1
|
Chiodi D, Ishihara Y. Tertiary Alcohol: Reaping the Benefits but Minimizing the Drawbacks of Hydroxy Groups in Drug Discovery. J Med Chem 2025; 68:7889-7913. [PMID: 40231785 DOI: 10.1021/acs.jmedchem.4c03078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Among the smaller substituents in the medicinal chemist's toolbox, the hydroxy (OH) group can bestow one of the largest impacts in the drug-like properties of a molecule. A previous study showed that an H-to-OH structural modification effectively decreases lipophilicity, increases solubility, and decreases hERG inhibition. Despite these benefits, an OH group is not always recommended in drug molecules because it presents a metabolic "soft spot" for oxidation and glucuronidation in primary and secondary alcohols. Furthermore, the OH group presents challenges in permeability. In contrast, tertiary alcohols (3° ROH) often display an improved metabolic profile because oxidation at the 3° ROH is not possible, and the geminal alkyl groups could sterically shield the OH group from glucuronidation and permeability challenges. Through a series of matched molecular pairs, this Perspective highlights the 3° ROH as a motif that can reap the benefits but minimize the drawbacks of hydroxy groups in drug discovery.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Yoshihiro Ishihara
- Department of Chemistry, Genesis Therapeutics, 11568 Sorrento Valley Road Suite 8, San Diego, California 92121, United States
| |
Collapse
|
2
|
Singh KA, Soukar J, Zulkifli M, Kersey A, Lokhande G, Ghosh S, Murali A, Garza NM, Kaur H, Keeney JN, Banavath R, Ceylan Koydemir H, Sitcheran R, Singh I, Gohil VM, Gaharwar AK. Atomic vacancies of molybdenum disulfide nanoparticles stimulate mitochondrial biogenesis. Nat Commun 2024; 15:8136. [PMID: 39289340 PMCID: PMC11408498 DOI: 10.1038/s41467-024-52276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Diminished mitochondrial function underlies many rare inborn errors of energy metabolism and contributes to more common age-associated metabolic and neurodegenerative disorders. Thus, boosting mitochondrial biogenesis has been proposed as a potential therapeutic approach for these diseases; however, currently we have a limited arsenal of compounds that can stimulate mitochondrial function. In this study, we designed molybdenum disulfide (MoS2) nanoflowers with predefined atomic vacancies that are fabricated by self-assembly of individual two-dimensional MoS2 nanosheets. Treatment of mammalian cells with MoS2 nanoflowers increased mitochondrial biogenesis by induction of PGC-1α and TFAM, which resulted in increased mitochondrial DNA copy number, enhanced expression of nuclear and mitochondrial-DNA encoded genes, and increased levels of mitochondrial respiratory chain proteins. Consistent with increased mitochondrial biogenesis, treatment with MoS2 nanoflowers enhanced mitochondrial respiratory capacity and adenosine triphosphate production in multiple mammalian cell types. Taken together, this study reveals that predefined atomic vacancies in MoS2 nanoflowers stimulate mitochondrial function by upregulating the expression of genes required for mitochondrial biogenesis.
Collapse
Affiliation(s)
- Kanwar Abhay Singh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
| | - John Soukar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Anna Kersey
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Giriraj Lokhande
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
| | - Sagnika Ghosh
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Aparna Murali
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Natalie M Garza
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Harman Kaur
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA
| | - Justin N Keeney
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Ramu Banavath
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, TX, USA
| | - Raquel Sitcheran
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA
| | - Irtisha Singh
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA.
| | - Vishal M Gohil
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Department of Biochemistry and Biophysics, College of Agriculture & Life Sciences, Texas A&M University, College Station, TX, USA.
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
- Interdisiplinary program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Department of Cell biology and Genetics, College of Medicine, Texas A&M University, Bryan, TX, USA.
- Department of Material Science and Engineering, College of Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Tang LWT, Shi Y, Sharma R, Obach RS. The Drug-Drug Interaction between Erlotinib and OSI-930 Is Mediated through Aldehyde Oxidase Inhibition. Drug Metab Dispos 2024; 52:1020-1028. [PMID: 38889967 DOI: 10.1124/dmd.124.001802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The propensity for aldehyde oxidase (AO) substrates to be implicated in drug-drug interactions (DDIs) is not well understood due to the dearth of potent inhibitors that elicit in vivo inhibition of AO. Although there is only one reported instance of DDI that has been ascribed to the inhibition of AO to date, the supporting evidence for this clinical interaction is rather tenuous, and its veracity has been called into question. Our group recently reported that the epidermal growth factor receptor inhibitor erlotinib engendered potent time-dependent inhibition of AO with inactivation kinetic constants in the same order of magnitude as its free circulating plasma concentrations. At the same time, it was previously reported that the concomitant administration of erlotinib with the investigational drug OSI-930 culminated in a an approximately twofold increase in its systemic exposure. Although the basis underpinning this interaction remains unclear, the structure of OSI-930 contains a quinoline motif that is amenable to oxidation at the electrophilic carbon adjacent to the nitrogen atom by molybdenum-containing hydroxylases like AO. In this study, we conducted metabolite identification that revealed that OSI-930 undergoes AO metabolism to a mono-oxygenated 2-oxo metabolite and assessed its formation kinetics in human liver cytosol. Additionally, reaction phenotyping in human hepatocytes revealed that AO contributes nearly 50% to the overall metabolism of OSI-930. Finally, modeling the interaction between erlotinib and OSI-930 using a mechanistic static model projected an ∼1.85-fold increase in the systemic exposure of OSI-930, which accurately recapitulated clinical observations. SIGNIFICANCE STATEMENT: This study delineates an aldehyde oxidase (AO) metabolic pathway in the investigational drug OSI-930 for the first time and confirmed that it represented a major route of metabolism through reaction phenotyping in human hepatocytes. Our study provided compelling mechanistic and modeling evidence for the first instance of an AO-mediated clinical drug-drug interaction stemming from the in vivo inhibition of the AO-mediated quinoline 2-oxidation pathway in OSI-930 by erlotinib.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - Yuanyuan Shi
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - Raman Sharma
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - R Scott Obach
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| |
Collapse
|
4
|
Hamed M, Martyniuk CJ, Soliman HAM, Osman AGM, Said REM. Neurotoxic and cardiotoxic effects of pyrogallol on catfish (Clarias gariepinus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104481. [PMID: 38857774 DOI: 10.1016/j.etap.2024.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Pyrogallol, a botanical hydrolysable tannin, has diverse medical and industrial applications. Its impact on aquatic ecosystems and fish health has been previously studied, revealing histopathological, immunological, biochemical, and haematological alterations in African catfish (Clarias gariepinus). In this study, the neurotoxic potential of pyrogallol was assessed through a 15-day exposure of catfish to concentrations of 1, 5, or 10 mg/L. Enzyme activities such as acetylcholinesterase (AchE), monoamine oxidase (MAO), aldehyde oxidase (AO), and nitric oxide (NO) were measured in serum and brain, along with histopathological examinations in the brain and heart. Pyrogallol exposure led to decreased AchE activity in the brain and serum, increased serum MAO activity, elevated AO in both brain and serum, and suppressed NO levels. Morphological abnormalities and dose-dependent pathological alterations were observed in the brain and heart, including neuropile deformities, shrunken Purkinje cells, cardiomyocyte degeneration, and increased collagen fibers. This suggests that pyrogallol induces adverse effects in fish.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut 71524, Egypt; Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag 8562, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut 71524, Egypt
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut 71524, Egypt
| |
Collapse
|
5
|
Adamus JP, Ruszczyńska A, Wyczałkowska-Tomasik A. Molybdenum's Role as an Essential Element in Enzymes Catabolizing Redox Reactions: A Review. Biomolecules 2024; 14:869. [PMID: 39062583 PMCID: PMC11275037 DOI: 10.3390/biom14070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Molybdenum (Mo) is an essential element for human life, acting as a cofactor in various enzymes crucial for metabolic homeostasis. This review provides a comprehensive insight into the latest advances in research on molybdenum-containing enzymes and their clinical significance. One of these enzymes is xanthine oxidase (XO), which plays a pivotal role in purine catabolism, generating reactive oxygen species (ROS) capable of inducing oxidative stress and subsequent organ dysfunction. Elevated XO activity is associated with liver pathologies such as non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Aldehyde oxidases (AOs) are also molybdenum-containing enzymes that, similar to XO, participate in drug metabolism, with notable roles in the oxidation of various substrates. However, beneath its apparent efficacy, AOs' inhibition may impact drug effectiveness and contribute to liver damage induced by hepatotoxins. Another notable molybdenum-enzyme is sulfite oxidase (SOX), which catalyzes the conversion of sulfite to sulfate, crucial for the degradation of sulfur-containing amino acids. Recent research highlights SOX's potential as a diagnostic marker for HCC, offering promising sensitivity and specificity in distinguishing cancerous lesions. The newest member of molybdenum-containing enzymes is mitochondrial amidoxime-reducing component (mARC), involved in drug metabolism and detoxification reactions. Emerging evidence suggests its involvement in liver pathologies such as HCC and NAFLD, indicating its potential as a therapeutic target. Overall, understanding the roles of molybdenum-containing enzymes in human physiology and disease pathology is essential for advancing diagnostic and therapeutic strategies for various health conditions, particularly those related to liver dysfunction. Further research into the molecular mechanisms underlying these enzymes' functions could lead to novel treatments and improved patient outcomes.
