivery systems and immunostimulatory adjuvants. Vaccine-delivery systems generally are particulate (e.g., emulsions, microparticles, iscoms, and liposomes) and function mainly to target associated antigens into antigen-resenting cells. In contrast, immunostimulatory adjuvants are derived predominantly from pathogens and often represent pathogen-ssociated molecular patterns (e.g., lipopolysaccaride, monophosphoryl lipid A, CpG DNA). which activate cells of the innate immune system. Recent progress in innate immunity is beginning to yield insight into the initiation of immune responses and the ways in which immunostimulatory adjuvants may enhance this process. The discovery of more potent adjuvants may allow the development of prophylactic and therapeutic vaccines against cancers and chronic infectious diseases. In addition, new adjuvants may also allow vaccines to be delivered mucosally.
Collapse
Affiliation(s)
- Manmohan Singh
- Immunology and Infectiuos Disease, Chiron Corporation, Emeryville, California 94608, USA.
| | | |
Collapse
|
31
|
O'Hagan DT, MacKichan ML, Singh M. Recent developments in adjuvants for vaccines against infectious diseases. BIOMOLECULAR ENGINEERING 2001; 18:69-85. [PMID: 11566599 DOI: 10.1016/s1389-0344(01)00101-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
New generation vaccines, particularly those based on recombinant proteins and DNA, are likely to be less reactogenic than traditional vaccines, but are also less immunogenic. Therefore, there is an urgent need for the development of new and improved vaccine adjuvants. Adjuvants can be broadly separated into two classes, based on their principal mechanisms of action; vaccine delivery systems and 'immunostimulatory adjuvants'. Vaccine delivery systems are generally particulate e.g. emulsions, microparticles, iscoms and liposomes, and mainly function to target associated antigens into antigen presenting cells (APC). In contrast, immunostimulatory adjuvants are predominantly derived from pathogens and often represent pathogen associated molecular patterns (PAMP) e.g. LPS, MPL, CpG DNA, which activate cells of the innate immune system. Once activated, cells of innate immunity drive and focus the acquired immune response. In some studies, delivery systems and immunostimulatory agents have been combined to prepare adjuvant delivery systems, which are designed for more effective delivery of the immunostimulatory adjuvant into APC. Recent progress in innate immunity is beginning to yield insight into the initiation of immune responses and the ways in which immunostimulatory adjuvants may enhance this process. However, a rational approach to the development of new and more effective vaccine adjuvants will require much further work to better define the mechanisms of action of existing adjuvants. The discovery of more potent adjuvants may allow the development of vaccines against infectious agents such as HIV which do not naturally elicit protective immunity. New adjuvants may also allow vaccines to be delivered mucosally.
Collapse
Affiliation(s)
- D T O'Hagan
- Chiron Corporation, Immunology and Infectious Diseases, 4560 Horton Street, Emeryville, CA 94608, USA. derek_o'
| | | | | |
Collapse
|
32
|
Gould DS, Ploegh HL, Schust DJ. Murine female reproductive tract intraepithelial lymphocytes display selection characteristics distinct from both peripheral and other mucosal T cells. J Reprod Immunol 2001; 52:85-99. [PMID: 11600180 DOI: 10.1016/s0165-0378(01)00110-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite immense effort, the development of vaccines effective at mucosal sites has proceeded at a faltering pace. Efforts concentrating on humoral immunity but neglecting cellular immunity may be misdirected by ignoring many viral mucosal pathogens. Improved understanding of the development and maintenance of lymphocytes populating the reproductive tract (rtIELs) may inform advances in vaccination strategies for sexually transmitted diseases. Recent studies highlight tissue-specific differences in the development of mucosal immunity and suggest that the local milieu may play a role in selection, maintenance