51
|
Forsyth CB, Shaikh M, Engen PA, Preuss F, Naqib A, Palmen BA, Green SJ, Zhang L, Bogin ZR, Lawrence K, Sharma D, Swanson GR, Bishehsari F, Voigt RM, Keshavarzian A. Evidence that the loss of colonic anti-microbial peptides may promote dysbiotic Gram-negative inflammaging-associated bacteria in aging mice. FRONTIERS IN AGING 2024; 5:1352299. [PMID: 38501032 PMCID: PMC10945560 DOI: 10.3389/fragi.2024.1352299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/02/2024] [Indexed: 03/20/2024]
Abstract
Introduction: Aging studies in humans and mice have played a key role in understanding the intestinal microbiome and an increased abundance of "inflammaging" Gram-negative (Gn) bacteria. The mechanisms underlying this inflammatory profile in the aging microbiome are unknown. We tested the hypothesis that an aging-related decrease in colonic crypt epithelial cell anti-microbial peptide (AMP) gene expression could promote colonic microbiome inflammatory Gn dysbiosis and inflammaging. Methods: As a model of aging, C57BL/6J mice fecal (colonic) microbiota (16S) and isolated colonic crypt epithelial cell gene expression (RNA-seq) were assessed at 2 months (mth) (human: 18 years old; yo), 15 mth (human: 50 yo), and 25 mth (human: 84 yo). Informatics examined aging-related microbial compositions, differential colonic crypt epithelial cell gene expressions, and correlations between colonic bacteria and colonic crypt epithelial cell gene expressions. Results: Fecal microbiota exhibited significantly increased relative abundances of pro-inflammatory Gn bacteria with aging. Colonic crypt epithelial cell gene expression analysis showed significant age-related downregulation of key AMP genes that repress the growth of Gn bacteria. The aging-related decrease in AMP gene expressions is significantly correlated with an increased abundance in Gn bacteria (dysbiosis), loss of colonic barrier gene expression, and senescence- and inflammation-related gene expression. Conclusion: This study supports the proposed model that aging-related loss of colonic crypt epithelial cell AMP gene expression promotes increased relative abundances of Gn inflammaging-associated bacteria and gene expression markers of colonic inflammaging. These data may support new targets for aging-related therapies based on intestinal genes and microbiomes.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Fabian Preuss
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, United States
| | - Ankur Naqib
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Breanna A. Palmen
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, United States
| | - Stefan J. Green
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Zlata R. Bogin
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Kristi Lawrence
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Garth R. Swanson
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Faraz Bishehsari
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
52
|
Acosta JE, Burns JL, Hillyer LM, Van K, Brendel EBK, Law C, Ma DWL, Monk JM. Effect of Lifelong Exposure to Dietary Plant and Marine Sources of n-3 Polyunsaturated Fatty Acids on Morphologic and Gene Expression Biomarkers of Intestinal Health in Early Life. Nutrients 2024; 16:719. [PMID: 38474847 DOI: 10.3390/nu16050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Altered intestinal health is also associated with the incidence and severity of many chronic inflammatory conditions, which could be attenuated via dietary n-3 PUFA interventions. However, little is known about the effect of lifelong exposure to n-3 PUFA from plant and marine sources (beginning in utero via the maternal diet) on early life biomarkers of intestinal health. Harems of C57Bl/6 mice were randomly assigned to one of three isocaloric AIN-93G modified diets differing in their fat sources consisting of the following: (i) 10% safflower oil (SO, enriched in n-6 PUFA), (ii) 3% flaxseed oil + 7% safflower oil (FX, plant-based n-3 PUFA-enriched diet), or (iii) 3% menhaden fish oil + 7% safflower oil (MO, marine-based n-3 PUFA-enriched diet). Mothers remained on these diets throughout pregnancy and offspring (n = 14/diet) continued on the same parental diet until termination at 3 weeks of age. In ileum, villi:crypt length ratios were increased in both the FX and MO dietary groups compared to SO (p < 0.05). Ileum mRNA expression of critical intestinal health biomarkers was increased by both n-3 PUFA-enriched diets including Relmβ and REG3γ compared to SO (p < 0.05), whereas only the FX diet increased mRNA expression of TFF3 and Muc2 (p < 0.05) and only the MO diet increased mRNA expression of ZO-1 (p < 0.05). In the proximal colon, both the FX and MO diets increased crypt lengths compared to SO (p < 0.05), whereas only the MO diet increased goblet cell numbers compared to SO (p < 0.05). Further, the MO diet increased proximal colon mRNA expression of Relmβ and REG3γ (p < 0.05) and both MO and FX increased mRNA expression of Muc2 compared to SO (p < 0.05). Collectively, these results demonstrate that lifelong exposure to dietary n-3 PUFA, beginning in utero, from both plant and marine sources, can support intestinal health development in early life. The differential effects between plant and marine sources warrants further investigation for optimizing health.
Collapse
Affiliation(s)
- Julianna E Acosta
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jessie L Burns
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kelsey Van
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elaina B K Brendel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Camille Law
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
53
|
Ra YE, Bang YJ. Balancing Act of the Intestinal Antimicrobial Proteins on Gut Microbiota and Health. J Microbiol 2024; 62:167-179. [PMID: 38630349 DOI: 10.1007/s12275-024-00122-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 05/15/2024]
Abstract
The human gut houses a diverse and dynamic microbiome critical for digestion, metabolism, and immune development, exerting profound effects on human health. However, these microorganisms pose a potential threat by breaching the gut barrier, entering host tissues, and triggering infections, uncontrolled inflammation, and even sepsis. The intestinal epithelial cells form the primary defense, acting as a frontline barrier against microbial invasion. Antimicrobial proteins (AMPs), produced by these cells, serve as innate immune effectors that regulate the gut microbiome by directly killing or inhibiting microbes. Abnormal AMP production, whether insufficient or excessive, can disturb the microbiome equilibrium, contributing to various intestinal diseases. This review delves into the complex interactions between AMPs and the gut microbiota and sheds light on the role of AMPs in governing host-microbiota interactions. We discuss the function and mechanisms of action of AMPs, their regulation by the gut microbiota, microbial evasion strategies, and the consequences of AMP dysregulation in disease. Understanding these complex interactions between AMPs and the gut microbiota is crucial for developing strategies to enhance immune responses and combat infections within the gut microbiota. Ongoing research continues to uncover novel aspects of this intricate relationship, deepening our understanding of the factors shaping gut health. This knowledge has the potential to revolutionize therapeutic interventions, offering enhanced treatments for a wide range of gut-related diseases.
Collapse
Affiliation(s)
- Ye Eun Ra
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
54
|
Chakraborty D, Coslo DM, Murray IA, Vijay A, Patterson AD, Perdew GH. Immune cell-intrinsic Ah receptor facilitates the expression of antimicrobial REG3G in the small intestine. FASEB J 2024; 38:e23471. [PMID: 38358358 DOI: 10.1096/fj.202302319r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
The intestinal epithelial layer is susceptible to damage by chemical, physiological and mechanical stress. While it is essential to maintain the integrity of epithelium, the biochemical pathways that contribute to the barrier function have not been completely investigated. Here we demonstrate an aryl hydrocarbon receptor (AHR)-dependent mechanism facilitating the production of the antimicrobial peptide AMP regenerating islet-derived protein 3 gamma (REG3G), which is essential for intestinal homeostasis. Genetic ablation of AHR in mice impairs pSTAT3-mediated REG3G expression and increases bacterial numbers of Segmented filamentous bacteria (SFB) and Akkermansia muciniphila in the small intestine. Studies with tissue-specific conditional knockout mice revealed that the presence of AHR in the epithelial cells of the small intestine is not required for the production of REG3G through the phosphorylated STAT3-mediated pathway. However, immune-cell-specific AHR activity is necessary for normal expression of REG3G in all regions of the small intestine. A diet rich in broccoli, capable of inducing AHR activity, increases REG3G production when compared to a semi-purified diet that is devoid of ligands that can potentially activate the AHR, thus highlighting the importance of AHR in antimicrobial function. Overall, these data suggest that homeostatic antimicrobial REG3G production is increased by an AHR pathway intrinsic to the immune cells in the small intestine.
Collapse
Affiliation(s)
- Debopriya Chakraborty
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Denise M Coslo
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anitha Vijay
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
55
|
Malaisé Y, Casale E, Pettes-Duler A, Cartier C, Gaultier E, Martins Breyner N, Houdeau E, Evariste L, Lamas B. Validating Enteroid-Derived Monolayers from Murine Gut Organoids for Toxicological Testing of Inorganic Particles: Proof-of-Concept with Food-Grade Titanium Dioxide. Int J Mol Sci 2024; 25:2635. [PMID: 38473881 DOI: 10.3390/ijms25052635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Human exposure to foodborne inorganic nanoparticles (NPs) is a growing concern. However, identifying potential hazards linked to NP ingestion often requires long-term exposure in animals. Owing these constraints, intestinal organoids are a promising alternative to in vivo experiments; as such, an in vitro approach should enable a rapid and reliable assessment of the effects of ingested chemicals on the gut. However, this remains to be validated for inorganic substances. In our study, a transcriptomic analysis and immunofluorescence staining were performed to compare the effects of food-grade TiO2 (fg-TiO2) on enteroid-derived monolayers (EDMs) from murine intestinal organoids to the known impacts of TiO2 on intestinal epithelium. After their ability to respond to a pro-inflammatory cytokine cocktail was validated, EDMs were exposed to 0, 0.1, 1, or 10 µg fg-TiO2/mL for 24 h. A dose-related increase of the muc2, vilin 1, and chromogranin A gene markers of cell differentiation was observed. In addition, fg-TiO2 induced apoptosis and dose-dependent genotoxicity, while a decreased expression of genes encoding for antimicrobial peptides, and of genes related to tight junction function, was observed. These results validated the use of EDMs as a reliable model for the toxicity testing of foodborne NPs likely to affect the intestinal barrier.
