51
|
Pedersen BN, Jenkins A, Kjelland V. Tick-borne pathogens in Ixodes ricinus ticks collected from migratory birds in southern Norway. PLoS One 2020; 15:e0230579. [PMID: 32271774 PMCID: PMC7145107 DOI: 10.1371/journal.pone.0230579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023] Open
Abstract
Birds are important hosts for the first life stages of the Ixodes ricinus tick and they can transport their parasites over long distances. The aim of this study was to investigate the prevalence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Neoehrlichia mikurensis and Rickettsia helvetica in ticks collected from migratory birds in Norway. A total of 815 Ixodes ricinus ticks from 216 birds trapped at Lista Bird Observatory in southern Norway during spring and autumn migration in 2008 were analysed by real-time PCR. B. burgdorferi s. l. was the most prevalent pathogen, detected in 6.1% of the ticks. The prevalence of N. mikurensis, A. phagocytophilum and R. helvetica was 1.2%, 0.9% and 0.4% respectively. In addition, one sample (0.1%) was positive for B. miyamotoi. In total, 8.2% of the ticks were infected with at least one pathogen. Co-infection with B. burgdorferi s. l. and N. mikurensis or A. phagocytophilum was found in 6.0% of the infected ticks. Our results show that all the known major tick-borne bacterial pathogens in Norway are subject to transport by migratory birds, potentially allowing spread to new areas. Our study showed a surprisingly high number of samples with PCR inhibition (57%). These samples had been extracted using standard methodology (phenol-chloroform extraction). This illustrates the need for inhibition controls to determine true prevalence rates.
Collapse
Affiliation(s)
- Benedikte N. Pedersen
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Gullbringvegen, Norway
- * E-mail: (BNP); (AJ)
| | - Andrew Jenkins
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Gullbringvegen, Norway
- * E-mail: (BNP); (AJ)
| | - Vivian Kjelland
- Department of Natural Sciences, Faculty of Engineering and Science, University of Agder, Kristiansand, Norway
- Sørlandet Hospital Health Enterprise, Research Unit, Kristiansand, Norway
| |
Collapse
|
52
|
Norte AC, Lopes de Carvalho I, Núncio MS, Araújo PM, Matthysen E, Albino Ramos J, Sprong H, Heylen D. Getting under the birds' skin: tissue tropism of Borrelia burgdorferi s.l. in naturally and experimentally infected avian hosts. MICROBIAL ECOLOGY 2020; 79:756-769. [PMID: 31612324 DOI: 10.1007/s00248-019-01442-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Wild birds are frequently exposed to the zoonotic tick-borne bacteria Borrelia burgdorferi sensu lato (s.l.), and some bird species act as reservoirs for some Borrelia genospecies. Studying the tropism of Borrelia in the host, how it is sequestered in different organs, and whether it is maintained in circulation and/or in the host's skin is important to understand pathogenicity, infectivity to vector ticks and reservoir competency.We evaluated tissue dissemination of Borrelia in blackbirds (Turdus merula) and great tits (Parus major), naturally and experimentally infected with Borrelia genospecies from enzootic foci. We collected both minimally invasive biological samples (feathers, skin biopsies and blood) and skin, joint, brain and visceral tissues from necropsied birds. Infectiousness of the host was evaluated through xenodiagnoses and infection rates in fed and moulted ticks. Skin biopsies were the most reliable method for assessing avian hosts' Borrelia infectiousness, which was supported by the agreement of infection status results obtained from the analysis of chin and lore skin samples from necropsied birds and of their xenodiagnostic ticks, including a significant correlation between the estimated concentration of Borrelia genome copies in the skin and the Borrelia infection rate in the xenodiagnostic ticks. This confirms a dermatropism of Borrelia garinii, B. valaisiana and B. turdi in its avian hosts. However, time elapsed from exposure to Borrelia and interaction between host species and Borrelia genospecies may affect the reliability of skin biopsies. The blood was not useful to assess infectiousness of birds, even during the period of expected maximum spirochetaemia. From the tissues sampled (foot joint, liver, spleen, heart, kidney, gut and brain), Borrelia was detected only in the gut, which could be related with infection mode, genospecies competition, genospecies-specific seasonality and/or excretion processes.
Collapse
Affiliation(s)
- Ana Cláudia Norte
- Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.
- Centre for Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - Isabel Lopes de Carvalho
- Centre for Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Maria Sofia Núncio
- Centre for Vectors and Infectious Diseases Dr. Francisco Cambournac, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Pedro Miguel Araújo
- Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jaime Albino Ramos
- Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - Hein Sprong
- Centre for Infectious Disease Control (CIb), vhNational Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Dieter Heylen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
53
|
No Experimental Evidence of Co-Feeding Transmission of African Swine Fever Virus between Ornithodoros Soft Ticks. Pathogens 2020; 9:pathogens9030168. [PMID: 32121078 PMCID: PMC7157692 DOI: 10.3390/pathogens9030168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 11/18/2022] Open
Abstract
Ornithodoros soft ticks are the only known vector and reservoir of the African swine fever virus, a major lethal infectious disease of Suidae. The co-feeding event for virus transmission and maintenance among soft tick populations has been poorly documented. We infected Ornithodoros moubata, a known tick vector in Africa, with an African swine fever virus strain originated in Africa, to test its ability to infect O. moubata through co-feeding on domestic pigs. In our experimental conditions, tick-to-tick virus transmission through co-feeding failed, although pigs became infected through the infectious tick bite.
Collapse
|
54
|
Modelling triatomine bug population and Trypanosoma rangeli transmission dynamics: Co-feeding, pathogenic effect and linkage with chagas disease. Math Biosci 2020; 324:108326. [PMID: 32092467 DOI: 10.1016/j.mbs.2020.108326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/21/2022]
Abstract
Trypanosoma rangeli (T. rangeli), a parasite, is not pathogenic to human but pathogenic to some vector species to induce the behavior changes of infected vectors and subsequently impact the transmission dynamics of other diseases such as Chagas disease which shares the same vector species. Here we develop a mathematical model and conduct qualitative analysis for the transmission dynamics of T. rangeli. We incorporate both systemic and co-feeding transmission routes, and account for the pathogenic effect using infection-induced fecundity and fertility change of the triatomine bugs. We derive two thresholds Rv (the triatomine bug basic reproduction number) and R0 (the T. rangeli basic reproduction number) to delineate the dynamical behaviors of the ecological and epidemiological systems. We show that when Rv>1 and R0>1, a unique parasite positive equilibrium E* appears. We find that E* can be unstable and periodic oscillations can be observed where the pathogenic effect plays a significant role. Implications of the qualitative analysis and numerical simulations suggest the need of an integrative vector-borne disease prevention and control strategy when multiple vector-borne diseases are transmitted by the same set of vector species.
Collapse
|
55
|
Orkun Ö, Çakmak A, Nalbantoğlu S, Karaer Z. Turkey tick news: A molecular investigation into the presence of tick-borne pathogens in host-seeking ticks in Anatolia; Initial evidence of putative vectors and pathogens, and footsteps of a secretly rising vector tick, Haemaphysalis parva. Ticks Tick Borne Dis 2020; 11:101373. [PMID: 31964592 DOI: 10.1016/j.ttbdis.2020.101373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022]
Abstract
This Turkey-based study investigated the presence of various tick-borne microorganisms in a broad-range of host-seeking ticks (n = 1019) that exhibit both hunter and ambusher characteristics. All collected ticks were analyzed individually via PCR-sequencing, resulting in the identification of 18 different microorganisms: six Babesia spp., including one putative novel species (Ba. occultans, Ba. crassa, Ba. rossi, Babesia sp. tavsan1, Babesia sp. tavsan2, and Babesia sp. nov.); six SFG rickettsiae (Ri. aeschlimannii, Ri. s. mongolitimonae, Ri. slovaca, Ri. raoultii, Ri. monacensis, and Ri. hoogstraalii); two Borrelia burgdorferi sensu lato spp. (Bo. afzelii and Bo. lusitaniae); two unnamed Hepatozoon spp.; Theileria annulata; and Hemolivia mauritanica. This provided evidence for the natural transstadial survival of these tick-borne microorganisms in adult ticks (in addition a nymph) of Turkey. Surprisingly, this study determined the presence of five different microorganisms (Ba. crassa, Ba. rossi, Babesia sp. Ucbas, Hepatozoon sp., and Ri. hoogstraalii) in host-seeking Haemaphysalis parva adults, for which poor data exist on its vectorial competence. Therefore, this study provides important data indicating the potential vectorial capacity of Ha. parva. This study also revealed the presence of the close ecological and evolutionary relationships between two important vector ticks, Hyalomma marginatum and Hy. aegyptium and determined genetic variations (distinct phylogenetic divergences inside the main clades) in some pathogenic SFG rickettsiae that are found in these ticks. Additionally, the presence of two Babesia species described very recently in hares with unknown vectors, namely Babesia sp. tavsan1 and Babesia sp. tavsan2, were detected for the first time in ticks. Finally, two unnamed Hepatozoon spp. were detected in Haemaphysalis ticks and their phylogenetic positions were demonstrated. Consequently, this study provides important data on the diversity of tick-borne microorganisms in host-seeking ticks and on potentially novel microorganisms (Babesia and Hepatozoon species) and their possible vectors (Ha. parva, Ha. sulcata, Hy. aegyptium, Hy. marginatum, and Rh. turanicus).
Collapse
Affiliation(s)
- Ömer Orkun
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
| | - Ayşe Çakmak
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Serpil Nalbantoğlu
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Zafer Karaer
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
56
|
Nah K, Bede-Fazekas Á, Trájer AJ, Wu J. The potential impact of climate change on the transmission risk of tick-borne encephalitis in Hungary. BMC Infect Dis 2020; 20:34. [PMID: 31931734 PMCID: PMC6958747 DOI: 10.1186/s12879-019-4734-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Impact of climate change on tick-borne encephalitis (TBE) prevalence in the tick-host enzootic cycle in a given region depends on how the region-specific climate change patterns influence tick population development processes and tick-borne encephalitis virus (TBEV) transmission dynamics involving both systemic and co-feeding transmission routes. Predicting the transmission risk of TBEV in the enzootic cycle with projected climate conditions is essential for planning public health interventions including vaccination programs to mitigate the TBE incidence in the inhabitants and travelers. We have previously developed and validated a mathematical model for retroactive analysis of weather fluctuation on TBE prevalence in Hungary, and we aim to show in this research that this model provides an effective tool for projecting TBEV transmission risk in the enzootic cycle. METHODS Using the established model of TBEV transmission and the climate predictions of the Vas county in western Hungary in 2021-2050 and 2071-2100, we quantify the risk of TBEV transmission using a series of summative indices - the basic reproduction number, the duration of infestation, the stage-specific tick densities, and the accumulated (tick) infections due to co-feeding transmission. We also measure the significance of co-feeding transmission by observing the cumulative number of new transmissions through the non-systemic transmission route. RESULTS The transmission potential and the risk in the study site are expected to increase along with the increase of the temperature in 2021-2050 and 2071-2100. This increase will be facilitated by the expected extension of the tick questing season and the increase of the numbers of susceptible ticks (larval and nymphal) and the number of infected nymphal ticks co-feeding on the same hosts, leading to compounded increase of infections through the non-systemic transmission. CONCLUSIONS The developed mathematical model provides an effective tool for predicting TBE prevalence in the tick-host enzootic cycle, by integrating climate projection with emerging knowledge about the region-specific tick ecological and pathogen enzootic processes (through model parametrization fitting to historical data). Model projects increasing co-feeding transmission and prevalence of TBEV in a recognized TBE endemic region, so human risk of TBEV infection is likely increasing unless public health interventions are enhanced.
