451
|
Moeller ME, Fock J, Pah P, Veras ADLC, Bade M, Donolato M, Israelsen SB, Eugen‐Olsen J, Benfield T, Engsig FN. Evaluation of commercially available immuno-magnetic agglutination in comparison to enzyme-linked immunosorbent assays for rapid point-of-care diagnostics of COVID-19. J Med Virol 2021; 93:3084-3091. [PMID: 33547818 PMCID: PMC8013206 DOI: 10.1002/jmv.26854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Fast, accurate, and simple blood-based assays for quantification of anti-SARS-CoV-2 antibodies are urgently needed to identify infected individuals and keep track of the spread of disease. METHODS The study included 33 plasma samples from 20 individuals with confirmed COVID-19 by real-time reverse-transcriptase polymerase chain reaction and 40 non-COVID-19 plasma samples. Anti-SARS-CoV-2 immunoglobulin M (IgM)/immunoglobulin A (IgA) or immunoglobulin G (IgG) antibodies were detected by a microfluidic quantitative immunomagnetic assay (IMA) (ViroTrack Sero COVID IgM + IgA/IgG Ab, Blusense Diagnostics) and compared to an enzyme-linked immunosorbent assay (ELISA) (EuroImmun Medizinische Labordiagnostika). RESULTS Of the 33 plasma samples from the COVID-19 patients, 28 were positive for IgA/IgM or IgG by IMA and 29 samples were positive by ELISA. Sensitivity for only one sample per patient was 68% for IgA + IgM and 75% IgG by IMA and 80% by ELISA. For samples collected 14 days after symptom onset, the sensitivity of both IMA and ELISA was around 91%. The specificity of the IMA reached 100% compared to 95% for ELISA IgA and 97.5% for ELISA IgG. CONCLUSION IMA for COVID-19 is a rapid simple-to-use point-of-care test with sensitivity and specificity similar to a commercial ELISA.
Collapse
Affiliation(s)
- Maria E. Moeller
- Department of Infectious Diseases, Copenhagen University HospitalAmager and Hvidovre HospitalHvidovreDenmark
| | - Jeppe Fock
- BluSense Diagnostics ApSCopenhagenDenmark
| | | | | | | | | | - Simone B. Israelsen
- Department of Infectious Diseases, Copenhagen University HospitalAmager and Hvidovre HospitalHvidovreDenmark
| | - Jesper Eugen‐Olsen
- Department of Clinical Research, Copenhagen University HospitalAmager and Hvidovre HospitalHvidovreDenmark
| | - Thomas Benfield
- Department of Infectious Diseases, Copenhagen University HospitalAmager and Hvidovre HospitalHvidovreDenmark
- Institute of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Frederik N. Engsig
- Department of Infectious Diseases, Copenhagen University HospitalAmager and Hvidovre HospitalHvidovreDenmark
| |
Collapse
|
452
|
Neagu M, Calina D, Docea AO, Constantin C, Filippini T, Vinceti M, Drakoulis N, Poulas K, Nikolouzakis TK, Spandidos DA, Tsatsakis A. Back to basics in COVID-19: Antigens and antibodies-Completing the puzzle. J Cell Mol Med 2021; 25:4523-4533. [PMID: 33734600 PMCID: PMC8107083 DOI: 10.1111/jcmm.16462] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) has gathered 1 year of scientific/clinical information. This informational asset should be thoroughly and wisely used in the coming year colliding in a global task force to control this infection. Epidemiology of this infection shows that the available estimates of SARS-CoV-2 infection prevalence largely depended on the availability of molecular testing and the extent of tested population. Within molecular diagnosis, the viability and infectiousness of the virus in the tested samples should be further investigated. Moreover, SARS-CoV-2 has a genetic normal evolution that is a dynamic process. The immune system participates to the counterattack of the viral infection by pathogen elimination, cellular homoeostasis, tissue repair and generation of memory cells that would be reactivated upon a second encounter with the same virus. In all these stages, we still have knowledge to be gathered regarding antibody persistence, protective effects and immunological memory. Moreover, information regarding the intense pro-inflammatory action in severe cases still lacks and this is important in stratifying patients for difficult to treat cases. Without being exhaustive, the review will cover these important issues to be acknowledged to further advance in the battle against the current pandemia.
Collapse
Affiliation(s)
- Monica Neagu
- Department of ImmunologyVictor Babes National Institute of PathologyBucharestRomania
- Department of PathologyColentina Clinical HospitalBucharestRomania
- Doctoral SchoolUniversity of BucharestBucharestRomania
| | - Daniela Calina
- Department of Clinical PharmacyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Anca Oana Docea
- Department of ToxicologyUniversity of Medicine and Pharmacy of CraiovaCraiovaRomania
| | - Carolina Constantin
- Department of ImmunologyVictor Babes National Institute of PathologyBucharestRomania
- Department of PathologyColentina Clinical HospitalBucharestRomania
| | - Tommaso Filippini
- Section of Public HealthDepartment of Biomedical, Metabolic and Neural SciencesEnvironmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN)University of Modena and Reggio EmiliaModenaItaly
| | - Marco Vinceti
- Section of Public HealthDepartment of Biomedical, Metabolic and Neural SciencesEnvironmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN)University of Modena and Reggio EmiliaModenaItaly
- Department of EpidemiologyBoston University School of Public HealthBostonMAUSA
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and PharmacogenomicsFaculty of PhrarmacySchool of Health SciencesNational and Kapodistrian University of AthensAthensGreece
| | - Konstantinos Poulas
- Department of PharmacyLaboratory of Molecular Biology and ImmunologyUniversity of PatrasPatrasGreece
| | | | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and ToxicologyFaculty of MedicineUniversity of CreteHeraklionGreece
- Department of Analytical and Forensic Medical ToxicologySechenov UniversityMoscowRussia
| |
Collapse
|
453
|
Demers-Mathieu V, DaPra C, Medo E. Comparison of Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibodies' Binding Capacity Between Human Milk and Serum from Coronavirus Disease 2019-Recovered Women. Breastfeed Med 2021; 16:393-401. [PMID: 33835835 DOI: 10.1089/bfm.2020.0381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Human milk from coronavirus disease 2019 (COVID-19)-recovered women may be useful as oral antibody therapy to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and provide long-term immunity to neonates and young children. As convalescent plasma is already used as antibody therapy, this study aimed to compare the binding capacity of antibodies specific to the receptor-binding domain (RBD) of SARS-CoV-2 between human milk and serum from COVID-19-recovered women. Materials and Methods: The areas under the curve (AUCs) for IgA, IgM, and IgG specific to the SARS-CoV-2 RBD in human milk and serum samples were measured using enzyme-linked immunosorbent assay. Milk samples were collected from 12 COVID-19-recovered women, while serum samples were from 10 COVID-19-recovered women. The antibody concentrations were also determined. Results: Our study reveals that SARS-CoV-2 RBD-specific antibody titers differed between human milk and serum samples from COVID-19-recovered women. When the AUCs were not divided by the antibody concentration, SARS-CoV-2 RBD-specific IgA, IgM, and IgG levels were higher in the serum sample group than the human milk group (p < 0.001). However, the titers of SARS-CoV-2 RBD-specific IgM (AUC/μg of IgM) and IgG (AUC/μg of IgG) were higher in human milk samples than serum samples (p < 0.05). The titer of SARS-CoV-2 RBD-specific IgA (AUC/mg of IgA) was higher in the serum sample group than the human milk group (p < 0.01). Conclusions: Human milk antibodies specific to the RBD of SARS-CoV-2 must be purified to obtain comparable binding capacity observed with SARS-CoV-2 RBD-specific serum antibodies.
Collapse
Affiliation(s)
- Veronique Demers-Mathieu
- Department of Neonatal Immunology and Microbiology, Medolac Laboratories, A Public Benefit Corporation, Boulder City, Nevada, USA
| | - Ciera DaPra
- Department of Neonatal Immunology and Microbiology, Medolac Laboratories, A Public Benefit Corporation, Boulder City, Nevada, USA
| | - Elena Medo
- Department of Neonatal Immunology and Microbiology, Medolac Laboratories, A Public Benefit Corporation, Boulder City, Nevada, USA
| |
Collapse
|
454
|
Bal A, Pozzetto B, Trabaud MA, Escuret V, Rabilloud M, Langlois-Jacques C, Paul A, Guibert N, D’Aubarede-Frieh C, Massardier-Pilonchery A, Fabien N, Goncalves D, Boibieux A, Morfin-Sherpa F, Pitiot V, Gueyffier F, Lina B, Fassier JB, Trouillet-Assant S, COVID SER STUDY GROUP. Evaluation of High-Throughput SARS-CoV-2 Serological Assays in a Longitudinal Cohort of Patients with Mild COVID-19: Clinical Sensitivity, Specificity, and Association with Virus Neutralization Test. Clin Chem 2021; 67:742-752. [PMID: 33399823 PMCID: PMC7929008 DOI: 10.1093/clinchem/hvaa336] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The association between SARS-CoV-2 commercial serological assays and virus neutralization test (VNT) has been poorly explored in mild patients with COVID-19. METHODS 439 serum specimens were longitudinally collected from 76 healthcare workers with RT-PCR-confirmed COVID-19. The clinical sensitivity (determined weekly) of 9 commercial serological assays were evaluated. Clinical specificity was assessed using 69 pre-pandemic sera. Correlation, agreement, and concordance with the VNT were also assessed on a subset of 170 samples. Area under the ROC curve (AUC) was estimated at 2 neutralizing antibody titers. RESULTS The Wantai Total Ab assay targeting the receptor binding domain (RBD) within the S protein presented the best sensitivity at different times during the course of disease. The clinical specificity was greater than 95% for all tests except for the Euroimmun IgA assay. The overall agreement with the presence of neutralizing antibodies ranged from 62.2% (95%CI; 56.0-68.1) for bioMérieux IgM to 91.2% (87.0-94.2) for Siemens. The lowest negative percent agreement (NPA) was found with the Wantai Total Ab assay (NPA 33% (21.1-48.3)). The NPA for other total Ab or IgG assays targeting the S or the RBD was 80.7% (66.7-89.7), 90.3% (78.1-96.1), and 96.8% (86.8-99.3) for Siemens, bioMérieux IgG, and DiaSorin, respectively. None of the commercial assays have sufficient performance to detect a neutralizing titer of 80 (AUC < 0.76). CONCLUSIONS Although some assays show a better agreement with VNT than others, the present findings emphasize that commercialized serological tests, including those targeting the RBD, cannot substitute a VNT for the assessment of functional antibody response.
Collapse
Affiliation(s)
- Antonin Bal
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire associé au Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Bruno Pozzetto
- GIMAP EA 3064 (Groupe Immunité des Muqueuses et Agents Pathogènes), Université Jean Monnet, Lyon University, Saint-Etienne, France
- Laboratory of Infectious Agents and Hygiene, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Mary-Anne Trabaud
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire associé au Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
| | - Vanessa Escuret
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire associé au Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Muriel Rabilloud
- Université de Lyon, F-69000, Lyon, France; Université Lyon 1, F-69100, Villeurbanne, France; Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, F-69003, Lyon, France
- CNRS, UMR 5558, University of Lyon, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, 69100, Villeurbanne, France
| | - Carole Langlois-Jacques
- Université de Lyon, F-69000, Lyon, France; Université Lyon 1, F-69100, Villeurbanne, France; Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, F-69003, Lyon, France
- CNRS, UMR 5558, University of Lyon, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, 69100, Villeurbanne, France
| | - Adèle Paul
- Lyon University, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, 8 avenue Rockefeller Lyon, France
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Guibert
- Lyon University, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, 8 avenue Rockefeller Lyon, France
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Lyon, France
| | - Constance D’Aubarede-Frieh
- Lyon University, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, 8 avenue Rockefeller Lyon, France
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Lyon, France
| | - Amélie Massardier-Pilonchery
- Lyon University, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, 8 avenue Rockefeller Lyon, France
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Lyon, France
| | - Nicole Fabien
- Immunology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - David Goncalves
- Immunology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - André Boibieux
- Infectious Diseases Department, Hospices Civils de Lyon, Lyon, France
| | - Florence Morfin-Sherpa
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire associé au Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Virginie Pitiot
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Lyon, France
| | - François Gueyffier
- CNRS, UMR 5558, University of Lyon, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, 69100, Villeurbanne, France
- Pharmacotoxicology Department, Hospices Civils de Lyon, Lyon, France
| | - Bruno Lina
- Laboratoire de Virologie, Institut des Agents Infectieux, Laboratoire associé au Centre National de Référence des virus des infections respiratoires, Hospices Civils de Lyon, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Jean-Baptiste Fassier
- Lyon University, Université Claude Bernard Lyon1, Ifsttar, UMRESTTE, UMR T_9405, 8 avenue Rockefeller Lyon, France
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Lyon, France
| | - Sophie Trouillet-Assant
- CIRI, Centre International de Recherche en Infectiologie, Team VirPath, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | | |
Collapse
|
455
|
Zimmermann P, Curtis N. Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child 2021; 106:429-439. [PMID: 33262177 DOI: 10.1136/archdischild-2020-320338] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
In contrast to other respiratory viruses, children have less severe symptoms when infected with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we discuss proposed hypotheses for the age-related difference in severity of coronavirus disease 2019 (COVID-19).Factors proposed to explain the difference in severity of COVID-19 in children and adults include those that put adults at higher risk and those that protect children. The former include: (1) age-related increase in endothelial damage and changes in clotting function; (2) higher density, increased affinity and different distribution of angiotensin converting enzyme 2 receptors and transmembrane serine protease 2; (3) pre-existing coronavirus antibodies (including antibody-dependent enhancement) and T cells; (4) immunosenescence and inflammaging, including the effects of chronic cytomegalovirus infection; (5) a higher prevalence of comorbidities associated with severe COVID-19 and (6) lower levels of vitamin D. Factors that might protect children include: (1) differences in innate and adaptive immunity; (2) more frequent recurrent and concurrent infections; (3) pre-existing immunity to coronaviruses; (4) differences in microbiota; (5) higher levels of melatonin; (6) protective off-target effects of live vaccines and (7) lower intensity of exposure to SARS-CoV-2.
Collapse
Affiliation(s)
- Petra Zimmermann
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Nigel Curtis
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
456
|
Assessment of S1-, S2-, and NCP-Specific IgM, IgA, and IgG Antibody Kinetics in Acute SARS-CoV-2 Infection by a Microarray and Twelve Other Immunoassays. J Clin Microbiol 2021; 59:JCM.02890-20. [PMID: 33602698 PMCID: PMC8091850 DOI: 10.1128/jcm.02890-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
In this study, we comprehensively analyzed multispecific antibody kinetics of different immunoglobulins in hospitalized patients with acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Three hundred fifty-four blood samples longitudinally obtained from 81 IgG-seroconverting progressed coronavirus disease 2019 (CoVID-19) patients were quantified for spike 1 (S1), S2, and nucleocapsid protein (NCP)-specific IgM, IgA, IgG, and total Ig antibodies using a microarray, 11 different enzyme-linked immunosorbent assays (ELISAs)/chemiluminescence immunoassays (CLIAs), and 1 rapid test by seven manufacturers. In this study, we comprehensively analyzed multispecific antibody kinetics of different immunoglobulins in hospitalized patients with acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Three hundred fifty-four blood samples longitudinally obtained from 81 IgG-seroconverting progressed coronavirus disease 2019 (CoVID-19) patients were quantified for spike 1 (S1), S2, and nucleocapsid protein (NCP)-specific IgM, IgA, IgG, and total Ig antibodies using a microarray, 11 different enzyme-linked immunosorbent assays (ELISAs)/chemiluminescence immunoassays (CLIAs), and 1 rapid test by seven manufacturers. The assays’ specificity was assessed in 130 non-CoVID-19 pneumonia patients. Using the microarray, NCP-specific IgA and IgG antibodies continuously displayed higher detection rates during acute CoVID-19 than S1- and S2-specific ones. S1-specific IgG antibodies, however, reached higher peak values. Until the 26th day post-symptom onset, all patients developed IgG responses against S1, S2, and NCP. Although detection rates by ELISAs/CLIAs generally resembled those of the microarray, corresponding to the target antigen, sensitivities and specificities varied among all tests. Notably, patients with more severe CoVID-19 displayed higher IgG and IgA levels, but this difference was mainly observed with S1-specific immunoassays. In patients with high SARS-CoV-2 levels in the lower respiratory tract, we observed high detection rates of IgG and total Ig immunoassays with a particular rise of S1-specific IgG antibodies when viral concentrations in the tracheal aspirate subsequently declined over time. In summary, our study demonstrates that differences in sensitivity among commercial immunoassays during acute SARS-CoV-2 infection are only partly related to the target antigen. Importantly, our data indicate that NCP-specific IgA and IgG antibodies are detected earlier, while higher S1-specific IgA antibody levels occur in severely ill patients.
