51
|
Stammnitz MR, Gori K, Murchison EP. No evidence that a transmissible cancer has shifted from emergence to endemism in Tasmanian devils. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231875. [PMID: 38633353 PMCID: PMC11022658 DOI: 10.1098/rsos.231875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Tasmanian devils are endangered by a transmissible cancer known as Tasmanian devil facial tumour 1 (DFT1). A 2020 study by Patton et al. (Science 370, eabb9772 (doi:10.1126/science.abb9772)) used genome data from DFT1 tumours to produce a dated phylogenetic tree for this transmissible cancer lineage, and thence, using phylodynamics models, to estimate its epidemiological parameters and predict its future trajectory. It concluded that the effective reproduction number for DFT1 had declined to a value of one, and that the disease had shifted from emergence to endemism. We show that the study is based on erroneous mutation calls and flawed methodology, and that its conclusions cannot be substantiated.
Collapse
Affiliation(s)
- Maximilian R. Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
52
|
Quek ZBR, Ng SH. Hybrid-Capture Target Enrichment in Human Pathogens: Identification, Evolution, Biosurveillance, and Genomic Epidemiology. Pathogens 2024; 13:275. [PMID: 38668230 PMCID: PMC11054155 DOI: 10.3390/pathogens13040275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics, enabling the direct recovery of pathogen genomes from clinical and environmental samples. However, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metagenomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used. In this review, we outline the applications of HC in human pathogens-bacteria, fungi, parasites and viruses-including identification, genomic epidemiology, antimicrobial resistance genotyping, and evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ultimately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in this review, which is critical in preparing us for the next pandemic. We also found that while HC is a popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent, bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups and the prospect of combining HC with long-read HTS.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore 117510, Singapore
| | | |
Collapse
|
53
|
da Costa Castilho M, de Filippis AMB, Machado LC, de Lima Calvanti TYV, Lima MC, Fonseca V, Giovanetti M, Docena C, Neto AM, Bôtto-Menezes CHA, Kara EO, de La Barrera R, Modjarrad K, Giozza SP, Pereira GF, Alcantara LCJ, Broutet NJN, Calvet GA, Wallau GL, Franca RFO. Evidence of Zika Virus Reinfection by Genome Diversity and Antibody Response Analysis, Brazil. Emerg Infect Dis 2024; 30:310-320. [PMID: 38270216 PMCID: PMC10826783 DOI: 10.3201/eid3002.230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
We generated 238 Zika virus (ZIKV) genomes from 135 persons in Brazil who had samples collected over 1 year to evaluate virus persistence. Phylogenetic inference clustered the genomes together with previously reported ZIKV strains from northern Brazil, showing that ZIKV has been remained relatively stable over time. Temporal phylogenetic analysis revealed limited within-host diversity among most ZIKV-persistent infected associated samples. However, we detected unusual virus temporal diversity from >5 persons, uncovering the existence of divergent genomes within the same patient. All those patients showed an increase in neutralizing antibody levels, followed by a decline at the convalescent phase of ZIKV infection. Of interest, in 3 of those patients, titers of neutralizing antibodies increased again after 6 months of ZIKV infection, concomitantly with real-time reverse transcription PCR re-positivity, supporting ZIKV reinfection events. Altogether, our findings provide evidence for the existence of ZIKV reinfection events.
Collapse
|
54
|
Lai A, Bergna A, Fabiano V, Ventura CD, Fumagalli G, Mari A, Loiodice M, Zuccotti GV, Zehender G. Epidemiology and molecular analyses of respiratory syncytial virus in the 2021-2022 season in northern Italy. Front Microbiol 2024; 14:1327239. [PMID: 38239726 PMCID: PMC10794773 DOI: 10.3389/fmicb.2023.1327239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
Background Human respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infection among infants and young children worldwide, with seasonal peaks in January and February. This study aimed to characterize the RSV samples from a pediatric cohort in the 2021-2022 season in Italy. Methods In total, 104 samples were collected from pediatric patients attending the "Vittore Buzzi" Children's Hospital in Milan, Italy in the 2021-2022 season. RT-PCR and next-generation sequencing were used to discriminate subgroups and obtain whole genomes. Maximum likelihood and Bayesian phylogenetic methods were used to analyze Italian sequences in the European contest and date Italian clusters. Results The median age was 78 days, and 76.9% of subjects required hospitalization, with a higher proportion of patients under 3 months of age. An equal proportion of subgroups A (GA2.3.5) and B (GB5.0.5a) was found, with significant differences in length of hospitalization, days of supplemental oxygen treatment, and intravenous hydration duration. Phylogeny highlighted 26 and 37 clusters containing quite the total of Italian sequences for RSV-A and -B, respectively. Clusters presented a tMRCA between December 2011-February 2017 and May 2014-December 2016 for A and B subgroups, respectively. Compared to European sequences, specific mutations were observed in Italian strains. Conclusion These data confirmed a more severe clinical course of RSV-A, particularly in young children. This study permitted the characterization of recent Italian RSV whole genomes, highlighting the peculiar pattern of mutations that needs to be investigated further and monitored.
Collapse
Affiliation(s)
- Alessia Lai
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Annalisa Bergna
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Valentina Fabiano
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Pediatric Department, "Vittore Buzzi" Children's Hospital, Milan, Italy
| | - Carla della Ventura
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Giulia Fumagalli
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alessandra Mari
- Pediatric Department, "Vittore Buzzi" Children's Hospital, Milan, Italy
| | - Martina Loiodice
- Pediatric Department, "Vittore Buzzi" Children's Hospital, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Pediatric Department, "Vittore Buzzi" Children's Hospital, Milan, Italy
| | | |
Collapse
|
55
|
Hoffman SA, Maldonado YA. Emerging and re-emerging pediatric viral diseases: a continuing global challenge. Pediatr Res 2024; 95:480-487. [PMID: 37940663 PMCID: PMC10837080 DOI: 10.1038/s41390-023-02878-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The twenty-first century has been marked by a surge in viral epidemics and pandemics, highlighting the global health challenge posed by emerging and re-emerging pediatric viral diseases. This review article explores the complex dynamics contributing to this challenge, including climate change, globalization, socio-economic interconnectedness, geopolitical tensions, vaccine hesitancy, misinformation, and disparities in access to healthcare resources. Understanding the interactions between the environment, socioeconomics, and health is crucial for effectively addressing current and future outbreaks. This scoping review focuses on emerging and re-emerging viral infectious diseases, with an emphasis on pediatric vulnerability. It highlights the urgent need for prevention, preparedness, and response efforts, particularly in resource-limited communities disproportionately affected by climate change and spillover events. Adopting a One Health/Planetary Health approach, which integrates human, animal, and ecosystem health, can enhance equity and resilience in global communities. IMPACT: We provide a scoping review of emerging and re-emerging viral threats to global pediatric populations This review provides an update on current pediatric viral threats in the context of the COVID-19 pandemic This review aims to sensitize clinicians, epidemiologists, public health practitioners, and policy stakeholders/decision-makers to the role these viral diseases have in persistent pediatric morbidity and mortality.
Collapse
Affiliation(s)
- Seth A Hoffman
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yvonne A Maldonado
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
56
|
Chen Z, Lemey P, Yu H. Approaches and challenges to inferring the geographical source of infectious disease outbreaks using genomic data. THE LANCET. MICROBE 2024; 5:e81-e92. [PMID: 38042165 DOI: 10.1016/s2666-5247(23)00296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 12/04/2023]
Abstract
Genomic data hold increasing potential in the elucidation of transmission dynamics and geographical sources of infectious disease outbreaks. Phylogeographic methods that use epidemiological and genomic data obtained from surveillance enable us to infer the history of spatial transmission that is naturally embedded in the topology of phylogenetic trees as a record of the dispersal of infectious agents between geographical locations. In this Review, we provide an overview of phylogeographic approaches widely used for reconstructing the geographical sources of outbreaks of interest. These approaches can be classified into ancestral trait or state reconstruction and structured population models, with structured population models including popular structured coalescent and birth-death models. We also describe the major challenges associated with sequencing technologies, surveillance strategies, data sharing, and analysis frameworks that became apparent during the generation of large-scale genomic data in recent years, extending beyond inference approaches. Finally, we highlight the role of genomic data in geographical source inference and clarify how this enhances understanding and molecular investigations of outbreak sources.
Collapse
Affiliation(s)
- Zhiyuan Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Evolutionary Virology, KU Leuven, Leuven, Belgium
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
57
|
Gonçalves CDCS, Barros MGA, Bilha JK, Ottoni JR, Uliana MP, Passarini MR. Pharmacological potential of cyanobacteria secondary metabolites. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2024:385-409. [DOI: 10.1016/b978-0-443-22214-6.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
58
|
Kim J, Park K, Kim K, Noh J, Kim SG, Yang E, Cho HK, Lee SH, No JS, Lee GY, Lee D, Song DH, Gu SH, Park MS, Cho NH, Jeong ST, Kim WK, Song JW. High-resolution phylogeographical surveillance of Hantaan orthohantavirus using rapid amplicon-based Flongle sequencing, Republic of Korea. J Med Virol 2024; 96:e29346. [PMID: 38178580 DOI: 10.1002/jmv.29346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Orthohantaviruses, etiological agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome, pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) outbreaks are particularly endemic in Gyeonggi Province in northern area of the Republic of Korea (ROK). Small mammals were collected from three regions in the Gyeonggi Province during 2017 and 2018. Serological and molecular prevalence of HTNV was 25/201 (12.4%) and 10/25 (40%), respectively. A novel nanopore-based diagnostic assay using a cost-efficient Flongle chip was developed to rapidly and sensitively detect HTNV infection in rodent specimens within 3 h. A rapid phylogeographical surveillance of HTNV at high-resolution phylogeny was established using the amplicon-based Flongle sequencing. In total, seven whole-genome sequences of HTNV were newly obtained from wild rodents collected in Paju-si (Gaekhyeon-ri) and Yeoncheon-gun (Hyeonga-ri and Wangnim-ri), Gyeonggi Province. Phylogenetic analyses revealed well-supported evolutionary divergence and genetic diversity, enhancing the resolution of the phylogeographic map of orthohantaviruses in the ROK. Incongruences in phylogenetic patterns were identified among HTNV tripartite genomes, suggesting differential evolution for each segment. These findings provide crucial insights into on-site diagnostics, genome-based surveillance, and the evolutionary dynamics of orthohantaviruses to mitigate hantaviral outbreaks in HFRS-endemic areas in the ROK.
Collapse
Affiliation(s)
- Jongwoo Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyungmin Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijin Kim
- Centre for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Juyoung Noh
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunyoung Yang
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ho Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Jin Sun No
- Division of High-Risk Pathogens, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Geum-Young Lee
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Daesang Lee
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong-Hyun Song
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Se Hun Gu
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seong Tae Jeong
- Chem-Bio Technology Center, Agency for Defense Development, Daejeon, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Research, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
59
|
Xavier J, Fonseca V, Adelino T, Iani FCM, Pereira GC, Duarte MM, Lima M, Castro E, Oliveira C, Fritsch H, Guimarães N, Lamounier LO, Barreto FK, Braga de Oliveira CMM, Maymone Gonçalves CC, Malta Lima D, de Oliveira EC, de Castro Lichs GG, Gomes I, Mazaro J, Rodrigues JTN, Abrantes J, Colares JKB, Luz KG, Barbosa da Silva L, Demarchi L, Câmara MCB, Umaki Zardin MCS, Sabatini Mello Pinheiro R, Barbosa Souza R, Haddad SK, Figueiredo da Silva S, Slavov SN, Rocha T, Morel N, Chiparelli H, Burgueño A, Bórmida V, Cortinas MN, Martín RS, Pereira AC, dos Santos MF, André Júnior W, Mendez Rico J, Franco L, Rosewell A, do Carmo Said RF, de Albuquerque CFC, Noia Maciel EL, Santini de Oliveira M, Venâncio da Cunha R, Vinhal Frutuoso LC, de Filippis AMB, Giovanetti M, Carlos Junior Alcantara L. A Multiplex Nanopore Sequencing Approach for the Detection of Multiple Arboviral Species. Viruses 2023; 16:23. [PMID: 38257724 PMCID: PMC10821003 DOI: 10.3390/v16010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/24/2024] Open
Abstract
The emergence and continued geographic expansion of arboviruses and the growing number of infected people have highlighted the need to develop and improve multiplex methods for rapid and specific detection of pathogens. Sequencing technologies are promising tools that can help in the laboratory diagnosis of conditions that share common symptoms, such as pathologies caused by emerging arboviruses. In this study, we integrated nanopore sequencing and the advantages of reverse transcription polymerase chain reaction (RT-PCR) to develop a multiplex RT-PCR protocol for the detection of Chikungunya virus (CHIKV) and several orthoflaviviruses (such as dengue (Orthoflavivirus dengue), Zika (Orthoflavivirus zikaense), yellow fever (Orthoflavivirus flavi), and West Nile (Orthoflavivirus nilense) viruses) in a single reaction, which provides data for sequence-based differentiation of arbovirus lineages.