Collapse
Affiliation(s)
- Jakub Piotr Adamus
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Ruszczyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | | |
Collapse
|
6
|
Tang LWT, DaSilva E, Lapham K, Obach RS. Evaluation of Icotinib as a Potent and Selective Inhibitor of Aldehyde Oxidase for Reaction Phenotyping in Human Hepatocytes. Drug Metab Dispos 2024; 52:565-573. [PMID: 38565303 DOI: 10.1124/dmd.124.001693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Aldehyde oxidase (AO) is a molybdenum cofactor-containing cytosolic enzyme that has gained prominence due to its involvement in the developmental failure of several drug candidates in first-in-human trials. Unlike cytochrome P450s (P450) and glucuronosyltransferase, AO substrates have been plagued by poor in vitro to in vivo extrapolation, leading to low systemic exposures and underprediction of human dose. However, apart from measuring a drug's AO clearance rates, it is also important to determine the relative contribution to metabolism by this enzyme (fm,AO). Although hydralazine is the most well-studied time-dependent inhibitor (TDI) of AO and is frequently employed for AO reaction phenotyping in human hepatocytes to derive fm,AO, multiple studies have expressed concerns pertaining to its utility in providing accurate estimates of fm,AO values due to its propensity to significantly inhibit P450s at the concentrations typically used for reaction phenotyping. In this study, we characterized icotinib, a cyclized analog of erlotinib, as a potent TDI of AO-inactivating human liver cytosolic zoniporide 2-oxidation equipotently with erlotinib with a maximal inactivate rate/inactivator concentration at half maximal inactivation rate (K I) ratio of 463 and 501 minute-1mM-1 , respectively. Moreover, icotinib also exhibits selectivity against P450 and elicits significantly weaker inhibition against human liver microsomal UGT1A1/3 as compared with erlotinib. Finally, we evaluated icotinib as an inhibitor of AO for reaction phenotyping in cryopreserved human hepatocytes and demonstrated that it can yield more accurate prediction of fm,AO compared with hydralazine and induce sustained suppression of AO activity at higher cell densities, which will be important for reaction phenotyping endeavors of low clearance drugs SIGNIFICANCE STATEMENT: In this study, we characterized icotinib as a potent time-dependent inhibitor of AO with ample selectivity margins against the P450s and UGT1A1/3 and demonstrated its utility for reaction phenotyping in human hepatocytes to obtain accurate estimates of fm,AO for victim DDI risk predictions. We envisage the adoption of icotinib in place of hydralazine in AO reaction phenotyping.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - Ethan DaSilva
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - Kimberly Lapham
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| | - R Scott Obach
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Groton, Connecticut
| |
Collapse
|
7
|
Hammid A, Fallon JK, Vellonen KS, Lassila T, Reinisalo M, Urtti A, Gonzalez F, Tolonen A, Smith PC, Honkakoski P. Aldehyde oxidase 1 activity and protein expression in human, rabbit, and pig ocular tissues. Eur J Pharm Sci 2023; 191:106603. [PMID: 37827455 DOI: 10.1016/j.ejps.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Aldehyde oxidase (AOX) is a cytosolic drug-metabolizing enzyme which has attracted increasing attention in drug development due to its high hepatic expression, broad substrate profile and species differences. In contrast, there is limited information on the presence and activity of AOX in extrahepatic tissues including ocular tissues. Because several ocular drugs are potential substrates for AOX, we performed a comprehensive analysis of the AOX1 expression and activity profile in seven ocular tissues from humans, rabbits, and pigs. AOX activities were determined using optimized assays for the established human AOX1 probe substrates 4-dimethylamino-cinnamaldehyde (DMAC) and phthalazine. Inhibition studies were undertaken in conjunctival and retinal homogenates using well-established human AOX1 inhibitors menadione and chlorpromazine. AOX1 protein contents were quantitated with targeted proteomics and confirmed by immunoblotting. Overall, DMAC oxidation rates varied over 10-fold between species (human ˃˃ rabbit ˃ pig) and showed 2- to 6-fold differences between tissues from the same species. Menadione seemed a more potent inhibitor of DMAC oxidation across species than chlorpromazine. Human AOX1 protein levels were highest in the conjunctiva, followed by most posterior tissues, whereas anterior tissues showed low levels. The rabbit AOX1 expression was high in the conjunctiva, retinal pigment epithelial (RPE), and choroid while lower in the anterior tissues. Quantification of pig AOX1 was not successful but immunoblotting confirmed the presence of AOX1 in all species. DMAC oxidation rates and AOX1 contents correlated quite well in humans and rabbits. This study provides, for the first time, insights into the ocular expression and activity of AOX1 among multiple species.
Collapse
Affiliation(s)
- Anam Hammid
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland.
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7355, Chapel Hill, NC 27599-7355, United States
| | - Kati-Sisko Vellonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| | - Toni Lassila
- Admescope Ltd, Typpitie 1, FI-90620 Oulu, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland; Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland
| | - Francisco Gonzalez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Service of Ophthalmology, University Hospital of Santiago de Compostela, and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
| | - Ari Tolonen
- Admescope Ltd, Typpitie 1, FI-90620 Oulu, Finland
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7355, Chapel Hill, NC 27599-7355, United States
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| |
Collapse
|
8
|
Foti RS. Cytochrome P450 and Other Drug-Metabolizing Enzymes As Therapeutic Targets. Drug Metab Dispos 2023; 51:936-949. [PMID: 37041085 DOI: 10.1124/dmd.122.001011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Cytochrome P450 and other families of drug-metabolizing enzymes are commonly thought of and studied for their ability to metabolize xenobiotics and other foreign entities as they are eliminated from the body. Equally as important, however, is the homeostatic role that many of these enzymes play in maintaining the proper levels of endogenous signaling molecules such as lipids, steroids, and eicosanoids as well as their ability to modulate protein-protein interactions involved in downstream signaling cascades. Throughout the years, many of these endogenous ligands or protein partners of drug-metabolizing enzymes have been associated with a wide range of disease states from cancer to various cardiovascular, neurologic, or inflammatory diseases, prompting an interest in whether modulation of drug-metabolizing enzyme activity could have a subsequent pharmacological impact or lessening of disease severity. Beyond direct regulation of endogenous pathways, drug-metabolizing enzymes have also been proactively targeted for their ability to activate prodrugs with subsequent pharmacological activity or enhance the efficacy of a coadministered drug by inhibiting the metabolism of that drug through a rationally designed drug-drug interaction (i.e., ritonavir and human immunodeficiency virus antiretroviral therapy). The focus of this minireview will be to highlight research aimed at characterizing cytochrome P450 and other drug-metabolizing enzymes as therapeutic targets. Examples of successfully marketed drugs as well as early research efforts will be discussed. Finally, emerging areas of research utilizing typical drug-metabolizing enzymes to impact clinical outcomes will be discussed. SIGNIFICANCE STATEMENT: Although generally thought of for their drug-metabolizing capabilities, enzymes such as the cytochromes P450, glutathione S-transferases, soluble epoxide hydrolases, and others play a significant role in regulating key endogenous pathways, making them potential drug targets. This minireview will cover various efforts over the years to modulate drug-metabolizing enzyme activity toward pharmacological outcomes.
Collapse
Affiliation(s)
- Robert S Foti
- ADME & Discovery Toxicology, Merck & Co., Inc., Boston, Massachusetts
| |
Collapse
|
9
|
Cardoso JMS, Esteves I, Egas C, Braga MEM, de Sousa HC, Abrantes I, Maleita C. Transcriptome analysis reveals the high ribosomal inhibitory action of 1,4-naphthoquinone on Meloidogyne luci infective second-stage juveniles. FRONTIERS IN PLANT SCIENCE 2023; 14:1191923. [PMID: 37342130 PMCID: PMC10277735 DOI: 10.3389/fpls.2023.1191923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 06/22/2023]
Abstract
The root-knot nematode (RKN) Meloidogyne luci presents a threat to the production of several important crops. This nematode species was added to the European Plant Protection Organization Alert list in 2017. The scarce availability of efficient nematicides to control RKN and the phasing out of nematicides from the market have intensified the search for alternatives, such as phytochemicals with bionematicidal properties. The nematicidal activity of 1,4-naphthoquinone (1,4-NTQ) against M. luci has been demonstrated; however, knowledge of the potential mode(s) of action of this compound is still scarce. In this study, the transcriptome profile of M. luci second-stage juveniles (J2), the infective stage, in response to 1,4-NTQ exposure was determined by RNA-seq to identify genes and pathways that might be involved in 1,4-NTQ's mode(s) of action. Control treatments, consisting of nematodes exposed to Tween® 80 (1,4-NTQ solvent) and to water, were included in the analysis. A large set of differentially expressed genes (DEGs) was found among the three tested conditions, and a high number of downregulated genes were found between 1,4-NTQ treatment and water control, reflecting the inhibitory effect of this compound on M. luci, with a great impact on processes related to translation (ribosome pathway). Several other nematode gene networks and metabolic pathways affected by 1,4-NTQ were also identified, clarifying the possible mode of action of this promising bionematicide.
Collapse
Affiliation(s)
- Joana M. S. Cardoso
- Centre for Functional Ecology - Science for People and The Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ivânia Esteves
- Centre for Functional Ecology - Science for People and The Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Conceição Egas
- Center for Neuroscience and Cell Biology, Faculdade de Medicina, University of Coimbra, Coimbra, Portugal
- Biocant-Transfer Technology Center, BiocantPark, Cantanhede, Portugal
| | - Mara E. M. Braga
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - Hermínio C. de Sousa
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - Isabel Abrantes
- Centre for Functional Ecology - Science for People and The Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carla Maleita
- Centre for Functional Ecology - Science for People and The Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Xu R, Jin Y, Tang S, Wang W, Sun YE, Liu Y, Zhang W, Hou B, Huang Y, Ma Z. Association between single nucleotide variants and severe chronic pain in older adult patients after lower extremity arthroplasty. J Orthop Surg Res 2023; 18:184. [PMID: 36895017 PMCID: PMC9999576 DOI: 10.1186/s13018-023-03683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Hip or knee osteoarthritis (OA) is one of the main causes of disability worldwide and occurs mostly in the older adults. Total hip or knee arthroplasty is the most effective method to treat OA. However, severe postsurgical pain leading to a poor prognosis. So, investigating the population genetics and genes related to severe chronic pain in older adult patients after lower extremity arthroplasty is helpful to improve the quality of treatment. METHODS We collected blood samples from elderly patients who underwent lower extremity arthroplasty from September 2020 to February 2021 at the Drum Tower Hospital Affiliated to Nanjing University Medical School. The enrolled patients provided measures of pain intensity using the numerical rating scale on the 90th day after surgery. Patients were divided into the case group (Group A) and the control group (Group B) including 10 patients respectively by the numerical rating scale. DNA was isolated from the blood samples of the two groups for whole-exome sequencing. RESULTS In total, 661 variants were identified in the 507 gene regions that were significantly different between both groups (P < 0.05), including CASP5, RASGEF1A, CYP4B1, etc. These genes are mainly involved in biological processes, including cell-cell adhesion, ECM-receptor interaction, metabolism, secretion of bioactive substances, ion binding and transport, regulation of DNA methylation, and chromatin assembly. CONCLUSIONS The current study shows some variants within genes are significantly associated with severe postsurgical chronic pain in older adult patients after lower extremity arthroplasty, indicating a genetic predisposition for chronic postsurgical pain. The study was registered according to ICMJE guidelines. The trial registration number is ChiCTR2000031655 and registration date is April 6th, 2020.
Collapse
Affiliation(s)
- Rui Xu
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yinan Jin
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Suhong Tang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Wenwen Wang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Yu-E Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Wei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China
| | - Yulin Huang
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, No. 321 of Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
11
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Fašmon Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Dierick N, Martelli G, Westendorf J, Anguita M, Ortuño Casanova J, Manini P. Safety of 27 flavouring compounds providing a milky-vanilla flavour and belonging to different chemical groups for use as feed additives in all animal species (FEFANA asbl). EFSA J 2023; 21:e07713. [PMID: 36698489 PMCID: PMC9846309 DOI: 10.2903/j.efsa.2023.7713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety of 27 compounds to provide a milky-vanilla flavour belonging to different chemical groups, when used as sensory additives in feed for all animal species. Fifteen of the 27 compounds were tested in tolerance studies in chickens for fattening, piglets and cattle for fattening. No adverse effects were observed in the tolerance studies at 10-fold the intended level. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the 15 tested compounds were safe for these species at the proposed use level and conclusions were extrapolated to all animal species. For the remaining 12 compounds, read-across from structurally similar compounds tested in tolerance trials and belonging to the same chemical group was applied. The FEEDAP Panel concluded that these 12 compounds were safe for all animal species at the proposed use level. No safety concern would arise for the consumer from the use of the 27 compounds up to the highest levels considered safe for target animals. No new data were submitted on the safety for the user that would allow the FEEDAP Panel to change its previous conclusion for 5-methylhept-2-en-4-one [07.139], 5-methylfurfural [13.001] and 4-phenylbut-3-en-2-one [07.024]. The concentrations considered safe for the target species are unlikely to have detrimental effects on the environment for all the compounds.
