1401
|
Marshall JC. Lipopolysaccharide: An Endotoxin or an Exogenous Hormone? Clin Infect Dis 2005; 41 Suppl 7:S470-80. [PMID: 16237650 DOI: 10.1086/432000] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Conventional models of the pathogenesis of sepsis assume that microorganisms or their products are necessarily injurious to the host. In contrast, an evolutionary perspective suggests that host-microbial interactions are a symbiotic model and that disease results from the disruption of a mutually beneficial homeostatic state. Lipopolysaccharide (LPS) from gram-negative bacteria is a prototypical trigger of sepsis and a target for the development of novel therapeutics. The biological mechanisms underlying the recognition of, and response to, LPS are more characteristic of a hormone than of a toxin. All mammals carry endogenous stores of LPS and express dedicated carrier proteins, a cellular receptor complex, and mechanisms that specifically antagonize the response to LPS. Disruption of any component of this complex recognition system jeopardizes host defenses against infection with exogenous microorganisms. Thus, LPS is not less an endotoxin than an exohormone, and its neutralization may potentially result in either benefit or harm.
Collapse
Affiliation(s)
- John C Marshall
- Interdepartmental Division of Critical Care Medicine, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
1402
|
Jussi V, Erkki E, Paavo T. Comparison of cellular fatty acid profiles of the microbiota in different gut regions of BALB/c and C57BL/6J mice. Antonie Van Leeuwenhoek 2005; 88:67-74. [PMID: 15928978 DOI: 10.1007/s10482-004-7837-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
The gastrointestinal tracts of developed animals are colonized by an extremely complex and diverse microbial ecosystem. The host and its microbiota are in close interaction with each other, and the host's genetic characteristics have been suggested to have an influence on the composition of fecal bacteria. However, different sections of gastrointestinal tract harbor microbes typical of each particular section and knowledge of the effect of the host's genotype on the microbiota in the different parts of the gastrointestinal tract is limited. In this study, mice from two inbred strains, C57BL/6J and BALB/c, were raised in identical conditions. Bacterial samples were collected from four parts of the gastrointestinal tract and analyzed for bacterial fatty acids using gas-liquid chromatography (GLC). Significant differences between the microbiota in the feces, in the cecum, in the small bowel and in the stomach were observed. Cecal samples produced more diverse bacterial fatty acid profiles than any of the other samples, revealing a higher bacterial density and a higher number of bacterial species. Further, a significant difference between the two strains of mice was observed throughout the gastrointestinal tract. These findings indicate that the host's genotype has an influence on the gastrointestinal microbiota as a whole, and provide further evidence that the cecum is the most species-rich region of the murine gut.
Collapse
Affiliation(s)
- Vaahtovuo Jussi
- Department of Medical Microbiology, Turku University, Kiinamyllynkatu 13, 20520, TURKU, Finland.
| | | | | |
Collapse
|
1403
|
Barbara G, Stanghellini V, Brandi G, Cremon C, Di Nardo G, De Giorgio R, Corinaldesi R. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol 2005; 100:2560-2568. [PMID: 16279914 DOI: 10.1111/j.1572-0241.2005.00230.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Commensal bacteria inhabiting the human intestine (i.e., intestinal microflora) participate in the development and maintenance of gut sensory and motor functions, including the promotion of intestinal propulsive activity. On the other hand, intestinal motility represents one of the major control systems of gut microflora, through the sweeping of excessive bacteria from the lumen. There is emerging evidence indicating that changes in this bidirectional interplay contribute to the pathogenesis of gut diseases, such as small intestinal bacterial overgrowth and intestinal pseudo-obstruction. Recent interest has also been directed to the potential role of intestinal microflora in the pathogenesis of the irritable bowel syndrome. Although the status of intestinal microflora in the irritable bowel syndrome remains unsettled, small intestinal bacterial overgrowth (as detected with breath testing) and increased fermentation of foods with gas production, provide indirect evidence that microflora may contribute to symptom generation in irritable bowel syndrome. The potential benefit of antibiotic and probiotic therapy is currently under investigation and opens new perspectives in irritable bowel syndrome treatment.
Collapse
Affiliation(s)
- Giovanni Barbara
- Department of Internal Medicine and Gastroenterology, Univeristy of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
1404
|
Abstract
The intestinal ecosystem is defined by a series of interactions between the microbiota, the mucosal epithelium, and the gut-associated lymphoid tissue (GALT). Perturbations in the fine balance of the interactions between these components can result in gastrointestinal diseases such as inflammatory bowel disease (IBD). The pathophysiology of IBD is thought to develop as a result of dysregulated mucosal immune responses to normal luminal microflora. Several animal models for IBD have been developed and underscore the role of the immune system in development of disease. Most of the existing animal models studying IBD are based on the use of chemically induced IBD or of genetically modified and germ-free animals. It is, however, important to study inflammatory responses that can develop from interactions between bacteria, the mucosal epithelium, and GALT in animals that are not genetically modified or immunocompromised. In this report, we document the use of a germ-free ligated rabbit appendix model to induce inflammatory changes in response to specific bacteria. With the introduction of a Bacteroides vulgatus isolate from humans into the germ-free ligated appendix, we found chronic inflammatory changes, including glandular distortion, gland drop-out, decreased goblet cells, and crypt abscess formation. However, with the introduction of other experimental luminal contents, we observed no inflammation. These results show that specific microbial composition can induce inflammation. We suggest that this model may be useful to study the mechanism by which specific bacteria establish inflammatory responses in the gut.
Collapse
Affiliation(s)
- Malathy Shanmugam
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University of Chicago, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
1405
|
Galpin L, Manary MJ, Fleming K, Ou CN, Ashorn P, Shulman RJ. Effect of Lactobacillus GG on intestinal integrity in Malawian children at risk of tropical enteropathy. Am J Clin Nutr 2005; 82:1040-5. [PMID: 16280436 DOI: 10.1093/ajcn/82.5.1040] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Tropical enteropathy is an asymptomatic villous atrophy of the small bowel that is prevalent in the developing world and is associated with altered intestinal function and integrity. The histology of tropical enteropathy resembles that seen in small-bowel bacterial overgrowth. OBJECTIVE This study tested the hypothesis that treatment of 3-5-y-old Malawian children with the probiotic Lactobacillus GG would improve their intestinal function and integrity. DESIGN Clinically healthy children (n = 164) were enrolled in a placebo-controlled, randomized, double-blind trial. Intestinal function and integrity were measured by using the site-specific sugar-absorption test before and after 30 d of treatment with Lactobacillus GG or placebo. The primary outcomes were the ratios of urinary lactulose to mannitol (L:M) and of urinary sucrose to lactulose (S:L) excretion. RESULTS Of the 161 children who completed the study, 119 (73%) had tropical enteropathy on enrollment (L:M > 0.10). Children receiving Lactobacillus GG did not differ significantly from the placebo group in the excretion (in % of dose administered) of mannitol (mean +/- SD: 8.9 +/- 4.4 and 8.9 +/- 3.9, respectively), lactulose (0.31 +/- 0.20 and 0.33 +/- 0.23, respectively), or sucrose (0.078 +/- 0.058 and 0.082 +/- 0.075, respectively). L:M and S:L also did not differ significantly between the Lactobacillus and placebo groups (0.19 +/- 0.13 and 0.20 +/- 0.12, respectively, for L:M; 0.58 +/- 0.46 and 0.65 +/- 0.57, respectively, for S:L). CONCLUSION Administration of Lactobacillus GG for 30 d had no effect on the intestinal integrity of 3-5-y-old Malawian children.
