51
|
Onafuwa-Nuga AA, Telesnitsky A, King SR. 7SL RNA, but not the 54-kd signal recognition particle protein, is an abundant component of both infectious HIV-1 and minimal virus-like particles. RNA (NEW YORK, N.Y.) 2006; 12:542-6. [PMID: 16489186 PMCID: PMC1421090 DOI: 10.1261/rna.2306306] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The virion incorporation of 7SL, the RNA component of the host signal recognition particle (SRP), has been shown for several simple retroviruses. Data here demonstrate that 7SL is also packaged by HIV-1, in sevenfold molar excess of genomic RNA. Viral determinants of HIV-1 genome and primer tRNA packaging were not required for 7SL incorporation, as virus-like particles with only minimal assembly components efficiently packaged 7SL. The majority of 7SL within cells resides in ribonucleoprotein complexes bound by SRP proteins, and most SRP protein exists in signal recognition particles. However, Western blot comparison of virion and cell samples revealed that there is at least 25-fold less SRP p54 protein per 7SL RNA in HIV-1 particles than in cells. Comparing 7SL:actin mRNA ratios in virions and cells revealed that 7SL RNA appears selectively enriched in virions.
Collapse
|
52
|
Roy BB, Hu J, Guo X, Russell RS, Guo F, Kleiman L, Liang C. Association of RNA helicase a with human immunodeficiency virus type 1 particles. J Biol Chem 2006; 281:12625-35. [PMID: 16527808 DOI: 10.1074/jbc.m510596200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA helicase A (RHA) belongs to the DEAH family of proteins that are capable of unwinding double-stranded RNA structure. In addition to its involvement in the metabolism of cellular RNA, RHA has been shown to stimulate RNA transcription from the long terminal repeat promoter of human immunodeficiency virus type 1 (HIV-1) as well as to enhance Rev/Rev response element-mediated gene expression. In this study, we provide evidence that RHA associates with HIV-1 Gag in an RNA-dependent manner. This interaction results in specific incorporation of RHA into HIV-1 particles. Knockdown of endogenous RHA in virus producer cells leads to generation of HIV-1 particles that are less infectious in part as a result of restricted reverse transcription. Therefore, RHA represents the first example of cellular RNA helicases that participate in HIV-1 particle production and promote viral reverse transcription.
Collapse
Affiliation(s)
- Bibhuti Bhusan Roy
- McGill AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
53
|
Young KR, Ross TM. Elicitation of immunity to HIV type 1 Gag is determined by Gag structure. AIDS Res Hum Retroviruses 2006; 22:99-108. [PMID: 16438652 DOI: 10.1089/aid.2006.22.99] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gag gene of the human immunodeficiency virus type 1 (HIV-1) encodes for viral proteins that self-assemble into viral particles. The primary Gag gene products (capsid, matrix, and nucleocapsid) elicit humoral and cellular immune responses during natural infection, and these proteins are included in many preclinical and clinical HIV/AIDS vaccines. However, the structure (particulate or soluble) of these proteins may influence the immunity elicited during vaccination. In this study, mice were inoculated with four different HIV-1 Gag vaccines to compare the elicitation of immune responses by the same Gag immunogen presented to the immune system in different forms. The immunity elicited by particles produced in vivo by DNA plasmid (pGag) was compared to these same proteins retained intracellularly (pGag(DMyr)). In addition, the elicitation of anti- Gag immunity by Gag(p55) virus-like particles (VLPs) or soluble, nonparticulate Gag(p55) proteins was compared. Enhanced cellular responses, but almost no anti-Gag antibodies, were elicited with intracellularly retained Gag proteins. In contrast, DNA vaccines expressing VLPs elicited both anti-Gag antibodies and cellular responses. Mice vaccinated with purified Gag(p55) VLPs elicited robust humoral and cellular immune responses, which were significantly higher than the immunity elicited by soluble, nonparticulate Gag(p55) protein. Overall, purified particles of Gag effectively elicited the broadest and highest titers of anti-Gag immunity. The structural form of Gag influences the elicited immune responses and should be considered in the design of HIV/AIDS vaccines.
Collapse
Affiliation(s)
- Kelly R Young
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, 15261, USA
| | | |
Collapse
|
54
|
Hammonds J, Chen X, Fouts T, DeVico A, Montefiori D, Spearman P. Induction of neutralizing antibodies against human immunodeficiency virus type 1 primary isolates by Gag-Env pseudovirion immunization. J Virol 2005; 79:14804-14. [PMID: 16282480 PMCID: PMC1287556 DOI: 10.1128/jvi.79.23.14804-14814.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 09/15/2005] [Indexed: 11/20/2022] Open
Abstract
A major challenge for the development of an effective HIV vaccine is to elicit neutralizing antibodies against a broad array of primary isolates. Monomeric gp120-based vaccine approaches have not been successful in inducing this type of response, prompting a number of approaches designed to recreate the native glycoprotein complex that exists on the viral membrane. Gag-Env pseudovirions are noninfectious viruslike particles that recreate the native envelope glycoprotein structure and have the potential to generate neutralizing antibody responses against primary isolates. In this study, an inducible cell line was created in order to generate Gag-Env pseudovirions for examination of neutralizing antibody responses in guinea pigs. Unadjuvanted pseudovirions generated relatively weak anti-gp120 responses, while the use of a block copolymer water-in-oil emulsion or aluminum hydroxide combined with CpG oligodeoxynucleotides resulted in high levels of antibodies that bind to gp120. Sera from immunized animals neutralized a panel of human immunodeficiency virus (HIV) type 1 primary isolate viruses at titers that were significantly higher than that of the corresponding monomeric gp120 protein. Interpretation of these results was complicated by the occurrence of neutralizing antibodies directed against cellular (non-envelope protein) components of the pseudovirion. However, a major component of the pseudovirion-elicited antibody response was directed specifically against the HIV envelope. These results provide support for the role of pseudovirion-based vaccines in generating neutralizing antibodies against primary isolates of HIV and highlight the potential confounding role of antibodies directed at non-envelope cell surface components.
Collapse
Affiliation(s)
- Jason Hammonds
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
55
|
Marsac D, Puaux AL, Rivière Y, Michel ML. In vivo induction of cellular and humoral immune responses by hybrid DNA vectors encoding simian/human immunodeficiency virus/hepatitis B surface antigen virus particles in BALB/c and HLA-A2-transgenic mice. Immunobiology 2005; 210:305-19. [PMID: 16164038 DOI: 10.1016/j.imbio.2005.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To improve the immunogenicity of epitopes derived from Gag proteins of simian immunodeficiency virus (SIV) and from the envelope (Env) protein of human immunodeficiency virus type 1 (HIV-1), we have designed hybrid DNA vaccines by inserting sequences encoding antigenic domains of SIV and HIV-1 into the hepatitis B virus envelope gene. This gene encodes the hepatitis B surface antigen (HBsAg) capable of spontaneous assembly into virus-like particles that were used here as carrier. Injections of hybrid vectors encoding B-cell epitopes from the gp41 and the gp120 envelope proteins of HIV-1 induced specific humoral responses in BALB/c mice. Furthermore, high frequencies of IFN-gamma-secreting CD8+ T cells specific for various antigenic determinants of SIV-Gag were observed after intramuscular injections of hybrid DNA vectors in BALB/c mice. Genetic immunization of HLA-A2.1-transgenic mice with HIV-Env/HBsAg-encoding DNA generated a strong CTL response and IFN-gamma-secreting CD8+ T lymphocytes specific for HIV-1 envelope-derived peptide. H-2d-restricted HBs-specific T-cell responses dominated over SIV-Gag responses in BALB/c mice whereas HLA-A2-restricted HIV-Env response was enhanced after fusion with HBsAg. These data demonstrate that different B and T-cell epitopes of vaccine-relevant viral antigens can be expressed in vivo as fusion proteins with HBsAg but that the optimal immunogenicity may differ strikingly between individual epitopes.
Collapse
Affiliation(s)
- Delphine Marsac
- INSERM U 370 Carcinogenèse Hépatique et Virologie Moléculaire, Département de Médecine Moléculaire, Institut Pasteur, 28, rue du Docteur Roux, 75724 PARIS CEDEX 15, France
| | | | | | | |
Collapse
|
56
|
Hu K, Clément JF, Abrahamyan L, Strebel K, Bouvier M, Kleiman L, Mouland AJ. A human immunodeficiency virus type 1 protease biosensor assay using bioluminescence resonance energy transfer. J Virol Methods 2005; 128:93-103. [PMID: 15951029 PMCID: PMC7112859 DOI: 10.1016/j.jviromet.2005.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 04/11/2005] [Accepted: 04/13/2005] [Indexed: 12/03/2022]
Abstract
A sensitive reporter assay to measure human immunodeficiency virus type 1 (HIV-1) protease (PR) activity is described in this manuscript. This assay measures PR activity as a function of the resonance energy transfer (RET) between a donor molecule [humanized sea pansy Renilla reniformis luciferase (hRLuc)] and an energy acceptor molecule, humanized green fluorescent protein (hGFP2) when expressed in mammalian cells. This is a naturally occurring phenomenon and is an emerging and powerful technology that has significant advantages over alternative in vitro PR assays. The HIV-1 Gag-p2/Gag-p7 (p2/p7) PR site was inserted between hGFP2 and hRLuc. The newly created vector, hRLuc-p2/p7-hGFP2 was co-expressed with an HIV-1 codon-optimized PR+ or PR- Gag/Pol expressor. Expression of the hRLuc-p2/p7-hGFP2 alone or with the PR- Gag-Pol expressor generated a BRET2 indicating that the PR cleavage site was not cleaved, whereas the inclusion of the PR+ Gag-Pol produced a significant reduction in the BRET2. The inclusion of PR inhibitors Saquinavir or Amprenavir, or the expression of a p2/p7 PR substrate mutant also blocked the cleavage to result in a stable BRET2 signal. Because the HIV-1 auxiliary protein Vif has been shown to modulate the HIV-1p2/p7 cleavage, this assay was then validated in studies in which Vif was expressed. When Vif was overexpressed along with hRLuc-p2/p7-hGFP2 and PR+ Gag-Pol, the decrease in BRET2 was abrogated in a dose-dependent manner, demonstrating that supraphysiologic levels of Vif block p2/p7 cleavage. An accumulation of a Gag processing intermediate was observed, indicating that p2/p7 cleavage was negatively affected. Overexpression of an RNA-binding-defective Staufen protein or a related dsRNA-binding protein TRBP had no effect on PR cleavage activity as shown by Western and BRET2 analyses. The p2/p7 processing data were confirmed by Western blot analyses. BRET is non-invasive and occurs within live cells, is measured in real time, and is not restricted to cellular compartments making it an especially attractive technology to identify small bioactive inhibitory molecules. This PR BRET2 biosensor assay can be adapted for high throughput screening of new HIV-1 PR inhibitors. It can be employed to screen for antiviral compounds that also target the proteases of other viruses.