Collapse
Affiliation(s)
- Yann Malaisé
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Eva Casale
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Aurélie Pettes-Duler
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Christel Cartier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Eric Gaultier
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Natalia Martins Breyner
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Eric Houdeau
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Lauris Evariste
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Bruno Lamas
- Toxalim UMR1331 (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| |
Collapse
|
56
|
Knudsen JK, Bundgaard-Nielsen C, Leutscher P, Hjerrild S, Nielsen RE, Sørensen S. Differences in bacterial taxa between treatment-naive patients with major depressive disorder and non-affected controls may be related to a proinflammatory profile. BMC Psychiatry 2024; 24:84. [PMID: 38297265 PMCID: PMC10832199 DOI: 10.1186/s12888-024-05547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by sadness and anhedonia, but also physical symptoms such as changes in appetite and weight. Gut microbiota has been hypothesized to be involved in MDD through gut-brain axis signaling. Moreover, antidepressants display antibacterial properties in the gastrointestinal tract. The aim of this study was to compare the gut microbiota and systemic inflammatory profile of young patients with MDD before and after initiation of antidepressant treatment and/or psychotherapy in comparison with a non-depressed control group (nonMDD). METHODS Fecal and blood samples were collected at baseline and at follow-up after four and twelve weeks, respectively. Patients started treatment immediately after collection of the baseline samples. The gut microbiota was characterized by 16 S rRNA gene sequencing targeting the hypervariable V4 region. Plasma levels of 49 unique immune markers were assessed using Mesoscale. RESULTS In total, 27 MDD patients and 32 nonMDD controls were included in the study. The gut microbiota in the baseline samples of MDD versus nonMDD participants did not differ regarding α- or β-diversity. However, there was a higher relative abundance of the genera Ruminococcus gnavus group, and a lower relative abundance of the genera Desulfovibrio, Tyzzerella, Megamonas, Olsenella, Gordonibacter, Allisonella and Rothia in the MDD group compared to the nonMDD group. In the MDD group, there was an increase in the genera Rothia, Desulfovibrio, Gordinobacteer and Lactobacillus, while genera belonging to the Firmicutes phylum were found depleted at twelve weeks follow-up compared to baseline. In the MDD group, IL-7, IL-8 and IL-17b levels were elevated compared to the nonMDD group at baseline. Furthermore, MDI score in the MDD group was found to correlate with Bray-Curtis dissimilarity at baseline, and several inflammatory markers at both baseline and after initiation of antidepressant treatment. CONCLUSION Several bacterial taxa differed between the MDD group and the nonMDD group at baseline and changed in relative abundance during antidepressant treatment and/or psychotherapy. The MDD group was furthermore found to have a pro-inflammatory profile compared to the nonMDD group at baseline. Further studies are required to investigate the gut microbiota and pro-inflammatory profile of patients with MDD.
Collapse
Affiliation(s)
- Julie Kristine Knudsen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Caspar Bundgaard-Nielsen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Peter Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Aalborg, Denmark
| | - Simon Hjerrild
- Psychosis Research Unit, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - René Ernst Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Psychiatry, Aalborg University Hospital, Aalborg, Denmark
| | - Suzette Sørensen
- Centre for Clinical Research, North Denmark Regional Hospital, Bispensgade 37, Hjørring, 9800, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
- Steno Diabetes Center North Denmark, Aalborg, Denmark.
| |
Collapse
|
57
|
Yamazaki F, Kobayashi K, Mochizuki J, Sashihara T. Interleukin-22 enhanced the mucosal barrier and inhibited the invasion of Salmonella enterica in human-induced pluripotent stem cell-derived small intestinal epithelial cells. FEMS Microbiol Lett 2024; 371:fnae006. [PMID: 38268488 DOI: 10.1093/femsle/fnae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024] Open
Abstract
Human-induced pluripotent stem cell-derived small intestinal epithelial cell (hiPSC-SIEC) monolayers are useful in vitro models for evaluating the gut mucosal barrier; however, their reactivity to cytokines, which are closely related to the regulation of mucosal barrier function, remains unclear. Interleukin (IL)-22 is a cytokine that contributes to regulate the mucosal barrier in the intestinal epithelia. Using microarray and gene set enrichment analysis, we found that hiPSC-SIEC monolayers activate the immune response and enhance the mucosal barrier in response to IL-22. Moreover, hiPSC-SIEC monolayers induced the gene expression of antimicrobials, including the regenerating islet-derived protein 3 family. Furthermore, IL-22 stimulation upregulated Mucin 2 secretion and gene expression of an enzyme that modifies sugar chains, suggesting alteration of the state of the mucus layer of hiPSC-SIEC monolayers. To evaluate its physiological significance, we measured the protective activity against Salmonella enterica subsp. enterica infection in hiPSC-SIEC monolayers and found that prestimulation with IL-22 reduced the number of viable intracellular bacteria. Collectively, these results suggest that hiPSC-SIEC monolayers enhance the mucosal barrier and inhibit infection by pathogenic bacteria in response to IL-22, as previously reported. These results can contribute to the further application of hiPSC-SIECs in evaluating mucosal barriers.
Collapse
Affiliation(s)
- Fuka Yamazaki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Kyosuke Kobayashi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Junko Mochizuki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| |
Collapse
|
58
|
Ichikawa M, Okada H, Nakamoto N, Taniki N, Chu PS, Kanai T. The gut-liver axis in hepatobiliary diseases. Inflamm Regen 2024; 44:2. [PMID: 38191517 PMCID: PMC10773109 DOI: 10.1186/s41232-023-00315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Recent advances in the analysis of intestinal bacteria have led to reports of variations in intestinal bacterial levels among hepatobiliary diseases. The mechanisms behind the changes in intestinal bacteria in various hepatobiliary diseases include the abnormal composition of intestinal bacteria, weakening of the intestinal barrier, and bacterial translocation outside the intestinal tract, along with their metabolites, but many aspects remain unresolved. Further research employing clinical studies and animal models is expected to clarify the direct relationship between intestinal bacteria and hepatobiliary diseases and to validate the utility of intestinal bacteria as a diagnostic biomarker and potential therapeutic target. This review summarizes the involvement of the microbiota in the pathogenesis of hepatobiliary diseases via the gut-liver axis.
Collapse
Affiliation(s)
- Masataka Ichikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Haruka Okada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan.
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Tokyo, 1608582, Japan.
| |
Collapse
|
59
|
Li WS, Chen TJ, Lee SW, Yang CC, Tian YF, Kuo YH, Tsai HH, Wu LC, Yeh CF, Shiue YL, Chou CL, Lai HY. REG3A overexpression functions as a negative predictive and prognostic biomarker in rectal cancer patients receiving CCRT. Histol Histopathol 2024; 39:91-104. [PMID: 37042618 DOI: 10.14670/hh-18-615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
BACKGROUND Concurrent chemoradiotherapy (CCRT) is suggested before resection surgery in the control of rectal cancer. Unfortunately, treatment outcomes are widely variable and highly patient-specific. Notably, rectal cancer patients with distant metastasis generally have a much lower survival rate. Accordingly, a better understanding of the genetic background of patient cohorts can aid in predicting CCRT efficacy and clinical outcomes for rectal cancer before distant metastasis. METHODS A published transcriptome dataset (GSE35452) (n=46) was utilized to distinguish prospective genes concerning the response to CCRT. We recruited 172 rectal cancer patients, and the samples were collected during surgical resection after CCRT. Immunohistochemical (IHC) staining was performed to evaluate the expression level of regenerating family member 3 alpha (REG3A). Pearson's chi-squared test appraised the relevance of REG3A protein expression to clinicopathological parameters. The Kaplan-Meier method was utilized to generate survival curves, and the log-rank test was performed to compare the survival distributions between two given groups. RESULTS Employing a transcriptome dataset (GSE35452) and focusing on the inflammatory response (GO: 0006954), we recognized that REG3A is the most significantly upregulated gene among CCRT nonresponders (log2 ratio=1.2472, p=0.0079). Following IHC validation, high immunoexpression of REG3A was considerably linked to advanced post-CCRT tumor status (p<0.001), post-CCRT lymph node metastasis (p=0.042), vascular invasion (p=0.028), and low-grade tumor regression (p=0.009). In the multivariate analysis, high immunoexpression of REG3A was independently correlated with poor disease-specific survival (DSS) (p=0.004) and metastasis-free survival (MeFS) (p=0.045). The results of the bioinformatic analysis also supported the idea that REG3A overexpression is implicated in rectal carcinogenesis. CONCLUSION In the current study, we demonstrated that REG3A overexpression is correlated with poor CCRT effectiveness and inferior patient survival in rectal cancer. The predictive and prognostic utility of REG3A expression may direct patient stratification and decision-making more accurately for those patients.
Collapse
Affiliation(s)
- Wan-Shan Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Tzu-Ju Chen
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yu-Feng Tian
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- College of Pharmacy and Science, Chia Nan University, Tainan, Taiwan
| | - Hsin-Hwa Tsai
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Li-Ching Wu
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan, Taiwan
| | - Cheng-Fa Yeh
- Division of General Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Environment Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yow-Ling Shiue
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-Lin Chou
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
- Division of Colon and Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan.
| | - Hong-Yue Lai
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
- Trans-Omic Laboratory for Precision Medicine, Precision Medicine Center, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
60
|
Su X, Yang Y, Gao Y, Wang J, Hao Y, Zhang Y, Yang R. Gut microbiota CLA and IL-35 induction in macrophages through Gαq/11-mediated STAT1/4 pathway: an animal-based study. Gut Microbes 2024; 16:2437253. [PMID: 39636005 PMCID: PMC11622586 DOI: 10.1080/19490976.2024.2437253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Gut microbiota/metabolites not only participate in the food and energy metabolism but also contribute to the host immune response and homeostasis. The alternation of gut microbiota/metabolites has been widely related to intestinal and extra-intestinal disorders such as intestinal bowel diseases (IBDs). Bactericidal substances from gut epithelial cells can regulate the composition of gut microbiota. However, the effects of regenerating protein 4 (REG4) (human)/(Reg4) (mice), a potentially bactericidal substance from gut epithelial cells, on the gut immune homeostasis maintain elusive. Here, we found that REG4/Reg4 is essential in maintaining gut immune homeostasis through REG4/Reg4 associated gut microbiota. Reg4 knockout (KO) mice were highly sensitive to DSS-mediated colitis, whereas human REG4 intestine epithelial cell transgenic (huREG4IECtg) mice exhibited more resistance to DSS-mediated colitis. Mechanistically, sequencing of gut microbiota and liquid chromatography-mass spectrometry showed that REG4/Reg4 could affect the composition of gut microbiota. REG4/Reg4 associated gut microbiota such as Lactobacillus could metabolize linoleic acid (LA) into conjugated linoleic acid (CLA). Immunoprecipitation and immunoblot showed that CLA could effectively promote the expression of IL-35 in macrophages through Gαq/11 mediated activation STAT1/4. Thus, our results demonstrate that REG4/Reg4 plays a critical role in maintaining gut immune homeostasis through CLA-mediated IL-35+ macrophages.