Collapse
Affiliation(s)
- Lauren Galpin
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
1406
|
Tlaskalova-Hogenova H, Tuckova L, Mestecky J, Kolinska J, Rossmann P, Stepankova R, Kozakova H, Hudcovic T, Hrncir T, Frolova L, Kverka M. Interaction of mucosal microbiota with the innate immune system. Scand J Immunol 2005; 62 Suppl 1:106-13. [PMID: 15953193 DOI: 10.1111/j.1365-3083.2005.01618.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Organisms live in continuos interaction with their environment; this interaction is of vital importance but at the same time can be life threatening. The largest and most important interface between the organism and its environment is represented by surfaces covered with epithelial cells. Of these surfaces, mucosae comprise in humans approximately 300 m2, and the skin covers approximately 1.8 m2 surface of the human body. Mucosal tissues contain two effector arms of the immune system, innate and adaptive, which operate in synergy. Interaction with commensal bacteria, which outnumber the nucleated cells of our body, occurs physiologically on epithelial surfaces; this interaction could pose the risk of inflammation. The mucosal immune system has developed a complex network of regulatory signalling cascades that is a prerequisite for proper activation but also for a timely inactivation of the pathway. As demonstrated in gnotobiotic animal models of human diseases, impaired regulation of mucosal responses to commensal bacteria plays an important role in the development of several inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- H Tlaskalova-Hogenova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1407
|
Azambuja P, Garcia ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol 2005; 21:568-72. [PMID: 16226491 DOI: 10.1016/j.pt.2005.09.011] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 08/18/2005] [Accepted: 09/19/2005] [Indexed: 12/20/2022]
Abstract
In the gut of some insect vectors, parasites ingested with the bloodmeal decrease in number before coming into contact with host tissues. Many factors could be responsible for this reduction in parasite number but the potentially important role of the large communities of naturally occurring microorganisms that exist alongside the newly ingested parasites in the vector midgut has been largely overlooked. Some previous reports exist of the inhibition of parasite development by vector gut microbiota and of the killing of Trypanosoma cruzi and Plasmodium spp. by prodigiosin produced by bacteria. Based on this evidence, we believe that the microbiota present in the midgut of vector insects could have important roles as determinants of parasite survival and development in insect vector hosts and, therefore, contribute to the modulation of vector competence for many important diseases.
Collapse
Affiliation(s)
- Patricia Azambuja
- Department of Biochemistry and Molecular Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro 21045-900, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
1408
|
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of mortality and morbidity in neonatal intensive care units. Here we review selected manifestations of NEC, risk factors involved in its pathophysiology as well as putative mechanisms associated with how an immature gut might be more susceptible to NEC. Treatment and potential preventive strategies are discussed.
Collapse
Affiliation(s)
- Josef Neu
- University of Florida, Department of Pediatrics, Gainesville, Florida 32610, USA
| |
Collapse
|
1409
|
Sears CL. A dynamic partnership: Celebrating our gut flora. Anaerobe 2005; 11:247-51. [PMID: 16701579 DOI: 10.1016/j.anaerobe.2005.05.001] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Emerging data indicate that humans enjoy health through a productive collaboration with their colonizing flora, the majority of whom reside in the colon. This minireview provides a perspective on recent data and the exciting scientific challenges ahead.
Collapse
Affiliation(s)
- Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
1410
|
Abstract
Awareness of the key role of the intestinal microflora in the generation of the immunophysiological regulation and in the defence against pathogenic agents has attracted our interest in ways of manipulating the microbiota to improve health. Dietary modulation of the intestinal microflora is today one of the main topics of interest in the nutritional sciences. Performing this modulation in the neonatal or early infancy period, when immunological programming takes place, is a relatively new concept. Fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS) are prebiotics whose bifidogenic activity has been proven in adults. However, only recently have they been combined in infant formulas to reproduce the prebiotic effect of human milk oligosaccharides. In two consecutive trials, it has been demonstrated that supplementation of infant formulas with a mixture of GOS and FOS modified the fecal flora of term and preterm infants, stimulating the growth of Bifidobacteria. In the trial with term infants, the bifidogenic effect of the prebiotic mixture was dose dependent and there was also a significant increase in the number of Lactobacilli in the supplemented group. These findings offer a promising horizon for the early prevention of allergy and infections in infants.
Collapse
Affiliation(s)
- Guido E Moro
- Centre of Infant Nutrition for the Prevention of Adult Diseases, Macedonio Melloni Maternity Hospital, Postgraduate School of Paediatrics, University of Milan, Milan, Italy.
| | | |
Collapse
|
1411
|
Fujita K, Oura F, Nagamine N, Katayama T, Hiratake J, Sakata K, Kumagai H, Yamamoto K. Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-alpha-N-acetylgalactosaminidase from Bifidobacterium longum. J Biol Chem 2005; 280:37415-22. [PMID: 16141207 DOI: 10.1074/jbc.m506874200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found endo-alpha-N-acetylgalactosaminidase in most bifidobacterial strains, which are predominant bacteria in the human colon. This enzyme catalyzes the liberation of galactosyl beta1,3-N-acetyl-D-galactosamine (Galbeta1,3GalNAc) alpha-linked to serine or threonine residues from mucin-type glycoproteins. The gene (engBF) encoding the enzyme has been cloned from Bifidobacterium longum JCM 1217. The protein consisted of 1,966 amino acid residues, and the central domain (590-1381 amino acid residues) exhibited 31-53% identity to hypothetical proteins of several bacteria including Clostridium perfringens and Streptococcus pneumoniae. The recombinant protein expressed in Escherichia coli liberated Galbeta1,3GalNAc disaccharide from Galbeta1,3GalNAcalpha1pNP and asialofetuin, but did not release GalNAc, Galbeta1,3(GlcNAcbeta1,6)GalNAc, GlcNAcbeta1,3GalNAc, and Galbeta1,3GlcNAc from each p-nitrophenyl (pNP) substrate, and also did not release sialo-oligosaccharides from fetuin, indicating its strict substrate specificity for the Core 1-type structure. The stereochemical course of hydrolysis was determined by (1)H NMR and was found to be retention. Site-directed mutagenesis of a total of 22 conserved Asp and Glu residues suggested that Asp-682 and Asp-789 are critical residues for the catalytic activity of the enzyme. The enzyme also exhibited transglycosylation activity toward various mono- and disaccharides and 1-alkanols, demonstrating its potential to synthesize neoglycoconjugates. This is the first report for the isolation of a gene encoding endo-alpha-N-acetylgalactosaminidase from any organisms and for the establishment of a new glycoside hydrolase family (GH family 101).
Collapse
Affiliation(s)
- Kiyotaka Fujita
- Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
1412
|
Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM. Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol 2005; 16:204-11. [PMID: 15831388 DOI: 10.1016/j.copbio.2005.02.003] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insight into the diversity and function of the human intestinal microbiota has been stimulated by clinical studies with bacteria that exhibit specific functions and which are marketed as probiotics to positively affect our health. Initial efforts concentrated on establishing sound scientific support for the efficacy of these probiotic bacteria, which mainly include Lactobacillus and Bifidobacterium species. Following these evidence-based functional approaches, considerable research is now focused on the mechanisms of action of probiotic bacteria. The mechanisms identified to date mainly relate to the stimulation of host defence systems, immune modulation and the competitive exclusion of pathogens. Recent efficacy, molecular and genomics-based studies have also been reported for some probiotic strains that have found their position in the market place.
Collapse
Affiliation(s)
- Maija Saxelin
- Valio Ltd, R&D, Meijeritie 4A, PO Box 30, 00039 Valio, Helsinki, Finland
| | | | | | | |
Collapse
|
1413
|
Dick LK, Bernhard AE, Brodeur TJ, Santo Domingo JW, Simpson JM, Walters SP, Field KG. Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl Environ Microbiol 2005; 71:3184-91. [PMID: 15933020 PMCID: PMC1151806 DOI: 10.1128/aem.71.6.3184-3191.2005] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to examine host distribution patterns among fecal bacteria in the order Bacteroidales, with the goal of using endemic sequences as markers for fecal source identification in aquatic environments. We analyzed Bacteroidales 16S rRNA gene sequences from the feces of eight hosts: human, bovine, pig, horse, dog, cat, gull, and elk. Recovered sequences did not match database sequences, indicating high levels of uncultivated diversity. The analysis revealed both endemic and cosmopolitan distributions among the eight hosts. Ruminant, pig, and horse sequences tended to form host- or host group-specific clusters in a phylogenetic tree, while human, dog, cat, and gull sequences clustered together almost exclusively. Many of the human, dog, cat, and gull sequences fell within a large branch containing cultivated species from the genus Bacteroides. Most of the cultivated Bacteroides species had very close matches with multiple hosts and thus may not be useful targets for fecal source identification. A large branch containing cultivated members of the genus Prevotella included cloned sequences that were not closely related to cultivated Prevotella species. Most ruminant sequences formed clusters separate from the branches containing Bacteroides and Prevotella species. Host-specific sequences were identified for pigs and horses and were used to design PCR primers to identify pig and horse sources of fecal pollution in water. The primers successfully amplified fecal DNAs from their target hosts and did not amplify fecal DNAs from other species. Fecal bacteria endemic to the host species may result from evolution in different types of digestive systems.
