651
|
Abstract
Plants and invertebrates can protect themselves from viral infection through RNA silencing. This antiviral immunity involves production of virus-derived small interfering RNAs (viRNAs) and results in specific silencing of viruses by viRNA-guided effector complexes. The proteins required for viRNA production as well as several key downstream components of the antiviral immunity pathway have been identified in plants, flies, and worms. Meanwhile, viral mechanisms to suppress this small RNA-directed immunity by viruses are being elucidated, thereby illuminating an ongoing molecular arms race that likely impacts the evolution of both viral and host genomes.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA
- Correspondence: (S.W.D.), (O.V.)
| | - Olivier Voinnet
- Institut de Biologie Moléculaire des plantes, CNRS, Université Louis Pasteur, 67084 Strasbourg Cedex, France
- Correspondence: (S.W.D.), (O.V.)
| |
Collapse
|
652
|
Miyagi T, Gil MP, Wang X, Louten J, Chu WM, Biron CA. High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells. ACTA ACUST UNITED AC 2007; 204:2383-96. [PMID: 17846149 PMCID: PMC2118450 DOI: 10.1084/jem.20070401] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The best-characterized type 1 interferon (IFN) signaling pathway depends on signal transducer and activator of transcription 1 (STAT1) and STAT2. The cytokines can, however, conditionally activate all STATs. Regulation of their access to particular signaling pathways is poorly understood. STAT4 is important for IFN-γ induction, and NK cells are major producers of this cytokine. We report that NK cells have high basal STAT4 levels and sensitivity to type 1 IFN–mediated STAT4 activation for IFN-γ production. Increases in STAT1, driven during viral infection by either type 1 IFN or IFN-γ, are associated with decreased STAT4 access. Both STAT1 and STAT2 are important for antiviral defense, but STAT1 has a unique role in protecting against sustained NK cell IFN-γ production and resulting disease. The regulation occurs with an NK cell type 1 IFN receptor switch from a STAT4 to a STAT1 association. Thus, a fundamental characteristic of NK cells is high STAT4 bound to the type 1 IFN receptor. The conditions of infection result in STAT1 induction with displacement of STAT4. These studies elucidate the critical role of STAT4 levels in predisposing selection of specific signaling pathways, define the biological importance of regulation within particular cell lineages, and provide mechanistic insights for how this is accomplished in vivo.
Collapse
Affiliation(s)
- Takuya Miyagi
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
653
|
Scherbik SV, Stockman BM, Brinton MA. Differential expression of interferon (IFN) regulatory factors and IFN-stimulated genes at early times after West Nile virus infection of mouse embryo fibroblasts. J Virol 2007; 81:12005-18. [PMID: 17804507 PMCID: PMC2168811 DOI: 10.1128/jvi.01359-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although lineage I West Nile virus (WNV) strain Eg101 induced beta interferon (IFN-beta) production as early as 12 h after infection in primary mouse embryo fibroblasts and did not inhibit the JAK-STAT signaling pathway, it was still able to replicate efficiently. To gain insights about possible viral countermeasures used by this virus to suppress the host response, the cell transcriptional profile and the kinetics of IFN regulatory factor (IRF) expression and activation were examined at early times after infection. By 12 h after WNV infection, the majority of the up-regulated genes were ones involved in IFN pathways. However, comparison of IFN-stimulated gene (ISG) expression levels in mock-infected, IFN-treated, and virus-infected cells indicated that WNV infection suppressed the up-regulation of a subset of ISGs, including genes involved in transcriptional regulation, apoptosis, and stress responses, prior to 24 h after infection. Analysis of mRNA and protein levels for representative genes indicated that suppression was at the transcriptional and posttranscriptional levels. Translocation of IRF-3 to the nucleus was observed beginning at 8 h, IRF-7 expression was detected by 12 h, but IRF-1 expression was not detected until 24 h after infection. Virus-induced gene suppression was sufficient to overcome the effect of exogenous IFN pretreatment for 1 h but not for 4 h prior to infection. These data indicate that WNV can selectively counteract the host response at early times after infection by previously unreported mechanisms.
Collapse
Affiliation(s)
- Svetlana V Scherbik
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | |
Collapse
|
654
|
Strähle L, Marq JB, Brini A, Hausmann S, Kolakofsky D, Garcin D. Activation of the beta interferon promoter by unnatural Sendai virus infection requires RIG-I and is inhibited by viral C proteins. J Virol 2007; 81:12227-37. [PMID: 17804509 PMCID: PMC2169027 DOI: 10.1128/jvi.01300-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
As infection with wild-type (wt) Sendai virus (SeV) normally activates beta interferon (IFN-beta) very poorly, two unnatural SeV infections were used to study virus-induced IFN-beta activation in mouse embryonic fibroblasts: (i) SeV-DI-H4, which is composed mostly of small, copyback defective interfering (DI) genomes and whose infection overproduces short 5'-triphosphorylated trailer RNAs (pppRNAs) and underproduces viral V and C proteins, and (ii) SeV-GFP(+/-), a coinfection that produces wt amounts of viral gene products but that also produces both green fluorescent protein (GFP) mRNA and its complement, which can form double-stranded RNA (dsRNA) with capped 5' ends. We found that (i) virus-induced signaling to IFN-beta depended predominantly on RIG-I (as opposed to mda-5) for both SeV infections, i.e., that RIG-I senses both pppRNAs and dsRNA without 5'-triphosphorylated ends, and (ii) it is the viral C protein (as opposed to V) that is primarily responsible for countering RIG-I-dependent signaling to IFN-beta. Nondefective SeV that cannot specifically express C proteins not only cannot prevent the effects of transfected poly(I-C) or (ppp)RNAs on IFN-beta activation but also synergistically enhances these effects. SeV-V(minus) infection, in contrast, behaves mostly like wt SeV and counteracts the effects of transfected poly(I-C) or (ppp)RNAs.
Collapse
Affiliation(s)
- Laura Strähle
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, 11 Ave de Champel, CH1211, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
655
|
Whitmore MM, Iparraguirre A, Kubelka L, Weninger W, Hai T, Williams BRG. Negative Regulation of TLR-Signaling Pathways by Activating Transcription Factor-3. THE JOURNAL OF IMMUNOLOGY 2007; 179:3622-30. [PMID: 17785797 DOI: 10.4049/jimmunol.179.6.3622] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Activating transcription factor-3 (ATF3) is rapidly induced by LPS in mouse macrophages and regulates TLR4 responses. We show that ATF3 is rapidly induced by various TLRs in mouse macrophages and plasmacytoid dendritic cells (DCs), as well as plasmacytoid and myeloid subsets of human DCs. In primary macrophages from mice with a targeted deletion of the atf3 gene (ATF3-knockout (KO)), TLR-stimulated levels of IL-12 and IL-6 were elevated relative to responses in wild-type macrophages. Similarly, targeted deletion of atf3 correlated with enhanced responsiveness of myeloid DCs to TLR activation as measured by IL-12 secretion. Ectopic expression of ATF3 antagonized TLR-stimulated IL-12p40 activation in a reporter assay. In vivo, CpG-oligodeoxynucleotide, a TLR9 agonist, given i.p. to ATF3-KO mice resulted in enhanced cytokine production from splenocytes. Furthermore, while ATF3-KO mice challenged with a sublethal dose of PR8 influenza virus were delayed in body weight recovery in comparison to wild type, the ATF3-KO mice showed higher titers of serum neutralizing Ab against PR8 5 mo postinfection. Thus, ATF3 behaves as a negative regulatory transcription factor in TLR pathways and, accordingly, deficiency in atf3 alters responses to immunological challenges in vivo. ATF3 dysregulation merits further exploration in diseases such as type I diabetes and cancer, where altered innate immunity has been implicated in their pathogenesis.
Collapse
Affiliation(s)
- Mark M Whitmore
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
656
|
Jewell NA, Vaghefi N, Mertz SE, Akter P, Peebles RS, Bakaletz LO, Durbin RK, Flaño E, Durbin JE. Differential type I interferon induction by respiratory syncytial virus and influenza a virus in vivo. J Virol 2007; 81:9790-800. [PMID: 17626092 PMCID: PMC2045394 DOI: 10.1128/jvi.00530-07] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 06/29/2007] [Indexed: 11/20/2022] Open
Abstract
Type I interferon (IFN) induction is an immediate response to virus infection, and very high levels of these cytokines are produced when the Toll-like receptors (TLRs) expressed at high levels by plasmacytoid dendritic cells (pDCs) are triggered by viral nucleic acids. Unlike many RNA viruses, respiratory syncytial virus (RSV) does not appear to activate pDCs through their TLRs and it is not clear how this difference affects IFN-alpha/beta induction in vivo. In this study, we investigated type I IFN production triggered by RSV or influenza A virus infection of BALB/c mice and found that while both viruses induced IFN-alpha/beta production by pDCs in vitro, only influenza virus infection could stimulate type I IFN synthesis by pDCs in vivo. In situ hybridization studies demonstrated that the infected respiratory epithelium was a major source of IFN-alpha/beta in response to either infection, but in pDC-depleted animals only type I IFN induction by influenza virus was impaired.