Collapse
|
12
|
Liu X, Cui Y, Kang R, Zhang H, Huang H, Lei Y, Fan Y, Zhang Y, Wang J, Xu N, Han M, Feng X, Ni K, Jiang T, Rui C, Sun L, Chen X, Lu X, Wang D, Wang J, Wang S, Zhao L, Guo L, Chen C, Chen Q, Ye W. GhAAO2 was observed responding to NaHCO 3 stress in cotton compared to AAO family genes. BMC PLANT BIOLOGY 2022; 22:603. [PMID: 36539701 PMCID: PMC9768942 DOI: 10.1186/s12870-022-03999-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Abscisic acid (ABA) is an important stress hormone, the changes of abscisic acid content can alter plant tolerance to stress, abscisic acid is crucial for studying plant responses to abiotic stress. The abscisic acid aldehyde oxidase (AAO) plays a vital role in the final step in the synthesis of abscisic acid, therefore, understanding the function of AAO gene family is of great significance for plants to response to abiotic stresses. RESULT In this study, 6, 8, 4 and 4 AAO genes were identified in four cotton species. According to the structural characteristics of genes and the traits of phylogenetic tree, we divided the AAO gene family into 4 clades. Gene structure analysis showed that the AAO gene family was relatively conservative. The analysis of cis-elements showed that most AAO genes contained cis-elements related to light response and plant hormones. Tissue specificity analysis under NaHCO3 stress showed that GhAAO2 gene was differentially expressed in both roots and leaves. After GhAAO2 gene silencing, the degree of wilting of seedlings was lighter than that of the control group, indicating that GhAAO2 could respond to NaHCO3 stress. CONCLUSIONS In this study, the AAO gene family was analyzed by bioinformatics, the response of GhAAO gene to various abiotic stresses was preliminarily verified, and the function of the specifically expressed gene GhAAO2 was further verified. These findings provide valuable information for the study of potential candidate genes related to plant growth and stress.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yupeng Cui
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Ruiqin Kang
- Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Hong Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuqian Lei
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Nan Xu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xixian Feng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Kesong Ni
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Tiantian Jiang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Cun Rui
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
13
|
Gajula SNR, Nathani TN, Patil RM, Talari S, Sonti R. Aldehyde oxidase mediated drug metabolism: an underpredicted obstacle in drug discovery and development. Drug Metab Rev 2022; 54:427-448. [PMID: 36369949 DOI: 10.1080/03602532.2022.2144879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aldehyde oxidase (AO) has garnered curiosity as a non-CYP metabolizing enzyme in drug development due to unexpected consequences such as toxic metabolite generation and high metabolic clearance resulting in the clinical failure of new drugs. Therefore, poor AO mediated clearance prediction in preclinical nonhuman species remains a significant obstacle in developing novel drugs. Various isoforms of AO, such as AOX1, AOX3, AOX3L1, and AOX4 exist across species, and different AO activity among humans influences the AO mediated drug metabolism. Therefore, carefully considering the unique challenges is essential in developing successful AO substrate drugs. The in vitro to in vivo extrapolation underpredicts AO mediated drug clearance due to the lack of reliable representative animal models, substrate-specific activity, and the discrepancy between absolute concentration and activity. An in vitro tool to extrapolate in vivo clearance using a yard-stick approach is provided to address the underprediction of AO mediated drug clearance. This approach uses a range of well-known AO drug substrates as calibrators for qualitative scaling new drugs into low, medium, or high clearance category drugs. So far, in vivo investigations on chimeric mice with humanized livers (humanized mice) have predicted AO mediated metabolism to the best extent. This review addresses the critical aspects of the drug discovery stage for AO metabolism studies, challenges faced in drug development, approaches to tackle AO mediated drug clearance's underprediction, and strategies to decrease the AO metabolism of drugs.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Tanaaz Navin Nathani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Rashmi Madhukar Patil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Sasikala Talari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Telangana, India
| |
Collapse
|
14
|
Öeren M, Walton PJ, Suri J, Ponting DJ, Hunt PA, Segall MD. Predicting Regioselectivity of AO, CYP, FMO, and UGT Metabolism Using Quantum Mechanical Simulations and Machine Learning. J Med Chem 2022; 65:14066-14081. [PMID: 36239985 DOI: 10.1021/acs.jmedchem.2c01303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unexpected metabolism in modification and conjugation phases can lead to the failure of many late-stage drug candidates or even withdrawal of approved drugs. Thus, it is critical to predict the sites of metabolism (SoM) for enzymes, which interact with drug-like molecules, in the early stages of the research. This study presents methods for predicting the isoform-specific metabolism for human AOs, FMOs, and UGTs and general CYP metabolism for preclinical species. The models use semi-empirical quantum mechanical simulations, validated using experimentally obtained data and DFT calculations, to estimate the reactivity of each SoM in the context of the whole molecule. Ligand-based models, trained and tested using high-quality regioselectivity data, combine the reactivity of the potential SoM with the orientation and steric effects of the binding pockets of the different enzyme isoforms. The resulting models achieve κ values of up to 0.94 and AUC of up to 0.92.
Collapse
Affiliation(s)
- Mario Öeren
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| | - Peter J Walton
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.,School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - James Suri
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K.,School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, U.K
| | - Peter A Hunt
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| | - Matthew D Segall
- Optibrium Limited, Cambridge Innovation Park, Denny End Road, Cambridge CB25 9GL, U.K
| |
Collapse
|
15
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
16
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
17
|
Novak Kujundžić R. COVID-19: Are We Facing Secondary Pellagra Which Cannot Simply Be Cured by Vitamin B3? Int J Mol Sci 2022; 23:ijms23084309. [PMID: 35457123 PMCID: PMC9032523 DOI: 10.3390/ijms23084309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Immune response to SARS-CoV-2 and ensuing inflammation pose a huge challenge to the host’s nicotinamide adenine dinucleotide (NAD+) metabolism. Humans depend on vitamin B3 for biosynthesis of NAD+, indispensable for many metabolic and NAD+-consuming signaling reactions. The balance between its utilization and resynthesis is vitally important. Many extra-pulmonary symptoms of COVID-19 strikingly resemble those of pellagra, vitamin B3 deficiency (e.g., diarrhoea, dermatitis, oral cavity and tongue manifestations, loss of smell and taste, mental confusion). In most developed countries, pellagra is successfully eradicated by vitamin B3 fortification programs. Thus, conceivably, it has not been suspected as a cause of COVID-19 symptoms. Here, the deregulation of the NAD+ metabolism in response to the SARS-CoV-2 infection is reviewed, with special emphasis on the differences in the NAD+ biosynthetic pathway’s efficiency in conditions predisposing for the development of serious COVID-19. SARS-CoV-2 infection-induced NAD+ depletion and the elevated levels of its metabolites contribute to the development of a systemic disease. Acute liberation of nicotinamide (NAM) in antiviral NAD+-consuming reactions potentiates “NAM drain”, cooperatively mediated by nicotinamide N-methyltransferase and aldehyde oxidase. “NAM drain” compromises the NAD+ salvage pathway’s fail-safe function. The robustness of the host’s NAD+ salvage pathway, prior to the SARS-CoV-2 infection, is an important determinant of COVID-19 severity and persistence of certain symptoms upon resolution of infection.
Collapse
Affiliation(s)
- Renata Novak Kujundžić
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Ahire D, Basit A, Christopher LJ, Iyer R, Leeder JS, Prasad B. Interindividual Variability and Differential Tissue Abundance of Mitochondrial Amidoxime Reducing Component Enzymes in Humans. Drug Metab Dispos 2022; 50:191-196. [PMID: 34949674 PMCID: PMC8969132 DOI: 10.1124/dmd.121.000805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial amidoxime-reducing component (mARC) enzymes are molybdenum-containing proteins that metabolize a number of endobiotics and xenobiotics. The interindividual variability and differential tissue abundance of mARC1 and mARC2 were quantified using targeted proteomics in three types of tissue fractions: 1) pediatric liver tissue homogenates, 2) total membrane fraction of the paired liver and kidney samples from pediatric and adult donors, and 3) pooled S9 fractions of the liver, intestine, kidney, lung, and heart. The absolute levels of mARC1 and mARC2 in the pediatric liver homogenate were 40.08 ± 4.26 and 24.58 ± 4.02 pmol/mg homogenate protein, respectively, and were independent of age and sex. In the total membrane fraction of the paired liver and kidney samples, the abundance of hepatic mARC1 and mARC2 was comparable, whereas mARC2 abundance in the kidney was approximately 9-fold higher in comparison with mARC1. The analysis of the third set of samples (i.e., S9 fraction) revealed that mARC1 abundance in the kidney, intestine, and lung was 5- to 13-fold lower than the liver S9 abundance, whereas mARC2 abundance was approximately 3- and 16-fold lower in the intestine and lung than the liver S9, respectively. In contrast, the kidney mARC2 abundance in the S9 fraction was approximately 2.5-fold higher as compared with the hepatic mARC2 abundance. The abundance of mARC enzymes in the heart was below the limit of quantification (∼0.6 pmol/mg protein). The mARC enzyme abundance data presented here can be used to develop physiologically based pharmacokinetic models for the prediction of in vivo pharmacokinetics of mARC substrates. SIGNIFICANCE STATEMENT: A precise targeted quantitative proteomics method was developed and applied to quantify newly discovered drug-metabolizing enzymes, mARC1 and mARC2, in pediatric and adult tissue samples. The data suggest that mARC enzymes are ubiquitously expressed in an isoform-specific manner in the human liver, kidney, intestine, and lung, and the enzyme abundance is not associated with age and sex. These data are important for developing physiologically based pharmacokinetic models for the prediction of in vivo pharmacokinetics of mARC substrates.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| | - Lisa J Christopher
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| | - Ramaswamy Iyer
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| | - J Steven Leeder
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.A., A.B., B.P.); Department of Nonclinical Disposition and Bioanalysis, Bristol Myers Squibb, Princeton, New Jersey (L.J.C., R.I.); and Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, Missouri (J.S.L.)
| |
Collapse
|
19
|
Sun L, Ma J, Chen J, Pan Z, Li L. Bioinformatics-Guided Analysis Uncovers AOX1 as an Osteogenic Differentiation-Relevant Gene of Human Mesenchymal Stem Cells. Front Mol Biosci 2022; 9:800288. [PMID: 35295843 PMCID: PMC8920545 DOI: 10.3389/fmolb.2022.800288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/04/2022] [Indexed: 01/05/2023] Open
Abstract
Background: The available therapeutic options of bone defects, fracture nonunion, and osteoporosis remain limited, which are closely related to the osteogenic differentiation of bone marrow–derived mesenchymal stem cells (BMSCs). Thus, there remains an urgent demand to develop a prediction method to infer osteogenic differentiation–related genes in BMSCs. Method: We performed differential expression analysis between hBMSCs and osteogenically induced samples. Association analysis, co-expression analysis, and PPI analysis are then carried out to identify potential osteogenesis-related regulators. GO enrichment analysis and GSEA are performed to identify significantly enriched pathways associated with AOX1. qRT-PCR and Western blotting were employed to investigate the expression of genes on osteogenic differentiation, and plasmid transfection was used to overexpress the gene AOX1 in hBMSCs. Result: We identified 25 upregulated genes and 17 downregulated genes. Association analysis and PPI network analysis among these differentially expressed genes show that AOX1 is a potential regulator of osteogenic differentiation. GO enrichment analysis and GSEA show that AOX1 is significantly associated with osteoblast-related pathways. The experiments revealed that AOX1 level was higher and increased gradually in differentiated BMSCs compared with undifferentiated BMSCs, and AOX1 overexpression significantly increased the expression of osteo-specific genes, thereby clearly indicating that AOX1 plays an important role in osteogenic differentiation. Moreover, our method has ability in discriminating genes with osteogenic differentiation properties and can facilitate the process of discovery of new osteogenic differentiation–related genes. Conclusion: These findings collectively demonstrate that AOX1 is an osteogenic differentiation-relevant gene and provide a novel method established with a good performance for osteogenic differentiation-relevant genes prediction.