Collapse
Affiliation(s)
- Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yazheng Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yang Hao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
61
|
Nie C, Zhao Y, Wang P, Wang R, Li Y, Wang X, Fang B, Wang X, Zhan J, Zhu L, Chen C, Zhang W, Liao H, Liu R. Momordica charantia Polysaccharide intervention ameliorates the symptoms of dextran sulfate sodium (DSS)-induced colitis by modulating gut microbiota and inhibiting inflammation. J Funct Foods 2024; 112:105970. [DOI: 10.1016/j.jff.2023.105970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
|
62
|
Li H, Wang K, Hao M, Liu Y, Liang X, Yuan D, Ding L. The role of intestinal microecology in inflammatory bowel disease and colorectal cancer: A review. Medicine (Baltimore) 2023; 102:e36590. [PMID: 38134100 PMCID: PMC10735145 DOI: 10.1097/md.0000000000036590] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Intestinal microecology is a dominant and complex microecological system in human body. Generally, intestinal microecosystem consists of normal symbiotic flora and its living environment (including intestinal epithelial tissue and intestinal mucosal immune system). Commensal flora is the core component of microecology. Both structures of intestinal mucosa and functions of immune system are essential to maintain homeostasis of intestinal microecosystem. Under normal conditions, intestinal microorganisms and intestinal mucosa coordinate with each other to promote host immunity. When certain factors in the intestine are altered, such as disruption of the intestinal barrier causing dysbiosis of the intestinal flora, the immune system of the host intestinal mucosa makes a series of responses, which leads to the development of intestinal inflammation and promotes colorectal cancer. In this review, to further understand the relationship between intestinal microecology and intestinal diseases, we systematically elaborate the composition of the intestinal mucosal immune system, analyze the relationship between intestinal flora and mucosal immune system, and the role of intestinal flora on intestinal inflammatory diseases and colorectal cancer.
Collapse
Affiliation(s)
- Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Xiaoqing Liang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Dajin Yuan
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|
63
|
Renu K, Myakala H, Chakraborty R, Bhattacharya S, Abuwani A, Lokhandwala M, Vellingiri B, Gopalakrishnan AV. Molecular mechanisms of alcohol's effects on the human body: A review and update. J Biochem Mol Toxicol 2023; 37:e23502. [PMID: 37578200 DOI: 10.1002/jbt.23502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Alcohol consumption has been linked to numerous negative health outcomes although it has some beneficial effects on moderate dosages, the most severe of which being alcohol-induced hepatitis. The number of people dying from this liver illness has been shown to climb steadily over time, and its prevalence has been increasing. Researchers have found that alcohol consumption primarily affects the brain, leading to a wide range of neurological and psychological diseases. High-alcohol-consumption addicts not only experienced seizures, but also ataxia, aggression, social anxiety, and variceal hemorrhage that ultimately resulted in death, ascites, and schizophrenia. Drugs treating this liver condition are limited and can cause serious side effects like depression. Serine-threonine kinases, cAMP protein kinases, protein kinase C, ERK, RACK 1, Homer 2, and more have all been observed to have their signaling pathways disrupted by alcohol, and alcohol has also been linked to epigenetic changes. In addition, alcohol consumption induces dysbiosis by changing the composition of the microbiome found in the gastrointestinal tract. Although more studies are needed, those that have been done suggest that probiotics aid in keeping the various microbiota concentrations stable. It has been argued that reducing one's alcohol intake may seem less harmful because excessive drinking is a lifestyle disorder.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Haritha Myakala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Rituraj Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sharmishtha Bhattacharya
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Asmita Abuwani
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Mariyam Lokhandwala
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Balachandar Vellingiri
- Department of Zoology, Stem Cell and Regenerative Medicine/Translational Research, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
64
|
Lee J, Peesh P, Quaicoe V, Tan C, Banerjee A, Mooz P, Ganesh BP, Petrosino J, Bryan RM, McCullough LD, Venna VR. Estradiol mediates colonic epithelial protection in aged mice after stroke and is associated with shifts in the gut microbiome. Gut Microbes 2023; 15:2271629. [PMID: 37910478 PMCID: PMC10730206 DOI: 10.1080/19490976.2023.2271629] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
The gut is a major source of bacteria and antigens that contribute to neuroinflammation after brain injury. Colonic epithelial cells (ECs) are responsible for secreting major cellular components of the innate defense system, including antimicrobial proteins (AMP) and mucins. These cells serve as a critical regulator of gut barrier function and maintain host-microbe homeostasis. In this study, we determined post-stroke host defense responses at the colonic epithelial surface in mice. We then tested if the enhancement of these epithelial protective mechanisms is beneficial in young and aged mice after stroke. AMPs were significantly increased in the colonic ECs of young males, but not in young females after experimental stroke. In contrast, mucin-related genes were enhanced in young females and contributed to mucus formation that maintains the distance between the host and gut bacteria. Bacterial community profiling was done using universal amplification of 16S rRNA gene sequences. The sex-specific colonic epithelial defense responses after stroke in young females were reversed with ovariectomy and led to a shift from a predominately mucin response to the enhanced AMP expression seen in males after stroke. Estradiol (E2) replacement prior to stroke in aged females increased mucin gene expression in the colonic ECs. Interestingly, we found that E2 treatment reduced stroke-associated neuronal hyperactivity in the insular cortex, a brain region that interacts with visceral organs such as the gut, in parallel to an increase in the composition of Lactobacillus and Bifidobacterium in the gut microbiota. This is the first study demonstrating sex differences in host defense mechanisms in the gut after brain injury.
Collapse
Affiliation(s)
- Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victoria Quaicoe
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anik Banerjee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick Mooz
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu P. Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert M. Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, Memorial Hermann Hospital-Texas Medical Center, Houston, TX, USA
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
65
|
Dey P, Ray Chaudhuri S. The opportunistic nature of gut commensal microbiota. Crit Rev Microbiol 2023; 49:739-763. [PMID: 36256871 DOI: 10.1080/1040841x.2022.2133987] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
The abundance of gut commensals has historically been associated with health-promoting effects despite the fact that the definition of good or bad microbiota remains condition-specific. The beneficial or pathogenic nature of microbiota is generally dictated by the dimensions of host-microbiota and microbe-microbe interactions. With the increasing popularity of gut microbiota in human health and disease, emerging evidence suggests opportunistic infections promoted by those gut bacteria that are generally considered beneficial. Therefore, the current review deals with the opportunistic nature of the gut commensals and aims to summarise the concepts behind the occasional commensal-to-pathogenic transformation of the gut microbes. Specifically, relevant clinical and experimental studies have been discussed on the overgrowth and bacteraemia caused by commensals. Three key processes and their underlying mechanisms have been summarised to be responsible for the opportunistic nature of commensals, viz. improved colonisation fitness that is dictated by commensal-pathogen interactions and availability of preferred nutrients; pathoadaptive mutations that can trigger the commensal-to-pathogen transformation; and evasion of host immune response as a survival and proliferation strategy of the microbes. Collectively, this review provides an updated concept summary on the underlying mechanisms of disease causative events driven by gut commensal bacteria.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
66
|
Wu L, Hu J, Yi X, Lv J, Yao J, Tang W, Zhang S, Wan M. Gut microbiota interacts with inflammatory responses in acute pancreatitis. Therap Adv Gastroenterol 2023; 16:17562848231202133. [PMID: 37829561 PMCID: PMC10566291 DOI: 10.1177/17562848231202133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.
Collapse
Affiliation(s)
- Linjun Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Intensive Care Unit, Suining Municipal Hospital of TCM, Suining, China
| | - Jianqin Lv
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, Sichuan, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, China
| |
Collapse
|
67
|
Khan FM, Chen JH, Zhang R, Liu B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Front Microbiol 2023; 14:1259210. [PMID: 37869651 PMCID: PMC10588457 DOI: 10.3389/fmicb.2023.1259210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Foodborne diseases are caused by food contaminated by pathogenic bacteria such as Escherichia coli, Salmonella, Staphylococcus aureus, Listeria monocytogenes, Campylobacter, and Clostridium, a critical threat to human health. As a novel antibacterial agent against foodborne pathogens, endolysins are peptidoglycan hydrolases encoded by bacteriophages that lyse bacterial cells by targeting their cell wall, notably in Gram-positive bacteria due to their naturally exposed peptidoglycan layer. These lytic enzymes have gained scientists' interest in recent years due to their selectivity, mode of action, engineering potential, and lack of resistance mechanisms. The use of endolysins for food safety has undergone significant improvements, which are summarized and discussed in this review. Endolysins can remove bacterial biofilms of foodborne pathogens and their cell wall-binding domain can be employed as a tool for quick detection of foodborne pathogens. We explained the applications of endolysin for eliminating pathogenic bacteria in livestock and various food matrices, as well as the limitations and challenges in use as a dietary supplement. We also highlight the novel techniques of the development of engineering endolysin for targeting Gram-negative bacterial pathogens. In conclusion, endolysin is safe and effective against foodborne pathogens and has no adverse effect on human cells and beneficial microbiota. As a result, endolysin could be employed as a functional bio-preservative agent to improve food stability and safety and maintain the natural taste of food quality.