Collapse
Affiliation(s)
- Joilson Xavier
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vagner Fonseca
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília 70800-400, Brazil
| | - Talita Adelino
- Laboratorio Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte 30510-010, Brazil (F.C.M.I.)
| | - Felipe C. M. Iani
- Laboratorio Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte 30510-010, Brazil (F.C.M.I.)
| | - Glauco C. Pereira
- Laboratorio Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte 30510-010, Brazil (F.C.M.I.)
| | - Myrian M. Duarte
- Laboratorio Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte 30510-010, Brazil (F.C.M.I.)
| | - Mauricio Lima
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Emerson Castro
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Carla Oliveira
- lnstituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Hegger Fritsch
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Natalia Guimarães
- Laboratorio Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte 30510-010, Brazil (F.C.M.I.)
| | - Ludmila O. Lamounier
- Laboratorio Central de Saúde Pública do Estado de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte 30510-010, Brazil (F.C.M.I.)
| | - Fernanda Khouri Barreto
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | | | | - Danielle Malta Lima
- Faculty of the Graduate Program in Biotechnology (Renorbio), Universidade de Fortaleza, Fortaleza 60811-905, Brazil
| | | | | | - Iago Gomes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal 59037-170, Brazil
| | - Janaina Mazaro
- Secretaria Estadual de Saúde do estado do Acre, Rio Branco 69900-064, Brazil
| | | | - Jayra Abrantes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal 59037-170, Brazil
| | - Jeová K. B. Colares
- Faculty of the Graduate Program in Biotechnology (Renorbio), Universidade de Fortaleza, Fortaleza 60811-905, Brazil
| | - Kleber G. Luz
- Department of Infectious Diseases, Universidade Federal do Rio Grande do Norte, Natal 59078-900, Brazil
| | | | - Luiz Demarchi
- Laboratorio Central de Saúde Pública do Mato Grosso do Sul, Campo Grande 79074-460, Brazil
| | - Magaly C. B. Câmara
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal 59037-170, Brazil
| | | | | | | | - Simone K. Haddad
- Fundação Hemocentro de Ribeirão Preto, Ribeirão Preto 14051-140, Brazil
| | | | | | - Themis Rocha
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal 59037-170, Brazil
| | - Noelia Morel
- Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | - Hector Chiparelli
- Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | - Analía Burgueño
- Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | - Victoria Bórmida
- Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | - María N. Cortinas
- Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | - Rosario S. Martín
- Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | | | | | | | | | - Leticia Franco
- Pan American Health Organization, Washington, DC 20037, USA
| | - Alexander Rosewell
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília 70800-400, Brazil
| | | | | | - Ethel L. Noia Maciel
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília 70058-900, Brazil
| | | | | | | | | | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
- Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, 00128 Roma, Italy
- Climate Amplified Diseases and Epidemics (CLIMADE), Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Luiz Carlos Junior Alcantara
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
60
|
Matteson NL, Hassler GW, Kurzban E, Schwab MA, Perkins SA, Gangavarapu K, Levy JI, Parker E, Pride D, Hakim A, De Hoff P, Cheung W, Castro-Martinez A, Rivera A, Veder A, Rivera A, Wauer C, Holmes J, Wilson J, Ngo SN, Plascencia A, Lawrence ES, Smoot EW, Eisner ER, Tsai R, Chacón M, Baer NA, Seaver P, Salido RA, Aigner S, Ngo TT, Barber T, Ostrander T, Fielding-Miller R, Simmons EH, Zazueta OE, Serafin-Higuera I, Sanchez-Alavez M, Moreno-Camacho JL, García-Gil A, Murphy Schafer AR, McDonald E, Corrigan J, Malone JD, Stous S, Shah S, Moshiri N, Weiss A, Anderson C, Aceves CM, Spencer EG, Hufbauer EC, Lee JJ, King AJ, Ramesh KS, Nguyen KN, Saucedo K, Robles-Sikisaka R, Fisch KM, Gonias SL, Birmingham A, McDonald D, Karthikeyan S, Martin NK, Schooley RT, Negrete AJ, Reyna HJ, Chavez JR, Garcia ML, Cornejo-Bravo JM, Becker D, Isaksson M, Washington NL, Lee W, Garfein RS, Luna-Ruiz Esparza MA, Alcántar-Fernández J, Henson B, Jepsen K, Olivares-Flores B, Barrera-Badillo G, Lopez-Martínez I, Ramírez-González JE, Flores-León R, Kingsmore SF, Sanders A, Pradenas A, White B, Matthews G, Hale M, McLawhon RW, Reed SL, Winbush T, McHardy IH, Fielding RA, Nicholson L, Quigley MM, Harding A, Mendoza A, Bakhtar O, et alMatteson NL, Hassler GW, Kurzban E, Schwab MA, Perkins SA, Gangavarapu K, Levy JI, Parker E, Pride D, Hakim A, De Hoff P, Cheung W, Castro-Martinez A, Rivera A, Veder A, Rivera A, Wauer C, Holmes J, Wilson J, Ngo SN, Plascencia A, Lawrence ES, Smoot EW, Eisner ER, Tsai R, Chacón M, Baer NA, Seaver P, Salido RA, Aigner S, Ngo TT, Barber T, Ostrander T, Fielding-Miller R, Simmons EH, Zazueta OE, Serafin-Higuera I, Sanchez-Alavez M, Moreno-Camacho JL, García-Gil A, Murphy Schafer AR, McDonald E, Corrigan J, Malone JD, Stous S, Shah S, Moshiri N, Weiss A, Anderson C, Aceves CM, Spencer EG, Hufbauer EC, Lee JJ, King AJ, Ramesh KS, Nguyen KN, Saucedo K, Robles-Sikisaka R, Fisch KM, Gonias SL, Birmingham A, McDonald D, Karthikeyan S, Martin NK, Schooley RT, Negrete AJ, Reyna HJ, Chavez JR, Garcia ML, Cornejo-Bravo JM, Becker D, Isaksson M, Washington NL, Lee W, Garfein RS, Luna-Ruiz Esparza MA, Alcántar-Fernández J, Henson B, Jepsen K, Olivares-Flores B, Barrera-Badillo G, Lopez-Martínez I, Ramírez-González JE, Flores-León R, Kingsmore SF, Sanders A, Pradenas A, White B, Matthews G, Hale M, McLawhon RW, Reed SL, Winbush T, McHardy IH, Fielding RA, Nicholson L, Quigley MM, Harding A, Mendoza A, Bakhtar O, Browne SH, Olivas Flores J, Rincon Rodríguez DG, Gonzalez Ibarra M, Robles Ibarra LC, Arellano Vera BJ, Gonzalez Garcia J, Harvey-Vera A, Knight R, Laurent LC, Yeo GW, Wertheim JO, Ji X, Worobey M, Suchard MA, Andersen KG, Campos-Romero A, Wohl S, Zeller M. Genomic surveillance reveals dynamic shifts in the connectivity of COVID-19 epidemics. Cell 2023; 186:5690-5704.e20. [PMID: 38101407 PMCID: PMC10795731 DOI: 10.1016/j.cell.2023.11.024] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
The maturation of genomic surveillance in the past decade has enabled tracking of the emergence and spread of epidemics at an unprecedented level. During the COVID-19 pandemic, for example, genomic data revealed that local epidemics varied considerably in the frequency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage importation and persistence, likely due to a combination of COVID-19 restrictions and changing connectivity. Here, we show that local COVID-19 epidemics are driven by regional transmission, including across international boundaries, but can become increasingly connected to distant locations following the relaxation of public health interventions. By integrating genomic, mobility, and epidemiological data, we find abundant transmission occurring between both adjacent and distant locations, supported by dynamic mobility patterns. We find that changing connectivity significantly influences local COVID-19 incidence. Our findings demonstrate a complex meaning of "local" when investigating connected epidemics and emphasize the importance of collaborative interventions for pandemic prevention and mitigation.
Collapse
Affiliation(s)
| | - Gabriel W Hassler
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ezra Kurzban
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Madison A Schwab
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Sarah A Perkins
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Karthik Gangavarapu
- Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Joshua I Levy
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - David Pride
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA; Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Abbas Hakim
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; COVID-19 Detection, Investigation, Surveillance, Clinical, and Outbreak Response, California Department of Public Health, Richmond, CA, USA
| | - Peter De Hoff
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; COVID-19 Detection, Investigation, Surveillance, Clinical, and Outbreak Response, California Department of Public Health, Richmond, CA, USA
| | - Willi Cheung
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; COVID-19 Detection, Investigation, Surveillance, Clinical, and Outbreak Response, California Department of Public Health, Richmond, CA, USA
| | - Anelizze Castro-Martinez
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrea Rivera
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Veder
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Ariana Rivera
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Cassandra Wauer
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jacqueline Holmes
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jedediah Wilson
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Shayla N Ngo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Ashley Plascencia
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elijah S Lawrence
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth W Smoot
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Emily R Eisner
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Tsai
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Marisol Chacón
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Nathan A Baer
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Phoebe Seaver
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rodolfo A Salido
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Stefan Aigner
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Toan T Ngo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Tom Barber
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Tyler Ostrander
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Fielding-Miller
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA; Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA
| | | | - Oscar E Zazueta
- Department of Epidemiology, Secretaria de Salud de Baja California, Tijuana, Baja California, Mexico
| | | | - Manuel Sanchez-Alavez
- Centro de Diagnostico COVID-19 UABC, Tijuana, Baja California, Mexico; Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | | | - Abraham García-Gil
- Clinical Laboratory Department, Salud Digna, A.C, Tijuana, Baja California, Mexico
| | | | - Eric McDonald
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Jeremy Corrigan
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - John D Malone
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Sarah Stous
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Seema Shah
- County of San Diego Health and Human Services Agency, San Diego, CA, USA
| | - Niema Moshiri
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Alana Weiss
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Catelyn Anderson
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Christine M Aceves
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Emily G Spencer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Emory C Hufbauer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Justin J Lee
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Alison J King
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Karthik S Ramesh
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kelly N Nguyen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Kieran Saucedo
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | | | - Kathleen M Fisch
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA, USA
| | - Steven L Gonias
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Birmingham
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Smruthi Karthikeyan
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Natasha K Martin
- Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Robert T Schooley
- Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Agustin J Negrete
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Horacio J Reyna
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Jose R Chavez
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Maria L Garcia
- Facultad de Ciencias de la Salud Universidad Autonoma de Baja California Valle de Las Palmas, Tijuana, Baja California, Mexico
| | - Jose M Cornejo-Bravo
- Facultad de Ciencias Quimicas e Ingenieria, Universidad Autonoma de Baja California, Tijuana, Baja California, Mexico
| | | | | | | | | | - Richard S Garfein
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Benjamin Henson
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Beatriz Olivares-Flores
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - Gisela Barrera-Badillo
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - Irma Lopez-Martínez
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - José E Ramírez-González
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | - Rita Flores-León
- Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Ciudad de México, CDMX, Mexico
| | | | - Alison Sanders
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Allorah Pradenas
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin White
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Gary Matthews
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Matt Hale
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Ronald W McLawhon
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Sharon L Reed
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | - Terri Winbush
- Return to Learn, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | | - Sara H Browne
- Division of Infectious Disease and Global Public Health, University of California, San Diego, La Jolla, CA, USA; Specialist in Global Health, Encinitas, CA, USA
| | - Jocelyn Olivas Flores
- Facultad de Ciencias Quimicas e Ingenieria, Universidad Autonoma de Baja California, Tijuana, Baja California, Mexico; University of HealthMx, Tijuana, Baja California, Mexico
| | - Diana G Rincon Rodríguez
- University of HealthMx, Tijuana, Baja California, Mexico; Facultad de Medicina, Universidad Xochicalco, Tijuana, Baja California, Mexico
| | - Martin Gonzalez Ibarra
- University of HealthMx, Tijuana, Baja California, Mexico; Facultad de Medicina, Universidad Xochicalco, Tijuana, Baja California, Mexico
| | - Luis C Robles Ibarra
- University of HealthMx, Tijuana, Baja California, Mexico; Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Tijuana, Baja California, Mexico
| | - Betsy J Arellano Vera
- University of HealthMx, Tijuana, Baja California, Mexico; Instituto Mexicano del Seguro Social, Tijuana, Baja California, Mexico
| | - Jonathan Gonzalez Garcia
- University of HealthMx, Tijuana, Baja California, Mexico; SIMNSA, Tijuana, Baja California, Mexico
| | | | - Rob Knight
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Louise C Laurent
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Marc A Suchard
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristian G Andersen
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| | - Abraham Campos-Romero
- Innovation and Research Department, Salud Digna, A.C, Tijuana, Baja California, Mexico
| | - Shirlee Wohl
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Mark Zeller
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
61
|
Liu HY, Li X, Wang ZG, Liu SL. Virus-mimicking nanosystems: from design to biomedical applications. Chem Soc Rev 2023; 52:8481-8499. [PMID: 37929845 DOI: 10.1039/d3cs00138e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Nanomedicine, as an interdisciplinary discipline involving the development and application of nanoscale materials and technologies, is rapidly developing under the impetus of bionanotechnology and has attracted a great deal of attention from researchers. Especially, with the global outbreak of COVID-19, the in-depth investigation of the infection mechanism of the viruses has made the study of virus-mimicking nanosystems (VMNs) a popular research topic. In this review, we initiate with a brief historical perspective on the emergence and development of VMNs for providing a comprehensive view of the field. Next, we present emerging design principles and functionalization strategies for fabricating VMNs in light of viral infection mechanisms. Then, we describe recent advances in VMNs in biology, with a major emphasis on representative examples. Finally, we summarize the opportunities and challenges that exist in this field, hoping to provide new insights and inspiration to develop VMNs for disease diagnosis and treatment and to attract the interest of more researchers from different fields.
Collapse
Affiliation(s)
- Hao-Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
| | - Xiao Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
62
|
Guo J, Zhang Y, Gao Y, Li S, Xu G, Tian Z, Xu Q, Li X, Li Y, Zhang Y. Systematical analyses of large-scale transcriptome reveal viral infection-related genes and disease comorbidities. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:453-465. [PMID: 37651591 DOI: 10.1080/21691401.2023.2252477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Perturbation of transcriptome in viral infection patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent transcriptome and identification of robust biomarkers is not complete. In this study, we manually collected 23 datasets related to 6,197 blood transcriptomes across 16 types of respiratory virus infections. We applied a comprehensive systems biology approach starting with whole-blood transcriptomes combined with multilevel bioinformatics analyses to characterize the expression, functional pathways, and protein-protein interaction (PPI) networks to identify robust biomarkers and disease comorbidities. Robust gene markers of infection with different viruses were identified, which can accurately classify the normal and infected patients in train and validation cohorts. The biological processes (BP) of different viruses showed great similarity and enriched in infection and immune response pathways. Network-based analyses revealed that a variety of viral infections were associated with nervous system diseases, neoplasms and metabolic diseases, and significantly correlated with brain tissues. In summary, our manually collected transcriptomes and comprehensive analyses reveal key molecular markers and disease comorbidities in the process of viral infection, which could provide a valuable theoretical basis for the prevention of subsequent public health events for respiratory virus infections.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Ya Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Yueying Gao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Si Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Gang Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Zhanyu Tian
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Qi Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Xia Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, Hainan, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
63
|
Zhu W, Wang X, Lin Y, He L, Zhang R, Wang C, Zhu X, Tang T, Gu L. Genomic evolution of BA.5.2 and BF.7.14 derived lineages causing SARS-CoV-2 outbreak at the end of 2022 in China. Front Public Health 2023; 11:1273745. [PMID: 38106899 PMCID: PMC10725193 DOI: 10.3389/fpubh.2023.1273745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Since the end of 2022, when China adjusted its COVID-19 response measures, the SARS-CoV-2 epidemic has rapidly grown in the country. It is very necessary to monitor the evolutionary dynamic of epidemic variants. However, detailed reports presenting viral genome characteristics in China during this period are limited. In this study, we examined the epidemiological, genomic, and evolutionary characteristics of the SARS-CoV-2 genomes from China. We analyzed nearly 20,000 genomes belonging to 17 lineages, predominantly including BF.7.14 (22.3%), DY.2 (17.3%), DY.4 (15.5%), and BA.5.2.48 (11.9%). The Rt value increased rapidly after mid-November 2022, reaching its peak at the end of the month. We identified forty-three core mutations in the S gene and forty-seven core mutations in the ORF1ab gene. The positive selection of all circulating lineages was primarily due to non-synonymous substitutions in the S1 region. These findings provide insights into the genomic characteristics of SARS-CoV-2 genomes in China following the relaxation of the 'dynamic zero-COVID' policy and emphasize the importance of ongoing genomic monitoring.