Collapse
Affiliation(s)
- Nancy A Jewell
- Columbus Children's Research Institute, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
657
|
Devaraj SG, Wang N, Chen Z, Chen Z, Tseng M, Barretto N, Lin R, Peters CJ, Tseng CTK, Baker SC, Li K. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem 2007; 282:32208-21. [PMID: 17761676 PMCID: PMC2756044 DOI: 10.1074/jbc.m704870200] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a novel coronavirus that causes a highly contagious respiratory disease, SARS, with significant mortality. Although factors contributing to the highly pathogenic nature of SARS-CoV remain poorly understood, it has been reported that SARS-CoV infection does not induce type I interferons (IFNs) in cell culture. However, it is uncertain whether SARS-CoV evades host detection or has evolved mechanisms to counteract innate host defenses. We show here that infection of SARS-CoV triggers a weak IFN response in cultured human lung/bronchial epithelial cells without inducing the phosphorylation of IFN-regulatory factor 3 (IRF-3), a latent cellular transcription factor that is pivotal for type I IFN synthesis. Furthermore, SARS-CoV infection blocked the induction of IFN antiviral activity and the up-regulation of protein expression of a subset of IFN-stimulated genes triggered by double-stranded RNA or an unrelated paramyxovirus. In searching for a SARS-CoV protein capable of counteracting innate immunity, we identified the papain-like protease (PLpro) domain as a potent IFN antagonist. The inhibition of the IFN response does not require the protease activity of PLpro. Rather, PLpro interacts with IRF-3 and inhibits the phosphorylation and nuclear translocation of IRF-3, thereby disrupting the activation of type I IFN responses through either Toll-like receptor 3 or retinoic acid-inducible gene I/melanoma differentiation-associated gene 5 pathways. Our data suggest that regulation of IRF-3-dependent innate antiviral defenses by PLpro may contribute to the establishment of SARS-CoV infection.
Collapse
Affiliation(s)
- Santhana G Devaraj
- Department of Microbiology and Immunology, Center of Biodefense and Emerging Infectious Diseases, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
658
|
Wu JQH, Barabé ND, Huang YM, Rayner GA, Christopher ME, Schmaltz FL. Pre- and post-exposure protection against Western equine encephalitis virus after single inoculation with adenovirus vector expressing interferon alpha. Virology 2007; 369:206-13. [PMID: 17761207 DOI: 10.1016/j.virol.2007.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 07/10/2007] [Accepted: 07/18/2007] [Indexed: 11/16/2022]
Abstract
Western equine encephalitis virus (WEEV) is a positive-sense, single-stranded RNA virus which is transmitted to equines and humans through mosquito bites. WEEV infects the central nervous system with severe complications and even death. There are no human vaccine and antiviral drugs. We investigated whether adenovirus-mediated expression of interferon alpha could be used for pre- and post-exposure protection against a lethal WEEV challenge in mice. A human adenoviral vector (Ad5-mIFNalpha) expressing mouse interferon alpha was constructed. We found that Ad5-mIFNalpha provided 100% protection against various WEEV strains in mice after a single intramuscular inoculation at 24 h, 48 h or 1 week before the challenge. When given as a single inoculation at 6 h after the challenge, Ad5-mIFNalpha delayed the progress of WEEV infection and provided about 60% protection. Our findings suggest that adenovirus-mediated expression of interferon alpha can be an alternative approach for the prevention and treatment of WEEV infection.
Collapse
Affiliation(s)
- Josh Q H Wu
- Chemical and Biological Defence Section, Defence Research and Development Canada - Suffield, Box 4000, Station Main, Medicine Hat, Alberta, Canada T1A 8K6.
| | | | | | | | | | | |
Collapse
|
659
|
MacDonald MRW, Veniamin SM, Guo X, Xia J, Moon DA, Magor KE. Genomics of antiviral defenses in the duck, a natural host of influenza and hepatitis B viruses. Cytogenet Genome Res 2007; 117:195-206. [PMID: 17675860 DOI: 10.1159/000103180] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 03/21/2007] [Indexed: 01/01/2023] Open
Abstract
We review our progress using genomics approaches to examine key antiviral defenses of the White Pekin mallard duck, Anas platyrhynchos. Our interest stems from the fact that ducks are the natural host of avian influenza, and are an important animal model for hepatitis B research. First, we have conducted an expressed sequence tag (EST) project and identified more than 200 immune relevant genes in the duck. Our analysis of these genes allows us to evaluate the homology between ducks and their closest genetic model organism, the chicken. We have also constructed genomic and cDNA libraries from the same individual duck, allowing us to directly compare expressed sequences with those present in the genome. These resources allow us to determine the organization and expression of regions of the genome important in antiviral defenses. Here we examine the organization of the immunoglobulin heavy chain locus, the Major Histocompatibility Complex class I region, the lectin immunoreceptors and Toll-like receptor 7. We discuss our research-in-progress in the context of the immune defense against viruses, particularly influenza.
Collapse
Affiliation(s)
- M R W MacDonald
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
660
|
Ryman KD, Meier KC, Gardner CL, Adegboyega PA, Klimstra WB. Non-pathogenic Sindbis virus causes hemorrhagic fever in the absence of alpha/beta and gamma interferons. Virology 2007; 368:273-85. [PMID: 17681583 DOI: 10.1016/j.virol.2007.06.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 02/21/2007] [Accepted: 06/07/2007] [Indexed: 11/21/2022]
Abstract
The role of interferon-gamma (IFNgamma) in antiviral innate immune responses during acute alphavirus infection is not well defined. We examined the contribution of IFNgamma to the protection of adult mice from Sindbis virus (SB)-induced disease by comparing subcutaneous infection of mice lacking receptors for either IFNalpha/beta (A129), IFNgamma (G129) or both (AG129) to normal mice (WT129). While neither G129 nor WT129 mice exhibited clinical signs of disease, infection of A129 or AG129 mice was fatal with AG129 mice succumbing more rapidly. Furthermore, AG129 mice developed signs of viral hemorrhagic fever (VHF), including extensive hepatocellular damage, inflammatory infiltrates in multiple organs and vascular leakage, which were significantly delayed and/or partially ameliorated during fatal A129 infections. We conclude that: (i) IFNalpha/beta is the primary mediator of innate immunity to SB infection, however; (ii) IFNgamma is directly antiviral in vivo, acting before the adaptive immune response appears and; (iii) development of VHF may involve viral suppression of both IFNalpha/beta and IFNgamma responses.
Collapse
Affiliation(s)
- Kate D Ryman
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | | | | | | | | |
Collapse
|
661
|
Jaitin DA, Schreiber G. Upregulation of a Small Subset of Genes Drives Type I Interferon-Induced Antiviral Memory. J Interferon Cytokine Res 2007; 27:653-64. [PMID: 17784817 DOI: 10.1089/jir.2006.0162] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interferons (IFNs) stand in the frontline of defense against viral infections. In this study, we aimed at characterizing the gene expression profile specific to the antiviral effect out of the hundreds of genes involved also in other IFN activities. We found that the IFN-induced antiviral state is maintained for a prolonged time even after IFN occlusion. This was achieved through the active expression of a small set of <40 genes long after IFN was occluded, from which two groups are distinguished: one includes genes participating in direct inhibition of viral replication, such as Mx and OAS; the second group is related to antigen presentation, including all genes involved in the proteasome-to-immunoproteasome switch and class I MHC genes. Transcription of these genes continued after IFN removal and was Stat1 independent, suggesting the involvement of other signaling elements in addition to the canonical signal transduction pathway. Not less important were genes whose upregulation, in cases by many fold, is terminated once IFN is removed. Among these are viral sensing genes, such as retinoic acid-inducible gene-I protein (RIG-I), melanoma differentiation-associated gene 5 (MDA5) and toll-like receptor (TLR), cytokines, and apoptotic-related genes. Our findings provide a systemwide depiction of prolonged intracellular antiviral protection without the need for ongoing IFN stimulation.
Collapse
Affiliation(s)
- Diego A Jaitin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
662
|
Abstract
The interferon system provides a powerful and universal intracellular defense mechanism against viruses. Knockout mice defective in IFN signaling quickly succumb to all kinds of viral infections. Likewise, humans with genetic defects in interferon signaling die of viral disease at an early age. Among the known interferon-induced antiviral mechanisms, the Mx pathway is one of the most powerful. Mx proteins belong to the dynamin superfamily of large GTPases and have direct antiviral activity. They inhibit a wide range of viruses by blocking an early stage of the viral replication cycle. Likewise, the protein kinase R (PKR), and the 2–5 OAS/RNaseL system represent major antiviral pathways and have been extensively studied. Viruses, in turn, have evolved multiple strategies to escape the IFN system. They try to go undetected, suppress IFN synthesis, bind and neutralize secreted IFN molecules, block IFN signaling, or inhibit the action of IFN-induced antiviral proteins. Here, we summarize recent findings about the astonishing interplay of viruses with the IFN response pathway.
Collapse
Affiliation(s)
- Otto Haller
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany.
| | | | | |
Collapse
|
663
|
Abstract
This article analyzes the conceptual and technological context in which, over a period of 50 years, exploration of the biological and clinical significance of type I interferon has evolved. The elaboration of techniques for production and purification of mouse and human interferons and the establishment of laboratory-size production units have been of crucial importance in this process. Animal experiments have been invaluable for elucidation of mechanisms underlying the in vivo antiviral, anti-tumour and immunomodulatory potential of interferon, but have been of limited help to define the areas of clinical applicability. Proof of principle for applications as they are established today has come from clinical trials performed quite independently of evidence from animal experiments.
