51
|
Watanabe Y, Mendonça L, Allen ER, Howe A, Lee M, Allen JD, Chawla H, Pulido D, Donnellan F, Davies H, Ulaszewska M, Belij-Rammerstorfer S, Morris S, Krebs AS, Dejnirattisai W, Mongkolsapaya J, Supasa P, Screaton GR, Green CM, Lambe T, Zhang P, Gilbert SC, Crispin M. Native-like SARS-CoV-2 Spike Glycoprotein Expressed by ChAdOx1 nCoV-19/AZD1222 Vaccine. ACS CENTRAL SCIENCE 2021; 7:594-602. [PMID: 34056089 PMCID: PMC8043200 DOI: 10.1021/acscentsci.1c00080] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 05/08/2023]
Abstract
Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation, and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirm the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School
of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, U.K.
- Oxford
Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K.
| | - Luiza Mendonça
- Division
of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, U.K.
| | - Elizabeth R. Allen
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Andrew Howe
- Electron
Bio-imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K.
| | - Mercede Lee
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Joel D. Allen
- School
of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, U.K.
| | - Himanshi Chawla
- School
of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, U.K.
| | - David Pulido
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Francesca Donnellan
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Hannah Davies
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Marta Ulaszewska
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Sandra Belij-Rammerstorfer
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
- NIHR Oxford
Biomedical Research Centre, Oxford, U.K.
| | - Susan Morris
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
| | - Anna-Sophia Krebs
- Division
of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, U.K.
| | - Wanwisa Dejnirattisai
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Juthathip Mongkolsapaya
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
- Dengue
Hemorrhagic Fever Research Unit, Office for Research and Development,
Faculty of Medicine, Siriraj Hospital, Mahidol
University, Bangkok, Thailand
- Chinese
Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, U.K.
| | - Piyada Supasa
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Gavin R. Screaton
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
- Division
of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, U.K.
| | - Catherine M. Green
- The
Wellcome Centre for Human Genetics, University
of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Teresa Lambe
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
- NIHR Oxford
Biomedical Research Centre, Oxford, U.K.
| | - Peijun Zhang
- Division
of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, U.K.
- Electron
Bio-imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K.
| | - Sarah C. Gilbert
- The
Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, U.K.
- NIHR Oxford
Biomedical Research Centre, Oxford, U.K.
| | - Max Crispin
- School
of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, U.K.
| |
Collapse
|
52
|
Derking R, Allen JD, Cottrell CA, Sliepen K, Seabright GE, Lee WH, Aldon Y, Rantalainen K, Antanasijevic A, Copps J, Yasmeen A, Cupo A, Cruz Portillo VM, Poniman M, Bol N, van der Woude P, de Taeye SW, van den Kerkhof TLGM, Klasse PJ, Ozorowski G, van Gils MJ, Moore JP, Ward AB, Crispin M, Sanders RW. Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Rep 2021; 35:108933. [PMID: 33826885 PMCID: PMC8804554 DOI: 10.1016/j.celrep.2021.108933] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/10/2020] [Accepted: 03/11/2021] [Indexed: 12/31/2022] Open
Abstract
Artificial glycan holes on recombinant Env-based vaccines occur when a potential N-linked glycosylation site (PNGS) is under-occupied, but not on their viral counterparts. Native-like SOSIP trimers, including clinical candidates, contain such holes in the glycan shield that induce strain-specific neutralizing antibodies (NAbs) or non-NAbs. To eliminate glycan holes and mimic the glycosylation of native BG505 Env, we replace all 12 NxS sequons on BG505 SOSIP with NxT. All PNGS, except N133 and N160, are nearly fully occupied. Occupancy of the N133 site is increased by changing N133 to NxS, whereas occupancy of the N160 site is restored by reverting the nearby N156 sequon to NxS. Hence, PNGS in close proximity, such as in the N133-N137 and N156-N160 pairs, affect each other's occupancy. We further apply this approach to improve the occupancy of several Env strains. Increasing glycan occupancy should reduce off-target immune responses to vaccine antigens.
Collapse
Affiliation(s)
- Ronald Derking
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Gemma E Seabright
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yoann Aldon
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Victor M Cruz Portillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Meliawati Poniman
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Niki Bol
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Patricia van der Woude
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Tom L G M van den Kerkhof
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, IAVI Neutralizing Antibody Center and the Collaboration for AIDS Vaccine Discovery (CAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
53
|
Allen JD, Chawla H, Samsudin F, Zuzic L, Shivgan AT, Watanabe Y, He WT, Callaghan S, Song G, Yong P, Brouwer PJM, Song Y, Cai Y, Duyvesteyn HME, Malinauskas T, Kint J, Pino P, Wurm MJ, Frank M, Chen B, Stuart DI, Sanders RW, Andrabi R, Burton DR, Li S, Bond PJ, Crispin M. Site-specific steric control of SARS-CoV-2 spike glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.08.433764. [PMID: 33758835 PMCID: PMC7986994 DOI: 10.1101/2021.03.08.433764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity between the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against infectious virus S protein. We find patterns which are conserved across all samples and this can be associated with site-specific stalling of glycan maturation which act as a highly sensitive reporter of protein structure. Molecular dynamics (MD) simulations of a fully glycosylated spike support s a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.
Collapse
|
54
|
Fogarty CA, Fadda E. Oligomannose N-Glycans 3D Architecture and Its Response to the FcγRIIIa Structural Landscape. J Phys Chem B 2021; 125:2607-2616. [PMID: 33661628 PMCID: PMC8279474 DOI: 10.1021/acs.jpcb.1c00304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oligomannoses are evolutionarily the oldest class of N-glycans, where the arms of the common pentasaccharide unit, i.e., Manα(1-6)-[Manα(1-3)]-Manβ(1-4)-GlcNAcβ(1-4)-GlcNAcβ1-Asn, are functionalized exclusively with branched arrangements of mannose (Man) monosaccharide units. In mammalian species oligomannose N-glycans can have up to 9 Man; meanwhile structures can grow to over 200 units in yeast mannan. The highly dynamic nature, branching complexity, and 3D structure of oligomannoses have been recently highlighted for their roles in immune escape and infectivity of enveloped viruses, such as HIV-1 and SARS-CoV2. The architectural features that allow these N-glycans to perform their functions are yet unclear, due to their intrinsically disordered nature that hinders their structural characterization. In this work we will discuss the results of over 54 μs of cumulative sampling by molecular dynamics (MD) simulations of differently processed, free (not protein-linked) oligomannose N-glycans common in vertebrates. We then discuss the effects of a protein surface on their structural equilibria based on over 4 μs cumulative MD sampling of the fully glycosylated CD16a Fc γ receptor (FcγRIIIa), where the type of glycosylation is known to modulate its binding affinity for IgG1s, regulating the antibody-dependent cellular cytotoxicity (ADCC). Our results show that the protein's structural constraints shift the oligomannoses conformational ensemble to promote conformers that satisfy the steric requirements and hydrogen bonding networks demanded by the protein's surface landscape. More importantly, we find that the protein does not actively distort the N-glycans into structures not populated in the unlinked forms in solution. Ultimately, the highly populated conformations of the Man5 linked glycans support experimental evidence of high levels of hybrid complex forms at N45 and show a specific presentation of the arms at N162, which may be involved in mediating binding affinity to the IgG1 Fc.
Collapse
Affiliation(s)
- Carl A Fogarty
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Kildare, Ireland
| | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, Kildare, Ireland
| |
Collapse
|
55
|
Lee CCD, Watanabe Y, Wu NC, Han J, Kumar S, Pholcharee T, Seabright GE, Allen JD, Lin CW, Yang JR, Liu MT, Wu CY, Ward AB, Crispin M, Wilson IA. A cross-neutralizing antibody between HIV-1 and influenza virus. PLoS Pathog 2021; 17:e1009407. [PMID: 33750987 PMCID: PMC8016226 DOI: 10.1371/journal.ppat.1009407] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 02/17/2021] [Indexed: 11/19/2022] Open
Abstract
Incessant antigenic evolution enables the persistence and spread of influenza virus in the human population. As the principal target of the immune response, the hemagglutinin (HA) surface antigen on influenza viruses continuously acquires and replaces N-linked glycosylation sites to shield immunogenic protein epitopes using host-derived glycans. Anti-glycan antibodies, such as 2G12, target the HIV-1 envelope protein (Env), which is even more extensively glycosylated and contains under-processed oligomannose-type clusters on its dense glycan shield. Here, we illustrate that 2G12 can also neutralize human seasonal influenza A H3N2 viruses that have evolved to present similar oligomannose-type clusters on their HAs from around 20 years after the 1968 pandemic. Using structural biology and mass spectrometric approaches, we find that two N-glycosylation sites close to the receptor binding site (RBS) on influenza hemagglutinin represent the oligomannose cluster recognized by 2G12. One of these glycan sites is highly conserved in all human H3N2 strains and the other emerged during virus evolution. These two N-glycosylation sites have also become crucial for fitness of recent H3N2 strains. These findings shed light on the evolution of the glycan shield on influenza virus and suggest 2G12-like antibodies can potentially act as broad neutralizers to target human enveloped viruses.
Collapse
Affiliation(s)
- Chang-Chun D. Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, England, United Kingdom
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gemma E. Seabright
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, England, United Kingdom
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Chih-Wei Lin
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ji-Rong Yang
- Centers for Disease Control, Taipei City, Taiwan
| | | | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, England, United Kingdom
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
56
|
Allen JD, Watanabe Y, Chawla H, Newby ML, Crispin M. Subtle Influence of ACE2 Glycan Processing on SARS-CoV-2 Recognition. J Mol Biol 2021; 433:166762. [PMID: 33340519 PMCID: PMC7744274 DOI: 10.1016/j.jmb.2020.166762] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
The severity of SARS-CoV-2 infection is highly variable and yet the molecular basis for this effect remains elusive. One potential contribution are differences in the glycosylation of target human cells, particularly as SARS-CoV-2 has the capacity to bind sialic acid which is a common, and highly variable, terminal modification of glycans. The viral spike glycoprotein (S) of SARS-CoV-2 and the human cellular receptor, angiotensin-converting enzyme 2 (ACE2) are both densely glycosylated. We therefore sought to investigate whether the glycosylation state of ACE2 impacts the interaction with SARS-CoV-2 viral spike. We generated a panel of engineered ACE2 glycoforms which were analyzed by mass spectrometry to reveal the site-specific glycan modifications. We then probed the impact of ACE2 glycosylation on S binding and revealed a subtle sensitivity with hypersialylated or oligomannose-type glycans slightly impeding the interaction. In contrast, deglycosylation of ACE2 did not influence SARS-CoV-2 binding. Overall, ACE2 glycosylation does not significantly influence viral spike binding. We suggest that any role of glycosylation in the pathobiology of SARS-CoV-2 will lie beyond its immediate impact of receptor glycosylation on virus binding.