Collapse
|
457
|
Harritshøj LH, Gybel-Brask M, Afzal S, Kamstrup PR, Jørgensen CS, Thomsen MK, Hilsted L, Friis-Hansen L, Szecsi PB, Pedersen L, Nielsen L, Hansen CB, Garred P, Korsholm TL, Mikkelsen S, Nielsen KO, Møller BK, Hansen AT, Iversen KK, Nielsen PB, Hasselbalch RB, Fogh K, Norsk JB, Kristensen JH, Schønning K, Kirkby NS, Nielsen ACY, Landsy LH, Loftager M, Holm DK, Nilsson AC, Sækmose SG, Grum-Schwensen B, Aagaard B, Jensen TG, Nielsen DM, Ullum H, Dessau RB. Comparison of 16 Serological SARS-CoV-2 Immunoassays in 16 Clinical Laboratories. J Clin Microbiol 2021; 59:e02596-20. [PMID: 33574119 PMCID: PMC8091860 DOI: 10.1128/jcm.02596-20] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/09/2021] [Indexed: 01/09/2023] Open
Abstract
Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to support clinical diagnosis and epidemiological investigations. Recently, assays for large-scale detection of total antibodies (Ab), immunoglobulin G (IgG), and IgM against SARS-CoV-2 antigens have been developed, but there are limited data on the diagnostic accuracy of these assays. This study was a Danish national collaboration and evaluated 15 commercial and one in-house anti-SARS-CoV-2 assays in 16 laboratories. Sensitivity was evaluated using 150 samples from individuals with asymptomatic, mild, or moderate COVID-19, nonhospitalized or hospitalized, confirmed by nucleic acid amplification tests (NAAT); samples were collected 13 to 73 days either from symptom onset or from positive NAAT (patients without symptoms). Specificity and cross-reactivity were evaluated in samples collected prior to the SARS-CoV-2 epidemic from >586 blood donors and patients with autoimmune diseases, cytomegalovirus or Epstein-Barr virus infections, and acute viral infections. A specificity of ≥99% was achieved by all total-Ab and IgG assays except one, DiaSorin Liaison XL IgG (97.2%). Sensitivities in descending order were Wantai ELISA total Ab (96.7%), CUH-NOVO in-house ELISA total Ab (96.0%), Ortho Vitros total Ab (95.3%), YHLO iFlash IgG (94.0%), Ortho Vitros IgG (93.3%), Siemens Atellica total Ab (93.2%), Roche Elecsys total Ab (92.7%), Abbott Architect IgG (90.0%), Abbott Alinity IgG (median 88.0%), DiaSorin Liaison XL IgG (median 84.6%), Siemens Vista total Ab (81.0%), Euroimmun/ELISA IgG (78.0%), and Snibe Maglumi IgG (median 78.0%). However, confidence intervals overlapped for several assays. The IgM results were variable, with the Wantai IgM ELISA showing the highest sensitivity (82.7%) and specificity (99%). The rate of seropositivity increased with time from symptom onset and symptom severity.
Collapse
Affiliation(s)
- Lene H Harritshøj
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mikkel Gybel-Brask
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pia R Kamstrup
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Charlotte S Jørgensen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | | | - Linda Hilsted
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lennart Friis-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Bispebjerg, and Frederiksberg Hospital, Copenhagen, Denmark
| | - Pal B Szecsi
- Department of Clinical Biochemistry, Holbæk Hospital, Holbæk, Denmark
| | - Lise Pedersen
- Department of Clinical Biochemistry, Holbæk Hospital, Holbæk, Denmark
| | - Lene Nielsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Cecilie B Hansen
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine-Line Korsholm
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Kirstine O Nielsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne T Hansen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kasper K Iversen
- Department of Cardiology, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Pernille B Nielsen
- Department of Cardiology, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Rasmus B Hasselbalch
- Department of Cardiology, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Kamille Fogh
- Department of Cardiology, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Jakob B Norsk
- Department of Cardiology, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Jonas Henrik Kristensen
- Department of Cardiology, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev og Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Kristian Schønning
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Nikolai S Kirkby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Alex C Y Nielsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lone H Landsy
- Department of Nonclinical and Clinical Assay Sciences in Global Discovery & Development Sciences, Novo Nordisk A/S, Måløv, Denmark
| | - Mette Loftager
- Department of Nonclinical and Clinical Assay Sciences in Global Discovery & Development Sciences, Novo Nordisk A/S, Måløv, Denmark
| | - Dorte K Holm
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Anna C Nilsson
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Susanne G Sækmose
- Department of Clinical Immunology, Zealand University Hospital, Næstved Hospital, Næstved, Denmark
| | - Birgitte Grum-Schwensen
- Department of Clinical Immunology, Zealand University Hospital, Næstved Hospital, Næstved, Denmark
| | - Bitten Aagaard
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Thøger G Jensen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
- Research Unit for Clinical Microbiology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Dorte M Nielsen
- Department of Clinical Microbiology, Zealand University Hospital, Slagelse Hospital, Slagelse, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Statens Serum Institut, Copenhagen, Denmark
| | - Ram B Dessau
- Department of Clinical Microbiology, Zealand University Hospital, Slagelse Hospital, Slagelse, Denmark
| |
Collapse
|
458
|
Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, Wellington E, Cole MJ, Saei A, Oguti B, Munro K, Wallace S, Kirwan PD, Shrotri M, Vusirikala A, Rokadiya S, Kall M, Zambon M, Ramsay M, Brooks T, Brown CS, Chand MA, Hopkins S. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet 2021; 397:1459-1469. [PMID: 33844963 DOI: 10.1101/2021.01.13.21249642] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Increased understanding of whether individuals who have recovered from COVID-19 are protected from future SARS-CoV-2 infection is an urgent requirement. We aimed to investigate whether antibodies against SARS-CoV-2 were associated with a decreased risk of symptomatic and asymptomatic reinfection. METHODS A large, multicentre, prospective cohort study was done, with participants recruited from publicly funded hospitals in all regions of England. All health-care workers, support staff, and administrative staff working at hospitals who could remain engaged in follow-up for 12 months were eligible to join The SARS-CoV-2 Immunity and Reinfection Evaluation study. Participants were excluded if they had no PCR tests after enrolment, enrolled after Dec 31, 2020, or had insufficient PCR and antibody data for cohort assignment. Participants attended regular SARS-CoV-2 PCR and antibody testing (every 2-4 weeks) and completed questionnaires every 2 weeks on symptoms and exposures. At enrolment, participants were assigned to either the positive cohort (antibody positive, or previous positive PCR or antibody test) or negative cohort (antibody negative, no previous positive PCR or antibody test). The primary outcome was a reinfection in the positive cohort or a primary infection in the negative cohort, determined by PCR tests. Potential reinfections were clinically reviewed and classified according to case definitions (confirmed, probable, or possible) and symptom-status, depending on the hierarchy of evidence. Primary infections in the negative cohort were defined as a first positive PCR test and seroconversions were excluded when not associated with a positive PCR test. A proportional hazards frailty model using a Poisson distribution was used to estimate incidence rate ratios (IRR) to compare infection rates in the two cohorts. FINDINGS From June 18, 2020, to Dec 31, 2020, 30 625 participants were enrolled into the study. 51 participants withdrew from the study, 4913 were excluded, and 25 661 participants (with linked data on antibody and PCR testing) were included in the analysis. Data were extracted from all sources on Feb 5, 2021, and include data up to and including Jan 11, 2021. 155 infections were detected in the baseline positive cohort of 8278 participants, collectively contributing 2 047 113 person-days of follow-up. This compares with 1704 new PCR positive infections in the negative cohort of 17 383 participants, contributing 2 971 436 person-days of follow-up. The incidence density was 7·6 reinfections per 100 000 person-days in the positive cohort, compared with 57·3 primary infections per 100 000 person-days in the negative cohort, between June, 2020, and January, 2021. The adjusted IRR was 0·159 for all reinfections (95% CI 0·13-0·19) compared with PCR-confirmed primary infections. The median interval between primary infection and reinfection was more than 200 days. INTERPRETATION A previous history of SARS-CoV-2 infection was associated with an 84% lower risk of infection, with median protective effect observed 7 months following primary infection. This time period is the minimum probable effect because seroconversions were not included. This study shows that previous infection with SARS-CoV-2 induces effective immunity to future infections in most individuals. FUNDING Department of Health and Social Care of the UK Government, Public Health England, The National Institute for Health Research, with contributions from the Scottish, Welsh and Northern Irish governments.
Collapse
Affiliation(s)
- Victoria Jane Hall
- Public Health England Colindale, Colindale, London, UK; The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, University of Oxford, Oxford, UK
| | - Sarah Foulkes
- Public Health England Colindale, Colindale, London, UK
| | - Andre Charlett
- Public Health England Colindale, Colindale, London, UK; The National Institute for Health Research Health Protection Research Unit in Behavioural Science and Evaluation at University of Bristol in partnership with Public Health England, Bristol, UK
| | - Ana Atti
- Public Health England Colindale, Colindale, London, UK
| | | | - Ruth Simmons
- Public Health England Colindale, Colindale, London, UK
| | | | | | - Ayoub Saei
- Public Health England Colindale, Colindale, London, UK
| | - Blanche Oguti
- Public Health England Colindale, Colindale, London, UK; Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Katie Munro
- Public Health England Colindale, Colindale, London, UK
| | - Sarah Wallace
- Public Health England Colindale, Colindale, London, UK
| | - Peter D Kirwan
- Public Health England Colindale, Colindale, London, UK; Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | | | | | | | - Meaghan Kall
- Public Health England Colindale, Colindale, London, UK
| | - Maria Zambon
- Public Health England Colindale, Colindale, London, UK
| | - Mary Ramsay
- Public Health England Colindale, Colindale, London, UK; Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Tim Brooks
- Public Health England Colindale, Colindale, London, UK
| | - Colin S Brown
- Public Health England Colindale, Colindale, London, UK
| | - Meera A Chand
- Public Health England Colindale, Colindale, London, UK; Guys and St Thomas's Hospital NHS Trust, London, UK
| | - Susan Hopkins
- Public Health England Colindale, Colindale, London, UK; The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, University of Oxford, Oxford, UK.
| |
Collapse
|
459
|
Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, Wellington E, Cole MJ, Saei A, Oguti B, Munro K, Wallace S, Kirwan PD, Shrotri M, Vusirikala A, Rokadiya S, Kall M, Zambon M, Ramsay M, Brooks T, Brown CS, Chand MA, Hopkins S. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet 2021; 397:1459-1469. [PMID: 33844963 PMCID: PMC8040523 DOI: 10.1016/s0140-6736(21)00675-9] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Increased understanding of whether individuals who have recovered from COVID-19 are protected from future SARS-CoV-2 infection is an urgent requirement. We aimed to investigate whether antibodies against SARS-CoV-2 were associated with a decreased risk of symptomatic and asymptomatic reinfection. METHODS A large, multicentre, prospective cohort study was done, with participants recruited from publicly funded hospitals in all regions of England. All health-care workers, support staff, and administrative staff working at hospitals who could remain engaged in follow-up for 12 months were eligible to join The SARS-CoV-2 Immunity and Reinfection Evaluation study. Participants were excluded if they had no PCR tests after enrolment, enrolled after Dec 31, 2020, or had insufficient PCR and antibody data for cohort assignment. Participants attended regular SARS-CoV-2 PCR and antibody testing (every 2-4 weeks) and completed questionnaires every 2 weeks on symptoms and exposures. At enrolment, participants were assigned to either the positive cohort (antibody positive, or previous positive PCR or antibody test) or negative cohort (antibody negative, no previous positive PCR or antibody test). The primary outcome was a reinfection in the positive cohort or a primary infection in the negative cohort, determined by PCR tests. Potential reinfections were clinically reviewed and classified according to case definitions (confirmed, probable, or possible) and symptom-status, depending on the hierarchy of evidence. Primary infections in the negative cohort were defined as a first positive PCR test and seroconversions were excluded when not associated with a positive PCR test. A proportional hazards frailty model using a Poisson distribution was used to estimate incidence rate ratios (IRR) to compare infection rates in the two cohorts. FINDINGS From June 18, 2020, to Dec 31, 2020, 30 625 participants were enrolled into the study. 51 participants withdrew from the study, 4913 were excluded, and 25 661 participants (with linked data on antibody and PCR testing) were included in the analysis. Data were extracted from all sources on Feb 5, 2021, and include data up to and including Jan 11, 2021. 155 infections were detected in the baseline positive cohort of 8278 participants, collectively contributing 2 047 113 person-days of follow-up. This compares with 1704 new PCR positive infections in the negative cohort of 17 383 participants, contributing 2 971 436 person-days of follow-up. The incidence density was 7·6 reinfections per 100 000 person-days in the positive cohort, compared with 57·3 primary infections per 100 000 person-days in the negative cohort, between June, 2020, and January, 2021. The adjusted IRR was 0·159 for all reinfections (95% CI 0·13-0·19) compared with PCR-confirmed primary infections. The median interval between primary infection and reinfection was more than 200 days. INTERPRETATION A previous history of SARS-CoV-2 infection was associated with an 84% lower risk of infection, with median protective effect observed 7 months following primary infection. This time period is the minimum probable effect because seroconversions were not included. This study shows that previous infection with SARS-CoV-2 induces effective immunity to future infections in most individuals. FUNDING Department of Health and Social Care of the UK Government, Public Health England, The National Institute for Health Research, with contributions from the Scottish, Welsh and Northern Irish governments.
Collapse
Affiliation(s)
- Victoria Jane Hall
- Public Health England Colindale, Colindale, London, UK; The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, University of Oxford, Oxford, UK
| | - Sarah Foulkes
- Public Health England Colindale, Colindale, London, UK
| | - Andre Charlett
- Public Health England Colindale, Colindale, London, UK; The National Institute for Health Research Health Protection Research Unit in Behavioural Science and Evaluation at University of Bristol in partnership with Public Health England, Bristol, UK
| | - Ana Atti
- Public Health England Colindale, Colindale, London, UK
| | | | - Ruth Simmons
- Public Health England Colindale, Colindale, London, UK
| | | | | | - Ayoub Saei
- Public Health England Colindale, Colindale, London, UK
| | - Blanche Oguti
- Public Health England Colindale, Colindale, London, UK; Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Katie Munro
- Public Health England Colindale, Colindale, London, UK
| | - Sarah Wallace
- Public Health England Colindale, Colindale, London, UK
| | - Peter D Kirwan
- Public Health England Colindale, Colindale, London, UK; Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | | | | | | | - Meaghan Kall
- Public Health England Colindale, Colindale, London, UK
| | - Maria Zambon
- Public Health England Colindale, Colindale, London, UK
| | - Mary Ramsay
- Public Health England Colindale, Colindale, London, UK; Oxford Vaccine Group, University of Oxford, Oxford, UK
| | - Tim Brooks
- Public Health England Colindale, Colindale, London, UK
| | - Colin S Brown
- Public Health England Colindale, Colindale, London, UK
| | - Meera A Chand
- Public Health England Colindale, Colindale, London, UK; Guys and St Thomas's Hospital NHS Trust, London, UK
| | - Susan Hopkins
- Public Health England Colindale, Colindale, London, UK; The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, University of Oxford, Oxford, UK.
| |
Collapse
|
460
|
Chvatal-Medina M, Mendez-Cortina Y, Patiño PJ, Velilla PA, Rugeles MT. Antibody Responses in COVID-19: A Review. Front Immunol 2021; 12:633184. [PMID: 33936045 PMCID: PMC8081880 DOI: 10.3389/fimmu.2021.633184] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide as a severe pandemic. Although its seroprevalence is highly variable among territories, it has been reported at around 10%, but higher in health workers. Evidence regarding cross-neutralizing response between SARS-CoV and SARS-CoV-2 is still controversial. However, other previous coronaviruses may interfere with SARS-CoV-2 infection, since they are phylogenetically related and share the same target receptor. Further, the seroconversion of IgM and IgG occurs at around 12 days post onset of symptoms and most patients have neutralizing titers on days 14-20, with great titer variability. Neutralizing antibodies correlate positively with age, male sex, and severity of the disease. Moreover, the use of convalescent plasma has shown controversial results in terms of safety and efficacy, and due to the variable immune response among individuals, measuring antibody titers before transfusion is mostly required. Similarly, cellular immunity seems to be crucial in the resolution of the infection, as SARS-CoV-2-specific CD4+ and CD8+ T cells circulate to some extent in recovered patients. Of note, the duration of the antibody response has not been well established yet.