Collapse
Affiliation(s)
- Fazal Mehmood Khan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Jie-Hua Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
68
|
Vázquez-Gómez G, Petráš J, Dvořák Z, Vondráček J. Aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) play both distinct and common roles in the regulation of colon homeostasis and intestinal carcinogenesis. Biochem Pharmacol 2023; 216:115797. [PMID: 37696457 DOI: 10.1016/j.bcp.2023.115797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Both aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) belong among key regulators of xenobiotic metabolism in the intestinal tissue. AhR in particular is activated by a wide range of environmental and dietary carcinogens. The data accumulated over the last two decades suggest that both of these transcriptional regulators play a much wider role in the maintenance of gut homeostasis, and that both transcription factors may affect processes linked with intestinal tumorigenesis. Intestinal epithelium is continuously exposed to a wide range of AhR, PXR and dual AhR/PXR ligands formed by intestinal microbiota or originating from diet. Current evidence suggests that specific ligands of both AhR and PXR can protect intestinal epithelium against inflammation and assist in the maintenance of epithelial barrier integrity. AhR, and to a lesser extent also PXR, have been shown to play a protective role against inflammation-induced colon cancer, or, in mouse models employing overactivation of Wnt/β-catenin signaling. In contrast, other evidence suggests that both receptors may contribute to modulation of transformed colon cell behavior, with a potential to promote cancer progression and/or chemoresistance. The review focuses on both overlapping and separate roles of the two receptors in these processes, and on possible implications of their activity within the context of intestinal tissue.
Collapse
Affiliation(s)
- Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
69
|
Li Y, Xu J, Hong Y, Li Z, Xing X, Zhufeng Y, Lu D, Liu X, He J, Li Y, Sun X. Metagenome-wide association study of gut microbiome features for myositis. Clin Immunol 2023; 255:109738. [PMID: 37595937 DOI: 10.1016/j.clim.2023.109738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
PURPOSE The clinical relevance and pathogenic role of gut microbiome in both myositis and its associated interstitial lung disease (ILD) are still unclear. The purpose of this study was to investigate the role of gut microbiome in myositis through comprehensive metagenomic-wide association studies (MWAS). METHODS We conducted MWAS of the myositis gut microbiome in a Chinese cohort by using whole-genome shotgun sequencing of high depth, including 30 myositis patients and 31 healthy controls (HC). Among the myositis patients, 11 developed rapidly progressive interstitial lung disease (RP-ILD) and 10 had chronic ILD (C-ILD). RESULTS Analysis for overall distribution level of the bacteria showed Alistipes onderdonkii, Parabacteroides distasonis and Escherichia coli were upregulated, Lachnospiraceae bacterium GAM79, Roseburia intestinalis, and Akkermansia muciniphila were downregulated in patients with myositis compared to HC. Bacteroides thetaiotaomicron, Parabacteroides distasonis and Escherichia coli were upregulated, Bacteroides A1C1 and Bacteroides xylanisolvens were downregulated in RP-ILD cases compared with C-ILD cases. A variety of biological pathways related to metabolism were enriched in the myositis and HC, RP-ILD and C-ILD comparison. And in the analyses for microbial contribution in metagenomic biological pathways, we have found that E. coli played an important role in the pathway expression in both myositis group and myositis-associated RP-ILD group. Anti-PL-12 antibody, anti-Ro-52 antibody, and anti-EJ antibody were found to have positive correlation with bacterial diversity (Shannon-wiener diversity index and Chao1, richness estimator) between myositis group and control groups. The combination of E. coli and R. intestinalis could distinguish myositis group from HC effectively. R. intestinalis can also be applied in the distinguishment of RP-ILD group vs. C-ILD group in myositis patients. CONCLUSION Our MWAS study first revealed the link between gut microbiome and pathgenesis of myositis, which may help us understand the role of gut microbiome in the etiology of myositis and myositis-associated RP-ILD.
Collapse
Affiliation(s)
- Yimin Li
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China; Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Xu
- Department of Gastroenterology, Clinical Center of Immune-Mediated Digestive Diseases, Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Yixiang Hong
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Zijun Li
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Xiaoyan Xing
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Yunzhi Zhufeng
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Dan Lu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xu Liu
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Jing He
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Yuhui Li
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China.
| | - Xiaolin Sun
- Department of Rheumatology & Immunology, Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China.
| |
Collapse
|
70
|
Jang KK, Heaney T, London M, Ding Y, Putzel G, Yeung F, Ercelen D, Chen YH, Axelrad J, Gurunathan S, Zhou C, Podkowik M, Arguelles N, Srivastava A, Shopsin B, Torres VJ, Keestra-Gounder AM, Pironti A, Griffin ME, Hang HC, Cadwell K. Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization. Cell Host Microbe 2023; 31:1450-1468.e8. [PMID: 37652008 PMCID: PMC10502928 DOI: 10.1016/j.chom.2023.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/02/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium (Efm) from the gut microbiota. Efm inoculation of mice ameliorated intestinal inflammation through activation of the innate immune receptor NOD2, which was associated with the bacterial DL-endopeptidase SagA that generates NOD2-stimulating muropeptides. NOD2 activation in myeloid cells induced interleukin-1β (IL-1β) secretion to increase the proportion of IL-22-producing CD4+ T helper cells and innate lymphoid cells that promote tissue repair. Finally, Efm was unable to protect mice carrying a NOD2 gene variant commonly found in IBD patients. Our findings demonstrate that inflammation self-perpetuates by causing aberrant antimicrobial activity that disrupts symbiotic relationships with gut microbes.
Collapse
Affiliation(s)
- Kyung Ku Jang
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas Heaney
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mariya London
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yi Ding
- Department of Laboratory Medicine, Geisinger Health, Danville, PA 17822, USA
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Frank Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Defne Ercelen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying-Han Chen
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Axelrad
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sakteesh Gurunathan
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Chaoting Zhou
- Cell and Molecular Biology Graduate Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Magdalena Podkowik
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Natalia Arguelles
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anusha Srivastava
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA; Division of Infectious Diseases and Immunology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - A Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
71
|
Wang Y, Wang M, Chen J, Li Y, Kuang Z, Dende C, Raj P, Quinn G, Hu Z, Srinivasan T, Hassell B, Ruhn K, Behrendt CL, Liang T, Dou X, Song Z, Hooper LV. The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9. Science 2023; 381:851-857. [PMID: 37616368 PMCID: PMC10688608 DOI: 10.1126/science.ade0522] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
The intestinal microbiota regulates mammalian lipid absorption, metabolism, and storage. We report that the microbiota reprograms intestinal lipid metabolism in mice by repressing the expression of long noncoding RNA (lncRNA) Snhg9 (small nucleolar RNA host gene 9) in small intestinal epithelial cells. Snhg9 suppressed the activity of peroxisome proliferator-activated receptor γ (PPARγ)-a central regulator of lipid metabolism-by dissociating the PPARγ inhibitor sirtuin 1 from cell cycle and apoptosis protein 2 (CCAR2). Forced expression of Snhg9 in the intestinal epithelium of conventional mice impaired lipid absorption, reduced body fat, and protected against diet-induced obesity. The microbiota repressed Snhg9 expression through an immune relay encompassing myeloid cells and group 3 innate lymphoid cells. Our findings thus identify an unanticipated role for a lncRNA in microbial control of host metabolism.
Collapse
Affiliation(s)
- Yuhao Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| | - Jiaxin Chen
- Department of Breast Surgery and Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yun Li
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zheng Kuang
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chaitanya Dende
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Prithvi Raj
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gabriella Quinn
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zehan Hu
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tarun Srinivasan
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Brian Hassell
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kelly Ruhn
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Cassie L. Behrendt
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Zhangfa Song
- Department of Colorectal Surgery and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Lora V. Hooper
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- The Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
72
|
Shin JH, Bozadjieva-Kramer N, Seeley RJ. Reg3γ: current understanding and future therapeutic opportunities in metabolic disease. Exp Mol Med 2023; 55:1672-1677. [PMID: 37524871 PMCID: PMC10474034 DOI: 10.1038/s12276-023-01054-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 08/02/2023] Open
Abstract
Regenerating family member gamma, Reg3γ (the mouse homolog of human REG3A), belonging to the antimicrobial peptides (AMPs), functions as a part of the host immune system to maintain spatial segregation between the gut bacteria and the host in the intestine via bactericidal activity. There is emerging evidence that gut manipulations such as bariatric surgery, dietary supplementation or drug treatment to produce metabolic benefits alter the gut microbiome. In addition to changes in a wide range of gut hormones, these gut manipulations also induce the expression of Reg3γ in the intestine. Studies over the past decades have revealed that Reg3γ not only plays a role in the gut lumen but can also contribute to host physiology through interaction with the gut microbiota. Herein, we discuss the current knowledge regarding the biology of Reg3γ, its role in various metabolic functions, and new opportunities for therapeutic strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
73
|
Iyer K, Erkert L, Becker C. Know your neighbors: microbial recognition at the intestinal barrier and its implications for gut homeostasis and inflammatory bowel disease. Front Cell Dev Biol 2023; 11:1228283. [PMID: 37519301 PMCID: PMC10375050 DOI: 10.3389/fcell.2023.1228283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
Intestinal epithelial cells (IECs) perform several physiological and metabolic functions at the epithelial barrier. IECs also play an important role in defining the overall immune functions at the mucosal region. Pattern recognition receptors (PRRs) on the cell surface and in other cellular compartments enable them to sense the presence of microbes and microbial products in the intestinal lumen. IECs are thus at the crossroads of mediating a bidirectional interaction between the microbial population and the immune cells present at the intestinal mucosa. This communication between the microbial population, the IECs and the underlying immune cells has a profound impact on the overall health of the host. In this review, we focus on the various PRRs present in different cellular compartments of IECs and discuss the recent developments in the understanding of their role in microbial recognition. Microbial recognition and signaling at the epithelial barrier have implications in the maintenance of intestinal homeostasis, epithelial barrier function, maintenance of commensals, and the overall tolerogenic function of PRRs in the gut mucosa. We also highlight the role of an aberrant microbial sensing at the epithelial barrier in the pathogenesis of inflammatory bowel disease (IBD) and the development of colorectal cancer.
Collapse
Affiliation(s)
- Krishna Iyer
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
| | - Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
74
|
Korta A, Kula J, Gomułka K. The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:10172. [PMID: 37373318 DOI: 10.3390/ijms241210172] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Interleukin-23 (IL-23) is a proinflammatory cytokine produced mainly by macrophages and antigen-presenting cells (APCs) after antigenic stimulation. IL-23 plays a significant role as a mediator of tissue damage. Indeed, the irregularities in IL-23 and its receptor signaling have been implicated in inflammatory bowel disease. IL-23 interacts with both the innate and adaptive immune systems, and IL-23/Th17 appears to be involved in the development of chronic intestinal inflammation. The IL-23/Th17 axis may be a critical driver of this chronic inflammation. This review summarizes the main aspects of IL-23's biological function, cytokines that control cytokine production, effectors of the IL-23 response, and the molecular mechanisms associated with IBD pathogenesis. Although IL-23 modulates and impacts the development, course, and recurrence of the inflammatory response, the etiology and pathophysiology of IBD are not completely understood, but mechanism research shows huge potential for clinical applications as therapeutic targets in IBD treatment.