and function of resident lymphocytes. Here, we describe MHC class I and thymus dependence of subpopulations of rtIELs. TCRalphabeta+ CD8alphabeta+ T cells in the periphery, intestine, and female reproductive tract are all developmentally dependent on classical class I MHC and the thymus. TCRalphabeta+ CD8alphaalpha+ are absent from the periphery and the rtIELs, but are present and classical MHC class I-independent, in the intestine. In contrast to intestinal TCRgammadelta+ cells, TCRgammadelta+ rtIELs are CD8 negative and thymus dependent. In contrast to peripheral TCRgammadelta+ cells, murine TCRgammadelta+ rtIELs express not a diverse array of Vdelta genes, but rather, a canonical Vdelta1. In summary, lymphocytes isolated from the murine female reproductive tract have characteristics distinct from both peripheral T cells and those found at other mucosal sites. Therefore, for the purpose of vaccination strategies, the female reproductive tract should be regarded neither as peripheral nor mucosal, but rather as a tissue with distinctive immunological characteristics.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Epithelial Cells/classification
- Epithelial Cells/cytology
- Epithelial Cells/immunology
- Female
- Genitalia, Female/cytology
- Genitalia, Female/immunology
- Histocompatibility Antigens Class I/analysis
- Intestinal Mucosa/cytology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- T-Lymphocytes/classification
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- D S Gould
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
33
|
Abstract
Of the several routes available for mucosal immunization, the nasal route is particularly attractive because of ease of administration and the induction of potent immune responses, particularly in the respiratory and genitourinary tracts. However, adjuvants and delivery systems are required to enhance immune responses following nasal immunization. This review focuses on the use of microparticles as adjuvants and delivery systems for protein and DNA vaccines for nasal immunization. In particular we discuss our own work on poly(lactide co-glycolide) (PLG) microparticles with entrapped protein or adsorbed DNA as a vaccine delivery system. The possible mechanisms involved in the enhancement of immune responses through the use of DNA adsorbed onto PLG microparticles are also discussed.
Collapse
Affiliation(s)
- M Vajdy
- Chiron Vaccines, 4560 Horton Street, Emeryville, CA 94608, USA.
| | | |
Collapse
|
34
|
Abstract
The nasal route for vaccination offers some important opportunities, especially for the prophylaxis of respiratory diseases. Vaccination via the respiratory tract is reviewed and the deposition and clearance of antigens in the deep lung and nose are described and contrasted. Lymphoid structures in the respiratory tract differ according to species; the rat and mouse have a well developed nose-associated lymphoid tissue, while in man, the structure known as Waldeyer's ring (that includes the tonsils), is important as an induction site. The immune response following intranasal administration can provide protection at the administration site and at various effector sites as part of the common mucosal immune system. A number of formulation considerations are important when designing novel systems for nasal administration as are physiological factors such as mucociliary clearance.
Collapse
Affiliation(s)
- S S Davis
- Institute of Pharmaceutical Sciences, University of Nottingham, Boots Science Building, Science Road, University Park, NG7 2RD, Nottingham, UK.
| |
Collapse
|
35
|
Abstract
Entrapment of antigens in biodegradable particles for mucosal immunisation has given successful outcomes in animals, but not as yet in man. Formulations using genuinely stable biocompatible nanoparticles with co-entrapped mucosal adjuvants and/or with surface-conjugated human M-cell-targeting ligands may lead to better uptake of intact antigen by Peyer's patch M cells and delivery to antigen-presenting cells.
Collapse
Affiliation(s)
- D J Brayden
- Elan Biotechnology Research, Biotechnology Building, Trinity College, 2, Dublin, Ireland.
