101
|
Abstract
BACKGROUND Casirivimab and imdevimab are non-competing monoclonal antibodies that bind to two different sites on the receptor binding domain of the SARS-CoV-2 spike glycoprotein, blocking viral entry into host cells. We aimed to evaluate the efficacy and safety of casirivimab and imdevimab administered in combination in patients admitted to hospital with COVID-19. METHODS RECOVERY is a randomised, controlled, open-label platform trial comparing several possible treatments with usual care in patients admitted to hospital with COVID-19. 127 UK hospitals took part in the evaluation of casirivimab and imdevimab. Eligible participants were any patients aged at least 12 years admitted to hospital with clinically suspected or laboratory-confirmed SARS-CoV-2 infection. Participants were randomly assigned (1:1) to either usual standard of care alone or usual care plus casirivimab 4 g and imdevimab 4 g administered together in a single intravenous infusion. Investigators and data assessors were masked to analyses of the outcome data during the trial. The primary outcome was 28-day all-cause mortality assessed by intention to treat, first only in patients without detectable antibodies to SARS-CoV-2 infection at randomisation (ie, those who were seronegative) and then in the overall population. Safety was assessed in all participants who received casirivimab and imdevimab. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). FINDINGS Between Sept 18, 2020, and May 22, 2021, 9785 patients enrolled in RECOVERY were eligible for casirivimab and imdevimab, of which 4839 were randomly assigned to casirivimab and imdevimab plus usual care and 4946 to usual care alone. 3153 (32%) of 9785 patients were seronegative, 5272 (54%) were seropositive, and 1360 (14%) had unknown baseline antibody status. 812 (8%) patients were known to have received at least one dose of a SARS-CoV-2 vaccine. In the primary efficacy population of seronegative patients, 396 (24%) of 1633 patients allocated to casirivimab and imdevimab versus 452 (30%) of 1520 patients allocated to usual care died within 28 days (rate ratio [RR] 0·79, 95% CI 0·69-0·91; p=0·0009). In an analysis of all randomly assigned patients (regardless of baseline antibody status), 943 (19%) of 4839 patients allocated to casirivimab and imdevimab versus 1029 (21%) of 4946 patients allocated to usual care died within 28 days (RR 0·94, 95% CI 0·86-1·02; p=0·14). The proportional effect of casirivimab and imdevimab on mortality differed significantly between seropositive and seronegative patients (p value for heterogeneity=0·002). There were no deaths attributed to the treatment, or meaningful between-group differences in the pre-specified safety outcomes of cause-specific mortality, cardiac arrhythmia, thrombosis, or major bleeding events. Serious adverse reactions reported in seven (<1%) participants were believed by the local investigator to be related to treatment with casirivimab and imdevimab. INTERPRETATION In patients admitted to hospital with COVID-19, the monoclonal antibody combination of casirivimab and imdevimab reduced 28-day mortality in patients who were seronegative (and therefore had not mounted their own humoral immune response) at baseline but not in those who were seropositive at baseline. FUNDING UK Research and Innovation (Medical Research Council) and National Institute of Health Research.
Collapse
|
102
|
Di Germanio C, Simmons G, Thorbrogger C, Martinelli R, Stone M, Gniadek T, Busch MP. Vaccination of COVID-19 Convalescent Plasma Donors Increases Binding and Neutralizing Antibodies Against SARS-CoV-2 Variants. Transfusion 2022; 62:563-569. [PMID: 35129839 PMCID: PMC9115457 DOI: 10.1111/trf.16823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
Background COVID‐19 convalescent plasma (CCP) was widely used as passive immunotherapy during the first waves of SARS‐CoV‐2 infection in the US. However, based on observational studies and randomized controlled trials, the beneficial effects of CCP were limited, and its use was virtually discontinued early in 2021, in concurrence with increased vaccination rates and availability of monoclonal antibody (mAb) therapeutics. Yet, as new variants of the SARS‐CoV‐2 spread, interest in CCP derived from vaccine‐boosted CCP donors is resurging. The effect of vaccination of previously infected CCP donors on antibodies against rapidly spreading variants is still under investigation. Study design/methods In this study, paired‐samples from 11 CCP donors collected before and after vaccination was tested to measure binding antibody levels and neutralization activity against the ancestral Wuhan‐Hu‐1 and SARS‐CoV‐2 variants (Wuhan‐Hu‐1 with D614G, alpha, beta, gamma, delta, epsilon) on the Ortho Vitros Spike Total Ig and IgG assays, the MSD V‐PLEX SARS‐CoV‐2 arrays for IgG binding and ACE2 inhibition, and variant‐specific Spike Reporter Viral Particle Neutralization (RVPN) assays. Results/findings Binding and neutralizing antibodies were significantly boosted by vaccination, with several logs higher neutralization for all the variants tested post‐vaccination compared to the pre‐vaccination samples, with no difference found among the individual variants. Discussion Vaccination of previously infected individuals boosts antibodies including neutralizing activity against all SARS‐CoV‐2 variants.
Collapse
Affiliation(s)
- Clara Di Germanio
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Thomas Gniadek
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL
| | - Michael P Busch
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
103
|
Salasc F, Lahlali T, Laurent E, Rosa-Calatrava M, Pizzorno A. Treatments for COVID-19: Lessons from 2020 and new therapeutic options. Curr Opin Pharmacol 2022; 62:43-59. [PMID: 34915400 PMCID: PMC8598952 DOI: 10.1016/j.coph.2021.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023]
Abstract
To face the COVID-19 pandemic, prophylactic vaccines have been developed in record time, but vaccine coverage is still limited, accessibility is not equitable worldwide, and the vaccines are not fully effective against emerging variants. Therefore, therapeutic treatments are urgently needed to control the pandemic and treat vulnerable populations, but despite all efforts made, options remain scarce. However, the knowledge gained during 2020 constitutes an invaluable platform from which to build future therapies. In this review, we highlight the main drug repurposing strategies and achievements made over the first 18 months of the pandemic, but also discuss the antivirals, immunomodulators and drug combinations that could be used in the near future to cure COVID-19.
Collapse
Affiliation(s)
- Fanny Salasc
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France; International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, QC, G1V 4G2, Québec, Canada
| | - Thomas Lahlali
- Signia Therapeutics, 60 Avenue Rockefeller, 69008, Lyon, France
| | - Emilie Laurent
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France; International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, QC, G1V 4G2, Québec, Canada
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008, Lyon, France; International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, QC, G1V 4G2, Québec, Canada.