Collapse
Affiliation(s)
- Kimberly Hu
- HIV-1 RNA Trafficking Laboratory, Sir Mortimer B. Davis-Jewish General Hospital, 3999 Côte-Ste-Catherine Road, Montréal, Qué., Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
57
|
Ellenberger D, Wyatt L, Li B, Buge S, Lanier N, Rodriguez IV, Sariol CA, Martinez M, Monsour M, Vogt J, Smith J, Otten R, Montefiori D, Kraiselburd E, Moss B, Robinson H, McNicholl J, Butera S. Comparative immunogenicity in rhesus monkeys of multi-protein HIV-1 (CRF02_AG) DNA/MVA vaccines expressing mature and immature VLPs. Virology 2005; 340:21-32. [PMID: 16023165 DOI: 10.1016/j.virol.2005.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 05/13/2005] [Accepted: 06/09/2005] [Indexed: 11/22/2022]
Abstract
We developed an AIDS vaccine for Western and West-Central Africa founded on HIV-1 subtype CRF02_AG. Rhesus macaques were primed with Gag-Pol-Env-expressing plasmid DNA and boosted with a recombinant modified vaccinia virus Ankara (rMVA), expressing matched proteins. Two DNA vaccine constructs (IC1-90 and IC48) that differed by point mutations in gag and pol were compared. IC1-90 produces primarily immature (core comprises unprocessed Pr55Gag) HIV-like particles (VLPs) and IC48 produces mature VLP with processed Pr55Gag, immature VLP, and intracellular protein aggregates. Both vaccines raised significant cellular responses for Gag, Pol, and Env. Approximate twofold higher ELISPOT responses to Gag and Env epitopes were observed for IC48 animals than for IC1-90 animals at the peak post-MVA effector (P = 0.028) and late memory (P = 0.051) phases, respectively. Greater breadth for IC48-primed animals was observed than for IC1-90-primed animals at peak response (P = 0.03). Our results indicated that the vaccines elicited high frequency T cell responses and primed anti-Env antibody. They also suggest that expression of different forms of VLP has a significant effect on elicited cellular and humoral immunity.
Collapse
Affiliation(s)
- Dennis Ellenberger
- Laboratory Branch, Centers for Disease Control and Prevention, Mail Stop G-19, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Wu L, Kong WP, Nabel GJ. Enhanced breadth of CD4 T-cell immunity by DNA prime and adenovirus boost immunization to human immunodeficiency virus Env and Gag immunogens. J Virol 2005; 79:8024-31. [PMID: 15956548 PMCID: PMC1143709 DOI: 10.1128/jvi.79.13.8024-8031.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of gene-based vaccination approaches have been used to enhance the immune response to viral pathogens. Among them, the ability to perform heterologous immunization by priming with DNA and boosting with replication-defective adenoviral (ADV) vectors encoding foreign antigens has proven particularly effective in eliciting enhanced cellular and humoral immunity compared to either agent alone. Because adenoviral vector immunization alone can elicit substantial cellular and humoral immune responses in a shorter period of time, we asked whether the immune response induced by the prime-boost immunization was different from adenoviral vaccines with respect to the potency and breadth of T-cell recognition. While DNA/ADV immunization stimulated the CD8 response, it was directed to the same epitopes in Gag and Env immunogens of human immunodeficiency virus as DNA or ADV alone. In contrast, the CD4 response to these immunogens diversified after DNA/ADV immunization compared to each vector alone. These findings suggest that the diversity of the CD4 immune response is increased by DNA/ADV prime-boost vaccination and that these components work synergistically to enhance T-cell epitope recognition.
Collapse
Affiliation(s)
- Lan Wu
- Vaccine Research Center, NIAID, National Institutes of Health, Room 4502, Bldg. 40, MSC-3005, 40 Convent Drive, Bethesda, MD 20892-3005, USA
| | | | | |
Collapse
|
59
|
Barouch DH, Yang ZY, Kong WP, Korioth-Schmitz B, Sumida SM, Truitt DM, Kishko MG, Arthur JC, Miura A, Mascola JR, Letvin NL, Nabel GJ. A human T-cell leukemia virus type 1 regulatory element enhances the immunogenicity of human immunodeficiency virus type 1 DNA vaccines in mice and nonhuman primates. J Virol 2005; 79:8828-34. [PMID: 15994776 PMCID: PMC1168733 DOI: 10.1128/jvi.79.14.8828-8834.2005] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plasmid DNA vaccines elicit potent and protective immune responses in numerous small-animal models of infectious diseases. However, their immunogenicity in primates appears less potent. Here we investigate a novel approach that optimizes regulatory elements in the plasmid backbone to improve the immunogenicity of DNA vaccines. Among various regions analyzed, we found that the addition of a regulatory sequence from the R region of the long terminal repeat from human T-cell leukemia virus type 1 (HTLV-1) to the cytomegalovirus (CMV) enhancer/promoter increased transgene expression 5- to 10-fold and improved cellular immune responses to human immunodeficiency virus type 1 (HIV-1) antigens. In cynomolgus monkeys, DNA vaccines containing the CMV enhancer/promoter with the HTLV-1 R region (CMV/R) induced markedly higher cellular immune responses to HIV-1 Env from clades A, B, and C and to HIV-1 Gag-Pol-Nef compared with the parental DNA vaccines. These data demonstrate that optimization of specific regulatory elements can substantially improve the immunogenicity of DNA vaccines encoding multiple antigens in small animals and in nonhuman primates. This strategy could therefore be explored as a potential method to enhance DNA vaccine immunogenicity in humans.
Collapse
Affiliation(s)
- Dan H Barouch
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Santra S, Seaman MS, Xu L, Barouch DH, Lord CI, Lifton MA, Gorgone DA, Beaudry KR, Svehla K, Welcher B, Chakrabarti BK, Huang Y, Yang ZY, Mascola JR, Nabel GJ, Letvin NL. Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates. J Virol 2005; 79:6516-22. [PMID: 15858035 PMCID: PMC1091731 DOI: 10.1128/jvi.79.10.6516-6522.2005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The magnitude and durability of immune responses induced by replication-defective adenovirus serotype 5 (ADV5) vector-based vaccines were evaluated in the simian-human immunodeficiency virus/rhesus monkey model. A single inoculation of recombinant ADV5 vector constructs induced cellular and humoral immunity, but the rapid generation of neutralizing anti-Ad5 antibodies limited the immunity induced by repeated vector administration. The magnitude and durability of the immune responses elicited by these vaccines were greater when they were delivered as boosting immunogens in plasmid DNA-primed monkeys than when they were used as single-modality immunogens. Therefore, administration of ADV5-based vectors in DNA-primed subjects may be a preferred use of this vaccine modality for generating long-term immune protection.
Collapse
Affiliation(s)
- Sampa Santra
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, RE113, P. O. Box 15732, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Guo F, Gabor J, Cen S, Hu K, Mouland AJ, Kleiman L. Inhibition of cellular HIV-1 protease activity by lysyl-tRNA synthetase. J Biol Chem 2005; 280:26018-23. [PMID: 15888436 DOI: 10.1074/jbc.m502454200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During early assembly of human immunodeficiency virus type 1 (HIV-1), an assembly complex is formed, the components of which include genomic RNA, Gag, GagPol, tRNA(Lys), and lysyl tRNA synthetase (LysRS). Directly increasing or decreasing cellular expression of LysRS results in corresponding changes in viral infectivity and in the viral concentrations of LysRS, tRNA(Lys), and, surprisingly, reverse transcriptase (RT). Since altering the cellular expression of LysRS does not lead to a change in the incorporation of the RT precursor protein, GagPol, in protease-negative HIV-1, we propose that the altered viral content of RT resulting from alterations in cellular LysRS concentration results from the ability of LysRS to inhibit premature activation of Gag-Pol viral protease within the complex. Supporting this hypothesis, we find that increases and decreases in cellular LysRS expression are accompanied by 5-8-fold increases and 5-fold decreases, respectively, in the cytoplasmic proteolysis of Gag and GagPol to mature viral proteins. Using a novel bioluminescence resonance energy transfer assay to directly measure HIV-1 protease activity in vivo also indicates that the overexpression of LysRS in the cell reduces viral protease activity.
Collapse
Affiliation(s)
- Fei Guo
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
62
|
Rudner L, Nydegger S, Coren LV, Nagashima K, Thali M, Ott DE. Dynamic fluorescent imaging of human immunodeficiency virus type 1 gag in live cells by biarsenical labeling. J Virol 2005; 79:4055-65. [PMID: 15767407 PMCID: PMC1061570 DOI: 10.1128/jvi.79.7.4055-4065.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) Gag is the primary structural protein of the virus and is sufficient for particle formation. We utilized the recently developed biarsenical-labeling method to dynamically observe HIV-1 Gag within live cells by adding a tetracysteine tag (C-C-P-G-C-C) to the C terminus of Gag in both Pr55Gag expression and full-length proviral constructs. Membrane-permeable biarsenical compounds FlAsH and ReAsH covalently bond to this tetracysteine sequence and specifically fluoresce, effectively labeling Gag in the cell. Biarsenical labeling readily and specifically detected a tetracysteine-tagged HIV-1 Gag protein (Gag-TC) in HeLa, Mel JuSo, and Jurkat T cells by deconvolution fluorescence microscopy. Gag-TC was localized primarily at or near the plasma membrane in all cell types examined. Fluorescent two-color analysis of Gag-TC in HeLa cells revealed that nascent Gag was present mostly at the plasma membrane in distinct regions. Intracellular imaging of a Gag-TC myristylation mutant observed a diffuse signal throughout the cell, consistent with the role of myristylation in Gag localization to the plasma membrane. In contrast, mutation of the L-domain core sequence did not appreciably alter the localization of Gag, suggesting that the PTAP L domain functions at the site of budding rather than as a targeting signal. Taken together, our results show that Gag concentrates in specific plasma membrane areas rapidly after translation and demonstrate the utility of biarsenical labeling for visualizing the dynamic localization of Gag.