Collapse
Affiliation(s)
- Lingtong Sun
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfei Ma
- Key Laboratory of Image Information Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Chen
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Zhijun Pan, ; Lijun Li,
| | - Lijun Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- *Correspondence: Zhijun Pan, ; Lijun Li,
| |
Collapse
|
20
|
Godoy R, Mutis A, Carabajal Paladino L, Venthur H. Genome-Wide Identification of Aldehyde Oxidase Genes in Moths and Butterflies Suggests New Insights Into Their Function as Odorant-Degrading Enzymes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.823119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aldehyde oxidases (AOXs) are common detoxifying enzymes in several organisms. In insects, AOXs act in xenobiotic metabolism and as odorant-degrading enzymes (ODEs). These last appear as crucial enzymes in the life cycle of insects, helping to reset their olfactory system, particularly in lepidopterans, which fulfill important ecological roles (e.g., pollination or destructive life cycles). A comprehensive understanding of their olfactory system has provided opportunities to study key chemosensory proteins. However, no significant advance has been made around lepidopteran AOXs research, and even less around butterflies, a recently evolved lineage. In this study we have identified novel AOX gene families in moths and butterflies in order to understand their role as ODEs. Eighteen genomes from both moths and butterflies were used for phylogenetics, molecular evolution and sequence analyses. We identified 164 AOXs, from which 91 are new. Their phylogeny showed two main clades that are potentially related to odorant-degrading function, where both moths and butterflies have AOXs. A first ODE-related clade seems to have a non-ditrysian origin, likely related to plant volatiles. A second ODE-related clade could be more pheromone-biased. Molecular evolution analysis suggests a slight purifying selection process, though a number of sites appeared under positive selection. ODE-related AOXs have changed a phenylalanine residue by proline in the active site. Finally, this study could serve as a reference for further evolutionary and functional studies around Lepidopteran AOXs.
Collapse
|
21
|
Uno Y, Uehara S, Yamazaki H. Drug-oxidizing and conjugating non-cytochrome P450 (non-P450) enzymes in cynomolgus monkeys and common marmosets as preclinical models for humans. Biochem Pharmacol 2021; 197:114887. [PMID: 34968483 DOI: 10.1016/j.bcp.2021.114887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Many drug oxidations and conjugations are mediated by a variety of cytochromes P450 (P450) and non-P450 enzymes in humans and non-human primates. These non-P450 enzymes include aldehyde oxidases (AOX), carboxylesterases (CES), flavin-containing monooxygenases (FMO), glutathione S-transferases (GST), arylamine N-acetyltransferases (NAT),sulfotransferases (SULT), and uridine 5'-diphospho-glucuronosyltransferases (UGT) and their substrates include both endobiotics and xenobiotics. Cynomolgus macaques (Macaca fascicularis, an Old-World monkey) are widely used in preclinical studies because of their genetic and physiological similarities to humans. However, many reports have indicated the usefulness of common marmosets (Callithrix jacchus, a New World monkey) as an alternative non-human primate model. Although knowledge of the drug-metabolizing properties of non-P450 enzymes in non-human primates is relatively limited, new research has started to provide an insight into the molecular characteristics of these enzymes in cynomolgus macaques and common marmosets. This mini-review provides collective information on the isoforms of non-P450 enzymes AOX, CES, FMO, GST, NAT, SULT, and UGT and their enzymatic profiles in cynomolgus macaques and common marmosets. In general, these non-P450 cynomolgus macaque and marmoset enzymes have high sequence identities and similar substrate recognitions to their human counterparts. However, these enzymes also exhibit some limited differences in function between species, just as P450 enzymes do, possibly due to small structural differences in amino acid residues. The findings summarized here provide a foundation for understanding the molecular mechanisms of polymorphic non-P450 enzymes and should contribute to the successful application of non-human primates as model animals for humans.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Shotaro Uehara
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
22
|
Busby RW, Cai X, Yang S, Ramos L, Venkatarangan L, Shen H, Wax S, Sadeque AJM, De Colle C. Metopimazine is primarily metabolized by a liver amidase in humans. Pharmacol Res Perspect 2021; 10:e00903. [PMID: 34918875 PMCID: PMC8929364 DOI: 10.1002/prp2.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
Metopimazine (MPZ) is a peripherally restricted, dopamine D2 receptor antagonist used for four decades to treat acute nausea and vomiting. MPZ is currently under clinical investigation for the treatment of gastroparesis (GP). MPZ undergoes high first-pass metabolism that produces metopimazine acid (MPZA), the major circulating metabolite in humans. Despite a long history of use, the enzymes involved in the metabolism of MPZ have not been identified. Here we report a series of studies designed to identify potential MPZ metabolites in vitro, determine their clinical relevance in humans, and elucidate the enzymes responsible for their formation. The findings demonstrated that the formation of MPZA was primarily catalyzed by human liver microsomal amidase. Additionally, human liver cytosolic aldehyde oxidase (AO) catalyzes the formation of MPZA, in vitro, although to a much lesser extent. Neither cytochrome P450 enzymes nor flavin-monooxygenases (FMO) were involved in the formation MPZA, although two minor oxidative pathways were catalyzed by CYP3A4 and CYP2D6 in vitro. Analysis of plasma samples from subjects dosed 60 mg of MPZ verified that these oxidative pathways are very minor and that CYP enzyme involvement was negligible compared to microsomal amidase/hydrolase in overall MPZ metabolism in humans. The metabolism by liver amidase, an enzyme family not well defined in small molecule drug metabolism, with minimal metabolism by CYPs, differentiates this drug from current D2 antagonists used or in development for the treatment of GP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephen Wax
- Neurogastrx, Inc., Woburn, Massachusetts, USA
| | | | | |
Collapse
|
23
|
Gomi N, Shibuya K, Kawamura K, Kabeya M. Synthesis of oxidative metabolites of K-115, a novel Rho-kinase inhibitor. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Schyman P, Printz RL, Pannala VR, AbdulHameed MDM, Estes SK, Shiota C, Boyd KL, Shiota M, Wallqvist A. Genomics and metabolomics of early-stage thioacetamide-induced liver injury: An interspecies study between guinea pig and rat. Toxicol Appl Pharmacol 2021; 430:115713. [PMID: 34492290 PMCID: PMC8511347 DOI: 10.1016/j.taap.2021.115713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
To study the complex processes involved in liver injuries, researchers rely on animal investigations, using chemically or surgically induced liver injuries, to extrapolate findings and infer human health risks. However, this presents obvious challenges in performing a detailed comparison and validation between the highly controlled animal models and development of liver injuries in humans. Furthermore, it is not clear whether there are species-dependent and -independent molecular initiating events or processes that cause liver injury before they eventually lead to end-stage liver disease. Here, we present a side-by-side study of rats and guinea pigs using thioacetamide to examine the similarities between early molecular initiating events during an acute-phase liver injury. We exposed Sprague Dawley rats and Hartley guinea pigs to a single dose of 25 or 100 mg/kg thioacetamide and collected blood plasma for metabolomic analysis and liver tissue for RNA-sequencing. The subsequent toxicogenomic analysis identified consistent liver injury trends in both genomic and metabolomic data within 24 and 33 h after thioacetamide exposure in rats and guinea pigs, respectively. In particular, we found species similarities in the key injury phenotypes of inflammation and fibrogenesis in our gene module analysis for liver injury phenotypes. We identified expression of several common genes (e.g., SPP1, TNSF18, SERPINE1, CLDN4, TIMP1, CD44, and LGALS3), activation of injury-specific KEGG pathways, and alteration of plasma metabolites involved in amino acid and bile acid metabolism as some of the key molecular processes that changed early upon thioacetamide exposure and could play a major role in the initiation of acute liver injury.
Collapse
Affiliation(s)
- Patric Schyman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelli Lynn Boyd
- Department of Pathology, Microbiology and Immunology, Division of Comparative Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
| |
Collapse
|
25
|
Han AN, Han BR, Zhang T, Heimbach T. Hepatic Impairment Physiologically Based Pharmacokinetic Model Development: Current Challenges. CURRENT PHARMACOLOGY REPORTS 2021; 7:213-226. [DOI: 10.1007/s40495-021-00266-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/03/2025]
|
26
|
Mota C, Diniz A, Coelho C, Santos-Silva T, Esmaeeli M, Leimkühler S, Cabrita EJ, Marcelo F, Romão MJ. Interrogating the Inhibition Mechanisms of Human Aldehyde Oxidase by X-ray Crystallography and NMR Spectroscopy: The Raloxifene Case. J Med Chem 2021; 64:13025-13037. [PMID: 34415167 DOI: 10.1021/acs.jmedchem.1c01125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors-thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug-drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery.
Collapse
Affiliation(s)
- Cristiano Mota
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ana Diniz
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Catarina Coelho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Mariam Esmaeeli
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Eurico J Cabrita
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Filipa Marcelo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria João Romão
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.,UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
27
|
Soltani S, Hallaj-Nezhadi S, Rashidi MR. A comprehensive review of in silico approaches for the prediction and modulation of aldehyde oxidase-mediated drug metabolism: The current features, challenges and future perspectives. Eur J Med Chem 2021; 222:113559. [PMID: 34119831 DOI: 10.1016/j.ejmech.2021.113559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/09/2023]
Abstract
The importance of aldehyde oxidase (AOX) in drug metabolism necessitates the development and application of the in silico rational drug design methods as an integral part of drug discovery projects for the early prediction and modulation of AOX-mediated metabolism. The current study represents an up-to-date and thorough review of in silico studies of AOX-mediated metabolism and modulation methods. In addition, the challenges and the knowledge gap that should be covered have been discussed. The importance of aldehyde oxidase (AOX) in drug metabolism is a hot topic in drug discovery. Different strategies are available for the modulation of the AOX-mediated metabolism of drugs. Application of the rational drug design methods as an integral part of drug discovery projects is necessary for the early prediction of AOX-mediated metabolism. The current study represents a comprehensive review of AOX molecular structure, AOX-mediated reactions, AOX substrates, AOX inhibition, approaches to modify AOX-mediated metabolism, prediction of AOX metabolism/substrates/inhibitors, and the AOX related structure-activity relationship (SAR) studies. Furthermore, an up-to-date and thorough review of in silico studies of AOX metabolism has been carried out. In addition, the challenges and the knowledge gap that should be covered in the scientific literature have been discussed in the current review.