| | | |
Collapse
|
36
|
Sjölander S, Drane D, Davis R, Beezum L, Pearse M, Cox J. Intranasal immunisation with influenza-ISCOM induces strong mucosal as well as systemic antibody and cytotoxic T-lymphocyte responses. Vaccine 2001; 19:4072-80. [PMID: 11427284 DOI: 10.1016/s0264-410x(01)00110-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intranasal administration of vaccines is preferred for induction of mucosal immune responses. In this study, mice were immunised intranasally and subcutaneously with influenza-immuno stimulating complexes (influenza-ISCOM). The intranasal dose was 15-times the subcutaneous dose. All mice dosed with influenza-ISCOMs survived challenge with live virus and comparable serum antibody and splenic cytotoxic T-lymphocyte responses were detected in both groups. Induction of mucosal IgA was significantly higher with intranasal immunisation and was comparable to responses induced with the heat labile enterotoxin of Escherichia coli as adjuvant. These findings demonstrate that intranasal administration of high dose influenza-ISCOM results in potent systemic and mucosal immune responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Bacterial Toxins/administration & dosage
- Enterotoxins/administration & dosage
- Escherichia coli Proteins
- Humans
- ISCOMs/administration & dosage
- Immunity, Mucosal
- Immunoglobulin A, Secretory/biosynthesis
- Influenza Vaccines/administration & dosage
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- S Sjölander
- CSL Limited, Immunology Research & Development, Parkville, Vic. 3052, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Chiesa MD, Martensen PM, Simmons C, Porakishvili N, Justesen J, Dougan G, Roitt IM, Delves PJ, Lund T. Refocusing of B-cell responses following a single amino acid substitution in an antigen. Immunology 2001; 103:172-8. [PMID: 11412304 PMCID: PMC1783232 DOI: 10.1046/j.1365-2567.2001.01242.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intranasal immunization of BALB/c strain mice was carried out using baculovirus-derived human chorionic gonadotrophin (hCG) beta-chain, together with Escherichia coli heat-labile enterotoxin. Gonadotrophin-reactive immunoglobulin A (IgA) was induced in a remote mucosal site, the lung, in addition to a systemic IgG response. The extensive sequence homology with luteinizing hormone (LH) results in the production of LH cross-reactive antibodies when holo-hCG is used as an immunogen. In contrast to wild-type hCGbeta, a mutated hCGbeta-chain containing an arginine to glutamic acid substitution at position 68 did not induce the production of antibodies which cross-react with LH. Furthermore, the epitopes utilized in the B-cell response to the mutated hCGbeta shifted away from the immunodominant region of the parent wild-type molecule towards epitopes within the normally weakly immunogenic C terminus. This shift in epitope usage was also seen following intramuscular immunization of rabbits. Thus, a single amino acid change, which does not disrupt the overall structure of the molecule, refocuses the immune response away from a disadvantageous cross-reactive epitope region and towards a normally weakly immunogenic but antigen-unique area. Similar mutational strategies for epitope-refocusing may be applicable to other vaccine candidate molecules.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antigens/chemistry
- Antigens/immunology
- B-Lymphocytes/immunology
- Baculoviridae/genetics
- Chorionic Gonadotropin, beta Subunit, Human/chemistry
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Chorionic Gonadotropin, beta Subunit, Human/immunology
- Cross Reactions
- Epitopes, B-Lymphocyte/immunology
- Female
- Immunity, Mucosal
- Immunization/methods
- Immunoglobulin A, Secretory/biosynthesis
- Immunoglobulin G/biosynthesis
- Lung/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids
- Point Mutation
- Rabbits
- Recombinant Proteins/immunology
Collapse
Affiliation(s)
- M D Chiesa
- Department of Immunology and Molecular Pathology, The Windeyer Institute for Medical Sciences, University College London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Barackman JD, Ott G, Pine S, O'Hagan DT. Oral administration of influenza vaccine in combination with the adjuvants LT-K63 and LT-R72 induces potent immune responses comparable to or stronger than traditional intramuscular immunization. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:652-7. [PMID: 11329476 PMCID: PMC96119 DOI: 10.1128/cdli.8.3.652-657.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2000] [Accepted: 03/19/2001] [Indexed: 11/20/2022]
Abstract
Mucosal immunization strategies are actively being pursued in the hopes of improving the efficacy of vaccines against the influenza virus. Our group investigated the oral immunization of mice via intragastric gavage with influenza hemagglutinin (HA) combined with mutant Escherichia coli heat-labile enterotoxins K63 (LT-K63) and R72 (LT-R72). These oral immunizations resulted in potent serum antibody and HA inhibition titers, in some cases stronger than those obtained with traditional intramuscular administration, in addition to HA-specific immunoglobulin A in the saliva and nasal secretions. This study demonstrates that it may be possible to develop effective oral influenza vaccines.