Collapse
Affiliation(s)
- Aleksandra Korta
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Julia Kula
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
75
|
Fung C, Fraser L, Barrón G, Gologorsky M, Atkinson S, Gerrick E, Hayward M, Ziegelbauer J, Li J, Nico K, Tyner M, DeSchepper L, Pan A, Salzman N, Howitt M. Tuft cells mediate commensal remodeling of the small intestinal antimicrobial landscape. Proc Natl Acad Sci U S A 2023; 120:e2216908120. [PMID: 37253002 PMCID: PMC10266004 DOI: 10.1073/pnas.2216908120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/19/2023] [Indexed: 06/01/2023] Open
Abstract
Succinate produced by the commensal protist Tritrichomonas musculis (T. mu) stimulates chemosensory tuft cells, resulting in intestinal type 2 immunity. Tuft cells express the succinate receptor SUCNR1, yet this receptor does not mediate antihelminth immunity nor alter protist colonization. Here, we report that microbial-derived succinate increases Paneth cell numbers and profoundly alters the antimicrobial peptide (AMP) landscape in the small intestine. Succinate was sufficient to drive this epithelial remodeling, but not in mice lacking tuft cell chemosensory components required to detect this metabolite. Tuft cells respond to succinate by stimulating type 2 immunity, leading to interleukin-13-mediated epithelial and AMP expression changes. Moreover, type 2 immunity decreases the total number of mucosa-associated bacteria and alters the small intestinal microbiota composition. Finally, tuft cells can detect short-term bacterial dysbiosis that leads to a spike in luminal succinate levels and modulate AMP production in response. These findings demonstrate that a single metabolite produced by commensals can markedly shift the intestinal AMP profile and suggest that tuft cells utilize SUCNR1 and succinate sensing to modulate bacterial homeostasis.
Collapse
Affiliation(s)
- Connie Fung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Lisa M. Fraser
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Gabriel M. Barrón
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | | | - Samantha N. Atkinson
- Department of Microbiology and Immunology, Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI53226
| | - Elias R. Gerrick
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Michael Hayward
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
- Department of Microbiology and Immunology, Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI53226
| | - Jennifer Ziegelbauer
- Department of Microbiology and Immunology, Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI53226
| | - Jessica A. Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Katherine F. Nico
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Miles D. W. Tyner
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Leila B. DeSchepper
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Amy Pan
- Department of Microbiology and Immunology, Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI53226
- Division of Quantitative Health Services, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Nita H. Salzman
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
- Department of Microbiology and Immunology, Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI53226
| | - Michael R. Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
- Program in Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
76
|
Mandelbaum N, Zhang L, Carasso S, Ziv T, Lifshiz-Simon S, Davidovich I, Luz I, Berinstein E, Gefen T, Cooks T, Talmon Y, Balskus EP, Geva-Zatorsky N. Extracellular vesicles of the Gram-positive gut symbiont Bifidobacterium longum induce immune-modulatory, anti-inflammatory effects. NPJ Biofilms Microbiomes 2023; 9:30. [PMID: 37270554 DOI: 10.1038/s41522-023-00400-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023] Open
Abstract
The gut microbiota is now well known to affect the host's immune system. One way of bacterial communication with host cells is via the secretion of vesicles, small membrane structures containing various cargo. Research on vesicles secreted by Gram-positive gut bacteria, their mechanisms of interaction with the host and their immune-modulatory effects are still relatively scarce. Here we characterized the size, protein content, and immune-modulatory effects of extracellular vesicles (EVs) secreted by a newly sequenced Gram-positive human gut symbiont strain - Bifidobacterium longum AO44. We found that B. longum EVs exert anti-inflammatory effects, inducing IL-10 secretion from both splenocytes and dendritic cells (DC)-CD4+ T cells co-cultures. Furthermore, the EVs protein content showed enrichment in ABC transporters, quorum sensing proteins, and extracellular solute-binding proteins, which were previously shown to have a prominent function in the anti-inflammatory effect of other strains of B. longum. This study underlines the importance of bacterial vesicles in facilitating the gut bacterial immune-modulatory effects on the host and sheds light on bacterial vesicles as future therapeutics.
Collapse
Affiliation(s)
- Noa Mandelbaum
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Lihan Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shaqed Carasso
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Sapir Lifshiz-Simon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Irina Davidovich
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ishai Luz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Elliot Berinstein
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, 31096, Israel.
- Humans and the Microbiome, CIFAR, Toronto, Canada.
| |
Collapse
|
77
|
Liu T, Sun Z, Yang Z, Qiao X. Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomed Pharmacother 2023; 162:114586. [PMID: 36989711 DOI: 10.1016/j.biopha.2023.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The byproducts of bacterial fermentation known as short-chain fatty acids (SCFAs) are chemically comprised of a carboxylic acid component and a short hydrocarbon chain. Recent investigations have demonstrated that SCFAs can affect intestinal immunity by inducing endogenous host defense peptides (HDPs) and their beneficial effects on barrier integrity, gut health, energy supply, and inflammation. HDPs, which include defensins, cathelicidins, and C-type lectins, perform a significant function in innate immunity in gastrointestinal mucosal membranes. SCFAs have been demonstrated to stimulate HDP synthesis by intestinal epithelial cells via interactions with G protein-coupled receptor 43 (GPR43), activation of the Jun N-terminal kinase (JNK) and Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, and the cell growth pathways. Furthermore, SCFA butyrate has been demonstrated to enhance the number of HDPs released from macrophages. SCFAs promote monocyte-to-macrophage development and stimulate HDP synthesis in macrophages by inhibiting histone deacetylase (HDAC). Understanding the etiology of many common disorders might be facilitated by studies into the function of microbial metabolites, such as SCFAs, in the molecular regulatory processes of immune responses (e.g., HDP production). This review will focus on the current knowledge of the role and mechanism of microbiota-derived SCFAs in influencing the synthesis of host-derived peptides, particularly HDPs.
Collapse
|
78
|
Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat Rev Microbiol 2023; 21:347-360. [PMID: 36539611 PMCID: PMC10249723 DOI: 10.1038/s41579-022-00833-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
A dense and diverse microbial community inhabits the gut and many epithelial surfaces. Referred to as the microbiota, it co-evolved with the host and is beneficial for many host physiological processes. A major function of these symbiotic microorganisms is protection against pathogen colonization and overgrowth of indigenous pathobionts. Dysbiosis of the normal microbial community increases the risk of pathogen infection and overgrowth of harmful pathobionts. The protective mechanisms conferred by the microbiota are complex and include competitive microbial-microbial interactions and induction of host immune responses. Pathogens, in turn, have evolved multiple strategies to subvert colonization resistance conferred by the microbiota. Understanding the mechanisms by which microbial symbionts limit pathogen colonization should guide the development of new therapeutic approaches to prevent or treat disease.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
79
|
Guo Y, Liu Y, Rui B, Lei Z, Ning X, Liu Y, Li M. Crosstalk between the gut microbiota and innate lymphoid cells in intestinal mucosal immunity. Front Immunol 2023; 14:1171680. [PMID: 37304260 PMCID: PMC10249960 DOI: 10.3389/fimmu.2023.1171680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
The human gastrointestinal mucosa is colonized by thousands of microorganisms, which participate in a variety of physiological functions. Intestinal dysbiosis is closely associated with the pathogenesis of several human diseases. Innate lymphoid cells (ILCs), which include NK cells, ILC1s, ILC2s, ILC3s and LTi cells, are a type of innate immune cells. They are enriched in the mucosal tissues of the body, and have recently received extensive attention. The gut microbiota and its metabolites play important roles in various intestinal mucosal diseases, such as inflammatory bowel disease (IBD), allergic disease, and cancer. Therefore, studies on ILCs and their interaction with the gut microbiota have great clinical significance owing to their potential for identifying pharmacotherapy targets for multiple related diseases. This review expounds on the progress in research on ILCs differentiation and development, the biological functions of the intestinal microbiota, and its interaction with ILCs in disease conditions in order to provide novel ideas for disease treatment in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Li
- *Correspondence: Yinhui Liu, ; Ming Li,
| |
Collapse
|
80
|
Pendse M, De Selle H, Vo N, Quinn G, Dende C, Li Y, Salinas CN, Srinivasan T, Propheter DC, Crofts AA, Koo E, Hassell B, Ruhn KA, Raj P, Obata Y, Hooper LV. Macrophages regulate gastrointestinal motility through complement component 1q. eLife 2023; 12:e78558. [PMID: 37159507 PMCID: PMC10185340 DOI: 10.7554/elife.78558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Peristaltic movement of the intestine propels food down the length of the gastrointestinal tract to promote nutrient absorption. Interactions between intestinal macrophages and the enteric nervous system regulate gastrointestinal motility, yet we have an incomplete understanding of the molecular mediators of this crosstalk. Here, we identify complement component 1q (C1q) as a macrophage product that regulates gut motility. Macrophages were the predominant source of C1q in the mouse intestine and most extraintestinal tissues. Although C1q mediates the complement-mediated killing of bacteria in the bloodstream, we found that C1q was not essential for the immune defense of the intestine. Instead, C1q-expressing macrophages were located in the intestinal submucosal and myenteric plexuses where they were closely associated with enteric neurons and expressed surface markers characteristic of nerve-adjacent macrophages in other tissues. Mice with a macrophage-specific deletion of C1qa showed changes in enteric neuronal gene expression, increased neurogenic activity of peristalsis, and accelerated intestinal transit. Our findings identify C1q as a key regulator of gastrointestinal motility and provide enhanced insight into the crosstalk between macrophages and the enteric nervous system.