Collapse
Affiliation(s)
- Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
57
|
HIV-1 Envelope Glycosylation and the Signal Peptide. Vaccines (Basel) 2021; 9:vaccines9020176. [PMID: 33669676 PMCID: PMC7922494 DOI: 10.3390/vaccines9020176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
The RV144 trial represents the only vaccine trial to demonstrate any protective effect against HIV-1 infection. While the reason(s) for this protection are still being evaluated, it serves as justification for widespread efforts aimed at developing new, more effective HIV-1 vaccines. Advances in our knowledge of HIV-1 immunogens and host antibody responses to these immunogens are crucial to informing vaccine design. While the envelope (Env) protein is the only viral protein present on the surface of virions, it exists in a complex trimeric conformation and is decorated with an array of variable N-linked glycans, making it an important but difficult target for vaccine design. Thus far, efforts to elicit a protective humoral immune response using structural mimics of native Env trimers have been unsuccessful. Notably, the aforementioned N-linked glycans serve as a component of many of the epitopes crucial for the induction of potentially protective broadly neutralizing antibodies (bnAbs). Thus, a greater understanding of Env structural determinants, most critically Env glycosylation, will no doubt be of importance in generating effective immunogens. Recent studies have identified the HIV-1 Env signal peptide (SP) as an important contributor to Env glycosylation. Further investigation into the mechanisms by which the SP directs glycosylation will be important, both in the context of understanding HIV-1 biology and in order to inform HIV-1 vaccine design.
Collapse
|
58
|
Turner HL, Andrabi R, Cottrell CA, Richey ST, Song G, Callaghan S, Anzanello F, Moyer TJ, Abraham W, Melo M, Silva M, Scaringi N, Rakasz EG, Sattentau Q, Irvine DJ, Burton DR, Ward AB. Disassembly of HIV envelope glycoprotein trimer immunogens is driven by antibodies elicited via immunization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33619491 PMCID: PMC7899455 DOI: 10.1101/2021.02.16.431310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2 and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non or weakly neutralizing (“off-target”) antibodies. Using our recently developed electron microscopy epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process. HIV Env trimers elicit antibodies that lead to their own destruction
Collapse
Affiliation(s)
- Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative - Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sara T Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative - Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative - Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative - Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tyson J Moyer
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wuhbet Abraham
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mariane Melo
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Murillo Silva
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicole Scaringi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Quentin Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, OX1 3RE, United Kingdom
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Dennis R Burton
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative - Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative - Neutralizing Antibody Center (IAVI-NAC), The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
59
|
Charles TP, Burton SL, Arunachalam PS, Cottrell CA, Sewall LM, Bollimpelli VS, Gangadhara S, Dey AK, Ward AB, Shaw GM, Hunter E, Amara RR, Pulendran B, van Gils MJ, Derdeyn CA. The C3/465 glycan hole cluster in BG505 HIV-1 envelope is the major neutralizing target involved in preventing mucosal SHIV infection. PLoS Pathog 2021; 17:e1009257. [PMID: 33556148 PMCID: PMC7895394 DOI: 10.1371/journal.ppat.1009257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/19/2021] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
Stabilized HIV-1 envelope (Env) trimers elicit tier 2 autologous neutralizing antibody (nAb) responses in immunized animals. We previously demonstrated that BG505 SOSIP.664.T332N gp140 (BG505 SOSIP) immunization of rhesus macaques (RM) provided robust protection against autologous intra-vaginal simian-human immunodeficiency virus (SHIV) challenge that was predicted by high serum nAb titers. Here, we show that nAb in these protected RM targeted a glycan hole proximal to residue 465 in gp120 in all cases. nAb also targeted another glycan hole at residues 241/289 and an epitope in V1 at varying frequencies. Non-neutralizing antibodies directed at N611-shielded epitopes in gp41 were also present but were more prevalent in RM with low nAb titers. Longitudinal analysis demonstrated that nAb broadened in some RM during sequential immunization but remained focused in others, the latter being associated with increases in nAb titer. Thirty-eight monoclonal antibodies (mAbs) isolated from a protected RM with an exceptionally high serum neutralization titer bound to the trimer in ELISA, and four of the mAbs potently neutralized the BG505 Env pseudovirus (PV) and SHIV. The four neutralizing mAbs were clonally related and targeted the 465 glycan hole to varying degrees, mimicking the serum. The data demonstrate that the C3/465 glycan hole cluster was the dominant neutralization target in high titer protected RM, despite other co-circulating neutralizing and non-neutralizing specificities. The isolation of a neutralizing mAb family argues that clonotype expansion occurred during BG505 SOSIP immunization, leading to high titer, protective nAb and setting a desirable benchmark for HIV vaccines.
Collapse
Affiliation(s)
- Tysheena P. Charles
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Samantha L. Burton
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Prabhu S. Arunachalam
- Departments of Pathology, and Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, United States of America
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Venkata S. Bollimpelli
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Sailaja Gangadhara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Antu K. Dey
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - George M. Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric Hunter
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rama R. Amara
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
| | - Bali Pulendran
- Departments of Pathology, and Microbiology and Immunology, Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cynthia A. Derdeyn
- Emory Vaccine Center, Emory University, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
60
|
Bruxelle JF, Trattnig N, Mureithi MW, Landais E, Pantophlet R. HIV-1 Entry and Prospects for Protecting against Infection. Microorganisms 2021; 9:microorganisms9020228. [PMID: 33499233 PMCID: PMC7911371 DOI: 10.3390/microorganisms9020228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Human Immunodeficiency Virus type-1 (HIV-1) establishes a latent viral reservoir soon after infection, which poses a major challenge for drug treatment and curative strategies. Many efforts are therefore focused on blocking infection. To this end, both viral and host factors relevant to the onset of infection need to be considered. Given that HIV-1 is most often transmitted mucosally, strategies designed to protect against infection need to be effective at mucosal portals of entry. These strategies need to contend also with cell-free and cell-associated transmitted/founder (T/F) virus forms; both can initiate and establish infection. This review will discuss how insight from the current model of HIV-1 mucosal transmission and cell entry has highlighted challenges in developing effective strategies to prevent infection. First, we examine key viral and host factors that play a role in transmission and infection. We then discuss preventive strategies based on antibody-mediated protection, with emphasis on targeting T/F viruses and mucosal immunity. Lastly, we review treatment strategies targeting viral entry, with focus on the most clinically advanced entry inhibitors.
Collapse
Affiliation(s)
- Jean-François Bruxelle
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence: (J.-F.B.); (R.P.)
| | - Nino Trattnig
- Chemical Biology and Drug Discovery, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Marianne W. Mureithi
- KAVI—Institute of Clinical Research, College of Health Sciences, University of Nairobi, P.O. Box, Nairobi 19676–00202, Kenya;
| | - Elise Landais
- IAVI Neutralizing Antibody Center, La Jolla, CA 92037, USA;
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Correspondence: (J.-F.B.); (R.P.)
| |
Collapse
|
61
|
Finkelstein MT, Mermelstein AG, Parker Miller E, Seth PC, Stancofski ESD, Fera D. Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses 2021; 13:134. [PMID: 33477902 PMCID: PMC7833398 DOI: 10.3390/v13010134] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/01/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus research has gained tremendous attention because of the COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus (nCoV or SARS-CoV-2). In this review, we highlight recent studies that provide atomic-resolution structural details important for the development of monoclonal antibodies (mAbs) that can be used therapeutically and prophylactically and for vaccines against SARS-CoV-2. Structural studies with SARS-CoV-2 neutralizing mAbs have revealed a diverse set of binding modes on the spike's receptor-binding domain and N-terminal domain and highlight alternative targets on the spike. We consider this structural work together with mAb effects in vivo to suggest correlations between structure and clinical applications. We also place mAbs against severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses in the context of the SARS-CoV-2 spike to suggest features that may be desirable to design mAbs or vaccines capable of conferring broad protection.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, USA; (M.T.F.); (A.G.M.); (E.P.M.); (P.C.S.); (E.-S.D.S.)
| |
Collapse
|
62
|
Watanabe Y, Mendonça L, Allen ER, Howe A, Lee M, Allen JD, Chawla H, Pulido D, Donnellan F, Davies H, Ulaszewska M, Belij-Rammerstorfer S, Morris S, Krebs AS, Dejnirattisai W, Mongkolsapaya J, Supasa P, Screaton GR, Green CM, Lambe T, Zhang P, Gilbert SC, Crispin M. Native-like SARS-CoV-2 spike glycoprotein expressed by ChAdOx1 nCoV-19/AZD1222 vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.15.426463. [PMID: 33501433 PMCID: PMC7836103 DOI: 10.1101/2021.01.15.426463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirms the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Luiza Mendonça
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Elizabeth R. Allen
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew Howe
- Electron Bio-imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Mercede Lee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Himanshi Chawla
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - David Pulido
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francesca Donnellan
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hannah Davies
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sandra Belij-Rammerstorfer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susan Morris
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anna-Sophia Krebs
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Wanwisa Dejnirattisai
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Juthathip Mongkolsapaya
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Chinese Academy of Medical Science(CAMS) Oxford Institute (COI), University of Oxford, Oxford, U.K
| | - Piyada Supasa
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Gavin R. Screaton
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Catherine M. Green
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Peijun Zhang
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
- Electron Bio-imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
63
|
Wilson IA, Stanfield RL. 50 Years of structural immunology. J Biol Chem 2021; 296:100745. [PMID: 33957119 PMCID: PMC8163984 DOI: 10.1016/j.jbc.2021.100745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Fifty years ago, the first landmark structures of antibodies heralded the dawn of structural immunology. Momentum then started to build toward understanding how antibodies could recognize the vast universe of potential antigens and how antibody-combining sites could be tailored to engage antigens with high specificity and affinity through recombination of germline genes (V, D, J) and somatic mutation. Equivalent groundbreaking structures in the cellular immune system appeared some 15 to 20 years later and illustrated how processed protein antigens in the form of peptides are presented by MHC molecules to T cell receptors. Structures of antigen receptors in the innate immune system then explained their inherent specificity for particular microbial antigens including lipids, carbohydrates, nucleic acids, small molecules, and specific proteins. These two sides of the immune system act immediately (innate) to particular microbial antigens or evolve (adaptive) to attain high specificity and affinity to a much wider range of antigens. We also include examples of other key receptors in the immune system (cytokine receptors) that regulate immunity and inflammation. Furthermore, these antigen receptors use a limited set of protein folds to accomplish their various immunological roles. The other main players are the antigens themselves. We focus on surface glycoproteins in enveloped viruses including SARS-CoV-2 that enable entry and egress into host cells and are targets for the antibody response. This review covers what we have learned over the past half century about the structural basis of the immune response to microbial pathogens and how that information can be utilized to design vaccines and therapeutics.
Collapse
MESH Headings
- Adaptive Immunity
- Allergy and Immunology/history
- Animals
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibody Specificity
- Antigen Presentation
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- COVID-19/immunology
- COVID-19/virology
- Crystallography/history
- Crystallography/methods
- History, 20th Century
- History, 21st Century
- Humans
- Immunity, Innate
- Protein Folding
- Protein Interaction Domains and Motifs
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Cytokine/chemistry
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- V(D)J Recombination
Collapse
Affiliation(s)
- Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA.