Collapse
Affiliation(s)
- Lynnie Rudner
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | | | | | | | | | | |
Collapse
|
63
|
Dong X, Li H, Derdowski A, Ding L, Burnett A, Chen X, Peters TR, Dermody TS, Woodruff E, Wang JJ, Spearman P. AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell 2005; 120:663-74. [PMID: 15766529 DOI: 10.1016/j.cell.2004.12.023] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 12/21/2004] [Accepted: 12/23/2004] [Indexed: 12/26/2022]
Abstract
Gag proteins direct the process of retroviral particle assembly and form the major protein constituents of the viral core. The matrix region of the HIV-1 Gag polyprotein plays a critical role in the transport of Gag to the plasma membrane assembly site. Recent evidence indicates that Gag trafficking to late endosomal compartments, including multivesicular bodies, occurs prior to viral particle budding from the plasma membrane. Here we demonstrate that the matrix region of HIV-1 Gag interacts directly with the delta subunit of the AP-3 complex, and that this interaction plays an important functional role in particle assembly. Disruption of this interaction eliminated Gag trafficking to multivesicular bodies and diminished HIV particle formation. These studies illuminate an early step in retroviral particle assembly and provide evidence that the trafficking of Gag to late endosomes is part of a productive particle assembly pathway.
Collapse
Affiliation(s)
- Xinhong Dong
- Department of Pediatrics and Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Bolesta E, Gzyl J, Wierzbicki A, Kmieciak D, Kowalczyk A, Kaneko Y, Srinivasan A, Kozbor D. Clustered epitopes within the Gag-Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens. Virology 2005; 332:467-79. [PMID: 15680412 DOI: 10.1016/j.virol.2004.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 09/02/2004] [Indexed: 11/19/2022]
Abstract
We have generated a codon-optimized hGagp17p24-Polp51 plasmid DNA expressing the human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion protein that consists of clusters of highly conserved cytotoxic T lymphocyte (CTL) epitopes presented by multiple MHC class I alleles. In the hGagp17p24-Polp51 construct, the ribosomal frameshift site had been deleted together with the potentially immunosuppressive Gag nucleocapsid (p15) as well as Pol protease (p10) and integrase (p31). Analyses of the magnitude and breadth of cellular responses demonstrated that immunization of HLA-A2/K(b) transgenic mice with the hGagp17p24-Polp51 construct induced 2- to 5-fold higher CD8+ T-cell responses to Gag p17-, p24-, and Pol reverse transcriptase (RT)-specific CTL epitopes than the full-length hGag-PolDeltaFsDeltaPr counterpart. The increases were correlated with higher protection against challenge with recombinant vaccinia viruses (rVVs) expressing gag and pol gene products. Consistent with the profile of Gag- and Pol-specific CD8+ T cell responses, an elevated level of type 1 cytokine production was noted in p24- and RT-stimulated splenocyte cultures established from hGagp17p24-Polp51-immunized mice compared to responses induced with the hGag-PolDeltaFsDeltaPr vaccine. Sera of mice immunized with the hGagp17p24-Polp51 vaccine also exhibited an increased titer of p24- and RT-specific IgG2 antibody responses. The results from our studies provide insights into approaches for boosting the breadth of Gag- and Pol-specific immune responses.
Collapse
Affiliation(s)
- Elizabeth Bolesta
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Mascola JR, Sambor A, Beaudry K, Santra S, Welcher B, Louder MK, Vancott TC, Huang Y, Chakrabarti BK, Kong WP, Yang ZY, Xu L, Montefiori DC, Nabel GJ, Letvin NL. Neutralizing antibodies elicited by immunization of monkeys with DNA plasmids and recombinant adenoviral vectors expressing human immunodeficiency virus type 1 proteins. J Virol 2005; 79:771-9. [PMID: 15613305 PMCID: PMC538538 DOI: 10.1128/jvi.79.2.771-779.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization with recombinant serotype 5 adenoviral (rAd5) vectors or a combination of DNA plasmid priming and rAd5 boosting is known to elicit potent immune responses. However, little data exist regarding these immunization strategies and the development of anti-human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies. We used DNA plasmids and rAd5 vectors encoding the HIV-1 89.6P or chimeric HxB2/BaL envelope glycoprotein to immunize macaque monkeys. A single rAd5 immunization elicited anti-Env antibody responses, but there was little boosting with subsequent rAd5 immunizations. In contrast, rAd5 boosting of DNA-primed monkeys resulted in a rapid rise in antibody titers, including the development of anti-HIV-1 neutralizing antibodies. The potency and breadth of neutralization were evaluated by testing plasma against a panel of 14 clade B primary isolates. Moderate levels of plasma neutralizing activity were detected against about one-third of the viruses tested, and immunoglobulin G fractionation demonstrated that virus neutralization was antibody mediated. After a challenge with a chimeric simian-human immunodeficiency virus (SHIV89.6P), an anamnestic neutralizing antibody response was observed, although the breadth of the response was limited to the subset of viruses that were neutralized after the primary immunization. These data are the first detailed description of the anti-HIV-1 neutralizing antibody response in nonhuman primates elicited by DNA and rAd5 immunization. In addition to the well-established ability of DNA priming and rAd5 boosting to elicit potent anti-HIV-1 cellular immune responses, this immunization strategy elicits anti-HIV-1 neutralizing antibodies and therefore can be used to study novel Env immunogens designed to elicit more potent neutralizing antibodies.
Collapse
Affiliation(s)
- John R Mascola
- Vaccine Research Center, NIAID, NIH, 40 Convent Dr., Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Akahata W, Yang ZY, Nabel GJ. Comparative immunogenicity of human immunodeficiency virus particles and corresponding polypeptides in a DNA vaccine. J Virol 2005; 79:626-31. [PMID: 15596858 PMCID: PMC538686 DOI: 10.1128/jvi.79.1.626-631.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunogenicity of a plasmid DNA expression vector encoding both Gag and envelope (Env), which produced human immunodeficiency virus (HIV) type 1 virus-like particles (VLP), was compared to vectors expressing Gag and Env individually, which presented the same gene products as polypeptides. Vaccination with plasmids that generated VLP showed cellular immunity comparable to that of Gag and cell-mediated or humoral responses similar to those of Env as immunization with separate vectors. These data suggest that DNA vaccines encoding separated HIV polypeptides generate immune responses similar to those generated by viral particles.
Collapse
Affiliation(s)
- Wataru Akahata
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3005, USA
| | | | | |
Collapse
|
67
|
|
68
|
Smith JM, Amara RR, Campbell D, Xu Y, Patel M, Sharma S, Butera ST, Ellenberger DL, Yi H, Chennareddi L, Herndon JG, Wyatt LS, Montefiori D, Moss B, McClure HM, Robinson HL. DNA/MVA vaccine for HIV type 1: effects of codon-optimization and the expression of aggregates or virus-like particles on the immunogenicity of the DNA prime. AIDS Res Hum Retroviruses 2004; 20:1335-47. [PMID: 15650426 DOI: 10.1089/aid.2004.20.1335] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recently, a vaccine consisting of DNA priming followed by boosting with modified vaccinia Ankara (MVA) has provided long-term protection of rhesus macaques against a virulent challenge with a chimera of simian and human immunodeficiency viruses. Here, we report studies on the development of the DNA component for a DNA/MVA HIV vaccine for humans. Specifically, we assess the ability of a codon-optimized Gag-expressing DNA and two noncodon-optimized Gag-Pol-Env-expressing DNAs to prime the MVA booster dose. The codon-optimized DNA expressed virus-like particles (VLPs), whereas one of the noncodon-optimized DNAs expressed VLPs and the other expressed aggregates of HIV proteins. The MVA boost expressed Gag-Pol and Env and produced VLPs. Immunogenicity studies in macaques used one intramuscular prime with 600 microg of DNA and two intramuscular boosts with 1 x 10(8) pfu of MVA at weeks 8 and 30. The codon-optimized and noncodon-optimized DNAs proved similar in their ability to prime anti-Gag T cell responses. The aggregate and VLP-expressing Gag-Pol-Env DNAs also showed no significant differences in their ability to prime anti-Env Ab responses. The second MVA booster dose did not increase the peak CD4 and CD8 T cell responses, but increased anti-Env Ab titers by 40- to 90-fold. MVA-only immunizations elicited 10-100 times lower frequencies of T cells and 2-4 lower titers of anti-Env Ab than the Gag-Pol-Env DNA/MVA immunizations. Based on the breadth of the T cell response and a trend toward higher titers of anti-Env Ab, we are moving forward with human trials of the noncodon-optimized VLP-expressing DNA.