Collapse
Affiliation(s)
- Linda K Dick
- Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | | | |
Collapse
|
1414
|
Castagliuolo I, Galeazzi F, Ferrari S, Elli M, Brun P, Cavaggioni A, Tormen D, Sturniolo GC, Morelli L, Palù G. Beneficial effect of auto-aggregating Lactobacillus crispatus on experimentally induced colitis in mice. ACTA ACUST UNITED AC 2005; 43:197-204. [PMID: 15681150 DOI: 10.1016/j.femsim.2004.08.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2004] [Revised: 07/22/2004] [Accepted: 08/12/2004] [Indexed: 01/12/2023]
Abstract
We tested the therapeutic relevance of auto aggregation in lactobacilli by comparing the effect on DSS induced colitis of viable Lactobacillus crispatus M247, isolated from healthy humans, to L. crispatus MU5, an isogenic spontaneous mutants of M247, the latter lacking the auto aggregation phenotype which allows the adhesion to human mucus. Aggregating L. crispatus M247, but not the non-aggregating MU5, was retrievable from mice feces and adherent to the colonic mucosa. Daily administration of L. crispatus M247, but not heat killed L. crispatus M247 or aggregation deficient L. crispatus MU5, dose-dependently reduced the severity of DSS colitis. Indeed, L. crispatus MU5 administered in a 30% sucrose solution, known to restore the aggregation phenotype, had a protective effect comparable to mice receiving L. crispatus M247. These results indicate that a surface-mediated property such as aggregation may play a pivotal role in the protective effects obtained by dietary supplementation with L. crispatus M247 during colitis.
Collapse
Affiliation(s)
- Ignazio Castagliuolo
- School of Pharmacy, Department of Histology, University of Padua, Via A. Gabelli 63, Padua 35121 Padua, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1415
|
Handfield M, Mans JJ, Zheng G, Lopez MC, Mao S, Progulske-Fox A, Narasimhan G, Baker HV, Lamont RJ. Distinct transcriptional profiles characterize oral epithelium-microbiota interactions. Cell Microbiol 2005; 7:811-23. [PMID: 15888084 DOI: 10.1111/j.1462-5822.2005.00513.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcriptional profiling, bioinformatics, statistical and ontology tools were used to uncover and dissect genes and pathways of human gingival epithelial cells that are modulated upon interaction with the periodontal pathogens Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Consistent with their biological and clinical differences, the common core transcriptional response of epithelial cells to both organisms was very limited, and organism-specific responses predominated. A large number of differentially regulated genes linked to the P53 apoptotic network were found with both organisms, which was consistent with the pro-apoptotic phenotype observed with A. actinomycetemcomitans and anti-apoptotic phenotype of P. gingivalis. Furthermore, with A. actinomycetemcomitans, the induction of apoptosis did not appear to be Fas- or TNF(alpha)-mediated. Linkage of specific bacterial components to host pathways and networks provided additional insight into the pathogenic process. Comparison of the transcriptional responses of epithelial cells challenged with parental P. gingivalis or with a mutant of P. gingivalis deficient in production of major fimbriae, which are required for optimal invasion, showed major expression differences that reverberated throughout the host cell transcriptome. In contrast, gene ORF859 in A. actinomycetemcomitans, which may play a role in intracellular homeostasis, had a more subtle effect on the transcriptome. These studies help unravel the complex and dynamic interactions between host epithelial cells and endogenous bacteria that can cause opportunistic infections.
Collapse
Affiliation(s)
- Martin Handfield
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1416
|
Abstract
Crohn's disease (CD) is characterized by patchy transmural inflammation involving any part of the intestinal tract. Animal models have provided a great deal of insight into the pathogenesis of CD, but no animal model has recapitulated the full spectrum of manifestations witnessed in human disease. The defects in mucosal immunity in CD can be divided into those that involve the epithelial barrier, those that involve the innate immune response, and finally, defects in the adaptive immune response. Defects in the epithelial barrier in CD include an increase in intestinal permeability, increased adherence of bacteria, and decreased expression of defensins. Murine and human studies have demonstrated an increased expression of T-helper 1 (Th1) cytokines by lamina propria lymphocytes. This increased Th1 cytokine expression is driven by interleukin-12 (IL-12)/IL-23 and tumor necrosis factor-like 1A (TL1A) production by antigen-presenting cells, resulting in Tbet expression by CD4+ T cells. Another dimension of the inappropriate immune response in CD is T-cell and B-cell reactivity to luminal microbes. With the identification of the nucleotide-binding oligomerization domain 2 (NOD2) gene as a susceptibility gene, defects in the innate immune response are beginning to be explored. One may consider a model in which defective innate immune clearance of pathogens or commensal bacteria in CD leads to an inappropriate adaptive immune response to the commensal flora.
Collapse
Affiliation(s)
- Gena M Cobrin
- Inflammatory Bowel Disease Center, Division of Gastroenterology, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
1417
|
Vaughan EE, Heilig HG, Ben-Amor K, de Vos WM. Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches. FEMS Microbiol Rev 2005. [DOI: 10.1016/j.fmrre.2005.04.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
1418
|
Wang Y, Tang H, Holmes E, Lindon JC, Turini ME, Sprenger N, Bergonzelli G, Fay LB, Kochhar S, Nicholson JK. Biochemical Characterization of Rat Intestine Development Using High-Resolution Magic-Angle-Spinning 1H NMR Spectroscopy and Multivariate Data Analysis. J Proteome Res 2005; 4:1324-9. [PMID: 16083283 DOI: 10.1021/pr050032r] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report details of metabolic profiles for small intestinal samples obtained using high-resolution magic-angle-spinning (HRMAS) (1)H NMR spectroscopy. Intact samples of jejunum and ileum from male Long Evans rats were analyzed on a 600 MHz spectrometer using standard one and two-dimensional (1)H NMR spectroscopic pulse sequences. The metabolic profiles of ileum and jejunum predominantly comprised a number of amino acids, lipids, glycerophosphocholine (GPC), choline, creatine, and ethanol, a number of carboxylic acids including acetate and lactate, and nucleoside bases including cytosine, isocytosine, and uracil. Principal component analysis (PCA) was applied to these NMR data to characterize the biochemical differences between jejunum and ileum tissues. Compared with ileum, jejunum contained higher levels of lipids, GPC, choline, lactate and creatinine, but lower levels of amino acids and acetate. In addition, the age dependence of the biochemical composition of intestinal tissues from young rats (15, 36 days and 3-4 months old) was studied. In general, levels of lipids, lactate, taurine and creatinine were positively correlated with age while amino acids and GPC decreased in the older age group. This study will provide a metabolic reference for further studies assessing the metabolic consequences of nutrition, stress and gut microbiota on intestinal composition.
Collapse
Affiliation(s)
- Yulan Wang
- Biological Chemistry, Biomedical Sciences Division, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London, SW7, 2AZ, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1419
|
Burns-Guydish SM, Olomu IN, Zhao H, Wong RJ, Stevenson DK, Contag CH. Monitoring age-related susceptibility of young mice to oral Salmonella enterica serovar Typhimurium infection using an in vivo murine model. Pediatr Res 2005; 58:153-8. [PMID: 15774831 DOI: 10.1203/01.pdr.0000157725.44213.c4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonates and young children are acutely susceptible to infections by gastrointestinal bacterial pathogens, such as Salmonella enterica serovar Typhimurium (S. typhimurium). To reveal age-related differences in susceptibility to this pathogen, we used in vivo bioluminescence imaging (BLI) to monitor the progression of infection in neonatal (1-wk-old), suckling (2-wk-old), juvenile (4-wk-old), and adult (6-wk-old) BALB/c mice. Mice were orally infected with various doses of a bioluminescent-labeled wild-type or mutant S. typhimurium strain, and progression of infection was monitored by BLI for 2 wks. We found that neonatal and suckling mice were more susceptible to the wild-type strain at inoculum sizes 4 and 2 log(10)'s lower for neonatal and suckling mice, respectively, than those for adult mice. At the lower inocula, newborn mice showed disseminated systemic infection as indicated by the pattern of photon emission assessed by BLI, whereas no bioluminescent signals were detectable in adult mice. In addition, an orgA(-) mutant strain of S. typhimurium with reduced virulence in adult mice produced systemic infection in newborn, suckling, and juvenile mice. Furthermore, as low as 3 log(10) CFU could be detected by BLI in tissue. The present study demonstrates that susceptibility to S. typhimurium infection decreases with age. Also, we established that BLI can be used to monitor the progression of infection in mice. Thus, this model of age-related susceptibility to S. typhimurium using BLI can be used to advance our understanding of the mechanisms involved in newborn susceptibility to infection.