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
64
|
Fadda E. Understanding the Structure and Function of Viral Glycosylation by Molecular Simulations: State-of-the-Art and Recent Case Studies. COMPREHENSIVE GLYCOSCIENCE 2021. [PMCID: PMC7834635 DOI: 10.1016/b978-0-12-819475-1.00056-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
65
|
Margolin E, Allen JD, Verbeek M, van Diepen M, Ximba P, Chapman R, Meyers A, Williamson AL, Crispin M, Rybicki E. Site-Specific Glycosylation of Recombinant Viral Glycoproteins Produced in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2021; 12:709344. [PMID: 34367227 PMCID: PMC8341435 DOI: 10.3389/fpls.2021.709344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/24/2021] [Indexed: 05/03/2023]
Abstract
There is an urgent need to establish large scale biopharmaceutical manufacturing capacity in Africa where the infrastructure for biologics production is severely limited. Molecular farming, whereby pharmaceuticals are produced in plants, offers a cheaper alternative to mainstream expression platforms, and is amenable to rapid large-scale production. However, there are several differences along the plant protein secretory pathway compared to mammalian systems, which constrain the production of complex pharmaceuticals. Viral envelope glycoproteins are important targets for immunization, yet in some cases they accumulate poorly in plants and may not be properly processed. Whilst the co-expression of human chaperones and furin proteases has shown promise, it is presently unclear how plant-specific differences in glycosylation impact the production of these proteins. In many cases it may be necessary to reproduce features of their native glycosylation to produce immunologically relevant vaccines, given that glycosylation is central to the folding and immunogenicity of these antigens. Building on previous work, we transiently expressed model glycoproteins from HIV and Marburg virus in Nicotiana benthamiana and mammalian cells. The proteins were purified and their site-specific glycosylation was determined by mass-spectrometry. Both glycoproteins yielded increased amounts of protein aggregates when produced in plants compared to the equivalent mammalian cell-derived proteins. The glycosylation profiles of the plant-produced glycoproteins were distinct from the mammalian cell produced proteins: they displayed lower levels of glycan occupancy, reduced complex glycans and large amounts of paucimannosidic structures. The elucidation of the site-specific glycosylation of viral glycoproteins produced in N. benthamiana is an important step toward producing heterologous viral glycoproteins in plants with authentic human-like glycosylation.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Emmanuel Margolin,
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Matthew Verbeek
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Michiel van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
- Max Crispin,
| | - Edward Rybicki
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
66
|
Abstract
HIV is a virus that remains a major health concern and results in an infection that has no cure even after over 30 years since its discovery. As such, HIV vaccine discovery continues to be an area of intensive research. In this review, we summarize the most recent HIV vaccine efficacy trials, clinical trials initiated within the last 3 years, and discuss prominent improvements that have been made in prophylactic HIV vaccine designs.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
67
|
Petrović T, Lauc G, Trbojević-Akmačić I. The Importance of Glycosylation in COVID-19 Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:239-264. [PMID: 34495539 DOI: 10.1007/978-3-030-70115-4_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently one of the major health problems worldwide. SARS-CoV-2 survival and virulence are shown to be impacted by glycans, covalently attached to proteins in a process of glycosylation, making glycans an area of interest in SARS-CoV-2 biology and COVID-19 infection. The SARS-CoV-2 uses its highly glycosylated spike (S) glycoproteins to bind to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. Viral glycosylation has wide-ranging roles in viral pathobiology, including mediating protein folding and stability, immune evasion, host receptor attachment, and cell entry. Modification of SARS-CoV-2 envelope membrane with glycans is important in host immune recognition and interaction between S and ACE2 glycoproteins. On the other hand, immunoglobulin G, a key molecule in immune response, shows a distinct glycosylation profile in COVID-19 infection and with increased disease severity. Hence, further studies on the role of glycosylation in SARS-CoV-2 infectivity and COVID-19 infection are needed for its successful prevention and treatment. This chapter focuses on recent findings on the importance of glycosylation in COVID-19 infection.
Collapse
Affiliation(s)
- Tea Petrović
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
68
|
Signal peptide of HIV-1 envelope modulates glycosylation impacting exposure of V1V2 and other epitopes. PLoS Pathog 2020; 16:e1009185. [PMID: 33370382 PMCID: PMC7793277 DOI: 10.1371/journal.ppat.1009185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/08/2021] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
HIV-1 envelope (Env) is a trimer of gp120-gp41 heterodimers, synthesized from a precursor gp160 that contains an ER-targeting signal peptide (SP) at its amino-terminus. Each trimer is swathed by ~90 N-linked glycans, comprising complex-type and oligomannose-type glycans, which play an important role in determining virus sensitivity to neutralizing antibodies. We previously examined the effects of single point SP mutations on Env properties and functions. Here, we aimed to understand the impact of the SP diversity on glycosylation of virus-derived Env and virus neutralization by swapping SPs. Analyses of site-specific glycans revealed that SP swapping altered Env glycan content and occupancy on multiple N-linked glycosites, including conserved N156 and N160 glycans in the V1V2 region at the Env trimer apex and N88 at the trimer base. Virus neutralization was also affected, especially by antibodies against V1V2, V3, and gp41. Likewise, SP swaps affected the recognition of soluble and cell-associated Env by antibodies targeting distinct V1V2 configurations, V3 crown, and gp41 epitopes. These data highlight the contribution of SP sequence diversity in shaping the Env glycan content and its impact on the configuration and accessibility of V1V2 and other Env epitopes. HIV-1 Env glycoprotein is produced by a precursor gp160 that has a signal peptide at its N-terminus. The SP is highly diverse among the HIV-1 isolates. This study presents site-specific analyses of N-linked glycosylation on HIV-1 envelope glycoproteins from infectious viruses produced with different envelope signal peptides. We show that signal peptide swapping alters the envelope glycan shield, including the conserved N156 and N160 glycans located in the V1V2 region on the trimer apex, to impact Env recognition and virus neutralization by antibodies. The data offer crucial insights into the role of signal peptide in the interplay between HIV-1 and antibodies and its potential utility to control Env glycosylation in the development of Env-based HIV-1 vaccine.
Collapse
|
69
|
Chakraborty S, Berndsen ZT, Hengartner NW, Korber BT, Ward AB, Gnanakaran S. Quantification of the Resilience and Vulnerability of HIV-1 Native Glycan Shield at Atomistic Detail. iScience 2020; 23:101836. [PMID: 33319171 PMCID: PMC7724196 DOI: 10.1016/j.isci.2020.101836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 01/09/2023] Open
Abstract
Dense surface glycosylation on the HIV-1 envelope (Env) protein acts as a shield from the adaptive immune system. However, the molecular complexity and flexibility of glycans make experimental studies a challenge. Here we have integrated high-throughput atomistic modeling of fully glycosylated HIV-1 Env with graph theory to capture immunologically important features of the shield topology. This is the first complete all-atom model of HIV-1 Env SOSIP glycan shield that includes both oligomannose and complex glycans, providing physiologically relevant insights of the glycan shield. This integrated approach including quantitative comparison with cryo-electron microscopy data provides hitherto unexplored details of the native shield architecture and its difference from the high-mannose glycoform. We have also derived a measure to quantify the shielding effect over the antigenic protein surface that defines regions of relative vulnerability and resilience of the shield and can be harnessed for rational immunogen design.
Collapse
Affiliation(s)
- Srirupa Chakraborty
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Non-Linear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Zachary T. Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center and Collaboration of AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicolas W. Hengartner
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Bette T. Korber
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center and Collaboration of AIDS Vaccine Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - S. Gnanakaran
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
70
|
Margolin E, Crispin M, Meyers A, Chapman R, Rybicki EP. A Roadmap for the Molecular Farming of Viral Glycoprotein Vaccines: Engineering Glycosylation and Glycosylation-Directed Folding. FRONTIERS IN PLANT SCIENCE 2020; 11:609207. [PMID: 33343609 PMCID: PMC7744475 DOI: 10.3389/fpls.2020.609207] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 05/03/2023]
Abstract
Immunization with recombinant glycoprotein-based vaccines is a promising approach to induce protective immunity against viruses. However, the complex biosynthetic maturation requirements of these glycoproteins typically necessitate their production in mammalian cells to support their folding and post-translational modification. Despite these clear advantages, the incumbent costs and infrastructure requirements with this approach can be prohibitive in developing countries, and the production scales and timelines may prove limiting when applying these production systems to the control of pandemic viral outbreaks. Plant molecular farming of viral glycoproteins has been suggested as a cheap and rapidly scalable alternative production system, with the potential to perform post-translational modifications that are comparable to mammalian cells. Consequently, plant-produced glycoprotein vaccines for seasonal and pandemic influenza have shown promise in clinical trials, and vaccine candidates against the newly emergent severe acute respiratory syndrome coronavirus-2 have entered into late stage preclinical and clinical testing. However, many other viral glycoproteins accumulate poorly in plants, and are not appropriately processed along the secretory pathway due to differences in the host cellular machinery. Furthermore, plant-derived glycoproteins often contain glycoforms that are antigenically distinct from those present on the native virus, and may also be under-glycosylated in some instances. Recent advances in the field have increased the complexity and yields of biologics that can be produced in plants, and have now enabled the expression of many viral glycoproteins which could not previously be produced in plant systems. In contrast to the empirical optimization that predominated during the early years of molecular farming, the next generation of plant-made products are being produced by developing rational, tailor-made approaches to support their production. This has involved the elimination of plant-specific glycoforms and the introduction into plants of elements of the biosynthetic machinery from different expression hosts. These approaches have resulted in the production of mammalian N-linked glycans and the formation of O-glycan moieties in planta. More recently, plant molecular engineering approaches have also been applied to improve the glycan occupancy of proteins which are not appropriately glycosylated, and to support the folding and processing of viral glycoproteins where the cellular machinery differs from the usual expression host of the protein. Here we highlight recent achievements and remaining challenges in glycoengineering and the engineering of glycosylation-directed folding pathways in plants, and discuss how these can be applied to produce recombinant viral glycoproteins vaccines.