Collapse
Affiliation(s)
- Wentao Zhu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Wang
- Central and Clinical Laboratory of Sanya People’s Hospital, Sanya, Hainan, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yujin Lin
- Central and Clinical Laboratory of Sanya People’s Hospital, Sanya, Hainan, China
| | - Lvfen He
- Central and Clinical Laboratory of Sanya People’s Hospital, Sanya, Hainan, China
| | - Rui Zhang
- Department of Laboratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiong Zhu
- Central and Clinical Laboratory of Sanya People’s Hospital, Sanya, Hainan, China
| | - Tian Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Gu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
64
|
Langat BK, Ochwedo KO, Borlang J, Osiowy C, Mutai A, Okoth F, Muge E, Andonov A, Maritim ES. Genetic diversity, haplotype analysis, and prevalence of Hepatitis B virus MHR mutations among isolates from Kenyan blood donors. PLoS One 2023; 18:e0291378. [PMID: 37963165 PMCID: PMC10645356 DOI: 10.1371/journal.pone.0291378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/28/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The rapid spread of HBV has resulted in the emergence of new variants. These viral genotypes and variants, in addition to carcinogenic risk, can be key predictors of therapy response and outcomes. As a result, a better knowledge of these emerging HBV traits will aid in the development of a treatment for HBV infection. However, many Sub-Saharan African nations, including Kenya, have insufficient molecular data on HBV strains circulating locally. This study conducted a population-genetics analysis to evaluate the genetic diversity of HBV among Kenyan blood donors. In addition, within the same cohort, the incidence and features of immune-associated escape mutations and stop-codons in Hepatitis B surface antigen (HBsAg) were determined. METHODS In September 2015 to October 2016, 194 serum samples were obtained from HBsAg-positive blood donors residing in eleven different Kenyan counties: Kisumu, Machakos, Uasin Gishu, Nairobi, Nakuru, Embu, Garissa, Kisii, Mombasa, Nyeri, and Turkana. For the HBV surface (S) gene, HBV DNA was isolated, amplified, and sequenced. The sequences obtained were utilized to investigate the genetic and haplotype diversity within the S genes. RESULTS Among the blood donors, 74.74% were male, and the overall mean age was 25.36 years. HBV genotype A1 (88.14%) was the most common, followed by genotype D (10.82%), genotype C (0.52%), and HBV genotype E (0.52%). The phylogenetic analysis revealed twelve major clades, with cluster III comprising solely of 68 blood donor isolates (68/194-35.05%). A high haplotype diversity (Hd = 0.94) and low nucleotide diversity (π = 0.02) were observed. Kisumu county had high number of haplotypes (22), but low haplotype (gene) diversity (Hd = 0.90). Generally, a total of 90 haplotypes with some consisting of more than one sequence were observed. The gene exhibited negative values for Tajima's D (-2.04, p<0.05) and Fu's Fs (-88.84). Several mutations were found in 139 isolates, either within or outside the Major Hydrophilic Area (MHR). There were 29 mutations found, with 37.9% of them situated inside the "a" determinant. The most common mutations in this research were T143M and K122R. Escape mutations linked to diagnostic failure, vaccination and immunoglobulin treatment evasion were also discovered. Also, one stop-codon, W163STP, inside the MHR, was found in one sample from genotype A. CONCLUSION In Kenya, HBV/A1 is still the most common genotype. Despite limited genetic and nucleotide diversity, haplotype network analysis revealed haplotype variance among HBV genotypes from Kenyan blood donors. The virological properties of immune escape, which may be the source of viral replication endurance, were discovered in the viral strains studied and included immune-escape mutations and stop-codon. The discovery of HBsAg mutations in MHR in all isolates highlighted the need of monitoring MHR mutations in Kenya.
Collapse
Affiliation(s)
| | - Kevin Omondi Ochwedo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | | | - Carla Osiowy
- National Microbiology Laboratory, Winnipeg, Canada
| | - Alex Mutai
- Kenya National Blood Transfusion Services, Nairobi, Kenya
| | - Fredrick Okoth
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Edward Muge
- Department of Medical Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | | |
Collapse
|
65
|
Lin Z, Sun B, Yang X, Jiang Y, Wu S, Lv B, Pan Y, Zhang Q, Wang X, Xiang G, Lou Y, Xiao X. Infectious Disease Diagnosis and Pathogen Identification Platform Based on Multiplex Recombinase Polymerase Amplification-Assisted CRISPR-Cas12a System. ACS Infect Dis 2023; 9:2306-2315. [PMID: 37811564 DOI: 10.1021/acsinfecdis.3c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Controlling and mitigating infectious diseases caused by multiple pathogens or pathogens with several subtypes require multiplex nucleic acid detection platforms that can detect several target genes rapidly, specifically, sensitively, and simultaneously. Here, we develop a detection platform, termed Multiplex Assay of RPA and Collateral Effect of Cas12a-based System (MARPLES), based on multiplex nucleic acid amplification and Cas12a ssDNase activation to diagnose these diseases and identify their pathogens. We use the clinical specimens of hand, foot, and mouth disease (HFMD) and influenza A to evaluate the feasibility of MARPLES in diagnosing the disease and identifying the pathogen, respectively, and find that MARPLES can accurately diagnose the HFMD associated with enterovirus 71, coxsackievirus A16 (CVA16), CVA6, or CVA10 and identify the exact types of H1N1 and H3N2 in an hour, showing high sensitivity and specificity and 100% predictive agreement with qRT-PCR. Collectively, our findings demonstrate that MARPLES is a promising multiplex nucleic acid detection platform for disease diagnosis and pathogen identification.
Collapse
Affiliation(s)
- Ziqin Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Baochang Sun
- Department of Laboratory, Wenzhou Center for Disease Control and Prevention, Wenzhou 325035, China
| | - Xi Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yayun Jiang
- Department of Clinical Laboratory, People's Hospital of Deyang City, Deyang 618000, China
| | - Sihong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Binbin Lv
- Department of Laboratory, Wenzhou Center for Disease Control and Prevention, Wenzhou 325035, China
| | - Yajing Pan
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingxun Zhang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing 100076, China
| | - Xiaoqiong Wang
- Zhuji Institute of Biomedicine, Wenzhou Medical University, Zhuji, Shaoxing 311800, Zhejiang, China
| | - Guangxin Xiang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
66
|
Bergna A, Lai A, Ventura CD, Bruzzone B, Weisz A, d'Avenia M, Testa S, Torti C, Sagnelli C, Menchise A, Brindicci G, Francisci D, Vicenti I, Clementi N, Callegaro A, Rullo EV, Caucci S, De Pace V, Orsi A, Brusa S, Greco F, Letizia V, Vaccaro E, Franci G, Rizzo F, Sagradi F, Lanfranchi L, Coppola N, Saracino A, Sampaolo M, Ronchiadin S, Galli M, Riva A, Zehender G. Genomic epidemiology of the main SARS-CoV-2 variants in Italy between summer 2020 and winter 2021. J Med Virol 2023; 95:e29193. [PMID: 37927140 DOI: 10.1002/jmv.29193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Since the beginning of the pandemic, SARS-CoV-2 has shown a great genomic variability, resulting in the continuous emergence of new variants that has made their global monitoring and study a priority. This work aimed to study the genomic heterogeneity, the temporal origin, the rate of viral evolution and the population dynamics of the main circulating variants (20E.EU1, Alpha and Delta) in Italy, in August 2020-January 2022 period. For phylogenetic analyses, three datasets were set up, each for a different main lineage/variant circulating in Italy in that time including other Italian and International sequences of the same lineage/variant, available in GISAID sampled in the same times. The international dataset showed 26 (23% Italians, 23% singleton, 54% mixed), 40 (60% mixed, 37.5% Italians, 1 singleton) and 42 (85.7% mixed, 9.5% singleton, 4.8% Italians) clusters with at least one Italian sequence, in 20E.EU1 clade, Alpha and Delta variants, respectively. The estimation of tMRCAs in the Italian clusters (including >70% of genomes from Italy) showed that in all the lineage/variant, the earliest clusters were the largest in size and the most persistent in time and frequently mixed. Isolates from the major Italian Islands tended to segregate in clusters more frequently than those from other part of Italy. The study of infection dynamics showed a positive correlation between the trend in the effective number of infections estimated by BSP model and the Re curves estimated by birth-death skyline plot. The present work highlighted different evolutionary dynamics of studied lineages with high concordance between epidemiological parameters estimation and phylodynamic trends suggesting that the mechanism of replacement of the SARS-CoV-2 variants must be related to a complex of factors involving the transmissibility, as well as the implementation of control measures, and the level of cross-immunization within the population.
Collapse
Affiliation(s)
- Annalisa Bergna
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Carla Della Ventura
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno and Genome Research Center for Health, Baronissi, Italy
| | - Morena d'Avenia
- UOSVD of Cytopathology and Screening, Department of Laboratory Medicines, Ospedale di Venere, Asl Bari, Bari, Italy
| | - Sophie Testa
- Unit of Infectious Diseases, Azienda Socio Sanitaria Territoriale Cremona, Cremona, Italy
| | - Carlo Torti
- Infectious and Tropical Disease Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Menchise
- Microbiology and Virology Laboratory, A.O.R. San Carlo Potenza, Potenza, Italy
| | | | - Daniela Francisci
- Department of Medicine and Surgery, Clinic of Infectious Diseases, "Santa Maria della Misericordia" Hospital, University of Perugia, Perugia, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Emmanuele Venanzi Rullo
- Unit of Infectious Diseases, Department of Experimental and Clinical Medicine, University of Messina, Messina, Italy
| | - Sara Caucci
- Department of Biomedical Sciences and Public Health, Virology Unit, Polytechnic University of Marche, Ancona, Italy
| | | | - Andrea Orsi
- Hygiene Unit, IRCCS AOU San Martino-IST, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Stefano Brusa
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | | | - Vittoria Letizia
- UOSD Genetic and Molecular Biology, AORN Sant'Anna and San Sebastiano di Caserta, Caserta, Italy
| | - Emilia Vaccaro
- Molecular Biology Units, AOU 'S. Giovanni di Dio e Ruggi d'Aragona' Università di Salerno, Salerno, Italy
| | - Gianluigi Franci
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno and Genome Research Center for Health, Baronissi, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno and Genome Research Center for Health, Baronissi, Italy
| | - Fabio Sagradi
- Unit of Infectious Diseases, Azienda Socio Sanitaria Territoriale Cremona, Cremona, Italy
| | - Leonardo Lanfranchi
- Unit of Infectious Diseases, Azienda Socio Sanitaria Territoriale Cremona, Cremona, Italy
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Michela Sampaolo
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ronchiadin
- Artificial Intelligence Laboratory, Intesa Sanpaolo Innovation Center, Turin, Italy
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Agostino Riva
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | |
Collapse
|
67
|
Maia LJ, de Oliveira CH, Silva AB, Souza PAA, Müller NFD, Cardoso JDC, Ribeiro BM, de Abreu FVS, Campos FS. Arbovirus surveillance in mosquitoes: Historical methods, emerging technologies, and challenges ahead. Exp Biol Med (Maywood) 2023; 248:2072-2082. [PMID: 38183286 PMCID: PMC10800135 DOI: 10.1177/15353702231209415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
Abstract
Arboviruses cause millions of infections each year; however, only limited options are available for treatment and pharmacological prevention. Mosquitoes are among the most important vectors for the transmission of several pathogens to humans. Despite advances, the sampling, viral detection, and control methods for these insects remain ineffective. Challenges arise with the increase in mosquito populations due to climate change, insecticide resistance, and human interference affecting natural habitats, which contribute to the increasing difficulty in controlling the spread of arboviruses. Therefore, prioritizing arbovirus surveillance is essential for effective epidemic preparedness. In this review, we offer a concise historical account of the discovery and monitoring of arboviruses in mosquitoes, from mosquito capture to viral detection. We then analyzed the advantages and limitations of these traditional methods. Furthermore, we investigated the potential of emerging technologies to address these limitations, including the implementation of next-generation sequencing, paper-based devices, spectroscopic detectors, and synthetic biosensors. We also provide perspectives on recurring issues and areas of interest such as insect-specific viruses.
Collapse
Affiliation(s)
- Luis Janssen Maia
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Baculovírus, Universidade de Brasília, Brasília 70910-900, Brasil
| | - Cirilo Henrique de Oliveira
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas 39560-000, Brasil
| | - Arthur Batista Silva
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins, Gurupi 77402-970, Brasil
| | - Pedro Augusto Almeida Souza
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Salinas 39560-000, Brasil
| | - Nicolas Felipe Drumm Müller
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| | - Jader da Cruz Cardoso
- Divisão de Vigilância Ambiental em Saúde, Centro Estadual de Vigilância em Saúde, Secretaria Estadual de Saúde do Rio Grande do Sul, Porto Alegre 90610-000, Brasil
| | - Bergmann Morais Ribeiro
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Laboratório de Baculovírus, Universidade de Brasília, Brasília 70910-900, Brasil
| | | | - Fabrício Souza Campos
- Laboratório de Bioinformática e Biotecnologia, Universidade Federal do Tocantins, Gurupi 77402-970, Brasil
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brasil
| |
Collapse
|
68
|
Cao Y, Wu J, Hu Y, Chai Y, Song J, Duan J, Zhang S, Xu X. Virus-induced lncRNA-BTX allows viral replication by regulating intracellular translocation of DHX9 and ILF3 to induce innate escape. Cell Rep 2023; 42:113262. [PMID: 37864796 DOI: 10.1016/j.celrep.2023.113262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023] Open
Abstract
The roles of long noncoding RNA (lncRNA) and RNA-binding proteins (RBPs) in antiviral innate response warrant further investigation. Here, we identify an lncRNA, termed lncRNA-BTX (between Tbk1 and Xpot), which is upregulated upon viral infection via an IRF3-type I interferon-independent pathway, promoting viral innate immune escape. Deletion of lncRNA-BTX in cells or mice significantly reduces viral load in vitro or in vivo, respectively. Mechanistically, lncRNA-BTX strengthens the interactions between DHX9 or ILF3 (two RBPs that have opposite functions in regulating the replication of RNA virus) and their respective partner, JMJD6 or ILF2, which regulates intracellular translocations of DHX9 and ILF3 from the nucleus to the cytoplasm. Put simply, lncRNA-BTX facilitates DHX9's return to the cytoplasm and retains ILF3 within the nucleus, promoting viral replication. This work unveils a strategy developed by the virus to bypass host innate immunity, thus providing a potential target for antiviral therapeutics.