Collapse
Affiliation(s)
- James M Smith
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Huang Y, Yang ZY, Kong WP, Nabel GJ. Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production. J Virol 2004; 78:12557-65. [PMID: 15507643 PMCID: PMC525052 DOI: 10.1128/jvi.78.22.12557-12565.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recently emerged severe acute respiratory syndrome coronavirus (SARS-CoV) contains four structural genes, two replicase-transcriptase open reading frames, and more than five potential genes of unknown function. Despite this relative simplicity, the molecular regulation of SARS-CoV replication and assembly is not understood. Here, we report that two viral genes, encoding the SARS-CoV membrane (M) and nucleocapsid (N) proteins, are necessary and sufficient for formation of virus-like particles. Expression vectors encoding these two proteins were synthesized by using preferred human codons. When M and N expression plasmids were cotransfected into human 293 renal epithelial cells, pseudoparticles formed readily. The addition of a third gene, encoding the spike (S) glycoprotein, facilitated budding of particles that contained a corona-like halo resembling SARS-CoV when examined by transmission electron microscopy, with a buoyant density characteristic of coronaviruses. Specific biochemical interactions of these proteins were also shown in vitro. The S, M, and N proteins of the SARS-CoV are, therefore, necessary and sufficient for pseudovirus assembly. These findings advance the understanding of the morphogenesis of SARS-CoV and enable the generation of safe, conformational mimetics of the SARS virus that may facilitate the development of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Yue Huang
- Vaccine Research Center, Natiuonal Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg. 40, Room 4502, MSC 3005, 40 Convent Drive, Bethesda, MD 20982-3005, USA
| | | | | | | |
Collapse
|
70
|
Cen S, Niu M, Kleiman L. The connection domain in reverse transcriptase facilitates the in vivo annealing of tRNALys3 to HIV-1 genomic RNA. Retrovirology 2004; 1:33. [PMID: 15494076 PMCID: PMC524520 DOI: 10.1186/1742-4690-1-33] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 10/19/2004] [Indexed: 11/19/2022] Open
Abstract
The primer tRNA for reverse transcription in HIV-1, tRNALys3, is selectively packaged into the virus during its assembly, and annealed to the viral genomic RNA. The ribonucleoprotein complex that is involved in the packaging and annealing of tRNALys into HIV-1 consists of Gag, GagPol, tRNALys, lysyl-tRNA synthetase (LysRS), and viral genomic RNA. Gag targets tRNALys for viral packaging through Gag's interaction with LysRS, a tRNALys-binding protein, while reverse transcriptase (RT) sequences within GagPol (the thumb domain) bind to tRNALys. The further annealing of tRNALys3 to viral RNA requires nucleocapsid (NC) sequences in Gag, but not the NC sequences GagPol. In this report, we further show that while the RT connection domain in GagPol is not required for tRNALys3 packaging into the virus, it is required for tRNALys3 annealing to the viral RNA genome.
Collapse
Affiliation(s)
- Shan Cen
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
| | - Meijuan Niu
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
| | - Lawrence Kleiman
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
- Department of Medicine, McGill University, Montreal, Quebec, Canada H3T 1E2
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3T 1E2
| |
Collapse
|
71
|
Young KR, Smith JM, Ross TM. Characterization of a DNA vaccine expressing a human immunodeficiency virus-like particle. Virology 2004; 327:262-72. [PMID: 15351214 DOI: 10.1016/j.virol.2004.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/14/2004] [Accepted: 07/12/2004] [Indexed: 11/17/2022]
Abstract
An ideal human immunodeficiency virus type-1 (HIV-1) vaccine will most likely need to elicit cross-reactive neutralizing antibodies and a strong cell-mediated immune response against multiple HIV-1 antigens to confer protection against challenge. In this study, DNA vaccines were constructed to express virally regulated human immunodeficiency virus-like particles (VLP) to elicit broad-spectrum immune responses to multiple HIV-1 antigens. VLPs were efficiently produced using sequences encoding gag and pol gene products from an X4 isolate and sequences encoding for tat, rev, vpu, and env from R5 or R5X4 isolates. The integrase, vpr, vif, and nef genes were deleted. In addition, the long terminal repeats (LTRs) were removed and transcription of the VLP insert was driven by the addition of the cytomegalovirus immediate-early (CMV-IE) promoter. A second generation of VLP vaccine plasmids was constructed with mutations engineered into the VLP DNA to produce particles deficient in activities associated with viral reverse transcriptase and protease. Primate cell lines, transiently transfected with DNA, efficiently secreted VLP into the supernatant that banded within a sucrose gradient at densities similar to infectious virions. In addition, these particles incorporated Env on the particle surface that bound soluble human CD4. These VLPs provide a safe and efficient strategy for presenting multiple HIV-1 antigens, expressed from a single insert, to the immune system in a structure that mimics the infectious virion.
Collapse
Affiliation(s)
- Kelly R Young
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
72
|
Someya K, Xin KQ, Matsuo K, Okuda K, Yamamoto N, Honda M. A consecutive priming-boosting vaccination of mice with simian immunodeficiency virus (SIV) gag/pol DNA and recombinant vaccinia virus strain DIs elicits effective anti-SIV immunity. J Virol 2004; 78:9842-53. [PMID: 15331719 PMCID: PMC515009 DOI: 10.1128/jvi.78.18.9842-9853.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To evaluate immunity induced by a novel DNA prime-boost regimen, we constructed a DNA plasmid encoding the gag and pol genes from simian immunodeficiency virus (SIV) (SIVgag/pol DNA), in addition to a replication-deficient vaccinia virus strain DIs recombinant expressing SIV gag and pol genes (rDIsSIVgag/pol). In mice, priming with SIVgag/pol DNA, followed by rDIsSIVgag/pol induced an SIV-specific lymphoproliferative response that was mediated by a CD4+-T-lymphocyte subset. Immunization with either vaccine alone was insufficient to induce high levels of proliferation or Th1 responses in the animals. The prime-boost regimen also induced SIV Gag-specific cellular responses based on gamma interferon secretion, as well as cytotoxic-T-lymphocyte responses. Thus, the regimen of DNA priming and recombinant DIs boosting induced Th1-type cell-mediated immunity, which was associated with resistance to viral challenge with wild-type vaccinia virus expressing SIVgag/pol, suggesting that this new regimen may hold promise as a safe and effective vaccine against human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Kenji Someya
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|
73
|
Halwani R, Cen S, Javanbakht H, Saadatmand J, Kim S, Shiba K, Kleiman L. Cellular distribution of Lysyl-tRNA synthetase and its interaction with Gag during human immunodeficiency virus type 1 assembly. J Virol 2004; 78:7553-64. [PMID: 15220430 PMCID: PMC434110 DOI: 10.1128/jvi.78.14.7553-7564.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lysyl-tRNA synthetase (LysRS) is packaged into human immunodeficiency virus type 1 (HIV-1) via its interaction with Gag, and this enzyme facilitates the selective packaging of tRNA(3)(Lys), the primer for initiating reverse transcription, into HIV-1. The Gag/LysRS interaction is detected at detergent-resistant membrane but not in membrane-free cell compartments that contain Gag and LysRS. LysRS is found (i). in the nucleus, (ii). in a cytoplasmic high-molecular-weight aminoacyl-tRNA synthetase complex (HMW aaRS complex), (iii). in mitochondria, and (iv). associated with plasma membrane. The cytoplasmic form of LysRS lacking the mitochondrial import signal was previously shown to be efficiently packaged into virions, and in this report we also show that LysRS compartments in nuclei, in the HMW aaRS complex, and at the membrane are also not required as a primary source for viral LysRS. Exogenous mutant LysRS species unable to either enter the nucleus or bind to the cell membrane are still incorporated into virions. Many HMW aaRS components are not packaged into the virion along with LysRS, and the interaction of LysRS with p38, a protein that binds tightly to LysRS in the HMW aaRS complex, is not required for the incorporation of LysRS into virions. These data indicate that newly synthesized LysRS may interact rapidly with Gag before the enzyme has the opportunity to move to the above-mentioned cellular compartments. In confirmation of this idea, we found that newly synthesized LysRS is associated with Gag after a 10-min pulse with [(35)S]cysteine/methionine. This observation is also supported by previous work indicating that the incorporation of LysRS into HIV-1 is very sensitive to the inhibition of new synthesis of LysRS.
Collapse
Affiliation(s)
- Rabih Halwani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
74
|
Letvin NL, Huang Y, Chakrabarti BK, Xu L, Seaman MS, Beaudry K, Korioth-Schmitz B, Yu F, Rohne D, Martin KL, Miura A, Kong WP, Yang ZY, Gelman RS, Golubeva OG, Montefiori DC, Mascola JR, Nabel GJ. Heterologous envelope immunogens contribute to AIDS vaccine protection in rhesus monkeys. J Virol 2004; 78:7490-7. [PMID: 15220422 PMCID: PMC434100 DOI: 10.1128/jvi.78.14.7490-7497.2004] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because a strategy to elicit broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies has not yet been found, the role of an Env immunogen in HIV-1 vaccine candidates remains undefined. We sought to determine whether an HIV-1 Env immunogen genetically disparate from the Env of the challenge virus can contribute to protective immunity. We vaccinated Indian-origin rhesus monkeys with Gag-Pol-Nef immunogens, alone or in combination with Env immunogens that were either matched or mismatched with the challenge virus. These animals were then challenged with a pathogenic simian-human immunodeficiency virus. The vaccine regimen included a plasmid DNA prime and replication-defective adenoviral vector boost. Vaccine regimens that included the matched or mismatched Env immunogens conferred better protection against CD4(+) T-lymphocyte loss than that seen with comparable regimens that did not include Env immunogens. This increment in protective immunity was associated with anamnestic Env-specific cellular immunity that developed in the early days following viral challenge. These data suggest that T-lymphocyte immunity to Env can broaden the protective cellular immune response to HIV despite significant sequence diversity of the strains of the Env immunogens and can contribute to immune protection in this AIDS vaccine model.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adenoviridae/genetics
- Adenoviridae/immunology
- Animals
- CD4 Lymphocyte Count
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/immunology
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- HIV Infections/prevention & control
- HIV-1/immunology
- Humans
- Macaca mulatta
- RNA, Viral/blood
- Recombinant Proteins/immunology
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Norman L Letvin
- Vaccine Research Center, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-3005, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Cen S, Guo F, Niu M, Saadatmand J, Deflassieux J, Kleiman L. The Interaction between HIV-1 Gag and APOBEC3G. J Biol Chem 2004; 279:33177-84. [PMID: 15159405 DOI: 10.1074/jbc.m402062200] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
APOBEC3G, a member of an RNA/DNA cytidine deaminase superfamily, has been identified as a cellular inhibitor of HIV-1 infectivity, possibly through the dC to dU deamination of the first minus strand cDNA synthesized during reverse transcription. Virions incorporate APOBEC3G during viral assembly in non-permissive cells, and this incorporation is inhibited by the viral protein Vif. The mechanism of APOBEC3G incorporation into HIV-1 is examined in this report. In the absence of Vif, cytoplasmic APOBEC3G becomes membrane-bound in cells expressing HIV-1 Gag, and its incorporation into Gag viral-like particles (VLPs) is proportional to the amount of APOBEC3G expressed in the cell. The expression of Vif, or mutant Gag unable to bind to membrane, prevents the APOBEC3G association with membrane. HIV-1 Gag alone among viral proteins is sufficient for packaging of APOBEC3G into Gag VLPs, and this incorporation requires the presence of Gag nucleocapsid. The presence of amino acids 104-156 in APOBEC3G, located in the linker region between two zinc coordination motifs, is also required for its incorporation into Gag VLPs. Evidence against an RNA bridge facilitating the Gag/APOBEC3G interaction includes data indicating that 1) the incorporation of APOBEC3G occurs independently of viral genomic RNA, 2) a Gag/APOBEC3G complex is immunoprecipitated from cell lysate after RNase treatment, and 3) the zinc coordination motif, rather than the regions flanking this motif, have been implicated in RNA binding in another family member, APOBEC1.