Collapse
Affiliation(s)
- Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Wellcome Trust Centre for Infectious Disease Research in Africa, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Ann Meyers
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ros Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Edward P. Rybicki
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
71
|
Schorcht A, van den Kerkhof TLGM, Cottrell CA, Allen JD, Torres JL, Behrens AJ, Schermer EE, Burger JA, de Taeye SW, Torrents de la Peña A, Bontjer I, Gumbs S, Ozorowski G, LaBranche CC, de Val N, Yasmeen A, Klasse PJ, Montefiori DC, Moore JP, Schuitemaker H, Crispin M, van Gils MJ, Ward AB, Sanders RW. Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. J Virol 2020; 94:e01214-20. [PMID: 32999024 PMCID: PMC7925178 DOI: 10.1128/jvi.01214-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
The induction of broadly neutralizing antibodies (bNAbs) is a major goal in vaccine research. HIV-1-infected individuals that develop exceptionally strong bNAb responses, termed elite neutralizers, can inform vaccine design by providing blueprints for the induction of similar bNAb responses. We describe a new recombinant native-like envelope glycoprotein (Env) SOSIP trimer, termed AMC009, based on the viral founder sequences of an elite neutralizer. The subtype B AMC009 SOSIP protein formed stable native-like trimers that displayed multiple bNAb epitopes. Overall, its structure at 4.3-Å resolution was similar to that of BG505 SOSIP.664. The AMC009 trimer resembled one from a second elite neutralizer, AMC011, in having a dense and complete glycan shield. When tested as immunogens in rabbits, the AMC009 trimers did not induce autologous neutralizing antibody (NAb) responses efficiently while the AMC011 trimers did so very weakly, outcomes that may reflect the completeness of their glycan shields. The AMC011 trimer induced antibodies that occasionally cross-neutralized heterologous tier 2 viruses, sometimes at high titer. Cross-neutralizing antibodies were more frequently elicited by a trivalent combination of AMC008, AMC009, and AMC011 trimers, all derived from subtype B viruses. Each of these three individual trimers could deplete the NAb activity from the rabbit sera. Mapping the polyclonal sera by electron microscopy revealed that antibodies of multiple specificities could bind to sites on both autologous and heterologous trimers. These results advance our understanding of how to use Env trimers in multivalent vaccination regimens and the immunogenicity of trimers derived from elite neutralizers.IMPORTANCE Elite neutralizers, i.e., individuals who developed unusually broad and potent neutralizing antibody responses, might serve as blueprints for HIV-1 vaccine design. Here, we studied the immunogenicity of native-like recombinant envelope glycoprotein (Env) trimers based on viral sequences from elite neutralizers. While immunization with single trimers from elite neutralization did not recapitulate the breadth and potency of neutralization observed in these infected individuals, a combination of three subtype B Env trimers from elite neutralizers resulted in some neutralization breadth within subtype B viruses. These results should guide future efforts to design vaccines to induce broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Anna Schorcht
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom L G M van den Kerkhof
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Joel D Allen
- School of Biological Science, University of Southampton, Southampton, United Kingdom
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Anna-Janina Behrens
- School of Biological Science, University of Southampton, Southampton, United Kingdom
| | - Edith E Schermer
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Alba Torrents de la Peña
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ilja Bontjer
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Stephanie Gumbs
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Natalia de Val
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick National Laboratory, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | | | - Max Crispin
- School of Biological Science, University of Southampton, Southampton, United Kingdom
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
72
|
Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, Zhang J, Weng T, Zhang Z, Wu Z, Cheng L, Shi D, Lu X, Lei J, Crispin M, Shi Y, Li L, Li S. Molecular Architecture of the SARS-CoV-2 Virus. Cell 2020; 183:730-738.e13. [PMID: 32979942 PMCID: PMC7474903 DOI: 10.1016/j.cell.2020.09.018] [Citation(s) in RCA: 742] [Impact Index Per Article: 148.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023]
Abstract
SARS-CoV-2 is an enveloped virus responsible for the COVID-19 pandemic. Despite recent advances in the structural elucidation of SARS-CoV-2 proteins, the detailed architecture of the intact virus remains to be unveiled. Here we report the molecular assembly of the authentic SARS-CoV-2 virus using cryoelectron tomography (cryo-ET) and subtomogram averaging (STA). Native structures of the S proteins in pre- and postfusion conformations were determined to average resolutions of 8.7-11 Å. Compositions of the N-linked glycans from the native spikes were analyzed by mass spectrometry, which revealed overall processing states of the native glycans highly similar to that of the recombinant glycoprotein glycans. The native conformation of the ribonucleoproteins (RNPs) and their higher-order assemblies were revealed. Overall, these characterizations revealed the architecture of the SARS-CoV-2 virus in exceptional detail and shed light on how the virus packs its ∼30-kb-long single-segmented RNA in the ∼80-nm-diameter lumen.
Collapse
Affiliation(s)
- Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yutong Song
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing 100084, China
| | - Yong Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing 100084, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Jialu Xu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chujie Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jiaxing Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing 100084, China
| | - Tianhao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Zheyuan Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing 100084, China
| | - Zhigang Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Jianlin Lei
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing 100084, China
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yigong Shi
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China; National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China.
| | - Sai Li
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
73
|
Das S, Kumar R, Ahmed S, Parray HA, Samal S. Efficiently cleaved HIV-1 envelopes: can they be important for vaccine immunogen development? Ther Adv Vaccines Immunother 2020; 8:2515135520957763. [PMID: 33103053 PMCID: PMC7549152 DOI: 10.1177/2515135520957763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/17/2020] [Indexed: 12/31/2022] Open
Abstract
The enormous diversity of HIV-1 is a significant impediment in selecting envelopes (Envs) that can be suitable for designing vaccine immunogens. While tremendous progress has been made in developing soluble, trimeric, native-like Env proteins, those that have elicited neutralizing antibodies (Abs) in animal models are relatively few. A strategy of selecting naturally occurring Envs suitable for immunogen design by studying the correlation between efficient cleavage on the cell surface and their selective binding to broadly neutralizing Abs (bNAbs) and not to non-neutralizing Abs (non-NAbs), properties essential in immunogens, may be useful. Here we discuss some of the challenges of developing an efficacious HIV-1 vaccine and the work done in generating soluble immunogens. We also discuss the study of naturally occurring, membrane-bound, efficiently cleaved (naturally more sensitive to furin) Envs and how they may positively add to the repertoire of HIV-1 Envs that can be used for vaccine immunogen design. However, even with such Envs, the challenges of developing well-folded, native-like trimers as soluble proteins or using other immunogen strategies such as virus-like particles with desirable antigenic properties remain, and are formidable. In spite of the progress that has been made in the HIV-1 vaccine field, an immunogen that elicits neutralizing Abs with significant breadth and potency in vaccines has still not been developed. Efficiently cleaved Envs may increase the number of available Envs suitable for immunogen design and should be studied further.
Collapse
Affiliation(s)
- Supratik Das
- THSTI-IAVI HIV Vaccine Design Program,
Translational Health Science and Technology Institute, NCR Biotech Science
Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, PO Box #04, Faridabad,
Haryana 121001, India
| | - Rajesh Kumar
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shubbir Ahmed
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Hilal Ahmad Parray
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sweety Samal
- Translational Health Science and Technology
Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
74
|
Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host Microbe 2020; 28:586-601.e6. [PMID: 32841605 PMCID: PMC7443692 DOI: 10.1016/j.chom.2020.08.004] [Citation(s) in RCA: 323] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 betacoronavirus uses its highly glycosylated trimeric Spike protein to bind to the cell surface receptor angiotensin converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatics analyses of natural variants and with existing 3D structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein both alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation. Taken together, these data can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.
Collapse
Affiliation(s)
- Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Jeremy L Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Oliver C Grant
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Katelyn E Rosenbalm
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Benjamin P Kellman
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability at UC San Diego, La Jolla, CA 92093, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Bing Chen
- Division of Molecular Medicine, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
75
|
Kumar S, Ju B, Shapero B, Lin X, Ren L, Zhang L, Li D, Zhou Z, Feng Y, Sou C, Mann CJ, Hao Y, Sarkar A, Hou J, Nunnally C, Hong K, Wang S, Ge X, Su B, Landais E, Sok D, Zwick MB, He L, Zhu J, Wilson IA, Shao Y. A V H1-69 antibody lineage from an infected Chinese donor potently neutralizes HIV-1 by targeting the V3 glycan supersite. SCIENCE ADVANCES 2020; 6:eabb1328. [PMID: 32938661 PMCID: PMC7494343 DOI: 10.1126/sciadv.abb1328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/31/2020] [Indexed: 05/03/2023]
Abstract
An oligomannose patch around the V3 base of HIV-1 envelope glycoprotein (Env) is recognized by multiple classes of broadly neutralizing antibodies (bNAbs). Here, we investigated the bNAb response to the V3 glycan supersite in an HIV-1-infected Chinese donor by Env-specific single B cell sorting, structural and functional studies, and longitudinal analysis of antibody and virus repertoires. Monoclonal antibodies 438-B11 and 438-D5 were isolated that potently neutralize HIV-1 with moderate breadth, are encoded by the VH1-69 germline gene, and have a disulfide-linked long HCDR3 loop. Crystal structures of Env-bound and unbound antibodies revealed heavy chain-mediated recognition of the glycan supersite with a unique angle of approach and a critical role of the intra-HCDR3 disulfide. The mechanism of viral escape was examined via single-genome amplification/sequencing and glycan mutations around the N332 supersite. Our findings further emphasize the V3 glycan supersite as a prominent target for Env-based vaccine design.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bin Ju
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
| | - Benjamin Shapero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohe Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Lei Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Zehua Zhou
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Colin J Mann
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yanling Hao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Anita Sarkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiali Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Christian Nunnally
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kunxue Hong
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Shuo Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Xiangyang Ge
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Bin Su
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui Province 230601, China
| | - Elise Landais
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Devin Sok
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China.
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
76
|
Seabright GE, Cottrell CA, van Gils MJ, D'addabbo A, Harvey DJ, Behrens AJ, Allen JD, Watanabe Y, Scaringi N, Polveroni TM, Maker A, Vasiljevic S, de Val N, Sanders RW, Ward AB, Crispin M. Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions. Structure 2020; 28:897-909.e6. [PMID: 32433992 PMCID: PMC7416112 DOI: 10.1016/j.str.2020.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/27/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
Numerous broadly neutralizing antibodies (bnAbs) have been identified that target the glycans of the HIV-1 envelope spike. Neutralization breadth is notable given that glycan processing can be substantially influenced by the presence or absence of neighboring glycans. Here, using a stabilized recombinant envelope trimer, we investigate the degree to which mutations in the glycan network surrounding an epitope impact the fine glycan processing of antibody targets. Using cryo-electron microscopy and site-specific glycan analysis, we reveal the importance of glycans in the formation of the 2G12 bnAb epitope and show that the epitope is only subtly impacted by variations in the glycan network. In contrast, we show that the PG9 and PG16 glycan-based epitopes at the trimer apex are dependent on the presence of the highly conserved surrounding glycans. Glycan networks underpin the conservation of bnAb epitopes and are an important parameter in immunogen design.