Collapse
Affiliation(s)
- Alfons Billiau
- Rega Institute, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
664
|
Joo CH, Shin YC, Gack M, Wu L, Levy D, Jung JU. Inhibition of interferon regulatory factor 7 (IRF7)-mediated interferon signal transduction by the Kaposi's sarcoma-associated herpesvirus viral IRF homolog vIRF3. J Virol 2007; 81:8282-92. [PMID: 17522209 PMCID: PMC1951281 DOI: 10.1128/jvi.00235-07] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 05/05/2007] [Indexed: 11/20/2022] Open
Abstract
Upon viral infection, the major defense mounted by the host immune system is activation of the interferon (IFN)-mediated antiviral pathway that is mediated by IFN regulatory factors (IRFs). In order to complete their life cycle, viruses must modulate the host IFN-mediated immune response. Kaposi's sarcoma-associated herpesvirus (KSHV), a human tumor-inducing herpesvirus, has developed a unique mechanism for antagonizing cellular IFN-mediated antiviral activity by incorporating viral homologs of the cellular IRFs, called vIRFs. Here, we report a novel immune evasion mechanism of KSHV vIRF3 to block cellular IRF7-mediated innate immunity in response to viral infection. KSHV vIRF3 specifically interacts with either the DNA binding domain or the central IRF association domain of IRF7, and this interaction leads to the inhibition of IRF7 DNA binding activity and, therefore, suppression of alpha interferon (IFN-alpha) production and IFN-mediated immunity. Remarkably, the central 40 amino acids of vIRF3, containing the double alpha helix motifs, are sufficient not only for binding to IRF7, but also for inhibiting IRF7 DNA binding activity. Consequently, the expression of the double alpha helix motif-containing peptide effectively suppresses IRF7-mediated IFN-alpha production. This demonstrates a remarkably efficient means of viral avoidance of host antiviral activity.
Collapse
Affiliation(s)
- Chul Hyun Joo
- Tumor Virology Division, New England Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA
| | | | | | | | | | | |
Collapse
|
665
|
Patole PS, Pawar RD, Lichtnekert J, Lech M, Kulkarni OP, Ramanjaneyulu A, Segerer S, Anders HJ. Coactivation of Toll-like receptor-3 and -7 in immune complex glomerulonephritis. J Autoimmun 2007; 29:52-9. [PMID: 17544622 DOI: 10.1016/j.jaut.2007.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 01/08/2023]
Abstract
The molecular mechanisms of viral infection-induced glomerulonephritis are poorly understood. Toll-like receptor (TLR)-3 and TLR7 recognize viral RNA and their exposure to TLR3 or TLR7 can trigger the exacerbation of established immune complex disease in MRLlpr mice. Because coactivation of TLR3 and TLR7 was shown to synergistically activate dendritic cells in vitro, we hypothesized that simultaneous ligation of TLR3 and TLR7 would elicit additive effects on the exacerbation of glomerulonephritis in MRLlpr mice. Saline, 50 microg pI:C RNA, 25 microg of the TLR7 agonist imiquimod, or a combination of both were injected every other day to MRLlpr mice from week 16-18 of age. Coinjection of pI:C RNA and imiquimod had no synergistic effect on serum levels of IL-6 and IL12p70, dsDNA autoantibody levels, and glomerulonephritis. This was consistent with a lack of synergistic effects on cytokine release of TNF- and IFNgamma-prestimulated monocytes in vitro. Furthermore, in glomerular mesangial cells a synergistic effect of pI:C RNA and imiquimod was generally absent due to the lack of TLR7 expression. We conclude that a number of mechanisms protect the host from additive effects of TLR3-TLR7 coactivation on renal pathology in vivo.
Collapse
Affiliation(s)
- Prashant S Patole
- Medical Policlinic, Ludwig-Maximilians-University Munich, Pettenkoferstr. 8a, 80336 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
666
|
Suzuki M, Chiocca EA, Saeki Y. Early STAT1 activation after systemic delivery of HSV amplicon vectors suppresses transcription of the vector-encoded transgene. Mol Ther 2007; 15:2017-26. [PMID: 17653098 DOI: 10.1038/sj.mt.6300273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The herpes simplex virus (HSV) amplicon vector is a powerful gene delivery vehicle that can accommodate up to 150 kilobase of exogenous DNA. However, amplicon-mediated transgene expression is often transient outside the nervous system. In order to define the role of host immune responses in silencing amplicon-encoded transgenes, we evaluated the kinetics of cytokine-/chemokine-expression after tail-vein injection of a luciferase-encoding amplicon into mice. Type I interferons (IFNs) were induced earliest, within an hour after injection, and several other cytokines/chemokines were subsequently upregulated in the livers of wild-type (WT) mice. When the same experiment was performed in signal transducers and activators of transcription 1 (STAT1)-knockout (KO) mice, the levels of type I IFN expression were significantly lower and chemokine induction was almost non-existent. Importantly, STAT1-KO mice exhibited significantly higher and more sustained luciferase activity than did the WT mice, which is attributable to increased transcriptional activity rather than increased copy numbers of luciferase-encoding vector DNA. Further studies using primary cultured fibroblasts derived from WT and STAT1-KO mice revealed the significance of STAT1 signaling in transcriptional silencing of the amplicon-encoded transgene in vitro. Our results indicate that type I IFNs induced by systemic delivery of HSV amplicon vectors initiate a cascade of immune responses and suppress transgene expression at the transcriptional level by activation of STAT1.
Collapse
Affiliation(s)
- Masataka Suzuki
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
667
|
Arbuthnot P, Longshaw V, Naidoo T, Weinberg MS. Opportunities for treating chronic hepatitis B and C virus infection using RNA interference. J Viral Hepat 2007; 14:447-59. [PMID: 17576386 DOI: 10.1111/j.1365-2893.2006.00818.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Activating the RNA interference (RNAi) pathway to achieve silencing of specific genes is one of the most exciting new developments of molecular biology. A particularly interesting use of this technology is inhibition of defined viral gene expression. In this review, we discuss the potential application of RNAi to treatment of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection. Globally, these hepatotropic viruses are the most important causes of cirrhosis and liver cancer. Available treatments have their limitations, which makes development of novel effective RNAi-based therapies for HBV and HCV especially significant. Several investigations carried out in vitro and in vivo are summarized, which demonstrate proof of principle that HBV and HCV can be inhibited by RNAi activators. Challenges facing further development of this technology to a stage of clinical application are discussed.
Collapse
Affiliation(s)
- P Arbuthnot
- Hepatitis B Virus Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Johannesburg, South Africa.
| | | | | | | |
Collapse
|
668
|
Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 2007; 81:9812-24. [PMID: 17596301 PMCID: PMC2045396 DOI: 10.1128/jvi.01012-07] [Citation(s) in RCA: 420] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The host innate immune response is an important deterrent of severe viral infection in humans and animals. Nuclear import factors function as key gatekeepers that regulate the transport of innate immune regulatory cargo to the nucleus of cells to activate the antiviral response. Using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model, we demonstrate that SARS-COV ORF6 protein is localized to the endoplasmic reticulum (ER)/Golgi membrane in infected cells, where it binds to and disrupts nuclear import complex formation by tethering karyopherin alpha 2 and karyopherin beta 1 to the membrane. Retention of import factors at the ER/Golgi membrane leads to a loss of STAT1 transport into the nucleus in response to interferon signaling, thus blocking the expression of STAT1-activated genes that establish an antiviral state. We mapped the region of ORF6, which binds karyopherin alpha 2, to the C terminus of ORF6 and show that mutations in the C terminus no longer bind karyopherin alpha 2 or block the nuclear import of STAT1. We also show that N-terminal deletions of karyopherin alpha 2 that no longer bind to karyopherin beta 1 still retain ORF6 binding activity but no longer block STAT1 nuclear import. Recombinant SARS-CoV lacking ORF6 did not tether karyopherin alpha 2 to the ER/Golgi membrane and allowed the import of the STAT1 complex into the nucleus. We discuss the likely implications of these data on SARS-CoV replication and pathogenesis.