Collapse
Affiliation(s)
- Mateo Chvatal-Medina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Pablo J. Patiño
- Grupo Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Paula A. Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
461
|
Ogega CO, Skinner NE, Blair PW, Park HS, Littlefield K, Ganesan A, Dhakal S, Ladiwala P, Antar AA, Ray SC, Betenbaugh MJ, Pekosz A, Klein SL, Manabe YC, Cox AL, Bailey JR. Durable SARS-CoV-2 B cell immunity after mild or severe disease. J Clin Invest 2021; 131:145516. [PMID: 33571162 DOI: 10.1172/jci145516] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple studies have shown loss of severe acute respiratory syndrome coronavirus 2-specific (SARS-CoV-2-specific) antibodies over time after infection, raising concern that humoral immunity against the virus is not durable. If immunity wanes quickly, millions of people may be at risk for reinfection after recovery from coronavirus disease 2019 (COVID-19). However, memory B cells (MBCs) could provide durable humoral immunity even if serum neutralizing antibody titers decline. We performed multidimensional flow cytometric analysis of S protein receptor binding domain-specific (S-RBD-specific) MBCs in cohorts of ambulatory patients with COVID-19 with mild disease (n = 7), and hospitalized patients with moderate to severe disease (n = 7), at a median of 54 days (range, 39-104 days) after symptom onset. We detected S-RBD-specific class-switched MBCs in 13 of 14 participants, failing only in the individual with the lowest plasma levels of anti-S-RBD IgG and neutralizing antibodies. Resting MBCs (rMBCs) made up the largest proportion of S-RBD-specific MBCs in both cohorts. FCRL5, a marker of functional memory on rMBCs, was more dramatically upregulated on S-RBD-specific rMBCs after mild infection than after severe infection. These data indicate that most SARS-CoV-2-infected individuals develop S-RBD-specific, class-switched rMBCs that resemble germinal center-derived B cells induced by effective vaccination against other pathogens, providing evidence for durable B cell-mediated immunity against SARS-CoV-2 after mild or severe disease.
Collapse
Affiliation(s)
- Clinton O Ogega
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicole E Skinner
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul W Blair
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kirsten Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Abhinaya Ganesan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Pranay Ladiwala
- Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Annukka Ar Antar
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stuart C Ray
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J Betenbaugh
- Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea L Cox
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
462
|
Levi-Schaffer F, de Marco A. Coronavirus disease 2019 and the revival of passive immunization: Antibody therapy for inhibiting severe acute respiratory syndrome coronavirus 2 and preventing host cell infection: IUPHAR review: 31. Br J Pharmacol 2021; 178:3359-3372. [PMID: 33401333 DOI: 10.1111/bph.15359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic stimulated both the scientific community and healthcare companies to undertake an unprecedented effort with the aim of understanding the molecular mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and developing effective therapeutic solutions. The peculiar immune response triggered by this virus, which seems to last only few months, led to a search for alternatives such as passive immunization in addition to conventional vaccinations. Convalescent sera, monoclonal antibodies selected from the most potent neutralizing binders induced by the virus infection, recombinant human single-domain antibodies, and binders of variable scaffold and different origin have been tested alone or in combination exploiting monovalent, multivalent and multispecific formats. In this review, we analyse the state of the research in this field and present a summary of the ongoing projects finalized to identify suitable molecules for therapies based on passive immunization.
Collapse
Affiliation(s)
- Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, School of Pharmacy, Faculty of Medicine, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
463
|
Ziemssen F, Feng YS, Schnichels S, Bayyoud T, Ueffing M, Bartz-Schmidt KU, Martus P, Peter A. Testing for SARS-CoV-2 seroprevalence: experiences of a tertiary eye centre. BMJ Open Ophthalmol 2021; 6:e000688. [PMID: 34192154 PMCID: PMC8050881 DOI: 10.1136/bmjophth-2020-000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The actual prevalence of a SARS-CoV-2 infection and the individual assessment of being or having been infected may differ. Facing the great uncertainty-especially at the beginning of the pandemic-and the possibility of asymptomatic or mildly symptomatic, subclinical infections, we evaluate the experience of SARS-CoV-2 antibody screening at a tertiary clinical setting. METHODS AND ANALYSIS All employees of a tertiary eye centre and a research institute of ophthalmology were offered antibody testing in May 2020, using a sequential combination of different validated assays/antigens and point-of-care (POC) testing for a subset (NCT04446338). Before taking blood, a systematic inquiry into past symptoms, known contacts and a subjective self-assessment was documented. The correlations between serostatus, patient contacts and demographic characteristics were analysed. Different tests were compared by Kappa statistics. RESULTS Among 318 participants, SARS-CoV-2 antibodies were detected in 9 employees. Chemiluminescence assays (chemiluminescence immunoassay and electrochemiluminescence) showed superior specificity and high reproducibility, compared with ELISA and POC results.In contrast to the low seropositivity (2.8%) of healthcare workers, higher than that of the other departments of the hospital, a large proportion mistakenly assumed that they might have already been infected. Antiviral antibody titres increased and remained on a plateau for at least 3 months. CONCLUSIONS The great demand and acceptance confirmed the benefit of highly sensitive testing methods in the early phase of the pandemic. The coincidence of low seroprevalence and anxious employees may have contributed to internalising the need of hygiene measures.
Collapse
Affiliation(s)
- Focke Ziemssen
- Center for Ophthalmology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - You-Shan Feng
- Institute for Clinical Epidemiology and applied Biostatistics (IKEaB), Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Sven Schnichels
- Center for Ophthalmology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Tarek Bayyoud
- Center for Ophthalmology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Marius Ueffing
- Center for Ophthalmology, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | | | - Peter Martus
- Institute for Clinical Epidemiology and applied Biostatistics (IKEaB), Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Andreas Peter
- Institute of Clinical Chemistry and Pathobichemistry, Department of Internal Medicine, Eberhard Karls Universitat Tubingen, Tubingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, German Center for Diabetes Research (DZD) Helmholtz Zentrum München at the University of Tübingen, Eberhard Karls Universitat Tubingen, Tubingen, Germany
| |
Collapse
|
464
|
He Q, Mao Q, Zhang J, Bian L, Gao F, Wang J, Xu M, Liang Z. COVID-19 Vaccines: Current Understanding on Immunogenicity, Safety, and Further Considerations. Front Immunol 2021; 12:669339. [PMID: 33912196 PMCID: PMC8071852 DOI: 10.3389/fimmu.2021.669339] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The world has entered the second wave of the COVID-19 pandemic, and its intensity is significantly higher than that of the first wave of early 2020. Many countries or regions have been forced to start the second round of lockdowns. To respond rapidly to this global pandemic, dozens of COVID-19 vaccine candidates have been developed and many are undergoing clinical testing. Evaluating and defining effective vaccine candidates for human use is crucial for prioritizing vaccination programs against COVID-19. In this review, we have summarized and analyzed the efficacy, immunogenicity and safety data from clinical reports on different COVID-19 vaccines. We discuss the various guidelines laid out for the development of vaccines and the importance of biological standards for comparing the performance of vaccines. Lastly, we highlight the key remaining challenges, possible strategies for addressing them and the expected improvements in the next generation of COVID-19 vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
465
|
Yu S, An J, Liao X, Wang H, Ma F, Li D, Li A, Liu W, Zhang S, Liao M, Liu L, Zhao J, Xing S, Wei L, Zhang Z. Distinct kinetics of immunoglobulin isotypes reveal early diagnosis and disease severity of COVID-19: A 6-month follow-up. Clin Transl Med 2021; 11:e342. [PMID: 33784011 PMCID: PMC7989708 DOI: 10.1002/ctm2.342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Siyang Yu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.,Microbiology Department, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianghong An
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xuejiao Liao
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Haiyan Wang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Fen Ma
- Microbiology Department, Harbin Medical University, Harbin, Heilongjiang, China
| | - Dapeng Li
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Aimin Li
- Center Lab of Longhua Branch, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Weilong Liu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Siwei Zhang
- Microbiology Department, Harbin Medical University, Harbin, Heilongjiang, China
| | - Mingfeng Liao
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Liu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Juanjuan Zhao
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shaojun Xing
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, China
| | - Lanlan Wei
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.,Microbiology Department, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.,Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, Guangdong, China
| |
Collapse
|
466
|
IL-33 expression in response to SARS-CoV-2 correlates with seropositivity in COVID-19 convalescent individuals. Nat Commun 2021; 12:2133. [PMID: 33837219 PMCID: PMC8035172 DOI: 10.1038/s41467-021-22449-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still developing. We perform an observational study to investigate seroprevalence and immune responses in subjects professionally exposed to SARS-CoV-2 and their family members (155 individuals; ages 5-79 years). Seropositivity for SARS-CoV-2 Spike glycoprotein aligns with PCR results that confirm the previous infection. Anti-Spike IgG/IgM titers remain high 60 days post-infection and do not strongly associate with symptoms, except for fever. We analyze PBMCs from a subset of seropositive and seronegative adults. TLR7 agonist-activation reveals an increased population of IL-6+TNF-IL-1β+ monocytes, while SARS-CoV-2 peptide stimulation elicits IL-33, IL-6, IFNa2, and IL-23 expression in seropositive individuals. IL-33 correlates with CD4+ T cell activation in PBMCs from convalescent subjects and is likely due to T cell-mediated effects on IL-33-producing cells. IL-33 is associated with pulmonary infection and chronic diseases like asthma and COPD, but its role in COVID-19 is unknown. Analysis of published scRNAseq data of bronchoalveolar lavage fluid (BALF) from patients with mild to severe COVID-19 reveals a population of IL-33-producing cells that increases with the disease. Together these findings show that IL-33 production is linked to SARS-CoV-2 infection and warrant further investigation of IL-33 in COVID-19 pathogenesis and immunity.
Collapse
|
467
|
Aziz NA, Corman VM, Echterhoff AKC, Müller MA, Richter A, Schmandke A, Schmidt ML, Schmidt TH, de Vries FM, Drosten C, Breteler MMB. Seroprevalence and correlates of SARS-CoV-2 neutralizing antibodies from a population-based study in Bonn, Germany. Nat Commun 2021; 12:2117. [PMID: 33837204 PMCID: PMC8035181 DOI: 10.1038/s41467-021-22351-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
To estimate the seroprevalence and temporal course of SARS-CoV-2 neutralizing antibodies, we embedded a multi-tiered seroprevalence survey within an ongoing community-based cohort study in Bonn, Germany. We first assessed anti-SARS-CoV-2 immunoglobulin G levels with an immunoassay, followed by confirmatory testing of borderline and positive test results with a recombinant spike-based immunofluorescence assay and a plaque reduction neutralization test (PRNT). Those with a borderline or positive immunoassay result were retested after 4 to 5 months. At baseline, 4771 persons participated (88% response rate). Between April 24th and June 30th, 2020, seroprevalence was 0.97% (95% CI: 0.72-1.30) by immunoassay and 0.36% (95% CI: 0.21-0.61) when considering only those with two additional positive confirmatory tests. Importantly, about 20% of PRNT+ individuals lost their neutralizing antibodies within five months. Here, we show that neutralizing antibodies are detectable in only one third of those with a positive immunoassay result, and wane relatively quickly.
Collapse
Affiliation(s)
- N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Antje K C Echterhoff
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Anja Richter
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Antonio Schmandke
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Marie Luisa Schmidt
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Thomas H Schmidt
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Folgerdiena M de Vries
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
468
|
Lindemann M, Lenz V, Knop D, Klump H, Alt M, Aufderhorst UW, Schipper L, Schwarzkopf S, Meller L, Steckel N, Koldehoff M, Heinold A, Heinemann FM, Fischer J, Hutschenreuter G, Knabbe C, Dolff S, Brenner T, Dittmer U, Witzke O, Herbstreit F, Horn PA, Krawczyk A. Convalescent plasma treatment of critically ill intensive care COVID-19 patients. Transfusion 2021; 61:1394-1403. [PMID: 33784412 PMCID: PMC8251157 DOI: 10.1111/trf.16392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
Background Infection with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) may be life‐threatening, and specific antiviral drugs are currently not available. However, first studies indicated that convalescent plasma treatment might improve the clinical outcome of coronavirus disease 2019 (COVID‐19) patients. Study Design and Methods In the current study, we investigated the efficacy of convalescent plasma treatment in eight COVID‐19 patients. All the patients were critically ill, and seven of them were SARS‐CoV‐2 RNA–positive when starting treatment. SARS‐CoV‐2–specific antibodies were determined by an enzyme‐linked immunosorbent assay detecting immunoglobulin G (IgG) antibodies against the S1 protein (Euroimmun), and the neutralizing titers were determined with a cell‐culture‐based neutralization assay. Plasma treatment started between 4 and 23 days after the onset of symptoms. The patients were usually treated by three plasma units, each containing 200–280 ml, which was applied at day 1, 3, and 5. Results Donor sera had on average lower IgG antibody ratios and neutralizing titers than the COVID‐19 patients before the onset of treatment (median ratio of 5.8 and neutralizing titer of 1:320 vs. 7.5 and 1:640, respectively). Nevertheless, we observed an increase of antibody ratios in seven and of neutralizing titers in five patients after treatment; which did, however, not correlate with patient survival. Plasma treatment was effective in three patients, but five deceased despite treatment. Patients who deceased had a later treatment onset than survivors and finally died from multiple organ failure. Conclusion Our data indicate that the efficacy of convalescent plasma treatment of critically ill COVID‐19 patients who already had developed strong antiviral immune responses and organ complications is limited.