Collapse
Affiliation(s)
- Gemma E Seabright
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| | - Alessio D'addabbo
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - David J Harvey
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7FZ, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Nicole Scaringi
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Thomas M Polveroni
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Allison Maker
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Natalia de Val
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21701, USA; Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, AMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
77
|
Antanasijevic A, Ueda G, Brouwer PJM, Copps J, Huang D, Allen JD, Cottrell CA, Yasmeen A, Sewall LM, Bontjer I, Ketas TJ, Turner HL, Berndsen ZT, Montefiori DC, Klasse PJ, Crispin M, Nemazee D, Moore JP, Sanders RW, King NP, Baker D, Ward AB. Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathog 2020; 16:e1008665. [PMID: 32780770 PMCID: PMC7418955 DOI: 10.1371/journal.ppat.1008665] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Two-component, self-assembling nanoparticles represent a versatile platform for multivalent presentation of viral antigens. Computational design of protein nanoparticles with differing sizes and geometries enables combination with antigens of choice to test novel multimerization concepts in immunization strategies where the goal is to improve the induction and maturation of neutralizing antibody lineages. Here, we describe detailed antigenic, structural, and functional characterization of computationally designed tetrahedral, octahedral, and icosahedral nanoparticle immunogens displaying trimeric HIV envelope glycoprotein (Env) ectodomains. Env trimers, based on subtype A (BG505) or consensus group M (ConM) sequences and engineered with SOSIP stabilizing mutations, were fused to an underlying trimeric building block of each nanoparticle. Initial screening yielded one icosahedral and two tetrahedral nanoparticle candidates, capable of presenting twenty or four copies of the Env trimer. A number of analyses, including detailed structural characterization by cryo-EM, demonstrated that the nanoparticle immunogens possessed the intended structural and antigenic properties. When the immunogenicity of ConM-SOSIP trimers presented on a two-component tetrahedral nanoparticle or as soluble proteins were compared in rabbits, the two immunogens elicited similar serum antibody binding titers against the trimer component. Neutralizing antibody titers were slightly elevated in the animals given the nanoparticle immunogen and were initially more focused to the trimer apex. Altogether, our findings indicate that tetrahedral nanoparticles can be successfully applied for presentation of HIV Env trimer immunogens; however, the optimal implementation to different immunization strategies remains to be determined.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| | - George Ueda
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | | | - Jeffrey Copps
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| | - Deli Huang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Christopher A. Cottrell
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| | - Anila Yasmeen
- Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Leigh M. Sewall
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
| | - Ilja Bontjer
- Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Thomas J. Ketas
- Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Hannah L. Turner
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| | - Zachary T. Berndsen
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Per Johan Klasse
- Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - David Nemazee
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, United States of America
| | - John P. Moore
- Weill Cornell Medicine, Cornell University, New York, New York, United States of America
| | - Rogier W. Sanders
- Academic Medical Center (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - Neil P. King
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David Baker
- Institute for Protein Design, Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Andrew B. Ward
- Department of Integrative, Structural and Computational Biology, Scripps Research, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research, La Jolla, California, United States of America
| |
Collapse
|
78
|
Cottrell CA, van Schooten J, Bowman CA, Yuan M, Oyen D, Shin M, Morpurgo R, van der Woude P, van Breemen M, Torres JL, Patel R, Gross J, Sewall LM, Copps J, Ozorowski G, Nogal B, Sok D, Rakasz EG, Labranche C, Vigdorovich V, Christley S, Carnathan DG, Sather DN, Montefiori D, Silvestri G, Burton DR, Moore JP, Wilson IA, Sanders RW, Ward AB, van Gils MJ. Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathog 2020; 16:e1008753. [PMID: 32866207 PMCID: PMC7485981 DOI: 10.1371/journal.ppat.1008753] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/11/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022] Open
Abstract
The induction of broad and potent immunity by vaccines is the key focus of research efforts aimed at protecting against HIV-1 infection. Soluble native-like HIV-1 envelope glycoproteins have shown promise as vaccine candidates as they can induce potent autologous neutralizing responses in rabbits and non-human primates. In this study, monoclonal antibodies were isolated and characterized from rhesus macaques immunized with the BG505 SOSIP.664 trimer to better understand vaccine-induced antibody responses. Our studies reveal a diverse landscape of antibodies recognizing immunodominant strain-specific epitopes and non-neutralizing neo-epitopes. Additionally, we isolated a subset of mAbs against an epitope cluster at the gp120-gp41 interface that recognize the highly conserved fusion peptide and the glycan at position 88 and have characteristics akin to several human-derived broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
| | - Jelle van Schooten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charles A. Bowman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - David Oyen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Mia Shin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Robert Morpurgo
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patricia van der Woude
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëlle van Breemen
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Raj Patel
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Justin Gross
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Leigh M. Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
| | - Bartek Nogal
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
| | - Devin Sok
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Celia Labranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Scott Christley
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Diane G. Carnathan
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - D. Noah Sather
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guido Silvestri
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Dennis R. Burton
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, California, United States of America
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
79
|
Zhao P, Praissman JL, Grant OC, Cai Y, Xiao T, Rosenbalm KE, Aoki K, Kellman BP, Bridger R, Barouch DH, Brindley MA, Lewis NE, Tiemeyer M, Chen B, Woods RJ, Wells L. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.25.172403. [PMID: 32743578 PMCID: PMC7386495 DOI: 10.1101/2020.06.25.172403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current COVID-19 pandemic is caused by the SARS-CoV-2 betacoronavirus, which utilizes its highly glycosylated trimeric Spike protein to bind to the cell surface receptor ACE2 glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatic analyses of natural variants and with existing 3D-structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation that, taken together, can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.
Collapse
Affiliation(s)
- Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Jeremy L. Praissman
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Oliver C. Grant
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Yongfei Cai
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Tianshu Xiao
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Katelyn E. Rosenbalm
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Benjamin P. Kellman
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California, 92093, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California, 92093, USA
- Novo Nordisk Foundation Center for Biosustainability at UC San Diego, La Jolla, California, 92093, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Bing Chen
- Division of Molecular Medicine, Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of Georgia, Athens, Georgia, 30602, USA
| |
Collapse
|
80
|
Liu YM, Shahed-Al-Mahmud M, Chen X, Chen TH, Liao KS, Lo JM, Wu YM, Ho MC, Wu CY, Wong CH, Jan JT, Ma C. A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. Cell Rep 2020; 32:108016. [PMID: 32755598 PMCID: PMC7380208 DOI: 10.1016/j.celrep.2020.108016] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023] Open
Abstract
The influenza virus hemagglutinin (HA) and coronavirus spike (S) protein mediate virus entry. HA and S proteins are heavily glycosylated, making them potential targets for carbohydrate binding agents such as lectins. Here, we show that the lectin FRIL, isolated from hyacinth beans (Lablab purpureus), has anti-influenza and anti-SARS-CoV-2 activity. FRIL can neutralize 11 representative human and avian influenza strains at low nanomolar concentrations, and intranasal administration of FRIL is protective against lethal H1N1 infection in mice. FRIL binds preferentially to complex-type N-glycans and neutralizes viruses that possess complex-type N-glycans on their envelopes. As a homotetramer, FRIL is capable of aggregating influenza particles through multivalent binding and trapping influenza virions in cytoplasmic late endosomes, preventing their nuclear entry. Remarkably, FRIL also effectively neutralizes SARS-CoV-2, preventing viral protein production and cytopathic effect in host cells. These findings suggest a potential application of FRIL for the prevention and/or treatment of influenza and COVID-19. FRIL is a plant lectin with potent anti-influenza and anti-SARS-CoV-2 activity FRIL preferentially binds to complex-type N-glycans on viral glycoproteins FRIL inhibits influenza virus entry by sequestering virions in late endosomes Intranasal administration of FRIL protects against lethal H1N1 challenge in mice
Collapse
Affiliation(s)
- Yo-Min Liu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Microbiology and Immunology, National Yang Ming University, Taipei 112, Taiwan
| | | | - Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ting-Hua Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jennifer M Lo
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Min Wu
- Institute of Biological Chemistry and Cryo-EM Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry and Cryo-EM Center, Academia Sinica, Taipei 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
81
|
Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020; 369:330-333. [PMID: 32366695 PMCID: PMC7199903 DOI: 10.1126/science.abb9983] [Citation(s) in RCA: 1154] [Impact Index Per Article: 230.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023]
Abstract
The emergence of the betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), represents a considerable threat to global human health. Vaccine development is focused on the principal target of the humoral immune response, the spike (S) glycoprotein, which mediates cell entry and membrane fusion. The SARS-CoV-2 S gene encodes 22 N-linked glycan sequons per protomer, which likely play a role in protein folding and immune evasion. Here, using a site-specific mass spectrometric approach, we reveal the glycan structures on a recombinant SARS-CoV-2 S immunogen. This analysis enables mapping of the glycan-processing states across the trimeric viral spike. We show how SARS-CoV-2 S glycans differ from typical host glycan processing, which may have implications in viral pathobiology and vaccine design.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
82
|
Cipollo JF, Parsons LM. Glycomics and glycoproteomics of viruses: Mass spectrometry applications and insights toward structure-function relationships. MASS SPECTROMETRY REVIEWS 2020; 39:371-409. [PMID: 32350911 PMCID: PMC7318305 DOI: 10.1002/mas.21629] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 05/21/2023]
Abstract
The advancement of viral glycomics has paralleled that of the mass spectrometry glycomics toolbox. In some regard the glycoproteins studied have provided the impetus for this advancement. Viral proteins are often highly glycosylated, especially those targeted by the host immune system. Glycosylation tends to be dynamic over time as viruses propagate in host populations leading to increased number of and/or "movement" of glycosylation sites in response to the immune system and other pressures. This relationship can lead to highly glycosylated, difficult to analyze glycoproteins that challenge the capabilities of modern mass spectrometry. In this review, we briefly discuss five general areas where glycosylation is important in the viral niche and how mass spectrometry has been used to reveal key information regarding structure-function relationships between viral glycoproteins and host cells. We describe the recent past and current glycomics toolbox used in these analyses and give examples of how the requirement to analyze these complex glycoproteins has provided the incentive for some advances seen in glycomics mass spectrometry. A general overview of viral glycomics, special cases, mass spectrometry methods and work-flows, informatics and complementary chemical techniques currently used are discussed. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- John F. Cipollo
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| | - Lisa M. Parsons
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| |
Collapse
|
83
|
Karch CP, Paquin-Proulx D, Eller MA, Matyas GR, Burkhard P, Beck Z. Impact of the expression system on the immune responses to self-assembling protein nanoparticles (SAPNs) displaying HIV-1 V1V2 loop. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102255. [PMID: 32615339 DOI: 10.1016/j.nano.2020.102255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
The V1V2 loop of the Env protein is a major target for HIV-1 vaccine development because in multiple studies antibodies to this region correlated with protection. Although SAPNs expressed in E. coli elicited anti-V1V2 antibodies, the Env protein is heavily glycosylated. In this study the technology has been adapted for expression in mammalian cells. SAPNs containing a V1V2 loop from a B-subtype transmitter/founder virus were expressed in E. coli, ExpiCHO, and Expi293 cells. Independent of the expression host, particles were well-formed. All SAPNs raised high titers of V1V2-specific antibodies, however, SAPNE.coli induced a mainly anti-V1 response, while SAPNExpiCHO and SAPNExpi293 induced a predominantly anti-V2 response. In an ADCP assay, sera from animals immunized with the SAPNExpiCHO or SAPNExpi293 induced a significant increase in phagocytic activity. This novel way of producing SAPNs displaying glycosylated epitopes could increase the antibody titer, functional activity, and shift the immune response towards the desired pathway.