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; International Associated Laboratory RespiVir (LIA VirPath-LVMC France-Québec), Université Laval, QC, G1V 4G2, Québec, Canada.
| |
Collapse
|
104
|
Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect 2022; 28:202-221. [PMID: 34715347 PMCID: PMC8548286 DOI: 10.1016/j.cmi.2021.10.005] [Citation(s) in RCA: 600] [Impact Index Per Article: 200.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Vaccines are critical cost-effective tools to control the coronavirus disease 2019 (COVID-19) pandemic. However, the emergence of variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may threaten the global impact of mass vaccination campaigns. AIMS The objective of this study was to provide an up-to-date comparative analysis of the characteristics, adverse events, efficacy, effectiveness and impact of the variants of concern for 19 COVID-19 vaccines. SOURCES References for this review were identified through searches of PubMed, Google Scholar, BioRxiv, MedRxiv, regulatory drug agencies and pharmaceutical companies' websites up to 22nd September 2021. CONTENT Overall, all COVID-19 vaccines had a high efficacy against the original strain and the variants of concern, and were well tolerated. BNT162b2, mRNA-1273 and Sputnik V after two doses had the highest efficacy (>90%) in preventing symptomatic cases in phase III trials. mRNA vaccines, AZD1222, and CoronaVac were effective in preventing symptomatic COVID-19 and severe infections against Alpha, Beta, Gamma or Delta variants. Regarding observational real-life data, full immunization with mRNA vaccines and AZD1222 seems to effectively prevent SARS-CoV-2 infection against the original strain and Alpha and Beta variants but with reduced effectiveness against the Delta strain. A decline in infection protection was observed at 6 months for BNT162b2 and AZD1222. Serious adverse event rates were rare for mRNA vaccines-anaphylaxis 2.5-4.7 cases per million doses, myocarditis 3.5 cases per million doses-and were similarly rare for all other vaccines. Prices for the different vaccines varied from $2.15 to $29.75 per dose. IMPLICATIONS All vaccines appear to be safe and effective tools to prevent severe COVID-19, hospitalization, and death against all variants of concern, but the quality of evidence greatly varies depending on the vaccines considered. Questions remain regarding a booster dose and waning immunity, the duration of immunity, and heterologous vaccination. The benefits of COVID-19 vaccination outweigh the risks, despite rare serious adverse effects.
Collapse
Affiliation(s)
- Thibault Fiolet
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussy, 'Exposome and Heredity' team, CESP UMR1018, Villejuif, France.
| | - Yousra Kherabi
- Université de Paris, IAME, INSERM, Paris, France; Infectious and Tropical Diseases Department, Bichat-Claude Bernard Hospital, AP-HP, Paris, France
| | - Conor-James MacDonald
- Paris-Saclay University, UVSQ, INSERM, Gustave Roussy, 'Exposome and Heredity' team, CESP UMR1018, Villejuif, France
| | - Jade Ghosn
- Université de Paris, IAME, INSERM, Paris, France; Infectious and Tropical Diseases Department, Bichat-Claude Bernard Hospital, AP-HP, Paris, France
| | - Nathan Peiffer-Smadja
- Université de Paris, IAME, INSERM, Paris, France; Infectious and Tropical Diseases Department, Bichat-Claude Bernard Hospital, AP-HP, Paris, France; National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College, London, UK
| |
Collapse
|
105
|
Hamady A, Lee J, Loboda ZA. Waning antibody responses in COVID-19: what can we learn from the analysis of other coronaviruses? Infection 2022; 50:11-25. [PMID: 34324165 PMCID: PMC8319587 DOI: 10.1007/s15010-021-01664-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The coronavirus disease 2019 (COVID-19), caused by the novel betacoronavirus severe acute respiratory syndrome 2 (SARS-CoV-2), was declared a pandemic in March 2020. Due to the continuing surge in incidence and mortality globally, determining whether protective, long-term immunity develops after initial infection or vaccination has become critical. METHODS/RESULTS In this narrative review, we evaluate the latest understanding of antibody-mediated immunity to SARS-CoV-2 and to other coronaviruses (SARS-CoV, Middle East respiratory syndrome coronavirus and the four endemic human coronaviruses) in order to predict the consequences of antibody waning on long-term immunity against SARS-CoV-2. We summarise their antibody dynamics, including the potential effects of cross-reactivity and antibody waning on vaccination and other public health strategies. At present, based on our comparison with other coronaviruses we estimate that natural antibody-mediated protection for SARS-CoV-2 is likely to last for 1-2 years and therefore, if vaccine-induced antibodies follow a similar course, booster doses may be required. However, other factors such as memory B- and T-cells and new viral strains will also affect the duration of both natural and vaccine-mediated immunity. CONCLUSION Overall, antibody titres required for protection are yet to be established and inaccuracies of serological methods may be affecting this. We expect that with standardisation of serological testing and studies with longer follow-up, the implications of antibody waning will become clearer.
Collapse
Affiliation(s)
- Ali Hamady
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - JinJu Lee
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Zuzanna A Loboda
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
106
|
da Silva SJR, de Lima SC, da Silva RC, Kohl A, Pena L. Viral Load in COVID-19 Patients: Implications for Prognosis and Vaccine Efficacy in the Context of Emerging SARS-CoV-2 Variants. Front Med (Lausanne) 2022; 8:836826. [PMID: 35174189 PMCID: PMC8841511 DOI: 10.3389/fmed.2021.836826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The worldwide spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an unprecedented public health crisis in the 21st century. As the pandemic evolves, the emergence of SARS-CoV-2 has been characterized by the emergence of new variants of concern (VOCs), which resulted in a catastrophic impact on SARS-CoV-2 infection. In light of this, research groups around the world are unraveling key aspects of the associated illness, coronavirus disease 2019 (COVID-19). A cumulative body of data has indicated that the SARS-CoV-2 viral load may be a determinant of the COVID-19 severity. Here we summarize the main characteristics of the emerging variants of SARS-CoV-2, discussing their impact on viral transmissibility, viral load, disease severity, vaccine breakthrough, and lethality among COVID-19 patients. We also provide a rundown of the rapidly expanding scientific evidence from clinical studies and animal models that indicate how viral load could be linked to COVID-19 prognosis and vaccine efficacy among vaccinated individuals, highlighting the differences compared to unvaccinated individuals.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Suelen Cristina de Lima
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Ronaldo Celerino da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| |
Collapse
|
107
|
Chen Y, Yang WH, Chen HF, Huang LM, Gao JY, Lin CW, Wang YC, Yang CS, Liu YL, Hou MH, Tsai CL, Chou YZ, Huang BY, Hung CF, Hung YL, Wang WJ, Su WC, Kumar V, Wu YC, Chao SW, Chang CS, Chen JS, Chiang YP, Cho DY, Jeng LB, Tsai CH, Hung MC. Tafenoquine and its derivatives as inhibitors for the severe acute respiratory syndrome coronavirus 2. J Biol Chem 2022; 298:101658. [PMID: 35101449 PMCID: PMC8800562 DOI: 10.1016/j.jbc.2022.101658] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139–144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.