Collapse
Affiliation(s)
- Stacy M Burns-Guydish
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
1420
|
Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System. Cell 2005; 122:107-18. [PMID: 16009137 DOI: 10.1016/j.cell.2005.05.007] [Citation(s) in RCA: 2071] [Impact Index Per Article: 103.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 02/28/2005] [Accepted: 05/04/2005] [Indexed: 11/28/2022]
Abstract
The mammalian gastrointestinal tract harbors a complex ecosystem consisting of countless bacteria in homeostasis with the host immune system. Shaped by evolution, this partnership has potential for symbiotic benefit. However, the identities of bacterial molecules mediating symbiosis remain undefined. Here we show that, during colonization of animals with the ubiquitous gut microorganism Bacteroides fragilis, a bacterial polysaccharide (PSA) directs the cellular and physical maturation of the developing immune system. Comparison with germ-free animals reveals that the immunomodulatory activities of PSA during B. fragilis colonization include correcting systemic T cell deficiencies and T(H)1/T(H)2 imbalances and directing lymphoid organogenesis. A PSA mutant of B. fragilis does not restore these immunologic functions. PSA presented by intestinal dendritic cells activates CD4+ T cells and elicits appropriate cytokine production. These findings provide a molecular basis for host-bacterial symbiosis and reveal the archetypal molecule of commensal bacteria that mediates development of the host immune system.
Collapse
Affiliation(s)
- Sarkis K Mazmanian
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
1421
|
Grangette C, Nutten S, Palumbo E, Morath S, Hermann C, Dewulf J, Pot B, Hartung T, Hols P, Mercenier A. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci U S A 2005; 102:10321-6. [PMID: 15985548 PMCID: PMC1177390 DOI: 10.1073/pnas.0504084102] [Citation(s) in RCA: 329] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Teichoic acids (TAs), and especially lipoteichoic acids (LTAs), are one of the main immunostimulatory components of pathogenic Gram-positive bacteria. Their contribution to the immunomodulatory properties of commensal bacteria and especially of lactic acid bacteria has not yet been investigated in detail. To evaluate the role of TAs in the interaction between lactic acid bacteria and the immune system, we analyzed the antiinflammatory properties of a mutant of Lactobacillus plantarum NCIMB8826 affected in the TA biosynthesis pathway both in vitro (mononuclear cells stimulation) and in vivo (murine model of colitis). This Dlt- mutant was found to incorporate much less D-Ala in its TAs than the WT strain. This defect significantly impacted the immunomodulation reactions induced by the bacterium, as shown by a dramatically reduced secretion of proinflammatory cytokines by peripheral blood mononuclear cells and monocytes stimulated by the Dlt- mutant as compared with the parental strain. Concomitantly, a significant increase in IL-10 production was stimulated by the Dlt- mutant in comparison with the WT strain. Moreover, the proinflammatory capacity of L. plantarum-purified LTA was found to be Toll-like receptor 2-dependent. Consistent with the in vitro results, the Dlt- mutant was significantly more protective in a murine colitis model than its WT counterpart. The results indicated that composition of LTA within the whole-cell context of L. plantarum can modulate proinflammatory or antiinflammatory immune responses.
Collapse
Affiliation(s)
- Corinne Grangette
- Laboratoire de Bactériologie des Ecosytèmes, Institut Pasteur de Lille-Institut de Biologie de Lille, 59019 Lille Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1422
|
Schreiber S, Rosenstiel P, Albrecht M, Hampe J, Krawczak M. Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet 2005; 6:376-88. [PMID: 15861209 DOI: 10.1038/nrg1607] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic inflammatory disorders such as Crohn disease, atopic eczema, asthma and psoriasis are triggered by hitherto unknown environmental factors that function on the background of some polygenic susceptibility. Recent technological advances have allowed us to unravel the genetic aetiology of these and other complex diseases. Using Crohn disease as an example, we show how the discovery of susceptibility genes furthers our understanding of the underlying disease mechanisms and how it will, ultimately, give rise to new therapeutic developments. The long-term goal of such endeavours is to develop targeted prophylactic strategies. These will probably target the molecular interaction on the mucosal surface between the products of the genome and the microbial metagenome of a patient.
Collapse
Affiliation(s)
- Stefan Schreiber
- Institute for Clinical Molecular Biology, Center for Conservative Medicine, Christian-Albrechts-University Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany.
| | | | | | | | | |
Collapse
|
1423
|
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science 2005; 308:1635-8. [PMID: 15831718 PMCID: PMC1395357 DOI: 10.1126/science.1110591] [Citation(s) in RCA: 5551] [Impact Index Per Article: 277.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.
Collapse
Affiliation(s)
- Paul B Eckburg
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Room S-169, 300 Pasteur Drive, Stanford CA 94305-5107, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1424
|
Affiliation(s)
- Owen Epstein
- Centre for Gastroenterology, Royal Free Hospital NHS Trust, London, UK.
| |
Collapse
|
1425
|
Ouellette AJ. Paneth cell α-defensins: peptide mediators of innate immunity in the small intestine. ACTA ACUST UNITED AC 2005; 27:133-46. [PMID: 15931529 DOI: 10.1007/s00281-005-0202-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
Epithelial cells contribute to innate immunity by releasing antimicrobial peptides (AMPs) onto mucosal surfaces. In the small bowel, Paneth cells at the base of the crypts of Lieberkühn secrete alpha-defensins and additional AMPs at high levels in response to cholinergic stimulation and when exposed to bacterial antigens. The release of Paneth cell products into the crypt lumen is inferred to protect mitotically active crypt cells that renew the epithelial cell monolayer from colonization by potentially pathogenic microbes and to confer protection from enteric infection. The most compelling evidence for a Paneth cell role in enteric resistance to infection is evident from studies of mice transgenic for a human Paneth cell alpha-defensin, HD-5, which are completely immune to infection and systemic disease from orally administered Salmonella enterica serovar typhimurium. Cystic fibrosis mice are subject to small bowel bacterial overgrowth that is associated with impaired dissolution of released Paneth cell granules in the crypt lumen. Mutations that cause defects in the activation, secretion, dissolution, and bactericidal effects of Paneth cell AMPs may alter crypt innate immunity and contribute to immunopathology.
Collapse
Affiliation(s)
- Andre J Ouellette
- Department of Pathology and Laboratory Medicine and Microbiology and Molecular Genetics, School of Medicine, College of Health Sciences, University of California at Irvine, Irvine, CA 92697-4800, USA.
| |
Collapse
|
1426
|
Robosky LC, Wells DF, Egnash LA, Manning ML, Reily MD, Robertson DG. Metabonomic identification of two distinct phenotypes in Sprague-Dawley (Crl:CD(SD)) rats. Toxicol Sci 2005; 87:277-84. [PMID: 15933226 DOI: 10.1093/toxsci/kfi214] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genetic drift in animal populations has been a recognized concern for many years. Less understood is the potential for phenotypic "drift" or variation that is not related to any genetic change. Recently, stock Sprague-Dawley (Crl:CD(SD)) rats obtained from the Charles River Raleigh facility demonstrated a distinct endogenous urinary metabonomic profile that differed from historical control SD urine spectral profiles obtained over the past several years in our laboratory. In follow-up studies, the origin of the variant phenotype was narrowed down to animals of both sexes that were housed in one specific room (Room 9) in the Raleigh facility. It is likely that the two phenotypes are related to distinct populations of gut flora that particularly impact the metabolism of aromatic molecules. The most pronounced difference between the two phenotypes is the relative amounts of hippuric acid versus other aromatic acid metabolites of chlorogenic acid. Though both molecular species are present in either phenotype, the marked variation in levels of these molecules between the two phenotypes has led to the designation of high hippuric acid (HIP) and high chlorogenic acid metabolites (CA) phenotypes. Specific urinary components that distinguish the phenotypes have been thoroughly characterized by NMR spectroscopy with additional, limited characterization by LC-MS (high performance liquid chromatography coupled with mass spectrometry). Co-habitation of rats from the two phenotypes rapidly facilitated a switch of the CA phenotype to the historical Sprague-Dawley phenotype (HIP). The impact of these variant phenotypes on drug metabolism and long-term safety assessment studies (e.g., carcinogenicity bioassays) is unknown.
Collapse
Affiliation(s)
- Lora C Robosky
- Pfizer Global Research and Development, Metabonomics Evaluation Group, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | |
Collapse
|
1427
|
Erratum to: Evaluation of Five Probiotic Products for Label Claims by DNA Extraction and Polymerase Chain Reaction Analysis. Dig Dis Sci 2005. [DOI: 10.1007/s10620-005-2931-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
1428
|
Clarke MB, Sperandio V. Events at the host-microbial interface of the gastrointestinal tract III. Cell-to-cell signaling among microbial flora, host, and pathogens: there is a whole lot of talking going on. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1105-9. [PMID: 15890712 DOI: 10.1152/ajpgi.00572.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Humans have an important association with their intestinal microbial flora. The microbial flora helps to shape the mammalian innate immune system, absorbs nutrients, and plays an intricate role on intestinal development. Microbes and mammals communicate with each other through an array of hormone and hormonelike chemical compounds. These "signals," however, are hijacked by bacterial pathogens, such as enterohemorrhagic Eschrichia coli (EHEC), to activate its virulence genes, colonize the host, and start the disease process. This review explores the cell-to-cell signaling events in the gastrointestinal tract that lead EHEC to regulate its virulence genes in a coordinate manner.