Collapse
Affiliation(s)
- J D Barackman
- Chiron Corporation, Emeryville, California 94608, USA.
| | | | | | | |
Collapse
|
39
|
Pizza M, Giuliani MM, Fontana MR, Monaci E, Douce G, Dougan G, Mills KH, Rappuoli R, Del Giudice G. Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 2001; 19:2534-41. [PMID: 11257389 DOI: 10.1016/s0264-410x(00)00553-3] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most vaccines are still delivered by injection. Mucosal vaccination would increase compliance and decrease the risk of spread of infectious diseases due to contaminated syringes. However, most vaccines are unable to induce immune responses when administered mucosally, and require the use of strong adjuvant on effective delivery systems. Cholera toxin (CT) and Escherichia coli enterotoxin (LT) are powerful mucosal adjuvants when co-administered with soluble antigens. However, their use in humans is hampered by their extremely high toxicity. During the past few years, site-directed mutagenesis has permitted the generation of LT and CT mutants fully non toxic or with dramatically reduced toxicity, which still retain their strong adjuvanticity at the mucosal level. Among these mutants, are LTK63 (serine-to-lysine substitution at position 63 in the A subunit) and LTR72 (alanine-to-arginine substitution at position 72 in the A subunit). The first is fully non toxic, whereas the latter retains some residual enzymatic activity. Both of them are extremely active as mucosal adjuvants, being able to induce very high titers of antibodies specific for the antigen with which they are co-administered. Both mutants have now been tested as mucosal adjuvants in different animal species using a wide variety of antigens. Interestingly, mucosal delivery (nasal or oral) of antigens together with LTK63 or LTR72 mutants also conferred protection against challenge in appropriate animal models (e.g. tetanus, Helicobacter pylori, pertussis, pneumococci, influenza, etc). In conclusion, these LTK63 and LTR72 mutants are safe adjuvants to enhance the immunogenicity of vaccines at the mucosal level, and will be tested soon in humans.
Collapse
Affiliation(s)
- M Pizza
- IRIS, Chiron S.p.A., Via Fiorentina 1, 53100, Siena, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wachsman M, Kulka M, Smith CC, Aurelian L. A growth and latency compromised herpes simplex virus type 2 mutant (ICP10DeltaPK) has prophylactic and therapeutic protective activity in guinea pigs. Vaccine 2001; 19:1879-90. [PMID: 11228357 DOI: 10.1016/s0264-410x(00)00446-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A growth compromised herpes simplex virus type 2 (HSV-2) mutant which is deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP10DeltaPK) protects from fatal HSV-2 challenge in the mouse model (Aurelian L, Kokuba H, Smith CC. Vaccine potential of a Herpes Simplex Virus type 2 mutant deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP10). Vaccine 1999;17:1951-1963). Here we report the results of our studies with ICP10DeltaPK in the guinea pig model of recurrent HSV-2 disease. ICP10DeltaPK was also compromised for growth and disease causation in this model. It was not isolated from latently infected ganglia by explant co-cultivation. The proportions of latently infected ganglia were significantly lower for ICP10DeltaPK than HSV-2 [3/25 (12%) and 7/10 (70%), respectively]. Similar results were obtained for the levels of viral DNA (8 x 10(3) and 2 x 10(5) molecules/ganglion for ICP10DeltaPK and HSV-2, respectively]. ICP10DeltaPK immunization caused a significant (P< or = 0.001) decrease in the proportion of animals with primary [1/14 (6%) and 16/16 (100%) for ICP10DeltaPK and PBS, respectively) and recurrent [1/14 (6%) and 11/14 (79%) for ICP10DeltaPK and PBS, respectively) HSV-2 skin lesions. It also protected from genital HSV-2 disease [1/10 and 10/10 for ICP10DeltaPK and PBS, respectively] and decreased the severity of the lesions in both models. Quantitative PCR (Q-PCR) with primers that distinguish between HSV-2 and ICP10DeltaPK indicated that immunization reduced the proportion of ganglia positive for HSV-2 DNA [8/25 (32%) and 7/10 (70%) for ICP10DeltaPK and PBS, respectively) and its levels [3 x 10(3) and 2 x 10(5) molecules/ganglion for ICP10DeltaPK and PBS, respectively]. The proportion of HSV-2 infected animals with recurrent disease was also significantly (P < or = 0.001) decreased by immunization with ICP10DeltaPK [1/15 (7%) and 11/14 (79%) with recurrent disease for ICP10DeltaPK and PBS, respectively], suggesting that ICP10DeltaPK has prophylactic and therapeutic activity in the guinea pig.