Collapse
Affiliation(s)
- Kyeongah Nah
- Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, 4700 Keele St., Toronto, M3J 1P3 Canada
| | - Ákos Bede-Fazekas
- MTA Centre for Ecological Research, Institute of Ecology and Botany, Alkomány u. 2-4., Vácrátót, H-2163 Hungary
- MTA Centre for Ecological Research, GINOP Sustainable Ecosystems Group, Klebelsberg Kuno u. 3., Tihany, H-8237 Hungary
| | - Attila János Trájer
- Institute of Environmental Engineering, University of Pannonia, Egyetem u. 10., Veszprém, H-8200 Hungary
- Department of Limnology, University of Pannonia, Egyetem u. 10., Veszprém, H-8200 Hungary
| | - Jianhong Wu
- Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, 4700 Keele St., Toronto, M3J 1P3 Canada
| |
Collapse
|
57
|
Norte AC, Margos G, Becker NS, Albino Ramos J, Núncio MS, Fingerle V, Araújo PM, Adamík P, Alivizatos H, Barba E, Barrientos R, Cauchard L, Csörgő T, Diakou A, Dingemanse NJ, Doligez B, Dubiec A, Eeva T, Flaisz B, Grim T, Hau M, Heylen D, Hornok S, Kazantzidis S, Kováts D, Krause F, Literak I, Mänd R, Mentesana L, Morinay J, Mutanen M, Neto JM, Nováková M, Sanz JJ, Pascoal da Silva L, Sprong H, Tirri IS, Török J, Trilar T, Tyller Z, Visser ME, Lopes de Carvalho I. Host dispersal shapes the population structure of a tick-borne bacterial pathogen. Mol Ecol 2020; 29:485-501. [PMID: 31846173 DOI: 10.1111/mec.15336] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2019] [Accepted: 12/11/2019] [Indexed: 01/25/2023]
Abstract
Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.
Collapse
Affiliation(s)
- Ana Cláudia Norte
- MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal.,Center for Vector and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Gabriele Margos
- German National Reference Centre for Borrelia (NRZ), Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Jaime Albino Ramos
- MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
| | - Maria Sofia Núncio
- Center for Vector and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Volker Fingerle
- German National Reference Centre for Borrelia (NRZ), Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Pedro Miguel Araújo
- MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
| | - Peter Adamík
- Department of Zoology, Palacky University, Olomouc, Czech Republic
| | | | - Emilio Barba
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Universidad de Valencia, Valencia, Spain
| | - Rafael Barrientos
- Department of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Laure Cauchard
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tibor Csörgő
- Ócsa Bird Ringing Station, Ócsa, Hungary.,Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Anastasia Diakou
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Blandine Doligez
- CNRS - Department of Biometry and Evolutionary Biology (LBBE) - University Lyon 1, University of Lyon, Villeurbanne, France
| | - Anna Dubiec
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland
| | - Barbara Flaisz
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Tomas Grim
- Department of Zoology, Palacky University, Olomouc, Czech Republic
| | - Michaela Hau
- Evolutionary Physiology Laboratory, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Dieter Heylen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Savas Kazantzidis
- Forest Research Institute, Hellenic Agricultural Organization "DEMETER", Thesaloniki, Greece
| | - David Kováts
- Ócsa Bird Ringing Station, Ócsa, Hungary.,Hungarian Biodiversity Research Society, Budapest, Hungary
| | | | - Ivan Literak
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Raivo Mänd
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Lucia Mentesana
- Evolutionary Physiology Laboratory, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Jennifer Morinay
- CNRS - Department of Biometry and Evolutionary Biology (LBBE) - University Lyon 1, University of Lyon, Villeurbanne, France.,Department of Ecology and Evolution, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Marko Mutanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Júlio Manuel Neto
- Department of Biology, Molecular Ecology and Evolution Lab, University of Lund, Lund, Sweden
| | - Markéta Nováková
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Juan José Sanz
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Luís Pascoal da Silva
- Department of Life Sciences, CFE - Centre for Functional Ecology - Science for People & the Planet, University of Coimbra, Coimbra, Portugal.,CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Porto, Portugal
| | - Hein Sprong
- National Institute of Public Health and Environment (RIVM), Laboratory for Zoonoses and Environmental Microbiology, Bilthoven, The Netherlands
| | - Ina-Sabrina Tirri
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Tomi Trilar
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | - Zdeněk Tyller
- Department of Zoology, Palacky University, Olomouc, Czech Republic.,Museum of the Moravian Wallachia Region, Vsetín, Czech Republic
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Isabel Lopes de Carvalho
- Center for Vector and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
58
|
Viral Equine Encephalitis, a Growing Threat to the Horse Population in Europe? Viruses 2019; 12:v12010023. [PMID: 31878129 PMCID: PMC7019608 DOI: 10.3390/v12010023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Neurological disorders represent an important sanitary and economic threat for the equine industry worldwide. Among nervous diseases, viral encephalitis is of growing concern, due to the emergence of arboviruses and to the high contagiosity of herpesvirus-infected horses. The nature, severity and duration of the clinical signs could be different depending on the etiological agent and its virulence. However, definite diagnosis generally requires the implementation of combinations of direct and/or indirect screening assays in specialized laboratories. The equine practitioner, involved in a mission of prevention and surveillance, plays an important role in the clinical diagnosis of viral encephalitis. The general management of the horse is essentially supportive, focused on controlling pain and inflammation within the central nervous system, preventing injuries and providing supportive care. Despite its high medical relevance and economic impact in the equine industry, vaccines are not always available and there is no specific antiviral therapy. In this review, the major virological, clinical and epidemiological features of the main neuropathogenic viruses inducing encephalitis in equids in Europe, including rabies virus (Rhabdoviridae), Equid herpesviruses (Herpesviridae), Borna disease virus (Bornaviridae) and West Nile virus (Flaviviridae), as well as exotic viruses, will be presented.
Collapse
|
59
|
Lejal E, Marsot M, Chalvet-Monfray K, Cosson JF, Moutailler S, Vayssier-Taussat M, Pollet T. A three-years assessment of Ixodes ricinus-borne pathogens in a French peri-urban forest. Parasit Vectors 2019; 12:551. [PMID: 31752997 PMCID: PMC6873405 DOI: 10.1186/s13071-019-3799-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/10/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Ixodes ricinus is the predominant tick species in Europe and the primary pathogen vector for both humans and animals. These ticks are frequently involved in the transmission of Borrelia burgdorferi (sensu lato), the causative agents of Lyme borreliosis. While much more is known about I. ricinus tick-borne pathogen composition, information about temporal tick-borne pathogen patterns remain scarce. These data are crucial for predicting seasonal/annual patterns which could improve understanding and prevent tick-borne diseases. METHODS We examined tick-borne pathogen (TBP) dynamics in I. ricinus collected monthly in a peri-urban forest over three consecutive years. In total, 998 nymphs were screened for 31 pathogenic species using high-throughput microfluidic real-time PCR. RESULTS We detected DNA from Anaplasma phagocytophilum (5.3%), Rickettsia helvetica (4.5%), Borrelia burgdorferi (s.l.) (3.7%), Borrelia miyamotoi (1.2%), Babesia venatorum (1.5%) and Rickettsia felis (0.1%). Among all analysed ticks, 15.9% were infected by at least one of these microorganisms, and 1.3% were co-infected. Co-infections with B. afzeli/B. garinii and B. garinii/B. spielmanii were significantly over-represented. Moreover, significant variations in seasonal and/or inter-annual prevalence were observed for several pathogens (R. helvetica, B. burgdorferi (s.l.), B. miyamotoi and A. phagocytophilum). CONCLUSIONS Analysing TBP prevalence in monthly sampled tick over three years allowed us to assess seasonal and inter-annual fluctuations of the prevalence of TBPs known to circulate in the sampled area, but also to detect less common species. All these data emphasize that sporadic tick samplings are not sufficient to determine TBP prevalence and that regular monitoring is necessary.
Collapse
Affiliation(s)
- Emilie Lejal
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Maud Marsot
- Laboratory for Animal Health, Epidemiology Unit, ANSES, University Paris Est, Maisons-Alfort, France
| | - Karine Chalvet-Monfray
- UMR EPIA, VetAgro Sup, INRA, Université de Lyon, Université Clermont Auvergne, 63122 Saint-Genès-Champanelle, France
| | - Jean-François Cosson
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | - Thomas Pollet
- UMR BIPAR, Animal Health Laboratory, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
60
|
Experimental study of micro-habitat selection by ixodid ticks feeding on avian hosts. Int J Parasitol 2019; 49:1005-1014. [PMID: 31734336 DOI: 10.1016/j.ijpara.2019.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 01/18/2023]
Abstract
Mechanisms of on-host habitat selection of parasites are important to the understanding of host-parasite interactions and evolution. To this end, it is important to separate the factors driving parasite micro-habitat selection from those resulting from host anti-parasite behaviour. We experimentally investigated whether tick infestation patterns on songbirds are the result of an active choice by the ticks themselves, or the outcome of songbird grooming behaviour. Attachment patterns of three ixodid tick species with different ecologies and host specificities were studied on avian hosts. Ixodes arboricola, Ixodes ricinus and Ixodes frontalis were put on the head, belly and back of adult great tits (Parus major) and adult domestic canaries (Serinus canaria domestica) which were either restricted or not in their grooming capabilities. Without exception, ticks were eventually found on a bird's head. When we gave ticks full opportunities to attach on other body parts - in the absence of host grooming - they showed lower attachment success. Moreover, ticks moved from these other body parts to the host's head when given the opportunity. This study provides evidence that the commonly observed pattern of ticks feeding on songbirds' heads is the result of an adaptive behavioural strategy. Experimental data on a novel host species, the domestic canary, and a consistent number of published field observations, strongly support this hypothesis. We address some proximate and ultimate causes that may explain parasite preference for this body part in songbirds. The link found between parasite micro-habitat preference and host anti-parasite behaviour provides further insight into the mechanisms driving ectoparasite aggregation, which is important for the population dynamics of hosts, ectoparasites and the micro-pathogens for which they are vectors.
Collapse
|
61
|
Johnstone-Robertson SP, Diuk-Wasser MA, Davis SA. Incorporating tick feeding behaviour into R 0 for tick-borne pathogens. Theor Popul Biol 2019; 131:25-37. [PMID: 31730874 DOI: 10.1016/j.tpb.2019.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 11/29/2022]
Abstract
Tick-borne pathogens pose a considerable disease burden in Europe and North America, where increasing numbers of human cases and the emergence of new tick-borne pathogens has renewed interest in resolving the mechanisms underpinning their geographical distribution and abundance. For Borrelia burgdorferi and tick-borne encephalitis (TBE) virus, transmission of infection from one generation of ticks to another occurs when older nymphal ticks infect younger larval ticks feeding on the same host, either indirectly via systemic infection of the vertebrate host or directly when feeding in close proximity. Here, expressions for the basic reproduction number, R0, and the related tick type-reproduction number, T, are derived that account for the observation that larval and nymphal ticks tend to aggregate on the same minority of hosts, a tick feeding behaviour known as co-aggregation. The pattern of tick blood meals is represented as a directed, acyclic, bipartite contact network, with individual vertebrate hosts having in-degree, kin, and out-degree, kout, that respectively represent cumulative counts of nymphal and larval ticks fed over the lifetime of the host. The in- and out-degree are not independent when co-aggregation occurs such that [Formula: see text] where 〈.〉 indicates expected value. When systemic infection in the vertebrate host is the dominant transmission route R02=T, whereas when direct transmission between ticks co-feeding on the same host is dominant then R0=T and the effect of co-aggregation on R0 is more pronounced. Simulations of B. burgdorferi and TBE virus transmission on theoretical tick-mouse contact networks revealed that aggregation and co-aggregation have a synergistic effect on R0 and T, that co-aggregation always increases R0 and T, and that aggregation only increases R0 and T when larvae and nymphs also co-aggregate. Co-aggregation has the greatest absolute effect on R0 and T when the mean larval burden of hosts is high, and the largest relative effect on R0 for pathogens sustained by co-feeding transmission, e.g. TBE virus in Europe, compared with those predominantly spread by systemic infection, e.g. B. burgdorferi. For both pathogens, though, co-aggregation increases the mean number of ticks infected per infectious tick, T, and so too the likelihood of pathogen persistence.