Collapse
Affiliation(s)
- Christopher P Karch
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD.
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD.
| | - Michael A Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD.
| | - Gary R Matyas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD.
| | | | - Zoltan Beck
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD.
| |
Collapse
|
84
|
González-Feliciano JA, Akamine P, Capó-Vélez CM, Delgado-Vélez M, Dussupt V, Krebs SJ, Wojna V, Polonis VR, Baerga-Ortiz A, Lasalde-Dominicci JA. A recombinant gp145 Env glycoprotein from HIV-1 expressed in two different cell lines: Effects on glycosylation and antigenicity. PLoS One 2020; 15:e0231679. [PMID: 32559193 PMCID: PMC7304579 DOI: 10.1371/journal.pone.0231679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022] Open
Abstract
The envelope glycoprotein (Env) of the human immunodeficiency virus (HIV), has been the primary target for the development of a protective vaccine against infection. The extensive N-linked glycosylation on Env is an important consideration as it may affect efficacy, stability, and expression yields. The expression host has been shown to influence the extent and type of glycosylation that decorates the protein target. Here, we report the glycosylation profile of the candidate subtype C immunogen CO6980v0c22 gp145, which is currently in Phase I clinical trials, produced in two different host cells: CHO-K1 and Expi293F. The amino acid sequence for both glycoproteins was confirmed to be identical by peptide mass fingerprinting. However, the isoelectric point of the proteins differed; 4.5–5.5 and 6.0–7.0 for gp145 produced in CHO-K1 and Expi293F, respectively. These differences in pI were eliminated by enzymatic treatment with sialidase, indicating a large difference in the incorporation of sialic acid between hosts. This dramatic difference in the number of sialylated glycans between hosts was confirmed by analysis of PNGase F-released glycans using MALDI-ToF MS. These differences in glycosylation, however, did not greatly translate into differences in antibody recognition. Biosensor assays showed that gp145 produced in CHO-K1 had similar affinity toward the broadly neutralizing antibodies, 2G12 and PG16, as the gp145 produced in Expi293F. Additionally, both immunogens showed the same reactivity against plasma of HIV-infected patients. Taken together, these results support the notion that there are sizeable differences in the glycosylation of Env depending on the expression host. How these differences translate to vaccine efficacy remains unknown.
Collapse
Affiliation(s)
| | - Pearl Akamine
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Coral M. Capó-Vélez
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Manuel Delgado-Vélez
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Valerie Wojna
- Division of Neurology, Internal Medicine Department and NeuroHIV Research Program, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Victoria R. Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Abel Baerga-Ortiz
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
- * E-mail: (ABO); (JALD)
| | - José A. Lasalde-Dominicci
- Molecular Sciences Research Center Inc., University of Puerto Rico, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
- * E-mail: (ABO); (JALD)
| |
Collapse
|
85
|
Ohyama Y, Nakajima K, Renfrow MB, Novak J, Takahashi K. Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics 2020; 17:275-296. [PMID: 32406805 DOI: 10.1080/14789450.2020.1769479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Protein glycosylation influences characteristics such as folding, stability, protein interactions, and solubility. Therefore, glycan moieties of therapeutic proteins and proteins that are likely associated with disease pathogenesis should be analyzed in-depth, including glycan heterogeneity and modification sites. Recent advances in analytical methods and instrumentation have enabled comprehensive characterization of highly complex glycosylated proteins. AREA COVERED The following aspects should be considered when analyzing glycosylated proteins: sample preparation, chromatographic separation, mass spectrometry (MS) and fragmentation methods, and bioinformatics, such as software solutions for data analyses. Notably, analysis of glycoproteins with heavily sialylated glycans or multiple glycosylation sites requires special considerations. Here, we discuss recent methodological advances in MS that provide detailed characterization of heterogeneous glycoproteins. EXPERT OPINION As characterization of complex glycosylated proteins is still analytically challenging, the function or pathophysiological significance of these proteins is not fully understood. To reproducibly produce desired forms of therapeutic glycoproteins or to fully elucidate disease-specific patterns of protein glycosylation, a highly reproducible and robust analytical platform(s) should be established. In addition to advances in MS instrumentation, optimization of analytical and bioinformatics methods and utilization of glycoprotein/glycopeptide standards is desirable. Ultimately, we envision that an automated high-throughput MS analysis will provide additional power to clinical studies and precision medicine.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University , Toyoake, Japan
| | - Matthew B Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Kazuo Takahashi
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan.,Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
86
|
Watanabe Y, Berndsen ZT, Raghwani J, Seabright GE, Allen JD, Pybus OG, McLellan JS, Wilson IA, Bowden TA, Ward AB, Crispin M. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nat Commun 2020; 11:2688. [PMID: 32461612 PMCID: PMC7253482 DOI: 10.1038/s41467-020-16567-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (CoVs) are zoonotic pathogens with high fatality rates and pandemic potential. Vaccine development focuses on the principal target of the neutralizing humoral immune response, the spike (S) glycoprotein. Coronavirus S proteins are extensively glycosylated, encoding around 66-87 N-linked glycosylation sites per trimeric spike. Here, we reveal a specific area of high glycan density on MERS S that results in the formation of oligomannose-type glycan clusters, which were absent on SARS and HKU1 CoVs. We provide a comparison of the global glycan density of coronavirus spikes with other viral proteins including HIV-1 envelope, Lassa virus glycoprotein complex, and influenza hemagglutinin, where glycosylation plays a known role in shielding immunogenic epitopes. Overall, our data reveal how organisation of glycosylation across class I viral fusion proteins influence not only individual glycan compositions but also the immunological pressure across the protein surface.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Zachary T Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jayna Raghwani
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF, UK
| | - Gemma E Seabright
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
87
|
Hariharan V, Kane RS. Glycosylation as a tool for rational vaccine design. Biotechnol Bioeng 2020; 117:2556-2570. [PMID: 32330286 DOI: 10.1002/bit.27361] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/01/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
The discovery of broadly neutralizing antibodies that can neutralize multiple strains or subtypes of a pathogen has renewed interest in the development of broadly protective vaccines. To that end, there has been an interest in designing immunofocusing strategies to direct the immune response to specific, conserved regions on antigenic proteins. Modulation of glycosylation is one such immunofocusing strategy; extensive glycosylation is often exploited by pathogens for immune evasion. Masking epitopes on protein immunogens with "self" glycans can also shield the underlying protein surface from humoral immune surveillance. We review recent advances in applying glycosylation as an immunofocusing tool. We also highlight recent interesting work in the HIV-1 field involving the identification and elicitation of broadly neutralizing antibodies that incorporate glycans into their binding epitopes.
Collapse
Affiliation(s)
- Vivek Hariharan
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
88
|
Stanfield RL, Berndsen ZT, Huang R, Sok D, Warner G, Torres JL, Burton DR, Ward AB, Wilson IA, Smider VV. Structural basis of broad HIV neutralization by a vaccine-induced cow antibody. SCIENCE ADVANCES 2020; 6:eaba0468. [PMID: 32518821 PMCID: PMC7253169 DOI: 10.1126/sciadv.aba0468] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 05/02/2023]
Abstract
Potent broadly neutralizing antibodies (bnAbs) to HIV have been very challenging to elicit by vaccination in wild-type animals. Here, by x-ray crystallography, cryo-electron microscopy, and site-directed mutagenesis, we structurally and functionally elucidate the mode of binding of a potent bnAb (NC-Cow1) elicited in cows by immunization with the HIV envelope (Env) trimer BG505 SOSIP.664. The exceptionally long (60 residues) third complementarity-determining region of the heavy chain (CDR H3) of NC-Cow1 forms a mini domain (knob) on an extended stalk that navigates through the dense glycan shield on Env to target a small footprint on the gp120 CD4 receptor binding site with no contact of the other CDRs to the rest of the Env trimer. These findings illustrate, in molecular detail, how an unusual vaccine-induced cow bnAb to HIV Env can neutralize with high potency and breadth.
Collapse
Affiliation(s)
- Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zachary T. Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ruiqi Huang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Applied Biomedical Science Institute, San Diego, CA 92127, USA
- Taurus Biosciences LLC, San Diego, CA 92127, USA
| | - Devin Sok
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabrielle Warner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Applied Biomedical Science Institute, San Diego, CA 92127, USA
- Taurus Biosciences LLC, San Diego, CA 92127, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02114, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vaughn V. Smider
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Applied Biomedical Science Institute, San Diego, CA 92127, USA
- Taurus Biosciences LLC, San Diego, CA 92127, USA
| |
Collapse
|
89
|
Moyo T, Kitchin D, Moore PL. Targeting the N332-supersite of the HIV-1 envelope for vaccine design. Expert Opin Ther Targets 2020; 24:499-509. [PMID: 32340497 DOI: 10.1080/14728222.2020.1752183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Broadly neutralizing antibodies (bNAbs) that are able to target diverse global viruses are widely believed to be crucial for an HIV-1 vaccine. Several conserved targets recognized by these antibodies have been identified on the HIV-1 envelope glycoprotein. One such target that shows particular promise for vaccination is the N332-supersite.Areas covered: This review describes the potential of the N332-supersite epitope as an immunogen design platform. We discuss the structure of the epitope and the bNAbs that target it, emphasizing their diverse modes of binding. Furthermore, the successes and limitations of recent N332-supersite immunization studies are discussed.Expert opinion: During HIV-1 infection, some of the broadest and most potent bNAbs target the N332-supersite. Furthermore, some of these antibodies require less affinity maturation than the high levels typical of many bNAbs, making these potentially more achievable vaccine targets. In addition, bNAbs bind this epitope with multiple angles of approach and glycan dependencies, perhaps increasing the probability of eliciting such responses by vaccination. Animal studies have shown that N332-supersite bNAb precursors can be activated by novel immunogens. While follow-up studies must establish whether boosting strategies can drive the maturation of bNAbs from these precursors, the development of targeted N332-supersite immunogens expands our arsenal of potential HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Thandeka Moyo
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dale Kitchin
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
90
|
Sellaththurai S, Shanaka KASN, Liyanage DS, Yang H, Priyathilaka TT, Lee J. Molecular and functional insights into a novel teleost malectin from big-belly seahorse Hippocampus abdominalis. FISH & SHELLFISH IMMUNOLOGY 2020; 99:483-494. [PMID: 32087279 PMCID: PMC7129624 DOI: 10.1016/j.fsi.2020.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 05/05/2023]
Abstract
Malectin is a carbohydrate-binding lectin protein found in the endoplasmic reticulum (ER). It selectivity binds to Glc2-N-glycan and is involved in a glycoprotein quality control mechanism. Even though malectin may play a role in immunity, its role in innate immunity is not fully known. In the present study, we identified and characterized the malectin gene from Hippocampus abdominalis (HaMLEC). We analyzed sequence features, spatial expression levels, temporal expression profiles upon immune responses, bacterial and carbohydrate binding abilities and anti-viral properties to investigate the potential role of HaMLEC in innate immunity. The molecular weight and isoelectric point (pI) were estimated to be 31.99 kDa and 5.17, respectively. The N-terminal signal peptide, malectin superfamily domain and C-terminal transmembrane region were identified from the amino acid sequence of HaMLEC. The close evolutionary relationship of HaMLEC with other teleosts was identified by phylogenetic analysis. According to quantitative PCR (qPCR) results, HaMLEC expression was observed in all the examined tissues and high expression was observed in the ovary and brain, compared to other tested tissues. Temporal expression of HaMLEC in liver and blood tissues were significant modulated upon exposure to immunogens Edwardasiella tarda, Streptococcus iniae, polyinosinic:polycytidylic and lipopolysaccharide. The presence of carbohydrate binding modules (CBMs) of bacterial glycosyl hydrolases were functionally confirmed by a bacterial binding assay. Anti-viral activity significantly reduced viral hemorrhagic septicemia virus (VHSV) replication in cells overexpressing HaMLEC. The observed results suggested that HaMLEC may have a significant role in innate immunity in Hippocampus abdominalis.