Collapse
Affiliation(s)
- Somaieh Soltani
- Pharmaceutical Analysis Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Hallaj-Nezhadi
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Rashidi
- Stem Cell and Regenerative Medicine Institute and Pharmacy faculty, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
28
|
Dhuria NV, Haro B, Kapadia A, Lobo KA, Matusow B, Schleiff MA, Tantoy C, Sodhi JK. Recent developments in predicting CYP-independent metabolism. Drug Metab Rev 2021; 53:188-206. [PMID: 33941024 DOI: 10.1080/03602532.2021.1923728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As lead optimization efforts have successfully reduced metabolic liabilities due to cytochrome P450 (CYP)-mediated metabolism, there has been an increase in the frequency of involvement of non-CYP enzymes in the metabolism of investigational compounds. Although there have been numerous notable advancements in the characterization of non-CYP enzymes with respect to their localization, reaction mechanisms, species differences and identification of typical substrates, accurate prediction of non-CYP-mediated clearance, with a particular emphasis with the difficulties in accounting for any extrahepatic contributions, remains a challenge. The current manuscript comprehensively summarizes the recent advancements in the prediction of drug metabolism and the in vitro to in vitro extrapolation of clearance for substrates of non-CYP drug metabolizing enzymes.
Collapse
Affiliation(s)
- Nikhilesh V Dhuria
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bianka Haro
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Amit Kapadia
- California Poison Control Center, University of California San Francisco, San Diego, CA, USA
| | | | - Bernice Matusow
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Mary A Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christina Tantoy
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Jasleen K Sodhi
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA.,Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
29
|
Hanioka N, Saito K, Isobe T, Ohkawara S, Jinno H, Tanaka-Kagawa T. Favipiravir biotransformation in liver cytosol: Species and sex differences in humans, monkeys, rats, and mice. Biopharm Drug Dispos 2021; 42:218-225. [PMID: 33754379 DOI: 10.1002/bdd.2275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/11/2023]
Abstract
Favipiravir is an antiviral agent effective against several RNA viruses that is converted into an inactive oxidative metabolite (M1), mainly by aldehyde oxidase, in humans. In the present study, the biotransformation of favipiravir into M1 in male and female humans, monkeys, rats, and mice was examined in an in vitro system using liver cytosolic fractions. The kinetics for M1 formation followed the Michaelis-Menten model in all species. The Km , Vmax , and CLint values in humans were 602 µM, 466 pmol/min/mg protein, and 776 nl/min/mg protein in males, respectively, and 713 µM, 404 pmol/min/mg protein, and 567 nl/min/mg protein in females, respectively. Species differences in CLint values were monkeys > humans > mice > rats in both males and females, and the variations for males and females were 120- and 96-fold, respectively. Sex differences in CLint values were males > females in humans and mice, females > males in monkeys and rats, and marked variation (4.3-fold) was noted in mice. This suggests that the roles of aldehyde oxidase in the hepatic metabolism of favipiravir differ extensively depending on the species and sex, and this study will aid in the assessment of the antiviral activities of favipiravir against novel and/or variant viruses.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy, Yokohama, Japan
| | - Hideto Jinno
- Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | | |
Collapse
|
30
|
Martinez MN, Mochel JP, Neuhoff S, Pade D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS JOURNAL 2021; 23:59. [PMID: 33907906 DOI: 10.1208/s12248-021-00590-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
This review is a summary of factors affecting the drug pharmacokinetics (PK) of dogs versus humans. Identifying these interspecies differences can facilitate canine-human PK extrapolations while providing mechanistic insights into species-specific drug in vivo behavior. Such a cross-cutting perspective can be particularly useful when developing therapeutics targeting diseases shared between the two species such as cancer, diabetes, cognitive dysfunction, and inflammatory bowel disease. Furthermore, recognizing these differences also supports a reverse PK extrapolations from humans to dogs. To appreciate the canine-human differences that can affect drug absorption, distribution, metabolism, and elimination, this review provides a comparison of the physiology, drug transporter/enzyme location, abundance, activity, and specificity between dogs and humans. Supplemental material provides an in-depth discussion of certain topics, offering additional critical points to consider. Based upon an assessment of available state-of-the-art information, data gaps were identified. The hope is that this manuscript will encourage the research needed to support an understanding of similarities and differences in human versus canine drug PK.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland, 20855, USA.
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Devendra Pade
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
31
|
Erhardt P, Bachmann K, Birkett D, Boberg M, Bodor N, Gibson G, Hawkins D, Hawksworth G, Hinson J, Koehler D, Kress B, Luniwal A, Masumoto H, Novak R, Portoghese P, Sarver J, Serafini MT, Trabbic C, Vermeulen N, Wrighton S. Glossary and tutorial of xenobiotic metabolism terms used during small molecule drug discovery and development (IUPAC Technical Report). PURE APPL CHEM 2021. [DOI: 10.1515/pac-2018-0208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
This project originated more than 15 years ago with the intent to produce a glossary of drug metabolism terms having definitions especially applicable for use by practicing medicinal chemists. A first-draft version underwent extensive beta-testing that, fortuitously, engaged international audiences in a wide range of disciplines involved in drug discovery and development. It became clear that the inclusion of information to enhance discussions among this mix of participants would be even more valuable. The present version retains a chemical structure theme while expanding tutorial comments that aim to bridge the various perspectives that may arise during interdisciplinary communications about a given term. This glossary is intended to be educational for early stage researchers, as well as useful for investigators at various levels who participate on today’s highly multidisciplinary, collaborative small molecule drug discovery teams.
Collapse
Affiliation(s)
- Paul Erhardt
- Center for Drug Design and Development , University of Toledo , Toledo , Ohio , USA
| | | | - Donald Birkett
- Department of Clinical Pharmacology , Flinders University , Adelaide , Australia (now Emeritus), (TGM)
| | - Michael Boberg
- Metabolism and Isotope Chemistry , Bayer , AG , Germany (now undetermined), (TGM)
| | - Nicholas Bodor
- Center for Drug Discovery , University of Florida , Belle Glade , FL , USA (now Emeritus Grad Res Prof/CEO Bodor Labs), (TGM)
| | - Gordon Gibson
- School of Biomedical and Life Sciences, University of Surrey , Surrey , UK (now deceased), (TGM)
| | - David Hawkins
- Huntingdon Life Sciences , Huntingdon , UK (now retired), (TGM)
| | - Gabrielle Hawksworth
- Department of Medicine and Therapeutics , University Aberdeen , Aberdeen , UK (now deceased), (TGM)
| | - Jack Hinson
- Division of Toxicology , University Arkansas for Medical Sciences , Little Rock , Arkansas , USA (now Emeritus Dist Prof), (TGM)
| | - Daniel Koehler
- Department of Pharmacology , University of Toledo , Toledo , Ohio , USA, (ST)
| | - Brian Kress
- Department of Medicinal and Biological Chemistry , University of Toledo , Toledo , Ohio , USA, (ST)
| | | | - Hiroshi Masumoto
- Drug Metabolism , Daiichi Pharm. Corp., Ltd. , Chuo , Tokyo , Japan (now retired), (TGM)
| | - Raymond Novak
- Institute of Environmental Health Science, Wayne State University , Detroit , Michigan , USA (now undetermined), (TGM)
| | - Phillip Portoghese
- Department of Medicinal Chemistry , University of Minnesota , Minneapolis , Minnesota , USA (now same), (TGM)
| | - Jeffrey Sarver
- Department of Pharmacology , University of Toledo , Toledo , Ohio , USA, (ST)
| | - M. Teresa Serafini
- Department of Pharmacokinetics and Drug Metabolism , Laboratories Dr. Esteve, S.A. , Barcelona , Spain (now Head Early ADME), (TGM)
| | | | - Nico Vermeulen
- Department of Pharmacochemistry , Vrije University , Amsterdam , Netherlands (now Emeritus Section Molecular Toxicology), (TGM)
| | - Steven Wrighton
- Eli Lilly, Inc. , Indianapolis , Indiana , USA (now retired), (TGM)
| |
Collapse
|
32
|
Uno Y, Uehara S, Murayama N, Yamazaki H. Genetic variants of aldehyde oxidase (AOX) 1 in cynomolgus and rhesus macaques. Xenobiotica 2021; 51:494-499. [PMID: 33434089 DOI: 10.1080/00498254.2021.1874564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The cynomolgus macaque is a non-human primate species widely used in drug metabolism studies. Despite the importance of genetic polymorphisms in cytosolic aldehyde oxidase (AOX) 1 in humans, genetic variants have not been investigated in cynomolgus or rhesus macaques.Genetic variants in AOX1 were identified and allele frequencies were assessed using the genomes of 24 cynomolgus and 8 rhesus macaques. The analysis identified 38 non-synonymous variants, some of which were unique to cynomolgus macaques (bred in Cambodia, Indochina, or Indonesia) or rhesus macaques, whereas many variants were shared by the two lineages.Among the variants observed at relatively high frequencies, eight were selected for functional analysis. Recombinant P605L and V1338I AOX1 variants showed substantially lower phthalazine and carbazeran oxidation activities than the wild-type AOX1 protein.In liver cytosolic fractions from cynomolgus and rhesus macaques genotyped for P605L and V1338I AOX1, groups of cytosolic fractions with P605L and/or V1338I AOX1 variants showed significantly lower phthalazine and carbazeran oxidation activities than the wild type.These results indicate that AOX1 is polymorphic in cynomolgus and rhesus macaques, just as it is in humans. Further investigation is needed to reveal the functional significance of these AOX1 variants in drug metabolism.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan.,Shin Nippon Biomedical Laboratories, Ltd, Kainan, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
33
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
34
|
Abbasi A, Joswig-Jones CA, Jones JP. Site-Directed Mutagenesis at the Molybdenum Pterin Cofactor Site of the Human Aldehyde Oxidase: Interrogating the Kinetic Differences Between Human and Cynomolgus Monkey. Drug Metab Dispos 2020; 48:1364-1371. [PMID: 33020066 PMCID: PMC7718725 DOI: 10.1124/dmd.120.000187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022] Open
Abstract
The estimation of the drug clearance by aldehyde oxidase (AO) has been complicated because of this enzyme's atypical kinetics and species and substrate specificity. Since human AO (hAO) and cynomolgus monkey AO (mAO) have a 95.1% sequence identity, cynomolgus monkeys may be the best species for estimating AO clearance in humans. Here, O6-benzylguanine (O6BG) and dantrolene were used under anaerobic conditions, as oxidative and reductive substrates of AO, respectively, to compare and contrast the kinetics of these two species through numerical modeling. Whereas dantrolene reduction followed the same linear kinetics in both species, the oxidation rate of O6BG was also linear in mAO and did not follow the already established biphasic kinetics of hAO. In an attempt to determine why hAO and mAO are kinetically distinct, we have altered the hAO V811 and F885 amino acids at the oxidation site adjacent to the molybdenum pterin cofactor to the corresponding alanine and leucine in mAO, respectively. Although some shift to a more monkey-like kinetics was observed for the V811A mutant, five more mutations around the AO cofactors still need to be investigated for this purpose. In comparing the oxidative and reductive rates of metabolism under anaerobic conditions, we have come to the conclusion that despite having similar rates of reduction (4-fold difference), the oxidation rate in mAO is more than 50-fold slower than hAO. This finding implies that the presence of nonlinearity in AO kinetics is dependent upon the degree of imbalance between the rates of oxidation and reduction in this enzyme. SIGNIFICANCE STATEMENT: Although they have as much as 95.1% sequence identity, human and cynomolgus monkey aldehyde oxidase are kinetically distinct. Therefore, monkeys may not be good estimators of drug clearance in humans.