Collapse
Affiliation(s)
- Marcie B Clarke
- Univ. of Texas Southwestern Medical Center, Dept. of Microbiology, 5323 Harry Hines Blvd., Dallas, TX 75390-9048, USA
| | | |
Collapse
|
1429
|
Luyer MD, Buurman WA, Hadfoune M, Speelmans G, Knol J, Jacobs JA, Dejong CHC, Vriesema AJM, Greve JWM. Strain-specific effects of probiotics on gut barrier integrity following hemorrhagic shock. Infect Immun 2005; 73:3686-3692. [PMID: 15908398 PMCID: PMC1111872 DOI: 10.1128/iai.73.6.3686-3692.2005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 01/11/2005] [Accepted: 02/02/2005] [Indexed: 02/08/2023] Open
Abstract
Probiotic therapy modulates the composition of the intestinal flora and inhibits the inflammatory response. These properties may be of benefit in the preservation of gut barrier integrity after injury or stress. In this study, we examined the effect of two Lactobacillus strains selected for their pathogen exclusion properties on intestinal barrier integrity following hemorrhagic shock. Additionally, the responsiveness of the macrophage cell line RAW 264.7 to combined exposure to Lactobacillus DNA or oligodeoxynucleotides containing CpG motifs (CpG-ODN) and endotoxin was assessed by measuring tumor necrosis factor alpha (TNF-alpha) release. Rats were administered lactobacilli (5 x 10(9) CFU) or vehicle for 7 days and were subjected subsequently to hemorrhagic shock by withdrawal of 2.1 ml blood/100 g tissue. Levels of plasma endotoxin, bacterial translocation to distant organs, and filamentous actin (F-actin) in the ileum were determined 24 h later. Rats treated with Lactobacillus rhamnosus showed reduced levels of plasma endotoxin (8 +/- 2 pg/ml versus 24 +/- 4 pg/ml; P = 0.01), bacterial translocation (2 CFU/gram versus 369 CFU/gram; P < 0.01), and disruption of F-actin distribution following hemorrhagic shock compared with nontreated control rats. In contrast, pretreatment with Lactobacillus fermentum had no substantial effect on gut barrier integrity. Interestingly, DNA preparations from both lactobacilli reduced endotoxin-induced TNF-alpha release dose dependently, whereas CpG-ODN increased TNF-alpha release. In conclusion, the pathogen exclusion properties of both Lactobacillus strains and the reduction of endotoxin-induced inflammation by their DNA in vitro are not prerequisites for a beneficial effect of probiotic therapy on gut barrier function following hemorrhagic shock. Although pretreatment with Lactobacillus spp. may be useful to preserve gut barrier integrity following severe hypotension, a thorough assessment of specific strains seems to be essential.
Collapse
Affiliation(s)
- Misha D Luyer
- Department of Surgery, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
1430
|
Abstract
Human listeriosis is caused by the Gram-positive bacterium Listeria monocytogenes. In humans, this pathogen has the ability to cross the intestinal, placental and blood-brain barriers, leading to gastroenteritis, maternofetal infections and meningoencephalitis, respectively. The entry of L. monocytogenes into cultured human epithelial cells is mediated by the interaction of an L. monocytogenes surface protein, internalin, with its human receptor, E-cadherin. The internalin-E-cadherin interaction is species-specific, and relies on the nature of a single amino-acid in the E-cadherin molecule, which is proline in permissive species such as humans, and glutamic acid in non-permissive species such as the mouse. In a transgenic mouse model that expresses human E-cadherin in enterocytes, internalin allows L. monocytogenes to cross the intestinal barrier. Epidemiological evidence also supports a role for internalin in human listeriosis, not only for crossing the intestinal barrier, but also for targeting and crossing the placental and blood-brain barriers. Consistent with these epidemiological data, infection with L. monocytogenes of trophoblastic cell lines, primary trophoblast cultures and human placental villous explants demonstrates that bacterial invasion of the syncytiotrophoblast barrier is mediated by the internalin-E-cadherin interaction, leading to histopathological lesions that mimic those seen in the placentas of women with listeriosis. Thus, the internalin-E-cadherin interaction that plays a key role in the crossing of the intestinal barrier in humans is also exploited by L. monocytogenes to target and cross the placental barrier. Further investigations are currently focusing on the molecular mechanisms by which L. monocytogenes targets and crosses the blood-brain barrier.
Collapse
Affiliation(s)
- M Lecuit
- Inserm U.604, Département de Biologie Cellulaire et Infection, Institut Pasteur and Service des Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Université René-Descartes Paris 5, Paris, France.
| |
Collapse
|
1431
|
Niewold TA, Kerstens HHD, van der Meulen J, Smits MA, Hulst MM. Development of a porcine small intestinal cDNA micro-array: characterization and functional analysis of the response to enterotoxigenic E. coli. Vet Immunol Immunopathol 2005; 105:317-29. [PMID: 15808309 DOI: 10.1016/j.vetimm.2005.02.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The intestine is a complex and dynamic ecosystem, in which nutrients, exogenous compounds and micro-flora interact, and its condition is influenced by the complex interaction between these factors and host genetic elements. Furthermore, interactions of immune cells with the other components of the intestinal mucosa are essential in the defense against pathogens. The outcomes of these complex interactions determine resistance to infectious diseases. The development of genomic tools and techniques allows for analysis of multiple and complex host responses. We have constructed a porcine small intestinal micro-array, based on cDNA from jejunal mucosal scrapings. Material from two developmental distinct stages (4- and 12-week-old pigs) was used in order to assure a reasonably broad representation of mucosal transcripts. The micro-array consists of 3468 cDNAs spotted in quadruplicate. Comparison of the 4-week-old versus 12-week-old pigs revealed a differential expression in at least 300 spots. Furthermore, we report the early gene expression response of pig small intestine jejunal mucosa to infection with enterotoxigenic E. coli (ETEC) using the small intestinal segment perfusion (SISP) technique. A response pattern was found in which a marker for innate defense dominated, demonstrating the strength of this applied technology. Further analysis of these response patterns will contribute to a better understanding of enteric health and disease in pigs. The great similarity between pig and human suggest results from these continuing studies should be applicable for both agricultural and human biomedical purposes.
Collapse
Affiliation(s)
- T A Niewold
- Animal Sciences Group of Wageningen UR, Research Cluster, Animal Physiology and Health, P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
1432
|
Macpherson AJ, Geuking MB, McCoy KD. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 2005; 115:153-62. [PMID: 15885120 PMCID: PMC1782138 DOI: 10.1111/j.1365-2567.2005.02159.x] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 02/11/2005] [Accepted: 02/15/2005] [Indexed: 12/30/2022] Open
Abstract
Animals contain an enormous load of non-pathogenic bacteria in the lower intestine, which exploit an environment with a stable temperature and abundant carbon sources. Our load of bacteria outnumbers our own cells. In order to survive with such a high number of organisms in very close proximity to host tissues the intestinal mucosa and its immune system is highly adapted. Mucosal immune responses are induced by small numbers of live commensal organisms penetrating the Peyer's patches and persisting in dendritic cells (DC). These DC can induce immunoglobulin A+ (IgA+) B cells, which recirculate through the lymph and bloodstream to populate the lamina propria and secrete protective IgA. Because DC loaded with commensal bacteria do not penetrate further than the mesenteric lymph nodes, immune induction to commensals is confined to the mucosa, allowing strong mucosal immune responses to be induced whilst the systemic immune system remains relatively ignorant of these organisms.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Institute of Experimental Immunology, Universitätsspital, Zürich, Switzerland.
| | | | | |
Collapse
|
1433
|
Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 2005; 3:431-8. [PMID: 15821725 DOI: 10.1038/nrmicro1152] [Citation(s) in RCA: 640] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian gut microbiota interact extensively with the host through metabolic exchange and co-metabolism of substrates. Such metabolome-metabolome interactions are poorly understood, but might be implicated in the aetiology of many human diseases. In this paper, we assess the importance of the gut microbiota in influencing the disposition, fate and toxicity of drugs in the host, and conclude that appropriate consideration of individual human gut microbial activities will be a necessary part of future personalized health-care paradigms.