Collapse
Affiliation(s)
- Matthew Frieman
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, 3304 Hooker Research Center, Chapel Hill, NC 27599-7435, USA
| | | | | | | | | | | |
Collapse
|
669
|
Way SS, Havenar-Daughton C, Kolumam GA, Orgun NN, Murali-Krishna K. IL-12 and type-I IFN synergize for IFN-gamma production by CD4 T cells, whereas neither are required for IFN-gamma production by CD8 T cells after Listeria monocytogenes infection. THE JOURNAL OF IMMUNOLOGY 2007; 178:4498-505. [PMID: 17372008 PMCID: PMC2626161 DOI: 10.4049/jimmunol.178.7.4498] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Differentiation of Ag-specific T cells into IFN-gamma producers is essential for protective immunity to intracellular pathogens. In addition to stimulation through the TCR and costimulatory molecules, IFN-gamma production is thought to require other inflammatory cytokines. Two such inflammatory cytokines are IL-12 and type I IFN (IFN-I); both can play a role in priming naive T cells to produce IFN-gamma in vitro. However, their role in priming Ag-specific T cells for IFN-gamma production during experimental infection in vivo is less clear. In this study, we examine the requirements for IL-12 and IFN-I, either individually or in combination, for priming Ag-specific T cell IFN-gamma production after Listeria monocytogenes (Lm) infection. Surprisingly, neither individual nor combined defects in IL-12 or IFN-I signaling altered IFN-gamma production by Ag-specific CD8 T cells after Lm infection. In contrast, individual defects in either IL-12 or IFN-I signaling conferred partial ( approximately 50%) reductions, whereas combined deficiency in both IL-12 and IFN-I signaling conferred more dramatic (75-95%) reductions in IFN-gamma production by Ag-specific CD4 T cells. The additive effects of IL-12 and IFN-I signaling on IFN-gamma production by CD4 T cells were further demonstrated by adoptive transfer of transgenic IFN-IR(+/+) and IFN-IR(-/-) CD4 T cells into normal and IL-12-deficient mice, and infection with rLm. These results demonstrate an important dichotomy between the signals required for priming IFN-gamma production by CD4 and CD8 T cells in response to bacterial infection.
Collapse
Affiliation(s)
- Sing Sing Way
- Department of Pediatrics, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| | - Colin Havenar-Daughton
- Immunology and Washington National Primate Center, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| | - Ganesh A. Kolumam
- Immunology and Washington National Primate Center, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| | - Nural N. Orgun
- Immunology and Washington National Primate Center, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| | - Kaja Murali-Krishna
- Immunology and Washington National Primate Center, University of Washington School of Medicine 1959 NE Pacific Street, Seattle, WA 98195
| |
Collapse
|
670
|
Hultcrantz M, Hühn MH, Wolf M, Olsson A, Jacobson S, Williams BR, Korsgren O, Flodström-Tullberg M. Interferons induce an antiviral state in human pancreatic islet cells. Virology 2007; 367:92-101. [PMID: 17559902 DOI: 10.1016/j.virol.2007.05.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/28/2007] [Accepted: 05/08/2007] [Indexed: 12/25/2022]
Abstract
Enterovirus infections, in particular those with Coxsackieviruses, have been linked to the development of type 1 diabetes (T1D). Although animal models have demonstrated that interferons (IFNs) regulate virus-induced T1D by acting directly on the beta cell, little is known on the human pancreatic islet response to IFNs. Here we show that human islet cells respond to IFNs by expressing signature genes of antiviral defense. We also demonstrate that they express three intracellular sensors for viral RNA, the toll like receptor 3 (TLR3) gene, the retinoic acid-inducible gene I (RIG-I) and the melanoma differentiation-associated gene-5 (MDA-5), which induce type I IFN production in infected cells. Finally, we show for the first time that the IFN-induced antiviral state provides human islets with a powerful protection from the replication of Coxsackievirus. This may be critical for beta cell survival and protection from virus-induced T1D in humans.
Collapse
Affiliation(s)
- Monica Hultcrantz
- Center for Infectious Medicine F59, Department of Medicine, Karolinska Institutet, Huddinge University Hospital, S-141 86 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
671
|
Abstract
Type I interferons (IFN-alpha/beta) were originally discovered by their strong and direct antiviral activity [A. Isaacs, J. Lindenmann, Virus interference. I. The interferon, Proc. R. Soc. Lond. B Biol. Sci. 147 (1957) 258-267]. (see review by J. Lindenmann on p. 719, in this issue). Nevertheless, only very recently it was entirely realized that viruses would not succeed without efficient tools to undermine this potent host defense system. Current investigations are revealing an astonishing variety of viral IFN antagonistic strategies targeting virtually all parts of the IFN system, often in a highly specific manner. Viruses were found to interfere with induction of IFN synthesis, IFN-induced signaling events, the antiviral effector proteins, or simply shut off the host cell macromolecule synthesis machinery to avoid booting of the antiviral host defense. Here, we will describe a few well-characterized examples to illustrate the sophisticated and often multi-layered anti-IFN mechanisms employed by viruses.
Collapse
Affiliation(s)
- Friedemann Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany.
| | | |
Collapse
|
672
|
Zhu J, Huang X, Yang Y. Type I IFN signaling on both B and CD4 T cells is required for protective antibody response to adenovirus. THE JOURNAL OF IMMUNOLOGY 2007; 178:3505-10. [PMID: 17339445 DOI: 10.4049/jimmunol.178.6.3505] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recombinant adenoviruses have been used as vehicles for gene therapy as well as vaccination against infectious diseases and cancer. Efficient activation of host B cell response to adenoviral vectors that leads to the generation of protective, neutralizing Ab, represents a major barrier for gene therapy, but an attractive feature for vaccine development. What regulate(s) potent B cell response to adenoviral vectors remains incompletely defined. In this study, we showed that type I IFNs induced upon adenoviral infection are critical for multiple stages of adaptive B cell response to adenovirus including early B cell activation, germinal center formation, Ig isotype switching as well as plasma cell differentiation. We further demonstrated that although type I IFN signaling on dendritic cells was important for the production of virus-specific IgM, the generation of protective neutralizing Ab critically depended on type I IFN signaling on both CD4 T and B cells. The results may suggest potential strategies for improving adenovirus-mediated gene therapy in vivo and/or the design of effective vaccines for cancer and infectious diseases.
Collapse
Affiliation(s)
- Jiangao Zhu
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
673
|
Gowen BB, Wong MH, Jung KH, Sanders AB, Mitchell WM, Alexopoulou L, Flavell RA, Sidwell RW. TLR3 is essential for the induction of protective immunity against Punta Toro Virus infection by the double-stranded RNA (dsRNA), poly(I:C12U), but not Poly(I:C): differential recognition of synthetic dsRNA molecules. THE JOURNAL OF IMMUNOLOGY 2007; 178:5200-8. [PMID: 17404303 DOI: 10.4049/jimmunol.178.8.5200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the wake of RNA virus infections, dsRNA intermediates are often generated. These viral pathogen-associated molecular patterns can be sensed by a growing number of host cell cytosolic proteins and TLR3, which contribute to the induction of antiviral defenses. Recent evidence indicates that melanoma differentiation-associated gene-5 is the prominent host component mediating IFN production after exposure to the dsRNA analog, poly(I:C). We have previously reported that Punta Toro virus (PTV) infection in mice is exquisitely sensitive to treatment with poly(I:C(12)U), a dsRNA analog that has a superior safety profile while maintaining the beneficial activity of the parental poly(I:C) in the induction of innate immune responses. The precise host factor(s) mediating protective immunity following its administration remain to be elucidated. To assess the role of TLR3 in this process, mice lacking the receptor were used to investigate the induction of protective immunity, type I IFNs, and IL-6 following treatment. Unlike wild-type mice, those lacking TLR3 were not protected against PTV infection following poly(I:C(12)U) therapy and failed to produce IFN-alpha, IFN-beta, and IL-6. In contrast, poly(I:C) treatment significantly protected TLR3(-/-) mice from lethal challenge despite some deficiencies in cytokine induction. There was no indication that the lack of protection was due to the fact that TLR3-deficient mice had a reduced capacity to fight infection because they were not found to be more susceptible to PTV. We conclude that TLR3 is essential to the induction of antiviral activity elicited by poly(I:C(12)U), which does not appear to be recognized by the cytosolic sensor of poly(I:C), melanoma differentiation-associated gene-5.
Collapse
Affiliation(s)
- Brian B Gowen
- Institute for Antiviral Research, Utah State University, Logan, Utah 84341, USA.
| | | | | | | | | | | | | | | |
Collapse
|
674
|
Johansson C, Wetzel JD, He J, Mikacenic C, Dermody TS, Kelsall BL. Type I interferons produced by hematopoietic cells protect mice against lethal infection by mammalian reovirus. ACTA ACUST UNITED AC 2007; 204:1349-58. [PMID: 17502662 PMCID: PMC2118611 DOI: 10.1084/jem.20061587] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We defined the function of type I interferons (IFNs) in defense against reovirus strain type 1 Lang (T1L), which is a double-stranded RNA virus that infects Peyer's patches (PPs) after peroral inoculation of mice. T1L induced expression of mRNA for IFN-alpha, IFN-beta, and Mx-1 in PPs and caused localized intestinal infection that was cleared in 10 d. In contrast, T1L produced fatal systemic infection in IFNalphaR1 knockout (KO) mice with extensive cell loss in lymphoid tissues and necrosis of the intestinal mucosa. Studies of bone-marrow chimeric mice indicated an essential role for hematopoietic cells in IFN-dependent viral clearance. Dendritic cells (DCs), including conventional DCs (cDCs), were the major source of type I IFNs in PPs of reovirus-infected mice, whereas all cell types expressed the antiviral protein Mx-1. Neither NK cells nor signaling via Toll-like receptor 3 or MyD88 were essential for viral clearance. These data demonstrate a requirement for type I IFNs in the control of an intestinal viral infection and indicate that cDCs are a significant source of type I IFN production in vivo. Therefore, innate immunity in PPs is an essential component of host defense that limits systemic spread of pathogens that infect the intestinal mucosa.