Collapse
Affiliation(s)
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - Stephen A Davis
- School of Science, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
62
|
Selmi R, Ben Said M, Dhibi M, Ben Yahia H, Abdelaali H, Messadi L. Genetic diversity of groEL and msp4 sequences of Anaplasma ovis infecting camels from Tunisia. Parasitol Int 2019; 74:101980. [PMID: 31518651 DOI: 10.1016/j.parint.2019.101980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/30/2019] [Indexed: 01/28/2023]
Abstract
To date, no information is available regarding the infection of camels (Camelus dromedarius) by Anaplasma ovis in North African region. Several animal species can be infected by A. ovis which further complicates its natural infection cycle. In this paper, we investigated the occurrence and the genetic diversity of A. ovis in camels and ticks collected from them in Tunisia and the risk factor analysis. Camel blood samples (n = 412) and tick (n = 300) samples, identified as Hyalomma dromedarii (n = 149, 49.6%), H. impeltatum (n = 142, 47.3%) and H. excavatum (n = 9, 3%), were analyzed by conventional PCR followed by the sequencing of msp4 and groEL genes. A. ovis DNA was identified in five camels (1.2%), but not in infesting ticks (0%). The microscopic examination revealed the specific infection of camel erythrocytes by Anaplasma inclusions. The msp4 and groEL typing confirmed the natural infection of camels by A. ovis and revealed two different msp4 genotypes earlier detected in Tunisian small ruminants and their infested ticks, and five different and novel groEL genetic variants forming a separately sub-cluster within A. ovis cluster. The occurrence of different A. ovis strains specific to camels associated with a low prevalence of this Anaplasma species in camels may enrich knowledge regarding the distribution and the transmission cycle of this bacterium in arid and Saharan areas of Tunisia.
Collapse
Affiliation(s)
- Rachid Selmi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie; Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisie; Institut National Agronomique de Tunis, Université de Carthage, Tunisie
| | - Mourad Ben Said
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie
| | - Mokhtar Dhibi
- Service de Parasitologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie
| | - Houcine Ben Yahia
- Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisie
| | - Hedi Abdelaali
- Ministère de la Défense Nationale, Direction Générale de la Santé Militaire, Service Vétérinaire, Tunis, Tunisie
| | - Lilia Messadi
- Service de Microbiologie et Immunologie, Ecole Nationale de Médecine Vétérinaire, Université de Manouba, 2020 Sidi Thabet, Tunisie.
| |
Collapse
|
63
|
Rosà R, Tagliapietra V, Manica M, Arnoldi D, Hauffe HC, Rossi C, Rosso F, Henttonen H, Rizzoli A. Changes in host densities and co-feeding pattern efficiently predict tick-borne encephalitis hazard in an endemic focus in northern Italy. Int J Parasitol 2019; 49:779-787. [DOI: 10.1016/j.ijpara.2019.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
|
64
|
Rizzoli A, Tagliapietra V, Cagnacci F, Marini G, Arnoldi D, Rosso F, Rosà R. Parasites and wildlife in a changing world: The vector-host- pathogen interaction as a learning case. Int J Parasitol Parasites Wildl 2019; 9:394-401. [PMID: 31341772 PMCID: PMC6630057 DOI: 10.1016/j.ijppaw.2019.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
In the Anthropocene context, changes in climate, land use and biodiversity are considered among the most important anthropogenic factors affecting parasites-host interaction and wildlife zoonotic diseases emergence. Transmission of vector borne pathogens are particularly sensitive to these changes due to the complexity of their cycle, where the transmission of a microparasite depends on the interaction between its vector, usually a macroparasite, and its reservoir host, in many cases represented by a wildlife vertebrate. The scope of this paper focuses on the effect of some major, fast-occurring anthropogenic changes on the vectorial capacity for tick and mosquito borne pathogens. Specifically, we review and present the latest advances regarding two emerging vector-borne viruses in Europe: Tick-borne encephalitis virus (TBEV) and West Nile virus (WNV). In both cases, variation in vector to host ratio is critical in determining the intensity of pathogen transmission and consequently infection hazard for humans. Forecasting vector-borne disease hazard under the global change scenarios is particularly challenging, requiring long term studies based on a multidisciplinary approach in a One-Health framework.
Collapse
Affiliation(s)
- Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Valentina Tagliapietra
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Fausta Rosso
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
| |
Collapse
|
65
|
Nah K, Magpantay FMG, Bede-Fazekas Á, Röst G, Trájer AJ, Wu X, Zhang X, Wu J. Assessing systemic and non-systemic transmission risk of tick-borne encephalitis virus in Hungary. PLoS One 2019; 14:e0217206. [PMID: 31163042 PMCID: PMC6548428 DOI: 10.1371/journal.pone.0217206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/07/2019] [Indexed: 01/28/2023] Open
Abstract
Estimating the tick-borne encephalitis (TBE) infection risk under substantial uncertainties of the vector abundance, environmental condition and human-tick interaction is important for evidence-informed public health intervention strategies. Estimating this risk is computationally challenging since the data we observe, i.e., the human incidence of TBE, is only the final outcome of the tick-host transmission and tick-human contact processes. The challenge also increases since the complex TBE virus (TBEV) transmission cycle involves the non-systemic route of transmission between co-feeding ticks. Here, we describe the hidden Markov transition process, using a novel TBEV transmission-human case reporting cascade model that couples the susceptible-infected compartmental model describing the TBEV transmission dynamics among ticks, animal hosts and humans, with the stochastic observation process of human TBE reporting given infection. By fitting human incidence data in Hungary to the transmission model, we estimate key parameters relevant to the tick-host interaction and tick-human transmission. We then use the parametrized cascade model to assess the transmission potential of TBEV in the enzootic cycle with respect to the climate change, and to evaluate the contribution of non-systemic transmission. We show that the TBEV transmission potential in the enzootic cycle has been increasing along with the increased temperature though the TBE human incidence has dropped since 1990s, emphasizing the importance of persistent public health interventions. By demonstrating that non-systemic transmission pathway is a significant factor in the transmission of TBEV in Hungary, we conclude that the risk of TBE infection will be highly underestimated if the non-systemic transmission route is neglected in the risk assessment.
Collapse
Affiliation(s)
- Kyeongah Nah
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | | | - Ákos Bede-Fazekas
- Institute of Ecology and Botany, MTA Centre for Ecological Research, Vácrátót, Hungary
- GINOP Sustainable Ecosystems Group, MTA Centre for Ecological Research, Tihany, Hungary
| | - Gergely Röst
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, United Kingdom
- Bolyai Institute, University of Szeged, Szeged, Hungary
| | - Attila János Trájer
- Department of Limnology, University of Pannonia, Veszprém, Hungary
- Institute of Environmental Engineering, University of Pannonia, Veszprém, Hungary
| | - Xiaotian Wu
- College of Arts and Sciences, Shanghai Maritime University, Shanghai, China
| | - Xue Zhang
- Department of Mathematics, Northeastern University, Shenyang, China
| | - Jianhong Wu
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
66
|
Maliyoni M, Chirove F, Gaff HD, Govinder KS. A stochastic epidemic model for the dynamics of two pathogens in a single tick population. Theor Popul Biol 2019; 127:75-90. [PMID: 31002861 DOI: 10.1016/j.tpb.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/03/2019] [Accepted: 04/08/2019] [Indexed: 11/19/2022]
Abstract
Understanding tick-transmitted pathogens in tick infested areas is crucial for the development of preventive and control measures in response to the increasing cases of tick-borne diseases. A stochastic model for the dynamics of two pathogens, Rickettsia parkeri and Rickettsia amblyommii, in a single tick, Amblyomma americanum, is developed and analysed. The model, a continuous-time Markov chain, is based on a deterministic tick-borne disease model. The extinction threshold for the stochastic model is computed using the multitype branching process and conditions for pathogen extinction or persistence are presented. The probability of pathogen extinction is computed using numerical simulations and is shown to be a good estimate of the probability of extinction calculated from the branching process. A sensitivity analysis is undertaken to illustrate the relationship between co-feeding and transovarial transmission rates and the probability of pathogen extinction. Expected epidemic duration is estimated using sample paths and we show that R. amblyommii is likely to persist slightly longer than R. parkeri. Further, we estimate the duration of possible coexistence of the two pathogens.
Collapse
Affiliation(s)
- Milliward Maliyoni
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa.
| | - Faraimunashe Chirove
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa
| | - Holly D Gaff
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa; Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Keshlan S Govinder
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa
| |
Collapse
|
67
|
Tick saliva and its role in pathogen transmission. Wien Klin Wochenschr 2019; 135:165-176. [PMID: 31062185 PMCID: PMC10118219 DOI: 10.1007/s00508-019-1500-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022]
Abstract
Tick saliva is a complex mixture of peptidic and non-peptidic molecules that aid engorgement. The composition of tick saliva changes as feeding progresses and the tick counters the dynamic host response. Ixodid ticks such as Ixodes ricinus, the most important tick species in Europe, transmit numerous pathogens that cause debilitating diseases, e.g. Lyme borreliosis and tick-borne encephalitis. Tick-borne pathogens are transmitted in tick saliva during blood feeding; however, saliva is not simply a medium enabling pathogen transfer. Instead, tick-borne pathogens exploit saliva-induced modulation of host responses to promote their transmission and infection, so-called saliva-assisted transmission (SAT). Characterization of the saliva factors that facilitate SAT is an active area of current research. Besides providing new insights into how tick-borne pathogens survive in nature, the research is opening new avenues for vaccine development.
Collapse
|
68
|
Hellenbrand W, Kreusch T, Böhmer MM, Wagner-Wiening C, Dobler G, Wichmann O, Altmann D. Epidemiology of Tick-Borne Encephalitis (TBE) in Germany, 2001⁻2018. Pathogens 2019; 8:E42. [PMID: 30934855 PMCID: PMC6630332 DOI: 10.3390/pathogens8020042] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
We reviewed tick-borne encephalitis (TBE) surveillance and epidemiology in Germany, as these underlie public health recommendations, foremost vaccination. We performed descriptive analyses of notification data (2001⁻2018, n = 6063) according to region, demographics and clinical manifestations and calculated incidence trends using negative binomial regression. Risk areas were defined based on incidence in administrative districts. Most cases (89%) occurred in the federal states of Baden-Wurttemberg and Bavaria, where annual TBE incidence fluctuated markedly between 0.7⁻2.0 cases/100,000 inhabitants. A slight but significantly increasing temporal trend was observed from 2001⁻2018 (age-adjusted incidence rate ratio (IRR) 1.02 (95% confidence interval (CI): 1.01⁻1.04)), primarily driven by high case numbers in 2017⁻2018. Mean incidence was highest in 40⁻69-year-olds and in males. More males (23.7%) than females (18.0%, p = 0.02) had severe disease (encephalitis or myelitis), which increased with age, as did case-fatality (0.4% overall; 2.1% among ≥70-year-olds). Risk areas increased from 129 districts in 2007 to 161 in 2019. Expansion occurred mainly within existent southern endemic areas, with slower contiguous north-eastern and patchy north-western spread. Median vaccination coverage at school entry in risk areas in 2016⁻2017 ranged from 20%⁻41% in 4 states. Increasing TBE vaccine uptake is an urgent priority, particularly in high-incidence risk areas.