Collapse
Affiliation(s)
- Shan Cen
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, Department of Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
76
|
Smith JM, Amara RR, McClure HM, Patel M, Sharma S, Yi H, Chennareddi L, Herndon JG, Butera ST, Heneine W, Ellenberger DL, Parekh B, Earl PL, Wyatt LS, Moss B, Robinson HL. Multiprotein HIV type 1 clade B DNA/MVA vaccine: construction, safety, and immunogenicity in Macaques. AIDS Res Hum Retroviruses 2004; 20:654-65. [PMID: 15242543 DOI: 10.1089/0889222041217419] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, a simian/human immunodeficiency virus (SHIV) vaccine consisting of priming with a Gag-Pol-Env-expressing DNA and boosting with a Gag-Pol-Env-expressing recombinant modified vaccinia Ankara (rMVA) has successfully controlled a virulent SHIV challenge in a macaque model. In this, and the accompanying paper, we report on the construction and testing of a Gag-Pol-Env DNA/MVA vaccine for HIV-1/AIDS. The DNA vaccine, pGA2/JS2, expresses aggregates of Gag proteins and includes safety mutations that render it integration, reverse transcription, and packaging defective. The rMVA vaccine, MVA/HIV 48, is integration and reverse transcription defective and has a truncated Env to enhance expression on the plasma membrane. In a study in rhesus macaques, priming with pGA2/JS2 and boosting with MVA/HIV 48 raised high frequencies of T cells for Gag and Env and lower frequencies of T cells for PR, RT, and Tat. Stimulations with five peptide pools for Gag and seven peptide pools for Env revealed epitopes for cellular immune responses throughout Gag and Env. On average, CD4 T cells from the vaccinated animals recognized 7.1 peptide pools and CD8 T cells, 3.2 peptide pools. Both the height and the breadth of the elicited cellular response provide hope that this multiprotein DNA/MVA vaccine will successfully control clade B isolates of HIV-1, as well as contribute to the control of other clades and recombinant forms of HIV-1/AIDS.
Collapse
MESH Headings
- AIDS Vaccines/adverse effects
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cytokines/analysis
- Gene Deletion
- Gene Products, env/immunology
- Gene Products, gag/immunology
- Genes, env
- Genes, gag
- Genes, pol
- HIV Antibodies/blood
- HIV Infections/prevention & control
- HIV Reverse Transcriptase/genetics
- HIV Reverse Transcriptase/metabolism
- HIV-1/genetics
- HIV-1/immunology
- Immunization, Secondary
- Macaca mulatta
- Point Mutation
- Protein Structure, Tertiary
- Recombination, Genetic
- Simian Immunodeficiency Virus/genetics
- Vaccination
- Vaccines, DNA/adverse effects
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- James M Smith
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Chikhlikar P, Barros de Arruda L, Agrawal S, Byrne B, Guggino W, August JT, Marques ETA. Inverted terminal repeat sequences of adeno-associated virus enhance the antibody and CD8(+) responses to a HIV-1 p55Gag/LAMP DNA vaccine chimera. Virology 2004; 323:220-32. [PMID: 15193918 DOI: 10.1016/j.virol.2004.02.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 01/13/2004] [Accepted: 02/23/2004] [Indexed: 11/17/2022]
Abstract
The immune responses to an HIV-1 p55Gag vaccine encoded as a DNA chimera with the lysosomal associated membrane protein-1 (LAMP) have been examined for the effect of the addition of the inverted terminal repeat (ITR) sequences of the adeno-associated virus (AAV) to the DNA plasmid construct, and of packaging the LAMP/gag gene as a recombinant AAV vector (rAAV). DNA plasmids encoding Gag and the LAMP/Gag protein chimera were constructed in two vectors, the pcDNA3.1 and a corresponding plasmid containing the ITR sequences (pITR) flanking the expression elements of the plasmid, and the pITR LAMP/gag DNA plasmid was encapsidated in the rAAV vector. Human 293 cells transfected in vitro with LAMP/gag plasmids either in pcDNA3.1 or pITR produced much Gag protein in cell extracts (1.6 and 2.2 ng of Gag/mg of protein, respectively). The immune responses of mice to immunization with these constructs were examined under three protocols: DNA prime/DNA boost, DNA prime/rAAV boost, and a single rAAV immunization. The results demonstrated that under DNA prime/DNA boost protocol, the "naked" DNA vaccines encoding the LAMP/gag chimera, either as pcDNA3.1 or pITR DNA plasmid constructs, elicited strong CD4(+) T cell responses. In contrast, significantly higher levels of CD8(+) and antibody responses were observed with the pITR-DNA constructs. Immunization with the rAAV vector under the DNA prime/rAAV boost protocol resulted in sustained T cell responses and a markedly increased antibody response, predominantly of the IgG(1) isotype resulting from the activation of the Th2 subset of CD4(+) T cells, that was sustained for at least 5 months after immunization.
Collapse
|
78
|
Giri M, Ugen KE, Weiner DB. DNA vaccines against human immunodeficiency virus type 1 in the past decade. Clin Microbiol Rev 2004; 17:370-89. [PMID: 15084506 PMCID: PMC387404 DOI: 10.1128/cmr.17.2.370-389.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This article reviews advances in the field of human immunodeficiency virus type 1 (HIV-1) and AIDS vaccine development over the last decade, with an emphasis on the DNA vaccination approach. Despite the discovery of HIV-1 and AIDS in humans nearly 20 years ago, there is no vaccine yet that can prevent HIV-1 infection. The focus has shifted toward developing vaccines that can control virus replication and disease progression by eliciting broadly cross-reactive T-cell responses. Among several approaches evaluated, the DNA-based modality has shown considerable promise in terms of its ability to elicit cellular immune responses in primate studies. Of great importance are efforts aimed at improvement of the potency of this modality in the clinic. The review discusses principles of DNA vaccine design and the various mechanisms of plasmid-encoded antigen presentation. The review also outlines current DNA-based vaccine strategies and vectors that have successfully been shown to control virus replication and slow disease progression in animal models. Finally, it lists recent strategies that have been developed as well as novel approaches under consideration to enhance the immunogenicity of plasmid-encoded HIV-1 antigen in various animal models.
Collapse
Affiliation(s)
- Malavika Giri
- Immunology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
79
|
Isaguliants MG, Zuber B, Boberg A, Sjöstrand D, Belikov SV, Rollman E, Zuber AK, Rechinsky VO, Rytting AS, Källander CFR, Hinkula J, Kochetkov SN, Liu M, Wahren B. Reverse transcriptase-based DNA vaccines against drug-resistant HIV-1 tested in a mouse model. Vaccine 2004; 22:1810-9. [PMID: 15068865 DOI: 10.1016/j.vaccine.2003.10.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Drug resistance is becoming a problem in the treatment of the human immunodeficiency virus type one (HIV-1). To obtain therapeutic DNA vaccines that would target multiple drug-resistance (DR) mutations, we cloned genes for DR HIV-1 reverse transcriptase (RT) and codon-optimized synthetic genes encoding clusters of human CTL epitopes located at the sites of DR-mutations (RT minigenes) and antibody and CTL-epitope tags. Expression of RT genes/minigenes in eukaryotic cells was confirmed by Western blotting and immunofluoresence staining with RT- or tag-specific antibodies. Immunization of mice with DR-RT gene induced no RT-specific antibodies. Immunization of HLA-A(*)0201-transgenic mice with RT minigenes induced RT-specific cellular responses detected by interferon-gamma secretion. This documents first steps in creating therapeutic vaccine against drug-resistant HIV strains.
Collapse
Affiliation(s)
- Maria G Isaguliants
- Department of Virology, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Jaffray A, Shephard E, van Harmelen J, Williamson C, Williamson AL, Rybicki EP. Human immunodeficiency virus type 1 subtype C Gag virus-like particle boost substantially improves the immune response to a subtype C gag DNA vaccine in mice. J Gen Virol 2004; 85:409-413. [PMID: 14769898 DOI: 10.1099/vir.0.19396-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C is the predominant HIV in southern Africa, and is the target of a number of recent vaccine candidates. It has been proposed that a heterologous prime/boost vaccination strategy may result in stronger, broader and more prolonged immune responses. Since HIV-1 Gag Pr55 polyprotein can assemble into virus-like particles (VLPs) which have been shown to induce a strong cellular immune response in animals, we showed that a typical southern African subtype C Pr55 protein expressed in insect cells via recombinant baculovirus could form VLPs. We then used the baculovirus-produced VLPs as a boost to a subtype C HIV-1 gag DNA prime vaccination in mice. This study shows that a low dose of HIV-1 subtype C Gag VLPs can significantly boost the immune response to a single subtype C gag DNA inoculation in mice. These results suggest a possible vaccination regimen for humans.
Collapse
Affiliation(s)
- Ann Jaffray
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa
| | - Enid Shephard
- MRC Liver Research Centre, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Joanne van Harmelen
- Division of Virology, University of Cape Town, Observatory 7925, South Africa
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Division of Virology, University of Cape Town, Observatory 7925, South Africa
| | - Anna-Lise Williamson
- National Health Laboratory Service, University of Cape Town, Observatory 7925, South Africa
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Division of Virology, University of Cape Town, Observatory 7925, South Africa
| | - Edward P Rybicki
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
81
|
Derdowski A, Ding L, Spearman P. A novel fluorescence resonance energy transfer assay demonstrates that the human immunodeficiency virus type 1 Pr55Gag I domain mediates Gag-Gag interactions. J Virol 2004; 78:1230-42. [PMID: 14722278 PMCID: PMC321371 DOI: 10.1128/jvi.78.3.1230-1242.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembly takes place at the plasma membrane of cells and is directed by the Pr55(Gag) polyprotein (Gag). One of the essential steps in the assembly process is the multimerization of Gag. We have developed a novel fluorescence resonance energy transfer (FRET) assay for the detection of protein-protein interactions between Gag molecules. We demonstrate that Gag multimerization takes place primarily on cellular membranes, with the majority of these interactions occurring on the plasma membrane. However, distinct sites of Gag-Gag interaction are also present at punctate intracellular locations. The I domain is a functional assembly domain within the nucleocapsid region of Gag that affects particle density, the subcellular localization of Gag, and the formation of detergent-resistant Gag protein complexes. Results from this study provide evidence that the I domain mediates Gag-Gag interactions. Using Gag-fluorescent protein fusion constructs that were previously shown to define the minimal I domain within HIV-1 Pr55(Gag), we show by FRET techniques that protein-protein interactions are greatly diminished when Gag proteins lacking the I domain are expressed. Gag-Tsg101 interactions are also seen in living cells and result in a shift of Tsg101 to the plasma membrane. The results within this study provide direct evidence that the I domain mediates protein-protein interactions between Gag molecules. Furthermore, this study establishes FRET as a powerful tool for the detection of protein-protein interactions involved in retrovirus assembly.