Collapse
Affiliation(s)
- Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
91
|
Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific analysis of the SARS-CoV-2 glycan shield. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.26.010322. [PMID: 32511336 PMCID: PMC7239077 DOI: 10.1101/2020.03.26.010322] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The emergence of the betacoronavirus, SARS-CoV-2 that causes COVID-19, represents a significant threat to global human health. Vaccine development is focused on the principal target of the humoral immune response, the spike (S) glycoprotein, that mediates cell entry and membrane fusion. SARS-CoV-2 S gene encodes 22 N-linked glycan sequons per protomer, which likely play a role in immune evasion and occluding immunogenic protein epitopes. Here, using a site-specific mass spectrometric approach, we reveal the glycan structures on a recombinant SARS-CoV-2 S immunogen. This analysis enables mapping of the glycan-processing states across the trimeric viral spike. We show how SARS-CoV-2 S glycans differ from typical host glycan processing, which may have implications in viral pathobiology and vaccine design.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Joel D. Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
92
|
Wang S, Voronin Y, Zhao P, Ishihara M, Mehta N, Porterfield M, Chen Y, Bartley C, Hu G, Han D, Wells L, Tiemeyer M, Lu S. Glycan Profiles of gp120 Protein Vaccines from Four Major HIV-1 Subtypes Produced from Different Host Cell Lines under Non-GMP or GMP Conditions. J Virol 2020; 94:e01968-19. [PMID: 31941770 PMCID: PMC7081908 DOI: 10.1128/jvi.01968-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Envelope (Env) glycoprotein of human immunodeficiency virus type 1 (HIV-1) is an important target for the development of an HIV vaccine. Extensive glycosylation of Env is an important feature that both protects the virus from antibody responses and serves as a target for some highly potent broadly neutralizing antibodies. Therefore, analysis of glycans on recombinant Env proteins is highly significant. Here, we present glycosylation profiles of recombinant gp120 proteins from four major clades of HIV-1 (A, B, C, and AE), produced either as research-grade material in 293 and CHO cells or as two independent lots of clinical material under good manufacturing practice (GMP) conditions. Almost all potential N-linked glycosylation sites were at least partially occupied in all proteins. The occupancy rates were largely consistent among proteins produced under different conditions, although a few sites showed substantial variability even between the two GMP lots. Our data confirmed previous studies in the field, showing an abundance of oligomannose on Env protein, with 40 to 50% of glycans being Man5 to Man9 on all four proteins under all production conditions. Overall, the differences in occupancy and glycan forms among different Env subtypes produced under different conditions were less dramatic than anticipated, and antigenicity analysis with a panel of six monoclonal antibodies, including antibodies that recognize glycan forms, showed that all four gp120s maintained their antibody-binding profiles. Such findings have major implications for the final production of a clinical HIV vaccine with Env glycoprotein components.IMPORTANCE HIV-1 Env protein is a major target for the development of an HIV-1 vaccine. Env is covered with a large number of sugar-based glycan forms; about 50% of the Env molecular weight is composed of glycans. Glycan analysis of recombinant Env is important for understanding its roles in viral pathogenesis and immune responses. The current report presents the first extensive comparison of glycosylation patterns of recombinant gp120 proteins from four major clades of HIV-1 produced in two different cell lines, grown either under laboratory conditions or at 50-liter GMP scale in different lots. Information learned in this study is valuable for the further design and production of HIV-1 Env proteins as the critical components of HIV-1 vaccine formulations.
Collapse
Affiliation(s)
- Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Worcester HIV Vaccine, Inc., Worcester, Massachusetts, USA
| | - Yegor Voronin
- Worcester HIV Vaccine, Inc., Worcester, Massachusetts, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Nickita Mehta
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Mindy Porterfield
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Yuxin Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Guangnan Hu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dong Han
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
93
|
Saunders KO, Wiehe K, Tian M, Acharya P, Bradley T, Alam SM, Go EP, Scearce R, Sutherland L, Henderson R, Hsu AL, Borgnia MJ, Chen H, Lu X, Wu NR, Watts B, Jiang C, Easterhoff D, Cheng HL, McGovern K, Waddicor P, Chapdelaine-Williams A, Eaton A, Zhang J, Rountree W, Verkoczy L, Tomai M, Lewis MG, Desaire HR, Edwards RJ, Cain DW, Bonsignori M, Montefiori D, Alt FW, Haynes BF. Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science 2019; 366:eaay7199. [PMID: 31806786 PMCID: PMC7168753 DOI: 10.1126/science.aay7199] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION A major goal of HIV-1 vaccine development is the design of immunogens that induce broadly neutralizing antibodies (bnAbs). However, vaccination of humans has not resulted in the induction of affinity-matured and potent HIV-1 bnAbs. To devise effective vaccine strategies, we previously determined the maturation pathway of select HIV-1 bnAbs from acute infection through neutralizing antibody development. During their evolution, bnAbs acquire an abundance of improbable amino acid substitutions as a result of nucleotide mutations at variable region sequences rarely targeted by activation-induced cytidine deaminase, the enzyme responsible for antibody mutation. A subset of improbable mutations is essential for broad neutralization activity, and their acquisition represents a key roadblock to bnAb development. RATIONALE Current bnAb lineage-based vaccine strategies can initiate bnAb lineage development in animal models but have not specifically elicited the improbable mutations required for neutralization breadth. Induction of bnAbs requires vaccine strategies that specifically engage bnAb precursors and subsequently select for improbable mutations required for broadly neutralizing activity. We hypothesized that vaccination with immunogens that bind with moderate to high affinity to bnAb B cell precursors, and with higher affinity to precursors that have acquired improbable mutations, could initiate bnAb B cell lineages and select for key improbable mutations required for bnAb development. RESULTS We elicited serum neutralizing HIV-1 antibodies in human bnAb precursor knock-in mice and wild-type macaques vaccinated with immunogens designed to select for improbable mutations. We designed two HIV-1 envelope immunogens that bound precursor B cells of either a CD4 binding site or V3-glycan bnAb lineage. In vitro, these immunogens bound more strongly to bnAb precursors once the precursor acquired the desired improbable mutations. Vaccination of macaques with the CD4 binding site–targeting immunogen induced CD4 binding site serum neutralizing antibodies. Antibody sequences elicited in human bnAb precursor knock-in mice encoded functional improbable mutations critical for bnAb development. In bnAb precursor knock-in mice, we isolated a vaccine-elicited monoclonal antibody bearing functional improbable mutations that was capable of neutralizing multiple HIV-1 global isolates. Structures of a bnAb precursor, a bnAb, and the vaccine-elicited antibody revealed the precise roles that acquired improbable mutations played in recognizing the HIV-1 envelope. Thus, our immunogens elicited antibody responses in macaques and knock-in mice that exhibited the mutational patterns, structural characteristics, or neutralization profiles of nascent broadly neutralizing antibodies. CONCLUSION Our study represents a proof of concept for targeted selection of improbable mutations to guide antibody affinity maturation. Moreover, this study demonstrates a rational strategy for sequential immunogen design to circumvent the difficult roadblocks in HIV-1 bnAb induction by vaccination. We show that immunogens should exhibit differences in affinity across antibody maturation stages where improbable mutations are necessary for the desired antibody function. This strategy of selection of specific antibody nucleotides by immunogen design can be applied to B cell lineages targeting other pathogens where guided affinity maturation is needed for a protective antibody response.
Collapse
Affiliation(s)
- Kevin O Saunders
- Human Vaccine Institute and Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin Wiehe
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ming Tian
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Priyamvada Acharya
- Human Vaccine Institute and Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Todd Bradley
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - S Munir Alam
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eden P Go
- Department of Chemistry, University of Kansas, Lawrence, KS 66049, USA
| | - Richard Scearce
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laura Sutherland
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rory Henderson
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Haiyan Chen
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaozhi Lu
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nelson R Wu
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Brian Watts
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chuancang Jiang
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Easterhoff
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hwei-Ling Cheng
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kelly McGovern
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Peyton Waddicor
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aimee Chapdelaine-Williams
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Eaton
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jinsong Zhang
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wes Rountree
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Laurent Verkoczy
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark Tomai
- Corporate Research Materials Lab, 3M Company, St. Paul, MN 55144, USA
| | | | - Heather R Desaire
- Department of Chemistry, University of Kansas, Lawrence, KS 66049, USA
| | - Robert J Edwards
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Derek W Cain
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mattia Bonsignori
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Montefiori
- Human Vaccine Institute and Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Frederick W Alt
- Howard Hughes Medical Institute, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Barton F Haynes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA.
- Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
94
|
del Moral-Sánchez I, Sliepen K. Strategies for inducing effective neutralizing antibody responses against HIV-1. Expert Rev Vaccines 2019; 18:1127-1143. [PMID: 31791150 PMCID: PMC6961309 DOI: 10.1080/14760584.2019.1690458] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Despite intensive research efforts, there is still no effective prophylactic vaccine available against HIV-1. Currently, substantial efforts are devoted to the development of vaccines aimed at inducing broadly neutralizing antibodies (bNAbs), which are capable of neutralizing most HIV-1 strains. All bNAbs target the HIV-1 envelope glycoprotein (Env), but Env immunizations usually only induce neutralizing antibodies (NAbs) against the sequence-matched virus and not against other strains.Areas covered: We describe the different strategies that have been explored to improve the breadth and potency of anti-HIV-1 NAb responses. The discussed strategies include the application of engineered Env immunogens, optimization of (bNAb) epitopes, different cocktail and sequential vaccination strategies, nanoparticles and nucleic acid-based vaccines.Expert opinion: A combination of the strategies described in this review and future approaches are probably needed to develop an effective HIV-1 vaccine that can induce broad, potent and long-lasting NAb responses.