Collapse
Affiliation(s)
- Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan; Drug Development Center, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Wen-Hao Yang
- Drug Development Center, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Li-Min Huang
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Yan Gao
- Drug Development Center, China Medical University, Taichung, Taiwan; School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yu-Chuan Wang
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Chia-Shin Yang
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yi-Liang Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Hui Hou
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Chia-Ling Tsai
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Yi-Zhen Chou
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Bao-Yue Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chian-Fang Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Lin Hung
- Program of Digital Health Innovation, China Medical University, Taichung, Taiwan
| | - Wei-Jan Wang
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan; Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Vathan Kumar
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Yu-Chieh Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shih-Wei Chao
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Chih-Shiang Chang
- Drug Development Center, China Medical University, Taichung, Taiwan; School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jin-Shing Chen
- Department of Surgery, College of Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | - Yu-Ping Chiang
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Der-Yang Cho
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Long-Bin Jeng
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- School of Medicine, China Medical University, Taichung, Taiwan; China Medical University Children's Hospital, China Medical University, Taichung, Taiwan
| | - Mien-Chie Hung
- Drug Development Center, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Center for Molecular Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
108
|
Wettstein L, Kirchhoff F, Münch J. The Transmembrane Protease TMPRSS2 as a Therapeutic Target for COVID-19 Treatment. Int J Mol Sci 2022; 23:1351. [PMID: 35163273 PMCID: PMC8836196 DOI: 10.3390/ijms23031351] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023] Open
Abstract
TMPRSS2 is a type II transmembrane protease with broad expression in epithelial cells of the respiratory and gastrointestinal tract, the prostate, and other organs. Although the physiological role of TMPRSS2 remains largely elusive, several endogenous substrates have been identified. TMPRSS2 serves as a major cofactor in SARS-CoV-2 entry, and primes glycoproteins of other respiratory viruses as well. Consequently, inhibiting TMPRSS2 activity is a promising strategy to block viral infection. In this review, we provide an overview of the role of TMPRSS2 in the entry processes of different respiratory viruses. We then review the different classes of TMPRSS2 inhibitors and their clinical development, with a focus on COVID-19 treatment.
Collapse
Affiliation(s)
| | | | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (L.W.); (F.K.)
| |
Collapse
|
109
|
Hudák A, Veres G, Letoha A, Szilák L, Letoha T. Syndecan-4 Is a Key Facilitator of the SARS-CoV-2 Delta Variant's Superior Transmission. Int J Mol Sci 2022; 23:796. [PMID: 35054983 PMCID: PMC8775852 DOI: 10.3390/ijms23020796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Emerging SARS-CoV-2 variants pose threats to vaccination campaigns against COVID-19. Being more transmissible than the original virus, the SARS-CoV-2 B.1.617 lineage, named the Delta variant, swept through the world in 2021. The mutations in the Delta's spike protein shift the protein towards a net positive electrostatic potential. To understand the key molecular drivers of the Delta infection, we investigate the cellular uptake of the Delta spike protein and Delta spike-bearing SARS-CoV-2 pseudoviruses. Specific in vitro modification of ACE2 and syndecan expression enabled us to demonstrate that syndecan-4, the syndecan isoform abundant in the lung, enhances the transmission of the Delta variant by attaching its mutated spike glycoprotein and facilitating its cellular entry. Compared to the wild-type spike, the Delta one shows a higher affinity towards heparan sulfate proteoglycans than towards ACE2. In addition to attachment to the polyanionic heparan sulfate chains, the Delta spike's molecular interactions with syndecan-4 also involve syndecan-4's cell-binding domain that mediates cell-to-cell adhesion. Regardless of the complexity of these interactions, exogenously added heparin blocks Delta's cellular entry as efficiently as syndecan-4 knockdown. Therefore, a profound understanding of the molecular mechanisms underlying Delta infections enables the development of molecularly targeted yet simple strategies to reduce the Delta variant's spread.
Collapse
Affiliation(s)
- Anett Hudák
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| | - Gábor Veres
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| | - Annamária Letoha
- Albert Szent-Györgyi Clinical Center, Department of Medicine, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - László Szilák
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| | - Tamás Letoha
- Pharmacoidea Ltd., 6726 Szeged, Hungary; (A.H.); (G.V.); (L.S.)
| |
Collapse
|
110
|
Vanshylla K, Fan C, Wunsch M, Poopalasingam N, Meijers M, Kreer C, Kleipass F, Ruchnewitz D, Ercanoglu MS, Gruell H, Münn F, Pohl K, Janicki H, Nolden T, Bartl S, Stein SC, Augustin M, Dewald F, Gieselmann L, Schommers P, Schulz TF, Sander LE, Koch M, Łuksza M, Lässig M, Bjorkman PJ, Klein F. Discovery of ultrapotent broadly neutralizing antibodies from SARS-CoV-2 elite neutralizers. Cell Host Microbe 2022; 30:69-82.e10. [PMID: 34973165 PMCID: PMC8683262 DOI: 10.1016/j.chom.2021.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 12/10/2021] [Indexed: 01/14/2023]
Abstract
A fraction of COVID-19 convalescent individuals mount a potent antibody response to SARS-CoV-2 with cross-reactivity to SARS-CoV-1. To uncover their humoral response in detail, we performed single B cell analysis from 10 SARS-CoV-2 elite neutralizers. We isolated and analyzed 126 monoclonal antibodies, many of which were sarbecovirus cross-reactive, with some displaying merbecovirus- and embecovirus-reactivity. Several isolated broadly neutralizing antibodies were effective against B.1.1.7, B.1.351, B.1.429, B.1.617, and B.1.617.2 variants and 19 prominent potential escape sites. Furthermore, assembly of 716,806 SARS-CoV-2 sequences predicted emerging escape variants, which were also effectively neutralized. One of these broadly neutralizing potent antibodies, R40-1G8, is a IGHV3-53 RBD-class-1 antibody. Remarkably, cryo-EM analysis revealed that R40-1G8 has a flexible binding mode, targeting both "up" and "down" conformations of the RBD. Given the threat of emerging SARS-CoV-2 variants, we demonstrate that elite neutralizers are a valuable source for isolating ultrapotent antibody candidates to prevent and treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kanika Vanshylla
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marie Wunsch
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nareshkumar Poopalasingam
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Matthijs Meijers
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany
| | - Christoph Kreer
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Franziska Kleipass
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany
| | - Meryem S Ercanoglu
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Friederike Münn
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Berlin, 13353 Berlin, Germany
| | - Kai Pohl
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Berlin, 13353 Berlin, Germany
| | - Hanna Janicki
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | | | - Simone Bartl
- Vira Therapeutics GmbH, 6063 Rum, Austria; Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Saskia C Stein
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Max Augustin
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Felix Dewald
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Lutz Gieselmann
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Philipp Schommers
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Berlin, 13353 Berlin, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Marta Łuksza
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Lässig
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
111
|