Collapse
|
41
|
Singh M, Briones M, O'Hagan DT. A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. J Control Release 2001; 70:267-76. [PMID: 11182197 DOI: 10.1016/s0168-3659(00)00330-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of the current studies was to evaluate a bioadhesive delivery system for intranasal administration of a flu vaccine, in combination with a mucosal adjuvant (LTK63). A commercially available influenza vaccine, containing hemagglutinin (HA) from influenza/A Johannesberg H1N1 1996, and LTK63 or LTR72 adjuvants, which are genetically detoxified derivatives of heat labile enterotoxin from Escherichia coli, were administered IN in a bioadhesive delivery system, which comprised esterified hyaluronic acid (HYAFF) microspheres, to mice, rabbits and micro-pigs at days 0 and 28. For comparison, additional groups of animals were immunized intranasally with the HA vaccine alone, with soluble HA+LTK63, or IM with HA. In all three species, the groups of animals receiving IN immunization with the bioadhesive microsphere formulations, including LT mutants, showed significantly enhanced serum IgG responses (P<0.05) and higher hemagglutination inhibition (HI) titers in comparison to the other groups. In addition, the bioadhesive formulation also showed a significantly enhanced nasal wash IgA response (P<0.05). Most encouragingly, in pigs, the bioadhesive microsphere vaccine delivery system induced serum immune responses following IN immunization, which were significantly more potent than those induced by traditional IM immunization at the same vaccine dose (P<0.05).
Collapse
Affiliation(s)
- M Singh
- Chiron Technologies, Chiron Corporation, 4560 Horton Street, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
42
|
Mohamedi SA, Heath AW, Jennings R. A comparison of oral and parenteral routes for therapeutic vaccination with HSV-2 ISCOMs in mice; cytokine profiles, antibody responses and protection. Antiviral Res 2001; 49:83-99. [PMID: 11248361 DOI: 10.1016/s0166-3542(00)00142-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is likely that recurrent infections with HSV-2 (or HSV-1) are influenced by local levels of immunity at mucosal surfaces, when virus reactivated from the latent state is infecting mucosal epithelial cells. Increasing the levels of cellular and humoral immunity through immunisation and maintaining such increased levels, may reduce establishment and spread of reactivated virus at the local site, thereby ameliorating recurrent disease symptoms. The use of HSV-2 antigens incorporated into immunostimulating complexes (ISCOMs) for immunisation of mice previously infected with HSV-2 was investigated in the present study. Prophylactic administration of HSV-2 ISCOM vaccine to mice elicits local antibody detectable in nasal washings, serum antibody and the presence of cytokines IL-2, IFN-gamma and IL-4 in supernatants from spleen cell cultures stimulated in vitro with HSV-2 antigens. Use of the same vaccine in mice infected previously with HSV-2, results in increased levels of total and subclass serum ELISA antibody and also increased levels of serum neutralising antibody. Treatment of HSV-2 infected mice with the HSV-2 ISCOM vaccine also induces higher levels of the cytokines IL-2, IFN-gamma and IL-4, in in vitro stimulated spleen cell cultures. Challenge with a lethal dose of HSV-1 showed that mice previously infected with HSV-2 and subsequently given two doses of HSV-2 ISCOMs vaccine were protected.