Collapse
Affiliation(s)
- Aaron Derdowski
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2581, USA
| | | | | |
Collapse
|
82
|
Cen S, Niu M, Saadatmand J, Guo F, Huang Y, Nabel GJ, Kleiman L. Incorporation of pol into human immunodeficiency virus type 1 Gag virus-like particles occurs independently of the upstream Gag domain in Gag-pol. J Virol 2004; 78:1042-9. [PMID: 14694138 PMCID: PMC368740 DOI: 10.1128/jvi.78.2.1042-1049.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By using particle-associated reverse transcriptase (RT) activity as an assay for Pol incorporation into human immunodeficiency virus type 1 (HIV-1) Gag virus-like particles (VLPs), it has been found that truncated, protease-negative, Gag-Pol missing cis Gag sequences is still incorporated into Gag VLPs, albeit at significantly reduced levels (10 to 20% of the level of wild-type Gag-Pol). In this work, we have directly measured the incorporation of truncated Gag-Pol species into Gag VLPs and have found that truncated Gag-Pol that is missing all sequences upstream of RT is still incorporated into Gag VLPs at levels approximating 70% of that achieved by wild-type Gag-Pol. Neither protease nor integrase regions in Pol are required for its incorporation, implying an interaction between Gag and RT sequences in the Pol protein. While the incorporation of Gag-Pol into Gag VLPs is reduced 12-fold by the replacement of the nucleocapsid within Gag with a leucine zipper motif, this mutation does not affect Pol incorporation. However, the deletion of p6 in Gag reduces Pol incorporation into Gag VLPs four- to fivefold. Pol shows the same ability as Gag-Pol to selectively package tRNA(Lys) into Gag VLPs, and primer tRNA(3)(Lys) is found annealed to the viral genomic RNA. These data suggest that after the initial separation of Gag from Pol during cleavage of Gag-Pol by viral protease, the Pol species still retains the capacity to bind to both Gag and tRNA(3)(Lys), which may be required for Pol and tRNA(3)(Lys) to be retained in the assembling virion until budding is completed.
Collapse
Affiliation(s)
- Shan Cen
- Lady Davis Institute for Medical Research and McGill AIDS Centre, Jewish General Hospital, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | |
Collapse
|
83
|
Ellenberger D, Li B, Smith J, Yi H, Folks T, Robinson H, Butera S. Optimization of a multi-gene HIV-1 recombinant subtype CRF02_AG DNA vaccine for expression of multiple immunogenic forms. Virology 2004; 319:118-30. [PMID: 14967493 DOI: 10.1016/j.virol.2003.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 10/03/2003] [Accepted: 10/10/2003] [Indexed: 11/30/2022]
Abstract
We developed an AIDS vaccine for Western and West-Central Africa based on a DNA plasmid vector expressing HIV-1 recombinant subtype CRF02_AG gag, pol, and env genes. To optimize the production of noninfectious HIV-like particles (VLPs) and potentially improve the effectiveness of the vaccine, we generated four potential vaccine constructs: the parental (IC2) and three modifications (IC25, IC48, and IC90) containing mutations within the HIV protease. While the parental construct IC2 expressed aggregates of Gag proteins, the IC25 construct resulted in the production of immature VLPs (the core comprises unprocessed Pr(55Gag)). The remaining two constructs (IC48 and IC90) produced mature VLPs (the core comprises processed capsid p24) in addition to immature VLPs and aggregates of Gag proteins. VLPs incorporated significant levels of mature gp120 envelope glycoprotein. Importantly, the mature VLPs were fusion competent and entered coreceptor-specific target cells. The production of multiple antigenic forms, including fusion-competent VLPs, by candidate DNA vaccine constructs may provide immunologic advantages for induction of protective cellular and humoral responses against HIV-1 proteins.
Collapse
Affiliation(s)
- Dennis Ellenberger
- HIV and Retrovirology Branch, Division of AIDS, STD, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA 30333, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Kong WP, Huang Y, Yang ZY, Chakrabarti BK, Moodie Z, Nabel GJ. Immunogenicity of multiple gene and clade human immunodeficiency virus type 1 DNA vaccines. J Virol 2004; 77:12764-72. [PMID: 14610198 PMCID: PMC262562 DOI: 10.1128/jvi.77.23.12764-12772.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The ability to elicit an immune response to a spectrum of human immunodeficiency virus type 1 (HIV-1) gene products from divergent strains is a desirable feature of an AIDS vaccine. In this study, we examined combinations of plasmids expressing multiple HIV-1 genes from different clades for their ability to elicit humoral and cellular immune responses in mice. Immunization with a modified Env, gp145DeltaCFI, in combination with a Gag-Pol-Nef fusion protein plasmid elicited similar CD4(+) and CD8(+) cellular responses to immunization with either vector alone. Further, when mice were immunized with a mixture of Env from three clades, A, B, and C, together with Gag-Pol-Nef, the overall potency and balance of CD4(+)- and CD8(+)-T-cell responses to all viral antigens were similar, with only minor differences noted. In addition, plasmid mixtures elicited antibody responses comparable to those from individual inoculations. These findings suggest that a multigene and multiclade vaccine, including components from A, B, and C Env and Gag-Pol-Nef, can broaden antiviral immune responses without immune interference. Such combinations of immunogens may help to address concerns about viral genetic diversity for a prospective HIV-1 vaccine.
Collapse
Affiliation(s)
- Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3005, USA
| | | | | | | | | | | |
Collapse
|
85
|
Marques ETA, Chikhlikar P, de Arruda LB, Leao IC, Lu Y, Wong J, Chen JS, Byrne B, August JT. HIV-1 p55Gag encoded in the lysosome-associated membrane protein-1 as a DNA plasmid vaccine chimera is highly expressed, traffics to the major histocompatibility class II compartment, and elicits enhanced immune responses. J Biol Chem 2003; 278:37926-36. [PMID: 12824194 DOI: 10.1074/jbc.m303336200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several genetic vaccines encoding antigen chimeras containing the lysosome-associated membrane protein (LAMP) translocon, transmembrane, and cytoplasmic domain sequences have elicited strong mouse antigen-specific immune responses. The increased immune response is attributed to trafficking of the antigen chimera to the major histocompatibility class II (MHC II) compartment where LAMP is colocalized with MHC II. In this report, we describe a new form of an HIV-1 p55gag DNA vaccine, with the gag sequence incorporated into the complete LAMP cDNA sequence. Gag encoded with the translocon, transmembrane and cytoplasmic lysosomal membrane targeting sequences of LAMP, without the luminal domain, was poorly expressed, did not traffic to lysosomes or MHC II compartments of transfected cells, and elicited a limited immune response from DNA immunized mice. In contrast, addition of the LAMP luminal domain sequence to the construct resulted in a high level of expression of the LAMP/Gag protein chimera in transfected cells that was further increased by including the inverted terminal repeat sequences of the adeno-associated virus to the plasmid vector. This LAMP/Gag chimera with the complete LAMP protein colocalized with endogenous MHC II of transfected cells and elicited strong cellular and humoral immune responses of immunized mice as compared with the response to DNA-encoding native Gag, with a 10-fold increase in CD4+ responses, a 4- to 5-fold increase in CD8+ T-cell responses, and antibody titers of >100,000. These results reveal novel roles of the LAMP luminal domain as a determinant of Gag protein expression, lysosomal trafficking, and possibly of the immune response to Gag.
Collapse
Affiliation(s)
- Ernesto T A Marques
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Tritel M, Stoddard AM, Flynn BJ, Darrah PA, Wu CY, Wille U, Shah JA, Huang Y, Xu L, Betts MR, Nabel GJ, Seder RA. Prime-boost vaccination with HIV-1 Gag protein and cytosine phosphate guanosine oligodeoxynucleotide, followed by adenovirus, induces sustained and robust humoral and cellular immune responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2538-47. [PMID: 12928404 DOI: 10.4049/jimmunol.171.5.2538] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A prophylactic vaccine for HIV-1 will probably require the induction and maintenance of both humoral and cellular immunity. One current strategy to achieve such long term immune responses is a prime-boost vaccination approach using a DNA priming inoculation, followed by recombinant viral boost. In this report we use a novel prime-boost approach in which the priming injections consist of recombinant HIV-1 Gag protein mixed with cytosine phosphate guanosine oligodeoxynucleotide (CpG ODN), followed by recombinant adenoviral boost expressing HIV-1 Gag. Analysis of the immune responses indicates that HIV-1 Gag protein plus CpG ODN immunization alone induces potent humoral as well as Th1 and CD8+ T cell responses. Boosting with recombinant adenovirus strikingly enhances CD8+, but not Th1, T cell responses, resulting in CD8+ T cell responses far greater in magnitude than Th1 responses. Furthermore, the Th1 and CD8+ T cell responses following prime-boost immunization were seen in both lymphoid and peripheral mucosal organs and were sustained over several months. Together, these data suggest a new immunization approach for elicitation of long term humoral and cellular immune responses.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adenoviridae/genetics
- Adenoviridae/immunology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cytokines/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Products, gag/administration & dosage
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- HIV Antibodies/biosynthesis
- HIV-1/immunology
- Immunity, Cellular/genetics
- Immunization Schedule
- Immunization, Secondary/methods
- Immunologic Memory/genetics
- Injections, Intramuscular
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
- Organ Specificity/genetics
- Organ Specificity/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Marc Tritel
- Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Zolotukhin AS, Michalowski D, Bear J, Smulevitch SV, Traish AM, Peng R, Patton J, Shatsky IN, Felber BK. PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol 2003; 23:6618-30. [PMID: 12944487 PMCID: PMC193712 DOI: 10.1128/mcb.23.18.6618-6630.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV) gag/pol and env mRNAs contain cis-acting regulatory elements (INS) that impair stability, nucleocytoplasmic transport, and translation by unknown mechanisms. This downregulation can be counteracted by the viral Rev protein, resulting in efficient export and expression of these mRNAs. Here, we show that the INS region in HIV-1 gag mRNA is a high-affinity ligand of p54nrb/PSF, a heterodimeric transcription/splicing factor. Both subunits bound INS RNA in vitro with similar affinity and specificity. Using an INS-containing subgenomic gag mRNA, we show that it specifically associated with p54nrb in vivo and that PSF inhibited its expression, acting via INS. Studying the authentic HIV-1 mRNAs produced from an infectious molecular clone, we found that PSF affected specifically the INS-containing, Rev-dependent transcripts encoding Gag-Pol and Env. Both subunits contained nuclear export and nuclear retention signals, whereas p54nrb was continuously exported from the nucleus and associated with INS-containing mRNA in the cytoplasm, suggesting its additional role at late steps of mRNA metabolism. Thus, p54nrb and PSF have properties of key factors mediating INS function and likely define a novel mRNA regulatory pathway that is hijacked by HIV-1.