Collapse
Affiliation(s)
- Armina Abbasi
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|
35
|
Matsumoto K, Hasegawa T, Ohara K, Kamei T, Koyanagi J, Akimoto M. Role of human flavin-containing monooxygenase (FMO) 5 in the metabolism of nabumetone: Baeyer-Villiger oxidation in the activation of the intermediate metabolite, 3-hydroxy nabumetone, to the active metabolite, 6-methoxy-2-naphthylacetic acid in vitro. Xenobiotica 2020; 51:155-166. [PMID: 33146575 DOI: 10.1080/00498254.2020.1843089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Nabumetone (NAB) is a non-steroidal anti-inflammatory drug used clinically, and its biotransformation includes the major active metabolite 6-methoxy-2-naphthylacetic acid (6-MNA). One of the key intermediates between NAB and 6-MNA may be 3-hydroxy nabumetone (3-OH-NAB). The aim of the present study was to investigate the role of flavin-containing monooxygenase (FMO) isoform 5 in the formation of 6-MNA from 3-OH-NAB. To elucidate the biotransformation of 3-OH-NAB to 6-MNA, an authentic standard of 3-OH-NAB was synthesised and used as a substrate in an incubation with human liver samples or recombinant enzymes. The formation of 3-OH-NAB was observed after the incubation of NAB with various cytochrome P450 (CYP) isoforms. However, 6-MNA itself was rarely detected from NAB and 3-OH-NAB. Further experiments revealed a 6-MNA peak derived from 3-OH-NAB in human hepatocytes. 6-MNA was also detected in the extract obtained from 3-OH-NAB by a combined incubation of recombinant human FMO5 and human liver S9. We herein demonstrated that the reaction involves carbon-carbon cleavage catalyzed by the Baeyer-Villiger oxidation (BVO) of a carbonyl compound, the BVO substrate, such as a ketol, by FMO5. Further in vitro inhibition experiments showed that multiple non-CYP enzymes are involved in the formation of 6-MNA from 3-OH-NAB.
Collapse
Affiliation(s)
- Kaori Matsumoto
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Tetsuya Hasegawa
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Kosuke Ohara
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Tomoyo Kamei
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Junichi Koyanagi
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| | - Masayuki Akimoto
- Faculty of Pharmaceutical Sciences, Josai International University, Togane, Japan
| |
Collapse
|
36
|
Glaenzel U, Jin Y, Hansen R, Schroer K, Rahmanzadeh G, Pfaar U, Jaap van Lier J, Borell H, Meissner A, Camenisch G, Zhao S. Absorption, Distribution, Metabolism, and Excretion of Capmatinib (INC280) in Healthy Male Volunteers and In Vitro Aldehyde Oxidase Phenotyping of the Major Metabolite. Drug Metab Dispos 2020; 48:873-885. [PMID: 32665418 DOI: 10.1124/dmd.119.090324] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/24/2020] [Indexed: 02/13/2025] Open
Abstract
Capmatinib (INC280), a highly selective and potent inhibitor of the MET receptor tyrosine kinase, has demonstrated clinically meaningful efficacy and a manageable safety profile in patients with advanced non-small-cell lung cancer harboring MET exon 14-skipping mutations. We investigated the absorption, distribution, metabolism, and excretion of capmatinib in six healthy male volunteers after a single peroral dose of 600 mg 14C-labeled capmatinib. The mass balance, blood and plasma radioactivity, and plasma capmatinib concentrations were determined along with metabolite profiles in plasma, urine, and feces. The metabolite structures were elucidated using mass spectrometry and comparing with reference compounds. The parent compound accounted for most of the radioactivity in plasma (42.9% ± 2.9%). The extent of oral absorption was estimated to be 49.6%; the Cmax of capmatinib in plasma was reached at 2 hours (median time to reach Cmax). The apparent mean elimination half-life of capmatinib in plasma was 7.84 hours. Apparent distribution volume of capmatinib during the terminal phase was moderate-to-high (geometric mean 473 l). Metabolic reactions involved lactam formation, hydroxylation, N-dealkylation, formation of a carboxylic acid, hydrogenation, N-oxygenation, glucuronidation, and combinations thereof. M16, the most abundant metabolite in plasma, urine, and feces was formed by lactam formation. Absorbed capmatinib was eliminated mainly by metabolism and subsequent biliary/fecal and renal excretion. Excretion of radioactivity was complete after 7 days. CYP phenotyping demonstrated that CYP3A was the major cytochrome P450 enzyme subfamily involved in hepatic microsomal metabolism, and in vitro studies in hepatic cytosol indicated that M16 formation was mainly catalyzed by aldehyde oxidase. SIGNIFICANCE STATEMENT: The absorption, distribution, metabolism, and excretion of capmatinib revealed that capmatinib had substantial systemic availability after oral administration. It was also extensively metabolized and largely distributed to the peripheral tissue. Mean elimination half-life was 7.84 hours. The most abundant metabolite, M16, was formed by imidazo-triazinone formation catalyzed by cytosolic aldehyde oxidase. Correlation analysis, specific inhibition, and recombinant enzymes phenotyping demonstrated that CYP3A is the major enzyme subfamily involved in the hepatic microsomal metabolism of [14C]capmatinib.
Collapse
Affiliation(s)
- Ulrike Glaenzel
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., G.R., U.P., H.B., A.M., G.C., S.Z.); Preclinical Safety, Novartis Pharma AG, Basel, Switzerland (R.H.); Novartis Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland (K.S., A.M.); and PRA Health Sciences, The Netherlands (J.J.v.L.)
| | - Yi Jin
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., G.R., U.P., H.B., A.M., G.C., S.Z.); Preclinical Safety, Novartis Pharma AG, Basel, Switzerland (R.H.); Novartis Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland (K.S., A.M.); and PRA Health Sciences, The Netherlands (J.J.v.L.)
| | - Regine Hansen
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., G.R., U.P., H.B., A.M., G.C., S.Z.); Preclinical Safety, Novartis Pharma AG, Basel, Switzerland (R.H.); Novartis Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland (K.S., A.M.); and PRA Health Sciences, The Netherlands (J.J.v.L.)
| | - Kirsten Schroer
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., G.R., U.P., H.B., A.M., G.C., S.Z.); Preclinical Safety, Novartis Pharma AG, Basel, Switzerland (R.H.); Novartis Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland (K.S., A.M.); and PRA Health Sciences, The Netherlands (J.J.v.L.)
| | - Gholamreza Rahmanzadeh
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., G.R., U.P., H.B., A.M., G.C., S.Z.); Preclinical Safety, Novartis Pharma AG, Basel, Switzerland (R.H.); Novartis Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland (K.S., A.M.); and PRA Health Sciences, The Netherlands (J.J.v.L.)
| | - Ulrike Pfaar
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., G.R., U.P., H.B., A.M., G.C., S.Z.); Preclinical Safety, Novartis Pharma AG, Basel, Switzerland (R.H.); Novartis Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland (K.S., A.M.); and PRA Health Sciences, The Netherlands (J.J.v.L.)
| | - Jan Jaap van Lier
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., G.R., U.P., H.B., A.M., G.C., S.Z.); Preclinical Safety, Novartis Pharma AG, Basel, Switzerland (R.H.); Novartis Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland (K.S., A.M.); and PRA Health Sciences, The Netherlands (J.J.v.L.)
| | - Hubert Borell
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., G.R., U.P., H.B., A.M., G.C., S.Z.); Preclinical Safety, Novartis Pharma AG, Basel, Switzerland (R.H.); Novartis Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland (K.S., A.M.); and PRA Health Sciences, The Netherlands (J.J.v.L.)
| | - Axel Meissner
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., G.R., U.P., H.B., A.M., G.C., S.Z.); Preclinical Safety, Novartis Pharma AG, Basel, Switzerland (R.H.); Novartis Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland (K.S., A.M.); and PRA Health Sciences, The Netherlands (J.J.v.L.)
| | - Gian Camenisch
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., G.R., U.P., H.B., A.M., G.C., S.Z.); Preclinical Safety, Novartis Pharma AG, Basel, Switzerland (R.H.); Novartis Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland (K.S., A.M.); and PRA Health Sciences, The Netherlands (J.J.v.L.)
| | - Sylvia Zhao
- PK-Sciences, Novartis Pharma AG, Basel, Switzerland (U.G., Y.J., G.R., U.P., H.B., A.M., G.C., S.Z.); Preclinical Safety, Novartis Pharma AG, Basel, Switzerland (R.H.); Novartis Global Discovery Chemistry, Novartis Pharma AG, Basel, Switzerland (K.S., A.M.); and PRA Health Sciences, The Netherlands (J.J.v.L.)