Collapse
Affiliation(s)
- S A Mohamedi
- Sheffield Institute for Vaccine Studies, Division of Molecular and Genetic Medicine, Floor F, University of Sheffield Medical School, Beech Hill Road, S10 2RX, Sheffield, UK
| | | | | |
Collapse
|
43
|
Lavelle EC, Grant G, Pusztai A, Pfüller U, O'Hagan DT. The identification of plant lectins with mucosal adjuvant activity. Immunology 2001; 102:77-86. [PMID: 11168640 PMCID: PMC1783150 DOI: 10.1046/j.1365-2567.2001.01157.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To date, the most potent mucosal vaccine adjuvants to be identified have been bacterial toxins. The present data demonstrate that the type 2 ribosome-inactivating protein (type 2 RIP), mistletoe lectin I (ML-I) is a strong mucosal adjuvant of plant origin. A number of plant lectins were investigated as intranasal (i.n.) coadjuvants for a bystander protein, ovalbumin (OVA). As a positive control, a potent mucosal adjuvant, cholera toxin (CT), was used. Co-administration of ML-I or CT with OVA stimulated high titres of OVA-specific serum immunoglobulin G (IgG) in addition to OVA-specific IgA in mucosal secretions. CT and ML-I were also strongly immunogenic, inducing high titres of specific serum IgG and specific IgA at mucosal sites. None of the other plant lectins investigated significantly boosted the response to co-administered OVA. Immunization with phytohaemagglutinin (PHA) plus OVA elicited a lectin-specific response but did not stimulate an enhanced response to OVA compared with the antigen alone. Intranasal delivery of tomato lectin (LEA) elicited a strong lectin-specific systemic and mucosal antibody response but only weakly potentiated the response to co-delivered OVA. In contrast, administration of wheatgerm agglutinin (WGA) or Ulex europaeus lectin 1 (UEA-I) with OVA stimulated a serum IgG response to OVA while the lectin-specific responses (particularly for WGA) were relatively low. Thus, there was not a direct correlation between immunogenicity and adjuvanticity although the strongest adjuvants (CT, ML-I) were also highly immunogenic.
Collapse
Affiliation(s)
- E C Lavelle
- Institute for Immunology, Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | | | | | | |
Collapse
|
44
|
Pizza M, Giuliani MM, Fontana MR, Douce G, Dougan G, Rappuoli R. LTK63 and LTR72, two mucosal adjuvants ready for clinical trials. Int J Med Microbiol 2000; 290:455-61. [PMID: 11111926 DOI: 10.1016/s1438-4221(00)80064-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- M Pizza
- IRIS, Chiron SpA, Siena, Italy. pizza@
| | | | | | | | | | | |
Collapse
|
45
|
Childers NK, Miller KL, Tong G, Llarena JC, Greenway T, Ulrich JT, Michalek SM. Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect Immun 2000; 68:5509-16. [PMID: 10992447 PMCID: PMC101499 DOI: 10.1128/iai.68.10.5509-5516.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effectiveness of monophosphoryl lipid A (MPL) as a mucosal adjuvant was investigated following oral or intranasal (i.n.) administration of an aqueous adjuvant formulation of MPL (MPL-AF) added to soluble antigen or liposomal antigen or incorporated into liposomal antigen membranes. Groups of BALB/c female mice were immunized with 50 to 100 microg of free or liposomal Streptococcus mutans crude glucosyltransferase (C-GTF) with or without MPL-AF added to the vaccine or incorporated into the liposomal membrane. Plasma, saliva, vaginal wash, and fecal extract samples were collected biweekly following immunization and assessed for antigen-specific antibody activity by enzyme-linked immunosorbent assay (ELISA). Mice immunized by the i.n. route had higher levels of salivary, plasma, and vaginal immunoglobulin A (IgA) anti-C-GTF responses and higher levels of plasma IgG anti-C-GTF than the orally immunized groups. A second administration of the vaccine 14 weeks after the initial immunization resulted in an anamnestic response to C-GTF