Collapse
Affiliation(s)
- Yang Cao
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiacheng Wu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Ye Hu
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yangyang Chai
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jiaying Song
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Jiaqi Duan
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Song Zhang
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoqing Xu
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China; Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
69
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
70
|
Hare D, Dembicka KM, Brennan C, Campbell C, Sutton-Fitzpatrick U, Stapleton PJ, De Gascun CF, Dunne CP. Whole-genome sequencing to investigate transmission of SARS-CoV-2 in the acute healthcare setting: a systematic review. J Hosp Infect 2023; 140:139-155. [PMID: 37562592 DOI: 10.1016/j.jhin.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Whole-genome sequencing (WGS) has been used widely to elucidate transmission of SARS-CoV-2 in acute healthcare settings, and to guide infection, prevention, and control (IPC) responses. AIM To systematically appraise available literature, published between January 1st, 2020 and June 30th, 2022, describing the implementation of WGS in acute healthcare settings to characterize nosocomial SARS-CoV-2 transmission. METHODS Searches of the PubMed, Embase, Ovid MEDLINE, EBSCO MEDLINE, and Cochrane Library databases identified studies in English reporting the use of WGS to investigate SARS-CoV-2 transmission in acute healthcare environments. Publications involved data collected up to December 31st, 2021, and findings were reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. FINDINGS In all, 3088 non-duplicate records were retrieved; 97 met inclusion criteria, involving 62 outbreak analyses and 35 genomic surveillance studies. No publications from low-income countries were identified. In 87/97 (90%), WGS supported hypotheses for nosocomial transmission, while in 46 out of 97 (47%) suspected transmission events were excluded. An IPC intervention was attributed to the use of WGS in 18 out of 97 (18%); however, only three (3%) studies reported turnaround times ≤7 days facilitating near real-time IPC action, and none reported an impact on the incidence of nosocomial COVID-19 attributable to WGS. CONCLUSION WGS can elucidate transmission of SARS-CoV-2 in acute healthcare settings to enhance epidemiological investigations. However, evidence was not identified to support sequencing as an intervention to reduce the incidence of SARS-CoV-2 in hospital or to alter the trajectory of active outbreaks.
Collapse
Affiliation(s)
- D Hare
- UCD National Virus Reference Laboratory, University College Dublin, Ireland; School of Medicine, University of Limerick, Limerick, Ireland.
| | - K M Dembicka
- School of Medicine, University of Limerick, Limerick, Ireland
| | - C Brennan
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | - C Campbell
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | | | | | - C F De Gascun
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | - C P Dunne
- School of Medicine, University of Limerick, Limerick, Ireland; Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| |
Collapse
|
71
|
Chavda VP, Vuppu S, Mishra T, Stojanovska L, Apostolopoulos V. Importance of mental health and exercise in the tough time of viral outbreaks. Maturitas 2023; 176:107751. [PMID: 37002055 DOI: 10.1016/j.maturitas.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Lily Stojanovska
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Immunology and Translational Research Group, Melbourne 3030, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Melbourne 3021, VIC, Australia.
| |
Collapse
|
72
|
Bao M, Waitkus J, Liu L, Chang Y, Xu Z, Qin P, Chen J, Du K. Micro- and nanosystems for the detection of hemorrhagic fever viruses. LAB ON A CHIP 2023; 23:4173-4200. [PMID: 37675935 DOI: 10.1039/d3lc00482a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Hemorrhagic fever viruses (HFVs) are virulent pathogens that can cause severe and often fatal illnesses in humans. Timely and accurate detection of HFVs is critical for effective disease management and prevention. In recent years, micro- and nano-technologies have emerged as promising approaches for the detection of HFVs. This paper provides an overview of the current state-of-the-art systems for micro- and nano-scale approaches to detect HFVs. It covers various aspects of these technologies, including the principles behind their sensing assays, as well as the different types of diagnostic strategies that have been developed. This paper also explores future possibilities of employing micro- and nano-systems for the development of HFV diagnostic tools that meet the practical demands of clinical settings.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Jacob Waitkus
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Li Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Yu Chang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Zhiheng Xu
- Department of Industrial Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
73
|
Sharma S, Pannu J, Chorlton S, Swett JL, Ecker DJ. Threat Net: A Metagenomic Surveillance Network for Biothreat Detection and Early Warning. Health Secur 2023; 21:347-357. [PMID: 37367195 DOI: 10.1089/hs.2022.0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Early detection of novel pathogens can prevent or substantially mitigate biological incidents, including pandemics. Metagenomic next-generation sequencing (mNGS) of symptomatic clinical samples may enable detection early enough to contain outbreaks, limit international spread, and expedite countermeasure development. In this article, we propose a clinical mNGS architecture we call "Threat Net," which focuses on the hospital emergency department as a high-yield surveillance location. We develop a susceptible-exposed-infected-removed (SEIR) simulation model to estimate the effectiveness of Threat Net in detecting novel respiratory pathogen outbreaks. Our analysis serves to quantify the value of routine clinical mNGS for respiratory pandemic detection by estimating the cost and epidemiological effectiveness at differing degrees of hospital coverage across the United States. We estimate that a biological threat detection network such as Threat Net could be deployed across hospitals covering 30% of the population in the United States. Threat Net would cost between $400 million and $800 million annually and have a 95% chance of detecting a novel respiratory pathogen with traits of SARS-CoV-2 after 10 emergency department presentations and 79 infections across the United States. Our analyses suggest that implementing Threat Net could help prevent or substantially mitigate the spread of a respiratory pandemic pathogen in the United States.
Collapse
Affiliation(s)
- Siddhanth Sharma
- Siddhanth Sharma, MD MPH, is a Public Health Registrar, Metropolitan Communicable Disease Control, Perth, Australia
| | - Jaspreet Pannu
- Jaspreet Pannu, MD, is a Resident Physician, Department of Medicine, Stanford University School of Medicine, Stanford, CA. Johns Hopkins Center for Health Security, Baltimore, MD
| | - Sam Chorlton
- Sam Chorlton, MD, D(ABMM), is Chief Executive Officer, BugSeq Bioinformatics, Vancouver, Canada
| | - Jacob L Swett
- Jacob L. Swett, DPhil, is Cofounder, altLabs, Inc., Berkeley, CA
| | - David J Ecker
- David J. Ecker, PhD, is Vice President of Strategic Innovation, Ionis Pharmaceuticals, Carlsbad, CA
| |
Collapse
|
74
|
Basu U. An idea to explore: Introduction to research methods. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 51:566-573. [PMID: 37431806 DOI: 10.1002/bmb.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
A curriculum description of a general introductory biology course titled "Introduction to Research Methods" is presented here. The course aims to provide a glimpse of biomedical research to students who have had no or limited exposure to research to encourage them to do research as freshmen. Thus, this course aims to better equip and invoke interest of high school and college students to undertake research by addressing specific knowledge gaps, recruiting students from underserved communities, and promoting teamwork, community learning, and equity. The course covers in broad strokes key topics like forming a hypothesis, chemical safety, research practices, chemical calculations, cloning and so forth, that is useful for undergraduate trainees initiated to research. The course also aims to put each topic in a social context that provides room for contemplating science for young trainee scientists thus addressing the gap between science and society. Student feedback reveals a positive learning experience and self-reported improvement of knowledge on the various topics taught. As a result, the concepts and pedagogical tools used in this course can be adapted to increase students' involvement and retainment in biomedical research from underrepresented communities.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
75
|
Ritsch M, Cassman NA, Saghaei S, Marz M. Navigating the Landscape: A Comprehensive Review of Current Virus Databases. Viruses 2023; 15:1834. [PMID: 37766241 PMCID: PMC10537806 DOI: 10.3390/v15091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Viruses are abundant and diverse entities that have important roles in public health, ecology, and agriculture. The identification and surveillance of viruses rely on an understanding of their genome organization, sequences, and replication strategy. Despite technological advancements in sequencing methods, our current understanding of virus diversity remains incomplete, highlighting the need to explore undiscovered viruses. Virus databases play a crucial role in providing access to sequences, annotations and other metadata, and analysis tools for studying viruses. However, there has not been a comprehensive review of virus databases in the last five years. This study aimed to fill this gap by identifying 24 active virus databases and included an extensive evaluation of their content, functionality and compliance with the FAIR principles. In this study, we thoroughly assessed the search capabilities of five database catalogs, which serve as comprehensive repositories housing a diverse array of databases and offering essential metadata. Moreover, we conducted a comprehensive review of different types of errors, encompassing taxonomy, names, missing information, sequences, sequence orientation, and chimeric sequences, with the intention of empowering users to effectively tackle these challenges. We expect this review to aid users in selecting suitable virus databases and other resources, and to help databases in error management and improve their adherence to the FAIR principles. The databases listed here represent the current knowledge of viruses and will help aid users find databases of interest based on content, functionality, and scope. The use of virus databases is integral to gaining new insights into the biology, evolution, and transmission of viruses, and developing new strategies to manage virus outbreaks and preserve global health.
Collapse
Affiliation(s)
- Muriel Ritsch
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Noriko A. Cassman
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Shahram Saghaei
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| |
Collapse
|
76
|
Ferreira T, Vale AC, Pinto AC, Costa RV, Pais V, Sousa D, Gomes F, Pinto G, Dias JG, Moreira IP, Mota C, Bessa J, Antunes JC, Henriques M, Cunha F, Fangueiro R. Comparison of Zinc Oxide Nanoparticle Integration into Non-Woven Fabrics Using Different Functionalisation Methods for Prospective Application as Active Facemasks. Polymers (Basel) 2023; 15:3499. [PMID: 37688127 PMCID: PMC10489795 DOI: 10.3390/polym15173499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
The development of advanced facemasks stands out as a paramount priority in enhancing healthcare preparedness. In this work, different polypropylene non-woven fabrics (NWF) were characterised regarding their structural, physicochemical and comfort-related properties. The selected NWF for the intermediate layer was functionalised with zinc oxide nanoparticles (ZnO NPs) 0.3 and 1.2wt% using three different methods: electrospinning, dip-pad-dry and exhaustion. After the confirmation of ZnO NP content and distribution within the textile fibres by morphological and chemical analysis, the samples were evaluated regarding their antimicrobial properties. The functionalised fabrics obtained via dip-pad-dry unveiled the most promising data, with 0.017 ± 0.013wt% ZnO NPs being mostly located at the fibre's surface and capable of total eradication of Staphylococcus aureus and Escherichia coli colonies within the tested 24 h (ISO 22196 standard), as well as significantly contributing (**** p < 0.0001) to the growth inhibition of the bacteriophage MS2, a surrogate of the SARS-CoV-2 virus (ISO 18184 standard). A three-layered structure was assembled and thermoformed to obtain facemasks combining the previously chosen NWF, and its resulting antimicrobial capacity, filtration efficiency and breathability (NP EN ISO 149) were assessed. The developed three-layered and multiscaled fibrous structures with antimicrobial capacities hold immense potential as active individual protection facemasks.
Collapse
Affiliation(s)
- Tânia Ferreira
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Ana Catarina Vale
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Alexandra C. Pinto
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
| | - Rita V. Costa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Vânia Pais
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Diana Sousa
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
| | - Fernanda Gomes
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Graça Pinto
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - José Guilherme Dias
- Poleva—Termoconformados, S.A. Rua da Estrada 1939, 4610-744 Felgueiras, Portugal;
| | - Inês P. Moreira
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Carlos Mota
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - João Bessa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Joana C. Antunes
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| | - Mariana Henriques
- CEB, Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (D.S.); (F.G.); (G.P.); (M.H.)
- LABBELS, Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Fernando Cunha
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
| | - Raul Fangueiro
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (T.F.); (A.C.V.); (R.V.C.); (V.P.); (I.P.M.); (C.M.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800-058 Guimarães, Portugal;
| |
Collapse
|
77
|
Wasik BR, Rothschild E, Voorhees IEH, Reedy SE, Murcia PR, Pusterla N, Chambers TM, Goodman LB, Holmes EC, Kile JC, Parrish CR. Understanding the divergent evolution and epidemiology of H3N8 influenza viruses in dogs and horses. Virus Evol 2023; 9:vead052. [PMID: 37692894 PMCID: PMC10484056 DOI: 10.1093/ve/vead052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
Cross-species virus transmission events can lead to dire public health emergencies in the form of epidemics and pandemics. One example in animals is the emergence of the H3N8 equine influenza virus (EIV), first isolated in 1963 in Miami, FL, USA, after emerging among horses in South America. In the early 21st century, the American lineage of EIV diverged into two 'Florida' clades that persist today, while an EIV transferred to dogs around 1999 and gave rise to the H3N8 canine influenza virus (CIV), first reported in 2004. Here, we compare CIV in dogs and EIV in horses to reveal their host-specific evolution, to determine the sources and connections between significant outbreaks, and to gain insight into the factors controlling their different evolutionary fates. H3N8 CIV only circulated in North America, was geographically restricted after the first few years, and went extinct in 2016. Of the two EIV Florida clades, clade 1 circulates widely and shows frequent transfers between the USA and South America, Europe and elsewhere, while clade 2 was globally distributed early after it emerged, but since about 2018 has only been detected in Central Asia. Any potential zoonotic threat of these viruses to humans can only be determined with an understanding of its natural history and evolution. Our comparative analysis of these three viral lineages reveals distinct patterns and rates of sequence variation yet with similar overall evolution between clades, suggesting epidemiological intervention strategies for possible eradication of H3N8 EIV.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Evin Rothschild
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ian E H Voorhees
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Stephanie E Reedy
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, Scotland
| | - Nicola Pusterla
- Department of Medicine & Epidemiology, School Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Thomas M Chambers
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Laura B Goodman
- Baker Institute for Animal Health, Department of Public and Ecosystems Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - James C Kile
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
78
|
Zhang C, Liu H, Li X, Xu F, Li Z. Modularized synthetic biology enabled intelligent biosensors. Trends Biotechnol 2023; 41:1055-1065. [PMID: 36967259 DOI: 10.1016/j.tibtech.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Biosensors that sense the concentration of a specified target and produce a specific signal output have become important technology for biological analysis. Recently, intelligent biosensors have received great interest due to their adaptability to meet sophisticated demands. Advances in developing standard modules and carriers in synthetic biology have shed light on intelligent biosensors that can implement advanced analytical processing to better accommodate practical applications. This review focuses on intelligent synthetic biology-enabled biosensors (SBBs). First, we illustrate recent progress in intelligent SBBs with the capability of computation, memory storage, and self-calibration. Then, we discuss emerging applications of SBBs in point-of-care testing (POCT) and wearable monitoring. Finally, future perspectives on intelligent SBBs are proposed.
Collapse
Affiliation(s)
- Chao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xiujun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China.
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China.
| |
Collapse
|
79
|
Hollingsworth BD, Grubaugh ND, Lazzaro BP, Murdock CC. Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics. PLoS Pathog 2023; 19:e1011588. [PMID: 37651317 PMCID: PMC10470969 DOI: 10.1371/journal.ppat.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.