Das NC, Chakraborty P, Bayry J, Mukherjee S. In Silico Analyses on the Comparative Potential of Therapeutic Human Monoclonal Antibodies Against Newly Emerged SARS-CoV-2 Variants Bearing Mutant Spike Protein. Front Immunol 2022; 12:782506. [PMID: 35082779 PMCID: PMC8784557 DOI: 10.3389/fimmu.2021.782506] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Since the start of the pandemic, SARS-CoV-2 has already infected more than 250 million people globally, with more than five million fatal cases and huge socio-economic losses. In addition to corticosteroids, and antiviral drugs like remdesivir, various immunotherapies including monoclonal antibodies (mAbs) to S protein of SARS-CoV-2 have been investigated to treat COVID-19 patients. These mAbs were initially developed against the wild-type SARS-CoV-2; however, emergence of variant forms of SARS-CoV-2 having mutations in the spike protein in several countries including India raised serious questions on the potential use of these mAbs against SARS-CoV-2 variants. In this study, using an in silico approach, we have examined the binding abilities of eight mAbs against several SARS-CoV-2 variants of Alpha (B.1.1.7) and Delta (B.1.617.2) lineages. The structure of the Fab region of each mAb was designed in silico and subjected to molecular docking against each mutant protein. mAbs were subjected to two levels of selection based on their binding energy, stability, and conformational flexibility. Our data reveal that tixagevimab, regdanvimab, and cilgavimab can efficiently neutralize most of the SARS-CoV-2 Alpha strains while tixagevimab, bamlanivimab, and sotrovimab can form a stable complex with the Delta variants. Based on these data, we have designed, by in silico, a chimeric antibody by conjugating the CDRH3 of regdanivimab with a sotrovimab framework to combat the variants that could potentially escape from the mAb-mediated neutralization. Our finding suggests that though currently available mAbs could be used to treat COVID-19 caused by the variants of SARS-CoV-2, better results could be expected with the chimeric antibodies.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| | - Pritha Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| |
Collapse
|
112
|
Mellacher P. Endogenous viral mutations, evolutionary selection, and containment policy design. JOURNAL OF ECONOMIC INTERACTION AND COORDINATION 2022; 17:801-825. [PMID: 35018194 PMCID: PMC8739737 DOI: 10.1007/s11403-021-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
How will the novel coronavirus evolve? I study a simple epidemiological model, in which mutations may change the properties of the virus and its associated disease stochastically and antigenic drifts allow new variants to partially evade immunity. I show analytically that variants with higher infectiousness, longer disease duration, and shorter latent period prove to be fitter. "Smart" containment policies targeting symptomatic individuals may redirect the evolution of the virus, as they give an edge to variants with a longer incubation period and a higher share of asymptomatic infections. Reduced mortality, on the other hand, does not per se prove to be an evolutionary advantage. I then implement this model as an agent-based simulation model in order to explore its aggregate dynamics. Monte Carlo simulations show that a) containment policy design has an impact on both speed and direction of viral evolution, b) the virus may circulate in the population indefinitely, provided that containment efforts are too relaxed and the propensity of the virus to escape immunity is high enough, and crucially c) that it may not be possible to distinguish between a slowly and a rapidly evolving virus by looking only at short-term epidemiological outcomes. Thus, what looks like a successful mitigation strategy in the short run, may prove to have devastating long-run effects. These results suggest that optimal containment policy must take the propensity of the virus to mutate and escape immunity into account, strengthening the case for genetic and antigenic surveillance even in the early stages of an epidemic.
Collapse
|
113
|
Ding LS, Zhang Y, Wen D, Ma J, Yuan H, Li H, Duo S, Yuan F, Zhang YE, Zheng A. Growth, Antigenicity, and Immunogenicity of SARS-CoV-2 Spike Variants Revealed by a Live rVSV-SARS-CoV-2 Virus. Front Med (Lausanne) 2022; 8:793437. [PMID: 35071273 PMCID: PMC8777026 DOI: 10.3389/fmed.2021.793437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 is an emerging coronavirus threatening human health and the economy worldwide. As an RNA virus, variants emerge during the pandemic and potentially influence the efficacy of the anti-viral drugs and vaccines. Eight spike variants harboring highly recurrent mutations were selected and introduced into a replication-competent recombinant VSV in place of the original G protein (rVSV-SARS-CoV-2). The resulting mutant viruses displayed similar growth curves in vitro as the wild-type virus and could be neutralized by sera from convalescent COVID-19 patients. Several variants, especially Beta strain, showed resistance to human neutralizing monoclonal antibodies targeting the receptor-binding domain (RBD). A single dose of rVSV-SARS-CoV-2 Beta variant could elicit enhanced and broad-spectrum neutralizing antibody responses in human ACE2 knock-in mice and golden Syrian hamsters, while other mutants generated antibody levels comparable to the wild-type. Therefore, our results will be of value to the development of next-generation vaccines and therapeutic antibodies.
Collapse
Affiliation(s)
- Limin S. Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianbo Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Yuan
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongyue Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Shuguang Duo
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong E. Zhang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| |
Collapse
|
114
|
Hwang YC, Lu RM, Su SC, Chiang PY, Ko SH, Ke FY, Liang KH, Hsieh TY, Wu HC. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J Biomed Sci 2022; 29:1. [PMID: 34983527 PMCID: PMC8724751 DOI: 10.1186/s12929-021-00784-w] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an exceptional public health crisis that demands the timely creation of new therapeutics and viral detection. Owing to their high specificity and reliability, monoclonal antibodies (mAbs) have emerged as powerful tools to treat and detect numerous diseases. Hence, many researchers have begun to urgently develop Ab-based kits for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ab drugs for use as COVID-19 therapeutic agents. The detailed structure of the SARS-CoV-2 spike protein is known, and since this protein is key for viral infection, its receptor-binding domain (RBD) has become a major target for therapeutic Ab development. Because SARS-CoV-2 is an RNA virus with a high mutation rate, especially under the selective pressure of aggressively deployed prophylactic vaccines and neutralizing Abs, the use of Ab cocktails is expected to be an important strategy for effective COVID-19 treatment. Moreover, SARS-CoV-2 infection may stimulate an overactive immune response, resulting in a cytokine storm that drives severe disease progression. Abs to combat cytokine storms have also been under intense development as treatments for COVID-19. In addition to their use as drugs, Abs are currently being utilized in SARS-CoV-2 detection tests, including antigen and immunoglobulin tests. Such Ab-based detection tests are crucial surveillance tools that can be used to prevent the spread of COVID-19. Herein, we highlight some key points regarding mAb-based detection tests and treatments for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Pao-Yin Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Yi Ke
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Tzung-Yang Hsieh
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
115
|
Establishment of a pseudovirus neutralization assay based on SARS-CoV-2 S protein incorporated into lentiviral particles. BIOSAFETY AND HEALTH 2022; 4:38-44. [PMID: 35005601 PMCID: PMC8721934 DOI: 10.1016/j.bsheal.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) is still causing a wide range of infections and deaths due to the high variability of the SARS-CoV-2 virus. Therefore, it is necessary to establish a reliable and convenient pseudovirus-based neutralization assay to develop drug targeted variants of SARS-CoV-2. Based on the HIV-1 backbone, we generated a high titer luciferase (Luc)-expressing pseudovirus packaging system. Three dominant S mutant substitution pseudovirus were also established and identified compared to wide type in hACE2-overexpressing HEK-293T cells (293T-ACE2 cells). Compared to serine protease inhibitor camostat mesylate, the cysteine protease inhibitor E-64d could significantly block all SARS-CoV-2 mutant S pseudovirus infection in 293T-ACE2 cells. Furthermore, the neutralization ability of two antibodies targeted receptor-binding domain (RBD) of SARS-CoV-2 spike protein (S) was evaluated, which showed different inhibition dose-effect curves among four types of S pseudovirus. Overall, we developed a pseudovirus-based neutralization assay for SARS-CoV-2, which would be readily adapted to SARS-CoV-2 variants for evaluating antibodies.