Collapse
Affiliation(s)
- Jeremy K Nicholson
- Biomedical Sciences Division, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK.
| | | | | |
Collapse
|
1434
|
Katayama T, Fujita K, Yamamoto K. Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. J Biosci Bioeng 2005; 99:457-65. [PMID: 16233817 DOI: 10.1263/jbb.99.457] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Accepted: 03/09/2005] [Indexed: 02/05/2023]
Abstract
Bifidobacterium bifidum was found to produce a specific 1,2-alpha-L-fucosidase. Its gene (afc A) has been cloned and the DNA sequence was determined. The Afc A protein consisting of 1959 amino acid residues with a predicted molecular mass of 205 kDa can be divided into three domains; the N-terminal function-unknown domain (576 aa), the catalytic domain (898 aa), and the C-terminal bacterial Ig-like domain (485 aa). The recombinant catalytic domain specifically hydrolyzed the terminal alpha-(1-->2)-fucosidic linkages of various oligosaccharides and sugar chains of glycoproteins. The primary structure of the catalytic domain exhibited no similarity to those of any glycoside hydrolases but showed similarity to those of several hypothetical proteins in a database, which resulted in establishment of a novel glycoside hydrolase family (GH family 95). Several bifidobacteria were found to produce a specific endo-alpha-N-acetylgalactosaminidase, which is the endoglycosidase liberating the O-glycosidically linked galactosyl beta1-->3 N-acetylgalactosamine disaccharide from mucin glycoprotein. The molecular cloning of endo-alpha-N-acetylgalactosaminidase was carried out on Bifidobacterium longum based on the information in the database. The gene was found to comprise 1966 amino acid residues with a predicted molecular mass of 210 kDa. The recombinant protein released galactosyl beta1-->3 N-acetylgalactosamine disaccharide from natural glycoproteins. This enzyme of B. longum is believed to be involved in the catabolism of oligosaccharide of intestinal mucin glycoproteins. Both 1,2-alpha-L-fucosidase and endo-alpha-N-acetylgalactosaminidase are novel and specific enzymes acting on oligosaccharides that exist mainly in mucin glycoproteins. Thus, it is reasonable to conclude that bifidobacteria produce these enzymes to preferentially utilize the oligosaccharides present in the intestinal ecosystem.
Collapse
Affiliation(s)
- Takane Katayama
- Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
1435
|
Fenner L, Roux V, Mallet MN, Raoult D. Bacteroides massiliensis sp. nov., isolated from blood culture of a newborn. Int J Syst Evol Microbiol 2005; 55:1335-1337. [PMID: 15879278 DOI: 10.1099/ijs.0.63350-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-negative anaerobic rods were isolated from blood culture of a healthy baby born at term. Based on phylogenetic analysis and specific phenotypic characteristics, this strain was included within the Bacteroides cluster. The novel bile-resistant anaerobic species was designated Bacteroides massiliensis and it has 92·8 % 16S rRNA similarity to Bacteroides vulgatus and a DNA G+C content of 49 mol%. The major cellular fatty acid is anteiso-branched C15 : 0. The type strain of B. massiliensis sp. nov. is B84634T (=CIP 107942T=CCUG 48901T).
Collapse
MESH Headings
- Anaerobiosis
- Bacterial Typing Techniques
- Bacteroides/classification
- Bacteroides/isolation & purification
- Bacteroides Infections/microbiology
- Base Composition
- Blood/microbiology
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Fatty Acids/analysis
- Fatty Acids/isolation & purification
- Genes, Bacterial
- Genes, rRNA
- Gentian Violet
- Humans
- Infant, Newborn
- Molecular Sequence Data
- Phenazines
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Lukas Fenner
- Unité des Rickettsies, CNRS UPRESA 6020, Faculté de Médecine, Université de la Méditerrannée, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Véronique Roux
- Laboratoire de Bactériologie - Virologie, Hôpital de la Timone, CNRS UMR 6020, IFR48, 264 rue Saint-Pierre, 13385 Marseille, Cedex 05, France
| | - Marie-Noëlle Mallet
- Laboratoire de Bactériologie - Virologie, Hôpital de la Timone, CNRS UMR 6020, IFR48, 264 rue Saint-Pierre, 13385 Marseille, Cedex 05, France
| | - Didier Raoult
- Laboratoire de Bactériologie - Virologie, Hôpital de la Timone, CNRS UMR 6020, IFR48, 264 rue Saint-Pierre, 13385 Marseille, Cedex 05, France
| |
Collapse
|
1436
|
Epstein O. Green Medicine. Med Chir Trans 2005; 98:203-5. [PMID: 15863763 PMCID: PMC1129037 DOI: 10.1177/014107680509800508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Owen Epstein
- Centre for Gastroenterology, Royal Free Hospital NHS Trust, London, UK.
| |
Collapse
|
1437
|
Powrie F. Immune regulation in the intestine: a balancing act between effector and regulatory T cell responses. Ann N Y Acad Sci 2005; 1029:132-41. [PMID: 15681752 DOI: 10.1196/annals.1309.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The immune system in the intestine must respond rapidly to invading pathogens without mounting sustained effector cell responses to the indigenous commensal bacteria. Results from this laboratory using the T cell transfer model of colitis suggest that specialized populations of regulatory T cells control the immune response in the intestine. Regulatory T (Tr) cell activity is enriched within the naturally arising CD4(+) CD25(+) Tr subset that has been shown to prevent a number of inflammatory diseases. CD4(+) CD25(+) Tr cells control intestinal inflammation induced by both innate and adaptive immune responses via IL-10- and TGF-beta-dependent mechanisms. Recent results have shown that CD4(+) CD25(+) Tr cells can cure established colitis, suggesting their utility for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Fiona Powrie
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
1438
|
Macpherson AJ, Uhr T. Compartmentalization of the mucosal immune responses to commensal intestinal bacteria. Ann N Y Acad Sci 2005; 1029:36-43. [PMID: 15681741 DOI: 10.1196/annals.1309.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammals coexist with a luxuriant load of bacteria in the lower intestine (up to 10(12) organisms/g of intestinal contents). Although these bacteria do not cause disease if they remain within the intestinal lumen, they contain abundant immunostimulatory molecules that trigger immunopathology if the bacteria penetrate the body in large numbers. The physical barrier consists only of a single epithelial cell layer with overlying mucus, but comparisons between animals kept in germ-free conditions and those colonized with bacteria show that bacteria induce both mucosal B cells and some T cell subsets; these adaptations are assumed to function as an immune barrier against bacterial penetration, but the mechanisms are poorly understood. In mice with normal intestinal flora, but no pathogens, there is a secretory IgA response against bacterial membrane proteins and other cell wall components. Whereas induction of IgA against cholera toxin is highly T help dependent, secretory IgA against commensal bacteria is induced by both T independent and T dependent pathways. When animals are kept in clean conditions and free of pathogens, there is still a profound intestinal secretory IgA response against the commensal intestinal flora. However, T dependent serum IgG responses against commensal bacteria do not occur in immunocompetent animals unless they are deliberately injected intravenously with 10(4) to 10(6) organisms. In other words, unmanipulated pathogen-free mice are systemically ignorant but not tolerant of their commensal flora despite the mucosal immune response to these organisms. In mice that are challenged with intestinal doses of commensal bacteria, small numbers of commensals penetrate the epithelial cell layer and survive within dendritic cells (DC). These commensal-loaded DC induce IgA, but because they are confined within the mucosal immune system by the mesenteric lymph nodes, they do not induce systemic immune responses. In this way the mucosal immune responses to commensals are geographically and functionally separated from systemic immunity.
Collapse
Affiliation(s)
- Andrew J Macpherson
- Institut für Experimentelle Immunologie, Universitätsspital Zürich, Schmelzbergstrasse, 12, CH8091 Zürich, Switzerland.
| | | |
Collapse
|
1439
|
Eberl G. Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat Rev Immunol 2005; 5:413-20. [PMID: 15841100 DOI: 10.1038/nri1600] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The intestinal immune system faces an extraordinary challenge from the large numbers of commensal bacteria and potential pathogens that are restrained by only a single layer of epithelial cells. Here, I discuss evidence that the intestinal immune system develops an extensive network of inducible, reversible lymphoid tissues that contributes to the vital equilibrium between the gut and the bacterial flora. I propose that this network is induced by cryptopatches, which are small clusters of dendritic cells and lymphoid cells that are identical to fetal inducers of lymph-node and Peyer's-patch development.