Collapse
Affiliation(s)
- Monika Lindemann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Veronika Lenz
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Dietmar Knop
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Mira Alt
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich W Aufderhorst
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany.,Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leonie Schipper
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - Sina Schwarzkopf
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Lara Meller
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.,Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - Nina Steckel
- Department of Bone Marrow Transplantation, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Michael Koldehoff
- Department of Bone Marrow Transplantation, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Andreas Heinold
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Johannes Fischer
- Institute for Transplant Diagnostics and Cell Therapeutics, Heinrich Heine University, Düsseldorf, Germany
| | | | - Cornelius Knabbe
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Center NRW, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany
| | - Frank Herbstreit
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany.,Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
469
|
Brown L, Byrne RL, Fraser A, Owen SI, Cubas-Atienzar AI, Williams CT, Kay GA, Cuevas LE, Fitchett JRA, Fletcher T, Garrod G, Kontogianni K, Krishna S, Menzies S, Planche T, Sainter C, Staines HM, Turtle L, Adams ER. Self-sampling of capillary blood for SARS-CoV-2 serology. Sci Rep 2021; 11:7754. [PMID: 33833246 PMCID: PMC8032656 DOI: 10.1038/s41598-021-86008-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/18/2021] [Indexed: 01/06/2023] Open
Abstract
Serological testing is emerging as a powerful tool to progress our understanding of COVID-19 exposure, transmission and immune response. Large-scale testing is limited by the need for in-person blood collection by staff trained in venepuncture, and the limited sensitivity of lateral flow tests. Capillary blood self-sampling and postage to laboratories for analysis could provide a reliable alternative. Two-hundred and nine matched venous and capillary blood samples were obtained from thirty nine participants and analysed using a COVID-19 IgG ELISA to detect antibodies against SARS-CoV-2. Thirty eight out of thirty nine participants were able to self-collect an adequate sample of capillary blood (≥ 50 µl). Using plasma from venous blood collected in lithium heparin as the reference standard, matched capillary blood samples, collected in lithium heparin-treated tubes and on filter paper as dried blood spots, achieved a Cohen’s kappa coefficient of > 0.88 (near-perfect agreement, 95% CI 0.738–1.000). Storage of capillary blood at room temperature for up to 7 days post sampling did not affect concordance. Our results indicate that capillary blood self-sampling is a reliable and feasible alternative to venepuncture for serological assessment in COVID-19.
Collapse
Affiliation(s)
- Lottie Brown
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Rachel L Byrne
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Alice Fraser
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Sophie I Owen
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Ana I Cubas-Atienzar
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Christopher T Williams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Grant A Kay
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Luis E Cuevas
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | - Tom Fletcher
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.,Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust (Member of Liverpool Health Partners), Liverpool, UK
| | - Gala Garrod
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Konstantina Kontogianni
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Sanjeev Krishna
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection and Immunity, St George's University of London, London, UK
| | - Stefanie Menzies
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Tim Planche
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection and Immunity, St George's University of London, London, UK
| | - Chris Sainter
- Mologic COVID-19 Diagnostics Development Team, Thurleigh, Bedfordshire, UK
| | - Henry M Staines
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection and Immunity, St George's University of London, London, UK
| | - Lance Turtle
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust (Member of Liverpool Health Partners), Liverpool, UK.,Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Emily R Adams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
470
|
Anderson EM, Goodwin EC, Verma A, Arevalo CP, Bolton MJ, Weirick ME, Gouma S, McAllister CM, Christensen SR, Weaver J, Hicks P, Manzoni TB, Oniyide O, Ramage H, Mathew D, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, Alanio C, D'Andrea K, Kuthuru O, Dougherty J, Pattekar A, Kim J, Han N, Apostolidis SA, Huang AC, Vella LA, Kuri-Cervantes L, Pampena MB, Betts MR, Wherry EJ, Meyer NJ, Cherry S, Bates P, Rader DJ, Hensley SE. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell 2021; 184:1858-1864.e10. [PMID: 33631096 PMCID: PMC7871851 DOI: 10.1016/j.cell.2021.02.010] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the coronavirus disease 2019 (COVID-19) pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 431 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 251 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that ∼20% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but they were boosted upon SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Elizabeth M Anderson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eileen C Goodwin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claudia P Arevalo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcus J Bolton
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Madison E Weirick
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher M McAllister
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shannon R Christensen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - JoEllen Weaver
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Philip Hicks
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomaz B Manzoni
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oluwatosin Oniyide
- Division of Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Holly Ramage
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Divij Mathew
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy E Baxter
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek A Oldridge
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison R Greenplate
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer E Wu
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cécile Alanio
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kurt D'Andrea
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oliva Kuthuru
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeanette Dougherty
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ajinkya Pattekar
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Kim
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Han
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex C Huang
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A Vella
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Betina Pampena
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
471
|
Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Syed A, Elgorban AM, Marraiki N, Kim DY. Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures. Biosens Bioelectron 2021; 177:112969. [PMID: 33434780 PMCID: PMC7836906 DOI: 10.1016/j.bios.2021.112969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023]
Abstract
Existing coronavirus named as a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has speeded its spread across the globe immediately after emergence in China, Wuhan region, at the end of the year 2019. Different techniques, including genome sequencing, structural feature classification by electron microscopy, and chest imaging using computed tomography, are primarily used to diagnose and screen SARS-CoV-2 suspected individuals. Determination of the viral structure, surface proteins, and genome sequence has provided a design blueprint for the diagnostic investigations of novel SARS-CoV-2 virus and rapidly emerging diagnostic technologies, vaccine trials, and cell-entry-inhibiting drugs. Here, we describe recent understandings on the spike glycoprotein (S protein), receptor-binding domain (RBD), and angiotensin-converting enzyme 2 (ACE2) and their receptor complex. This report also aims to review recently established diagnostic technologies and developments in surveillance measures for SARS-CoV-2 as well as the characteristics and performance of emerging techniques. Smartphone apps for contact tracing can help nations to conduct surveillance measures before a vaccine and effective medicines become available. We also describe promising point-of-care (POC) diagnostic technologies that are under consideration by researchers for advancement beyond the proof-of-concept stage. Developing novel diagnostic techniques needs to be facilitated to establish automatic systems, without any personal involvement or arrangement to curb an existing SARS-CoV-2 epidemic crisis, and could also be appropriate for avoiding the emergence of a future epidemic crisis.
Collapse
Affiliation(s)
- Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Surendra Krushna Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea.
| |
Collapse
|
472
|
Bajema KL, Wiegand RE, Cuffe K, Patel SV, Iachan R, Lim T, Lee A, Moyse D, Havers FP, Harding L, Fry AM, Hall AJ, Martin K, Biel M, Deng Y, Meyer WA, Mathur M, Kyle T, Gundlapalli AV, Thornburg NJ, Petersen LR, Edens C. Estimated SARS-CoV-2 Seroprevalence in the US as of September 2020. JAMA Intern Med 2021; 181:450-460. [PMID: 33231628 PMCID: PMC7686880 DOI: 10.1001/jamainternmed.2020.7976] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Case-based surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection likely underestimates the true prevalence of infections. Large-scale seroprevalence surveys can better estimate infection across many geographic regions. OBJECTIVE To estimate the prevalence of persons with SARS-CoV-2 antibodies using residual sera from commercial laboratories across the US and assess changes over time. DESIGN, SETTING, AND PARTICIPANTS This repeated, cross-sectional study conducted across all 50 states, the District of Columbia, and Puerto Rico used a convenience sample of residual serum specimens provided by persons of all ages that were originally submitted for routine screening or clinical management from 2 private clinical commercial laboratories. Samples were obtained during 4 collection periods: July 27 to August 13, August 10 to August 27, August 24 to September 10, and September 7 to September 24, 2020. EXPOSURES Infection with SARS-CoV-2. MAIN OUTCOMES AND MEASURES The proportion of persons previously infected with SARS-CoV-2 as measured by the presence of antibodies to SARS-CoV-2 by 1 of 3 chemiluminescent immunoassays. Iterative poststratification was used to adjust seroprevalence estimates to the demographic profile and urbanicity of each jurisdiction. Seroprevalence was estimated by jurisdiction, sex, age group (0-17, 18-49, 50-64, and ≥65 years), and metropolitan/nonmetropolitan status. RESULTS Of 177 919 serum samples tested, 103 771 (58.3%) were from women, 26 716 (15.0%) from persons 17 years or younger, 47 513 (26.7%) from persons 65 years or older, and 26 290 (14.8%) from individuals living in nonmetropolitan areas. Jurisdiction-level seroprevalence over 4 collection periods ranged from less than 1% to 23%. In 42 of 49 jurisdictions with sufficient samples to estimate seroprevalence across all periods, fewer than 10% of people had detectable SARS-CoV-2 antibodies. Seroprevalence estimates varied between sexes, across age groups, and between metropolitan/nonmetropolitan areas. Changes from period 1 to 4 were less than 7 percentage points in all jurisdictions and varied across sites. CONCLUSIONS AND RELEVANCE This cross-sectional study found that as of September 2020, most persons in the US did not have serologic evidence of previous SARS-CoV-2 infection, although prevalence varied widely by jurisdiction. Biweekly nationwide testing of commercial clinical laboratory sera can play an important role in helping track the spread of SARS-CoV-2 in the US.
Collapse
Affiliation(s)
- Kristina L Bajema
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ryan E Wiegand
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kendra Cuffe
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sadhna V Patel
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Travis Lim
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Fiona P Havers
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Alicia M Fry
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Aron J Hall
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | | - Mohit Mathur
- BioReference Laboratories, Elmwood Park, New Jersey
| | | | - Adi V Gundlapalli
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Natalie J Thornburg
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lyle R Petersen
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Chris Edens
- COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
473
|
Mahalingam S, Peter J, Xu Z, Bordoloi D, Ho M, Kalyanaraman VS, Srinivasan A, Muthumani K. Landscape of humoral immune responses against SARS-CoV-2 in patients with COVID-19 disease and the value of antibody testing. Heliyon 2021; 7:e06836. [PMID: 33898857 PMCID: PMC8052472 DOI: 10.1016/j.heliyon.2021.e06836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/11/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
A new pandemic is ongoing in several parts of the world. The agent responsible is the newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The symptoms associated with this virus are known as the coronavirus disease-2019 (COVID-19). In this review, we summarize the published data on virus specific antibodies in hospitalized patients with COVID-19 disease, patients recovered from the disease and the individuals who are asymptomatic with SARS-CoV-2 infections. The review highlights the following: i) an adjunct role of antibody tests in the diagnosis of COVID-19 in combination with RT-PCR; ii) status of antibodies from COVID-19 convalescent patients to select donors for plasma therapy; iii) the potential confounding effects of other coronaviruses, measles, mumps and rubella in antibody testing due to homology of certain viral genes; and iv) the role of antibody testing for conducting surveillance in populations, incidence estimation, contact tracing and epidemiologic studies.
Collapse
Affiliation(s)
- Sundarasamy Mahalingam
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - John Peter
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Ziyang Xu
- Vaccine & Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Devivasha Bordoloi
- Vaccine & Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Michelle Ho
- Vaccine & Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
474
|
Cagdas D. Convalescent plasma and hyperimmune globulin therapy in COVID-19. Expert Rev Clin Immunol 2021; 17:309-316. [PMID: 33620014 DOI: 10.1080/1744666x.2021.1894927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Introduction: Severe acute respiratory syndrome causing coronavirus SARS-CoV-2 (coronavirus disease 2019 (COVID-19)) has recently resulted in the recent global pandemic. As convalescent plasma (CP) therapy has been used with success in several viral infections before, it has become a treatment of choice. Medical literature is reviewed for randomized controlled studies using convalescent plasma therapy.Areas covered: More than one type of neutralizing antibody against a specific microorganism may be found in both CP and hyperimmune globulins. To give a standard titer of a specific neutralizing antibody to a patient, a reliable antibody titration assay should be developed. It is challenging to test the efficacy of the CP and HIG therapies with double-blind studies. There is a difficulty in the standardization of the CP and HIG study groups, as patients use various additional therapies. Different amounts and titers of CP and HIG and different titers of CP are used in patients. This review discusses the current knowledge on CP and HIG therapies used in COVID-19 disease.Expert opinion: The immune response to COVID-19 have diverse characteristics. The antibody produced after COVID-19 disease and vaccination is short-lived. Thus, CP should be an alternative especially in patients with lymphopenia and primary/secondary antibody deficiency.
Collapse
Affiliation(s)
- Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children's Hospital, Hacettepe University Medical Faculty, Ankara, Turkey
- Section of Pediatric Immunology, Institutes of Child Health, Health Science Institute, Hacettepe University, Hacettepe, Turkey
| |
Collapse
|
475
|
Carbone M, Lednicky J, Xiao SY, Venditti M, Bucci E. Coronavirus 2019 Infectious Disease Epidemic: Where We Are, What Can Be Done and Hope For. J Thorac Oncol 2021; 16:546-571. [PMID: 33422679 PMCID: PMC7832772 DOI: 10.1016/j.jtho.2020.12.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/18/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads mainly by means of aerosols (microdroplets) in enclosed environments, especially those in which temperature and humidity are regulated by means of air-conditioning. About 30% of individuals infected with SARS-CoV-2 develop coronavirus disease 2019 (COVID-19) disease. Among them, approximately 25% require hospitalization. In medicine, cases are identified as those who become ill. During this pandemic, cases have been identified as those with a positive SARS-CoV-2 polymerase chain reaction test, including approximately 70% who were asymptomatic-this has caused unnecessary anxiety. Individuals more than 65 years old, those affected by obesity, diabetes, asthma, or are immune-depressed owing to cancer and other conditions, are at a higher risk of hospitalization and of dying of COVID-19. Healthy individuals younger than 40 years very rarely die of COVID-19. Estimates of the COVID-19 mortality rate vary because the definition of COVID-19-related deaths varies. Belgium has the highest death rate at 154.9 per 100,000 persons, because it includes anyone who died with symptoms compatible with COVID-19, even those never tested for SARS-CoV-2. The United States includes all patients who died with a positive test, whether they died because of, or with, SARS-CoV-2. Countries that include only patients in which COVID-19 was the main cause of death, rather than a cofactor, have lower death rates. Numerous therapies are being developed, and rapid improvements are anticipated. Because of disinformation, only approximately 50% of the U.S. population plans to receive a COVID-19 vaccine. By sharing accurate information, physicians, health professionals, and scientists play a key role in addressing myths and anxiety, help public health officials enact measures to decrease infections, and provide the best care for those who become sick. In this article, we discuss these issues.
Collapse
Affiliation(s)
- Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii; Department of Pathology, John A. Burns School of Medicine, Hawaii, Honolulu, Hawaii.
| | - John Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Shu-Yuan Xiao
- Department of Pathology, University of Chicago Medicine, Chicago, llinois
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Universita` La Sapienza, Roma, Italy
| | - Enrico Bucci
- Sbarro Institute for Cancer Research and Molecular Medicine, College for Science and technology, Temple University, Philadelphia, Pennsylvania; Department of Biology, College for Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
476
|
Sermet-Gaudelus I, Temmam S, Huon C, Behillil S, Gajdos V, Bigot T, Lurier T, Chrétien D, Backovic M, Delaunay-Moisan A, Donati F, Albert M, Foucaud E, Mesplées B, Benoist G, Faye A, Duval-Arnould M, Cretolle C, Charbit M, Aubart M, Auriau J, Lorrot M, Kariyawasam D, Fertitta L, Orliaguet G, Pigneur B, Bader-Meunier B, Briand C, Enouf V, Toubiana J, Guilleminot T, van der Werf S, Leruez-Ville M, Eloit M. Prior infection by seasonal coronaviruses, as assessed by serology, does not prevent SARS-CoV-2 infection and disease in children, France, April to June 2020. Euro Surveill 2021; 26. [PMID: 33797390 PMCID: PMC8017906 DOI: 10.2807/1560-7917.es.2021.26.13.2001782] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/07/2021] [Indexed: 01/10/2023] Open
Abstract
BackgroundChildren have a low rate of COVID-19 and secondary severe multisystem inflammatory syndrome (MIS) but present a high prevalence of symptomatic seasonal coronavirus infections.AimWe tested if prior infections by seasonal coronaviruses (HCoV) NL63, HKU1, 229E or OC43 as assessed by serology, provide cross-protective immunity against SARS-CoV-2 infection.MethodsWe set a cross-sectional observational multicentric study in pauci- or asymptomatic children hospitalised in Paris during the first wave for reasons other than COVID (hospitalised children (HOS), n = 739) plus children presenting with MIS (n = 36). SARS-CoV-2 antibodies directed against the nucleoprotein (N) and S1 and S2 domains of the spike (S) proteins were monitored by an in-house luciferase immunoprecipitation system assay. We randomly selected 69 SARS-CoV-2-seropositive patients (including 15 with MIS) and 115 matched SARS-CoV-2-seronegative patients (controls (CTL)). We measured antibodies against SARS-CoV-2 and HCoV as evidence for prior corresponding infections and assessed if SARS-CoV-2 prevalence of infection and levels of antibody responses were shaped by prior seasonal coronavirus infections.ResultsPrevalence of HCoV infections were similar in HOS, MIS and CTL groups. Antibody levels against HCoV were not significantly different in the three groups and were not related to the level of SARS-CoV-2 antibodies in the HOS and MIS groups. SARS-CoV-2 antibody profiles were different between HOS and MIS children.ConclusionPrior infection by seasonal coronaviruses, as assessed by serology, does not interfere with SARS-CoV-2 infection and related MIS in children.