Collapse
Affiliation(s)
- Mihir Pendse
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Haley De Selle
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Nguyen Vo
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Gabriella Quinn
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Chaitanya Dende
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Yun Li
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Cristine N Salinas
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Tarun Srinivasan
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Daniel C Propheter
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Alexander A Crofts
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Eugene Koo
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Brian Hassell
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Kelly A Ruhn
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Prithvi Raj
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Yuuki Obata
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Lora V Hooper
- Department of Immunology, The University of Texas Southwestern Medical CenterDallasUnited States
- The Howard Hughes Medical Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
81
|
Kumar A, Pramanik J, Goyal N, Chauhan D, Sivamaruthi BS, Prajapati BG, Chaiyasut C. Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options. Pharmaceuticals (Basel) 2023; 16:ph16040565. [PMID: 37111321 PMCID: PMC10146621 DOI: 10.3390/ph16040565] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The gut microbiota is critical for maintaining human health and the immunological system. Several neuroscientific studies have shown the significance of microbiota in developing brain systems. The gut microbiota and the brain are interconnected in a bidirectional relationship, as research on the microbiome-gut-brain axis shows. Significant evidence links anxiety and depression disorders to the community of microbes that live in the gastrointestinal system. Modified diet, fish and omega-3 fatty acid intake, macro- and micro-nutrient intake, prebiotics, probiotics, synbiotics, postbiotics, fecal microbiota transplantation, and 5-HTP regulation may all be utilized to alter the gut microbiota as a treatment approach. There are few preclinical and clinical research studies on the effectiveness and reliability of various therapeutic approaches for depression and anxiety. This article highlights relevant research on the association of gut microbiota with depression and anxiety and the different therapeutic possibilities of gut microbiota modification.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food Technology, SRM University, Sonipat 131029, India
| | - Jhilam Pramanik
- Department of Food Technology, ITM University, Gwalior 474001, India
| | - Nandani Goyal
- Department of Skill Agriculture, Shri Vishwakarma Skill University, Gurugram 122003, India
| | - Dimple Chauhan
- School of Bio-Engineering and Food Technology, Shoolini University, Solan 173229, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
82
|
Song C, Chai Z, Chen S, Zhang H, Zhang X, Zhou Y. Intestinal mucus components and secretion mechanisms: what we do and do not know. Exp Mol Med 2023; 55:681-691. [PMID: 37009791 PMCID: PMC10167328 DOI: 10.1038/s12276-023-00960-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 04/04/2023] Open
Abstract
Damage to the colon mucus barrier, the first line of defense against microorganisms, is an important determinant of intestinal diseases such as inflammatory bowel disease and colorectal cancer, and disorder in extraintestinal organs. The mucus layer has attracted the attention of the scientific community in recent years, and with the discovery of new mucosal components, it has become increasingly clear that the mucosal barrier is a complex system composed of many components. Moreover, certain components are jointly involved in regulating the structure and function of the mucus barrier. Therefore, a comprehensive and systematic understanding of the functional components of the mucus layer is clearly warranted. In this review, we summarize the various functional components of the mucus layer identified thus far and describe their unique roles in shaping mucosal structure and function. Furthermore, we detail the mechanisms underlying mucus secretion, including baseline and stimulated secretion. In our opinion, baseline secretion can be categorized into spontaneous Ca2+ oscillation-mediated slow and continuous secretion and stimulated secretion, which is mediated by massive Ca2+ influx induced by exogenous stimuli. This review extends the current understanding of the intestinal mucus barrier, with an emphasis on host defense strategies based on fortification of the mucus layer.
Collapse
Affiliation(s)
- Chunyan Song
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Zhenglong Chai
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Si Chen
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Hui Zhang
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xiaohong Zhang
- Department of Preventive Medicine, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China.
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China.
| | - Yuping Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China.
| |
Collapse
|
83
|
Rogers AP, Mileto SJ, Lyras D. Impact of enteric bacterial infections at and beyond the epithelial barrier. Nat Rev Microbiol 2023; 21:260-274. [PMID: 36175770 DOI: 10.1038/s41579-022-00794-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
The mucosal lining of the gut has co-evolved with a diverse microbiota over millions of years, leading to the development of specialized mechanisms to actively limit the invasion of pathogens. However, some enteric microorganisms have adapted against these measures, developing ways to hijack or overcome epithelial micro-integrity mechanisms. This breach of the gut barrier not only enables the leakage of host factors out of circulation but can also initiate a cascade of detrimental systemic events as microbiota, pathogens and their affiliated secretions passively leak into extra-intestinal sites. Under normal circumstances, gut damage is rapidly repaired by intestinal stem cells. However, with substantial and deep perturbation to the gut lining and the systemic dissemination of gut contents, we now know that some enteric infections can cause the impairment of host regenerative processes. Although these local and systemic aspects of enteric disease are often studied in isolation, they heavily impact one another. In this Review, by examining the journey of enteric infections from initial establishment to systemic sequelae and how, or if, the host can successfully repair damage, we will tie together these complex interactions to provide a holistic overview of the impact of enteric infections at and beyond the epithelial barrier.
Collapse
Affiliation(s)
- Ashleigh P Rogers
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Steven J Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia. .,Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
84
|
Naama M, Telpaz S, Awad A, Ben-Simon S, Harshuk-Shabso S, Modilevsky S, Rubin E, Sawaed J, Zelik L, Zigdon M, Asulin N, Turjeman S, Werbner M, Wongkuna S, Feeney R, Schroeder BO, Nyska A, Nuriel-Ohayon M, Bel S. Autophagy controls mucus secretion from intestinal goblet cells by alleviating ER stress. Cell Host Microbe 2023; 31:433-446.e4. [PMID: 36738733 PMCID: PMC10016318 DOI: 10.1016/j.chom.2023.01.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Colonic goblet cells are specialized epithelial cells that secrete mucus to physically separate the host and its microbiota, thus preventing bacterial invasion and inflammation. How goblet cells control the amount of mucus they secrete is unclear. We found that constitutive activation of autophagy in mice via Beclin 1 enables the production of a thicker and less penetrable mucus layer by reducing endoplasmic reticulum (ER) stress. Accordingly, genetically inhibiting Beclin 1-induced autophagy impairs mucus secretion, while pharmacologically alleviating ER stress results in excessive mucus production. This ER-stress-mediated regulation of mucus secretion is microbiota dependent and requires the Crohn's-disease-risk gene Nod2. Overproduction of mucus alters the gut microbiome, specifically expanding mucus-utilizing bacteria, such as Akkermansia muciniphila, and protects against chemical and microbial-driven intestinal inflammation. Thus, ER stress is a cell-intrinsic switch that limits mucus secretion, whereas autophagy maintains intestinal homeostasis by relieving ER stress.
Collapse
Affiliation(s)
- Maria Naama
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shahar Telpaz
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Aya Awad
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shira Ben-Simon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | | | - Elad Rubin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Jasmin Sawaed
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lilach Zelik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Mor Zigdon
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nofar Asulin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michal Werbner
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Supapit Wongkuna
- Department of Molecular Biology, Umeå University, Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Rachel Feeney
- Department of Molecular Biology, Umeå University, Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Bjoern O Schroeder
- Department of Molecular Biology, Umeå University, Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Shai Bel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
85
|
Ramirez ZE, Surana NK. Ruminococcus gnavus and Limosilactobacillus reuteri Regulate Reg3γ Expression through Multiple Pathways. Immunohorizons 2023; 7:228-234. [PMID: 36943156 PMCID: PMC10563382 DOI: 10.4049/immunohorizons.2200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/23/2023] Open
Abstract
Epithelium-derived antimicrobial peptides represent an evolutionarily ancient defense mechanism against pathogens. Regenerating islet-derived protein 3 γ (Reg3γ), the archetypal intestinal antimicrobial peptide, is critical for maintaining host-microbe interactions. Expression of Reg3γ is known to be regulated by the microbiota through two different pathways, although it remains unknown whether specific Reg3γ-inducing bacteria act via one or both of these pathways. In recent work, we identified Ruminococcus gnavus and Limosilactobacillus reuteri as commensal bacteria able to induce Reg3g expression. In this study, we show these bacteria require myeloid differentiation primary response protein 88 and group 3 innate lymphoid cells for induction of Reg3γ in mice. Interestingly, we find that R. gnavus and L. reuteri suppress Reg3γ in the absence of either myeloid differentiation primary response protein 88 or group 3 innate lymphoid cells. In addition, we demonstrate that colonization by these bacteria is not required for induction of Reg3γ, which occurs several days after transient exposure to the organisms. Taken together, our findings highlight the complex mechanisms underlying microbial regulation of Reg3γ.
Collapse
Affiliation(s)
- Zeni E. Ramirez
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Neeraj K. Surana
- Division of Infectious Diseases, Department of Pediatrics, Duke University School of Medicine, Durham, NC
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
- Department of Immunology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
86
|
Balakrishnan B, Kulkarni UP, Pai AA, Illangeswaran RSS, Mohanan E, Mathews V, George B, Balasubramanian P. Biomarkers for early complications post hematopoietic cell transplantation: Insights and challenges. Front Immunol 2023; 14:1100306. [PMID: 36817455 PMCID: PMC9932777 DOI: 10.3389/fimmu.2023.1100306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Hematopoietic cell transplantation is an established curative treatment option for various hematological malignant, and non-malignant diseases. However, the success of HCT is still limited by life-threatening early complications post-HCT, such as Graft Versus Host Disease (GVHD), Sinusoidal Obstruction Syndrome (SOS), and transplant-associated microangiopathy, to name a few. A decade of research in the discovery and validation of novel blood-based biomarkers aims to manage these early complications by using them for diagnosis or prognosis. Advances in this field have also led to predictive biomarkers to identify patients' likelihood of response to therapy. Although biomarkers have been extensively evaluated for different complications, these are yet to be used in routine clinical practice. This review provides a detailed summary of various biomarkers for individual early complications post-HCT, their discovery, validation, ongoing clinical trials, and their limitations. Furthermore, this review also provides insights into the biology of biomarkers and the challenge of obtaining a universal cut-off value for biomarkers.