Collapse
Affiliation(s)
- Brandon D Hollingsworth
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Nathan D Grubaugh
- Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale University, New Haven, Connecticut, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Courtney C Murdock
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
- Northeast Regional Center for Excellence in Vector-borne Diseases, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
80
|
Xavier J, Alcantara LCJ, Fonseca V, Lima M, Castro E, Fritsch H, Oliveira C, Guimarães N, Adelino T, Evaristo M, Rodrigues ES, Santos EV, de La-Roque D, de Moraes L, Tosta S, Neto A, Rosewell A, Mendonça AF, Leite A, Vasconcelos A, Silva de Mello AL, Vasconcelos B, Montalbano CA, Zanluca C, Freitas C, de Albuquerque CFC, Duarte Dos Santos CN, Santos CS, Dos Santos CA, Gonçalves CCM, Teixeira D, Neto DFL, Cabral D, de Oliveira EC, Noia Maciel EL, Pereira FM, Iani F, de Carvalho FP, Andrade G, Bezerra G, de Castro Lichs GG, Pereira GC, Barroso H, Franz HCF, Ferreira H, Gomes I, Riediger IN, Rodrigues I, de Siqueira IC, Silva J, Rico JM, Lima J, Abrantes J, do Nascimento JPM, Wasserheit JN, Pastor J, de Magalhães JJF, Luz KG, Lima Neto LG, Frutuoso LCV, da Silva LB, Sena L, de Sousa LAF, Pereira LA, Demarchi L, Câmara MCB, Astete MG, Almiron M, Lima M, Umaki Zardin MCS, Presibella MM, Falcão MB, Gale M, Freire N, Marques N, de Moura NFO, Almeida Da Silva PE, Rabinowitz P, da Cunha RV, Trinta KS, do Carmo Said RF, Kato R, Stabeli R, de Jesus R, Hans Santos R, Kashima S, Slavov SN, Andrade T, Rocha T, Carneiro T, Nardy V, da Silva V, Carvalho WG, Van Voorhis WC, Araujo WN, de Filippis AMB, Giovanetti M. Increased interregional virus exchange and nucleotide diversity outline the expansion of chikungunya virus in Brazil. Nat Commun 2023; 14:4413. [PMID: 37479700 PMCID: PMC10362057 DOI: 10.1038/s41467-023-40099-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The emergence and reemergence of mosquito-borne diseases in Brazil such as yellow fever, zika, chikungunya, and dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus across the country since its first detection in 2014 in Northeast Brazil. In this work, we carried out on-site training activities in genomic surveillance in partnership with the National Network of Public Health Laboratories that have led to the generation of 422 chikungunya virus genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersal dynamics of the chikungunya virus East-Central-South-African lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C > T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving the genetic diversity of the chikungunya virus in Brazil.
Collapse
Affiliation(s)
- Joilson Xavier
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Carlos Junior Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Vagner Fonseca
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | - Mauricio Lima
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Emerson Castro
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Hegger Fritsch
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carla Oliveira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Natalia Guimarães
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Talita Adelino
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | | | | | | | - Laise de Moraes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Stephane Tosta
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adelino Neto
- Laboratório Central de Saúde Pública do Piaui, Piauí, Brazil
| | - Alexander Rosewell
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | | | - Anderson Leite
- Laboratório Central de Saúde Pública de Alagoas, Maceió, Brazil
| | | | | | | | | | - Camila Zanluca
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Carla Freitas
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | | | | | - Cleiton S Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | | | | | - Dalane Teixeira
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Daniel F L Neto
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | - Diego Cabral
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | | | - Ethel L Noia Maciel
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, Brazil
| | | | - Felipe Iani
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | | | - Gabriela Bezerra
- Laboratório Central de Saúde Pública de Sergipe, Aracaju, Brazil
| | | | - Glauco Carvalho Pereira
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Haline Barroso
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | | | - Hivylla Ferreira
- Laboratório Central de Saúde Pública do Maranhão, São Luís, Brazil
| | - Iago Gomes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Jacilane Silva
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | | | - Jaqueline Lima
- Laboratório Central de Saúde Pública da Bahia, Salvador, Brazil
| | - Jayra Abrantes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | - Judith N Wasserheit
- Department of Global Health and Medicine, University of Washington, Washington, USA
| | - Julia Pastor
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | - Jurandy J F de Magalhães
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
- Universidade de Pernambuco, Serra Talhada, Brazil
| | | | | | - Livia C V Frutuoso
- Coordenação Geral das Arboviroses, Ministério da Saúde, Brasília, Brazil
| | | | - Ludmila Sena
- Laboratório Central de Saúde Pública de Sergipe, Aracaju, Brazil
| | | | | | - Luiz Demarchi
- Laboratório Central de Saúde Pública do Mato Grosso do Sul, Campo Grande, Brazil
| | - Magaly C B Câmara
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | | | | | - Maricelia Lima
- Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | | | - Melissa B Falcão
- Secretaria de Saúde de Feira de Santana, Feira de Santana, Brazil
| | - Michael Gale
- Department of Immunology, University of Washington, Washington, USA
| | - Naishe Freire
- Laboratório Central de Saúde Pública de Pernambuco, Natal, Brazil
| | - Nelson Marques
- Laboratório Central de Saúde Pública do Paraná, Paraná, Brazil
| | - Noely F O de Moura
- Coordenação Geral das Arboviroses, Ministério da Saúde, Brasília, Brazil
| | | | - Peter Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, Washington, USA
| | - Rivaldo V da Cunha
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Rio de Janeiro, Brazil
| | - Karen S Trinta
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Rio de Janeiro, Brazil
| | | | - Rodrigo Kato
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | - Rodrigo Stabeli
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brasília, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brasília, Brazil
| | | | - Simone Kashima
- Fundação Hemocentro de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Svetoslav N Slavov
- Fundação Hemocentro de Ribeirão Preto, Ribeirão Preto, Brazil
- Center for Research Development, CDC, Butantan Institute, São Paulo, Brazil
| | - Tamires Andrade
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Themis Rocha
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Natal, Brazil
| | - Thiago Carneiro
- Laboratório Central de Saúde Pública da Paraíba, João Pessoa, Brazil
| | - Vanessa Nardy
- Laboratório Central de Saúde Pública da Bahia, Salvador, Brazil
| | | | | | | | | | | | - Marta Giovanetti
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, Rome, Italy.
| |
Collapse
|
81
|
Park K, Noh J, Kim K, Kim J, Cho HK, Kim SG, Yang E, Kim WK, Song JW. A Development of Rapid Whole-Genome Sequencing of Seoul orthohantavirus Using a Portable One-Step Amplicon-Based High Accuracy Nanopore System. Viruses 2023; 15:1542. [PMID: 37515228 PMCID: PMC10386077 DOI: 10.3390/v15071542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Whole-genome sequencing provides a robust platform for investigating the epidemiology and transmission of emerging viruses. Oxford Nanopore Technologies allows for real-time viral sequencing on a local laptop system for point-of-care testing. Seoul orthohantavirus (Seoul virus, SEOV), harbored by Rattus norvegicus and R. rattus, causes mild hemorrhagic fever with renal syndrome and poses an important threat to public health worldwide. We evaluated the deployable MinION system to obtain high-fidelity entire-length sequences of SEOV for the genome identification of accurate infectious sources and their genetic diversity. One-step amplicon-based nanopore sequencing was performed from SEOV 80-39 specimens with different viral copy numbers and SEOV-positive wild rats. The KU-ONT-SEOV-consensus module was developed to analyze SEOV genomic sequences generated from the nanopore system. Using amplicon-based nanopore sequencing and the KU-ONT-consensus pipeline, we demonstrated novel molecular diagnostics for acquiring full-length SEOV genome sequences, with sufficient read depth in less than 6 h. The consensus sequence accuracy of the SEOV small, medium, and large genomes showed 99.75-100% (for SEOV 80-39 isolate) and 99.62-99.89% (for SEOV-positive rats) identities. This study provides useful insights into on-site diagnostics based on nanopore technology and the genome epidemiology of orthohantaviruses for a quicker response to hantaviral outbreaks.
Collapse
Affiliation(s)
- Kyungmin Park
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Juyoung Noh
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kijin Kim
- Centre for Infectious Disease Genomics and One Health, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jongwoo Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hee-Kyung Cho
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seong-Gyu Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Eunyoung Yang
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Medical Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
82
|
Chen NFG, Chaguza C, Gagne L, Doucette M, Smole S, Buzby E, Hall J, Ash S, Harrington R, Cofsky S, Clancy S, Kapsak CJ, Sevinsky J, Libuit K, Park DJ, Hemarajata P, Garrigues JM, Green NM, Sierra-Patev S, Carpenter-Azevedo K, Huard RC, Pearson C, Incekara K, Nishimura C, Huang JP, Gagnon E, Reever E, Razeq J, Muyombwe A, Borges V, Ferreira R, Sobral D, Duarte S, Santos D, Vieira L, Gomes JP, Aquino C, Savino IM, Felton K, Bajwa M, Hayward N, Miller H, Naumann A, Allman R, Greer N, Fall A, Mostafa HH, McHugh MP, Maloney DM, Dewar R, Kenicer J, Parker A, Mathers K, Wild J, Cotton S, Templeton KE, Churchwell G, Lee PA, Pedrosa M, McGruder B, Schmedes S, Plumb MR, Wang X, Barcellos RB, Godinho FMS, Salvato RS, Ceniseros A, Breban MI, Grubaugh ND, Gallagher GR, Vogels CBF. Development of an amplicon-based sequencing approach in response to the global emergence of mpox. PLoS Biol 2023; 21:e3002151. [PMID: 37310918 PMCID: PMC10263305 DOI: 10.1371/journal.pbio.3002151] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/05/2023] [Indexed: 06/15/2023] Open
Abstract
The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.
Collapse
Affiliation(s)
- Nicholas F. G. Chen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Luc Gagne
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Matthew Doucette
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Sandra Smole
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Erika Buzby
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Joshua Hall
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Stephanie Ash
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Rachel Harrington
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Seana Cofsky
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Selina Clancy
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
| | - Curtis J. Kapsak
- Theiagen Genomics, Highlands Ranch, Colorado, United States of America
| | - Joel Sevinsky
- Theiagen Genomics, Highlands Ranch, Colorado, United States of America
| | - Kevin Libuit
- Theiagen Genomics, Highlands Ranch, Colorado, United States of America
| | - Daniel J. Park
- Broad Institute, Cambridge, Massachusetts, United States of America
| | - Peera Hemarajata
- Los Angeles County Public Health Laboratories, Downey, California, United States of America
| | - Jacob M. Garrigues
- Los Angeles County Public Health Laboratories, Downey, California, United States of America
| | - Nicole M. Green
- Los Angeles County Public Health Laboratories, Downey, California, United States of America
| | - Sean Sierra-Patev
- Rhode Island Department of Health, Rhode Island State Health Laboratory, Providence, Rhode Island, United States of America
| | - Kristin Carpenter-Azevedo
- Rhode Island Department of Health, Rhode Island State Health Laboratory, Providence, Rhode Island, United States of America
| | - Richard C. Huard
- Rhode Island Department of Health, Rhode Island State Health Laboratory, Providence, Rhode Island, United States of America
| | - Claire Pearson
- Connecticut Department of Public Health, Rocky Hill, Connecticut, United States of America
| | - Kutluhan Incekara
- Connecticut Department of Public Health, Rocky Hill, Connecticut, United States of America
| | - Christina Nishimura
- Connecticut Department of Public Health, Rocky Hill, Connecticut, United States of America
| | - Jian Ping Huang
- Connecticut Department of Public Health, Rocky Hill, Connecticut, United States of America
| | - Emily Gagnon
- Connecticut Department of Public Health, Rocky Hill, Connecticut, United States of America
| | - Ethan Reever
- Connecticut Department of Public Health, Rocky Hill, Connecticut, United States of America
| | - Jafar Razeq
- Connecticut Department of Public Health, Rocky Hill, Connecticut, United States of America
| | - Anthony Muyombwe
- Connecticut Department of Public Health, Rocky Hill, Connecticut, United States of America
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rita Ferreira
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Daniel Sobral
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Silvia Duarte
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Daniela Santos
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Carly Aquino
- Delaware Public Health Laboratory, Smyrna, Delaware, United States of America
| | - Isabella M. Savino
- Delaware Public Health Laboratory, Smyrna, Delaware, United States of America
| | - Karinda Felton
- Delaware Public Health Laboratory, Smyrna, Delaware, United States of America
| | - Moneeb Bajwa
- Delaware Public Health Laboratory, Smyrna, Delaware, United States of America
| | - Nyjil Hayward
- Delaware Public Health Laboratory, Smyrna, Delaware, United States of America
| | - Holly Miller
- Delaware Public Health Laboratory, Smyrna, Delaware, United States of America
| | - Allison Naumann
- Delaware Public Health Laboratory, Smyrna, Delaware, United States of America
| | - Ria Allman
- Delaware Public Health Laboratory, Smyrna, Delaware, United States of America
| | - Neel Greer
- Delaware Public Health Laboratory, Smyrna, Delaware, United States of America
| | - Amary Fall
- Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Heba H. Mostafa
- Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Martin P. McHugh
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Daniel M. Maloney
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca Dewar
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Juliet Kenicer
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Abby Parker
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Katharine Mathers
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Jonathan Wild
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Seb Cotton
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Kate E. Templeton
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - George Churchwell
- Florida Department of Health, Bureau of Public Health Laboratories, Jacksonville, Florida, United States of America
| | - Philip A. Lee
- Florida Department of Health, Bureau of Public Health Laboratories, Jacksonville, Florida, United States of America
| | - Maria Pedrosa
- Florida Department of Health, Bureau of Public Health Laboratories, Jacksonville, Florida, United States of America
| | - Brenna McGruder
- Florida Department of Health, Bureau of Public Health Laboratories, Jacksonville, Florida, United States of America
| | - Sarah Schmedes
- Florida Department of Health, Bureau of Public Health Laboratories, Jacksonville, Florida, United States of America
| | - Matthew R. Plumb
- Minnesota Department of Health, Public Health Laboratory, St. Paul, Minnesota, United States of America
| | - Xiong Wang
- Minnesota Department of Health, Public Health Laboratory, St. Paul, Minnesota, United States of America
| | - Regina Bones Barcellos
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda M. S. Godinho
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Richard Steiner Salvato
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Aimee Ceniseros
- Idaho Bureau of Laboratories, Boise, Idaho, United States of America
| | - Mallery I. Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Glen R. Gallagher
- Massachusetts Department of Public Health, Jamaica Plain, Massachusetts, United States of America
- Rhode Island Department of Health, Rhode Island State Health Laboratory, Providence, Rhode Island, United States of America
| | - Chantal B. F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
83
|
Özer Z, Aksoy M, Turan GB. The Relationship Between Death Anxiety and Religious Coping Styles in Patients Diagnosed With COVID-19: A Sample in the East of Turkey. OMEGA-JOURNAL OF DEATH AND DYING 2023; 87:299-311. [PMID: 34969296 PMCID: PMC10063868 DOI: 10.1177/00302228211065256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was conducted to find out the relationship between death anxiety and religious coping styles in patients diagnosed with COVID-19. This cross-sectional and relational study was carried out with snowball sampling technique between May 15 and June 15, 2021. It was found that the participants had a mean Death Anxiety Scale total score of 10.42 ± 2.77 , they had a mean positive religious coping sub-scale score of 23.44 ± 2.66 and a mean negative religious coping sub-scale score of 12.82 ± 3.08 . Statistically significant positive association was found between Death Anxiety Scale and Religious Coping Questionnaire's both positive and negative coping sub-scale scores (p < .05). It was found that patients diagnosed with COVID-19 had high level of death anxiety and positive religious coping styles. It was also found that death anxiety levels increased in the patients as their use of positive and negative coping increased.