Collapse
Affiliation(s)
- Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U 1171, Paris, France
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Université de Paris, Paris, France
- These authors contributed equally to the work
| | - Sarah Temmam
- These authors contributed equally to the work
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Christèle Huon
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Sylvie Behillil
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Vincent Gajdos
- Hôpital Antoine Beclere, Clamart, France
- Centre for Research in Epidemiology and Population Health, INSERM UMR1018, Villejuif, France
| | - Thomas Bigot
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Thibaut Lurier
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université de Lyon, INRAE, VetAgro Sup, Usc 1233 UR RS2GP, Marcy l'Etoile, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Marija Backovic
- Unité de Virologie Structurale, Institut Pasteur, Département de Virologie, CNRS, UMR3569, Paris, France
| | - Agnès Delaunay-Moisan
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Flora Donati
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Mélanie Albert
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | | | | | | | | | | | - Célia Cretolle
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Marina Charbit
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mélodie Aubart
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Johanne Auriau
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | | | - Laura Fertitta
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gilles Orliaguet
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Bénédicte Pigneur
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | | | - Vincent Enouf
- Plateforme de microbiologie mutualisée (P2M), Pasteur International Bioresources Network (PIBnet), Institut Pasteur, Paris, France
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Julie Toubiana
- Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Unité Biodiversité et Epidemiologie des Bacteries Pathogènes, Institut Pasteur, Paris, France
- Université de Paris, Paris, France
| | | | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR3569, Université de Paris, Institut Pasteur, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | | | - Marc Eloit
- Ecole Nationale Vétérinaire d'Alfort, Maisons Alfort, France
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
477
|
Makatsa MS, Tincho MB, Wendoh JM, Ismail SD, Nesamari R, Pera F, de Beer S, David A, Jugwanth S, Gededzha MP, Mampeule N, Sanne I, Stevens W, Scott L, Blackburn J, Mayne ES, Keeton RS, Burgers WA. SARS-CoV-2 Antigens Expressed in Plants Detect Antibody Responses in COVID-19 Patients. FRONTIERS IN PLANT SCIENCE 2021; 12:589940. [PMID: 33868324 PMCID: PMC8044419 DOI: 10.3389/fpls.2021.589940] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/12/2021] [Indexed: 05/10/2023]
Abstract
Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has swept the world and poses a significant global threat to lives and livelihoods, with 115 million confirmed cases and at least 2.5 million deaths from Coronavirus disease 2019 (COVID-19) in the first year of the pandemic. Developing tools to measure seroprevalence and understand protective immunity to SARS-CoV-2 is a priority. We aimed to develop a serological assay using plant-derived recombinant viral proteins, which represent important tools in less-resourced settings. Methods: We established an indirect ELISA using the S1 and receptor-binding domain (RBD) portions of the spike protein from SARS-CoV-2, expressed in Nicotiana benthamiana. We measured antibody responses in sera from South African patients (n = 77) who had tested positive by PCR for SARS-CoV-2. Samples were taken a median of 6 weeks after the diagnosis, and the majority of participants had mild and moderate COVID-19 disease. In addition, we tested the reactivity of pre-pandemic plasma (n = 58) and compared the performance of our in-house ELISA with a commercial assay. We also determined whether our assay could detect SARS-CoV-2-specific IgG and IgA in saliva. Results: We demonstrate that SARS-CoV-2-specific immunoglobulins are readily detectable using recombinant plant-derived viral proteins, in patients who tested positive for SARS-CoV-2 by PCR. Reactivity to S1 and RBD was detected in 51 (66%) and 48 (62%) of participants, respectively. Notably, we detected 100% of samples identified as having S1-specific antibodies by a validated, high sensitivity commercial ELISA, and optical density (OD) values were strongly and significantly correlated between the two assays. For the pre-pandemic plasma, 1/58 (1.7%) of samples were positive, indicating a high specificity for SARS-CoV-2 in our ELISA. SARS-CoV-2-specific IgG correlated significantly with IgA and IgM responses. Endpoint titers of S1- and RBD-specific immunoglobulins ranged from 1:50 to 1:3,200. S1-specific IgG and IgA were found in saliva samples from convalescent volunteers. Conclusion: We demonstrate that recombinant SARS-CoV-2 proteins produced in plants enable robust detection of SARS-CoV-2 humoral responses. This assay can be used for seroepidemiological studies and to measure the strength and durability of antibody responses to SARS-CoV-2 in infected patients in our setting.
Collapse
Affiliation(s)
- Mohau S. Makatsa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jerome M. Wendoh
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sherazaan D. Ismail
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Rofhiwa Nesamari
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | | | - Anura David
- Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Sarika Jugwanth
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Maemu P. Gededzha
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Nakampe Mampeule
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Ian Sanne
- Clinical HIV Research Unit, Department of Internal Medicine, University of Witwatersrand, Johannesburg, South Africa
| | - Wendy Stevens
- Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Lesley Scott
- Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Jonathan Blackburn
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Elizabeth S. Mayne
- Department of Immunology, Faculty of Health Sciences, University of Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| | - Roanne S. Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
478
|
Kreuzberger N, Hirsch C, Vanshylla K, Di Cristanziano V, Dorando E, Khosravi Z, Neidhardt M, Salomon S, Monsef I, Lange B, Skoetz N. Persistence of immunoglobulin G after natural infection with SARS-CoV-2. Hippokratia 2021. [DOI: 10.1002/14651858.cd014946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Caroline Hirsch
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Veronica Di Cristanziano
- Laboratory of Experimental Immunology, Institute of Virology; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Elena Dorando
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Zahra Khosravi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Miriam Neidhardt
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Susanne Salomon
- Laboratory of Experimental Immunology, Institute of Virology; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Berit Lange
- Department of Epidemiology; Helmholtz Centre for Infection Research; Braunschweig Germany
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| |
Collapse
|
479
|
A Retrospective Analysis of the Impact of the Coronavirus Disease 2019 Pandemic on Health Care Workers in a Tertiary Hospital in Turkey. J Emerg Nurs 2021; 47:948-954. [PMID: 34294455 PMCID: PMC8006193 DOI: 10.1016/j.jen.2021.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Several vaccines have been developed and approved for use against severe acute respiratory syndrome coronavirus-2; however, the use of personal protective equipment remains important owing to the lack of effective specific treatment and whole community immunity. Hydroxychloroquine sulfate was a treatment option in the early days of the pandemic; however, it was subsequently removed owing to a lack of evidence as an effective treatment. We aimed to evaluate the testing and infection characteristics of coronavirus disease 2019 among health care personnel and determine the effectiveness of prophylactic hydroxychloroquine sulfate use to prevent transmission. METHODS This retrospective observational study was conducted between May 1 and September 30, 2020. The health care personnel included in the study were physicians, nurses, and paraprofessional support personnel. The health records of health care personnel who had been tested for severe acute respiratory syndrome coronavirus-2 using polymerase chain reaction were retrospectively analyzed. RESULTS In total, 508 health care personnel were included in the study. A total of 152 (29.9%) health care personnel were diagnosed with coronavirus disease 2019. The positive polymerase chain reaction rate was 80.3% (n = 122). A comparison of infected and uninfected health care personnel showed a difference in age and occupation and no difference in sex, working area, and prophylactic hydroxychloroquine sulfate use. DISCUSSION Protective measures in low-risk areas of our hospital require improvements. All health care personnel should be trained on personal protective equipment use. There was no evidence to support the effectiveness of prophylactic hydroxychloroquine sulfate against severe acute respiratory syndrome coronavirus-2 transmission.
Collapse
|
480
|
Hansen CH, Michlmayr D, Gubbels SM, Mølbak K, Ethelberg S. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. Lancet 2021; 397:1204-1212. [PMID: 33743221 PMCID: PMC7969130 DOI: 10.1016/s0140-6736(21)00575-4] [Citation(s) in RCA: 419] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND The degree to which infection with SARS-CoV-2 confers protection towards subsequent reinfection is not well described. In 2020, as part of Denmark's extensive, free-of-charge PCR-testing strategy, approximately 4 million individuals (69% of the population) underwent 10·6 million tests. Using these national PCR-test data from 2020, we estimated protection towards repeat infection with SARS-CoV-2. METHODS In this population-level observational study, we collected individual-level data on patients who had been tested in Denmark in 2020 from the Danish Microbiology Database and analysed infection rates during the second surge of the COVID-19 epidemic, from Sept 1 to Dec 31, 2020, by comparison of infection rates between individuals with positive and negative PCR tests during the first surge (March to May, 2020). For the main analysis, we excluded people who tested positive for the first time between the two surges and those who died before the second surge. We did an alternative cohort analysis, in which we compared infection rates throughout the year between those with and without a previous confirmed infection at least 3 months earlier, irrespective of date. We also investigated whether differences were found by age group, sex, and time since infection in the alternative cohort analysis. We calculated rate ratios (RRs) adjusted for potential confounders and estimated protection against repeat infection as 1 - RR. FINDINGS During the first surge (ie, before June, 2020), 533 381 people were tested, of whom 11 727 (2·20%) were PCR positive, and 525 339 were eligible for follow-up in the second surge, of whom 11 068 (2·11%) had tested positive during the first surge. Among eligible PCR-positive individuals from the first surge of the epidemic, 72 (0·65% [95% CI 0·51-0·82]) tested positive again during the second surge compared with 16 819 (3·27% [3·22-3·32]) of 514 271 who tested negative during the first surge (adjusted RR 0·195 [95% CI 0·155-0·246]). Protection against repeat infection was 80·5% (95% CI 75·4-84·5). The alternative cohort analysis gave similar estimates (adjusted RR 0·212 [0·179-0·251], estimated protection 78·8% [74·9-82·1]). In the alternative cohort analysis, among those aged 65 years and older, observed protection against repeat infection was 47·1% (95% CI 24·7-62·8). We found no difference in estimated protection against repeat infection by sex (male 78·4% [72·1-83·2] vs female 79·1% [73·9-83·3]) or evidence of waning protection over time (3-6 months of follow-up 79·3% [74·4-83·3] vs ≥7 months of follow-up 77·7% [70·9-82·9]). INTERPRETATION Our findings could inform decisions on which groups should be vaccinated and advocate for vaccination of previously infected individuals because natural protection, especially among older people, cannot be relied on. FUNDING None.
Collapse
Affiliation(s)
- Christian Holm Hansen
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark; MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Daniela Michlmayr
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark; European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | | | - Kåre Mølbak
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark; Division of Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Ethelberg
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark; Department of Public Health, Global Health Section, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
481
|
Chen H, Li Z, Feng S, Wang A, Richard-Greenblatt M, Hutson E, Andrianus S, Glaser LJ, Rodino KG, Qian J, Jayaraman D, Collman RG, Glascock A, Bushman FD, Lee JS, Cherry S, Fausto A, Weiss SR, Koo H, Corby PM, O’Doherty U, Garfall AL, Vogl DT, Stadtmauer EA, Wang P. Femtomolar SARS-CoV-2 Antigen Detection Using the Microbubbling Digital Assay with Smartphone Readout Enables Antigen Burden Quantitation and Dynamics Tracking. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.17.21253847. [PMID: 33791710 PMCID: PMC8010739 DOI: 10.1101/2021.03.17.21253847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Little is known about the dynamics of SARS-CoV-2 antigen burden in respiratory samples in different patient populations at different stages of infection. Current rapid antigen tests cannot quantitate and track antigen dynamics with high sensitivity and specificity in respiratory samples. Methods We developed and validated an ultra-sensitive SARS-CoV-2 antigen assay with smartphone readout using the Microbubbling Digital Assay previously developed by our group, which is a platform that enables highly sensitive detection and quantitation of protein biomarkers. A computer vision-based algorithm was developed for microbubble smartphone image recognition and quantitation. A machine learning-based classifier was developed to classify the smartphone images based on detected microbubbles. Using this assay, we tracked antigen dynamics in serial swab samples from COVID patients hospitalized in ICU and immunocompromised COVID patients. Results The limit of detection (LOD) of the Microbubbling SARS-CoV-2 Antigen Assay was 0.5 pg/mL (10.6 fM) recombinant nucleocapsid (N) antigen or 4000 copies/mL inactivated SARS-CoV-2 virus in nasopharyngeal (NP) swabs, comparable to many rRT-PCR methods. The assay had high analytical specificity towards SARS-CoV-2. Compared to EUA-approved rRT-PCR methods, the Microbubbling Antigen Assay demonstrated a positive percent agreement (PPA) of 97% (95% confidence interval (CI), 92-99%) in symptomatic individuals within 7 days of symptom onset and positive SARS-CoV-2 nucleic acid results, and a negative percent agreement (NPA) of 97% (95% CI, 94-100%) in symptomatic and asymptomatic individuals with negative nucleic acid results. Antigen positivity rate in NP swabs gradually decreased as days-after-symptom-onset increased, despite persistent nucleic acid positivity of the same samples. The computer vision and machine learning-based automatic microbubble image classifier could accurately identify positives and negatives, based on microbubble counts and sizes. Total microbubble volume, a potential marker of antigen burden, correlated inversely with Ct values and days-after-symptom-onset. Antigen was detected for longer periods of time in immunocompromised patients with hematologic malignancies, compared to immunocompetent individuals. Simultaneous detectable antigens and nucleic acids may indicate the presence of replicating viruses in patients with persistent infections. Conclusions The Microbubbling SARS-CoV-2 Antigen Assay enables sensitive and specific detection of acute infections, and quantitation and tracking of antigen dynamics in different patient populations at various stages of infection. With smartphone compatibility and automated image processing, the assay is well-positioned to be adapted for point-of-care diagnosis and to explore the clinical implications of antigen dynamics in future studies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Zhao Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sheng Feng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anni Wang
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA
| | | | - Emily Hutson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stefen Andrianus
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Laurel J. Glaser
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kyle G. Rodino
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jianing Qian
- Department of Computer and Information Science and GRASP Lab, University of Pennsylvania, Philadelphia, PA
| | - Dinesh Jayaraman
- Department of Computer and Information Science and GRASP Lab, University of Pennsylvania, Philadelphia, PA
| | - Ronald G. Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Abigail Glascock
- Department of Microbiology and Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania, Philadelphia, PA
| | - Frederic D. Bushman
- Department of Microbiology and Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania, Philadelphia, PA
| | - Jae Seung Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alejandra Fausto
- Department of Microbiology and Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania, Philadelphia, PA
| | - Susan R. Weiss
- Department of Microbiology and Penn Center for Research on Coronavirus and Other Emerging Pathogens, University of Pennsylvania, Philadelphia, PA
| | - Hyun Koo
- Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA
| | - Patricia M. Corby
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
- Center for Clinical and Translational Research, University of Pennsylvania, Philadelphia, PA
| | - Una O’Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alfred L. Garfall
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dan T. Vogl
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Ping Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
482
|
Knudson CM, Jackson JB. COVID-19 convalescent plasma; time for "goal directed therapy"? Transfusion 2021; 61:1654-1656. [PMID: 33723852 PMCID: PMC8250757 DOI: 10.1111/trf.16381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Charles Michael Knudson
- DeGowin Blood Center, Department of Pathology, University of Iowa Hospitals & Clinics (UIHC), Iowa City, Iowa, USA
| | - J Brooks Jackson
- DeGowin Blood Center, Department of Pathology, University of Iowa Hospitals & Clinics (UIHC), Iowa City, Iowa, USA
| |
Collapse
|
483
|
Huergo LF, Selim KA, Conzentino MS, Gerhardt ECM, Santos ARS, Wagner B, Alford JT, Deobald N, Pedrosa FO, de Souza EM, Nogueira MB, Raboni SM, Souto D, Rego FGM, Zanette DL, Aoki MN, Nardin JM, Fornazari B, Morales HMP, Borges VA, Nelde A, Walz JS, Becker M, Schneiderhan-Marra N, Rothbauer U, Reis RA, Forchhammer K. Magnetic Bead-Based Immunoassay Allows Rapid, Inexpensive, and Quantitative Detection of Human SARS-CoV-2 Antibodies. ACS Sens 2021; 6:703-708. [PMID: 33496577 PMCID: PMC7860136 DOI: 10.1021/acssensors.0c02544] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Immunological methods to detect SARS-CoV-2 seroconversion in humans are important to track COVID-19 cases and the humoral response to SARS-CoV-2 infections and immunization to future vaccines. The aim of this work was to develop a simple chromogenic magnetic bead-based immunoassay which allows rapid, inexpensive, and quantitative detection of human antibodies against SARS-CoV-2 in serum, plasma, or blood. Recombinant 6xHis-tagged SARS-CoV-2 Nucleocapsid protein was mobilized on the surface of Ni2+ magnetic beads and challenged with serum or blood samples obtained from controls or COVID-19 cases. The beads were washed, incubated with anti-human IgG-HPR conjugate, and immersed into a solution containing a chromogenic HPR substrate. Bead transfer and homogenization between solutions was aided by a simple low-cost device. The method was validated by two independent laboratories, and the performance to detect SARS-CoV-2 seroconversion in humans was in the same range as obtained using the gold standard immunoassays ELISA and Luminex, though requiring only a fraction of consumables, instrumentation, time to deliver results, and volume of sample. Furthermore, the results obtained with the method described can be visually interpreted without compromising accuracy as demonstrated by validation at a point-of-care unit. The magnetic bead immunoassay throughput can be customized on demand and is readily adapted to be used with any other 6xHis tagged protein or peptide as antigen to track other diseases.