resulting in 10- and 100-fold increases in saliva and plasma IgA and plasma IgG, respectively (in the i.n. immunized groups). Mice receiving a second i.n. immunization with liposomal antigen and MPL-AF had higher salivary IgA anti-C-GTF responses than mice immunized with antigen plus MPL-AF or liposomal antigen (P < 0.05). Plasma IgG anti-C-GTF activity was highest in mice immunized by the i.n. route with antigen formulations containing MPL-AF (P < 0.05). These results demonstrate the effectiveness of MPL-AF as an adjuvant for potentiating mucosal and systemic immune responses to liposomal C-GTF following i.n. immunization.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Intranasal
- Administration, Oral
- Animals
- Antibodies, Bacterial/analysis
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/blood
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/immunology
- Female
- Glucosyltransferases/immunology
- Glucosyltransferases/metabolism
- Immunity, Mucosal
- Immunization
- Immunoglobulin A/analysis
- Immunoglobulin A/blood
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin G/blood
- Lipid A/administration & dosage
- Lipid A/analogs & derivatives
- Lipid A/immunology
- Liposomes/immunology
- Mice
- Mice, Inbred BALB C
- Saliva/immunology
- Solubility
- Streptococcus mutans/enzymology
- Streptococcus mutans/immunology
- Vagina/immunology
Collapse
Affiliation(s)
- N K Childers
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294-0007, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Proper stimulation of the mucosal immune system is critical for the effective protection of mucosal surfaces against colonization and invasion of infectious agents. This requires administration of vaccine antigens directly to various mucosal sites. Due to the low absorption efficiency of mucosally delivered vaccines, however, almost all of the currently marketed vaccines are administered parentally. In addition, sub-optimal immune responses are frequently induced by mucosal immunization and the use of mucosal adjuvants is commonly required. As a result, development of successful mucosal vaccines depends largely on the improvement of mucosal antigen delivery and on the discovery of new and effective mucosal adjuvants. In this review, recent advances in both areas are briefly discussed.
Collapse
Affiliation(s)
- H Chen
- AstraZeneca R&D Boston, 128 Sidney Street, 02139, Cambridge, MA 02139, USA.
| |
Collapse
|
47
|
Velge-Roussel F, Marcelo P, Lepage AC, Buzoni-Gatel D, Bout DT. Intranasal immunization with Toxoplasma gondii SAG1 induces protective cells into both NALT and GALT compartments. Infect Immun 2000; 68:969-72. [PMID: 10639474 PMCID: PMC97233 DOI: 10.1128/iai.68.2.969-972.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intranasal (i.n.) immunization with the SAG1 protein of Toxoplasma gondii plus cholera toxin (CT) provides protective immunity. The aim of this study was to analyze the cellular activation of several mucosal compartments after i.n. immunization. Cervical and mesenteric lymph node (CLN and MLN, respectively) lymphoid cell and intraepithelial lymphocyte (IEL) passive transfer experiments were performed with CBA/J mice immunized i.n. with SAG1 plus CT. CLN and MLN cells and IEL isolated 42 days after immunization conferred protective immunity on naive recipient mice challenged with strain 76K T. gondii, as assessed by the reduction in the number of brain cysts. There were proliferative specific responses in nose-associated lymphoid tissue and the CLN and MLN cells from mice immunized with SAG1 plus CT, but no cytokine was detectable. Thus, protective immunity is associated with a specific cellular response in the nasal and mesenteric compartments after i.n. immunization.
Collapse
Affiliation(s)
- F Velge-Roussel
- Equipe Associée INRA d'Immunologie Parasitaire-EA 2637, UFR des Sciences Pharmaceutiques, 37200 Tours, France.