| |
Collapse
|
37
|
Uehara S, Yoneda N, Higuchi Y, Yamazaki H, Suemizu H. Human Aldehyde Oxidase 1-Mediated Carbazeran Oxidation in Chimeric TK-NOG Mice Transplanted with Human Hepatocytes. Drug Metab Dispos 2020; 48:580-586. [PMID: 32357972 DOI: 10.1124/dmd.120.091090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/10/2020] [Indexed: 02/13/2025] Open
Abstract
Carbazeran is a potent phosphodiesterase inhibitor with species-dependent metabolic profiles in rats, dogs, and humans. In this study, we investigated the aldehyde oxidase (AOX)-mediated oxidation of carbazeran to 4-oxo derivatives in chimeric NOD/Shi-scid IL2 receptor gamma-null mice expressing a herpes simplex virus type 1 thymidine kinase transgene with humanized livers (humanized-liver mice). Liver cytosolic fractions from humanized-liver mouse effectively catalyzed carbazeran 4-oxidation with high affinity for the substrate, similar to those of the human liver cytosolic fractions and recombinant human AOX1 protein. Furthermore, hepatocytes prepared from humanized-liver mice and humans also exhibited substantial metabolism via carbazeran 4-oxidation. After a single oral administration of carbazeran (10 mg/kg), plasma levels of 4-oxo-carbazeran, N-desethyl-4-oxo-carbazeran, and 6,7-dimethoxy-1-[4-(hydroxy)-piperidino]-4-phthalazinone (three human metabolites formed via 4-oxidation) were higher in humanized-liver mice than in the control mice. In contrast, plasma levels of O-desmethylcarbazeran (a major metabolite in dogs) in control mice were higher than those in the humanized-liver mice. Relative excreted amounts of the three 4-oxidation-derived human-specific metabolites in the urine and feces were greater for humanized-liver mice than control mice, whereas the relative excreted amounts of O-desmethylcarbazeran were predominant in the urine and feces of control mice. Thus, the production of carbazeran 4-oxo derivatives was elevated in humanized-liver mice compared with control mice, in agreement with our in vitro enzyme-mediated oxidation data. These results suggest that hepatic human AOX1 functions in humanized-liver mice at the in vivo level and that humanized-liver mice may be useful for predicting drug metabolism in humans, at least with regard to human AOX1-dependent metabolism. SIGNIFICANCE STATEMENT: We found that the production of carbazeran 4-oxo derivatives was higher in humanized-liver mice than in control mice. These results were supported by the fact that carbazeran was rapidly metabolized to 4-oxo-carbazeran in humanized-liver mouse hepatocytes expressing human aldehyde oxidase 1. These results suggest that human aldehyde oxidase 1 is functional in humanized-liver mice in vivo and that chimeric NOD/Shi-scid IL2 receptor gamma-null mice expressing a herpes simplex virus type 1 thymidine kinase transgene transplanted with human hepatocytes may be a suitable model animal for predicting aldehyde oxidase-dependent biotransformation of drugs in humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (S.U., N.Y., Y.H., H.S.) and the Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (H.Y.)
| | - Nao Yoneda
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (S.U., N.Y., Y.H., H.S.) and the Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (H.Y.)
| | - Yuichiro Higuchi
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (S.U., N.Y., Y.H., H.S.) and the Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (H.Y.)
| | - Hiroshi Yamazaki
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (S.U., N.Y., Y.H., H.S.) and the Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (H.Y.)
| | - Hiroshi Suemizu
- Laboratory Animal Research Department, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan (S.U., N.Y., Y.H., H.S.) and the Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (H.Y.)
| |
Collapse
|
38
|
Janetka JW, Hopper AT, Yang Z, Barks J, Dhason MS, Wang Q, Sibley LD. Optimizing Pyrazolopyrimidine Inhibitors of Calcium Dependent Protein Kinase 1 for Treatment of Acute and Chronic Toxoplasmosis. J Med Chem 2020; 63:6144-6163. [PMID: 32420739 PMCID: PMC7325724 DOI: 10.1021/acs.jmedchem.0c00419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Calcium dependent protein kinase 1 (CDPK1) is an essential Ser/Thr kinase that controls invasion and egress by the protozoan parasite Toxoplasma gondii. The Gly gatekeeper of CDPK1 makes it exquisitely sensitive to inhibition by small molecule 1H-pyrazolo[3,4-d]pyrimidine-4-amine (PP) compounds that are bulky ATP mimetics. Here we rationally designed, synthesized, and tested a series of novel PP analogs that were evaluated for inhibition of CDPK1 enzyme activity in vitro and parasite growth in cell culture. Optimal substitution on the PP scaffold included 2-pyridyl ethers directed into the hydrophobic pocket and small carbocyclic rings accessing the ribose-binding pocket. Further optimization of the series led to identification of the lead compound 3a that displayed excellent potency, selectivity, safety profile, and efficacy in vivo. The results of these studies provide a foundation for further work to optimize CDPK1 inhibitors for the treatment of acute and chronic toxoplasmosis.
Collapse
Affiliation(s)
- James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis. MO 63110
| | | | - Ziping Yang
- Vyera Pharmaceuticals, 600 Third Avenue, New York, NY 10016
| | - Jennifer Barks
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis. MO 63110
| | - Mary Savari Dhason
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis. MO 63110
| | - Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis. MO 63110
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis. MO 63110
| |
Collapse
|
39
|
Terao M, Garattini E, Romão MJ, Leimkühler S. Evolution, expression, and substrate specificities of aldehyde oxidase enzymes in eukaryotes. J Biol Chem 2020; 295:5377-5389. [PMID: 32144208 PMCID: PMC7170512 DOI: 10.1074/jbc.rev119.007741] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldehyde oxidases (AOXs) are a small group of enzymes belonging to the larger family of molybdo-flavoenzymes, along with the well-characterized xanthine oxidoreductase. The two major types of reactions that are catalyzed by AOXs are the hydroxylation of heterocycles and the oxidation of aldehydes to their corresponding carboxylic acids. Different animal species have different complements of AOX genes. The two extremes are represented in humans and rodents; whereas the human genome contains a single active gene (AOX1), those of rodents, such as mice, are endowed with four genes (Aox1-4), clustering on the same chromosome, each encoding a functionally distinct AOX enzyme. It still remains enigmatic why some species have numerous AOX enzymes, whereas others harbor only one functional enzyme. At present, little is known about the physiological relevance of AOX enzymes in humans and their additional forms in other mammals. These enzymes are expressed in the liver and play an important role in the metabolisms of drugs and other xenobiotics. In this review, we discuss the expression, tissue-specific roles, and substrate specificities of the different mammalian AOX enzymes and highlight insights into their physiological roles.
Collapse
Affiliation(s)
- Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milano, Italy
| | - Maria João Romão
- UCIBIO-Applied Biomolecular Sciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
40
|
Urinary Excretion of N1-methyl-2-pyridone-5-carboxamide and N1-methylnicotinamide in Renal Transplant Recipients and Donors. J Clin Med 2020; 9:jcm9020437. [PMID: 32041099 PMCID: PMC7074074 DOI: 10.3390/jcm9020437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
N1-methylnicotinamide (N1-MN) and N1-methyl-2-pyridone-5-carboxamide (2Py) are successive end products of NAD+ catabolism. N1-MN excretion in 24-h urine is the established biomarker of niacin nutritional status, and recently shown to be reduced in renal transplant recipients (RTR). However, it is unclear whether 2Py excretion is increased in this population, and, if so, whether a shift in excretion of N1-MN to 2Py can be attributed to kidney function. Hence, we assessed the 24-h urinary excretion of 2Py and N1-MN in RTR and kidney donors before and after kidney donation, and investigated associations of the urinary ratio of 2Py to N1-MN (2Py/N1-MN) with kidney function, and independent determinants of urinary 2Py/N1-MN in RTR. The urinary excretion of 2Py and N1-MN was measured in a cross-sectional cohort of 660 RTR and 275 healthy kidney donors with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Linear regression analyses were used to investigate associations and determinants of urinary 2Py/N1-MN. Median 2Py excretion was 178.1 (130.3–242.8) μmol/day in RTR, compared to 155.6 (119.6–217.6) μmol/day in kidney donors (p < 0.001). In kidney donors, urinary 2Py/N1-MN increased significantly after kidney donation (4.0 ± 1.4 to 5.2 ± 1.5, respectively; p < 0.001). Smoking, alcohol consumption, diabetes, high-density lipoprotein (HDL), high-sensitivity C-reactive protein (hs-CRP) and estimated glomerular filtration rate (eGFR) were identified as independent determinants of urinary 2Py/N1-MN in RTR. In conclusion, the 24-h urinary excretion of 2Py is higher in RTR than in kidney donors, and urinary 2Py/N1-MN increases after kidney donation. As our data furthermore reveal strong associations of urinary 2Py/N1-MN with kidney function, interpretation of both N1-MN and 2Py excretion may be recommended for assessment of niacin nutritional status in conditions of impaired kidney function.
Collapse
|
41
|
Population Pharmacokinetics of Sulindac and Genetic Polymorphisms of FMO3 and AOX1 in Women with Preterm Labor. Pharm Res 2020; 37:44. [PMID: 31993760 DOI: 10.1007/s11095-020-2765-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE This prospective study aimed to evaluate the effects of genetic polymorphisms in sulindac-related metabolizing enzyme genes including FMO3 and AOX1 on the population pharmacokinetics of sulindac in 58 pregnant women with preterm labor. METHODS Plasma samples were collected at 1.5, 4, and 10 h after first oral administration of sulindac. Plasma concentrations of sulindac and its active metabolite (sulindac sulfide) were determined, and pharmacokinetic analysis was performed with NONMEM 7.3. RESULTS The mean maternal and gestational ages at the time of dosing were 32.5 ± 4.4 (range, 20-41) years and 27.4 ± 4.4 (range, 16.4-33.4) weeks, respectively. In the population pharmacokinetic analysis, one depot compartment model of sulindac with absorption lag time best described the data. The metabolism of sulindac and sulindac sulfide was described using Michaelis-Menten kinetics. In stepwise modeling, gestational age impacted volume of distribution (Vc), and FMO3 rs2266782 was shown by the Michaelis constant to affect conversion of sulindac sulfide to sulindac (KM32); these were retained in the final model. CONCLUSIONS Genetic polymorphisms of FMO3 and AOX1 could affect the pharmacokinetics of sulindac in women who undergo preterm labor. The results of this study could help clinicians develop individualized treatment plans for administering sulindac.
Collapse
|
42
|
Coelho C, Muthukumaran J, Santos‐Silva T, João Romão M. Systematic exploration of predicted destabilizing nonsynonymous single nucleotide polymorphisms (nsSNPs) of human aldehyde oxidase: A Bio-informatics study. Pharmacol Res Perspect 2019; 7:e00538. [PMID: 31768259 PMCID: PMC6874515 DOI: 10.1002/prp2.538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 11/07/2022] Open
Abstract
Aldehyde Oxidase (hAOX1) is a cytosolic enzyme involved in the metabolism of drugs and xenobiotic compounds. The enzyme belongs to the xanthine oxidase (XO) family of Mo containing enzyme and is a homo-dimer of two 150 kDa monomers. Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) of hAOX1 have been reported as affecting the ability of the enzyme to metabolize different substrates. Some of these nsSNPs have been biochemically and structurally characterized but the lack of a systematic and comprehensive study regarding all described and validated nsSNPs is urgent, due to the increasing importance of the enzyme in drug development, personalized medicine and therapy, as well as in pharmacogenetic studies. The objective of the present work was to collect all described nsSNPs of hAOX1 and utilize a series of bioinformatics tools to predict their effect on protein structure stability with putative implications on phenotypic functional consequences. Of 526 nsSNPs reported in NCBI-dbSNP, 119 are identified as deleterious whereas 92 are identified as nondeleterious variants. The stability analysis was performed for 119 deleterious variants and the results suggest that 104 nsSNPs may be responsible for destabilizing the protein structure, whereas five variants may increase the protein stability. Four nsSNPs do not have any impact on protein structure (neutral nsSNPs) of hAOX1. The prediction results of the remaining six nsSNPs are nonconclusive. The in silico results were compared with available experimental data. This methodology can also be used to identify and prioritize the stabilizing and destabilizing variants in other enzymes involved in drug metabolism.