Collapse
Affiliation(s)
- Cecilia Johansson
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
675
|
Lee SH, Miyagi T, Biron CA. Keeping NK cells in highly regulated antiviral warfare. Trends Immunol 2007; 28:252-9. [PMID: 17466596 DOI: 10.1016/j.it.2007.04.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/19/2007] [Accepted: 04/16/2007] [Indexed: 02/08/2023]
Abstract
Natural killer (NK) cells use multiple mechanisms to defend against viral infections, and different stimuli can activate these antiviral effects. When engaged, receptors for innate cytokines produced during infections and for ligands on target cells can both induce NK cell cytotoxicity and the production of cytokines. These stimuli use different classes of intracellular signaling pathways to elicit the overlapping responses. What is the advantage of using different roads to the same ends? One answer might be in the nature of the alternative regulatory pathways that are in place to control the respective stimuli. A model of flexibility in accessing NK cell function, in the context of negative regulation of particular intracellular signaling pathways, is proposed here.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
676
|
Roth-Cross JK, Martínez-Sobrido L, Scott EP, García-Sastre A, Weiss SR. Inhibition of the alpha/beta interferon response by mouse hepatitis virus at multiple levels. J Virol 2007; 81:7189-99. [PMID: 17459917 PMCID: PMC1933268 DOI: 10.1128/jvi.00013-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mouse hepatitis virus (MHV) was used as a model to study the interaction of coronaviruses with the alpha/beta interferon (IFN-alpha/beta) response. While MHV strain A59 appeared to induce IFN-beta gene transcription and low levels of nuclear translocation of the IFN-beta transcription factor interferon regulatory factor 3 (IRF-3), MHV did not induce IFN-beta protein production during the course of infection in L2 mouse fibroblast cells. In addition, MHV was able to significantly decrease the level of IFN-beta protein induced by both Newcastle disease virus (NDV) and Sendai virus infections, without targeting it for proteasomal degradation and without altering the nuclear translocation of IRF-3 or IFN-beta mRNA production or stability. These results indicate that MHV infection causes an inhibition of IFN-beta production at a posttranscriptional level, without altering RNA or protein stability. In contrast, MHV induced IFN-beta mRNA and protein production in the brains of infected animals, suggesting that the inhibitory mechanisms observed in vitro are not enough to prevent IFN-alpha/beta production in vivo. Furthermore, MHV replication is highly resistant to IFN-alpha/beta action, as indicated by unimpaired MHV replication in L2 cells pretreated with IFN-beta. However, when L2 cells were coinfected with MHV and NDV in the presence of IFN-beta, NDV, but not MHV, replication was inhibited. Thus, rather than disarming the antiviral activity induced by IFN-beta pretreatment completely, MHV may be inherently resistant to some aspects of the antiviral state induced by IFN-beta. These findings show that MHV employs unique strategies to circumvent the IFN-alpha/beta response at multiple steps.
Collapse
Affiliation(s)
- Jessica K Roth-Cross
- Department of Microbiology, University of Pennsylvania, School of Medicine, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6076, USA
| | | | | | | | | |
Collapse
|
677
|
Abstract
The emergence of the highly pathogenic SARS coronavirus (SARS-CoV) has reignited interest in coronavirus biology and pathogenesis. An emerging theme in coronavirus pathogenesis is that the interaction between specific viral genes and the host immune system, specifically the innate immune system, functions as a key determinant in regulating virulence and disease outcomes. Using SARS-CoV as a model, we will review the current knowledge of the interplay between coronavirus infection and the host innate immune system in vivo, and then discuss the mechanisms by which specific gene products antagonize the host innate immune response in cell culture models. Our data suggests that the SARS-CoV uses specific strategies to evade and antagonize the sensing and signaling arms of the interferon pathway. We summarize by identifying future points of consideration that will contribute greatly to our understanding of the molecular mechanisms governing coronavirus pathogenesis and virulence, and the development of severe disease in humans and animals.
Collapse
Affiliation(s)
- Matthew Frieman
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | | | | |
Collapse
|
678
|
Kochs G, García-Sastre A, Martínez-Sobrido L. Multiple anti-interferon actions of the influenza A virus NS1 protein. J Virol 2007; 81:7011-21. [PMID: 17442719 PMCID: PMC1933316 DOI: 10.1128/jvi.02581-06] [Citation(s) in RCA: 370] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The replication and pathogenicity of influenza A virus (FLUAV) are controlled in part by the alpha/beta interferon (IFN-alpha/beta) system. This virus-host interplay is dependent on the production of IFN-alpha/beta and on the capacity of the viral nonstructural protein NS1 to counteract the IFN system. Two different mechanisms have been described for NS1, namely, blocking the activation of IFN regulatory factor 3 (IRF3) and blocking posttranscriptional processing of cellular mRNAs. Here we directly compare the abilities of NS1 gene products from three different human FLUAV (H1N1) strains to counteract the antiviral host response. We found that A/PR/8/34 NS1 has a strong capacity to inhibit IRF3 and activation of the IFN-beta promoter but is unable to suppress expression of other cellular genes. In contrast, the NS1 proteins of A/Tx/36/91 and of A/BM/1/18, the virus that caused the Spanish influenza pandemic, caused suppression of additional cellular gene expression. Thus, these NS1 proteins prevented the establishment of an IFN-induced antiviral state, allowing virus replication even in the presence of IFN. Interestingly, the block in gene expression was dependent on a newly described NS1 domain that is important for interaction with the cleavage and polyadenylation specificity factor (CPSF) component of the cellular pre-mRNA processing machinery but is not functional in A/PR/8/34 NS1. We identified the Phe-103 and Met-106 residues in NS1 as being critical for CPSF binding, together with the previously described C-terminal binding domain. Our results demonstrate the capacity of FLUAV NS1 to suppress the antiviral host defense at multiple levels and the existence of strain-specific differences that may modulate virus pathogenicity.
Collapse
Affiliation(s)
- Georg Kochs
- Department of Virology, University of Freiburg, D-79008 Freiburg, Germany
| | | | | |
Collapse
|
679
|
Grimm D, Staeheli P, Hufbauer M, Koerner I, Martínez-Sobrido L, Solórzano A, García-Sastre A, Haller O, Kochs G. Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. Proc Natl Acad Sci U S A 2007; 104:6806-11. [PMID: 17426143 PMCID: PMC1871866 DOI: 10.1073/pnas.0701849104] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Indexed: 12/11/2022] Open
Abstract
The IFN-induced resistance factor Mx1 is a critical component of innate immunity against influenza A viruses (FLUAV) in mice. Animals carrying a wild-type Mx1 gene (Mx1(+/+)) differ from regular laboratory mice (Mx1(-/-)) in that they are highly resistant to infection with standard FLUAV strains. We identified an extraordinary variant of the FLUAV strain, A/PR/8/34 (H1N1) (designated hvPR8), which is unusually virulent in Mx1(+/+) mice. hvPR8 was well controlled in Mx1(+/+) but not Mx1(-/-) mice provided that the animals were treated with IFN before infection, indicating that hvPR8 exhibits normal sensitivity to growth restriction by Mx1. hvPR8 multiplied much faster than standard PR8 early in infection because of highly efficient viral gene expression in infected cells. Studies with reassortant viruses containing defined genome segments of both hvPR8 and standard PR8 demonstrated that the HA, neuraminidase, and polymerase genes of hvPR8 all contributed to virulence, indicating that efficient host cell entry and early gene expression renders hvPR8 highly pathogenic. These results reveal a surprisingly simple concept of how influenza viruses may gain virulence and illustrate that high speed of virus growth can outcompete the antiviral response of the infected host.