Collapse
Affiliation(s)
- Wiebke Hellenbrand
- Immunization Unit, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany.
| | - Teresa Kreusch
- Immunization Unit, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany.
| | - Merle M Böhmer
- Department for Infectious Disease Epidemiology, Bavarian Health and Food Safety Authority, Veterinaerstr. 2, 85764 Oberschleissheim, Germany.
| | | | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | - Ole Wichmann
- Immunization Unit, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany.
| | - Doris Altmann
- Infectious Disease Data Science Unit, Robert Koch Institute, Seestraße 10, 13353 Berlin, Germany.
| |
Collapse
|
69
|
Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Sci Rep 2019; 9:5088. [PMID: 30911054 PMCID: PMC6434031 DOI: 10.1038/s41598-019-41686-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Lyme borreliosis is the most common vector-borne zoonosis in the northern hemisphere, and the pathogens causing Lyme borreliosis have distinct, incompletely described transmission cycles involving multiple host groups. The mammal community in Fennoscandia differs from continental Europe, and we have limited data on potential competent and incompetent hosts of the different genospecies of Borrelia burgdorferi sensu lato (sl) at the northern distribution ranges where Lyme borreliosis is emerging. We used qPCR to determine presence of B. burgdorferi sl in tissue samples (ear) from 16 mammalian species and questing ticks from Norway, and we sequenced the 5S-23 S rDNA intergenic spacer region to determine genospecies from 1449 qPCR-positive isolates obtaining 423 sequences. All infections coming from small rodents and shrews were linked to the genospecies B. afzelii, while B. burgdorferi sensu stricto (ss) was only found in red squirrels (Sciurus vulgaris). Red squirrels were also infected with B. afzelii and B. garinii. There was no evidence of B. burgdorferi sl infection in moose (Alces alces), red deer (Cervus elaphus) or roe deer (Capreolus capreolus), confirming the role of cervids as incompetent hosts. In infected questing ticks in the two western counties, B. afzelii (67% and 75%) dominated over B. garinii (27% and 21%) and with only a few recorded B. burgdorferi ss and B. valaisiana. B. burgdorferi ss were more common in adult ticks than in nymphs, consistent with a reservoir in squirrels. Our study identifies potential competent hosts for the different genospecies, which is key to understand transmission cycles at high latitudes of Europe.
Collapse
|
70
|
Giery ST, Layman CA. Ecological Consequences Of Sexually Selected Traits: An Eco-Evolutionary Perspective. QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/702341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
71
|
Hartemink N, van Vliet A, Sprong H, Jacobs F, Garcia-Martí I, Zurita-Milla R, Takken W. Temporal-Spatial Variation in Questing Tick Activity in the Netherlands: The Effect of Climatic and Habitat Factors. Vector Borne Zoonotic Dis 2019; 19:494-505. [PMID: 30810501 DOI: 10.1089/vbz.2018.2369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Longitudinal studies are fundamental in the assessment of the effect of environmental factors on tick population dynamics. In this study, we use data from a 10-year study in 11 different locations in the Netherlands to gauge the effects of climatic and habitat factors on the temporal and spatial variation in questing tick activity. Marked differences in the total number of ticks were found between locations and between years. We investigated which climatic and habitat factors might explain this variation. No effects of climatic factors on the total number of ticks per year were observed, but we found a clear effect of temperature on the onset of tick activity. In addition, we found positive associations between (1) humus layer thickness and densities of all three stages, (2) moss and blackberry abundance and larval densities, and (3) blueberry abundance and densities of larva and nymphs. We conclude that climatic variables do not have a straightforward association with tick density in the Netherlands, but that winter and spring temperatures influence the onset of tick activity. Habitats with apparently similar vegetation types can still differ in tick population densities, indicating that local composition of vegetation and especially of wildlife is likely to contribute considerably to the spatial variation in tick densities.
Collapse
Affiliation(s)
- Nienke Hartemink
- 1 Biometris, Wageningen University and Research Centre, Wageningen, the Netherlands.,2 Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Arnold van Vliet
- 3 Environmental Systems Analysis Group, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Hein Sprong
- 2 Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, the Netherlands.,4 Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Frans Jacobs
- 2 Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, the Netherlands.,5 Centre for Vector Surveillance, Netherlands Food and Consumer Product Safety Authority, Wageningen, the Netherlands
| | - Irene Garcia-Martí
- 6 Royal Netherlands Meteorological Institute, De Bilt, the Netherlands.,7 Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, the Netherlands
| | - Raul Zurita-Milla
- 7 Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, the Netherlands
| | - Willem Takken
- 2 Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, the Netherlands
| |
Collapse
|
72
|
Abstract
Ticks are a major group of arthropod vectors, characterized by the diversity of pathogens they transmit, by their impact on human and animal health, and by their socioeconomic implication especially in countries of the Southern Hemisphere. In Europe, Ixodes is the most important tick due to its wide distribution in the ecosystems and the variety of transmitted pathogens, in particular Borrelia (responsible for Lyme borreliosis), but also the tick-borne encephalitis virus. Their increased presence in the environment since the beginning of the 20th century is undeniable, because of major modifications in the biodiversity caused by humans. Increasing the awareness of health professionals and the general population is required to achieve better control of these infections. Thus, "a better understanding of these tick-borne diseases for a better control" is a simple but effective approach, considering their ubiquity in the environment and their particular mode of pathogen transmission (long-lasting blood meal for hard ticks and delayed transmission for bacteria and parasites). Finally, these ectoparasites are problematic due to the potential allergic reactions and other damages caused by their saliva, in humans and animals.
Collapse
|
73
|
Chakraborty S, Andrade FCD, Ghosh S, Uelmen J, Ruiz MO. Historical Expansion of Kyasanur Forest Disease in India From 1957 to 2017: A Retrospective Analysis. GEOHEALTH 2019; 3:44-55. [PMID: 32159030 PMCID: PMC7007137 DOI: 10.1029/2018gh000164] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/18/2018] [Accepted: 01/04/2019] [Indexed: 06/10/2023]
Abstract
A highly infectious tick-borne virus causes Kyasanur Forest disease (KFD), which has been expanding in recent decades in India. Current studies do not provide an updated understanding of the disease trends and its expansion in India. We address this gap in the literature through a detailed review to reveal the annual historic expansion of KFD cases across the span of years from 1957 to 2017. In addition, we explore the factors that may have led to the geographic expansion of KFD. The annual numbers of cases of KFD among humans are estimated using peer-reviewed journal articles, Pro-MED database, historical and archived newspapers, and government reports, technical reports, publications, and medical websites. From 1957 to 2017, there were an estimated 9,594 cases of KFD within 16 districts in India. The most significant human outbreaks of the disease were in the years 1957-1958 (681 cases), 1983-1984 (2,589 cases), 2002-2003 (1,562 cases), and 2016-2017 (809 cases). In 2015, KFD appeared in Goa. In 2016, new cases emerged in Belgaum, a district in Karnataka state, and in the Sindhudurg district in Maharashtra state. The processes by which KFD persists and spreads are not clear, but demographic, socioeconomic, political, and environmental factors seem to play a role.
Collapse
Affiliation(s)
- S. Chakraborty
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - F. C. D. Andrade
- School of Social WorkUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - S. Ghosh
- Entomology Laboratory, Parasitology Division, ICAR‐ Indian Veterinary Research InstituteIzatnagarUPIndia
| | - J. Uelmen
- College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - M. O. Ruiz
- College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
74
|
Tokarevich NK, Panferova YA, Freylikhman OA, Blinova OV, Medvedev SG, Mironov SV, Grigoryeva LA, Tretyakov KA, Dimova T, Zaharieva MM, Nikolov B, Zehtindjiev P, Najdenski H. Coxiella burnetii in ticks and wild birds. Ticks Tick Borne Dis 2018; 10:377-385. [PMID: 30509727 DOI: 10.1016/j.ttbdis.2018.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 10/18/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023]
Abstract
The study objective was to get more information on C. burnetii prevalence in wild birds and ticks feeding on them, and the potentialities of the pathogen dissemination over Europe by both. MATERIALS Blood, blood sera, feces of wild birds and ticks removed from those birds or from vegetation were studied at two sites in Russia: the Curonian Spit (site KK), and the vicinity of St. Petersburg (site SPb), and at two sites in Bulgaria: the Atanasovsko Lake (site AL), and the vicinity of Sofia (site SR). METHODS C. burnetii DNA was detected in blood, feces, and ticks by PCR (polymerase chain reaction). All positive results were confirmed by Sanger's sequencing of 16SrRNA gene target fragments. The antibodies to C. burnetii in sera were detected by CFR (complement fixation reaction). RESULTS Eleven of 55 bird species captured at KK site hosted Ixodes ricinus. C. burnetii DNA was detected in three I. ricinus nymphs removed from one bird (Erithacus rubecula), and in adult ticks flagged from vegetation: 0.7% I. persulcatus (site SPb), 0.9% I. ricinus (site KK), 1.0% D. reticulatus (AL site). C. burnetii DNA was also detected in 1.4% of bird blood samples at SPb site, and in 0.5% of those at AL site. Antibodies to C. burnetii were found in 8.1% of bird sera (site SPb). C. burnetii DNA was revealed in feces of birds: 0.6% at AL site, and 13.7% at SR site. CONCLUSIONS Both molecular-genetic and immunological methods were applied to confirm the role of birds as a natural reservoir of C. burnetii. The places of wild bird stopover in Russia (Baltic region) and in Bulgaria (Atanasovsko Lake and Sofia region) proved to be natural foci of C. burnetii infection. Migratory birds are likely to act as efficient "vehicles" in dispersal of C. burnetii -infested ixodid ticks.
Collapse
Affiliation(s)
- N K Tokarevich
- Saint-Petersburg Pasteur Institute, Laboratory of Zooantroponozes, 14, ul. Mira, 197101, St. Petersburg, Russia.
| | - Yu A Panferova
- Saint-Petersburg Pasteur Institute, Laboratory of Zooantroponozes, 14, ul. Mira, 197101, St. Petersburg, Russia
| | - O A Freylikhman
- Saint-Petersburg Pasteur Institute, Laboratory of Zooantroponozes, 14, ul. Mira, 197101, St. Petersburg, Russia
| | - O V Blinova
- Saint-Petersburg Pasteur Institute, Laboratory of Zooantroponozes, 14, ul. Mira, 197101, St. Petersburg, Russia
| | - S G Medvedev
- Zoological Institute of the Russian Academy of Sciences, 1, Universitetskaja nab., 199034, St. Petersburg, Russia
| | - S V Mironov
- Zoological Institute of the Russian Academy of Sciences, 1, Universitetskaja nab., 199034, St. Petersburg, Russia
| | - L A Grigoryeva
- Zoological Institute of the Russian Academy of Sciences, 1, Universitetskaja nab., 199034, St. Petersburg, Russia
| | - K A Tretyakov
- Zoological Institute of the Russian Academy of Sciences, 1, Universitetskaja nab., 199034, St. Petersburg, Russia
| | - T Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Bul. Tsarigradsko chose 73, 1113, Sofia, Bulgaria
| | - M M Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Str. 26, 1113, Sofia, Bulgaria
| | - B Nikolov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, Bulgaria
| | - P Zehtindjiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, Bulgaria
| | - H Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Str. 26, 1113, Sofia, Bulgaria
| |
Collapse
|
75
|
Halajian A, Palomar AM, Portillo A, Heyne H, Romero L, Oteo JA. Detection of zoonotic agents and a new Rickettsia strain in ticks from donkeys from South Africa: Implications for travel medicine. Travel Med Infect Dis 2018; 26:43-50. [PMID: 30312734 DOI: 10.1016/j.tmaid.2018.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND In rural South Africa, people are in close contact with tick-infested donkeys. This study aimed to investigate the presence of spotted fever group Rickettsia, Anaplasma, Ehrlichia and Coxiella species in these arthropods. METHOD 376 ticks (7 species) from donkeys from Limpopo Province (South Africa) were pooled and analyzed using PCR assays for the bacterium detection. RESULTS Rickettsia africae was amplified in 6 Amblyomma hebraeum, 1 Rhipicephalus appendiculatus and 5 Rhipicephalus evertsi evertsi pools. Rickettsia aeschlimannii was found in 1 Hyalomma rufipes, 1 Rh. appendiculatus and 2 Rh. e. evertsi pools. Three Rhipicephalus simus specimens were infected with a new Rickettsia strain that showed low identity with any validated Rickettsia species. Ehrlichia canis was detected in 2 Rh. e. evertsi pools and in one of them Anaplasma bovis was amplified. An Am. hebraeum pool showed infection with Anaplasma ovis and another with Coxiella burnetii. CONCLUSION South African donkeys are involved in the epidemiology of tick-borne pathogens and other associated agents such as C. burnetii with Health importance. A potential new Rickettsia species, with unknown pathogenic potential, has been detected in the anthropophilic Rh. simus.