Collapse
Affiliation(s)
- Gérard Eberl
- Laboratory of Lymphoid Tissue Development, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris, France.
| |
Collapse
|
1440
|
Friis LM, Pin C, Pearson BM, Wells JM. In vitro cell culture methods for investigating Campylobacter invasion mechanisms. J Microbiol Methods 2005; 61:145-60. [PMID: 15722140 DOI: 10.1016/j.mimet.2004.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/04/2004] [Accepted: 12/06/2004] [Indexed: 01/24/2023]
Abstract
Studying the mechanisms of Campylobacter pathogenesis is complicated by the lack of simple animal models that mimic the disease seen in humans. In vitro cell culture methods provide a useful alternative to investigate the interactions between Campylobacter and the host epithelium that occur during infection. In the genomics era there is an increasing use of in vitro cell culture techniques to interrogate the potential role of different genes in pathogenesis. The aim of this review was to discuss the suitability and limitations of the various experimental approaches that might be adopted. We review current knowledge concerning the influence of cell-specific as well as bacterial factors required for Campylobacter invasion such as flagella and secreted proteins. The involvement and effects of phase variation on the results of invasion studies in cell culture emphasise the need to verify observed strain variations. We present the use of a mathematical Invasion Success Model to analyse Campylobacter invasion and show that it can be used to derive three strain dependent characteristics Imax, k, and I0. Even by combining data from independent experiments the Invasion Success Model can be used to statistically compare Campylobacter strains for their invasion of epithelial cells. Recommendations are given for the adoption of standard assay parameters and analytical methods such as the Invasion Success Model in order to facilitate comparison of data generated in different laboratories.
Collapse
Affiliation(s)
- L M Friis
- Institute of Food Research, Colney Lane, Norwich, NR4 7UA, United Kingdom
| | | | | | | |
Collapse
|
1441
|
Tanabe H, Ayabe T, Bainbridge B, Guina T, Ernst RK, Darveau RP, Miller SI, Ouellette AJ. Mouse paneth cell secretory responses to cell surface glycolipids of virulent and attenuated pathogenic bacteria. Infect Immun 2005; 73:2312-20. [PMID: 15784576 PMCID: PMC1087394 DOI: 10.1128/iai.73.4.2312-2320.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse Paneth cells respond to bacteria and bacterial cell surface antigens by discharging secretory granules into the lumen of small intestinal crypts (T. Ayabe et al., Nat. Immunol. 1:113-118, 2000). To investigate mechanisms regulating these responses, purified surface glycolipid molecules with known acyl chain modifications and attenuated properties were tested for the ability to stimulate Paneth cell secretion. The antigens included lipopolysaccharide (LPS) from wild-type and msbB-null Escherichia coli and phoP-null and phoP-constitutive Salmonella enterica serovar Typhimurium strains, as well as LPS, lipid A, and lipoteichoic acid from Pseudomonas aeruginosa and Listeria monocytogenes grown in Mg2+-limited media. Measurements of total secreted protein, secreted lysozyme, and the bactericidal peptide activities of collected secretions showed that the purified antigens elicited similar secretory responses from Paneth cells in mouse crypts ex vivo, regardless of glycolipid acyl chain modification. Despite their impaired Tlr4 pathway, Paneth cells in ex vivo C3H/HeJ mouse crypts released equivalent amounts of bactericidal peptide activity in response to purified bacterial antigens, including lipid A. Thus, mouse Paneth cells respond equivalently to purified bacterial cell envelope glycolipids, regardless of functional Tlr4, the structural properties of glycolipid acyl chains, or their association with virulence in humans.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Department of Pathology, School of Medicine, College of Health Sciences, University of California, Irvine, CA 92697-4800, USA
| | | | | | | | | | | | | | | |
Collapse
|
1442
|
Tlaskalová-Hogenová H, Stepánková R, Hudcovic T, Tucková L, Cukrowska B, Lodinová-Zádníková R, Kozáková H, Rossmann P, Bártová J, Sokol D, Funda DP, Borovská D, Reháková Z, Sinkora J, Hofman J, Drastich P, Kokesová A. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunol Lett 2005; 93:97-108. [PMID: 15158604 DOI: 10.1016/j.imlet.2004.02.005] [Citation(s) in RCA: 478] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 01/11/2004] [Accepted: 02/18/2004] [Indexed: 12/11/2022]
Abstract
Commensal microflora (normal microflora, indigenous microbiota) consists of those micro-organisms, which are present on body surfaces covered by epithelial cells and are exposed to the external environment (gastrointestinal and respiratory tract, vagina, skin, etc.). The number of bacteria colonising mucosal and skin surfaces exceeds the number of cells forming human body. Commensal bacteria co-evolved with their hosts, however, under specific conditions they are able to overcome protective host responses and exert pathologic effects. Resident bacteria form complex ecosystems, whose diversity is enormous. The most abundant microflora is present in the distal parts of the gut; the majority of the intestinal bacteria are Gram-negative anaerobes. More than 50% of intestinal bacteria cannot be cultured by conventional microbiological techniques. Molecular biological methods help in analysing the structural and functional complexity of the microflora and in identifying its components. Resident microflora contains a number of components able to activate innate and adaptive immunity. Unlimited immune activation in response to signals from commensal bacteria could pose the risk of inflammation; immune responses to mucosal microbiota therefore require a precise regulatory control. The mucosal immune system has developed specialised regulatory, anti-inflammatory mechanisms for eliminating or tolerating non-dangerous, food and airborne antigens and commensal micro-organisms (oral, mucosal tolerance). However, at the same time the mucosal immune system must provide local defense mechanisms against environmental threats (e.g. invading pathogens). This important requirement is fulfilled by several mechanisms of mucosal immunity: strongly developed innate defense mechanisms ensuring appropriate function of the mucosal barrier, existence of unique types of lymphocytes and their products, transport of polymeric immunoglobulins through epithelial cells into secretions (sIgA) and migration and homing of cells originating from the mucosal organised tissues in mucosae and exocrine glands. The important role of commensal bacteria in development of optimally functioning mucosal immune system was demonstrated in germ-free animals (using gnotobiological techniques). Involvement of commensal microflora and its components with strong immunoactivating properties (e.g. LPS, peptidoglycans, superantigens, bacterial DNA, Hsp) in etiopathogenetic mechanism of various complex, multifactorial and multigenic diseases, including inflammatory bowel diseases, periodontal disease, rheumatoid arthritis, atherosclerosis, allergy, multiorgan failure, colon cancer has been recently suggested. Animal models of human diseases reared in defined gnotobiotic conditions are helping to elucidate the aetiology of these frequent disorders. An improved understanding of commensal bacteria-host interactions employing germ-free animal models with selective colonisation strategies combined with modern molecular techniques could bring new insights into the mechanisms of mucosal immunity and also into pathogenetic mechanisms of several infectious, inflammatory, autoimmune and neoplastic diseases. Regulation of microflora composition (e.g. by probiotics and prebiotics) offers the possibility to influence the development of mucosal and systemic immunity but it can play a role also in prevention and treatment of some diseases.
Collapse
Affiliation(s)
- Helena Tlaskalová-Hogenová
- Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1443
|
Edalat M, Mannervik B, Axelsson LG. Selective expression of detoxifying glutathione transferases in mouse colon: effect of experimental colitis and the presence of bacteria. Histochem Cell Biol 2005; 122:151-9. [PMID: 15309552 DOI: 10.1007/s00418-004-0688-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glutathione transferases (GSTs) play a central role in the cellular defense against harmful endogenous compounds and xenobiotics in mouse and man. The gastrointestinal channel is constantly exposed to bacteria, bacterial products, and xenobiotics. In the present study the distribution of alpha, mu, and pi class GSTs was examined immunohistologically in the colon of conventional and germ-free (GF) mice subjected to experimental colitis. The tissues samples were from conventional mice with and without colitis induced by dextran sulfate sodium (DSS); GF mice treated with DSS or carrageenan; and GF mice inoculated with normal mouse bacterial flora as well as with Lactobacillus GG. In conventional as well as in GF mice the mu and pi class GSTs showed reduced intestinal expression when colitis was induced. In con-rast, the level of GSTs reacting with antibodies directed against the alpha class, in particular mGST A4-4, was elevated after induction of inflammation. Of special interest is mGST A4-4 because of its high catalytic activity with toxic products of lipid peroxidation. In the colon of conventionalized GF mice that were given mouse intestinal flora, the mGST A4-4 expression was increased with time for several weeks, but then showed a decrease to a normal level. Additionally, the inoculation of GF mice with Lactobacillus GG induced all the intestinal GSTs studied.