Collapse
Affiliation(s)
- Luciano F. Huergo
- Setor Litoral, Federal University of
Paraná (UFPR) Matinhos, PR 83260-000,
Brazil
| | - Khaled A. Selim
- Interfaculty Institute for Microbiology and Infection
Medicine, Eberhard Karls University of Tübingen, 72074
Tübingen,Germany
| | | | - Edileusa C. M. Gerhardt
- Biochemistry and Molecular Biology Department,
Federal University of Paraná (UFPR) Curitiba, PR
80060-000, Brazil
| | - Adrian R. S. Santos
- Biochemistry and Molecular Biology Department,
Federal University of Paraná (UFPR) Curitiba, PR
80060-000, Brazil
| | - Berenike Wagner
- Interfaculty Institute for Microbiology and Infection
Medicine, Eberhard Karls University of Tübingen, 72074
Tübingen,Germany
| | - Janette T. Alford
- Interfaculty Institute for Microbiology and Infection
Medicine, Eberhard Karls University of Tübingen, 72074
Tübingen,Germany
| | - Nelli Deobald
- Interfaculty Institute for Microbiology and Infection
Medicine, Eberhard Karls University of Tübingen, 72074
Tübingen,Germany
| | - Fabio O. Pedrosa
- Biochemistry and Molecular Biology Department,
Federal University of Paraná (UFPR) Curitiba, PR
80060-000, Brazil
| | - Emanuel M. de Souza
- Biochemistry and Molecular Biology Department,
Federal University of Paraná (UFPR) Curitiba, PR
80060-000, Brazil
| | - Meri B. Nogueira
- Complexo Hospital das Clínicas,
Federal University of Paraná (UFPR) Curitiba, PR
80060-000, Brazil
| | - Sônia M. Raboni
- Complexo Hospital das Clínicas,
Federal University of Paraná (UFPR) Curitiba, PR
80060-000, Brazil
| | - Dênio Souto
- Chemistry Departament, Federal University
of Paraná (UFPR), Curitiba, PR 80060-000,
Brazil
| | - Fabiane G. M. Rego
- Post-Graduation Program in Pharmaceutical Sciences,
Federal University of Paraná (UFPR), Curitiba, PR
80060-000, Brazil
| | | | - Mateus N. Aoki
- Instituto Carlos Chagas -
FioCruz, Curitiba, PR 81310-020, Brazil
| | | | | | | | - Vânia A. Borges
- Secretaria Municipal de Saúde de
Guaratuba, Guaratuba, PR 83280-000, Brazil
| | - Annika Nelde
- Clinical Collaboration Unit Translational Immunology,
German Cancer Consortium (DKTK), Department of Internal Medicine, University
Hospital Tübingen, 72076 Tübingen,
Germany
- Department of Immunology, Institute for Cell Biology,
Tübingen University, 72076 Tübingen,
Germany
- Cluster of Excellence iFIT (EXC2180)
“Image-Guided and Functionally Instructed Tumor Therapies”,
Tübingen University, 72076 Tübingen,
Germany
| | - Juliane S. Walz
- Clinical Collaboration Unit Translational Immunology,
German Cancer Consortium (DKTK), Department of Internal Medicine, University
Hospital Tübingen, 72076 Tübingen,
Germany
- Department of Immunology, Institute for Cell Biology,
Tübingen University, 72076 Tübingen,
Germany
- Cluster of Excellence iFIT (EXC2180)
“Image-Guided and Functionally Instructed Tumor Therapies”,
Tübingen University, 72076 Tübingen,
Germany
- Department of Hematology, Oncology, Clinical
Immunology and Rheumatology, University Hospital
Tübingen, 72076 Tübingen, Germany
| | - Matthias Becker
- NMI Natural and Medical Sciences
Institute at the University of Tübingen, 72770 Tübingen,
Germany
| | | | - Ulrich Rothbauer
- NMI Natural and Medical Sciences
Institute at the University of Tübingen, 72770 Tübingen,
Germany
- Pharmaceutical Biotechnology,
Tübingen University, 72076 Tübingen,
Germany
| | - Rodrigo A. Reis
- Setor Litoral, Federal University of
Paraná (UFPR) Matinhos, PR 83260-000,
Brazil
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection
Medicine, Eberhard Karls University of Tübingen, 72074
Tübingen,Germany
| |
Collapse
|
484
|
Arenas A, Borge C, Carbonero A, Garcia-Bocanegra I, Cano-Terriza D, Caballero J, Arenas-Montes A. Bovine Coronavirus Immune Milk Against COVID-19. Front Immunol 2021; 12:637152. [PMID: 33833758 PMCID: PMC8021920 DOI: 10.3389/fimmu.2021.637152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
After a year of evolution of the SARS-CoV-2 epidemic, there is still no specific effective treatment for the disease. Although the majority of infected people experience mild disease, some patients develop a serious disease, especially when other pathologies concur. For this reason, it would be very convenient to find pharmacological and immunological mechanisms that help control SARS-CoV-2 infection. Since the COVID-19 and BCoV viruses are very close phylogenetically, different studies demonstrate the existence of cross-immunity as they retain shared epitopes in their structure. As a possible control measure against COVID-19, we propose the use of cow's milk immune to BCoV. Thus, the antigenic recognition of some highly conserved structures of viral proteins, particularly M and S2, by anti-BCoV antibodies present in milk would cause a total or partial inactivation of SARS-COV-2 (acting as a particular vaccine) and be addressed more easily by GALT's highly specialized antigen-presenting cells, thus helping the specific immune response.
Collapse
Affiliation(s)
- Antonio Arenas
- Department of Animal Health, University of Cordoba, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
485
|
Chia WN, Zhu F, Ong SWX, Young BE, Fong SW, Le Bert N, Tan CW, Tiu C, Zhang J, Tan SY, Pada S, Chan YH, Tham CYL, Kunasegaran K, Chen MIC, Low JGH, Leo YS, Renia L, Bertoletti A, Ng LFP, Lye DC, Wang LF. Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study. LANCET MICROBE 2021; 2:e240-e249. [PMID: 33778792 PMCID: PMC7987301 DOI: 10.1016/s2666-5247(21)00025-2] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background Studies have found different waning rates of neutralising antibodies compared with binding antibodies against SARS-CoV-2. The impact of neutralising antibody waning rate at the individual patient level on the longevity of immunity remains unknown. We aimed to investigate the peak levels and dynamics of neutralising antibody waning and IgG avidity maturation over time, and correlate this with clinical parameters, cytokines, and T-cell responses. Methods We did a longitudinal study of patients who had recovered from COVID-19 up to day 180 post-symptom onset by monitoring changes in neutralising antibody levels using a previously validated surrogate virus neutralisation test. Changes in antibody avidities and other immune markers at different convalescent stages were determined and correlated with clinical features. Using a machine learning algorithm, temporal change in neutralising antibody levels was classified into five groups and used to predict the longevity of neutralising antibody-mediated immunity. Findings We approached 517 patients for participation in the study, of whom 288 consented for outpatient follow-up and collection of serial blood samples. 164 patients were followed up and had adequate blood samples collected for analysis, with a total of 546 serum samples collected, including 128 blood samples taken up to 180 days post-symptom onset. We identified five distinctive patterns of neutralising antibody dynamics as follows: negative, individuals who did not, at our intervals of sampling, develop neutralising antibodies at the 30% inhibition level (19 [12%] of 164 patients); rapid waning, individuals who had varying levels of neutralising antibodies from around 20 days after symptom onset, but seroreverted in less than 180 days (44 [27%] of 164 patients); slow waning, individuals who remained neutralising antibody-positive at 180 days post-symptom onset (46 [28%] of 164 patients); persistent, although with varying peak neutralising antibody levels, these individuals had minimal neutralising antibody decay (52 [32%] of 164 patients); and delayed response, a small group that showed an unexpected increase of neutralising antibodies during late convalescence (at 90 or 180 days after symptom onset; three [2%] of 164 patients). Persistence of neutralising antibodies was associated with disease severity and sustained level of pro-inflammatory cytokines, chemokines, and growth factors. By contrast, T-cell responses were similar among the different neutralising antibody dynamics groups. On the basis of the different decay dynamics, we established a prediction algorithm that revealed a wide range of neutralising antibody longevity, varying from around 40 days to many decades. Interpretation Neutralising antibody response dynamics in patients who have recovered from COVID-19 vary greatly, and prediction of immune longevity can only be accurately determined at the individual level. Our findings emphasise the importance of public health and social measures in the ongoing pandemic outbreak response, and might have implications for longevity of immunity after vaccination. Funding National Medical Research Council, Biomedical Research Council, and A*STAR, Singapore.
Collapse
Affiliation(s)
- Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Sean Wei Xiang Ong
- National Centre for Infectious Diseases, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - Barnaby Edward Young
- National Centre for Infectious Diseases, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Siew-Wai Fong
- ASTAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Charles Tiu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Jinyan Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Seow Yen Tan
- Department of Infectious Diseases, Changi General Hospital, Singapore
| | - Surinder Pada
- Division of Infectious Diseases, Ng Teng Fong General Hospital, Singapore
| | - Yi-Hao Chan
- ASTAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Christine Y L Tham
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Kamini Kunasegaran
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Mark I-C Chen
- National Centre for Infectious Diseases, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore
| | - Jenny G H Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Laurent Renia
- ASTAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Lisa F P Ng
- ASTAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore.,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.,SingHealth Duke-NUS Global Health Institute, Singapore
| |
Collapse
|
486
|
Yao Z, Drecun L, Aboualizadeh F, Kim SJ, Li Z, Wood H, Valcourt EJ, Manguiat K, Plenderleith S, Yip L, Li X, Zhong Z, Yue FY, Closas T, Snider J, Tomic J, Drews SJ, Drebot MA, McGeer A, Ostrowski M, Mubareka S, Rini JM, Owen S, Stagljar I. A homogeneous split-luciferase assay for rapid and sensitive detection of anti-SARS CoV-2 antibodies. Nat Commun 2021; 12:1806. [PMID: 33753733 PMCID: PMC7985487 DOI: 10.1038/s41467-021-22102-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/23/2021] [Indexed: 01/05/2023] Open
Abstract
Better diagnostic tools are needed to combat the ongoing COVID-19 pandemic. Here, to meet this urgent demand, we report a homogeneous immunoassay to detect IgG antibodies against SARS-CoV-2. This serological assay, called SATiN, is based on a tri-part Nanoluciferase (tNLuc) approach, in which the spike protein of SARS-CoV-2 and protein G, fused respectively to two different tNLuc tags, are used as antibody probes. Target engagement of the probes allows reconstitution of a functional luciferase in the presence of the third tNLuc component. The assay is performed directly in the liquid phase of patient sera and enables rapid, quantitative and low-cost detection. We show that SATiN has a similar sensitivity to ELISA, and its readouts are consistent with various neutralizing antibody assays. This proof-of-principle study suggests potential applications in diagnostics, as well as disease and vaccination management.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Luka Drecun
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Farzaneh Aboualizadeh
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sun Jin Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Zhijie Li
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Emelissa J Valcourt
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Kathy Manguiat
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | | - Lily Yip
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Xinliu Li
- Department of Microbiology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Zoe Zhong
- Department of Microbiology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Feng Yun Yue
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Jelena Tomic
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Steven J Drews
- Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada
| | - Michael A Drebot
- Zoonotic Diseases and Special Pathogens Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Allison McGeer
- Department of Microbiology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mario Ostrowski
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Samira Mubareka
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - James M Rini
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shawn Owen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA.
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Mediterranean Institute for Life Sciences, Split, Croatia.
| |
Collapse
|
487
|
Yang S, Jerome KR, Greninger AL, Schiffer JT, Goyal A. Endogenously Produced SARS-CoV-2 Specific IgG Antibodies May Have a Limited Impact on Clearing Nasal Shedding of Virus during Primary Infection in Humans. Viruses 2021; 13:516. [PMID: 33804667 PMCID: PMC8003723 DOI: 10.3390/v13030516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/23/2022] Open
Abstract
While SARS-CoV-2 specific neutralizing antibodies have been developed for therapeutic purposes, the specific viral triggers that drive the generation of SARS-CoV-2 specific IgG and IgM antibodies remain only partially characterized. Moreover, it is unknown whether endogenously derived antibodies drive viral clearance that might result in mitigation of clinical severity during natural infection. We developed a series of non-linear mathematical models to investigate whether SARS-CoV-2 viral and antibody kinetics are coupled or governed by separate processes. Patients with severe disease had a higher production rate of IgG but not IgM antibodies. Maximal levels of both isotypes were governed by their production rate rather than different saturation levels between people. Our results suggest that an exponential surge in IgG levels occurs approximately 5-10 days after symptom onset with no requirement for continual antigenic stimulation. SARS-CoV-2 specific IgG antibodies appear to have limited to no effect on viral dynamics but may enhance viral clearance late during primary infection resulting from the binding effect of antibody to virus, rather than neutralization. In conclusion, SARS-CoV-2 specific IgG antibodies may play only a limited role in clearing infection from the nasal passages despite providing long-term immunity against infection following vaccination or prior infection.