Collapse
|
116
|
Mukhopadhyay L, Gupta N, Yadav PD, Aggarwal N. Neutralization assays for SARS-CoV-2: Implications for assessment of protective efficacy of COVID-19 vaccines. Indian J Med Res 2022; 155:105-122. [PMID: 35859437 PMCID: PMC9552365 DOI: 10.4103/ijmr.ijmr_2544_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/04/2022] Open
Abstract
The WHO emergency use-listed (EUL) COVID-19 vaccines were developed against early strains of SARS-CoV-2. With the emergence of SARS-CoV-2 variants of concern (VOCs) - Alpha, Beta, Gamma, Delta and Omicron, it is necessary to assess the neutralizing activity of these vaccines against the VOCs. PubMed and preprint platforms were searched for literature on neutralizing activity of serum from WHO EUL vaccine recipients, against the VOCs, using appropriate search terms till November 30, 2021. Our search yielded 91 studies meeting the inclusion criteria. The analysis revealed a drop of 0-8.9-fold against Alpha variant, 0.3-42.4-fold against Beta variant, 0-13.8-fold against Gamma variant and 1.35-20-fold against Delta variant in neutralization titres of serum from the WHO EUL COVID-19 vaccine recipients, as compared to early SARS-CoV-2 isolates. The wide range of variability was due to differences in the choice of virus strains selected for neutralization assays (pseudovirus or live virus), timing of serum sample collection after the final dose of vaccine (day 0 to 8 months) and sample size (ranging from 5 to 470 vaccinees). The reasons for this variation have been discussed and the possible way forward to have uniformity across neutralization assays in different laboratories have been described, which will generate reliable data. Though in vitro neutralization studies are a valuable tool to estimate the performance of vaccines against the backdrop of emerging variants, the results must be interpreted with caution and corroborated with field-effectiveness studies.
Collapse
Affiliation(s)
- Labanya Mukhopadhyay
- Virology Unit, Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Nivedita Gupta
- Virology Unit, Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Pragya D. Yadav
- Maximum Containment Laboratory, Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Neeraj Aggarwal
- Virology Unit, Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
117
|
Kumar A, Asghar A, Dwivedi P, Kumar G, Narayan RK, Jha RK, Parashar R, Sahni C, Pandey SN. A Bioinformatics Tool for Predicting Future COVID-19 Waves Based on a Retrospective Analysis of the Second Wave in India: Model Development Study. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e36860. [PMID: 36193192 PMCID: PMC9516867 DOI: 10.2196/36860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Since the start of the COVID-19 pandemic, health policymakers globally have been attempting to predict an impending wave of COVID-19. India experienced a devastating second wave of COVID-19 in the late first week of May 2021. We retrospectively analyzed the viral genomic sequences and epidemiological data reflecting the emergence and spread of the second wave of COVID-19 in India to construct a prediction model. OBJECTIVE We aimed to develop a bioinformatics tool that can predict an impending COVID-19 wave. METHODS We analyzed the time series distribution of genomic sequence data for SARS-CoV-2 and correlated it with epidemiological data for new cases and deaths for the corresponding period of the second wave. In addition, we analyzed the phylodynamics of circulating SARS-CoV-2 variants in the Indian population during the study period. RESULTS Our prediction analysis showed that the first signs of the arrival of the second wave could be seen by the end of January 2021, about 2 months before its peak in May 2021. By the end of March 2021, it was distinct. B.1.617 lineage variants powered the wave, most notably B.1.617.2 (Delta variant). CONCLUSIONS Based on the observations of this study, we propose that genomic surveillance of SARS-CoV-2 variants, complemented with epidemiological data, can be a promising tool to predict impending COVID-19 waves.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy All India Institute of Medical Sciences - Patna Patna India
| | - Adil Asghar
- Department of Anatomy All India Institute of Medical Sciences - Patna Patna India
| | - Prakhar Dwivedi
- Department of Anatomy All India Institute of Medical Sciences - Patna Patna India
| | - Gopichand Kumar
- Department of Anatomy All India Institute of Medical Sciences - Patna Patna India
| | - Ravi K Narayan
- Department of Anatomy Dr B C Roy Multispeciality Medical Research Center Indian Institute of Technology-Kharagpur Kharagpur India
| | - Rakesh K Jha
- Department of Anatomy All India Institute of Medical Sciences - Patna Patna India
| | - Rakesh Parashar
- India Health Lead Oxford Policy Management Limited Oxford United Kingdom
| | - Chetan Sahni
- Department of Anatomy Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Sada N Pandey
- Department of Zoology Banaras Hindu University Varanasi India
| |
Collapse
|
118
|
Lan Q, Xia S, Lu L. Coronavirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:101-121. [DOI: 10.1007/978-981-16-8702-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
119
|
Contact tracing period and epidemiological characteristics of an outbreak by SARS-CoV-2 Delta variant in Guangzhou. Int J Infect Dis 2022; 117:18-23. [PMID: 35101637 PMCID: PMC8800156 DOI: 10.1016/j.ijid.2022.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 01/19/2023] Open
Abstract
Objectives An outbreak of the SARS-CoV-2 Delta
variant occurred in Guangzhou in 2021. This study aimed to identify the
transmission dynamics and epidemiological characteristics of the Delta
variant outbreak to formulate an effective prevention
strategy. Methods A total of 13102 close contacts and
69 index cases were collected. The incubation period, serial interval,
and time interval from the exposure of close contacts to the symptom
onset of cases were estimated. Transmission risks based on the exposure
time and various characteristics were also assessed. Results The mean time from exposure to
symptom onset among non-household presymptomatic transmission was 3.83 ±
2.29 days, the incubation period was 5 days, and the serial interval was
3 days. The secondary attack rate was high within 4 days before onset and
4–10 days after symptom onset. Compared with other contact types,
household contact had a higher transmission risk. The transmission risk
increased with the number and frequency of contact with index cases.
Cycle threshold (Ct) values were associated with lower transmission risk
(adjusted odds ratio [OR] 0.93 [95% CI 0.88–0.99] for ORF
1ab gene; adjusted OR 0.91 [95% CI 0.86–0.97] for
N gene). Conclusion The contact tracing period may need
to be extended to 4 days before symptom onset. The low Ct value of index
cases, the high number and frequency of contact with index cases, and
household contacts were associated with a higher transmission risk of
SARS-CoV-2 Delta.
Collapse
|
120
|
Mattoo SUS, Myoung J. A Promising Vaccination Strategy against COVID-19 on the Horizon: Heterologous Immunization. J Microbiol Biotechnol 2021; 31:1601-1614. [PMID: 34949742 PMCID: PMC9705928 DOI: 10.4014/jmb.2111.11026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
To overcome the ongoing COVID-19 pandemic, vaccination campaigns are the highest priority of majority of countries. Limited supply and worldwide disproportionate availability issues for the approved vaccines, together with concerns about rare side-effects have recently initiated the switch to heterologous vaccination, commonly known as mixing of vaccines. The COVID-19 vaccines are highly effective in the general population. However, none of the vaccines is 100% efficacious or effective, with variants posing more challenges, resulting in breakthrough cases. This review summarizes the current knowledge of immune responses to variants of concern (VOC) and breakthrough infections. Furthermore, we discuss the scope of heterologous vaccination and future strategies to tackle the COVID-19 pandemic, including fractionation of vaccine doses and alternative route of vaccination.