Collapse
Affiliation(s)
- Catarina Coelho
- UCIBIOChemistry DepartmentFaculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
| | - Jayaraman Muthukumaran
- UCIBIOChemistry DepartmentFaculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
| | - Teresa Santos‐Silva
- UCIBIOChemistry DepartmentFaculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
| | - Maria João Romão
- UCIBIOChemistry DepartmentFaculdade de Ciências e TecnologiaUniversidade NOVA de LisboaCaparicaPortugal
| |
Collapse
|
43
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
44
|
Toselli F, Fredenwall M, Svensson P, Li XQ, Johansson A, Weidolf L, Hayes MA. Hip To Be Square: Oxetanes as Design Elements To Alter Metabolic Pathways. J Med Chem 2019; 62:7383-7399. [DOI: 10.1021/acs.jmedchem.9b00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Francesca Toselli
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marlene Fredenwall
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peder Svensson
- Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg 413 46, Sweden
| | - Xue-Qing Li
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Johansson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lars Weidolf
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Martin A. Hayes
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
45
|
Deris-Abdolahpour F, Abdolalipouran-Sadegh L, Dastmalchi S, Hamzeh-Mivehroud M, Zarei O, Dehgan G, Rashidi MR. Effects of Phenothiazines on Aldehyde Oxidase Activity Towards Aldehydes and N-Heterocycles: an In Vitro and In Silico Study. Eur J Drug Metab Pharmacokinet 2019; 44:275-286. [PMID: 30382490 DOI: 10.1007/s13318-018-0514-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Aldehyde oxidase (AOX) is an important molybdenum-containing enzyme with high similarity with xanthine oxidase (XO). AOX involved in the metabolism of a large array of aldehydes and N-heterocyclic compounds and its activity is highly substrate-dependent. OBJECTIVES The aim of this work was to study the effect of five important phenothiazine drugs on AOX activity using benzaldehyde and phenanthridine as aldehyde and N-heterocyclic substrates, respectively. METHODS The effect of trifluperazine, chlorpromazine, perphenazine, thioridazine and promethazine on rat liver AOX was measured spectrophotometrically. To predict the mode of interactions between the studied compounds and AOX, a combination of homology modeling and a molecular docking study was performed. RESULTS All phenothiazines could inhibit AOX activity measured either by phenanthridine or benzaldehyde with almost no effect on XO activity. In the case of benzaldehyde oxidation, the lowest and highest half-maximal inhibitory concentration (IC50) values were obtained for promethazine (IC50 = 0.9 µM), and trifluoperazine (IC50 = 3.9 µM), respectively; whereas perphenazine (IC50 = 4.3 µM), and trifluoperazine (IC50 = 49.6 µM) showed the strongest and weakest inhibitory activity against AOX-catalyzed phenanthridine oxidation, respectively. The in silico findings revealed that the binding site of thioridazine is near the dimer interference, and that hydrophobic interactions are of great importance in all the tested phenothiazines. CONCLUSION The five studied phenothiazine drugs showed dual inhibitory effects on AOX activity towards aldehydes and N-heterocycles as two major classes of enzyme substrates. Most of the interactions between the phenothiazine-related drugs and AOX in the binding pocket showed a hydrophobic nature.
Collapse
Affiliation(s)
| | | | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Zarei
- Neurosciences Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Gholamreza Dehgan
- Department of Zoology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
| |
Collapse
|
46
|
Kazem S, Linssen EC, Gibbs S. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discov Today 2019; 24:1899-1910. [PMID: 31176740 DOI: 10.1016/j.drudis.2019.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023]
Abstract
Understanding skin metabolism is important when considering drug discovery and safety assessment. This review compares xenobiotic skin metabolism in ex vivo skin to reconstructed human skin and reconstructed human epidermis models, concentrating on phase I and phase II enzymes. Reports on phase I enzymes are more abundant than for phase II enzymes with mRNA and protein expression far more reported than enzyme activity. Almost all of the xenobiotic metabolizing enzymes detected in human skin are also present in liver. However, in general the relative levels are lower in skin than in liver and fewer enzymes are reported.
Collapse
Affiliation(s)
- Siamaque Kazem
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emma Charlotte Linssen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Abbasi A, Paragas EM, Joswig-Jones CA, Rodgers JT, Jones JP. Time Course of Aldehyde Oxidase and Why It Is Nonlinear. Drug Metab Dispos 2019; 47:473-483. [PMID: 30787100 PMCID: PMC6439458 DOI: 10.1124/dmd.118.085787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
Many promising drug candidates metabolized by aldehyde oxidase (AOX) fail during clinical trial owing to underestimation of their clearance. AOX is species-specific, which makes traditional allometric studies a poor choice for estimating human clearance. Other studies have suggested using half-life calculated by measuring substrate depletion to measure clearance. In this study, we proposed using numerical fitting to enzymatic pathways other than Michaelis-Menten (MM) to avoid missing the initial high turnover rate of product formation. Here, product formation over a 240-minute time course of six AOX substrates-O6-benzylguanine, N-(2-dimethylamino)ethyl)acridine-4-carboxamide, zaleplon, phthalazine, BIBX1382 [N8-(3-Chloro-4-fluorophenyl)-N2-(1-methyl-4-piperidinyl)-pyrimido[5,4-d]pyrimidine-2,8-diamine dihydrochloride], and zoniporide-have been provided to illustrate enzyme deactivation over time to help better understand why MM kinetics sometimes leads to underestimation of rate constants. Based on the data provided in this article, the total velocity for substrates becomes slower than the initial velocity by 3.1-, 6.5-, 2.9-, 32.2-, 2.7-, and 0.2-fold, respectively, in human expressed purified enzyme, whereas the K m remains constant. Also, our studies on the role of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide, show that ROS did not significantly alter the change in enzyme activity over time. Providing a new electron acceptor, 5-nitroquinoline, did, however, alter the change in rate over time for mumerous compounds. The data also illustrate the difficulties in using substrate disappearance to estimate intrinsic clearance.
Collapse
Affiliation(s)
- Armina Abbasi
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Erickson M Paragas
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | - John T Rodgers
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|
48
|
Padilha EC, Wang J, Kerns E, Lee A, Huang W, Jiang JK, McKew J, Mutlib A, Peccinini RG, Yu PB, Sanderson P, Xu X. Application of in vitro Drug Metabolism Studies in Chemical Structure Optimization for the Treatment of Fibrodysplasia Ossificans Progressiva (FOP). Front Pharmacol 2019; 10:234. [PMID: 31068801 PMCID: PMC6491728 DOI: 10.3389/fphar.2019.00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
Currently no approved treatment exists for fibrodysplasia ossificans progressiva (FOP) patients, and disease progression results in severe restriction of joint function and premature mortality. LDN-193189 has been demonstrated to be efficacious in a mouse FOP disease model after oral administration. To support species selection for drug safety evaluation and to guide structure optimization for back-up compounds, in vitro metabolism of LDN-193189 was investigated in liver microsome and cytosol fractions of mouse, rat, dog, rabbit, monkey and human. Metabolism studies included analysis of reactive intermediate formation using glutathione and potassium cyanide (KCN) and analysis of non-P450 mediated metabolites in cytosol fractions of various species. Metabolite profiles and metabolic soft spots of LDN-193189 were elucidated using LC/UV and mass spectral techniques. The in vitro metabolism of LDN-193189 was significantly dependent on aldehyde oxidase, with formation of the major NIH-Q55 metabolite. The piperazinyl moiety of LDN-193189 was liable to NADPH-dependent metabolism which generated reactive iminium intermediates, as confirmed through KCN trapping experiments, and aniline metabolites (M337 and M380), which brought up potential drug safety concerns. Subsequently, strategies were employed to avoid metabolic liabilities leading to the synthesis of Compounds 1, 2, and 3. This study demonstrated the importance of metabolite identification for the discovery of novel and safe drug candidates for the treatment of FOP and helped medicinal chemists steer away from potential metabolic liabilities.
Collapse
Affiliation(s)
- Elias C Padilha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States.,Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Jianyao Wang
- Department of Pharmacokinetics, Dynamics and Metabolism, Discovery Sciences, Janssen Research and Development, Spring House, PA, United States.,Frontage Laboratories, Inc., Department of Drug Metabolism, Exton, PA, United States
| | - Ed Kerns
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Arthur Lee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Wenwei Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Jian-Kang Jiang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - John McKew
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Abdul Mutlib
- Frontage Laboratories, Inc., Department of Drug Metabolism, Exton, PA, United States
| | - Rosangela G Peccinini
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Paul B Yu
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Philip Sanderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
49
|
Ahmed Laskar A, Younus H. Aldehyde toxicity and metabolism: the role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab Rev 2019; 51:42-64. [DOI: 10.1080/03602532.2018.1555587] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amaj Ahmed Laskar
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
50
|
Mota C, Esmaeeli M, Coelho C, Santos-Silva T, Wolff M, Foti A, Leimkühler S, Romão MJ. Human aldehyde oxidase (hAOX1): structure determination of the Moco-free form of the natural variant G1269R and biophysical studies of single nucleotide polymorphisms. FEBS Open Bio 2019; 9:925-934. [PMID: 30985987 PMCID: PMC6487702 DOI: 10.1002/2211-5463.12617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/17/2022] Open
Abstract
Human aldehyde oxidase (hAOX1) is a molybdenum enzyme with high toxicological importance, but its physiological role is still unknown. hAOX1 metabolizes different classes of xenobiotics and is one of the main drug‐metabolizing enzymes in the liver, along with cytochrome P450. hAOX1 oxidizes and inactivates a large number of drug molecules and has been responsible for the failure of several phase I clinical trials. The interindividual variability of drug‐metabolizing enzymes caused by single nucleotide polymorphisms (SNPs) is highly relevant in pharmaceutical treatments. In this study, we present the crystal structure of the inactive variant G1269R, revealing the first structure of a molybdenum cofactor (Moco)‐free form of hAOX1. These data allowed to model, for the first time, the flexible Gate 1 that controls access to the active site. Furthermore, we inspected the thermostability of wild‐type hAOX1 and hAOX1 with various SNPs (L438V, R1231H, G1269R or S1271L) by CD spectroscopy and ThermoFAD, revealing that amino acid exchanges close to the Moco site can impact protein stability up to 10 °C. These results correlated with biochemical and structural data and enhance our understanding of hAOX1 and the effect of SNPs in the gene encoding this enzyme in the human population. Enzymes Aldehyde oxidase (EC1.2.3.1); xanthine dehydrogenase (EC1.17.1.4); xanthine oxidase (EC1.1.3.2). Databases Structural data are available in the Protein Data Bank under the accession number 6Q6Q.
Collapse
Affiliation(s)
- Cristiano Mota
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Mariam Esmaeeli
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Catarina Coelho
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Martin Wolff
- Department of Physical Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Alessandro Foti
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Maria João Romão
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|