Collapse
Affiliation(s)
- Zülfünaz Özer
- Department of Nursing, Faculty of Health Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Meyreme Aksoy
- Department of Nursing, Faculty of Health Sciences, Siirt University, Siirt, Turkey
| | | |
Collapse
|
84
|
Pillay S, San JE, Tshiabuila D, Naidoo Y, Pillay Y, Maharaj A, Anyaneji UJ, Wilkinson E, Tegally H, Lessells RJ, Baxter C, de Oliveira T, Giandhari J. Evaluation of miniaturized Illumina DNA preparation protocols for SARS-CoV-2 whole genome sequencing. PLoS One 2023; 18:e0283219. [PMID: 37099540 PMCID: PMC10132692 DOI: 10.1371/journal.pone.0283219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/27/2023] Open
Abstract
The global pandemic caused by SARS-CoV-2 has increased the demand for scalable sequencing and diagnostic methods, especially for genomic surveillance. Although next-generation sequencing has enabled large-scale genomic surveillance, the ability to sequence SARS-CoV-2 in some settings has been limited by the cost of sequencing kits and the time-consuming preparations of sequencing libraries. We compared the sequencing outcomes, cost and turn-around times obtained using the standard Illumina DNA Prep kit protocol to three modified protocols with fewer clean-up steps and different reagent volumes (full volume, half volume, one-tenth volume). We processed a single run of 47 samples under each protocol and compared the yield and mean sequence coverage. The sequencing success rate and quality for the four different reactions were as follows: the full reaction was 98.2%, the one-tenth reaction was 98.0%, the full rapid reaction was 97.5% and the half-reaction, was 97.1%. As a result, uniformity of sequence quality indicated that libraries were not affected by the change in protocol. The cost of sequencing was reduced approximately seven-fold and the time taken to prepare the library was reduced from 6.5 hours to 3 hours. The sequencing results obtained using the miniaturised volumes showed comparability to the results obtained using full volumes as described by the manufacturer. The adaptation of the protocol represents a lower-cost, streamlined approach for SARS-CoV-2 sequencing, which can be used to produce genomic data quickly and more affordably, especially in resource-constrained settings.
Collapse
Affiliation(s)
- Sureshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Derek Tshiabuila
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Yeshnee Naidoo
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Yusasha Pillay
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Akhil Maharaj
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Ugochukwu J. Anyaneji
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Richard J. Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Center for AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Cheryl Baxter
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Center for AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Center for AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
85
|
Orf GS, Olivo A, Harris B, Weiss SL, Achari A, Yu G, Federman S, Mbanya D, James L, Mampunza S, Chiu CY, Rodgers MA, Cloherty GA, Berg MG. Metagenomic Detection of Divergent Insect- and Bat-Associated Viruses in Plasma from Two African Individuals Enrolled in Blood-Borne Surveillance. Viruses 2023; 15:v15041022. [PMID: 37113001 PMCID: PMC10145552 DOI: 10.3390/v15041022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) has enabled the high-throughput multiplexed identification of sequences from microbes of potential medical relevance. This approach has become indispensable for viral pathogen discovery and broad-based surveillance of emerging or re-emerging pathogens. From 2015 to 2019, plasma was collected from 9586 individuals in Cameroon and the Democratic Republic of the Congo enrolled in a combined hepatitis virus and retrovirus surveillance program. A subset (n = 726) of the patient specimens was analyzed by mNGS to identify viral co-infections. While co-infections from known blood-borne viruses were detected, divergent sequences from nine poorly characterized or previously uncharacterized viruses were also identified in two individuals. These were assigned to the following groups by genomic and phylogenetic analyses: densovirus, nodavirus, jingmenvirus, bastrovirus, dicistrovirus, picornavirus, and cyclovirus. Although of unclear pathogenicity, these viruses were found circulating at high enough concentrations in plasma for genomes to be assembled and were most closely related to those previously associated with bird or bat excrement. Phylogenetic analyses and in silico host predictions suggested that these are invertebrate viruses likely transmitted through feces containing consumed insects or through contaminated shellfish. This study highlights the power of metagenomics and in silico host prediction in characterizing novel viral infections in susceptible individuals, including those who are immunocompromised from hepatitis viruses and retroviruses, or potentially exposed to zoonotic viruses from animal reservoir species.
Collapse
Affiliation(s)
- Gregory S Orf
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Ana Olivo
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Barbara Harris
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Sonja L Weiss
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Asmeeta Achari
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Guixia Yu
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Scot Federman
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Dora Mbanya
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé P.O. Box 1364, Cameroon
| | - Linda James
- School of Medicine, Université Protestante au Congo, Kinshasa P.O. Box 4745, Democratic Republic of the Congo
| | - Samuel Mampunza
- School of Medicine, Université Protestante au Congo, Kinshasa P.O. Box 4745, Democratic Republic of the Congo
| | - Charles Y Chiu
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
- Department of Laboratory Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
- Department of Medicine, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Mary A Rodgers
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Gavin A Cloherty
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| | - Michael G Berg
- Infectious Disease Research, Abbott Diagnostics, Abbott Park, IL 60004, USA
- Abbott Pandemic Defense Coalition, Abbott Park, IL 60004, USA
| |
Collapse
|
86
|
Rich SN, Richards V, Mavian C, Rife Magalis B, Grubaugh N, Rasmussen SA, Dellicour S, Vrancken B, Carrington C, Fisk-Hoffman R, Danso-Odei D, Chacreton D, Shapiro J, Seraphin MN, Hepp C, Black A, Dennis A, Trovão NS, Vandamme AM, Rasmussen A, Lauzardo M, Dean N, Salemi M, Prosperi M. Application of Phylodynamic Tools to Inform the Public Health Response to COVID-19: Qualitative Analysis of Expert Opinions. JMIR Form Res 2023; 7:e39409. [PMID: 36848460 PMCID: PMC10131930 DOI: 10.2196/39409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/26/2022] [Accepted: 12/27/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND In the wake of the SARS-CoV-2 pandemic, scientists have scrambled to collect and analyze SARS-CoV-2 genomic data to inform public health responses to COVID-19 in real time. Open source phylogenetic and data visualization platforms for monitoring SARS-CoV-2 genomic epidemiology have rapidly gained popularity for their ability to illuminate spatial-temporal transmission patterns worldwide. However, the utility of such tools to inform public health decision-making for COVID-19 in real time remains to be explored. OBJECTIVE The aim of this study is to convene experts in public health, infectious diseases, virology, and bioinformatics-many of whom were actively engaged in the COVID-19 response-to discuss and report on the application of phylodynamic tools to inform pandemic responses. METHODS In total, 4 focus groups (FGs) occurred between June 2020 and June 2021, covering both the pre- and postvariant strain emergence and vaccination eras of the ongoing COVID-19 crisis. Participants included national and international academic and government researchers, clinicians, public health practitioners, and other stakeholders recruited through purposive and convenience sampling by the study team. Open-ended questions were developed to prompt discussion. FGs I and II concentrated on phylodynamics for the public health practitioner, while FGs III and IV discussed the methodological nuances of phylodynamic inference. Two FGs per topic area to increase data saturation. An iterative, thematic qualitative framework was used for data analysis. RESULTS We invited 41 experts to the FGs, and 23 (56%) agreed to participate. Across all the FG sessions, 15 (65%) of the participants were female, 17 (74%) were White, and 5 (22%) were Black. Participants were described as molecular epidemiologists (MEs; n=9, 39%), clinician-researchers (n=3, 13%), infectious disease experts (IDs; n=4, 17%), and public health professionals at the local (PHs; n=4, 17%), state (n=2, 9%), and federal (n=1, 4%) levels. They represented multiple countries in Europe, the United States, and the Caribbean. Nine major themes arose from the discussions: (1) translational/implementation science, (2) precision public health, (3) fundamental unknowns, (4) proper scientific communication, (5) methods of epidemiological investigation, (6) sampling bias, (7) interoperability standards, (8) academic/public health partnerships, and (9) resources. Collectively, participants felt that successful uptake of phylodynamic tools to inform the public health response relies on the strength of academic and public health partnerships. They called for interoperability standards in sequence data sharing, urged careful reporting to prevent misinterpretations, imagined that public health responses could be tailored to specific variants, and cited resource issues that would need to be addressed by policy makers in future outbreaks. CONCLUSIONS This study is the first to detail the viewpoints of public health practitioners and molecular epidemiology experts on the use of viral genomic data to inform the response to the COVID-19 pandemic. The data gathered during this study provide important information from experts to help streamline the functionality and use of phylodynamic tools for pandemic responses.
Collapse
Affiliation(s)
- Shannan N Rich
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Veronica Richards
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Carla Mavian
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Brittany Rife Magalis
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Nathan Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Sonja A Rasmussen
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Simon Dellicour
- Spatial Epidemiology Lab, Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Bruxelles, Belgium
| | - Bram Vrancken
- Spatial Epidemiology Lab, Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Bruxelles, Belgium
| | - Christine Carrington
- Department of Preclinical Sciences, University of the West Indies, St Augustine, Trinidad and Tobago
| | - Rebecca Fisk-Hoffman
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Demi Danso-Odei
- Florida Department of Health in Alachua County, Gainesville, FL, United States
| | - Daniel Chacreton
- Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, United States
| | - Jerne Shapiro
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
- Florida Department of Health in Alachua County, Gainesville, FL, United States
| | - Marie Nancy Seraphin
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Crystal Hepp
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
- School of Informatics, Computing, and Cyber Systems, College of Engineering, Informatics, and Applied Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Allison Black
- Chan Zuckerberg Initiative, Redwood City, CA, United States
| | - Ann Dennis
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nídia Sequeira Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, United States
| | - Anne-Mieke Vandamme
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Angela Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael Lauzardo
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Natalie Dean
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Biostatistics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Mattia Prosperi
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Epidemiology, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
87
|
Xavier J, Alcantara L, Fonseca V, Lima M, Castro E, Fritsch H, Oliveira C, Guimarães N, Adelino T, Evaristo M, Rodrigues ES, Santos EV, de La-Roque D, de Moraes L, Tosta S, Neto A, Rosewell A, Mendonça AF, Leite A, Vasconcelos A, Silva de Mello AL, Vasconcelos B, Montalbano CA, Zanluca C, Freitas C, de Albuquerque CFC, Duarte dos Santos CN, Santos CS, dos Santos CA, Maymone Gonçalves CC, Teixeira D, Neto DFL, Cabral D, de Oliveira EC, Noia Maciel EL, Pereira FM, Iani F, de Carvalho FP, Andrade G, Bezerra G, de Castro Lichs GG, Pereira GC, Barroso H, Ferreira Franz HC, Ferreira H, Gomes I, Riediger IN, Rodrigues I, de Siqueira IC, Silva J, Rico JM, Lima J, Abrantes J, do Nascimento JPM, Wasserheit JN, Pastor J, de Magalhães JJF, Luz KG, Lima Neto LG, Frutuoso LCV, da Silva LB, Sena L, de Sousa LAF, Pereira LA, Demarchi L, Câmara MCB, Astete MG, Almiron M, Lima M, Umaki Zardin MCS, Presibella MM, Falcão MB, Gale M, Freire N, Marques N, de Moura NFO, Almeida Da Silva PE, Rabinowitz P, da Cunha RV, Trinta KS, do Carmo Said RF, Kato R, Stabeli R, de Jesus R, Santos RH, Haddad SK, Slavov SN, Andrade T, Rocha T, Carneiro T, Nardy V, da Silva V, Carvalho WG, Van Voorhis WC, Araujo WN, de Filippis AM, Giovanetti M. Increased interregional virus exchange and nucleotide diversity outline the expansion of the chikungunya virus ECSA lineage in Brazil. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.28.23287733. [PMID: 37034611 PMCID: PMC10081416 DOI: 10.1101/2023.03.28.23287733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The emergence and reemergence of mosquito-borne diseases in Brazil such as Yellow Fever, Zika, Chikungunya, and Dengue have had serious impacts on public health. Concerns have been raised due to the rapid dissemination of the chikungunya virus (CHIKV) across the country since its first detection in 2014 in Northeast Brazil. Faced with this scenario, on-site training activities in genomic surveillance carried out in partnership with the National Network of Public Health Laboratories have led to the generation of 422 CHIKV genomes from 12 Brazilian states over the past two years (2021-2022), a period that has seen more than 312 thousand chikungunya fever cases reported in the country. These new genomes increased the amount of available data and allowed a more comprehensive characterization of the dispersion dynamics of the CHIKV East-Central-South-African (ECSA) lineage in Brazil. Tree branching patterns revealed the emergence and expansion of two distinct subclades. Phylogeographic analysis indicated that the northeast region has been the leading hub of virus spread towards other regions. Increased frequency of C>T transitions among the new genomes suggested that host restriction factors from the immune system such as ADAR and AID/APOBEC deaminases might be driving CHIKV ECSA lineage genetic diversity in Brazil.
Collapse
Affiliation(s)
- Joilson Xavier
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Luiz Alcantara
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
- Correspondence: , &
| | - Vagner Fonseca
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brazil
| | - Mauricio Lima
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | - Emerson Castro
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | - Hegger Fritsch
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Carla Oliveira
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Natalia Guimarães
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | - Talita Adelino
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | | | | | | | | | - Laise de Moraes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Bahia, Brazil
| | - Stephane Tosta
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Adelino Neto
- Laboratório Central de Saúde Pública do Piaui, Brazil
| | - Alexander Rosewell
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brazil
| | | | | | | | | | | | | | - Camila Zanluca
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Paraná, Brazil
| | - Carla Freitas
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | | | | | | | | | | | | | - Daniel F. L. Neto
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | - Diego Cabral
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | | | | | | | - Felipe Iani
- Laboratório Central de Saúde Pública de Minas Gerais, Fundação Ezequiel Dias, Brazil
| | | | | | | | | | | | | | | | | | - Iago Gomes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Brazil
| | | | | | | | - Jacilane Silva
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | | | | | - Jayra Abrantes
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Brazil
| | | | | | - Julia Pastor
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | - Jurandy J. F. de Magalhães
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
- Universidade de Pernambuco Campus Serra Talhada
| | | | | | | | | | - Ludmila Sena
- Laboratório Central de Saúde Pública de Sergipe, Brazil
| | | | | | - Luiz Demarchi
- Laboratório Central de Saúde Pública do Mato Grosso do Sul, Brazil
| | | | | | | | | | | | | | - Melissa B. Falcão
- Secretaria de Saúde de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Michael Gale
- Department of Immunology, University of Washington, USA
| | - Naishe Freire
- Laboratório Central de Saúde Pública de Pernambuco, Brazil
| | | | | | | | - Peter Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, USA
| | | | - Karen S. Trinta
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Imunobiológicos, Brazil
| | | | - Rodrigo Kato
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | - Rodrigo Stabeli
- Organização Pan-Americana da Saúde, Organização Mundial da Saúde, Brazil
| | - Ronaldo de Jesus
- Coordenação Geral dos Laboratórios de Saúde Pública, Ministério da Saúde, Brazil
| | | | | | - Svetoslav N. Slavov
- Fundação Hemocentro de Ribeirão Preto, Brazil
- Center for Research Development, CDC, Butantan Institute, Brazil
| | | | - Themis Rocha
- Laboratório Central de Saúde Pública do Rio Grande do Norte, Brazil
| | | | - Vanessa Nardy
- Laboratório Central de Saúde Pública da Bahia, Brazil
| | | | | | | | | | - Ana M.B. de Filippis
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Correspondence: , &
| | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico, Italy
- Correspondence: , &
| |
Collapse
|
88
|
Sun B, Ni M, Liu H, Liu D. Viral intra-host evolutionary dynamics revealed via serial passage of Japanese encephalitis virus in vitro. Virus Evol 2023; 9:veac103. [PMID: 37205166 PMCID: PMC10185921 DOI: 10.1093/ve/veac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/04/2022] [Accepted: 03/21/2023] [Indexed: 12/02/2023] Open
Abstract
Analyses of viral inter- and intra-host mutations could better guide the prevention and control of infectious diseases. For a long time, studies on viral evolution have focused on viral inter-host variations. Next-generation sequencing has accelerated the investigations of viral intra-host diversity. However, the theoretical basis and dynamic characteristics of viral intra-host mutations remain unknown. Here, using serial passages of the SA14-14-2 vaccine strain of Japanese encephalitis virus (JEV) as the in vitro model, the distribution characteristics of 1,788 detected intra-host single-nucleotide variations (iSNVs) and their mutated frequencies from 477 deep-sequenced samples were analyzed. Our results revealed that in adaptive (baby hamster kidney (BHK)) cells, JEV is under a nearly neutral selection pressure, and both non-synonymous and synonymous mutations represent an S-shaped growth trend over time. A higher positive selection pressure was observed in the nonadaptive (C6/36) cells, and logarithmic growth in non-synonymous iSNVs and linear growth in synonymous iSNVs were observed over time. Moreover, the mutation rates of the NS4B protein and the untranslated region (UTR) of the JEV are significantly different between BHK and C6/36 cells, suggesting that viral selection pressure is regulated by different cellular environments. In addition, no significant difference was detected in the distribution of mutated frequencies of iSNVs between BHK and C6/36 cells.