Collapse
Affiliation(s)
- Sameer-ul-Salam Mattoo
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea,Corresponding author Phone: +82-63-9004055 Fax: +82-63-9004012 E-mail:
| |
Collapse
|
121
|
Bushman M, Kahn R, Taylor BP, Lipsitch M, Hanage WP. Population impact of SARS-CoV-2 variants with enhanced transmissibility and/or partial immune escape. Cell 2021; 184:6229-6242.e18. [PMID: 34910927 PMCID: PMC8603072 DOI: 10.1016/j.cell.2021.11.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 variants of concern exhibit varying degrees of transmissibility and, in some cases, escape from acquired immunity. Much effort has been devoted to measuring these phenotypes, but understanding their impact on the course of the pandemic-especially that of immune escape-has remained a challenge. Here, we use a mathematical model to simulate the dynamics of wild-type and variant strains of SARS-CoV-2 in the context of vaccine rollout and nonpharmaceutical interventions. We show that variants with enhanced transmissibility frequently increase epidemic severity, whereas those with partial immune escape either fail to spread widely or primarily cause reinfections and breakthrough infections. However, when these phenotypes are combined, a variant can continue spreading even as immunity builds up in the population, limiting the impact of vaccination and exacerbating the epidemic. These findings help explain the trajectories of past and present SARS-CoV-2 variants and may inform variant assessment and response in the future.
Collapse
Affiliation(s)
- Mary Bushman
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Rebecca Kahn
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bradford P Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
122
|
Rajpoot S, Solanki K, Kumar A, Zhang KYJ, Pullamsetti SS, Savai R, Faisal SM, Pan Q, Baig MS. In-Silico Design of a Novel Tridecapeptide Targeting Spike Protein of SARS-CoV-2 Variants of Concern. Int J Pept Res Ther 2021; 28:28. [PMID: 34924897 PMCID: PMC8667532 DOI: 10.1007/s10989-021-10339-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
Several mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have increased the transmission and mortality rate of coronavirus disease-19 (COVID-19) across the globe. Although many vaccines have been developed, a large proportion of the global population remains at high risk of infection. The current study aims to develop an antiviral peptide capable of inhibiting the interaction of SARS-CoV-2 spike protein and its six major variants with the host cell angiotensin-converting enzyme 2 (ACE2) receptor. An in-silico approach was employed to design a therapeutic peptide inhibitor against the receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2 and its variants (B.1.1.7, B.1.351, P.1, B.1.617.1, B.1.617.2 and B.1.617.3). The binding specificity and affinity of our designed peptide inhibitor Mod13AApi (YADKYQKQYKDAY) with wild-type S-RBD and its six variants was confirmed by molecular docking using the HPEPDOCK tool, whereas complex stability was determined by the MD simulation study. The physicochemical and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of inhibitory peptides were determined using the ExPASy tool and pkCSM server. The docking results and its properties from our in-silico analysis present the Mod13AApi, a promising peptide for the rapid development of anti-coronavirus peptide-based antiviral therapy. Blockage of the binding of the spike protein of SARS-CoV-2 variants with ACE2 in the presence of the therapeutic peptide may prevent deadly SARS-CoV-2 variants entry into host cells. Therefore, the designed inhibitory peptide can be utilized as a promising therapeutic strategy to combat COVID-19, as evident from this in-silico study.
Collapse
Affiliation(s)
- Sajjan Rajpoot
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, 453552 India
| | - Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, 453552 India
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Tsurumi, Yokohama, Kanagawa Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Tsurumi, Yokohama, Kanagawa Japan
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Hessen Germany.,Institute for Lung Health (ILH), Justus-Liebig-University Giessen, 35392 Giessen, Hessen Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Hessen Germany.,Institute for Lung Health (ILH), Justus-Liebig-University Giessen, 35392 Giessen, Hessen Germany
| | - Syed M Faisal
- National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana India
| | - Qiuwei Pan
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, 453552 India
| |
Collapse
|
123
|
Wang Y, Xu C, Wang Y, Hong Q, Zhang C, Li Z, Xu S, Zuo Q, Liu C, Huang Z, Cong Y. Conformational dynamics of the Beta and Kappa SARS-CoV-2 spike proteins and their complexes with ACE2 receptor revealed by cryo-EM. Nat Commun 2021; 12:7345. [PMID: 34930910 PMCID: PMC8688474 DOI: 10.1038/s41467-021-27350-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of SARS-CoV-2 Kappa and Beta variants with enhanced transmissibility and resistance to neutralizing antibodies has created new challenges for the control of the ongoing COVID-19 pandemic. Understanding the structural nature of Kappa and Beta spike (S) proteins and their association with ACE2 is of significant importance. Here we present two cryo-EM structures for each of the Kappa and Beta spikes in the open and open-prone transition states. Compared with wild-type (WT) or G614 spikes, the two variant spikes appear more untwisted/open especially for Beta, and display a considerable population shift towards the open state as well as more pronounced conformational dynamics. Moreover, we capture four conformational states of the S-trimer/ACE2 complex for each of the two variants, revealing an enlarged conformational landscape for the Kappa and Beta S-ACE2 complexes and pronounced population shift towards the three RBDs up conformation. These results implicate that the mutations in Kappa and Beta may modify the kinetics of receptor binding and viral fusion to improve virus fitness. Combined with biochemical analysis, our structural study shows that the two variants are enabled to efficiently interact with ACE2 receptor despite their sensitive ACE2 binding surface is modified to escape recognition by some potent neutralizing MAbs. Our findings shed new light on the pathogenicity and immune evasion mechanism of the Beta and Kappa variants.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Cong Xu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanxing Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qin Hong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chao Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zuyang Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shiqi Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qinyu Zuo
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Caixuan Liu
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhong Huang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
124
|
Lhomme S, Latour J, Jeanne N, Trémeaux P, Ranger N, Migueres M, Salin G, Donnadieu C, Izopet J. Prediction of SARS-CoV-2 Variant Lineages Using the S1-Encoding Region Sequence Obtained by PacBio Single-Molecule Real-Time Sequencing. Viruses 2021; 13:v13122544. [PMID: 34960813 PMCID: PMC8707593 DOI: 10.3390/v13122544] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the causal agent of the COVID-19 pandemic that emerged in late 2019. The outbreak of variants with mutations in the region encoding the spike protein S1 sub-unit that can make them more resistant to neutralizing or monoclonal antibodies is the main point of the current monitoring. This study examines the feasibility of predicting the variant lineage and monitoring the appearance of reported mutations by sequencing only the region encoding the S1 domain by Pacific Bioscience Single Molecule Real-Time sequencing (PacBio SMRT). Using the PacBio SMRT system, we successfully sequenced 186 of the 200 samples previously sequenced with the Illumina COVIDSeq (whole genome) system. PacBio SMRT detected mutations in the S1 domain that were missed by the COVIDseq system in 27/186 samples (14.5%), due to amplification failure. These missing positions included mutations that are decisive for lineage assignation, such as G142D (n = 11), N501Y (n = 6), or E484K (n = 2). The lineage of 172/186 (92.5%) samples was accurately determined by analyzing the region encoding the S1 domain with a pipeline that uses key positions in S1. Thus, the PacBio SMRT protocol is appropriate for determining virus lineages and detecting key mutations.
Collapse
Affiliation(s)
- Sébastien Lhomme
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31300 Toulouse, France; (M.M.); (J.I.)