Collapse
Affiliation(s)
- Shuyi Yang
- Department of Data Science, University of California San Diego, La Jolla, CA 92093, USA;
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98910, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ashish Goyal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
| |
Collapse
|
488
|
He Z, Ren L, Yang J, Guo L, Feng L, Ma C, Wang X, Leng Z, Tong X, Zhou W, Wang G, Zhang T, Guo Y, Wu C, Wang Q, Liu M, Wang C, Jia M, Hu X, Wang Y, Zhang X, Hu R, Zhong J, Yang J, Dai J, Chen L, Zhou X, Wang J, Yang W, Wang C. Seroprevalence and humoral immune durability of anti-SARS-CoV-2 antibodies in Wuhan, China: a longitudinal, population-level, cross-sectional study. Lancet 2021; 397:1075-1084. [PMID: 33743869 PMCID: PMC7972311 DOI: 10.1016/s0140-6736(21)00238-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Wuhan was the epicentre of the COVID-19 outbreak in China. We aimed to determine the seroprevalence and kinetics of anti-SARS-CoV-2 antibodies at population level in Wuhan to inform the development of vaccination strategies. METHODS In this longitudinal cross-sectional study, we used a multistage, population-stratified, cluster random sampling method to systematically select 100 communities from the 13 districts of Wuhan. Households were systematically selected from each community and all family members were invited to community health-care centres to participate. Eligible individuals were those who had lived in Wuhan for at least 14 days since Dec 1, 2019. All eligible participants who consented to participate completed a standardised electronic questionnaire of demographic and clinical questions and self-reported any symptoms associated with COVID-19 or previous diagnosis of COVID-19. A venous blood sample was taken for immunological testing on April 14-15, 2020. Blood samples were tested for the presence of pan-immunoglobulins, IgM, IgA, and IgG antibodies against SARS-CoV-2 nucleocapsid protein and neutralising antibodies were assessed. We did two successive follow-ups between June 11 and June 13, and between Oct 9 and Dec 5, 2020, at which blood samples were taken. FINDINGS Of 4600 households randomly selected, 3599 families (78·2%) with 9702 individuals attended the baseline visit. 9542 individuals from 3556 families had sufficient samples for analyses. 532 (5·6%) of 9542 participants were positive for pan-immunoglobulins against SARS-CoV-2, with a baseline adjusted seroprevalence of 6·92% (95% CI 6·41-7·43) in the population. 437 (82·1%) of 532 participants who were positive for pan-immunoglobulins were asymptomatic. 69 (13·0%) of 532 individuals were positive for IgM antibodies, 84 (15·8%) were positive for IgA antibodies, 532 (100%) were positive for IgG antibodies, and 212 (39·8%) were positive for neutralising antibodies at baseline. The proportion of individuals who were positive for pan-immunoglobulins who had neutralising antibodies in April remained stable for the two follow-up visits (162 [44·6%] of 363 in June, 2020, and 187 [41·2%] of 454 in October-December, 2020). On the basis of data from 335 individuals who attended all three follow-up visits and who were positive for pan-immunoglobulins, neutralising antibody levels did not significantly decrease over the study period (median 1/5·6 [IQR 1/2·0 to 1/14·0] at baseline vs 1/5·6 [1/4·0 to 1/11·2] at first follow-up [p=1·0] and 1/6·3 [1/2·0 to 1/12·6] at second follow-up [p=0·29]). However, neutralising antibody titres were lower in asymptomatic individuals than in confirmed cases and symptomatic individuals. Although titres of IgG decreased over time, the proportion of individuals who had IgG antibodies did not decrease substantially (from 30 [100%] of 30 at baseline to 26 [89·7%] of 29 at second follow-up among confirmed cases, 65 [100%] of 65 at baseline to 58 [92·1%] of 63 at second follow-up among symptomatic individuals, and 437 [100%] of 437 at baseline to 329 [90·9%] of 362 at second follow-up among asymptomatic individuals). INTERPRETATION 6·92% of a cross-sectional sample of the population of Wuhan developed antibodies against SARS-CoV-2, with 39·8% of this population seroconverting to have neutralising antibodies. Our durability data on humoral responses indicate that mass vaccination is needed to effect herd protection to prevent the resurgence of the epidemic. FUNDING Chinese Academy of Medical Sciences & Peking Union Medical College, National Natural Science Foundation, and Chinese Ministry of Science and Technology. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Zhenyu He
- Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Lili Ren
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Guo
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Luzhao Feng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chao Ma
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xia Wang
- Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Zhiwei Leng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xunliang Tong
- Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center for Gerontology, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, Beijing, China
| | - Wang Zhou
- Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Geng Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China
| | - Ting Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Guo
- Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Chao Wu
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Manqing Liu
- Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Conghui Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mengmeng Jia
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuejiao Hu
- Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Ying Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingxing Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rong Hu
- Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Jingchuan Zhong
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jin Yang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juan Dai
- Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Lan Chen
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoqi Zhou
- Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Jianwei Wang
- National Health Commission Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences, Beijing, China.
| | - Weizhong Yang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Chen Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; Chinese Academy of Engineering, Beijing, China.
| |
Collapse
|
489
|
Abstract
Here, Veldhoen and Simas discuss why immunity to SARS-CoV-2 in populations may ultimately be driven by the endemic presence of the virus and not rely on continued mass vaccination programmes.
Collapse
|
490
|
Whitcombe AL, McGregor R, Craigie A, James A, Charlewood R, Lorenz N, Dickson JM, Sheen CR, Koch B, Fox-Lewis S, McAuliffe G, Roberts SA, Morpeth SC, Taylor S, Webb RH, Jack S, Upton A, Ussher JE, Moreland NJ. Comprehensive analysis of SARS-CoV-2 antibody dynamics in New Zealand. Clin Transl Immunology 2021; 10:e1261. [PMID: 33747511 PMCID: PMC7955949 DOI: 10.1002/cti2.1261] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Circulating antibodies are important markers of previous infection and immunity. Questions remain with respect to the durability and functionality of SARS-CoV-2 antibodies. This study explored antibody responses in recovered COVID-19 patients in a setting where the probability of re-exposure is effectively nil, owing to New Zealand's successful elimination strategy. METHODS A triplex bead-based assay that detects antibody isotype (IgG, IgM and IgA) and subclass (IgG1, IgG2, IgG3 and IgG4) responses against Nucleocapsid (N) protein, the receptor binding domain (RBD) and Spike (S) protein of SARS-CoV-2 was developed. After establishing baseline levels with pre-pandemic control sera (n = 113), samples from PCR-confirmed COVID-19 patients with mild-moderate disease (n = 189) collected up to 8 months post-infection were examined. The relationship between antigen-specific antibodies and neutralising antibodies (NAbs) was explored with a surrogate neutralisation assay that quantifies inhibition of the RBD/hACE-2 interaction. RESULTS While most individuals had broad isotype and subclass responses to each antigen shortly after infection, only RBD and S protein IgG, as well as NAbs, were relatively stable over the study period, with 99%, 96% and 90% of samples, respectively, having responses over baseline 4-8 months post-infection. Anti-RBD antibodies were strongly correlated with NAbs at all time points (Pearson's r ≥ 0.87), and feasibility of using finger prick sampling to accurately measure anti-RBD IgG was demonstrated. CONCLUSION Antibodies to SARS-CoV-2 persist for up to 8 months following mild-to-moderate infection. This robust response can be attributed to the initial exposure without immune boosting given the lack of community transmission in our setting.
Collapse
Affiliation(s)
- Alana L Whitcombe
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
| | - Reuben McGregor
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
| | | | - Alex James
- Te Punaha Matatini and School of Mathematics and Statistics University of Canterbury Christchurch New Zealand
| | | | - Natalie Lorenz
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
| | - James Mj Dickson
- School of Biological Sciences University of Auckland Auckland New Zealand
| | - Campbell R Sheen
- Protein Science and Engineering Callaghan Innovation Christchurch New Zealand
| | - Barbara Koch
- Protein Science and Engineering Callaghan Innovation Christchurch New Zealand
| | | | | | - Sally A Roberts
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
- LabPLUS Auckland City Hospital Auckland New Zealand
| | | | | | - Rachel H Webb
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
- Starship Children's Hospital and Kidz First Children's Hospital Auckland New Zealand
| | - Susan Jack
- Public Health South Southern District Health Board Dunedin New Zealand
| | - Arlo Upton
- Southern Community Laboratories Dunedin New Zealand
| | - James E Ussher
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
- Southern Community Laboratories Dunedin New Zealand
- Department of Microbiology and Immunology University of Otago Dunedin New Zealand
| | - Nicole J Moreland
- Faculty of Medical and Health Sciences University of Auckland Auckland New Zealand
- Maurice Wilkins Centre University of Auckland Auckland New Zealand
| |
Collapse
|
491
|
Abayasingam A, Balachandran H, Agapiou D, Hammoud M, Rodrigo C, Keoshkerian E, Li H, Brasher NA, Christ D, Rouet R, Burnet D, Grubor-Bauk B, Rawlinson W, Turville S, Aggarwal A, Stella AO, Fichter C, Brilot F, Mina M, Post JJ, Hudson B, Gilroy N, Dwyer D, Sasson SC, Tea F, Pilli D, Kelleher A, Tedla N, Lloyd AR, Martinello M, Bull RA, on Behalf of the COSIN Study Group. Long-term persistence of RBD + memory B cells encoding neutralizing antibodies in SARS-CoV-2 infection. CELL REPORTS MEDICINE 2021; 2:100228. [PMID: 33748788 PMCID: PMC7955929 DOI: 10.1016/j.xcrm.2021.100228] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
Considerable concerns relating to the duration of protective immunity against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) exist, with evidence of antibody titers declining rapidly after infection and reports of reinfection. Here, we monitor the antibody responses against SARS-CoV-2 receptor-binding domain (RBD) for up to 6 months after infection. While antibody titers are maintained, ∼13% of the cohort’s neutralizing responses return to background. However, encouragingly, in a selected subset of 13 participants, 12 have detectable RBD-specific memory B cells and these generally are increasing out to 6 months. Furthermore, we are able to generate monoclonal antibodies with SARS-CoV-2 neutralizing capacity from these memory B cells. Overall, our study suggests that the loss of neutralizing antibodies in plasma may be countered by the maintenance of neutralizing capacity in the memory B cell repertoire. Decay of antibody binding to RBD and spike antigen after 6 months 11 of 81 (13.6%) participants revert to background neutralizing levels Despite declining antibody titers, robust memory B cell populations are observed Memory B cells retain potent neutralizing capacity
Collapse
Affiliation(s)
- Arunasingam Abayasingam
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | - Harikrishnan Balachandran
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | - David Agapiou
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | | | - Chaturaka Rodrigo
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | | | - Hui Li
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | - Nicholas A. Brasher
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst 2010, NSW, Australia
| | - Romain Rouet
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst 2010, NSW, Australia
| | - Deborah Burnet
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst 2010, NSW, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Discipline of Surgery, The University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide 5011, SA, Australia
| | - William Rawlinson
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
- Serology and Virology Division, Department of Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | | | | | | | | | - Fabienne Brilot
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Brain Autoimmunity Group, Kids Neurosciences Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Michael Mina
- Northern Beaches Hospital, Sydney, NSW, Australia
| | - Jeffrey J. Post
- Prince of Wales Clinical School, UNSW Australia, Sydney, NSW Australia
| | | | | | | | | | - Fiona Tea
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Brain Autoimmunity Group, Kids Neurosciences Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Deepti Pilli
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Brain Autoimmunity Group, Kids Neurosciences Centre, Kids Research at the Children’s Hospital at Westmead, Sydney, NSW, Australia
| | | | - Nicodemus Tedla
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
| | | | - Marianne Martinello
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
- Westmead Hospital, Sydney, NSW, Australia
- Blacktown Mt Druitt Hospital, Blacktown, NSW, Australia
| | - Rowena A. Bull
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, NSW, Australia
- The Kirby Institute, UNSW Australia, Sydney, NSW, Australia
- Corresponding author
| | | |
Collapse
|
492
|
Sherina N, Piralla A, Du L, Wan H, Kumagai-Braesch M, Andréll J, Braesch-Andersen S, Cassaniti I, Percivalle E, Sarasini A, Bergami F, Di Martino R, Colaneri M, Vecchia M, Sambo M, Zuccaro V, Bruno R, Sachs M, Oggionni T, Meloni F, Abolhassani H, Bertoglio F, Schubert M, Byrne-Steele M, Han J, Hust M, Xue Y, Hammarström L, Baldanti F, Marcotte H, Pan-Hammarström Q. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6-8 months after the infection. MED 2021; 2:281-295.e4. [PMID: 33589885 PMCID: PMC7874960 DOI: 10.1016/j.medj.2021.02.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/28/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Monitoring the adaptive immune responses during the natural course of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection provides useful information for the development of vaccination strategies against this virus and its emerging variants. We thus profiled the serum anti-SARS-CoV-2 antibody (Ab) levels and specific memory B and T cell responses in convalescent coronavirus disease 2019 (COVID-19) patients. METHODS A total of 119 samples from 88 convalescent donors who experienced mild to critical disease were tested for the presence of elevated anti-spike and anti-receptor binding domain Ab levels over a period of 8 months. In addition, the levels of SARS-CoV-2 neutralizing Abs and specific memory B and T cell responses were tested in a subset of samples. FINDINGS Anti-SARS-CoV-2 Abs were present in 85% of the samples collected within 4 weeks after the onset of symptoms in COVID-19 patients. Levels of specific immunoglobulin M (IgM)/IgA Abs declined after 1 month, while levels of specific IgG Abs and plasma neutralizing activities remained relatively stable up to 6 months after diagnosis. Anti-SARS-CoV-2 IgG Abs were still present, although at a significantly lower level, in 80% of the samples collected at 6-8 months after symptom onset. SARS-CoV-2-specific memory B and T cell responses developed with time and were persistent in all of the patients followed up for 6-8 months. CONCLUSIONS Our data suggest that protective adaptive immunity following natural infection of SARS-CoV-2 may persist for at least 6-8 months, regardless of disease severity. Development of medium- or long-term protective immunity through vaccination may thus be possible. FUNDING This project was supported by the European Union's Horizon 2020 research and innovation programme (ATAC, no. 101003650), the Italian Ministry of Health (Ricerca Finalizzata grant no. GR-2013-02358399), the Center for Innovative Medicine, and the Swedish Research Council. J.A. was supported by the SciLifeLab/KAW national COVID-19 research program project grant 2020.
Collapse
Affiliation(s)
- Natalia Sherina
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hui Wan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Makiko Kumagai-Braesch
- Division of Transplantation Surgery, CLINTEC, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Juni Andréll
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | | | - Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonella Sarasini
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Federica Bergami
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Raffaella Di Martino
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marta Colaneri
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Vecchia
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Margherita Sambo
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Valentina Zuccaro
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Raffaele Bruno
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Sachs
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Tiberio Oggionni
- Unit of Respiratory Diseases, Department of Medical Sciences and Infective Diseases, Fondazione IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Federica Meloni
- Section of Pneumology, Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Hassan Abolhassani
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Federico Bertoglio
- Institute of Biochemistry, Biotechnology, and Bioinformatics, Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Schubert
- Institute of Biochemistry, Biotechnology, and Bioinformatics, Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Jian Han
- iRepertoire, Huntsville, AL, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Michael Hust
- Institute of Biochemistry, Biotechnology, and Bioinformatics, Department of Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Yintong Xue
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Harold Marcotte
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|
493
|
Sagara I, Woodford J, Dicko A, Zeguime A, Doucoure M, Kwan J, Zaidi I, Doritchamou J, Snow-Smith M, Alani N, Renn J, Kosik I, Holly J, Yewdell J, Esposito D, Sadtler K, Duffy P. SARS-CoV-2 seroassay optimization and performance in a population with high background reactivity in Mali. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.08.21252784. [PMID: 33758883 PMCID: PMC7987042 DOI: 10.1101/2021.03.08.21252784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Serological tests are an indispensable tool to understand the epidemiology of the SARS-CoV-2 pandemic, particularly in areas where molecular diagnostics are limited. Poor assay performance may hinder the utility of these tests, including high rates of false-positivity previously reported in sub-Saharan Africa. From 312 Malian samples collected prior to 2020, we measured antibodies to the commonly tested SARS-CoV-2 antigens and four other betacoronaviruses by ELISA, and assessed functional cross-reactivity in a subset by SARS-CoV-2 pseudovirus neutralization assay. We then evaluated the performance of an ELISA developed in the US, using two-antigen SARS-CoV-2 spike protein and receptor-binding domain. To optimize test performance, we compared single and two-antigen approaches using existing assay cutoffs and population-specific cutoffs for Malian control samples (positive and negative). Background reactivity to SARS-CoV-2 antigens was common in pre-pandemic samples compared to US controls (43.4% (135/311) for spike protein, 22.8% (71/312) for RBD, and 33.9% (79/233) for nucleocapsid protein). SARS-CoV-2 reactivity correlated weakly with other betacoronavirus reactivity, varied between Malian communities, and increased with age. No pre-pandemic samples demonstrated functional activity. Regardless of the cutoffs applied, specificity improved using a two-antigen approach. Test performance was optimal using a two-antigen assay with population-specific cutoffs derived from ROC curve analysis [Sensitivity: 73.9% (51.6-89.8), Specificity: 99.4% (97.7-99.9)]. In the setting of high background reactivity, such as sub-Saharan Africa, SARS-CoV-2 serological assays need careful qualification is to characterize the epidemiology of disease, prevent unnecessary harm, and allocate resources for targeted control measures.