| | | | | | | | | |
Collapse
|
48
|
Abstract
The mucosal immunogenicity of a number of plant lectins with different sugar specificities was investigated in mice. Following intranasal (i.n.) or oral administration, the systemic and mucosal antibody responses elicited were compared with those induced by a potent mucosal immunogen (cholera toxin; CT) and a poorly immunogenic protein (ovalbumin; OVA). After three oral or i.n. doses of CT, high levels of specific serum antibodies were measured and specific IgA was detected in the serum, saliva, vaginal wash, nasal wash and gut wash of mice. Immunization with OVA elicited low titres of serum IgG but specific IgA was not detected in mucosal secretions. Both oral and i.n. delivery of all five plant lectins investigated ¿Viscum album (mistletoe lectin 1; ML-1), Lycospersicum esculentum (tomato lectin; LEA), Phaseolus vulgaris (PHA), Triticum vulgaris (wheat germ agglutinin (WGA), Ulex europaeus I (UEA-1) stimulated the production of specific serum IgG and IgA antibody after three i. n. or oral doses. Immunization with ML-1 induced high titres of serum IgG and IgA in addition to specific IgA in mucosal secretions. The response to orally delivered ML-1 was comparable to that induced by CT, although a 10-fold higher dose was administered. Immunization with LEA also induced high titres of serum IgG, particularly after i. n. delivery. Low specific IgA titres were also detected to LEA in mucosal secretions. Responses to PHA, WGA and UEA-1 were measured at a relatively low level in the serum, and little or no specific mucosal IgA was detected.
Collapse
Affiliation(s)
- E C Lavelle
- Rowett Research Institute, Bucksburn, Aberdeen, UK
| | | | | | | | | |
Collapse
|
49
|
Abstract
Currently, aluminum salts and MF59 are the only vaccine adjuvants approved for human use. With the development of new-generation vaccines (including recombinant subunit and mucosal vaccines) that are less immunogenic, the search for more potent vaccine adjuvants has intensified. Of the novel compounds recently evaluated in human trials, immunostimulatory molecules such as the lipopolysaccharide derived MPL and the saponin derivative QS21 appear most promising, although doubts have been raised as to their safety in humans. Preclinical work with particulate adjuvants, such as the MF59 microemulsion and lipid-particle immune-stimulating complexes (Iscoms), suggest that these molecules are also potent elicitors of humoral and cellular immune responses. In addition, preclinical data on CpG oligonucleotides appear to be encouraging, particularly with respect to their ability to selectively manipulate immune responses. While all these adjuvants show promise, further work is needed to better define the mechanisms of adjuvant action. Ultimately, the development of more potent adjuvants may allow vaccines to be used as therapeutic, rather than prophylactic, agents.
Collapse
Affiliation(s)
- M Singh
- Chiron Corporation, 5300 Chiron Way, Emeryville, CA 94608, USA.
| | | |
Collapse
|
50
|
Lemoine D, Deschuyteneer M, Hogge F, Préat V. Intranasal immunization against influenza virus using polymeric particles. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1999; 10:805-25. [PMID: 10487316 DOI: 10.1163/156856299x00892] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aim of this study was to evaluate the potential of poly(D,L-lactide-co-glycolide) nano-and microspheres, with a mean diameter of 220 nm and 8 microm, respectively, to enhance the nasal and systemic immune responses against influenza virus antigen. High encapsulation levels of antigen were achieved in all cases. Neither the molecular weight nor the antigenicity of the entrapped antigen were affected by the encapsulation procedure. Following nasal immunization, the nasal washes IgA and the serum IgG responses were evaluated. With the soluble antigen, relatively high immune responses were observed. With nanospheres, nasal washes IgA levels were significantly lower (p<0.01) and serum IgG levels were not significantly different (p>0.05) from those obtained with the soluble antigen. With microspheres, both nasal washes IgA and serum IgG levels were significantly lower (p<0.01 and <0.05, respectively) as compared to the levels found for the soluble antigen. In addition, fluorescent microspheres administered intranasally failed to reach the nasal-associated lymphoid tissue (NALT). This lack of particle uptake by NALT and the high immunogenicity of the antigen used in this study, could explain the absence of enhancement of the immune responses by the polymeric particles.
Collapse
Affiliation(s)
- D Lemoine
- Université catholique de Louvain, Unité de Pharmacie Galénique, Brussels, Belgium
| | | | | | | |
Collapse
|