Collapse
MESH Headings
- Cells, Cultured/virology
- DNA-Binding Proteins
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/metabolism
- Gene Expression Regulation, Viral
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Gene Products, gag/genetics
- Gene Products, gag/metabolism
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- HIV-1/drug effects
- HIV-1/genetics
- Humans
- Nuclear Matrix-Associated Proteins/genetics
- Nuclear Matrix-Associated Proteins/metabolism
- Octamer Transcription Factors
- PTB-Associated Splicing Factor
- Proviruses/genetics
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Messenger/metabolism
- RNA, Viral/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/pharmacology
- Regulatory Sequences, Ribonucleic Acid
- rev Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Andrei S Zolotukhin
- Human Retrovirus Pathogenesis Section, Basic Research Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Gao F, Li Y, Decker JM, Peyerl FW, Bibollet-Ruche F, Rodenburg CM, Chen Y, Shaw DR, Allen S, Musonda R, Shaw GM, Zajac AJ, Letvin N, Hahn BH. Codon usage optimization of HIV type 1 subtype C gag, pol, env, and nef genes: in vitro expression and immune responses in DNA-vaccinated mice. AIDS Res Hum Retroviruses 2003; 19:817-23. [PMID: 14585212 DOI: 10.1089/088922203769232610] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Codon usage optimization of human immunodeficiency virus type 1 (HIV-1) structural genes has been shown to increase protein expression in vitro as well as in the context of DNA vaccines in vivo; however, all optimized genes reported thus far are derived from HIV-1 (group M) subtype B viruses. Here, we report the generation and biological characterization of codon usage-optimized gag, pol, env (gp160, gp140, gp120), and nef genes from a primary (nonrecombinant) HIV-1 subtype C isolate. After transfection into 293T cells, optimized subtype C genes expressed one to two orders of magnitude more protein (as determined by immunoblot densitometry) than the corresponding wild-type constructs. This effect was most pronounced for gp160, gp140, Gag, and Pol (>250-fold), but was also observed for gp120 and Nef (45- and 20-fold, respectively). Optimized gp160- and gp140-derived glycoproteins were processed, incorporated into virus particles, and mediated virus entry when expressed in trans to complement an env-minus HIV-1 provirus. Mice immunized with optimized gp140 DNA developed antibody as well as CD4+ and CD8+ T cell immune responses that were orders of magnitude greater than those of mice immunized with wild-type gp140 DNA. These data confirm and extend previous studies of codon usage optimization of HIV-1 genes to the most prevalent group M subtype. Our panel of matched optimized and wild-type subtype C genes should prove valuable for studies of protein expression and function, the generation of subtype-specific immunological reagents, and the production of DNA-based sub-unit vaccines directed against a broader spectrum of viruses.
Collapse
Affiliation(s)
- Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
|
90
|
zur Megede J, Otten GR, Doe B, Liu H, Leung L, Ulmer JB, Donnelly JJ, Barnett SW. Expression and immunogenicity of sequence-modified human immunodeficiency virus type 1 subtype B pol and gagpol DNA vaccines. J Virol 2003; 77:6197-207. [PMID: 12743276 PMCID: PMC154993 DOI: 10.1128/jvi.77.11.6197-6207.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of the worldwide AIDS pandemic may require not only preventive but also therapeutic immunization strategies. To meet this challenge, the next generation of human immunodeficiency virus type 1 (HIV-1) vaccines must stimulate broad and durable cellular immune responses to multiple HIV antigens. Results of both natural history studies and virus challenge studies with macaques indicate that responses to both Gag and Pol antigens are important for the control of viremia. Previously, we reported increased Rev-independent expression and improved immunogenicity of DNA vaccines encoding sequence-modified Gag derived from the HIV-1(SF2) strain (J. zur Megede, M. C. Chen, B. Doe, M. Schaefer, C. E. Greer, M. Selby, G. R. Otten, and S. W. Barnett, J. Virol. 74: 2628-2635, 2000). Here we describe results of expression and immunogenicity studies conducted with novel sequence-modified HIV-1(SF2) GagPol and Pol vaccine antigens. These Pol antigens contain deletions in the integrase coding region and were mutated in the reverse transcriptase (RT) coding region to remove potentially deleterious enzymatic activities. The resulting Pol sequences were used alone or in combination with sequence-modified Gag. In the latter, the natural translational frameshift between the Gag and Pol coding sequences was either retained or removed. Smaller, in-frame fusion gene cassettes expressing Gag plus RT or protease plus RT also were evaluated. Expression of Gag and Pol from GagPol fusion gene cassettes appeared to be reduced when the HIV protease was active. Therefore, additional constructs were evaluated in which mutations were introduced to attenuate or inactivate the protease activity. Nevertheless, when these constructs were delivered to mice as DNA vaccines, similar levels of CD8(+) T-cell responses to Gag and Pol epitopes were observed regardless of the level of protease activity. Overall, the cellular immune responses against Gag induced in mice immunized with multigenic gagpol plasmids were similar to those observed in mice immunized with the plasmid encoding Gag alone. Furthermore, all of the sequence-modified pol and gagpol plasmids expressed high levels of Pol-specific antigens in a Rev-independent fashion and were able to induce potent Pol-specific T- and B-cell responses in mice. These results support the inclusion of a gagpol in-frame fusion gene in future HIV vaccine approaches.
Collapse
|
91
|
Abstract
Ebola virus and HIV present challenges for vaccine development because natural immunity to these viruses is difficult to find, and there are no immune correlates of protection in humans. Modern molecular genetic, virologic and immune analyses have been used to rationally identify promising approaches based on animal model and human clinical studies. Improved vaccine candidates have been defined for HIV, and a promising Ebola vaccine have conferred protection in non-human primates. Further evaluation in humans will allow an assessment of their potential efficacy and point the way to the development of more successful vaccines.
Collapse
Affiliation(s)
- Gary J Nabel
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3005, USA.
| |
Collapse
|
92
|
Ding L, Derdowski A, Wang JJ, Spearman P. Independent segregation of human immunodeficiency virus type 1 Gag protein complexes and lipid rafts. J Virol 2003; 77:1916-26. [PMID: 12525626 PMCID: PMC140875 DOI: 10.1128/jvi.77.3.1916-1926.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of human immunodeficiency virus type 1 (HIV-1) particles takes place at the plasma membrane of cells and is directed by the Pr55Gag polyprotein. A functional assembly domain (the M domain) within the N-terminal portion of Pr55Gag mediates the interaction of Gag with cellular membranes. However, the determinants that provide specificity for assembly on the plasma membrane, as opposed to intracellular membranes, have not been identified. Recently, it was reported that Pr55Gag interacts with lipid raft microdomains of the plasma membrane. We sought to identify the domains within Pr55Gag that contribute to lipid raft association of Gag. Here we demonstrate that the I domain is required for interaction with detergent-resistant membrane fractions (DRMs). Mutation of key I-domain residues or loss of myristylation abrogated the association of Gag with DRMs. Thus, the I domain and the M domain combine to mediate Gag-lipid raft interactions as defined by these biochemical criteria. However, Gag protein complexes defined by flotation studies were much denser than classical lipid rafts, failed to incorporate classical lipid raft marker proteins, and were not disrupted by cholesterol extraction. Large sheets of Gag protein were identified in DRM fractions upon examination by electron microscopy. These results indicate that HIV-1 Pr55Gag forms detergent-resistant complexes at the cellular periphery that are distinct from lipid raft microdomains.
Collapse
Affiliation(s)
- Lingmei Ding
- Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2581, USA
| | | | | | | |
Collapse
|
93
|
Kong W, Tian C, Liu B, Yu XF. Stable expression of primary human immunodeficiency virus type 1 structural gene products by use of a noncytopathic sindbis virus vector. J Virol 2002; 76:11434-9. [PMID: 12388704 PMCID: PMC136792 DOI: 10.1128/jvi.76.22.11434-11439.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient expression of the human immunodeficiency virus type 1 (HIV-1) structural gene products Gag, Pol, and Env involves the regulation by viral Rev and Rev-responsive elements (RRE). Removal of multiple inhibitory sequences (INS) in the coding regions of these structural genes or modification of the codon usage patterns of HIV-1 genes to those used by highly expressed human genes has been found to significantly increase HIV-1 structural protein expression in the absence of Rev and RRE. In this study, we show that efficient and stable expression of the HIV-1 structural gene products Gag and Env could be achieved by transfection with a noncytopathic Sindbis virus expression vector by using HIV-1 sequences from primary isolates without any sequence modification. Stable expression of these Gag and Env proteins was observed for more than 12 months. The fact that the Sindbis virus expression vector replicates its RNA only in the cytoplasm of the transfected cells and the fact that the lack of expression of HIV-1 Gag by the DNA vector containing unmodified HIV-1 gag sequences was associated with a lack of detectable cytoplasmic gag RNA suggest that a major blockage in the expression of HIV-1 structural proteins in the absence of Rev/RRE is caused by inefficient accumulation of mRNA in the cytoplasm. Efficient long-term expression of structural proteins of diverse HIV-1 strains by the noncytopathic Sindbis virus expression system may be a useful tool for functional study of HIV-1 gene products and vaccine research.