Collapse
Affiliation(s)
- Balaji Balakrishnan
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | | | - Aswin Anand Pai
- Department of Haematology, Christian Medical College, Vellore, India
| | | | | | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | - Biju George
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
87
|
Jang KK, Heaney T, London M, Ding Y, Yeung F, Ercelen D, Chen YH, Axelrad J, Gurunathan S, Marijke Keestra-Gounder A, Griffin ME, Hang HC, Cadwell K. Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526128. [PMID: 36778381 PMCID: PMC9915521 DOI: 10.1101/2023.01.29.526128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Loss of antimicrobial proteins such as REG3 family members compromises the integrity of the intestinal barrier. Here, we demonstrate that overproduction of REG3 proteins can also be detrimental by reducing a protective species in the microbiota. Patients with inflammatory bowel disease (IBD) experiencing flares displayed heightened levels of secreted REG3 proteins that mediated depletion of Enterococcus faecium ( Efm ) from the gut microbiota. Efm inoculation of mice ameliorated intestinal inflammation through activation of the innate immune receptor NOD2, which was associated with the bacterial DL-endopeptidase SagA. Microbiota sensing by NOD2 in myeloid cells mediated IL-1β secretion and increased the proportion of IL-22-producing CD4 + T helper cells and innate lymphoid cells. Finally, Efm was unable to protect mice carrying a NOD2 gene variant commonly found in IBD patients. Our findings demonstrate that inflammation self-perpetuates by causing aberrant antimicrobial activity that disrupts symbiotic relationships with gut microbes.
Collapse
|
88
|
Eswar K, Mukherjee S, Ganesan P, Kumar Rengan A. Immunomodulatory Natural Polysaccharides: An Overview of the Mechanisms Involved. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
89
|
Vitiello A, Ferrara F, Zovi A. The direct correlation between microbiota and SARS-CoV-2 infectious disease. Inflammopharmacology 2023; 31:603-610. [PMID: 36725821 PMCID: PMC9891758 DOI: 10.1007/s10787-023-01145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023]
Abstract
The human microbiota is the good part of the human organism and is a collection of symbiotic microorganisms which aid in human physiological functions. Diseases that can be generated by an altered microbiota are continuously being studied, but it is quite evident how a damaged microbiota is involved in chronic inflammatory diseases, psychiatric diseases, and some bacterial or viral infections. However, the role of the microbiota in the host immune response to bacterial and viral infections is still not entirely understood. Metabolites or components which are produced by the microbiota are useful in mediating microbiota-host interactions, thus influencing the host's immune capacity. Recent evidence shows that the microbiota is evidently altered in patients with viral infections such as post-acute COVID-19 syndrome (PACS). In this review, the associations between microbiota and COVID-19 infection are highlighted in terms of biological and clinical significance by emphasizing the mechanisms through which metabolites produced by the microbiota modulate immune responses to COVID-19 infection.
Collapse
Affiliation(s)
| | - Francesco Ferrara
- Pharmaceutical Department, Asl Napoli 3 Sud, Dell’amicizia Street 22, 80035 Nola, Naples Italy
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy
| |
Collapse
|
90
|
Abdullah U, Saleh N, Shaw P, Jalal N. COVID-19: The Ethno-Geographic Perspective of Differential Immunity. Vaccines (Basel) 2023; 11:319. [PMID: 36851197 PMCID: PMC9966855 DOI: 10.3390/vaccines11020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the agent behind the worst global pandemic of the 21st century (COVID-19), is primarily a respiratory-disease-causing virus called SARS-CoV-2 that is responsible for millions of new cases (incidence) and deaths (mortalities) worldwide. Many factors have played a role in the differential morbidity and mortality experienced by nations and ethnicities against SARS-CoV-2, such as the quality of primary medical health facilities or enabling economies. At the same time, the most important variable, i.e., the subsequent ability of individuals to be immunologically sensitive or resistant to the infection, has not been properly discussed before. Despite having excellent medical facilities, an astounding issue arose when some developed countries experienced higher morbidity and mortality compared with their relatively underdeveloped counterparts. Hence, this investigative review attempts to analyze the issue from an angle of previously undiscussed genetic, epigenetic, and molecular immune resistance mechanisms in correlation with the pathophysiology of SARS-CoV-2 and varied ethnicity-based immunological responses against it. The biological factors discussed here include the overall landscape of human microbiota, endogenous retroviral genes spliced into the human genome, and copy number variation, and how they could modulate the innate and adaptive immune systems that put a certain ethnic genetic architecture at a higher risk of SARS-CoV-2 infection than others. Considering an array of these factors in their entirety may help explain the geographic disparity of disease incidence, severity, and subsequent mortality associated with the disease while at the same time encouraging scientists to design new experimental approaches to investigation.
Collapse
Affiliation(s)
- Usman Abdullah
- Department of Biomedical Sciences, Pak-Austria Fachhochschule, Mang, Haripur 22621, Pakistan
| | - Ned Saleh
- Synsal Inc., San Jose, CA 95138, USA
| | - Peter Shaw
- Oujiang Lab, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| | - Nasir Jalal
- Department of Biomedical Sciences, Pak-Austria Fachhochschule, Mang, Haripur 22621, Pakistan
- Oujiang Lab, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| |
Collapse
|
91
|
He Y, Hao F, Fu H, Tian G, Zhang Y, Fu K, Qi B. N-glycosylated intestinal protein BCF-1 shapes microbial colonization by binding bacteria via its fimbrial protein. Cell Rep 2023; 42:111993. [PMID: 36662624 DOI: 10.1016/j.celrep.2023.111993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Microbial colonization plays an instrumental role in the health of the host. However, the host factors that facilitate the establishment of the microbial colonization remain unclear. Here, we establish a screening method to identify host factors regulating E. coli colonization in C. elegans. We find that a BCF-1 possessing N-glycosylation promotes E. coli colonization by directly binding to E. coli via its fimbrial protein, YdeR. BCF-1 is activated by the bacteria and interacts with an oligosaccharyl transferase, OSTB-1, which is critical for regulating E. coli colonization. We also show that the N-glycosylation of BCF-1 is critical for E. coli colonization. In addition, we find that the microbiota composition is shaped by BCF-1. In summary, this study shows a "scaffold model" for bacterial colonization between a host glycoprotein and E. coli, and it also introduces a powerful research approach to identify individual host factors involved in modulating bacterial colonization.
Collapse
Affiliation(s)
- Yongjuan He
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Fanrui Hao
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Herui Fu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Guojing Tian
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yingyang Zhang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Kai Fu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Bin Qi
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
92
|
Wang C, Pan Z, Jin Y. F-53B induces hepatotoxic effects and slows self-healing in ulcerative colitis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120819. [PMID: 36481465 DOI: 10.1016/j.envpol.2022.120819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Chlorinated polyfluorinated ether sulfonate (F-53 B) is a distinct substitute for perfluorooctane sulphonate. It has been reported to be biologically toxic to mammals, causing enteric toxicity, liver toxicity and neurotoxicity. However, studies about the effects of F-53 B on patients with gastrointestinal diseases such as inflammatory bowel disease are very limited. In this study, whether the toxic impacts of F-53 B on the gut and liver can be exacerbated in mice with colitis was explored. The sensitivity of mice with acute colitis caused by dextran sulfate sodium salt (DSS) to F-53 B was compared with that of healthy mice. The mice were administered water containing F-53 B at doses of 10 and 100 μg/L sequentially for two weeks, respectively. F-53 B exposure exacerbated DSS-induced colonic inflammation, including inducing shortening of colon length, inflammatory cell infiltration and more severe histopathological symptoms. In addition, F-53 B administration significantly increased the levels of inflammatory cytokines, including interleukin (IL)-1, IL-6 and tumour necrosis factor-α, in the plasma of mice with enteritis compared with control group. F-53 B impaired intestinal integrity of mice with colitis by downregulating Claudin-1 and antimicrobial peptide-related genes while elevating serum lipopolysaccharide levels. In addition, in mice with colitis, F-53 B increased the levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, aspartate aminotransferase, and alanine aminotransferase, resulted in more severe liver inflammation and increased the level of genes related to the Gasdermin D-mediated pyrolysis. Conclusively, our results indicated that F-53 B delayed the self-healing of ulcerative colitis (UC) and caused liver inflammation in mice. This study provided some new insights into the health risks of F-53 B and raises concerns about the health of individuals with UC.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China; Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zihong Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
93
|
Association between microbiota and immune response to Sars-CoV-2 infection. Infect Dis Now 2023; 53:104646. [PMID: 36642100 PMCID: PMC9837228 DOI: 10.1016/j.idnow.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
In recent times, the key role of the human microbiota in the body's response to infectious diseases has been increasingly demonstrated. The human microbiota is the set of symbiotic microorganisms which coexist with the human organism without harming it. However, diseases related to the microbiota occur and are being studied, and numerous publications suggest that altered microbiota composition is implicated in psychiatric diseases, chronic inflammatory diseases, and some viral infections. On the other hand, the role of the human microbiota in the host immune response to viral infections is not entirely clear. Metabolites or components produced by the microbiota are the main mediators of microbiota-host interactions that influence host immunity. It has been shown that in patients with COVID-19 and post-acute COVID-19 syndrome (PACS), the microbiota is significantly altered. In this brief review, we examine the associations between the role of the microbiota in response to COVID-19 infection in terms of molecular biology and clinical relevance. We finally discuss the mechanisms by which metabolites produced by the microbiota modulate host immune responses to SARS-CoV-2 infection.
Collapse
|
94
|
Rodrigues M, Sabaeifard P, Yildiz MS, Coughlin L, Ahmed S, Behrendt C, Wang X, Monogue M, Kim J, Gan S, Zhan X, Filkins L, Williams NS, Hooper LV, Koh AY, Toprak E. Susceptible bacteria survive antibiotic treatment in the mammalian gastrointestinal tract without evolving resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523617. [PMID: 36711614 PMCID: PMC9882032 DOI: 10.1101/2023.01.11.523617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In vitro systems have provided great insight into the mechanisms of antibiotic resistance. Yet, in vitro approaches cannot reflect the full complexity of what transpires within a host. As the mammalian gut is host to trillions of resident bacteria and thus a potential breeding ground for antibiotic resistance, we sought to better understand how gut bacteria respond to antibiotic treatment in vivo . Here, we colonized germ-free mice with a genetically barcoded antibiotic pan-susceptible Escherichia coli clinical isolate and then administered the antibiotic cefepime via programmable subcutaneous pumps which allowed for closer emulation of human parenteral antibiotic pharmacokinetics/dynamics. After seven days of antibiotics, we were unable to culture E. coli from feces. We were, however, able to recover barcoded E. coli from harvested gastrointestinal (GI) tissue, despite high GI tract and plasma cefepime concentrations. Strikingly, these E. coli isolates were not resistant to cefepime but had acquired mutations â€" most notably in the wbaP gene, which encodes an enzyme required for the initiation of the synthesis of the polysaccharide capsule and lipopolysaccharide O antigen - that increased their ability to invade and survive within intestinal cells, including cultured human colonocytes. Further, these E. coli mutants exhibited a persister phenotype when exposed to cefepime, allowing for greater survival to pulses of cefepime treatment when compared to the wildtype strain. Our findings highlight a mechanism by which bacteria in the gastrointestinal tract can adapt to antibiotic treatment by increasing their ability to persist during antibiotic treatment and invade intestinal epithelial cells where antibiotic concentrations are substantially reduced.