Collapse
Affiliation(s)
- Daniel Grimm
- *Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany; and
| | - Peter Staeheli
- *Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany; and
| | - Martin Hufbauer
- *Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany; and
| | - Iris Koerner
- *Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany; and
| | | | - Alicia Solórzano
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029
| | | | - Otto Haller
- *Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany; and
| | - Georg Kochs
- *Department of Virology, University of Freiburg, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany; and
| |
Collapse
|
680
|
Sakuma R, Noser JA, Ohmine S, Ikeda Y. Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med 2007; 13:631-5. [PMID: 17435772 DOI: 10.1038/nm1562] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Accepted: 02/18/2007] [Indexed: 11/09/2022]
Abstract
Mammalian cells have developed diverse strategies to restrict retroviral infection. Retroviruses have therefore evolved to counteract such restriction factors, in order to colonize their hosts. Tripartite motif-containing 5 isoform-alpha (TRIM5alpha) protein from rhesus monkey (TRIM5alpharh) restricts human immunodeficiency virus type 1 (HIV-1) infection at a postentry, preintegration stage in the viral life cycle, by recognizing the incoming capsid and promoting its premature disassembly. TRIM5alpha comprises an RBCC (RING, B-box 2 and coiled-coil motifs) domain and a B30.2(SPRY) domain. Sequences in the B30.2(SPRY) domain dictate the potency and specificity of the restriction. As TRIM5alpharh targets incoming mature HIV-1 capsid, but not precursor Gag, it was assumed that TRIM5alpharh did not affect HIV-1 production. Here we provide evidence that TRIM5alpharh, but not its human ortholog (TRIM5alphahu), blocks HIV-1 production through rapid degradation of HIV-1 Gag polyproteins. The specificity for this restriction is determined by sequences in the RBCC domain. Our observations suggest that TRIM5alpharh interacts with HIV-1 Gag during or before Gag assembly through a mechanism distinct from the well-characterized postentry restriction. This finding demonstrates a cellular factor blocking HIV-1 production by actively degrading a viral protein. Further understanding of this previously unknown restriction mechanism may reveal new targets for future anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Ryuta Sakuma
- Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
681
|
Woelk CH, Frost SDW, Richman DD, Higley PE, Kosakovsky Pond SL. Evolution of the interferon alpha gene family in eutherian mammals. Gene 2007; 397:38-50. [PMID: 17512142 PMCID: PMC2174272 DOI: 10.1016/j.gene.2007.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/27/2007] [Accepted: 03/27/2007] [Indexed: 11/27/2022]
Abstract
Interferon alpha (IFNA) genes code for proteins with important signaling roles during the innate immune response. Phylogenetically, IFNA family members in eutherians (placental mammals) cluster together in a species-specific manner except for closely related species (i.e. Homo sapiens and Pan troglodytes) where gene-specific clustering is evident. Previous research has been unable to clarify whether gene conversion or recent gene duplication accounts for gene-specific clustering, partly because the similarity of members of the IFNA family within species has made it historically difficult to identify the exact composition of IFNA gene families. IFNA gene families were fully characterized in recently available genomes from Canis familiaris, Macaca mulatta, P. troglodytes and Rattus norvegicus, and combined with previously characterized IFNA gene families from H. sapiens and Mus musculus, for the analysis of both whole and partial gene conversion events using a variety of statistical methods. Gene conversion was inferred in every eutherian species analyzed and comparison of the IFNA gene family locus between primate species revealed independent gene duplication in M. mulatta. Thus, both gene conversion and gene duplication have shaped the evolution of the IFNA gene family in eutherian species. Scenarios may be envisaged whereby the increased production of a specific IFN-alpha protein would be beneficial against a particular pathogenic infection. Gene conversion, similar to duplication, provides a mechanism by which the protein product of a specific IFNA gene can be increased.
Collapse
Affiliation(s)
- Christopher H Woelk
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
682
|
Okumura F, Zou W, Zhang DE. ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP. Genes Dev 2007; 21:255-60. [PMID: 17289916 PMCID: PMC1785121 DOI: 10.1101/gad.1521607] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The expression of the ubiquitin-like molecule ISG15 and protein modification by ISG15 (ISGylation) are strongly activated by interferon, genotoxic stress, and pathogen infection, suggesting that ISG15 plays an important role in innate immune responses. 4EHP is an mRNA 5' cap structure-binding protein and acts as a translation suppressor by competing with eIF4E for binding to the cap structure. Here, we report that 4EHP is modified by ISG15 and ISGylated 4EHP has a much higher cap structure-binding activity. These data suggest that ISGylation of 4EHP may play an important role in cap structure-dependent translation control in immune responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Weiguo Zou
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Dong-Er Zhang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Corresponding author.E-MAIL ; FAX (858) 784-9593
| |
Collapse
|
683
|
Humann J, Bjordahl R, Andreasen K, Lenz LL. Expression of the p60 autolysin enhances NK cell activation and is required for listeria monocytogenes expansion in IFN-gamma-responsive mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:2407-14. [PMID: 17277147 DOI: 10.4049/jimmunol.178.4.2407] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Both peptidoglycan and muropeptides potently modulate inflammatory and innate immune responses. The secreted Listeria monocytogenes p60 autolysin digests peptidoglycan and promotes bacterial infection in vivo. Here, we report that p60 contributes to bacterial subversion of NK cell activation and innate IFN-gamma production. L. monocytogenes deficient for p60 (Deltap60) competed well for expansion in mice doubly deficient for IFNAR1 and IFN-gammaR1 or singly deficient for IFN-gammaR1, but not in wild-type, IFNAR1(-/-), or TLR2(-/-) mice. The restored competitiveness of p60-deficient bacteria suggested a specific role for p60 in bacterial subversion of IFN-gamma-mediated immune responses, since in vivo expansion of three other mutant L. monocytogenes strains (DeltaActA, DeltaNamA, and DeltaPlcB) was not complemented in IFN-gammaR1(-/-) mice. Bacterial expression of p60 was not required to induce socs1, socs3, and il10 expression in infected mouse bone marrow macrophages but did correlate with enhanced production of IL-6, IL-12p70, and most strikingly IFN-gamma. The primary source of p60-dependent innate IFN-gamma was NK cells, whereas bacterial p60 expression did not significantly alter innate IFN-gamma production by T cells. The mechanism for p60-dependent NK cell stimulation was also indirect, given that treatment with purified p60 protein failed to directly activate NK cells for IFN-gamma production. These data suggest that p60 may act on infected cells to indirectly enhance NK cell activation and increase innate IFN-gamma production, which presumably promotes early bacterial expansion through its immunoregulatory effects on bystander cells. Thus, the simultaneous induction of IFN-gamma production and factors that inhibit IFN-gamma signaling may be a common strategy for misdirection of early antibacterial immunity.
Collapse
Affiliation(s)
- Jessica Humann
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | |
Collapse
|
684
|
Tenoever BR, Ng SL, Chua MA, McWhirter SM, García-Sastre A, Maniatis T. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science 2007; 315:1274-8. [PMID: 17332413 DOI: 10.1126/science.1136567] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IKKepsilon is an IKK (inhibitor of nuclear factor kappaBkinase)-related kinase implicated in virus induction of interferon-beta (IFNbeta). We report that, although mice lacking IKKepsilon produce normal amounts of IFNbeta, they are hypersusceptible to viral infection because of a defect in the IFN signaling pathway. Specifically, a subset of type I IFN-stimulated genes are not activated in the absence of IKKepsilon because the interferon-stimulated gene factor 3 complex (ISGF3) does not bind to promoter elements of the affected genes. We demonstrate that IKKepsilon is activated by IFNbeta and that IKKepsilon directly phosphorylates signal transducer and activator of transcription 1 (STAT1), a component of ISGF3. We conclude that IKKepsilon plays a critical role in the IFN-inducible antiviral transcriptional response.
Collapse
Affiliation(s)
- Benjamin R Tenoever
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
685
|
Wikström FH, Meehan BM, Berg M, Timmusk S, Elving J, Fuxler L, Magnusson M, Allan GM, McNeilly F, Fossum C. Structure-dependent modulation of alpha interferon production by porcine circovirus 2 oligodeoxyribonucleotide and CpG DNAs in porcine peripheral blood mononuclear cells. J Virol 2007; 81:4919-27. [PMID: 17329341 PMCID: PMC1900218 DOI: 10.1128/jvi.02797-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA sequences containing CpG motifs are recognized as immunomodulators in several species. Phosphodiester oligodeoxyribonucleotides (ODNs) representing sequences from the genome of porcine circovirus type 2 (PCV2) have been identified as potent inducers (ODN PCV2/5) or inhibitors (ODN PCV2/1) of alpha interferon (IFN-alpha) production by porcine peripheral blood mononuclear cells (poPBMCs) in vitro. In this study, the IFN-alpha-inducing or -inhibitory activities of specific phosphodiester ODNs were demonstrated to be dependent on their ability to form secondary structures. When a poly(G) sequence was added to a stimulatory self-complementary ODN, high levels of IFN-alpha were elicited, and the induction was not dependent on pretreatment with the transfecting agent Lipofectin. In addition, the IFN-alpha-inducing ODN required the presence of an intact CpG dinucleotide, whereas the inhibitory activity of ODN PCV2/1 was not affected by methylation or removal of the central CpG dinucleotide. Of particular significance, the IFN-alpha inhibition elicited by ODN PCV2/1 was only effective against induction stimulated by DNA control inducers and not RNA control inducers, indicating activity directed to TLR9 signaling. The PCV2 genome as a whole was demonstrated to induce IFN-alpha in cultures of poPBMCs, and the presence of immune modulatory sequences within the genome of PCV2 may, therefore, have implications with regard to the immune evasion mechanisms utilized by PCV2.
Collapse
Affiliation(s)
- Frida Hasslung Wikström
- Department of Molecular Bioscience, Section for Veterinary Immunology and Virology, Swedish University of Agricultural Sciences, SE-751 23 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
686
|
|
687
|
Magalhaes JG, Tattoli I, Girardin SE. The intestinal epithelial barrier: how to distinguish between the microbial flora and pathogens. Semin Immunol 2007; 19:106-15. [PMID: 17324587 DOI: 10.1016/j.smim.2006.12.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 11/03/2006] [Accepted: 12/18/2006] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract is fundamental for the uptake of nutrients and fluids, but it also represents the greatest surface of the body in contact with the external environment and most human pathogens enter the body through the mucosal surface, especially in the intestine. The intestinal immune system protects the sterile core of the organism against invasion and systemic dissemination of both pathogens and limits for level penetration of commensal microorganisms. In addition, the human intestine is continually in contact with 10(14) commensal bacteria containing more than 500 different species. These commensal bacteria confer health benefits to their host by helping dietary digestion, development of gut immunity and preventing colonization by pathogens. To maintain integrity and normal function of intestine, a delicate equilibrium must be reached between the bacterial flora and intestinal immune system. This review discusses the recent advances in our understanding of how the mucosal intestinal barrier maintains a local homeostatic response to the resident intestinal bacteria, while protecting the host against enteric pathogens. In particular, the emerging function of Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in controlling mucosal immunity will be presented.