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
- Correspondence: ; Tel.: +33-5-67-69-04-24
| | - Justine Latour
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| | - Nicolas Jeanne
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| | - Pauline Trémeaux
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| | - Noémie Ranger
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| | - Marion Migueres
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31300 Toulouse, France; (M.M.); (J.I.)
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| | - Gérald Salin
- INRAE, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France; (G.S.); (C.D.)
| | - Cécile Donnadieu
- INRAE, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France; (G.S.); (C.D.)
| | - Jacques Izopet
- Infinity, Université Toulouse, CNRS, INSERM, UPS, 31300 Toulouse, France; (M.M.); (J.I.)
- Laboratoire de Virologie, CHU Toulouse, Hôpital Purpan, 31300 Toulouse, France; (J.L.); (N.J.); (P.T.); (N.R.)
| |
Collapse
|
125
|
Groß R, Zanoni M, Seidel A, Conzelmann C, Gilg A, Krnavek D, Erdemci-Evin S, Mayer B, Hoffmann M, Pöhlmann S, Liu W, Hahn BH, Beil A, Kroschel J, Jahrsdörfer B, Schrezenmeier H, Kirchhoff F, Münch J, Müller JA. Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T cell reactivity against prevalent SARS-CoV-2 variants. EBioMedicine 2021; 75:103761. [PMID: 34929493 PMCID: PMC8682749 DOI: 10.1016/j.ebiom.2021.103761] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 11/03/2022] Open
Abstract
Background Heterologous COVID-19 vaccination regimens combining vector- and mRNA-based vaccines are already administered, but data on solicited adverse reactions, immunological responses and elicited protection are limited. Methods To evaluate the reactogenicity and humoral as well as cellular immune responses towards most prevalent SARS-CoV-2 variants after a heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination, we analysed a cohort of 26 clinic employees aged 25-46 (median 30.5) years who received a ChAdOx1 nCoV-19 prime followed by a BNT162b2 boost after an 8-week interval. Serological data were compared to a cohort which received homologous BNT162b2 vaccination with a 3-week interval (14 individuals aged 25-65, median 42). Findings Self-reported solicited symptoms after ChAdOx1 nCoV-19 prime were in line with previous reports and more severe than after the BNT162b2 boost. Antibody titres increased significantly over time resulting in strong neutralization titres two weeks after the BNT162b2 boost and subsequently slightly decreased over the course of 17 weeks. At the latest time point measured, all analysed sera retained neutralizing activity against the currently dominant Delta (B.1.617.2) variant. Two weeks post boost, neutralizing activity against the Alpha (B.1.1.7) and immune-evading Beta (B.1.351) variant was ∼4-fold higher than in individuals receiving homologous BNT162b2 vaccination. No difference was observed in neutralization of Kappa (B.1.617.1). In addition, heterologous vaccination induced CD4+ and CD8+ T cells reactive to SARS-CoV-2 spike peptides of all analysed variants; Wuhan-Hu-1, Alpha, Beta, Gamma (P.1), and Delta. Interpretation In conclusion, heterologous ChAdOx1 nCoV-19 / BNT162b2 prime-boost vaccination is not associated with serious adverse events and induces potent humoral and cellular immune responses. The Alpha, Beta, Delta, and Kappa variants of spike are potently neutralized by sera from all participants and reactive T cells recognize spike peptides of all tested variants. These results suggest that this heterologous vaccination regimen is at least as immunogenic and protective as homologous vaccinations and also offers protection against current variants of concern. Funding This project has received funding from the European Union's Horizon 2020 research and innovation programme, the German Research Foundation, the BMBF, the Robert Koch Institute (RKI), the Baden-Württemberg Stiftung, the county of Lower Saxony, the Ministry for Science, Research and the Arts of Baden-Württemberg, Germany, and the National Institutes of Health.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Michelle Zanoni
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Andrea Gilg
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Daniela Krnavek
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Sümeyye Erdemci-Evin
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Weimin Liu
- Department of Microbiology and Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Beatrice H Hahn
- Department of Microbiology and Department of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Alexandra Beil
- Central Department for Clinical Chemistry, University Hospital Ulm, 89081, Ulm, Germany
| | - Joris Kroschel
- Central Department for Clinical Chemistry, University Hospital Ulm, 89081, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University, 89081, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen and University Hospital Ulm, 89081, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University, 89081, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen and University Hospital Ulm, 89081, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany; Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
126
|
Perez-Gomez R. The Development of SARS-CoV-2 Variants: The Gene Makes the Disease. J Dev Biol 2021; 9:58. [PMID: 34940505 PMCID: PMC8705434 DOI: 10.3390/jdb9040058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
A novel coronavirus (SARS-CoV-2) emerged towards the end of 2019 that caused a severe respiratory disease in humans called COVID-19. It led to a pandemic with a high rate of morbidity and mortality that is ongoing and threatening humankind. Most of the mutations occurring in SARS-CoV-2 are synonymous or deleterious, but a few of them produce improved viral functions. The first known mutation associated with higher transmissibility, D614G, was detected in early 2020. Since then, the virus has evolved; new mutations have occurred, and many variants have been described. Depending on the genes affected and the location of the mutations, they could provide altered infectivity, transmissibility, or immune escape. To date, mutations that cause variations in the SARS-CoV-2 spike protein have been among the most studied because of the protein's role in the initial virus-cell contact and because it is the most variable region in the virus genome. Some concerning mutations associated with an impact on viral fitness have been described in the Spike protein, such as D614G, N501Y, E484K, K417N/T, L452R, and P681R, among others. To understand the impact of the infectivity and antigenicity of the virus, the mutation landscape of SARS-CoV-2 has been under constant global scrutiny. The virus variants are defined according to their origin, their genetic profile (some characteristic mutations prevalent in the lineage), and the severity of the disease they produce, which determines the level of concern. If they increase fitness, new variants can outcompete others in the population. The Alpha variant was more transmissible than previous versions and quickly spread globally. The Beta and Gamma variants accumulated mutations that partially escape the immune defenses and affect the effectiveness of vaccines. Nowadays, the Delta variant, identified around March 2021, has spread and displaced the other variants, becoming the most concerning of all lineages that have emerged. The Delta variant has a particular genetic profile, bearing unique mutations, such as T478K in the spike protein and M203R in the nucleocapsid. This review summarizes the current knowledge of the different mutations that have appeared in SARS-CoV-2, mainly on the spike protein. It analyzes their impact on the protein function and, subsequently, on the level of concern of different variants and their importance in the ongoing pandemic.