Collapse
|
95
|
Raev S, Amimo J, Saif L, Vlasova A. Intestinal mucin-type O-glycans: the major players in the host-bacteria-rotavirus interactions. Gut Microbes 2023; 15:2197833. [PMID: 37020288 PMCID: PMC10078158 DOI: 10.1080/19490976.2023.2197833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Rotavirus (RV) causes severe diarrhea in young children and animals worldwide. Several glycans terminating in sialic acids (SAs) and histo-blood group antigens (HBGAs) on intestinal epithelial cell (IEC) surface have been recognized to act as attachment sites for RV. IECs are protected by the double layer of mucus of which O-glycans (including HBGAs and SAs) are a major organic component. Luminal mucins, as well as bacterial glycans, can act as decoy molecules removing RV particles from the gut. The composition of the intestinal mucus is regulated by complex O-glycan-specific interactions among the gut microbiota, RV and the host. In this review, we highlight O-glycan-mediated interactions within the intestinal lumen prior to RV attachment to IECs. A better understanding of the role of mucus is essential for the development of alternative therapeutic tools including the use of pre- and probiotics to control RV infection.
Collapse
Affiliation(s)
- S.A. Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - J.O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - L.J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| | - A.N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
96
|
Bhat MH, Hajam YA, Neelam, Kumar R, Diksha. Microbial Diversity and Their Role in Human Health and Diseases. ROLE OF MICROBES IN SUSTAINABLE DEVELOPMENT 2023:1-33. [DOI: 10.1007/978-981-99-3126-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
97
|
Rampanelli E, Nieuwdorp M. Gut microbiome in type 1 diabetes: the immunological perspective. Expert Rev Clin Immunol 2023; 19:93-109. [PMID: 36401835 DOI: 10.1080/1744666x.2023.2150612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a prevalent, and yet uncurable, autoimmune disease targeting insulin-producing pancreatic β-cells. Despite a known genetic component in T1D onset, genetics alone cannot explain the alarming worldwide rise in T1D incidence, which is attributed to a growing impact of environmental factors, including perturbations of the gut microbiome. AREAS COVERED Intestinal commensal bacteria plays a crucial role in host physiology in health and disease by regulating endocrine and immune functions. An aberrant gut microbiome structure and metabolic function have been documented prior and during T1D onset. In this review, we summarize and discuss the current studies depicting the taxonomic profile and role of the gut microbial communities in murine models of T1D, diabetic patients and human interventional trials. EXPERT OPINION Compelling evidence have shown that the intestinal microbiota is instrumental in driving differentiation and functions of immune cells. Therefore, any alterations in the intestinal microbiome composition or microbial metabolite production, particularly early in life, may impact disease susceptibility and amplify inflammatory responses and hence accelerate the course of T1D pathogenesis.
Collapse
Affiliation(s)
- Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM) Institute, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM) Institute, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam, The Netherlands.,Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
98
|
Guo Y, Chen X, Gong P, Li Z, Wu Y, Zhang J, Wang J, Yao W, Yang W, Chen F. Advances in the mechanisms of polysaccharides in alleviating depression and its complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154566. [PMID: 36610126 DOI: 10.1016/j.phymed.2022.154566] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Depression is one of the most serious mental illnesses worldwide that endangers the health of people. The pathogenesis of depression is complex and is associated with abnormal neurotransmitter levels, activation of the hypothalamic-pituitary-adrenal (HPA) axis, inflammation, and gut flora-related disorders. However, most of the current pharmacological therapies used to manage depression are inconsistent and are associated with side effects. Owing to their low toxicity and wide availability in nature, polysaccharides are gradually attracting attention and are being discovered to exert direct or indirect antidepressant effects. PURPOSE In this review, we have summarized the classification, dosage, and experimental models to study polysaccharides with antidepressant effects obtained from different sources. We have also reviewed the protective effects and underlying mechanisms of these polysaccharides in depression by modulating inflammation, the HPA axis, and intestinal flora. METHODS We searched the PubMed, Web of Science, and Google scholar databases and included studies that reported the use of polysaccharides in treating depression. RESULTS The unique benefits of natural polysaccharides as antidepressants lie in their potential to modulate inflammation, regulate the HPA axis, and regulate intestinal flora, giving full play to their antidepressant effects via multiple pathways and targets. CONCLUSION Natural polysaccharides may be a promising resource for use as adjuvant antidepressant therapy. Our study might therefore provide evidence for the development of polysaccharide resources as antidepressants.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Zixuan Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Yanping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China.
| | - Jie Zhang
- Department of Psychosomatic Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Jiating Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
99
|
Ray S, Huang E, West GA, Mrdjen M, McMullen MR, de la Motte C, Nagy LE. 35kDa hyaluronan ameliorates ethanol driven loss of anti-microbial defense and intestinal barrier integrity in a TLR4-dependent manner. Matrix Biol 2023; 115:71-80. [PMID: 36574533 PMCID: PMC9898137 DOI: 10.1016/j.matbio.2022.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Acute and chronic alcohol exposure compromise intestinal epithelial integrity, due to reduced expression of anti-microbial peptides (AMP) and loss of tight junction integrity. Ameliorating gut damage is beneficial in preventing associated distant organ pathologies. Orally administered purified hyaluronan (HA) polymers with an average size of 35 kDa have multiple protective effects in the gut and are well-tolerated in humans. Therefore, we tested the hypothesis that HA35 ameliorates ethanol-induced gut damage. Specifically, mechanisms that restore epithelial barrier integrity and normalize expression of the Reg3 class of C-type lectin AMPs (i.e. Reg3β and Reg3γ) were investigated. Chronic ethanol feeding to mice reduced expression of C-type lectin AMPs in the proximal small intestine (jejunum), reduced expression of tight junction proteins and increased bacterial translocation to the mesenteric lymph node. Oral consumption of HA35 during the last 6 days of ethanol exposure ameliorated the effects of chronic ethanol. Similarly, in vitro challenge of isolated intestinal organoids from murine jejunum with ethanol reduced the expression of C-type lectin AMPs and impaired barrier integrity; these ethanol-induced responses were prevented by pre-treatment with HA35. Importantly, HA receptor null jejunum-derived organoids demonstrated that the HA receptor Tlr4, but not Cd44 nor Tlr2, was required for the protective effect of HA35. Consistent with the data from organoids, HA35 did not protect Tlr4-deficient mice from chronic ethanol-induced intestinal injury. Together, these data suggest therapeutic administration of HA35 is beneficial in restoring gut epithelial integrity and defense during the early stages of ethanol-driven intestinal damage.
Collapse
Affiliation(s)
- Semanti Ray
- Department of Inflammation and Immunity, Cleveland Clinic, NE40, 9500 Euclid Ave, Cleveland, OH 44195, USA; Northern Ohio Alcohol Center, Cleveland Clinic, Cleveland, OH, USA
| | - Emily Huang
- Department of Inflammation and Immunity, Cleveland Clinic, NE40, 9500 Euclid Ave, Cleveland, OH 44195, USA; Northern Ohio Alcohol Center, Cleveland Clinic, Cleveland, OH, USA
| | - Gail A West
- Department of Inflammation and Immunity, Cleveland Clinic, NE40, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Marko Mrdjen
- Department of Inflammation and Immunity, Cleveland Clinic, NE40, 9500 Euclid Ave, Cleveland, OH 44195, USA; Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Megan R McMullen
- Department of Inflammation and Immunity, Cleveland Clinic, NE40, 9500 Euclid Ave, Cleveland, OH 44195, USA; Northern Ohio Alcohol Center, Cleveland Clinic, Cleveland, OH, USA
| | - Carol de la Motte
- Department of Inflammation and Immunity, Cleveland Clinic, NE40, 9500 Euclid Ave, Cleveland, OH 44195, USA; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, NE40, 9500 Euclid Ave, Cleveland, OH 44195, USA; Northern Ohio Alcohol Center, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
100
|
Fernandes MR, Aggarwal P, Costa RGF, Cole AM, Trinchieri G. Targeting the gut microbiota for cancer therapy. Nat Rev Cancer 2022; 22:703-722. [PMID: 36253536 DOI: 10.1038/s41568-022-00513-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/06/2023]
Abstract
Growing evidence suggests that the gut microbiota modulates the efficacy and toxicity of cancer therapy, most notably immunotherapy and its immune-related adverse effects. The poor response to immunotherapy in patients treated with antibiotics supports this influential role of the microbiota. Until recently, results pertaining to the identification of the microbial species responsible for these effects were incongruent, and relatively few studies analysed the underlying mechanisms. A better understanding of the taxonomy of the species involved and of the mechanisms of action has since been achieved. Defined bacterial species have been shown to promote an improved response to immune-checkpoint inhibitors by producing different products or metabolites. However, a suppressive effect of Gram-negative bacteria may be dominant in some unresponsive patients. Machine learning approaches trained on the microbiota composition of patients can predict the ability of patients to respond to immunotherapy with some accuracy. Thus, interest in modulating the microbiota composition to improve patient responsiveness to therapy has been mounting. Clinical proof-of-concept studies have demonstrated that faecal microbiota transplantation or dietary interventions might be utilized clinically to improve the success rate of immunotherapy in patients with cancer. Here, we review recent advances and discuss emerging strategies for microbiota-based cancer therapies.
Collapse
Affiliation(s)
- Miriam R Fernandes
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Poonam Aggarwal
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Raquel G F Costa
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Alicia M Cole
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|