Collapse
Affiliation(s)
- Maryam Edalat
- Department of Biochemistry, Biomedical Center, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | | | | |
Collapse
|
1444
|
Bower JJ, Shi X. Environmental health research in the post-genome era: new fields, new challenges, and new opportunities. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2005; 8:71-94. [PMID: 15830463 DOI: 10.1080/10937400590909059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The human genome sequence provides researchers with a genetic framework to eventually understand the relationships of gene-environment interactions. This wealth of information has led to the birth of several related areas of research, including proteomics, functional genomics, pharmacogenomics, and toxicogenomics. Developing techniques such as DNA/protein microarrays, small-interfering RNA (siRNA) applications, two-dimensional gel electrophoresis, and mass spectrometry in conjunction with advanced analysis software and the availability of Internet databases offers a powerful set of tools to investigate an individual's response to specific stimuli. This review summarizes these emerging scientific fields and techniques focusing specifically on their applications to the complexities of gene-environment interactions and their potential role in environ-mental biosecurity.
Collapse
Affiliation(s)
- Jacquelyn J Bower
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | | |
Collapse
|
1445
|
Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2005; 54:1469-1476. [PMID: 15388697 DOI: 10.1099/ijs.0.02873-0] [Citation(s) in RCA: 1446] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diversity of mucin-degrading bacteria in the human intestine was investigated by combining culture and 16S rRNA-dependent approaches. A dominant bacterium, strain MucT, was isolated by dilution to extinction of faeces in anaerobic medium containing gastric mucin as the sole carbon and nitrogen source. A pure culture was obtained using the anaerobic soft agar technique. Strain MucT was a Gram-negative, strictly anaerobic, non-motile, non-spore-forming, oval-shaped bacterium that could grow singly and in pairs. When grown on mucin medium, cells produced a capsule and were found to aggregate. Strain MucT could grow on a limited number of sugars, including N-acetylglucosamine, N-acetylgalactosamine and glucose, but only when a protein source was provided and with a lower growth rate and final density than on mucin. The G + C content of DNA from strain MucT was 47.6 mol%. 16S rRNA gene sequence analysis revealed that the isolate was part of the division Verrucomicrobia. The closest described relative of strain MucT was Verrucomicrobium spinosum (92 % sequence similarity). Remarkably, the 16S rRNA gene sequence of strain MucT showed 99 % similarity to three uncultured colonic bacteria. According to the data obtained in this work, strain MucT represents a novel bacterium belonging to a new genus in subdivision 1 of the Verrucomicrobia; the name Akkermansia muciniphila gen. nov., sp. nov. is proposed; the type strain is MucT (= ATCC BAA-835T = CIP 107961T).
Collapse
MESH Headings
- Acetylgalactosamine/metabolism
- Acetylglucosamine/metabolism
- Bacterial Capsules/biosynthesis
- Bacterial Capsules/ultrastructure
- Base Composition
- Carbon
- Culture Media/chemistry
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Feces/microbiology
- Gastric Mucins/metabolism
- Genes, rRNA/genetics
- Glucose/metabolism
- Gram-Negative Anaerobic Bacteria/classification
- Gram-Negative Anaerobic Bacteria/genetics
- Gram-Negative Anaerobic Bacteria/isolation & purification
- Gram-Negative Anaerobic Bacteria/physiology
- Gram-Negative Anaerobic Bacteria/ultrastructure
- Humans
- Intestines/microbiology
- Molecular Sequence Data
- Movement
- Nitrogen/metabolism
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Spores, Bacterial/cytology
Collapse
Affiliation(s)
- Muriel Derrien
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands
| | - Elaine E Vaughan
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands
| |
Collapse
|
1446
|
Treiner E, Duban L, Moura IC, Hansen T, Gilfillan S, Lantz O. Mucosal-associated invariant T (MAIT) cells: an evolutionarily conserved T cell subset. Microbes Infect 2005; 7:552-9. [PMID: 15777741 DOI: 10.1016/j.micinf.2004.12.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 12/14/2004] [Indexed: 01/10/2023]
Abstract
Besides mainstream TCRalphabeta T cells harboring a very diverse repertoire, two subsets display an evolutionarily conserved invariant repertoire. This striking conservation indicates important and unique functions. CD1d-restricted NK-T cells expressing an invariant Valpha14 TCRalpha chain have been implicated in microbial and tumor responses as well as in auto-immunity. In this review, we describe the other subset, which bears the canonical hValpha7.2/mValpha19-Jalpha33 TCRalpha chain paired with a restricted set of Vbeta segments. These invariant T cells are present in mice, humans and cattle. They are preferentially located in the gut lamina propria (LP) of humans and mice and are therefore called mucosal-associated invariant T (MAIT) cells. Selection/expansion of this population requires B lymphocytes expressing MR1, a monomorphic major histocompatibility complex class I-related molecule that is also strikingly conserved in diverse mammalian species. MAIT cells are not present in germ-free mice, indicating that commensal flora is required for their expansion in the gut LP. The nature of the ligand and the putative functions of these MAIT cells are discussed.
Collapse
Affiliation(s)
- Emmanuel Treiner
- Laboratoire d'Immunologie and Inserm U520, Institut Curie, 26, rue d'Ulm, 70005 Paris, France
| | | | | | | | | | | |
Collapse
|
1447
|
Furet JP, Quénée P, Tailliez P. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int J Food Microbiol 2005; 97:197-207. [PMID: 15541806 DOI: 10.1016/j.ijfoodmicro.2004.04.020] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 03/15/2004] [Accepted: 04/22/2004] [Indexed: 12/21/2022]
Abstract
Real-time quantitative PCR assays were developed for the absolute quantification of lactic acid bacteria (LAB) (Streptococcus thermophilus, Lactobacillus delbrueckii, L. casei, L. paracasei, L. rhamnosus, L. acidophilus and L. johnsonii) in fermented milk products. The results of molecular quantification and classic bacterial enumeration did not differ significantly with respect to S. thermophilus and the species of the L. casei group which were detected in the six commercial fermented products tested, thus showing that DNA extraction was efficient and that genomic DNA solutions were free of PCR inhibitors. For L. delbrueckii, the results of bacterial enumeration were generally lower by a factor 10 to 100 than those of PCR quantification, suggesting a loss of viability during storage of the dairy products at 1-8 degrees C for most of the strains in this species. Real-time quantitative assays enabled identification of the species of lactic acid bacterial strains initially present in commercial fermented milk products and their accurate quantification with a detection threshold of 10(3) cells per ml of product.
Collapse
Affiliation(s)
- Jean-Pierre Furet
- Institut National de la Recherche Agronomique, Unité de Recherches Laitières et Génétique Appliquée, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | | | | |
Collapse
|
1448
|
Abstract
Asthma and eczema (atopic dermatitis) are the most common chronic diseases of childhood. These diseases are characterized by the production of high levels of immunoglobulin E in response to common allergens. Their development depends on both genetic and environmental factors. Over the past few years, several genes and genetic loci that are associated with increased susceptibility to asthma and atopic dermatitis have been described. Many of these genes are expressed in the mucosa and epidermis, indicating that events at epithelial-cell surfaces might be driving disease processes. This review describes the mechanisms of innate epithelial immunity and the role of microbial factors in providing protection from disease development. Understanding events at the epithelial-cell surface might provide new insights for the development of new treatments for inflammatory epithelial disease.
Collapse
Affiliation(s)
- William Cookson
- Human Genetics, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
1449
|
Theodoropoulos G, Hicks SJ, Corfield AP, Miller BG, Kapel CMO, Trivizaki M, Balaskas C, Petrakos G, Carrington SD. Trichinella spiralis: enteric mucin-related response to experimental infection in conventional and SPF pigs. Exp Parasitol 2005; 109:63-71. [PMID: 15687012 DOI: 10.1016/j.exppara.2004.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 11/15/2004] [Accepted: 11/19/2004] [Indexed: 11/29/2022]
Abstract
Duodenal and jejunal responses to infection with Trichinella spiralis were compared in weaned piglets with a "normal dirty" vs. a "clean SPF" gut flora. Histochemical staining of neutral, acidic, sialylated, and sulphated residues was used to assess biosynthetic responses in mucin-secreting goblet cells. Peanut and Ulex lectins were also used to assess responses within the intestinal glycocalyx. Histomorphometric analysis was undertaken to evaluate the distribution and staining patterns of goblet cells in villi and crypts. Our analysis showed that stored mucin within goblet cells increased more in the infected conventional animals than in the infected SPF group. This was accompanied by changes in the pattern of sulphation and sialylation in the duodenum and jejunum. The thickness of the glycocalyx was increased in both duodenum and jejunum in both infected groups. However, this effect was greater for the infected SPF animals than the infected conventional animals. No significant differences were observed between uninfected conventional and uninfected SPF pigs.
Collapse
Affiliation(s)
- G Theodoropoulos
- Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science, Agricultural University of Athens, 75 Iera Odos, Votanikos, 11855 Athens, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
1450
|
Development and Function of Organized Gut-Associated Lymphoid Tissues. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|