Collapse
Affiliation(s)
- Bangyao Sun
- School of Medical Laboratory, Weifang Medical University, Baotong West Street, Weifang 261053, China
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- University of Chinese Academy of Sciences, Yuquan Road 19#, Beijing 100049, China
| | - Ming Ni
- Beijing Institute of Radiation Medicine, Taiping Road 27#, Beijing 100850, China
| | - Haizhou Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan 44#, Wuhan 430000, China
- University of Chinese Academy of Sciences, Yuquan Road 19#, Beijing 100049, China
| |
Collapse
|
89
|
Wu K, Fang Q, Zhao Z, Li Z. CoID-LAMP: Color-Encoded, Intelligent Digital LAMP for Multiplex Nucleic Acid Quantification. Anal Chem 2023; 95:5069-5078. [PMID: 36892003 DOI: 10.1021/acs.analchem.2c05665] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Multiplex, digital nucleic acid tests have important biomedical applications, but existing methods mostly use fluorescent probes that are target-specific and difficult to optimize, limiting their widespread applications. Here, we report color-encoded, intelligent digital loop-mediated isothermal amplification (CoID-LAMP) for the coidentification of multiple nucleic acid targets. CoID-LAMP supplements different primer solutions with different dyes, generates primer droplets and sample droplets, and collectively pairs these two types of droplets in a microwell array device to perform LAMP. After imaging, the droplet colors were analyzed to decode the primer information, and the precipitate byproducts within droplets were detected to determine the target occupancy and calculate the concentrations. We first established an image analysis pipeline based on a deep learning algorithm for reliable droplet detection and validated the analytical performance in nucleic acid quantification. We then implemented CoID-LAMP using fluorescent dyes as the coding materials and established an 8-plex digital nucleic acid assay, confirming the reliable coding performance and the capability of multiplex nucleic acid quantification. We further implemented CoID-LAMP using brightfield dyes for a 4-plex assay, suggesting that the assay could be realized solely by brightfield imaging with minimal demand on the optics. Leveraging the advantages of droplet microfluidics in multiplexing and deep learning in intelligent image analysis, CoID-LAMP offers a useful tool for multiplex nucleic acid quantification.
Collapse
Affiliation(s)
- Kai Wu
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Qi Fang
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhantao Zhao
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
90
|
Akram F, Waheed HM, Shah FI, Haq IU, Nasir N, Akhtar MT, Farooq Gohar U. Burgeoning therapeutic strategies to curb the contemporary surging viral infections. Microb Pathog 2023; 179:106088. [PMID: 37004965 DOI: 10.1016/j.micpath.2023.106088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Significant efforts and initiatives were already made in the health care systems, however in the last few years; our world is facing emergences of viral infections which potentially leading to considerable challenges in terms of higher morbidity, mortality, increased and considerable financial loads on the affected populations. Over ten major epidemics or pandemics have been recorded in the twenty-first century, the ongoing coronavirus pandemic being one of them. Viruses being distinct obligate pathogens largely dependent on living beings are considered as one of the prominent causes of death globally. Although effective vaccines and antivirals have led to the eradication of imperative viral pathogens, the emergences of new viral infections as well as novel drug-resistant strains have necessitated the implementation of ingenious and efficient therapeutic approaches to treat viral outbreaks in the future. Nature being a constant source of tremendous therapeutical resources has inspired us to develop multi-target antiviral drugs, overcoming the challenges and limitations faced by pharmaceutical industry. Recent breakthroughs in the understanding of the cellular and molecular mechanisms of viral reproduction have laid the groundwork for potential treatment approaches including antiviral gene therapy relying on the application of precisely engineered nucleic acids for disabling pathogen replication. The development of RNA interference and advancements in genome manipulating tools have proven to be especially significant in this regard. In this review, we discussed mode of actions and pathophysiological events associated with the viral infections; followed by distributions, and advancement made towards the detection strategies for timely diagnosis. In the later section, current approaches to cope up the viral pathogens and their key limitations have also been elaborated. Lastly, we also explored some novel and potential targets to treat such infections, where attentions were made on next generation gene editing technologies.
Collapse
|
91
|
de Oliveira ALR, Cunha MS, Bisordi I, de Souza RP, Timenetsky MDCST. Serological evidence of arenavirus circulation in wild rodents from central-west, southeast, and south regions of Brazil, 2002-2006. Braz J Microbiol 2023; 54:279-284. [PMID: 36441413 PMCID: PMC9943984 DOI: 10.1007/s42770-022-00858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Viral hemorrhagic fevers caused by arenaviruses are severe zoonotic diseases. In reservoirs, the presence of antibodies may indicate viral circulation in a population of a specific region, and these data can be used as an indicator for further investigations by molecular techniques. The present study aimed to detect the presence of arenavirus antibodies in wild rodents captured from 1998 to 2008 during epidemiological surveillance activities. A retrospective analysis of 2243 wild rodent blood samples using a broad cross-reactive in-house developed enzyme-linked immunosorbent assay (ELISA) revealed a 0.44% (10/2243) positive rate in wild rodents, which included Necromys lasiurus (6/1012), Calomys callosus (2/94), and Akodon sp. (2/273) species. These rodents were captured between 2002 to 2006 in Campo Alegre de Goiás/GO, Bodoquena/MS, Nuporanga/SP, and Mogi das Cruzes/SP. Our findings suggest the sylvatic circulation of arenavirus among wild rodents in the southeast region of Brazil. However, future virological and molecular studies are necessary to confirm the viral presence in these regions.
Collapse
Affiliation(s)
- Ana Lúcia Rodrigues de Oliveira
- Núcleo de Doenças de Transmissão Vetorial Do Centro de Virologia do Instituto Adolfo Lutz, SP, São Paulo, Brazil.
- Programa de Pós-Graduação Em Ciências, Mestrado Em Pesquisa Laboratoriais Em Saúde Pública da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, São Paulo, SP, Brazil.
| | - Mariana Sequetin Cunha
- Núcleo de Doenças de Transmissão Vetorial Do Centro de Virologia do Instituto Adolfo Lutz, SP, São Paulo, Brazil.
| | - Ivani Bisordi
- Núcleo de Doenças de Transmissão Vetorial Do Centro de Virologia do Instituto Adolfo Lutz, SP, São Paulo, Brazil
| | - Renato Pereira de Souza
- Núcleo de Doenças de Transmissão Vetorial Do Centro de Virologia do Instituto Adolfo Lutz, SP, São Paulo, Brazil
| | - Maria do Carmo Sampaio Tavares Timenetsky
- Programa de Pós-Graduação Em Ciências, Mestrado Em Pesquisa Laboratoriais Em Saúde Pública da Coordenadoria de Controle de Doenças da Secretaria de Estado da Saúde de São Paulo, São Paulo, SP, Brazil
- Centro de Virologia Do, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| |
Collapse
|
92
|
Taremwa IM, Ashaba S, Naggayi BRK, Kayongo B, Nimwesiga C, Ayebazibwe C, Tumuhimbse M, Frank J. Psychosocial Challenges of the Coronavirus Disease-2019 Pandemic Among Frontline Health Care Providers and Their Coping Mechanisms at Mbarara Regional Referral Hospital, Southwestern Uganda. Psychol Res Behav Manag 2023; 16:549-560. [PMID: 36873061 PMCID: PMC9974731 DOI: 10.2147/prbm.s399687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Background As a novel global health pandemic, Coronavirus Disease-2019 (COVID-2019) has posed various challenges to frontline healthcare providers (FHCPs). This study explored the social and psychological challenges of COVID-19 to the FHCPs at Mbarara Regional Referral Hospital, southwestern Uganda. Methods This was a cross-sectional study with a qualitative approach. Participants were purposively selected, consented, and interviewed. Interviews were audio-recorded and transcribed. Data were entered into NVivo 10 software and analyzed using a thematic analysis approach. Results Fourteen FHCPs with diverse roles, including 8 men, were interviewed. Participants' median age was 38 years (range: 26-51 years) and eleven of them were married. The subjects' experiences were explored in relation to perceived social and psychological challenges of working during the COVID-19 pandemic, and coping mechanisms in the COVID-19 pandemic situation. The social challenges identified were burnout, domestic violence, and a financially constrained environment. A further, psychological challenge was anxiety, as well as fear and distress. FHCPs responded with a variety of coping mechanisms, including situational acceptance, religious coping, coping through emotional support of others, and bulk purchase of supply-constrained basic necessities. Conclusion FHCPs experienced numerous social and psychological challenges, which negatively affected their quality of life amidst a wavering pandemic. As the pandemic rages on, creative and low-cost psychosocial interventions for FHCPs are needed, possibly including more formal peer support, and an improved flow of information about ongoing infectious disease control interventions, so FHCPs feel more knowledgeable about what is ahead.
Collapse
Affiliation(s)
- Ivan Mugisha Taremwa
- Institute of Allied Health Sciences, Clarke International University, Kampala, Uganda
| | - Scholastic Ashaba
- Department of Psychiatry, Mbarara Regional Referral Hospital, Mbarara, Uganda
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Barbara Rita K Naggayi
- Faculty of Interdisciplinary Studies, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Badru Kayongo
- Department of Psychiatry, Mbarara Regional Referral Hospital, Mbarara, Uganda
| | | | - Carlrona Ayebazibwe
- Institute of Allied Health Sciences, Clarke International University, Kampala, Uganda
| | - Manasseh Tumuhimbse
- Faculty of Business and Management Sciences, Mbarara University of Science and Technology, Mbarara, Uganda
| | - John Frank
- Professorial Fellow, Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
93
|
Ashall J, Shah S, Biggs JR, Chang JNR, Jafari Y, Brady OJ, Mai HK, Lien LT, Do Thai H, Nguyen HAT, Anh DD, Iwasaki C, Kitamura N, Van Loock M, Herrera-Taracena G, Rasschaert F, Van Wesenbeeck L, Yoshida LM, Hafalla JCR, Hue S, Hibberd ML. A phylogenetic study of dengue virus in urban Vietnam shows long-term persistence of endemic strains. Virus Evol 2023; 9:vead012. [PMID: 36926448 PMCID: PMC10013730 DOI: 10.1093/ve/vead012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/31/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Dengue virus (DENV) causes repeated outbreaks of disease in endemic areas, with patterns of local transmission strongly influenced by seasonality, importation via human movement, immunity, and vector control efforts. An understanding of how each of these interacts to enable endemic transmission (continual circulation of local virus strains) is largely unknown. There are times of the year when no cases are reported, often for extended periods of time, perhaps wrongly implying the successful eradication of a local strain from that area. Individuals who presented at a clinic or hospital in four communes in Nha Trang, Vietnam, were initially tested for DENV antigen presence. Enrolled positive individuals then had their corresponding household members invited to participate, and those who enrolled were tested for DENV. The presence of viral nucleic acid in all samples was confirmed using quantitative polymerase chain reaction, and positive samples were then whole-genome sequenced using an amplicon and target enrichment library preparation techniques and Illumina MiSeq sequencing technology. Generated consensus genome sequences were then analysed using phylogenetic tree reconstruction to categorise sequences into clades with a common ancestor, enabling investigations of both viral clade persistence and introductions. Hypothetical introduction dates were additionally assessed using a molecular clock model that calculated the time to the most recent common ancestor (TMRCA). We obtained 511 DENV whole-genome sequences covering four serotypes and more than ten distinct viral clades. For five of these clades, we had sufficient data to show that the same viral lineage persisted for at least several months. We noted that some clades persisted longer than others during the sampling time, and by comparison with other published sequences from elsewhere in Vietnam and around the world, we saw that at least two different viral lineages were introduced into the population during the study period (April 2017-2019). Next, by inferring the TMRCA from the construction of molecular clock phylogenies, we predicted that two of the viral lineages had been present in the study population for over a decade. We observed five viral lineages co-circulating in Nha Trang from three DENV serotypes, with two likely to have remained as uninterrupted transmission chains for a decade. This suggests clade cryptic persistence in the area, even during periods of low reported incidence.