Collapse
|
494
|
Suhandynata RT, Bevins NJ, Tran JT, Huang D, Hoffman MA, Lund K, Kelner MJ, McLawhon RW, Gonias SL, Nemazee D, Fitzgerald RL. SARS-CoV-2 Serology Status Detected by Commercialized Platforms Distinguishes Previous Infection and Vaccination Adaptive Immune Responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.10.21253299. [PMID: 33758902 PMCID: PMC7987061 DOI: 10.1101/2021.03.10.21253299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 110 million individuals and led to 2.5 million deaths worldwide. As more individuals are vaccinated, the clinical performance and utility of SARS-CoV-2 serology platforms needs to be evaluated. Methods The ability of four commercial SARS-CoV-2 serology platforms to detect previous infection or vaccination were evaluated using a cohort of 53 SARS-CoV-2 PCR-positive patients, 89 SARS-CoV-2-vaccinated healthcare workers (Pfizer or Moderna), and 127 SARS-CoV-2 negative patients. Serology results were compared to a cell based SARS-CoV-2 pseudovirus (PSV) neutralizing antibodies assay. Results The Roche S-(spike) antibody and Diazyme neutralizing antibodies (NAbs) assays detected adaptive immune response in 100.0% and 90.1% of vaccinated individuals who received two-doses of vaccine (initial and booster), respectively. The Roche N-(nucleocapsid) antibody assay and Diazyme IgG assay did not detect adaptive immune response in vaccinated individuals. The Diazyme Nabs assay correlated with the PSV SARS-CoV-2 ID50 neutralization titers (R2= 0.70), while correlation of the Roche S-antibody assay was weaker (R2= 0.39). Median PSV SARS-CoV-2 ID50 titers more than doubled in vaccinated individuals who received two-doses of the Moderna vaccine (ID50: 597) compared to individuals that received a single dose (ID50: 284). Conclusions The Roche S-antibody and Diazyme NAbs assays robustly detected adaptive immune responses in SARS-CoV-2 vaccinated individuals and SARS-CoV-2 infected individuals. The Diazyme NAbs assay strongly correlates with the PSV SARS-CoV-2 NAbs in vaccinated individuals. Understanding the reactivity of commercially available serology platforms is important when distinguishing vaccination response versus natural infection.
Collapse
Affiliation(s)
| | | | - Jenny T Tran
- Department of Immunology and Microbiology, The Scripps Research Institution, San Diego, CA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institution, San Diego, CA
| | | | - Kyle Lund
- Department of Pathology UC San Diego Health, San Diego CA
| | | | | | | | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institution, San Diego, CA
| | | |
Collapse
|
495
|
Lombardi A, Bozzi G, Ungaro R, Villa S, Castelli V, Mangioni D, Muscatello A, Gori A, Bandera A. Mini Review Immunological Consequences of Immunization With COVID-19 mRNA Vaccines: Preliminary Results. Front Immunol 2021; 12:657711. [PMID: 33777055 PMCID: PMC7994748 DOI: 10.3389/fimmu.2021.657711] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: BNT162b2 and mRNA-1273 are the two recently approved mRNA-based vaccines against COVID-19 which has shown excellent safety and efficacy. Preliminary data about specific and neutralizing antibodies is available covering the first 100 days after vaccination. Methods: We reviewed all the publications regarding the immunologic consequences of BNT162b2 and mRNA-1273 vaccination. A summary of specific antibodies concentration and neutralizing antibodies titers elicited by each vaccine is provided. Results: BNT162b2 and mRNA-1273 displayed a reassuring safety and efficacy profile, with the latter above 94%. They can elicit specific antibodies titers and neutralizing antibodies concentrations that are far superior from those observed among COVID-19 human convalescent serum, across a wide span of age, for at least 100 days after vaccination. Moreover, the vaccine-induced T cellular response is oriented toward a TH1 response and no evidence of vaccine-enhanced disease have been reported. Discussion: BNT162b2 and mRNA-1273 can elicit specific antibodies titers and neutralizing antibodies concentrations above those observed among COVID-19 human convalescent serum in the first 100 days after vaccination. Data about vaccine efficacy in those with previous COVID-19 or immunocompromised is still limited.
Collapse
Affiliation(s)
- Andrea Lombardi
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Giorgio Bozzi
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Ungaro
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Villa
- Center for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan, Italy
| | - Valeria Castelli
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Mangioni
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
- Center for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
- Center for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan, Italy
| |
Collapse
|
496
|
Ansari A, Arya R, Sachan S, Jha SN, Kalia A, Lall A, Sette A, Grifoni A, Weiskopf D, Coshic P, Sharma A, Gupta N. Immune Memory in Mild COVID-19 Patients and Unexposed Donors Reveals Persistent T Cell Responses After SARS-CoV-2 Infection. Front Immunol 2021; 12:636768. [PMID: 33777028 PMCID: PMC7991090 DOI: 10.3389/fimmu.2021.636768] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/24/2022] Open
Abstract
Understanding the causes of the diverse outcome of COVID-19 pandemic in different geographical locations is important for the worldwide vaccine implementation and pandemic control responses. We analyzed 42 unexposed healthy donors and 28 mild COVID-19 subjects up to 5 months from the recovery for SARS-CoV-2 specific immunological memory. Using HLA class II predicted peptide megapools, we identified SARS-CoV-2 cross-reactive CD4+ T cells in around 66% of the unexposed individuals. Moreover, we found detectable immune memory in mild COVID-19 patients several months after recovery in the crucial arms of protective adaptive immunity; CD4+ T cells and B cells, with a minimal contribution from CD8+ T cells. Interestingly, the persistent immune memory in COVID-19 patients is predominantly targeted towards the Spike glycoprotein of the SARS-CoV-2. This study provides the evidence of both high magnitude pre-existing and persistent immune memory in Indian population. By providing the knowledge on cellular immune responses to SARS-CoV-2, our work has implication for the development and implementation of vaccines against COVID-19.
Collapse
Affiliation(s)
- Asgar Ansari
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Rakesh Arya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shilpa Sachan
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Someshwar Nath Jha
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Anurag Kalia
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| | - Anupam Lall
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, United States
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Poonam Coshic
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
497
|
Sun D, Sang Z, Kim YJ, Xiang Y, Cohen T, Belford AK, Huet A, Conway JF, Sun J, Taylor DJ, Schneidman-Duhovny D, Zhang C, Huang W, Shi Y. Potent neutralizing nanobodies resist convergent circulating variants of SARS-CoV-2 by targeting novel and conserved epitopes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.09.434592. [PMID: 33758850 PMCID: PMC7987009 DOI: 10.1101/2021.03.09.434592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is an urgent need to develop effective interventions resistant to the evolving variants of SARS-CoV-2. Nanobodies (Nbs) are stable and cost-effective agents that can be delivered by novel aerosolization route to treat SARS-CoV-2 infections efficiently. However, it remains unknown if they possess broadly neutralizing activities against the prevalent circulating strains. We found that potent neutralizing Nbs are highly resistant to the convergent variants of concern that evade a large panel of neutralizing antibodies (Abs) and significantly reduce the activities of convalescent or vaccine-elicited sera. Subsequent determination of 9 high-resolution structures involving 6 potent neutralizing Nbs by cryoelectron microscopy reveals conserved and novel epitopes on virus spike inaccessible to Abs. Systematic structural comparison of neutralizing Abs and Nbs provides critical insights into how Nbs uniquely target the spike to achieve high-affinity and broadly neutralizing activity against the evolving virus. Our study will inform the rational design of novel pan-coronavirus vaccines and therapeutics.
Collapse
Affiliation(s)
- Dapeng Sun
- Department of Pharmacology and Chemical Biology, University of Pittsburgh
| | - Zhe Sang
- The University of Pittsburgh and Carnegie Mellon University Program for Computational Biology, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, PA, USA
| | - Yong Joon Kim
- Department of Cell Biology, University of Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh, PA, USA
| | - Tomer Cohen
- School of Computer Science and Engineering, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | | - Alexis Huet
- Department of Structural Biology, University of Pittsburgh
| | | | - Ji Sun
- Department of Structure Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Derek J. Taylor
- Department of Pharmacology, Case Western Reserve University, Clevaland, OH, USA
- Department of Biochemistry, Case Western Reserve University, Clevaland, OH, USA
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Clevaland, OH, USA
| | - Yi Shi
- The University of Pittsburgh and Carnegie Mellon University Program for Computational Biology, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine and Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
498
|
De Giorgi V, West KA, Henning AN, Chen L, Holbrook MR, Gross R, Liang J, Postnikova E, Trenbeath J, Pogue S, Scinto T, Alter HJ, Cantilena CC. Anti-SARS-CoV-2 Serology persistence over time in COVID-19 Convalescent Plasma Donors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33758897 DOI: 10.1101/2021.03.08.21253093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Characterizing the kinetics of the antibody response to SARS□CoV□2 is of critical importance to developing strategies that may mitigate the public health burden of COVID-19. We sought to determine how circulating antibody levels change over time following natural infection. Methods/Materials We conducted a prospective, longitudinal analysis of COVID-19 convalescent plasma (CCP) donors at multiple time points over a 9-month period. At each study visit, subjects either donated plasma or only had study samples drawn. In all cases, anti-SARS-CoV-2 donor testing was performed using semi-quantitative chemiluminescent immunoassays (ChLIA) targeting subunit 1 (S1) of the SARS-CoV-2 spike (S) protein, and an in-house fluorescence reduction neutralization assay (FRNA). Results From April to November 2020 we enrolled 202 donors, mean age 47.3 ±14.7 years, 55% female, 75% Caucasian. Most donors reported a mild clinical course (91%, n=171) without hospitalization. One hundred and five (105) (52%) donors presented for repeat visits with a median 42 (12-163) days between visits. The final visit occurred at a median 160 (53-273) days post-symptom resolution. Total anti-SARS-CoV-2 antibodies (Ab), SARS-CoV-2 specific IgG and neutralizing antibodies were detected in 97.5%, 91.1%, and 74% of donors respectively at initial presentation. Neutralizing Ab titers based on FRNA 50 were positively associated with mean IgG levels (p = <0.0001). Mean IgG levels and neutralizing titers were positively associated with COVID-19 severity, increased donor age and BMI (p=0.0006 and p=0.0028, p=0.0083 and p=0.0363, (p=0.0008 and p=0.0018, respectively). Over the course of repeat visits, IgG decreased in 74.1% of donors; FRNA 50 decreased in 44.4% and remained unchanged in 33.3% of repeat donors. A weak negative correlation was observed between total Ab levels and number of days post-symptom recovery (r = 0.09). Conclusion Anti-SARS-CoV-2 antibodies were identified in 97% of convalescent donors at initial presentation. In a cohort that largely did not require hospitalization. IgG and neutralizing antibodies were positively correlated with age, BMI and clinical severity, and persisted for up to 9 months post-recovery from natural infection. On repeat presentation, IgG anti-SARS-CoV-2 levels decreased in 56% of repeat donors. Overall, these data suggest that CP donors possess a wide range of IgG and neutralizing antibody levels that are proportionally distributed across demographics, with the exception of age, BMI and clinical severity.
Collapse
|
499
|
Koch T, Mellinghoff SC, Shamsrizi P, Addo MM, Dahlke C. Correlates of Vaccine-Induced Protection against SARS-CoV-2. Vaccines (Basel) 2021; 9:238. [PMID: 33801831 PMCID: PMC8035658 DOI: 10.3390/vaccines9030238] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
We are in the midst of a pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). SARS-CoV-2 has caused more than two million deaths after one year of the pandemic. The world is experiencing a deep economic recession. Safe and effective vaccines are needed to prevent further morbidity and mortality. Vaccine candidates against COVID-19 have been developed at an unprecedented speed, with more than 200 vaccine candidates currently under investigation. Among those, 20 candidates have entered the clinical Phase 3 to evaluate efficacy, and three have been approved by the European Medicines Agency. The aim of immunization is to act against infection, disease and/or transmission. However, the measurement of vaccine efficacy is challenging, as efficacy trials need to include large cohorts with verum and placebo cohorts. In the future, this will be even more challenging as further vaccine candidates will receive approval, an increasing number of humans will receive vaccinations and incidence might decrease. To evaluate novel and second-generation vaccine candidates, randomized placebo-controlled trials might not be appropriate anymore. Correlates of protection (CoP) could be an important tool to evaluate novel vaccine candidates, but vaccine-induced CoP have not been clearly defined for SARS-CoV-2 vaccines. In this review, we report on immunogenicity against natural SARS-CoV-2 infection, vaccine-induced immune responses and discuss immunological markers that can be linked to protection. By discussing the immunogenicity and efficacy of forerunner vaccines, we aim to give a comprehensive overview of possible efficacy measures and CoP.
Collapse
Affiliation(s)
- Till Koch
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; (T.K.); (S.C.M.); (P.S.); (M.M.A.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Sibylle C. Mellinghoff
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; (T.K.); (S.C.M.); (P.S.); (M.M.A.)
- Excellence Centre for Medical Mycology (ECMM), 1st Department of Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Translational Research, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, 50937 Cologne, Germany
| | - Parichehr Shamsrizi
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; (T.K.); (S.C.M.); (P.S.); (M.M.A.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Marylyn M. Addo
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; (T.K.); (S.C.M.); (P.S.); (M.M.A.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Christine Dahlke
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany; (T.K.); (S.C.M.); (P.S.); (M.M.A.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| |
Collapse
|
500
|
Importance of COVID-19 vaccine efficacy in older age groups. Vaccine 2021; 39:2020-2023. [PMID: 33736921 PMCID: PMC7938751 DOI: 10.1016/j.vaccine.2021.03.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/10/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
Importance An effective vaccine against SARS-CoV-2 will reduce morbidity and mortality and allow substantial relaxation of physical distancing policies. However, the ability of a vaccine to prevent infection or disease depends critically on protecting older individuals, who are at highest risk of severe disease. Objective We quantitatively estimated the relative benefits of COVID-19 vaccines, in terms of preventing infection and death, with a particular focus on effectiveness in elderly people. Design We applied compartmental mathematical modelling to determine the relative effects of vaccines that block infection and onward transmission, and those that prevent severe disease. We assumed that vaccines showing high efficacy in adults would be deployed, and examined the effects of lower vaccine efficacy among the elderly population. Setting and participants Our mathematical model was calibrated to simulate the course of an epidemic among the entire population of British Columbia, Canada. Within our model, the population was structured by age and levels of contact. Main outcome(s) and measure(s) We assessed the effectiveness of possible vaccines in terms of the predicted number of infections within the entire population, and deaths among people aged 65 years and over. Results In order to reduce the overall rate of infections in the population, high rates of deployment to all age groups will be critical. However, to substantially reduce mortality among people aged 65 years and over, a vaccine must directly protect a high proportion of people in that group. Conclusions and relevance Effective vaccines deployed to a large fraction of the population are projected to substantially reduce infection in an otherwise susceptible population. However, even if transmission were blocked highly effectively by vaccination of children and younger adults, overall mortality would not be substantially reduced unless the vaccine is also directly protective in elderly people. We strongly recommend: (i) the inclusion of people aged 65 years and over in future trials of COVID-19 vaccine candidates; (ii) careful monitoring of vaccine efficacy in older age groups following vaccination.
Collapse
|