Collapse
Affiliation(s)
- Ali Halajian
- Department of Biodiversity (Zoology), University of Limpopo, Sovenga, 0727, South Africa.
| | - Ana M Palomar
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, La Rioja, Spain.
| | - Aránzazu Portillo
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, La Rioja, Spain.
| | - Heloise Heyne
- Epidemiology, Parasites & Vectors (EPV), ARC-Onderstepoort Veterinary Research (ARC-OVR), South Africa.
| | - Lourdes Romero
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, La Rioja, Spain.
| | - José A Oteo
- Centre of Rickettsiosis and Arthropod-Borne Diseases, Hospital Universitario San Pedro-CIBIR, Logroño, La Rioja, Spain.
| |
Collapse
|
76
|
Jaenson TGT, Petersson EH, Jaenson DGE, Kindberg J, Pettersson JHO, Hjertqvist M, Medlock JM, Bengtsson H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Parasit Vectors 2018; 11:477. [PMID: 30153856 PMCID: PMC6114827 DOI: 10.1186/s13071-018-3057-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Tick-borne encephalitis (TBE) is one tick-transmitted disease where the human incidence has increased in some European regions during the last two decades. We aim to find the most important factors causing the increasing incidence of human TBE in Sweden. Based on a review of published data we presume that certain temperature-related variables and the population densities of transmission hosts, i.e. small mammals, and of primary tick maintenance hosts, i.e. cervids and lagomorphs, of the TBE virus vector Ixodes ricinus, are among the potentially most important factors affecting the TBE incidence. Therefore, we compare hunting data of the major tick maintenance hosts and two of their important predators, and four climatic variables with the annual numbers of human cases of neuroinvasive TBE. Data for six Swedish regions where human TBE incidence is high or has recently increased are examined by a time-series analysis. Results from the six regions are combined using a meta-analytical method. Results With a one-year time lag, the roe deer (Capreolus capreolus), red deer (Cervus elaphus), mountain hare (Lepus timidus) and European hare (Lepus europaeus) showed positive covariance; the Eurasian elk (moose, Alces alces) and fallow deer (Dama dama) negative covariance; whereas the wild boar (Sus scrofa), lynx (Lynx lynx), red fox (Vulpes vulpes) and the four climate parameters showed no significant covariance with TBE incidence. All game species combined showed positive covariance. Conclusions The epidemiology of TBE varies with time and geography and depends on numerous factors, i.a. climate, virus genotypes, and densities of vectors, tick maintenance hosts and transmission hosts. This study suggests that the increased availability of deer to I. ricinus over large areas of potential tick habitats in southern Sweden increased the density and range of I. ricinus and created new TBEV foci, which resulted in increased incidence of human TBE. New foci may be established by TBE virus-infected birds, or by birds or migrating mammals infested with TBEV-infected ticks. Generally, persistence of TBE virus foci appears to require presence of transmission-competent small mammals, especially mice (Apodemus spp.) or bank voles (Myodes glareolus). Electronic supplementary material The online version of this article (10.1186/s13071-018-3057-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas G T Jaenson
- Department of Organismal Biology, Uppsala University, Norbyvägen 18d, SE-752 36, Uppsala, Sweden.
| | - Erik H Petersson
- Department of Aquatic Resources, Division of Freshwater Research, Swedish University of Agricultural Sciences, Stångholmsvägen 2, SE-178 93, Drottningholm, Sweden
| | - David G E Jaenson
- Department of Automatic Control, Lund University, SE-221 00, Lund, Sweden
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - John H-O Pettersson
- Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Lovisenberggata 8, N-0456, Oslo, Norway.,Department of Medical Biochemistry and Microbiology (IMBIM), Zoonosis Science Center, Uppsala University, Uppsala, Sweden.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, New South Wales, 2006, Australia.,Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Marika Hjertqvist
- Public Health Agency of Sweden, Nobels väg 18, SE-171 82, Solna, Sweden
| | - Jolyon M Medlock
- Medical Entomology Group, Emergency Response Department, Public Health England, Porton Down, Salisbury, UK.,Health Protection Research Unit in Emerging Infections & Zoonoses, Porton Down, Salisbury, UK
| | - Hans Bengtsson
- Swedish Meteorological and Hydrological Institute (SMHI), Gothenburg, Sweden
| |
Collapse
|
77
|
Mlera L, Bloom ME. The Role of Mammalian Reservoir Hosts in Tick-Borne Flavivirus Biology. Front Cell Infect Microbiol 2018; 8:298. [PMID: 30234026 PMCID: PMC6127651 DOI: 10.3389/fcimb.2018.00298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Small-to-medium sized mammals and large animals are lucrative sources of blood meals for ixodid ticks that transmit life-threatening tick-borne flaviviruses (TBFVs). TBFVs have been isolated from various organs obtained from wild-caught Myodes and Apodemus species in Europe and Asia. Thus, these rodents are well-established reservoirs of TBFVs. Wild-caught Peromyscus species have demonstrated seropositivity against Powassan virus, the only TBFV known to circulate in North America, suggesting that they may play an important role in the biology of the virus in this geographic region. However, virus isolation from Peromyscus species is yet to be demonstrated. Wild-caught medium-sized mammals, such as woodchucks (Marmota monax) and skunks (Mephitis mephitis) have also demonstrated seropositivity against POWV, and virus was isolated from apparently healthy animals. Despite the well-established knowledge that small-to-medium sized animals are TBFV reservoirs, specific molecular biology addressing host-pathogen interactions remains poorly understood. Elucidating these interactions will be critical for gaining insight into the mechanism(s) of viral pathogenesis and/or resistance.
Collapse
Affiliation(s)
- Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| |
Collapse
|
78
|
Takhampunya R, Korkusol A, Promsathaporn S, Tippayachai B, Leepitakrat S, Richards AL, Davidson SA. Heterogeneity of Orientia tsutsugamushi genotypes in field-collected trombiculid mites from wild-caught small mammals in Thailand. PLoS Negl Trop Dis 2018; 12:e0006632. [PMID: 30011267 PMCID: PMC6062101 DOI: 10.1371/journal.pntd.0006632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/26/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022] Open
Abstract
Trombiculid mites are the vectors of scrub typhus, with infected larval mites (chiggers) transmitting the causative agent, Orientia tsutsugamushi, during feeding. Co-existence of multiple O. tsutsugamushi strains within infected mites has previously been reported in naturally infected, laboratory-reared mite lines using molecular methods to characterize the 56-kDa type-specific antigen (TSA) gene. In the current study, more advanced next-generation sequencing technology was used to reveal the heterogeneity of O. tsutsugamushi genotypes in field-collected trombiculid mites from rodents and small mammals in scrub typhus-endemic areas of Thailand. Twenty-eight trombiculid mites collected from 10 small mammals were positive for O. tsutsugamushi, corresponding to a prevalence rate of 0.7% within the mite population. Twenty-four of the infected mites were Leptotrombidium spp., indicating that this genus is the main vector for O. tsutsugamushi transmission in Thailand. In addition, O. tsutsugamushi was detected in the mite genera Ascoschoengastia, Blankaartia, Gahrliepia, and Lorillatum. Of the 10 infested small animal hosts, six had 2-10 infected mites feeding at the time of collection. Deep sequencing was used to characterize mixed infections (two to three O. tsutsugamushi genotypes within an individual mite), and 5 of the 28 infected mites (17.9%) contained mixed infections. Additionally, 56-kDa TSA gene sequence analysis revealed identical bacterial genotypes among co-feeding mites with single or mixed infections. These results suggest that co-feeding transmission may occur during the feeding process, and could explain the occurrence of mixed infections in individual mites, as well as the recovery of multiple infected mites from the same host. This study also revealed highly diverse within-host O. tsutsugamushi genotypes. The occurrence of multiple O. tsutsugamushi genotypes within individual mites has important implications, and could provide a mechanism for pathogen evolution/diversification in the mite vector.
Collapse
Affiliation(s)
- Ratree Takhampunya
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Achareeya Korkusol
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Sommai Promsathaporn
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Bousaraporn Tippayachai
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Surachai Leepitakrat
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| | - Allen L. Richards
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | - Silas A. Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences-United States Army Medical Directorate, Bangkok, Thailand
| |
Collapse
|
79
|
Vector competence of Haemaphysalis longicornis ticks for a Japanese isolate of the Thogoto virus. Sci Rep 2018; 8:9300. [PMID: 29915199 PMCID: PMC6006283 DOI: 10.1038/s41598-018-27483-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023] Open
Abstract
Thogoto virus (THOV), a tick-borne arbovirus not previously reported in East Asia, was recently isolated from Haemaphysalis longicornis in Kyoto, Japan. In this study, we investigated the vector competence of H. longicornis ticks for a Japanese isolate of the Thogoto virus using anal pore microinjection and experimental virus acquisition. Our results showed that anal pore microinjection can readily infect adult ticks, and THOV-infected ticks can successfully transmit the virus to mice. Blood feeding was also critical in the distribution of the virus in tick organs, most especially in the salivary glands. Furthermore, co-feeding between an infected adult and naïve nymphs can also produce infected molted adults that can horizontally transmit THOV to mice. Altogether, our results suggest that H. longicornis is a competent vector for the Japanese THOV isolate and could be the primary tick vector of the virus in Japan.
Collapse
|
80
|
Mysterud A, Stigum VM, Seland IV, Herland A, Easterday WR, Jore S, Østerås O, Viljugrein H. Tick abundance, pathogen prevalence, and disease incidence in two contrasting regions at the northern distribution range of Europe. Parasit Vectors 2018; 11:309. [PMID: 29788994 PMCID: PMC5964723 DOI: 10.1186/s13071-018-2890-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/08/2018] [Indexed: 11/26/2022] Open
Abstract
Background Emergence of tick-borne diseases is impacting humans and livestock across the Northern Hemisphere. There are, however, large regional variations in number of cases of tick-borne diseases. Some areas have surprisingly few cases of disease compared to other regions. The aim here is to provide a first step towards a better understanding of such contrasting regional patterns of disease emergences at the northern distribution range of Ixodes ricinus in Europe. Methods We compare disease incidence, vector abundance and pathogen prevalence in eastern and western Norway differing in the number of tick-borne disease cases. First, we analysed the incidence of Lyme borreliosis in humans, tick-borne fever (anaplasmosis) in sheep and anaplasmosis and babesiosis in cattle to verify if incidence differed. Secondly, we analysed extensive field data on questing tick density, pathogen prevalence, as well as the broad spatial pattern of human and livestock distribution as it may relate to tick exposure. Results The incidences of all diseases were lower in eastern, compared to western, Norway, but this was most marked for the livestock diseases. While the prevalence of Borrelia burgdorferi (sensu lato) in ticks was similar in the two regions, the prevalence of Anaplasma phagocytophilum was markedly lower in eastern, compared to western, Norway. We found overall a lower abundance of questing nymphs in the east. In the east, there were cases of babesiosis in cattle where anaplasmosis was absent, suggesting absence of the pathogen rather than differences in exposure to ticks as part of the explanation for the much lower incidence of anaplasmosis in eastern Norway. Conclusions Many factors contribute to different disease incidence across ecosystems. We found that regional variation in tick-borne disease incidence may be partly linked to vector abundance and pathogen prevalence, but differently for human and livestock diseases. Further studies are needed to determine if there is also regional variation in specific genospecies and strain frequencies differing in pathogenicity. Electronic supplementary material The online version of this article (10.1186/s13071-018-2890-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway.
| | - Vetle Malmer Stigum
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Ingrid Vikingsdal Seland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Anders Herland
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Solveig Jore
- Department of Food, Water, Zoonotic & Vector-borne Infections, The Norwegian Public Health Institute, P.O. Box 4404 Nydalen, NO-0403, Oslo, Norway
| | - Olav Østerås
- Department of the Norwegian Cattle Health Services, TINE Norwegian Dairies BA, NO-1431, Ås, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway.,Norwegian Veterinary Institute, P.O. Box 750 Sentrum, NO-0106, Oslo, Norway
| |
Collapse
|
81
|
Tomassone L, Portillo A, Nováková M, de Sousa R, Oteo JA. Neglected aspects of tick-borne rickettsioses. Parasit Vectors 2018; 11:263. [PMID: 29690900 PMCID: PMC5937841 DOI: 10.1186/s13071-018-2856-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/18/2018] [Indexed: 11/26/2022] Open
Abstract
Rickettsioses are among the oldest known infectious diseases. In spite of this, and of the extensive research carried out, many aspects of the biology and epidemiology of tick-borne rickettsiae are far from being completely understood. Their association with arthropod vectors, the importance of vertebrates as reservoirs, the rarity of clinical signs in animals, or the interactions of pathogenic species with rickettsial endosymbionts and with the host intracellular environment, are only some examples. Moreover, new rickettsiae are continuously being discovered. In this review, we focus on the ‘neglected’ aspects of tick-borne rickettsioses and on the gaps in knowledge, which could help to explain why these infections are still emerging and re-emerging threats worldwide.