Collapse
Affiliation(s)
- James Ashall
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sonal Shah
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Joseph R Biggs
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jui-Ning R Chang
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Yalda Jafari
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Oliver J Brady
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Huynh Kim Mai
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Le Thuy Lien
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Hung Do Thai
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Hien Anh Thi Nguyen
- National Institute of Hygiene and Epidemiology, 1 P. Yec Xanh, Phạm Đình Hổ, Hai Bà Trưng, Hà Nội, 100000, Vietnam
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, 1 P. Yec Xanh, Phạm Đình Hổ, Hai Bà Trưng, Hà Nội, 100000, Vietnam
| | - Chihiro Iwasaki
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Noriko Kitamura
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Marnix Van Loock
- Janssen R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Guillermo Herrera-Taracena
- Janssen Global Public Health, Janssen Research & Development, LLC, 800 Ridgeview Drive, Horsham, PA 19044, USA
| | - Freya Rasschaert
- Janssen R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B-2340, Belgium
| | | | - Lay-Myint Yoshida
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Julius Clemence R Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Stephane Hue
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Martin L Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
94
|
Crellen T, Haswell M, Sithithaworn P, Sayasone S, Odermatt P, Lamberton PHL, Spencer SEF, Déirdre Hollingsworth T. Diagnosis of helminths depends on worm fecundity and the distribution of parasites within hosts. Proc Biol Sci 2023; 290:20222204. [PMID: 36651047 PMCID: PMC9845982 DOI: 10.1098/rspb.2022.2204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Helminth transmission and morbidity are dependent on the number of mature parasites within a host; however, observing adult worms is impossible for many natural infections. An outstanding challenge is therefore relating routine diagnostics, such as faecal egg counts, to the underlying worm burden. This relationship is complicated by density-dependent fecundity (egg output per worm reduces due to crowding at high burdens) and the skewed distribution of parasites (majority of helminths aggregated in a small fraction of hosts). We address these questions for the carcinogenic liver fluke Opisthorchis viverrini, which infects approximately 10 million people across Southeast Asia, by analysing five epidemiological surveys (n = 641) where adult flukes were recovered. Using a mechanistic model, we show that parasite fecundity varies between populations, with surveys from Thailand and Laos demonstrating distinct patterns of egg output and density-dependence. As the probability of observing faecal eggs increases with the number of mature parasites within a host, we quantify diagnostic sensitivity as a function of the worm burden and find that greater than 50% of cases are misdiagnosed as false negative in communities close to elimination. Finally, we demonstrate that the relationship between observed prevalence from routine diagnostics and true prevalence is nonlinear and strongly influenced by parasite aggregation.
Collapse
Affiliation(s)
- Thomas Crellen
- School of Biodiversity One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, 82 Hillhead Street, Glasgow G12 8QQ, UK
- Wellcome Centre for Integrative Parasitology, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Melissa Haswell
- Office of the Deputy Vice Chancellor, Indigenous Strategy and Services and School of Geosciences, John Woolley Building, University of Sydney, Sydney, New South Wales 2050, Australia
- School of Public Health and Social Work, Kelvin Grove Campus, Queensland University of Technology, Brisbane City, Queensland 4000, Australia
| | - Paiboon Sithithaworn
- Department of Parasitology, Khon Kaen University, 123 Thanon Mittraphap, Khon Kaen 40002, Thailand
| | - Somphou Sayasone
- Lao Tropical and Public Health Institute, Samsenthai Road, Sisattanak district, Vientiane, Lao PDR
| | - Peter Odermatt
- Department of Public Health and Epidemiology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil 4123, Switzerland
- University of Basel, Petersplatz 1, Basel 4001, Switzerland
| | - Poppy H. L. Lamberton
- School of Biodiversity One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, 82 Hillhead Street, Glasgow G12 8QQ, UK
- Wellcome Centre for Integrative Parasitology, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | | - T. Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
95
|
Galani A, Markou A, Dimitrakopoulos L, Kontou A, Kostakis M, Kapes V, Diamantopoulos MA, Adamopoulos PG, Avgeris M, Lianidou E, Scorilas A, Paraskevis D, Tsiodras S, Dimopoulos MA, Thomaidis N. Delta SARS-CoV-2 variant is entirely substituted by the omicron variant during the fifth COVID-19 wave in Attica region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159062. [PMID: 36181801 PMCID: PMC9519360 DOI: 10.1016/j.scitotenv.2022.159062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 05/28/2023]
Abstract
Wastewater analysis is the most attractive alternative way for the quantification and variant profiling of SARS-CoV-2. Infection dynamics can be monitored by RT-qPCR assays while NGS can provide evidence for the presence of existing or new emerging SARS-CoV-2 variants. Herein, apart from the infection dynamic in Attica since June 1st, 2021, the monitoring of 9 mutations of the omicron and 4 mutations of the delta SARS-CoV-2 variants, utilizing both novel Nested-Seq and RT-PCR, is reported and the substitution of the delta variant (B.1.617.2) by the omicron variant (B.1.1.529) in Attica, Greece within approximately one month is highlighted. The key difference between the two methodologies is discovery power. RT-PCR can only detect known sequences cost-effectively, while NGS is a hypothesis-free approach that does not require prior knowledge to detect novel genes. Overall, the potential of wastewater genomic surveillance for the early discovery and monitoring of variants important for disease management at the community level is underlined. This is the first study, reporting the SARS-CoV-2 infection dynamic for an extended time period and the first attempt to monitor two of the most severe variants with two different methodologies in Greece.
Collapse
Affiliation(s)
- Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Lampros Dimitrakopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Aikaterini Kontou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Vasileios Kapes
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, "P. & A. Kyriakou" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, School of Medicine, University General Hospital Attikon, National and Kapodistrian University of Athens, Greece
| | | | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771 Athens, Greece.
| |
Collapse
|
96
|
Chen NF, Chaguza C, Gagne L, Doucette M, Smole S, Buzby E, Hall J, Ash S, Harrington R, Cofsky S, Clancy S, Kapsak CJ, Sevinsky J, Libuit K, Park DJ, Hemarajata P, Garrigues JM, Green NM, Sierra-Patev S, Carpenter-Azevedo K, Huard RC, Pearson C, Incekara K, Nishimura C, Huang JP, Gagnon E, Reever E, Razeq J, Muyombwe A, Borges V, Ferreira R, Sobral D, Duarte S, Santos D, Vieira L, Gomes JP, Aquino C, Savino IM, Felton K, Bajwa M, Hayward N, Miller H, Naumann A, Allman R, Greer N, Fall A, Mostafa HH, McHugh MP, Maloney DM, Dewar R, Kenicer J, Parker A, Mathers K, Wild J, Cotton S, Templeton KE, Churchwell G, Lee PA, Pedrosa M, McGruder B, Schmedes S, Plumb MR, Wang X, Barcellos RB, Godinho FM, Salvato RS, Ceniseros A, Breban MI, Grubaugh ND, Gallagher GR, Vogels CB. Development of an amplicon-based sequencing approach in response to the global emergence of human monkeypox virus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2022.10.14.22280783. [PMID: 36299420 PMCID: PMC9603838 DOI: 10.1101/2022.10.14.22280783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The 2022 multi-country monkeypox (mpox) outbreak concurrent with the ongoing COVID-19 pandemic has further highlighted the need for genomic surveillance and rapid pathogen whole genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for SARS-CoV-2. Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical samples that tested presumptive positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR cycle threshold below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.
Collapse
Affiliation(s)
- Nicholas F.G. Chen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Luc Gagne
- Massachusetts Department of Public Health, Boston, MA, USA
| | | | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Erika Buzby
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Joshua Hall
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Stephanie Ash
- Massachusetts Department of Public Health, Boston, MA, USA
| | | | - Seana Cofsky
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Selina Clancy
- Massachusetts Department of Public Health, Boston, MA, USA
| | | | | | | | | | | | | | - Nicole M. Green
- Los Angeles County Public Health Laboratories, Downey, CA, USA
| | - Sean Sierra-Patev
- Rhode Island Department of Health, Rhode Island State Health Laboratory, Providence, RI, USA
| | | | - Richard C. Huard
- Rhode Island Department of Health, Rhode Island State Health Laboratory, Providence, RI, USA
| | - Claire Pearson
- Connecticut Department of Public Health, Rocky Hill, CT, USA
| | | | | | - Jian Ping Huang
- Connecticut Department of Public Health, Rocky Hill, CT, USA
| | - Emily Gagnon
- Connecticut Department of Public Health, Rocky Hill, CT, USA
| | - Ethan Reever
- Connecticut Department of Public Health, Rocky Hill, CT, USA
| | - Jafar Razeq
- Connecticut Department of Public Health, Rocky Hill, CT, USA
| | | | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rita Ferreira
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Daniel Sobral
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Silvia Duarte
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Daniela Santos
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal,Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Carly Aquino
- Delaware Public Health Laboratory, Smyrna, DE, USA
| | | | | | - Moneeb Bajwa
- Delaware Public Health Laboratory, Smyrna, DE, USA
| | | | - Holly Miller
- Delaware Public Health Laboratory, Smyrna, DE, USA
| | | | - Ria Allman
- Delaware Public Health Laboratory, Smyrna, DE, USA
| | - Neel Greer
- Delaware Public Health Laboratory, Smyrna, DE, USA
| | - Amary Fall
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Martin P. McHugh
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK,School of Medicine, University of St Andrews, St Andrews, UK
| | - Daniel M. Maloney
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK,Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Rebecca Dewar
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Juliet Kenicer
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Abby Parker
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Katharine Mathers
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Jonathan Wild
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Seb Cotton
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Kate E. Templeton
- Viral Genotyping Reference Laboratory Edinburgh, NHS Lothian, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - George Churchwell
- Florida Department of Health, Bureau of Public Health Laboratories, Jacksonville, FL, USA
| | - Philip A. Lee
- Florida Department of Health, Bureau of Public Health Laboratories, Jacksonville, FL, USA
| | - Maria Pedrosa
- Florida Department of Health, Bureau of Public Health Laboratories, Jacksonville, FL, USA
| | - Brenna McGruder
- Florida Department of Health, Bureau of Public Health Laboratories, Jacksonville, FL, USA
| | - Sarah Schmedes
- Florida Department of Health, Bureau of Public Health Laboratories, Jacksonville, FL, USA
| | - Matthew R. Plumb
- Minnesota Department of Health, Public Health Laboratory, St. Paul, MN, USA
| | - Xiong Wang
- Minnesota Department of Health, Public Health Laboratory, St. Paul, MN, USA
| | - Regina Bones Barcellos
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda M.S. Godinho
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Richard Steiner Salvato
- Centro Estadual de Vigilância em Saúde, Secretaria Estadual da Saúde do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Mallery I. Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Glen R. Gallagher
- Massachusetts Department of Public Health, Boston, MA, USA,Rhode Island Department of Health, Rhode Island State Health Laboratory, Providence, RI, USA
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| |
Collapse
|
97
|
Li H, Xie Y, Chen F, Bai H, Xiu L, Zhou X, Guo X, Hu Q, Yin K. Amplification-free CRISPR/Cas detection technology: challenges, strategies, and perspectives. Chem Soc Rev 2023; 52:361-382. [PMID: 36533412 DOI: 10.1039/d2cs00594h] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Rapid and accurate molecular diagnosis is a prerequisite for precision medicine, food safety, and environmental monitoring. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)-based detection, as a cutting-edged technique, has become an immensely effective tool for molecular diagnosis because of its outstanding advantages including attomolar level sensitivity, sequence-targeted single-base specificity, and rapid turnover time. However, the CRISPR/Cas-based detection methods typically require a pre-amplification step to elevate the concentration of the analyte, which may produce non-specific amplicons, prolong the detection time, and raise the risk of carryover contamination. Hence, various strategies for target amplification-free CRISPR/Cas-based detection have been developed, aiming to minimize the sensitivity loss due to lack of pre-amplification, enable detection for non-nucleic acid targets, and facilitate integration in portable devices. In this review, the current status and challenges of target amplification-free CRISPR/Cas-based detection are first summarized, followed by highlighting the four main strategies to promote the performance of target amplification-free CRISPR/Cas-based technology. Furthermore, we discuss future perspectives that will contribute to developing more efficient amplification-free CRISPR/Cas detection systems.
Collapse
Affiliation(s)
- Huimin Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Yi Xie
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Fumin Chen
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Huiwen Bai
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 220 South 33rd St., Philadelphia, Pennsylvania, USA
| | - Leshan Xiu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Xiaonong Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Xiaokui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Qinqin Hu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| | - Kun Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China. .,One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People's Republic of China
| |
Collapse
|
98
|
Zuckerman NS, Shulman LM. Next-Generation Sequencing in the Study of Infectious Diseases. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
99
|
Evolution and emergence of mosquito-borne viruses of medical importance: towards a routine metagenomic surveillance approach. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467423000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Abstract
During the last two decades, the world has witnessed the emergence and re-emergence of arthropod-borne viruses, better known as arboviruses. The close contact between sylvatic, rural and peri-urban vector species and humans has been mainly determined by the environment-modifying human activity. The resulting interactions have led to multiple dead-end host infections and have allowed sylvatic arboviruses to eventually adapt to new vectors and hosts, contributing to the establishment of urban transmission cycles of some viruses with enormous epidemiologic impact. The metagenomic next-generation sequencing (NGS) approach has allowed obtaining unbiased sequence information of millions of DNA and RNA molecules from clinical and environmental samples. Robust bioinformatics tools have enabled the assembly of individual sequence reads into contigs and scaffolds partially or completely representing the genomes of the microorganisms and viruses being present in biological samples of clinical relevance. In this review, we describe the different ecological scenarios for the emergence of viral diseases, the virus adaptation process required for the establishment of a new transmission cycle and the usefulness of NGS and computational methods for the discovery and routine genomic surveillance of mosquito-borne viruses in their ecosystems.
Collapse
|
100
|
Hamdana AH, Mohsin H, Habib Tharwani Z, Masood W, Furqana AQ, Sohail A, Durdana AR, Ashraf MT, Uddin N, Islam Z, Essar MY, Marzo RR, Habib Z. Monkeypox Virus and Other Emerging Outbreaks: An Overview and Future Perspective. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2023; 60:469580231175437. [PMID: 37190997 PMCID: PMC10192795 DOI: 10.1177/00469580231175437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Monkeypox (MPX) is a zoonotic disease caused by the MPX virus from the poxviridae family of orthopoxviruses. Typically, endemic in central and west Africa, it has now become a matter of concern since cases have been reported in non-endemic countries around mid-June 2022, especially in the European region, with the transmission not related to travel. The diagnosis is made by PCR testing of the skin lesions. Even though treatment is symptomatic, antiretrovirals, such as tecovirimat, are used in severe cases. Vaccination with second and third generation vaccines is approved for prophylaxis in high risk individuals. Unfortunately, these options of treatment and prevention are only available in high income countries at the moment. This review, through a thorough literature search of articles from 2017 onward, focuses on epidemiology, clinical manifestations, challenges, treatment, prevention and control of MPX virus and how they can be corelated with other viral outbreaks including COVID-19, Acute Hepatitis of unknown origin, Measles and Dengue, to better predict and therefore prevent its transmission. The previous COVID-19 pandemic increased the disease burden on healthcare infrastructure of low-middle income countries, therefore, this recent MPX outbreak calls for a joint effort from healthcare authorities, political figures, and NGOs to combat the disease and prevent its further spread not only in high income but also in middle- and low-income countries.
Collapse
Affiliation(s)
| | - Habiba Mohsin
- Dow University of Health Sciences,
Karachi, Pakistan
| | | | | | | | - Affan Sohail
- Dow University of Health Sciences,
Karachi, Pakistan
| | | | | | - Naseer Uddin
- Dow University of Health Sciences,
Karachi, Pakistan
| | - Zarmina Islam
- Dow University of Health Sciences,
Karachi, Pakistan
| | - Mohammad Yasir Essar
- Afghanistan National Charity
Organization for Special Diseases, Kabul, Afghanistan
- Kabul University of Medical Sciences,
Kabul, Afghanistan
| | - Roy Rillera Marzo
- Department of Community Medicine,
International Medical School, Management and Science University, Malaysia
- Global Public Health, Jeffrey Cheah
School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway,
Malaysia
| | | |
Collapse
|