Collapse
Affiliation(s)
- Wei Kong
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
94
|
Huang Y, Xu L, Sun Y, Nabel GJ. The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 2002; 10:307-16. [PMID: 12191476 DOI: 10.1016/s1097-2765(02)00588-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ebola virus encodes seven viral structural and regulatory proteins that support its high rates of replication, but little is known about nucleocapsid assembly of this virus in infected cells. We report here that three viral proteins are necessary and sufficient for formation of Ebola virus particles and that intracellular posttranslational modification regulates this process. Expression of the nucleoprotein (NP) and virion-associated proteins VP35 and VP24 led to spontaneous assembly of nucleocapsids in transfected 293T cells by transmission electron microscopy. A specific biochemical interaction of these three proteins was demonstrated, and, interestingly, O-glycosylation and sialation of NP were demonstrated and necessary for their association. This distinct mechanism of regulation for filovirus assembly suggests new approaches for viral therapies and vaccines for Ebola and related viruses.
Collapse
Affiliation(s)
- Yue Huang
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
95
|
Marsac D, Loirat D, Petit C, Schwartz O, Michel ML. Enhanced presentation of major histocompatibility complex class I-restricted human immunodeficiency virus type 1 (HIV-1) Gag-specific epitopes after DNA immunization with vectors coding for vesicular stomatitis virus glycoprotein-pseudotyped HIV-1 Gag particles. J Virol 2002; 76:7544-53. [PMID: 12097567 PMCID: PMC136357 DOI: 10.1128/jvi.76.15.7544-7553.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo priming of cytotoxic T lymphocytes (CTL) by DNA injection predominantly occurs by antigen transfer from DNA-transfected cells to antigen-presenting cells. A rational strategy for increasing DNA vaccine potency would be to use a delivery system that facilitates antigen uptake by antigen-presenting cells. Exogenous antigen presentation through the major histocompatibility complex (MHC) class I-restricted pathway of some viral antigens is increased after adequate virus-receptor interaction and the fusion of viral and cellular membranes. We used DNA-based immunization with plasmids coding for human immunodeficiency virus type 1 (HIV-1) Gag particles pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) to generate Gag-specific CTL responses. The presence of the VSV-G-encoding plasmid not only increased the number of mice displaying anti-Gag-specific cytotoxic response but also increased the efficiency of specific lysis. In vitro analysis of processing confirmed that exogenous presentation of Gag epitopes occurred much more efficiently when Gag particles were pseudotyped with the VSV-G envelope. We show that the VSV-G-pseudotyped Gag particles not only entered the MHC class II processing pathway but also entered the MHC class I processing pathway. In contrast, naked Gag particles entered the MHC class II processing pathway only. Thus, the combined use of DNA-based immunization and nonreplicating pseudotyped virus to deliver HIV-1 antigen to the immune system in vivo could be considered in HIV-1 vaccine design.
Collapse
Affiliation(s)
- D Marsac
- Unité de Recombinaison et Expression Génétique, INSERM U.163, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
96
|
Abstract
Traditional methods of vaccine development have not produced effective vaccines for several prevalent infectious diseases, including AIDS, malaria and tuberculosis. These difficult diseases call attention to the importance of new approaches that profit from modern technologies. Successful efforts in the past have typically taken advantage of naturally occurring, protective immune responses, but this avenue is not readily available in certain cases, such as in HIV infection, where the immune system rarely confers protective immunity. However, there are alternative strategies and areas of research that may facilitate the development of highly effective vaccines. These include the identification of immunogens that elicit broadly neutralizing antibodies, determination of the molecular and cellular basis for immune responses to the components of the infectious agent, the identification of relevant forms of viral proteins for antigen presentation, stimulation of relevant T-cell types, and enhancement of antigen-presenting, dendritic cell function. Answering these basic research questions will aid in rational vaccine design. It is also extremely important to optimize techniques for the testing and production of new vaccines including the quantitation of immune responses in animals and in humans, identification of surrogate markers of immune protection, streamlined vaccine production, and rapid evaluation of candidate vaccines for testing in clinical trials. We have put these ideas into practice in two recent studies in which we generated enhanced cytotoxic T lymphocyte (CTL) responses, while retaining robust humoral responses, to wild-type viral proteins by immunizing mice with genetically modified forms of HIV-1 Env, Gag and Pol delivered in the form of plasmid DNA expression vectors.
Collapse
Affiliation(s)
- Gary J Nabel
- Vaccine Research Center, NIAID, National Institute of Health, 40 Convent Drive, Bethesda, MD 20892-3005, USA.
| |
Collapse
|
97
|
Muthumani K, Kudchodkar S, Zhang D, Bagarazzi ML, Kim JJ, Boyer JD, Ayyavoo V, Pavlakis GN, Weiner DB. Issues for improving multiplasmid DNA vaccines for HIV-1. Vaccine 2002; 20:1999-2003. [PMID: 11983262 DOI: 10.1016/s0264-410x(02)00086-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the first reports of plasmid vaccines, there have been substantial changes made to the design of plasmid backbones, as well as to the antibiotic resistance markers chosen for clinical vectors compared with first generation vectors. These changes aid manufacturing, production and scale up and at the same time aid conceptual safety by limiting the ability of the vaccines to transfer useful genetic selection genes to other bacterial infectious agents. In contrast, there has been little change to the original promoters or polyadenlyation tracts in the last decade. We have learned that these first generation plasmid vaccines for HIV-1 appear very well tolerated in humans. However, while safe and immunogenic, improving the immune potency of DNA vaccines is a critical goal for this technology. The combination of antigens used should be carefully examined for possible immune interference. Such interference may only become apparent when each component of the vaccine is tested individually. This interference also suggests one mechanism of immune pathogenesis possibly by HIV-1. Optimization of the immune response can come through manipulation of the transfection efficiency, expression or through the use of various T cell and B cell plasmid adjuvants. It is likely that the combination of such advancements will significantly improve the clinical phenotype of this important vaccine modality.
Collapse
Affiliation(s)
- Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
The twenty-first century has begun with considerable success for new AIDS vaccines in macaque models. A common feature of these vaccines is their ability to induce high-frequency CD8+ T-cell responses that control, rather than prevent, infection with HIV. The new vaccines, which include DNA vaccines and live viral vectors, are based on technologies that have been developed since the start of the AIDS epidemic. The ultimate promise of these vaccines will be realized only when efficacy trials in humans are conducted.
Collapse
|
99
|
Boyer JD, Chattergoon M, Muthumani K, Kudchodkar S, Kim J, Bagarazzi M, Pavlakis G, Sekaly R, Weiner DB. Next generation DNA vaccines for HIV-1. J Liposome Res 2002; 12:137-42. [PMID: 12604047 DOI: 10.1081/lpr-120004786] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We studied the effects of first generation HIV-1 plasmid vaccines in 167 individuals. The vaccines were very well tolerated and induced helper T cell responses in most vaccine recipients. However, the CTL responses were below a 20% response rate. Improvement in vaccine potency is an important goal of this technology and a central focus of our laboratory. To improve on these response rates, we used RNA optimized constructs pGag and pEnv). These vaccines express 20-100 fold better than first generation vectors. However, our studies support that additional enhancements are needed to further boost the immune response. We report that we can significantly enhance the induced CD8 effector cell response by including engineered B7 costimulatory molecules. We observed that B7.2 was more effective at driving cellular immune responses than B7.1 as a plasmid vaccine. We developed gene swaps and deletions between these two molecules. This manipulation resulted in a dramatically enhanced cellular immune response as measured by CTL, or ICC or Elispot. We have also explored the use of cytokines as plasmid vaccine adjuvants. We observed that IL-12 and IL-15 were effective as plasmid vaccine adjuvants. Interestingly, IL-15 appeared to allow T cell expansion in the absence of significant T cell help. Improvement of the immune response induced by plasmid vaccines can be engineered in multiple ways. Our studies show that both costimulation as well as cytokine signals can be harnessed for more potent vaccine development. These results have important implications for the design of vaccines for prophylaxis and therapy.
Collapse
Affiliation(s)
- J D Boyer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Casimiro DR, Tang A, Perry HC, Long RS, Chen M, Heidecker GJ, Davies ME, Freed DC, Persaud NV, Dubey S, Smith JG, Havlir D, Richman D, Chastain MA, Simon AJ, Fu TM, Emini EA, Shiver JW. Vaccine-induced immune responses in rodents and nonhuman primates by use of a humanized human immunodeficiency virus type 1 pol gene. J Virol 2002; 76:185-94. [PMID: 11739684 PMCID: PMC135696 DOI: 10.1128/jvi.76.1.185-194.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A synthetic gene consisting of the reverse transcriptase (RT) and integrase (IN) domains of human immunodeficiency virus type 1 (HIV-1) pol was constructed using codons most frequently used in humans. The humanized pol gave dramatically improved levels of Rev-independent, in vitro protein production in mammalian cells and elicited much stronger cellular immunity in rodents than did virus-derived gene. Specifically, BALB/c mice were immunized with plasmids and/or recombinant vaccinia virus constructs expressing the synthetic gene. High frequencies of Pol-specific T lymphocytes were detected in these animals by the gamma interferon enzyme-linked immunospot assay against pools of short overlapping peptides. Characterization of the stimulatory peptides from these pools indicates that the optimized gene constructs are able to effectively activate both CD4+ and CD8+ T cells. Immunization of rhesus macaques with DNA vaccines expressing the humanized pol coupled to a human tissue plasminogen activator leader sequence led to pronounced in vitro cytotoxic T-lymphocyte killing activities and enhanced levels of circulating Pol-specific T cells, comparable to those observed in HIV-1-infected human subjects. Thus, optimizing the immunogenic properties of HIV-1 Pol at the level of the gene sequence validates it as an antigen and provides an important step toward the construction of a potent pol-based HIV-1 vaccine component.
Collapse
Affiliation(s)
- Danilo R Casimiro
- Department of Virus and Cell Biology, Merck Research Laboratories, Merck and Company, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|