Collapse
Affiliation(s)
- Laura Tomassone
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Grugliasco (Torino), Italy.
| | - Aránzazu Portillo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, C/ Piqueras 98, 26006, Logroño, Spain
| | - Markéta Nováková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42, Brno, Czech Republic
| | - Rita de Sousa
- National Institute of Health Dr. Ricardo Jorge, Av. da Liberdade 5, 2965-575, Aguas de Moura, Portugal
| | - José Antonio Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, C/ Piqueras 98, 26006, Logroño, Spain
| |
Collapse
|
82
|
Estrada-Peña A, Álvarez-Jarreta J, Cabezas-Cruz A. Reservoir and vector evolutionary pressures shaped the adaptation of Borrelia. INFECTION GENETICS AND EVOLUTION 2018; 66:308-318. [PMID: 29654924 DOI: 10.1016/j.meegid.2018.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
The life cycle of spirochetes of the genus Borrelia includes complex networks of vertebrates and ticks. The tripartite association of Borrelia-vertebrate-tick has proved ecologically successful for these bacteria, which have become some of the most prominent tick-borne pathogens in the northern hemisphere. To keep evolutionary pace with its double-host life history, Borrelia must adapt to the evolutionary pressures exerted by both sets of hosts. In this review, we attempt to reconcile functional, phylogenetic, and ecological perspectives to propose a coherent scenario of Borrelia evolution. Available empirical information supports that the association of Borrelia with ticks is very old. The major split between the tick families Argasidae-Ixodidae (dated some 230-290 Mya) resulted in most relapsing fever (Rf) species being restricted to Argasidae and few associated with Ixodidae. A further key event produced the diversification of the Lyme borreliosis (Lb) species: the radiation of ticks of the genus Ixodes from the primitive stock of Ixodidae (around 217 Mya). The ecological interactions of Borrelia demonstrate that Argasidae-transmitted Rf species remain restricted to small niches of one tick species and few vertebrates. The evolutionary pressures on this group are consequently low, and speciation processes seem to be driven by geographical isolation. In contrast to Rf, Lb species circulate in nested networks of dozens of tick species and hundreds of vertebrate species. This greater variety confers a remarkably variable pool of evolutionary pressures, resulting in large speciation of the Lb group, where different species adapt to circulate through different groups of vertebrates. Available data, based on ospA and multilocus sequence typing (including eight concatenated in-house genes) phylogenetic trees, suggest that ticks could constitute a secondary bottleneck that contributes to Lb specialization. Both sets of adaptive pressures contribute to the resilience of highly adaptable meta-populations of bacteria.
Collapse
Affiliation(s)
| | - Jorge Álvarez-Jarreta
- Institute of Infection and Immunity, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort 94700, France; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic; Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| |
Collapse
|
83
|
Nooroong P, Trinachartvanit W, Baimai V, Ahantarig A. Phylogenetic studies of bacteria (Rickettsia, Coxiella, and Anaplasma) in Amblyomma and Dermacentor ticks in Thailand and their co-infection. Ticks Tick Borne Dis 2018; 9:963-971. [PMID: 29610046 DOI: 10.1016/j.ttbdis.2018.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 11/25/2022]
Abstract
In this study, we attempted to detect Rickettsia, Coxiella and Anaplasma bacteria in one hundred and fourteen-Dermacentor and thirty three-Amblyomma unfed adult ticks that were collected from under leaves along animal trails at different places across Thailand. PCR amplification was used to identify bacterial infection with general conserved sequences of bacteria. The results revealed single infection in Amblyomma testudinarium ticks with Rickettsia (24%) and Coxiella (6%). Anaplasma bacteria were often detected in Dermacentor auratus ticks (32%). Coxiella spp. were detected in Dermacentor atrosignatus (6%) and D. auratus ticks (3%) in this study. Moreover, we found co-infection by Coxiella and Rickettsia bacteria (39%) in Am. testudinarium. In contrast, D. atrosignatus ticks were co-infected with Coxiella and Anaplasma bacteria (3%) and Dermacentor compactus ticks were co-infected with Rickettsia and Anaplasma spp. (25%). Interestingly, Am. testudinarium ticks (12%) were found for the first time to exhibit triple infection by these three bacteria. Phylogenetic studies showed the rickettsiae from ticks causing both single and multiple infections had sequence similarity with spotted fever group rickettsial strains, including Rickettsia massilliae, R. raoultii and R. tamurae. In addition, the phylogenetic analysis of the 16S rRNA gene of Coxiella bacteria showed that they were closely grouped with Coxiella endosymbionts in both Dermacentor and Amblyomma. Moreover, the Anaplasma identified in a D. auratus tick was grouped in the same clade with the pathogenic bacterium Anaplasma phagocytophilum. Bacterial co-infections in Dermacentor and Amblyomma ticks may cause co-transmission of some tick-borne microorganisms (pathogen and endosymbiont, whether enhance or reduce) in humans and animals and they could affect medical and veterinary health.
Collapse
Affiliation(s)
- Pornpiroon Nooroong
- Biodiversity Research Cluster, Department of Biology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | - Wachareeporn Trinachartvanit
- Biodiversity Research Cluster, Department of Biology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand
| | - Visut Baimai
- Biodiversity Research Cluster, Department of Biology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand; Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Phutthamonthon 4 Road, Nakhon Pathom, Thailand
| | - Arunee Ahantarig
- Biodiversity Research Cluster, Department of Biology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, Thailand; Center of Excellence for Vectors and Vector-Borne Diseases, Faculty of Science, Mahidol University at Salaya, Phutthamonthon 4 Road, Nakhon Pathom, Thailand.
| |
Collapse
|
84
|
Zhou W, Woodson M, Neupane B, Bai F, Sherman MB, Choi KH, Neelakanta G, Sultana H. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog 2018; 14:e1006764. [PMID: 29300779 PMCID: PMC5754134 DOI: 10.1371/journal.ppat.1006764] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Molecular determinants and mechanisms of arthropod-borne flavivirus transmission to the vertebrate host are poorly understood. In this study, we show for the first time that a cell line from medically important arthropods, such as ticks, secretes extracellular vesicles (EVs) including exosomes that mediate transmission of flavivirus RNA and proteins to the human cells. Our study shows that tick-borne Langat virus (LGTV), a model pathogen closely related to tick-borne encephalitis virus (TBEV), profusely uses arthropod exosomes for transmission of viral RNA and proteins to the human- skin keratinocytes and blood endothelial cells. Cryo-electron microscopy showed the presence of purified arthropod/neuronal exosomes with the size range of 30 to 200 nm in diameter. Both positive and negative strands of LGTV RNA and viral envelope-protein were detected inside exosomes derived from arthropod, murine and human cells. Detection of Nonstructural 1 (NS1) protein in arthropod and neuronal exosomes further suggested that exosomes contain viral proteins. Viral RNA and proteins in exosomes derived from tick and mammalian cells were secured, highly infectious and replicative in all tested evaluations. Treatment with GW4869, a selective inhibitor that blocks exosome release affected LGTV loads in both arthropod and mammalian cell-derived exosomes. Transwell-migration assays showed that exosomes derived from infected-brain-microvascular endothelial cells (that constitute the blood-brain barrier) facilitated LGTV RNA and protein transmission, crossing of the barriers and infection of neuronal cells. Neuronal infection showed abundant loads of both tick-borne LGTV and mosquito-borne West Nile virus RNA in exosomes. Our data also suggest that exosome-mediated LGTV viral transmission is clathrin-dependent. Collectively, our results suggest that flaviviruses uses arthropod-derived exosomes as a novel means for viral RNA and protein transmission from the vector, and the vertebrate exosomes for dissemination within the host that may subsequently allow neuroinvasion and neuropathogenesis.
Collapse
MESH Headings
- Animals
- Arthropod Vectors/cytology
- Arthropod Vectors/ultrastructure
- Arthropod Vectors/virology
- Cell Line
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/pathology
- Cerebral Cortex/ultrastructure
- Cerebral Cortex/virology
- Chlorocebus aethiops
- Coculture Techniques
- Cryoelectron Microscopy
- Embryo, Mammalian/cytology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis Viruses, Tick-Borne/ultrastructure
- Encephalitis, Tick-Borne/pathology
- Encephalitis, Tick-Borne/transmission
- Encephalitis, Tick-Borne/virology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/ultrastructure
- Endothelium, Vascular/virology
- Exosomes/ultrastructure
- Exosomes/virology
- Host-Parasite Interactions
- Host-Pathogen Interactions
- Humans
- Ixodes/cytology
- Ixodes/ultrastructure
- Ixodes/virology
- Keratinocytes/cytology
- Keratinocytes/pathology
- Keratinocytes/ultrastructure
- Keratinocytes/virology
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Neurons/cytology
- Neurons/pathology
- Neurons/ultrastructure
- Neurons/virology
- RNA, Viral/metabolism
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Wenshuo Zhou
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
| | - Michael Woodson
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Biswas Neupane
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Fengwei Bai
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Kyung H. Choi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States of America
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
- Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States of America
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
85
|
Zelenović A, Minić S. Demographic aspects of tick bites in Belgrade: Two-year retrospective study. MEDICINSKI PODMLADAK 2018. [DOI: 10.5937/mp69-13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
86
|
Gondard M, Cabezas-Cruz A, Charles RA, Vayssier-Taussat M, Albina E, Moutailler S. Ticks and Tick-Borne Pathogens of the Caribbean: Current Understanding and Future Directions for More Comprehensive Surveillance. Front Cell Infect Microbiol 2017; 7:490. [PMID: 29238699 PMCID: PMC5713125 DOI: 10.3389/fcimb.2017.00490] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/14/2017] [Indexed: 12/05/2022] Open
Abstract
Ticks are obligate hematophagous arthropods of significant importance to human and veterinary medicine. They transmit a vast array of pathogens, including bacteria, viruses, protozoa, and helminths. Most epidemiological data on ticks and tick-borne pathogens (TBPs) in the West Indies are limited to common livestock pathogens such as Ehrlichia ruminantium, Babesia spp. (i.e., B. bovis and B. bigemina), and Anaplasma marginale, and less information is available on companion animal pathogens. Of note, human tick-borne diseases (TBDs) remain almost completely uncharacterized in the West Indies. Information on TBP presence in wildlife is also missing. Herein, we provide a comprehensive review of the ticks and TBPs affecting human and animal health in the Caribbean, and introduce the challenges associated with understanding TBD epidemiology and implementing successful TBD management in this region. In particular, we stress the need for innovative and versatile surveillance tools using high-throughput pathogen detection (e.g., high-throughput real-time microfluidic PCR). The use of such tools in large epidemiological surveys will likely improve TBD prevention and control programs in the Caribbean.