Collapse
Affiliation(s)
- Joao G Magalhaes
- Unite de Pathogenie Microbienne Moleculaire, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris, France
| | | | | |
Collapse
|
688
|
Affiliation(s)
- Andrea Paun
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA
| | | |
Collapse
|
689
|
Brzózka K, Pfaller C, Conzelmann KK. Signal transduction in the type I interferon system and viral countermeasures. ACTA ACUST UNITED AC 2007; 7:5-19. [PMID: 32327963 PMCID: PMC7169511 DOI: 10.1002/sita.200600115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 12/11/2006] [Indexed: 12/25/2022]
Abstract
Type I interferons (IFN) including IFNα/β are cytokines of the immune system with critical functions in innate and adaptive immune response. Secreted IFN acts via JAK/STAT signaling pathways to direct a huge gene expression program, including antiviral, apoptotic, survival and immune genes. Only recently, the molecular patterns and their receptors as well as the connected signaling pathways leading to transcriptional activation of IFN genes have been elucidated. Ubiquitous cytosolic RNA helicases like RIG‐I which sense intracellular triphosphate RNAs and activate the IFN‐controlling transcription factors IRF3 and IRF7 seem to play a major role in antiviral defense and immunity. Recognition of extracellular nucleic acids by a subset of Toll‐like receptors in addition contributes to a generalized host IFN response. During co‐evolution with the host, viruses have learned to counteract every piece of the IFN network. Learning from viruses how to target the IFN system may lead us to novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Krzysztof Brzózka
- Max-von-Pettenkofer Institute & Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany. -76899
| | - Christian Pfaller
- Max-von-Pettenkofer Institute & Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany. -76899
| | - Karl-Klaus Conzelmann
- Max-von-Pettenkofer Institute & Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany. -76899
| |
Collapse
|
690
|
Cao W, Liu YJ. Innate immune functions of plasmacytoid dendritic cells. Curr Opin Immunol 2007; 19:24-30. [PMID: 17113765 DOI: 10.1016/j.coi.2006.11.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/09/2006] [Indexed: 12/21/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized immune cells capable of producing large amounts of type I interferon (IFN) and other proinflammatory cytokines in response to viral infections. To date, a multicomponent cytoplasmic transductional-transcriptional complex and a spatiotemporal mechanism have been revealed in pDCs that mediate the rapid and robust IFN production after Toll-like receptor activation. Multiple regulatory mechanisms involving surface receptors, intracellular and exogenous factors as well as virally encoded molecules have been shown to modulate the IFN responses in these cells. The unique innate immune functions of pDCs are crucial both in infectious diseases and in autoimmune diseases. The recent research progress provides an in-depth understanding of the biology of pDCs and a sensible basis for future therapeutic interventions.
Collapse
Affiliation(s)
- Wei Cao
- Department of Immunology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | |
Collapse
|
691
|
Taylor MW, Tsukahara T, Brodsky L, Schaley J, Sanda C, Stephens MJ, McClintick JN, Edenberg HJ, Li L, Tavis JE, Howell C, Belle SH. Changes in gene expression during pegylated interferon and ribavirin therapy of chronic hepatitis C virus distinguish responders from nonresponders to antiviral therapy. J Virol 2007; 81:3391-401. [PMID: 17267482 PMCID: PMC1866036 DOI: 10.1128/jvi.02640-06] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Treating chronic hepatitis C virus (HCV) infection using pegylated alpha interferon and ribavirin leads to sustained clearance of virus and clinical improvement in approximately 50% of patients. Response rates are lower among patients with genotype 1 than with genotypes 2 and 3 and among African-American (AA) patients compared to Caucasian (CA) patients. Using DNA microarrays, gene expression was assessed for a group of 33 African-American and 36 Caucasian American patients with chronic HCV genotype 1 infection during the first 28 days of treatment. Results were examined with respect to treatment responses and to race. Patients showed a response to treatment at the gene expression level in RNA isolated from peripheral blood mononuclear cells irrespective of degree of decrease in HCV RNA levels. However, gene expression responses were relatively blunted in patients with poor viral response (<1.5 log(10)-IU/ml decrease at 28 days) compared to those in patients with a marked (>3.5 log(10)-IU/ml decrease) or intermediate (1.5 to 3.5 log(10)-IU/ml decrease) response. The number of genes that were up- or down-regulated by pegylated interferon and ribavirin treatment was fewer in patients with a poor response than in those with an intermediate or marked viral response. However AA patients had a stronger interferon response than CA patients in general. The induced levels of known interferon-stimulated genes such as the 2'5'-oligoadenylate synthetase, MX1, IRF-7, and toll-like receptor TLR-7 genes was lower in poor-response patients than in marked- or intermediate-response patients. Thus, the relative lack of viral response to interferon therapy of hepatitis C virus infection is associated with blunted interferon cell signaling. No specific regulatory gene could be identified as responsible for this global blunting or the racial differences.
Collapse
Affiliation(s)
- Milton W Taylor
- Department of Biology, Indiana University, Bloomington, IN 47401, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
692
|
Zhu J, Huang X, Yang Y. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and -independent pathways. J Virol 2007; 81:3170-80. [PMID: 17229689 PMCID: PMC1866082 DOI: 10.1128/jvi.02192-06] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recombinant adenoviral vectors have been widely used for gene therapy applications and as vaccine vehicles for treating infectious diseases such as human immunodeficiency virus disease. The innate immune response to adenoviruses represents the most significant hurdle in clinical application of adenoviral vectors for gene therapy, but it is an attractive feature for vaccine development. How adenovirus activates innate immunity remains largely unknown. Here we showed that adenovirus elicited innate immune response through the induction of high levels of type I interferons (IFNs) by both plasmacytoid dendritic cells (pDCs) and non-pDCs such as conventional DCs and macrophages. The innate immune recognition of adenovirus by pDCs was mediated by Toll-like receptor 9 (TLR9) and was dependent on MyD88, whereas that by non-pDCs was TLR independent through cytosolic sensing of adenoviral DNA. Furthermore, type I IFNs were pivotal in innate and adaptive immune responses to adenovirus in vivo, and type I IFN blockade diminished immune responses, resulting in more stable transgene expression and reduction of inflammation. These findings indicate that adenovirus activates innate immunity by its DNA through TLR-dependent and -independent pathways in a cell type-specific fashion, and they highlight a critical role for type I IFNs in innate and adaptive immune responses to adenoviral vectors. Our results that suggest strategies to interfere with type I IFN pathway may improve the outcome of adenovirus-mediated gene therapy, whereas approaches to activate the type I IFN pathway may enhance vaccine potency.
Collapse
Affiliation(s)
- Jiangao Zhu
- Department of Medicine, Duke University Medical Center, Box 3502, Durham, NC 27710, USA
| | | | | |
Collapse
|
693
|
Spiropoulou CF, Albariño CG, Ksiazek TG, Rollin PE. Andes and Prospect Hill hantaviruses differ in early induction of interferon although both can downregulate interferon signaling. J Virol 2007; 81:2769-76. [PMID: 17202220 PMCID: PMC1866013 DOI: 10.1128/jvi.02402-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease which is thought to result from a dysregulated immune response to infection with pathogenic hantaviruses, such as Sin Nombre virus or Andes virus (ANDV). Other New World hantaviruses, such as Prospect Hill virus (PHV), have not been associated with human disease. Activation of an antiviral state and cell signaling in response to hantavirus infection were examined using human primary lung endothelial cells, the main target cell infected in HPS patients. PHV, but not ANDV, was found to induce a robust beta interferon (IFN-beta) response early after infection of primary lung endothelial cells. The level of IFN induction correlated with IFN regulatory factor 3 (IRF-3) activation, in that IRF-3 dimerization and nuclear translocation were detected in PHV but not ANDV infection. In addition, phosphorylated Stat-1/2 levels were significantly lower in the ANDV-infected cells relative to PHV. Presumably, this reflects the lower level of IRF-3 activation and initial IFN induced by ANDV relative to PHV. To determine whether, in addition, ANDV interference with IFN signaling also contributed to the low Stat-1/2 activation seen in ANDV infection, the levels of exogenous IFN-beta-induced Stat-1/2 activation detectable in uninfected versus ANDV- or PHV-infected Vero-E6 cells were examined. Surprisingly, both viruses were found to downregulate IFN-induced Stat-1/2 activation. Analysis of cells transiently expressing only ANDV or PHV glycoproteins implicated these proteins in this downregulation. In conclusion, while both viruses can interfere with IFN signaling, there is a major difference in the initial interferon induction via IRF-3 activation between ANDV and PHV in infected primary endothelial cells, and this correlates with the reported differences in pathogenicity of these viruses.