Collapse
Affiliation(s)
- Iván del Moral-Sánchez
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands,CONTACT Kwinten Sliepen Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
95
|
Dubrovskaya V, Tran K, Ozorowski G, Guenaga J, Wilson R, Bale S, Cottrell CA, Turner HL, Seabright G, O'Dell S, Torres JL, Yang L, Feng Y, Leaman DP, Vázquez Bernat N, Liban T, Louder M, McKee K, Bailer RT, Movsesyan A, Doria-Rose NA, Pancera M, Karlsson Hedestam GB, Zwick MB, Crispin M, Mascola JR, Ward AB, Wyatt RT. Vaccination with Glycan-Modified HIV NFL Envelope Trimer-Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. Immunity 2019; 51:915-929.e7. [PMID: 31732167 PMCID: PMC6891888 DOI: 10.1016/j.immuni.2019.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 01/31/2023]
Abstract
The elicitation of broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) trimer remains a major vaccine challenge. Most cross-conserved protein determinants are occluded by self-N-glycan shielding, limiting B cell recognition of the underlying polypeptide surface. The exceptions to the contiguous glycan shield include the conserved receptor CD4 binding site (CD4bs) and glycoprotein (gp)41 elements proximal to the furin cleavage site. Accordingly, we performed heterologous trimer-liposome prime:boosting in rabbits to drive B cells specific for cross-conserved sites. To preferentially expose the CD4bs to B cells, we eliminated proximal N-glycans while maintaining the native-like state of the cleavage-independent NFL trimers, followed by gradual N-glycan restoration coupled with heterologous boosting. This approach successfully elicited CD4bs-directed, cross-neutralizing Abs, including one targeting a unique glycan-protein epitope and a bNAb (87% breadth) directed to the gp120:gp41 interface, both resolved by high-resolution cryoelectron microscopy. This study provides proof-of-principle immunogenicity toward eliciting bNAbs by vaccination.
Collapse
Affiliation(s)
- Viktoriya Dubrovskaya
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen Tran
- International AIDS Vaccine Initiative, Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Javier Guenaga
- International AIDS Vaccine Initiative, Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard Wilson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shridhar Bale
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gemma Seabright
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lifei Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Feng
- International AIDS Vaccine Initiative, Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel P Leaman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Néstor Vázquez Bernat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Tyler Liban
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mark Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Arlette Movsesyan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative, Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard T Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative, Neutralizing Antibody Center at The Scripps Research Institute, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
96
|
Jan M, Upadhyay C, Hioe CE. HIV-1 Envelope Glycan Composition as a Key Determinant of Efficient Virus Transmission via DC-SIGN and Resistance to Inhibitory Lectins. iScience 2019; 21:413-427. [PMID: 31704652 PMCID: PMC6889591 DOI: 10.1016/j.isci.2019.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 02/04/2023] Open
Abstract
The HIV-1 envelope (Env) surface is shrouded with an assortment of oligomannose-, hybrid-, and complex-type glycans that enable virus interaction with carbohydrate-recognizing lectins. This study examined the importance of glycan heterogeneity for HIV-1 transmission through the trans-infection pathway by the host mannose-binding lectin DC-SIGN. A diversity of glycan content was observed among HIV-1 strains and associated with varying degrees of trans-infection via DC-SIGN and sensitivity to trans-infection blockage by antiviral lectins. When Env glycans were modified to display only the oligomannose type, DC-SIGN-mediated virus capture was enhanced; however, virus trans-infection was diminished because of increased degradation, which was alleviated by incorporation with hybrid-type glycans. Amino acid changes in the Env signal peptide (SP) modulated the Env glycan content, leading to alterations in DC-SIGN-dependent trans-infection and virus sensitivity to antiviral lectins. Hence, SP variation and glycosylation that confer varied types of oligosaccharides to HIV-1 Env are critical determinants for virus fitness and phenotypic diversity.
Collapse
Affiliation(s)
- Muzafar Jan
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Research Service, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Research Service, James J. Peters VA Medical Center, Bronx, NY 10468, USA,Corresponding author
| |
Collapse
|
97
|
Watanabe Y, Bowden TA, Wilson IA, Crispin M. Exploitation of glycosylation in enveloped virus pathobiology. Biochim Biophys Acta Gen Subj 2019; 1863:1480-1497. [PMID: 31121217 PMCID: PMC6686077 DOI: 10.1016/j.bbagen.2019.05.012] [Citation(s) in RCA: 346] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation is a ubiquitous post-translational modification responsible for a multitude of crucial biological roles. As obligate parasites, viruses exploit host-cell machinery to glycosylate their own proteins during replication. Viral envelope proteins from a variety of human pathogens including HIV-1, influenza virus, Lassa virus, SARS, Zika virus, dengue virus, and Ebola virus have evolved to be extensively glycosylated. These host-cell derived glycans facilitate diverse structural and functional roles during the viral life-cycle, ranging from immune evasion by glycan shielding to enhancement of immune cell infection. In this review, we highlight the imperative and auxiliary roles glycans play, and how specific oligosaccharide structures facilitate these functions during viral pathogenesis. We discuss the growing efforts to exploit viral glycobiology in the development of anti-viral vaccines and therapies.
Collapse
Affiliation(s)
- Yasunori Watanabe
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK; Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences and Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
98
|
Torrents de la Peña A, Rantalainen K, Cottrell CA, Allen JD, van Gils MJ, Torres JL, Crispin M, Sanders RW, Ward AB. Similarities and differences between native HIV-1 envelope glycoprotein trimers and stabilized soluble trimer mimetics. PLoS Pathog 2019; 15:e1007920. [PMID: 31306470 PMCID: PMC6658011 DOI: 10.1371/journal.ppat.1007920] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/25/2019] [Accepted: 06/17/2019] [Indexed: 01/02/2023] Open
Abstract
The HIV-1 envelope glycoprotein (Env) trimer is located on the surface of the virus and is the target of broadly neutralizing antibodies (bNAbs). Recombinant native-like soluble Env trimer mimetics, such as SOSIP trimers, have taken a central role in HIV-1 vaccine research aimed at inducing bNAbs. We therefore performed a direct and thorough comparison of a full-length unmodified Env trimer containing the transmembrane domain and the cytoplasmic tail, with the sequence matched soluble SOSIP trimer, both based on an early Env sequence (AMC011) from an HIV+ individual that developed bNAbs. The structures of the full-length AMC011 trimer bound to either bNAb PGT145 or PGT151 were very similar to the structures of SOSIP trimers. Antigenically, the full-length and SOSIP trimers were comparable, but in contrast to the full-length trimer, the SOSIP trimer did not bind at all to non-neutralizing antibodies, most likely as a consequence of the intrinsic stabilization of the SOSIP trimer. Furthermore, the glycan composition of full-length and SOSIP trimers was similar overall, but the SOSIP trimer possessed slightly less complex and less extensively processed glycans, which may relate to the intrinsic stabilization as well as the absence of the membrane tether. These data provide insights into how to best use and improve membrane-associated full-length and soluble SOSIP HIV-1 Env trimers as immunogens. HIV-1 envelope glycoprotein (Env) trimer is the primary antigenic target for neutralizing antibodies. As such, it is the focus of subunit vaccine design efforts that aim to recapitulate the structure and native antigenic profile in a soluble, stable form capable of eliciting neutralizing antibody responses. Here, we compare the antigenicity, glycosylation and structure of a full-length, wild-type Env trimer with a corresponding soluble, SOSIP trimer that is representative of many ongoing subunit vaccine design efforts. Overall, both exhibit similar properties, and the SOSIP trimer is an accurate mimic of the wild-type Env.
Collapse
Affiliation(s)
- Alba Torrents de la Peña
- Department of Medical Microbiology, Amsterdam UMC - University of Amsterdam, Amsterdam, the Netherlands
| | - Kimmo Rantalainen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christopher A. Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joel D. Allen
- Centre for Biological Sciences & Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC - University of Amsterdam, Amsterdam, the Netherlands
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Max Crispin
- Centre for Biological Sciences & Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Rogier W. Sanders
- Department of Medical Microbiology, Amsterdam UMC - University of Amsterdam, Amsterdam, the Netherlands
- * E-mail: (RWS); (ABW)
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (RWS); (ABW)
| |
Collapse
|
99
|
Hargett AA, Renfrow MB. Glycosylation of viral surface proteins probed by mass spectrometry. Curr Opin Virol 2019; 36:56-66. [PMID: 31202133 PMCID: PMC7102858 DOI: 10.1016/j.coviro.2019.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Glycosylation is a common and biologically significant post-translational modification that is found on numerous virus surface proteins (VSPs). Many of these glycans affect virulence through modulating virus receptor binding, masking antigenic sites, or by stimulating the host immune response. Mass spectrometry (MS) has arisen as a pivotal technique for the characterization of VSP glycosylation. This review will cover how MS-based analyses, such as released glycan profiles, glycan site localization, site-occupancy, and site-specific heterogeneity, are being utilized to map VSP glycosylation. Furthermore, this review will provide information on how MS glycoprofiling data are being used in conjunction with molecular and structural experiments to provide a better understanding of the role of specific glycans in VSP function.
Collapse
Affiliation(s)
- Audra A Hargett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
100
|
Seabright GE, Doores KJ, Burton DR, Crispin M. Protein and Glycan Mimicry in HIV Vaccine Design. J Mol Biol 2019; 431:2223-2247. [PMID: 31028779 PMCID: PMC6556556 DOI: 10.1016/j.jmb.2019.04.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/30/2023]
Abstract
Antigenic mimicry is a fundamental tenet of structure-based vaccinology. Vaccine strategies for the human immunodeficiency virus type 1 (HIV-1) focus on the mimicry of its envelope spike (Env) due to its exposed location on the viral membrane and role in mediating infection. However, the virus has evolved to minimize the immunogenicity of conserved epitopes on the envelope spike. This principle is starkly illustrated by the presence of an extensive array of host-derived glycans, which act to shield the underlying protein from antibody recognition. Despite these hurdles, a subset of HIV-infected individuals eventually develop broadly neutralizing antibodies that recognize these virally presented glycans. Effective HIV-1 immunogens are therefore likely to involve some degree of mimicry of both the protein and glycan components of Env. As such, considerable efforts have been made to characterize the structure of the envelope spike and its glycan shield. This review summarizes the recent progress made in this field, with an emphasis on our growing understanding of the factors shaping the glycan shield of Env derived from both virus and soluble immunogens. We argue that recombinant mimics of the envelope spike are currently capable of capturing many features of the native viral glycan shield. Finally, we explore strategies through which the immunogenicity of Env glycans may be enhanced in the development of future immunogens.
Collapse
Affiliation(s)
- Gemma E Seabright
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Katie J Doores
- Department of Infectious Diseases, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, the Scripps Centre for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), International AIDS Vaccine Initiative Neutralizing Antibody Centre, Scripps Research, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK; Department of Immunology and Microbiology, the Scripps Centre for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), International AIDS Vaccine Initiative Neutralizing Antibody Centre, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|