Collapse
Affiliation(s)
- Mathilde Gondard
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
- CIRAD, UMR ASTRE, Petit-Bourg, France
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
- Faculty of Science, University of South Bohemia, Ceské Budejovice, Czechia
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, Ceské Budejovice, Czechia
| | - Roxanne A. Charles
- Faculty of Medical Sciences, School of Veterinary Medicine, University of the West Indies, Mt. Hope, Trinidad and Tobago
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, Petit-Bourg, France
- INRA, UMR 1319 ASTRE, Montpellier, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
87
|
de la Fuente J, Contreras M, Estrada-Peña A, Cabezas-Cruz A. Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. Vaccine 2017; 35:5089-5094. [DOI: 10.1016/j.vaccine.2017.07.097] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
88
|
Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, Nuttall PA. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front Cell Infect Microbiol 2017; 7:339. [PMID: 28798904 PMCID: PMC5526847 DOI: 10.3389/fcimb.2017.00339] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses.
Collapse
Affiliation(s)
- Mária Kazimírová
- Department of Medical Zoology, Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Meghan Hermance
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Patricia A. Nuttall
- Department of Zoology, University of OxfordOxford, United Kingdom
- Centre for Ecology and HydrologyWallingford, United Kingdom
| |
Collapse
|
89
|
Goats as sentinel hosts for the detection of tick-borne encephalitis risk areas in the Canton of Valais, Switzerland. BMC Vet Res 2017; 13:217. [PMID: 28693561 PMCID: PMC5504567 DOI: 10.1186/s12917-017-1136-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Background Tick-borne encephalitis (TBE) is an important tick-borne disease in Europe. Detection of the TBE virus (TBEV) in local populations of Ixodes ricinus ticks is the most reliable proof that a given area is at risk for TBE, but this approach is time-consuming and expensive. A cheaper and simpler approach is to use immunology-based methods to screen vertebrate hosts for TBEV-specific antibodies and subsequently test the tick populations at locations with seropositive animals. Results The purpose of the present study was to use goats as sentinel animals to identify new risk areas for TBE in the canton of Valais in Switzerland. A total of 4114 individual goat sera were screened for TBEV-specific antibodies using immunological methods. According to our ELISA assay, 175 goat sera reacted strongly with TBEV antigen, resulting in a seroprevalence rate of 4.3%. The serum neutralization test confirmed that 70 of the 173 ELISA-positive sera had neutralizing antibodies against TBEV. Most of the 26 seropositive goat flocks were detected in the known risk areas in the canton of Valais, with some spread into the connecting valley of Saas and to the east of the town of Brig. One seropositive site was 60 km to the west of the known TBEV-endemic area. At two of the three locations where goats were seropositive, the local tick populations also tested positive for TBEV. Conclusion The combined approach of screening vertebrate hosts for TBEV-specific antibodies followed by testing the local tick population for TBEV allowed us to detect two new TBEV foci in the canton of Valais. The present study showed that goats are useful sentinel animals for the detection of new TBEV risk areas. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1136-y) contains supplementary material, which is available to authorized users.
Collapse
|
90
|
Belli A, Sarr A, Rais O, Rego ROM, Voordouw MJ. Ticks infected via co-feeding transmission can transmit Lyme borreliosis to vertebrate hosts. Sci Rep 2017; 7:5006. [PMID: 28694446 PMCID: PMC5503982 DOI: 10.1038/s41598-017-05231-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Vector-borne pathogens establish systemic infections in host tissues to maximize transmission to arthropod vectors. Co-feeding transmission occurs when the pathogen is transferred between infected and naive vectors that feed in close spatiotemporal proximity on a host that has not yet developed a systemic infection. Borrelia afzelii is a tick-borne spirochete bacterium that causes Lyme borreliosis (LB) and is capable of co-feeding transmission. Whether ticks that acquire LB pathogens via co-feeding are actually infectious to vertebrate hosts has never been tested. We created nymphs that had been experimentally infected as larvae with B. afzelii via co-feeding or systemic transmission, and compared their performance over one complete LB life cycle. Co-feeding nymphs had a spirochete load that was 26 times lower than systemic nymphs but both nymphs were highly infectious to mice (i.e., probability of nymph-to-host transmission of B. afzelii was ~100%). The mode of transmission had no effect on the other infection phenotypes of the LB life cycle. Ticks that acquire B. afzelii via co-feeding transmission are highly infectious to rodents, and the resulting rodent infection is highly infectious to larval ticks. This is the first study to show that B. afzelii can use co-feeding transmission to complete its life cycle.
Collapse
Affiliation(s)
- Alessandro Belli
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Olivier Rais
- Laboratory of Ecology and Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ryan O M Rego
- Institute of Parasitology, ASCR, Biology Centre, Ceske Budejovice, Czech Republic
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
91
|
Mukhacheva TA, Kovalev SY. Bacteria of the Family 'Candidatus Midichloriaceae' in Sympatric Zones of Ixodes Ticks: Genetic Evidence for Vertical Transmission. MICROBIAL ECOLOGY 2017; 74:185-193. [PMID: 28091705 DOI: 10.1007/s00248-017-0932-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Ixodes ticks transmit infectious agents and also harbor their own parasites and symbionts. The presumptive endosymbiont of Ixodes ricinus, 'Candidatus Midichloria mitochondrii', has a unique ability to invade mitochondria within tick ovarian cells and is transovarially transmitted with 100% efficiency. A closely related bacterium, provisionally named Montezuma (now 'Candidatus Lariskella arthropodarum'), was isolated from the Ixodes persulcatus ticks and human blood in 2004 as well as from Ixodes pavlovskyi in 2015. These microorganisms belong to the family 'Candidatus Midichloriaceae fam. nov.' and were detected not only in tick salivary glands, but also in animal blood. Nevertheless, the relative importance of vertical and horizontal routes for their transmission or maintenance in natural tick populations remains unclear. We analyzed the prevalence of L. arthropodarum and M. mitochondrii in two sympatric zones, where I. persulcatus/I. ricinus and I. persulcatus/I. pavlovskyi cohabit and produce interspecific hybrids. A specificity of the associations of L. arthropodarum with I. persulcatus (100%) and M. mitochondrii with I. ricinus (96.2%) was observed in the sympatric zone in Estonia, possibly showing poor contribution of the horizontal route to the overall prevalence of endosymbionts. L. arthropodarum was observed probably multiplying in I. pavlovskyi and also subjected to transovarial transmission, but much less efficiently compared to I. persulcatus. We revealed two new genetic variants of the rrl-rrf intergenic spacer of L. arthropodarum isolated from I. pavlovskyi ticks that possibly could indicate an ongoing process of adaptation of the microorganism to a new host species.
Collapse
Affiliation(s)
- Tatyana A Mukhacheva
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Lenin Avenue 51, Yekaterinburg, 620000, Russia
| | - Sergey Y Kovalev
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Lenin Avenue 51, Yekaterinburg, 620000, Russia.
| |
Collapse
|
92
|
The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Res 2017; 144:93-119. [PMID: 28579441 DOI: 10.1016/j.antiviral.2017.05.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/21/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
This manuscript is part of a series of reviews that aim to cover published research on Crimean-Congo hemorrhagic fever (CCHF) and its etiological agent, CCHF virus (CCHFV). The virus is maintained and transmitted in a vertical and horizontal transmission cycle involving a variety of wild and domestic vertebrate species that act as amplification hosts, without showing signs of illness. These vertebrates have traditionally been considered reservoirs of CCHFV, but in fact they develop only a transient viremia, while the virus can persist in ticks for their entire lifespan, and can also be transmitted vertically to the next generation. As a result, ticks are now considered to be both the vector and the reservoir for the virus. CCHFV has been detected in a wide range of tick species, but only a few have been proven to be vectors and reservoirs, mainly because most published studies have been performed under a broad variety of conditions, precluding definitive characterization. This article reviews the published literature, summarizes current knowledge of the role of ticks in CCHFV maintenance and transmission and provides guidance for how to fill the knowledge gaps. Special focus is given to existing data on tick species in which vertical passage has been demonstrated under natural or experimental conditions. At the same time, we identify earlier reports that used unreliable methods and perceptions to ascribe a vector role to some species of ticks, and have contributed to confusion regarding viral transmission. We also examine epidemiological pathways of CCHFV circulation and discuss priority areas for future research.
Collapse
|
93
|
Waindok P, Schicht S, Fingerle V, Strube C. Lyme borreliae prevalence and genospecies distribution in ticks removed from humans. Ticks Tick Borne Dis 2017; 8:709-714. [PMID: 28528880 DOI: 10.1016/j.ttbdis.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 11/17/2022]
Abstract
Lyme borreliosis (LB) is the most important human tick-borne disease, but Borrelia genospecies cause different clinical manifestations. Ticks of the genus Ixodes removed from humans between 2006 and 2012 were analysed for Borrelia burgdorferi sensu lato (sl) infections. The majority of ticks originated from the Greater Hanover region in Northern Germany. The engorgement status varied over the entire spectrum from unengorged (no evidence of started blood feeding) to fully engorged. In the present study, prevalence data for B. burgdorferi sl 2011 and 2012 were obtained by quantitative real-time PCR and compared to those from a former study including years 2006-2010 (Strube et al., 2011) to evaluate B. burgdorferi sl infections in ticks affecting humans over a 7-year period. In 2011, 34.2% (70/205) of adult ticks, 22.2% (94/423) of nymphs, 8.3% of larvae (1/12) as well 3 of 6 not differentiated ticks were Borrelia positive. In 2012, 31.8% (41/129) of adult ticks, 20.4% of nymphs (69/337) as well as 1 of 4 of the not differentiated ticks were determined positive. Total Borrelia infection rates decreased significantly from 23.1% in 2006 to 17.1% in 2010, followed by a significant increase to 26.0% in 2011 and 23.4% in 2012. Furthermore, B. burgdorferi sl genospecies distribution in 2006-2012 was determined in the present study by applying Reverse Line Blot technique. Borrelia genospecies differentiation was successful in 641 (67.3%) out of 953 positive tick samples. The most frequently occurring genospecies was B. afzelii (40.5% of infected ticks), followed by B. garinii/B. bavariensis (12.4%). Amongst the 641 ticks analysed for their genospecies, 74 (11.5%) carried more than one genospecies, of which 69 (10.7%) were double-infected and five (0.8%) were triple-infected. Comparison of genospecies distribution in ticks removed from humans with those from questing ticks flagged in the same geographical area revealed that ticks removed from humans were significantly more frequently infected with B. afzelii (p=0.0004), but significantly less infected with B. burgdorferi sensu stricto (p=0.0001).
Collapse
Affiliation(s)
- Patrick Waindok
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany.
| | - Sabine Schicht
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany.
| | - Volker Fingerle
- German National Reference Centre for Borrelia, Veterinaerstraße 2, 85764 Oberschleissheim, Germany.