Collapse
Affiliation(s)
- Christina F Spiropoulou
- Special Pathogens Branch, G-14, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | | | | | | |
Collapse
|
694
|
Barrett JW, Sypula J, Wang F, Alston LR, Shao Z, Gao X, Irvine TS, McFadden G. M135R is a novel cell surface virulence factor of myxoma virus. J Virol 2007; 81:106-14. [PMID: 17065210 PMCID: PMC1797242 DOI: 10.1128/jvi.01633-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 10/11/2006] [Indexed: 11/20/2022] Open
Abstract
Myxoma virus (MV) encodes a cell surface protein (M135R) that is predicted to mimic the host alpha/beta interferon receptor (IFN-alpha/beta-R) and thus prevent IFN-alpha/beta from triggering a host antiviral response. This prediction is based on sequence similarity to B18R, the viral IFN-alpha/beta-R from vaccinia virus (VV), which has been demonstrated to bind and inhibit type I interferons. However, M135R is only half the size of VV B18R. All other poxvirus-encoded IFN-alpha/beta-R homologs align only to the amino-terminal half of M135R. Peptide antibodies raised against M135R were used for immunoblotting and immunofluorescence and indicate that M135R is expressed as an early gene and that the product is a cell surface N-linked glycoprotein that is not secreted. In contrast to the predicted properties of M135R as an inhibitor of type I interferon, all binding and inhibition assays designed to demonstrate whether M135R can interact with IFN-alpha/beta have been negative. However, pathogenesis studies with a targeted M135-knockout MV construct (vMyx135KO) indicate that the deletion of M135R severely attenuates MV pathogenesis in the European rabbit. We propose that M135R is an important immunomodulatory virulence factor for myxomatosis but that the target immune ligand is not from the predicted type I interferon family and remains to be identified.
Collapse
Affiliation(s)
- John W Barrett
- Biotherapeutics Research Group, Robarts Research Institute and Department of Microbiology and Immunology, University of Western Ontario, 1400 Western Road, Room 126, London, ON N6G 2V4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
695
|
Mibayashi M, Martínez-Sobrido L, Loo YM, Cárdenas WB, Gale M, García-Sastre A. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol 2007; 81:514-24. [PMID: 17079289 PMCID: PMC1797471 DOI: 10.1128/jvi.01265-06] [Citation(s) in RCA: 468] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 10/23/2006] [Indexed: 12/24/2022] Open
Abstract
The retinoic acid-inducible gene I product (RIG-I) has been identified as a cellular sensor of RNA virus infection resulting in beta interferon (IFN-beta) induction. However, many viruses are known to encode viral products that inhibit IFN-beta production. In the case of influenza A virus, the viral nonstructural protein 1 (NS1) prevents the induction of the IFN-beta promoter by inhibiting the activation of transcription factors, including IRF-3, involved in IFN-beta transcriptional activation. The inhibitory properties of NS1 appear to be due at least in part to its binding to double-stranded RNA (dsRNA), resulting in the sequestration of this viral mediator of RIG-I activation. However, the precise effects of NS1 on the RIG-I-mediated induction of IFN-beta have not been characterized. We now report that the NS1 of influenza A virus interacts with RIG-I and inhibits the RIG-I-mediated induction of IFN-beta. This inhibition was apparent even when a mutant RIG-I that is constitutively activated (in the absence of dsRNA) was used to trigger IFN-beta production. Coexpression of RIG-I, its downstream signaling partner, IPS-1, and NS1 resulted in increased levels of RIG-I and NS1 within an IPS-1-rich, solubilization-resistant fraction after cell lysis. These results suggest that RIG-I, IPS-1, and NS1 become part of the same complex. Consistent with this idea, NS1 was also found to inhibit IFN-beta promoter activation by IPS-1 overexpression. Our results indicate that, in addition to sequestering dsRNA, the NS1 of influenza A virus binds to RIG-I and inhibits downstream activation of IRF-3, preventing the transcriptional induction of IFN-beta.
Collapse
Affiliation(s)
- Masaki Mibayashi
- Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
696
|
Cherry S, Silverman N. Host-pathogen interactions in drosophila: new tricks from an old friend. Nat Immunol 2006; 7:911-7. [PMID: 16924255 DOI: 10.1038/ni1388] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 07/19/2006] [Indexed: 12/13/2022]
Abstract
Insects rely solely on innate immune responses to combat a wide array of pathogens. With its powerful genetics, drosophila has proven especially powerful for the study of humoral innate immunity, characterized by the rapid induction of antimicrobial peptides. The two signaling pathways involved, Toll and Imd, have been studied intensely, but other aspects of the drosophila immune response are less well understood. A flurry of reports has focused on the mechanisms of phagocytosis, antiviral immunity and viral pathogenesis in drosophila. These studies have taken advantage of genome-wide RNA-mediated interference screening in drosophila cells, as well as more traditional genetic tools available in the fly. This review discusses advances in these exciting new areas of drosophila immunity.
Collapse
Affiliation(s)
- Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
697
|
Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 2006. [PMID: 17108024 DOI: 10.1128/jvi.01782‐06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) is highly pathogenic in humans, with a death rate near 10%. This high pathogenicity suggests that SARS-CoV has developed mechanisms to overcome the host innate immune response. It has now been determined that SARS-CoV open reading frame (ORF) 3b, ORF 6, and N proteins antagonize interferon, a key component of the innate immune response. All three proteins inhibit the expression of beta interferon (IFN-beta), and further examination revealed that these SARS-CoV proteins inhibit a key protein necessary for the expression of IFN-beta, IRF-3. N protein dramatically inhibited expression from an NF-kappaB-responsive promoter. All three proteins were able to inhibit expression from an interferon-stimulated response element (ISRE) promoter after infection with Sendai virus, while only ORF 3b and ORF 6 proteins were able to inhibit expression from the ISRE promoter after treatment with interferon. This indicates that N protein inhibits only the synthesis of interferon, while ORF 3b and ORF 6 proteins inhibit both interferon synthesis and signaling. ORF 6 protein, but not ORF 3b or N protein, inhibited nuclear translocation but not phosphorylation of STAT1. Thus, it appears that these three interferon antagonists of SARS-CoV inhibit the interferon response by different mechanisms.
Collapse
|
698
|
Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 2006; 81:548-57. [PMID: 17108024 PMCID: PMC1797484 DOI: 10.1128/jvi.01782-06] [Citation(s) in RCA: 552] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) is highly pathogenic in humans, with a death rate near 10%. This high pathogenicity suggests that SARS-CoV has developed mechanisms to overcome the host innate immune response. It has now been determined that SARS-CoV open reading frame (ORF) 3b, ORF 6, and N proteins antagonize interferon, a key component of the innate immune response. All three proteins inhibit the expression of beta interferon (IFN-beta), and further examination revealed that these SARS-CoV proteins inhibit a key protein necessary for the expression of IFN-beta, IRF-3. N protein dramatically inhibited expression from an NF-kappaB-responsive promoter. All three proteins were able to inhibit expression from an interferon-stimulated response element (ISRE) promoter after infection with Sendai virus, while only ORF 3b and ORF 6 proteins were able to inhibit expression from the ISRE promoter after treatment with interferon. This indicates that N protein inhibits only the synthesis of interferon, while ORF 3b and ORF 6 proteins inhibit both interferon synthesis and signaling. ORF 6 protein, but not ORF 3b or N protein, inhibited nuclear translocation but not phosphorylation of STAT1. Thus, it appears that these three interferon antagonists of SARS-CoV inhibit the interferon response by different mechanisms.
Collapse
|
699
|
Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, Reis e Sousa C. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 2006; 314:997-1001. [PMID: 17038589 DOI: 10.1126/science.1132998] [Citation(s) in RCA: 1727] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Double-stranded RNA (dsRNA) produced during viral replication is believed to be the critical trigger for activation of antiviral immunity mediated by the RNA helicase enzymes retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5). We showed that influenza A virus infection does not generate dsRNA and that RIG-I is activated by viral genomic single-stranded RNA (ssRNA) bearing 5'-phosphates. This is blocked by the influenza protein nonstructured protein 1 (NS1), which is found in a complex with RIG-I in infected cells. These results identify RIG-I as a ssRNA sensor and potential target of viral immune evasion and suggest that its ability to sense 5'-phosphorylated RNA evolved in the innate immune system as a means of discriminating between self and nonself.
Collapse
Affiliation(s)
- Andreas Pichlmair
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, UK
| | | | | | | | | | | | | |
Collapse
|
700
|
Zhou H, Perlman S. Mouse hepatitis virus does not induce Beta interferon synthesis and does not inhibit its induction by double-stranded RNA. J Virol 2006; 81:568-74. [PMID: 17079305 PMCID: PMC1797428 DOI: 10.1128/jvi.01512-06] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mouse hepatitis virus (MHV) does not induce interferon (IFN) production in fibroblasts or bone marrow-derived dendritic cells. In this report, we show that the essential IFN-beta transcription factors NF-kappaB and IFN regulatory factor 3 are not activated for nuclear translocation and gene induction during infection. However, MHV was unable to inhibit the activation of these factors and subsequent IFN-beta production induced by poly(I:C). Further, MHV infection did not inhibit IFN-beta production mediated by known host pattern recognition receptors (PRRs) (RIG-I, Mda-5, and TLR3). These results are consistent with the notion that double-stranded RNA, produced during MHV infection, is not accessible to cellular PRRs.
Collapse
Affiliation(s)
- Haixia Zhou
- Department of Microbiology, University of Iowa, Bowen Science Building 3-730, Iowa City, IA 52242, USA
| | | |
Collapse
|