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hanover, Germany.
| |
Collapse
|
94
|
Cayol C, Koskela E, Mappes T, Siukkola A, Kallio ER. Temporal dynamics of the tick Ixodes ricinus in northern Europe: epidemiological implications. Parasit Vectors 2017; 10:166. [PMID: 28359294 PMCID: PMC5374616 DOI: 10.1186/s13071-017-2112-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/24/2017] [Indexed: 11/10/2022] Open
Abstract
Background Tick-borne pathogens pose an increasing threat to human and veterinary health across the northern hemisphere. While the seasonal activity of ticks is largely determined by climatic conditions, host-population dynamics are also likely to affect tick abundance. Consequently, abundance fluctuations of rodents in northern Europe are expected to be translated into tick dynamics, and can hence potentially affect the circulation of tick-borne pathogens. We quantified and explained the temporal dynamics of the tick Ixodes ricinus in the northernmost part of its European geographical range, by estimating (i) abundance in vegetation and (ii) infestation load in the most common rodent species in the study area, the bank vole Myodes glareolus. Results Ixodes ricinus nymphs and adult females, the life stages responsible for the most of tick bites in humans, peaked in May-June and August-September. Larvae and nymphs were simultaneously active in June and abundance of questing larvae and nymphs in the vegetation showed a positive association with bank vole abundance. Moreover, infesting larvae and nymphs were aggregated on bank voles, and the infestation of bank voles with I. ricinus larvae and nymphs was positively associated with bank vole abundance. Conclusion Our results indicate early summer and early autumn as periods of increased risk for humans to encounter I. ricinus ticks in boreal urban forests and suggest a 2 years life-cycle for I. ricinus with two cohorts of ticks during the same year. Moreover, we identified a simultaneous activity of larvae and nymphs which allows co-feeding on the rodent host, which in turn supports the transmission of several important zoonotic tick-borne pathogens. Finally, we showed that a high density of the rodent host may enhance the risk that ticks and, potentially, tick-borne pathogens pose to human health. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2112-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claire Cayol
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland.
| | - Esa Koskela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Anja Siukkola
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Eva R Kallio
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| |
Collapse
|
95
|
Kriz B, Daniel M, Benes C, Maly M. The role of game (wild boar and roe deer) in the spread of tick-borne encephalitis in the Czech Republic. Vector Borne Zoonotic Dis 2017; 14:801-7. [PMID: 25409271 DOI: 10.1089/vbz.2013.1569] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the Czech Republic, the incidence of human tick-borne encephalitis (TBE) has been increasing over the last two decades. At the same time, populations of game have also shown an upward trend. In this country, the ungulate game is the main host group of hosts for Ixodes ricinus female ticks. This study examined the potential contribution of two most widespread game species (roe deer [Capreolus capreolus] and wild boar [Sus scrofa]) to the high incidence of TBE in the Czech Republic, using the annual numbers of culls as a proxy for the game population. This was an ecological study, with annual figures for geographical areas-municipalities with extended competence (MEC)-used as units of analysis. Between 2003 and 2011, a total of 6213 TBE cases were reported, and 1062,308 roe deer and 989,222 wild boars were culled; the culls of roe deer did not demonstrate a clear temporal trend, but wild boar culls almost doubled (from 77,269 to 143,378 per year). Statistical analyses revealed a positive association between TBE incidence rate and the relative number of culled wild boars. In multivariate analyses, a change in the numbers of culled wild boars between the 25th and 75th percentile was associated with TBE incidence rate ratio of 1.23 (95% confidence interval 1.07-1.41, p=0.003). By contrast, the association of TBE with culled roe deer was not statistically significant (p=0.481). The results suggest that the size of the wild boar population may have contributed to the current high levels and the rising trend in incidence of TBE, whereas the regulated population of roe deer does not seem to be implicated in recent geographical or temporal variations in TBE in the Czech Republic.
Collapse
Affiliation(s)
- Bohumir Kriz
- National Institute of Public Health, 3rd Medical Faculty, Charles University , Praha, Czech Republic
| | | | | | | |
Collapse
|
96
|
Lynn GE, Oliver JD, Cornax I, O'Sullivan MG, Munderloh UG. Experimental evaluation of Peromyscus leucopus as a reservoir host of the Ehrlichia muris-like agent. Parasit Vectors 2017; 10:48. [PMID: 28129781 PMCID: PMC5273795 DOI: 10.1186/s13071-017-1980-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Ehrlichia muris-like agent (EMLA) is a newly recognized human pathogen in the North Central United States. Although blacklegged ticks (Ixodes scapularis) have been identified as capable vectors, wild reservoirs have not yet been established for EMLA. As key hosts for I. scapularis, white-footed mice (Peromyscus leucopus) are important reservoirs for various tick-borne pathogens, and potentially, for EMLA. The objective of this study was to evaluate reservoir competence in P. leucopus using a natural vector. Results Mice acquired EMLA infection from feeding ticks and were able to transmit infection to naïve ticks. Transmission between simultaneously feeding tick life stages was also demonstrated. Infections in mice were acute and severe, with systemic dissemination. Limited host survival and clearance of infection among survivors resulted in a narrow interval where EMLA could be acquired by feeding ticks. Conclusions Peromyscus leucopus is a competent reservoir of EMLA and likely to play a role in its enzootic transmission cycle. The duration and severity of EMLA infection in these hosts suggests that tick phenology is a critical factor determining the geographic distribution of EMLA in North America.
Collapse
Affiliation(s)
- Geoffrey E Lynn
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA.
| | - Jonathan D Oliver
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA
| | - Ingrid Cornax
- Masonic Cancer Center Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota - Twin Cities, 420 Delaware St. SE, Minneapolis, MN, USA
| | - M Gerard O'Sullivan
- Masonic Cancer Center Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota - Twin Cities, 420 Delaware St. SE, Minneapolis, MN, USA
| | - Ulrike G Munderloh
- Entomology Department, University of Minnesota - Twin Cities, 1980 Folwell Ave, St. Paul, MN, USA
| |
Collapse
|
97
|
Inefficient co-feeding transmission of Borrelia afzelii in two common European songbirds. Sci Rep 2017; 7:39596. [PMID: 28054584 PMCID: PMC5214756 DOI: 10.1038/srep39596] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/25/2016] [Indexed: 12/26/2022] Open
Abstract
The spirochete bacterium Borrelia afzelii is the most common cause of Lyme borreliosis in Europe. This tick-borne pathogen can establish systemic infections in rodents but not in birds. However, several field studies have recovered larval Ixodes ricinus ticks infected with B. afzelii from songbirds suggesting successful transmission of B. afzelii. We reviewed the literature to determine which songbird species were the most frequent carriers of B. afzelii-infected I. ricinus larvae and nymphs. We tested experimentally whether B. afzelii is capable of co-feeding transmission on two common European bird species, the blackbird (Turdus merula) and the great tit (Parus major). For each bird species, four naïve individuals were infested with B. afzelii-infected I. ricinus nymphal ticks and pathogen-free larval ticks. None of the co-feeding larvae tested positive for B. afzelii in blackbirds, but a low percentage of infected larvae (3.33%) was observed in great tits. Transstadial transmission of B. afzelii DNA from the engorged nymphs to the adult ticks was observed in both bird species. However, BSK culture found that these spirochetes were not viable. Our study suggests that co-feeding transmission of B. afzelii is not efficient in these two songbird species.
Collapse
|
98
|
Palomar AM, Portillo A, Santibáñez P, Mazuelas D, Roncero L, Gutiérrez Ó, Oteo JA. Presence of Borrelia turdi and Borrelia valaisiana (Spirochaetales: Spirochaetaceae) in Ticks Removed From Birds in the North of Spain, 2009-2011. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:243-246. [PMID: 28082654 DOI: 10.1093/jme/tjw158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
The genus Borrelia includes species responsible for severe human diseases such as Lyme disease. Birds are involved in their epidemiology as dispersers of infected ticks (Ixodida: Ixodidae) and as reservoirs or amplifiers of the bacterium. Herein, the presence of Borrelia burgdorferi sensu lato (s.l.) Johnson, Schmid, Hyde, Steigerwalt & Brenner in 336 ticks collected from birds in the north of Spain from 2009 to 2011 was investigated. Nucleic acid extracts from 174 Ixodes frontalis (Panzer), 108 Haemaphysalis punctata Canestrini & Fanzango, 34 Hyalomma marginatum Koch, 17 Ixodes ricinus (L.), and 3 Ixodes spp. were screened for the presence of B. burgdorferi s.l. by PCR. Borrelia turdi was detected in 22 I. frontalis, 2 H. punctata, and 2 I. ricinus Additionally, 1 I. frontalis and 1 H. punctata were found to be infected with the human pathogen Borrelia valaisiana Moreover, 3 I. frontalis showed coinfection with both Borrelia species. This study corroborates the presence of B. turdi and B. valaisiana in ticks from birds in the north of Spain. The presence of these bacteria in larval specimens could suggest the role of birds as their reservoirs, or the occurrence of the cofeeding phenomenon. In addition, the detection of B. turdi and B. valaisiana in H. punctata and I. frontalis ticks, respectively, is reported for the first time.
Collapse
Affiliation(s)
- Ana M Palomar
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, Logroño, La Rioja, Spain (; ; ; )
| | - Aránzazu Portillo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, Logroño, La Rioja, Spain (; ; ; )
| | - Paula Santibáñez
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, Logroño, La Rioja, Spain (; ; ; )
| | - David Mazuelas
- Abies, Environment Resources Inc., Logroño, La Rioja, Spain (; )
| | - Lidia Roncero
- Abies, Environment Resources Inc., Logroño, La Rioja, Spain (; )
| | - Óscar Gutiérrez
- Aranzadi Society of Sciences, San Sebastián, Guipúzcoa, Spain
| | - José A Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, Logroño, La Rioja, Spain (; ; ; )
| |
Collapse
|
99
|
Co-feeding transmission facilitates strain coexistence in Borrelia burgdorferi, the Lyme disease agent. Epidemics 2016; 19:33-42. [PMID: 28089780 PMCID: PMC5474356 DOI: 10.1016/j.epidem.2016.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/18/2016] [Accepted: 12/18/2016] [Indexed: 01/08/2023] Open
Abstract
Coexistence of multiple tick-borne pathogens or strains is common in natural hosts and can be facilitated by resource partitioning of the host species, within-host localization, or by different transmission pathways. Most vector-borne pathogens are transmitted horizontally via systemic host infection, but transmission may occur in the absence of systemic infection between two vectors feeding in close proximity, enabling pathogens to minimize competition and escape the host immune response. In a laboratory study, we demonstrated that co-feeding transmission can occur for a rapidly-cleared strain of Borrelia burgdorferi, the Lyme disease agent, between two stages of the tick vector Ixodes scapularis while feeding on their dominant host, Peromyscus leucopus. In contrast, infections rapidly became systemic for the persistently infecting strain. In a field study, we assessed opportunities for co-feeding transmission by measuring co-occurrence of two tick stages on ears of small mammals over two years at multiple sites. Finally, in a modeling study, we assessed the importance of co-feeding on R0, the basic reproductive number. The model indicated that co-feeding increases the fitness of rapidly-cleared strains in regions with synchronous immature tick feeding. Our results are consistent with increased diversity of B. burgdorferi in areas of higher synchrony in immature feeding – such as the midwestern United States. A higher relative proportion of rapidly-cleared strains, which are less human pathogenic, would also explain lower Lyme disease incidence in this region. Finally, if co-feeding transmission also occurs on refractory hosts, it may facilitate the emergence and persistence of new pathogens with a more limited host range.
Collapse
|
100
|
Jacquet M, Margos G, Fingerle V, Voordouw MJ. Comparison of the lifetime host-to-tick transmission between two strains of the Lyme disease pathogen Borrelia afzelii. Parasit Vectors 2016; 9:645. [PMID: 27986081 PMCID: PMC5162089 DOI: 10.1186/s13071-016-1929-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background Transmission from the vertebrate host to the arthropod vector is a critical step in the life-cycle of any vector-borne pathogen. How the probability of host-to-vector transmission changes over the duration of the infection is an important predictor of pathogen fitness. The Lyme disease pathogen Borrelia afzelii is transmitted by Ixodes ricinus ticks and establishes a chronic infection inside rodent reservoir hosts. The present study compares the temporal pattern of host-to-tick transmission between two strains of B. afzelii. Methods Laboratory mice were experimentally infected via tick bite with one of two strains of B. afzelii: A3 and A10. Mice were repeatedly infested with pathogen-free larval Ixodes ricinus ticks over a period of 4 months. Engorged larval ticks moulted into nymphal ticks that were tested for infection with B. afzelii using qPCR. The proportion of infected nymphs was used to characterize the pattern of host-to-tick transmission over time. Results Both strains of B. afzelii followed a similar pattern of host-to-tick transmission. Transmission decreased from the acute to the chronic phase of the infection by 16.1 and 29.3% for strains A3 and A10, respectively. Comparison between strains found no evidence of a trade-off in transmission between the acute and chronic phase of infection. Strain A10 had higher lifetime fitness and established a consistently higher spirochete load in nymphal ticks than strain A3. Conclusion Quantifying the relationship between host-to-vector transmission and the age of infection in the host is critical for estimating the lifetime fitness of vector-borne pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1929-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maxime Jacquet
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Gabriele Margos
- National Reference Centre for Borrelia, Munich, Oberschleissheim, Germany.,Bavarian Health and Food Safety Authority, Munich, Oberschleissheim, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia, Munich, Oberschleissheim, Germany.,Bavarian Health and Food Safety Authority, Munich, Oberschleissheim, Germany
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|