Collapse
Affiliation(s)
- Raquel Perez-Gomez
- Translational Genomics Group, Institut Universitari de Biotecnologia y Biomedicina BIOTECMED, Universitat de Valencia, 46100 Valencia, Spain
| |
Collapse
|
127
|
Dubey A, Choudhary S, Kumar P, Tomar S. Emerging SARS-CoV-2 Variants: Genetic Variability and Clinical Implications. Curr Microbiol 2021; 79:20. [PMID: 34905108 PMCID: PMC8669229 DOI: 10.1007/s00284-021-02724-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
The sudden rise in COVID-19 cases in 2020 and the incessant emergence of fast-spreading variants have created an alarming situation worldwide. Besides the continuous advancements in the design and development of vaccines to combat this deadly pandemic, new variants are frequently reported, possessing mutations that rapidly outcompeted an existing population of circulating variants. As concerns grow about the effects of mutations on the efficacy of vaccines, increased transmissibility, immune escape, and diagnostic failures are few other apprehensions liable for more deadly waves of COVID-19. Although the phenomenon of antigenic drift in new variants of SARS-CoV-2 is still not validated, it is conceived that the virus is acquiring new mutations as a fitness advantage for rapid transmission or to overcome immunological resistance of the host cell. Considerable evolution of SARS-CoV-2 has been observed since its first appearance in 2019, and despite the progress in sequencing efforts to characterize the mutations, their impacts in many variants have not been analyzed. The present article provides a substantial review of literature explaining the emerging variants of SARS-CoV-2 circulating globally, key mutations in viral genome, and the possible impacts of these new mutations on prevention and therapeutic strategies currently administered to combat this pandemic. Rising infections, mortalities, and hospitalizations can possibly be tackled through mass vaccination, social distancing, better management of available healthcare infrastructure, and by prioritizing genome sequencing for better serosurveillance studies and community tracking.
Collapse
Affiliation(s)
- Aakriti Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
128
|
Mule S, Singh A, Greish K, Sahebkar A, Kesharwani P, Shukla R. Drug repurposing strategies and key challenges for COVID-19 management. J Drug Target 2021; 30:413-429. [PMID: 34854327 DOI: 10.1080/1061186x.2021.2013852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
COVID-19 is a clinical outcome of viral infection emerged due to strain of beta coronavirus which attacks the type-2 pneumocytes in alveoli via angiotensin-converting enzyme 2 (ACE2) receptors. There is no satisfactory drug developed against 'SARS-CoV2', highlighting an immediate necessity chemotherapeutic repurposing plan COVID-19. Drug repurposing is a method of selection of approved therapeutics for new use and is considered to be the most effective drug finding strategy since it includes less time and cost to obtain treatment compared to the de novo drug acquisition process. Several drugs such as hydroxychloroquine, remdesivir, teicoplanin, darunavir, ritonavir, nitazoxanide, chloroquine, tocilizumab and favipiravir (FPV) showed their activity against 'SARS-CoV2' in vitro. This review has emphasized on repurposing of drugs, and biologics used in clinical set up for targeting COVID-19 and to evaluate their pharmacokinetics, pharmacodynamics and safety with their future aspect. The key benefit of drug repurposing is the wealth of information related to its safety, and easy accessibility. Altogether repurposing approach allows access to regulatory approval as well as reducing sophisticated safety studies.
Collapse
Affiliation(s)
- Shubham Mule
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Ajit Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Khaled Greish
- Nanomedicine Unit, College of Medicine and Medical Sciences, Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
129
|
Goher SS, Ali F, Amin M. The Delta Variant Mutations in the Receptor Binding Domain of SARS-CoV-2 Show Enhanced Electrostatic Interactions with the ACE2. MEDICINE IN DRUG DISCOVERY 2021; 13:100114. [PMID: 34901826 PMCID: PMC8650763 DOI: 10.1016/j.medidd.2021.100114] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in the receptor binding domain (RBD) in SARS-CoV-2 are shown to enhance its replication, transmissibility, and binding to host cells. Recently, a new strain is reported in India that includes a mutation (T478K, and L452R) in the RBD, that is possibly increasing the infection rate. Here, using Molecular Mechanics (MM) and Monte Carlo (MC) sampling, we show that the double mutant variant of SARS-CoV-2 induced conformational change in ACE2-E37, which enhanced the electrostatic interactions by the formation of a salt-bridge with SARS-CoV-2-R403. In addition, we observed that the double mutated structure induced a significant change in the salt-bridge electrostatic interaction between RBD-T500 and ACE2-D355. Where that this interaction lost more than 70% of its value compared to its value in WT protein.
Collapse
Affiliation(s)
- Shaimaa S Goher
- Nanotechnology Research Centre (NTRC), the British University in Egypt (BUE), El Sherouk City, Suez Desert Road, Cairo 1183, Egypt
| | - Fedaa Ali
- Department of Sciences, University College Groningen, University of Groningen, Hoendiepskade 23/24, 9718 BG Groningen, The Netherlands
| | - Muhamed Amin
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
130
|
Hu J, Wei XY, Xiang J, Peng P, Xu FL, Wu K, Luo FY, Jin AS, Fang L, Liu BZ, Wang K, Tang N, Huang AL. Reduced neutralization of SARS-CoV-2 B.1.617 variant by convalescent and vaccinated sera. Genes Dis 2021; 9:1290-1300. [PMID: 34877393 PMCID: PMC8639289 DOI: 10.1016/j.gendis.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/26/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The Spike protein that mediates coronavirus entry into host cells is a major target for COVID-19 vaccines and antibody therapeutics. However, multiple variants of SARS-CoV-2 have emerged, which may potentially compromise vaccine effectiveness. Using a pseudovirus-based assay, we evaluated SARS-CoV-2 cell entry mediated by the viral Spike B.1.617 and B.1.1.7 variants. We also compared the neutralization ability of monoclonal antibodies from convalescent sera and neutralizing antibodies (NAbs) elicited by CoronaVac (inactivated vaccine) and ZF2001 (RBD-subunit vaccine) against B.1.617 and B.1.1.7 variants. Our results showed that, compared to D614G and B.1.1.7 variants, B.1.617 shows enhanced viral entry and membrane fusion, as well as more resistant to antibody neutralization. These findings have important implications for understanding viral infectivity and for immunization policy against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jie Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Xiao-Yu Wei
- Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402177, PR China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Pai Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Feng-Li Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Fei-Yang Luo
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Ai-Shun Jin
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Liang Fang
- Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402177, PR China
| | - Bei-Zhong Liu
- Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402177, PR China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| | - Ai-Long Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, PR China
| |
Collapse
|
131
|
Yaniv K, Ozer E, Lewis Y, Kushmaro A. RT-qPCR assays for SARS-CoV-2 variants of concern in wastewater reveals compromised vaccination-induced immunity. WATER RESEARCH 2021; 207:117808. [PMID: 34753092 PMCID: PMC8551083 DOI: 10.1016/j.watres.2021.117808] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/02/2023]
Abstract
SARS-CoV-2 variants of concern, demonstrating higher infection rate and lower vaccine effectiveness as compared with the original virus, are important factors propelling the ongoing COVID-19 global outbreak. Therefore, prompt identification of these variants in the environment is essential for pandemic assessment and containment efforts. One well established tool for such viral monitoring is the use of wastewater systems. Here, we describe continuous monitoring of traces of SARS-CoV-2 viruses in the municipal wastewater of a large city in Israel. By observing morbidity fluctuations (during three main COVID-19 surges) occurring in parallel with Pfizer-BioNTech COVID-19 vaccine vaccination rate, compromised immunity was revealed in the current morbidity peak. RT-qPCR assays for the Original (D614G), Alpha and Beta variants had been previously developed and are being employed for wastewater surveillance. In the present study we developed a sensitive RT-qPCR assay designed for the rapid, direct detection of Gamma and Delta variants of concern. Sensitive quantification and detection of the various variants showed the prevalence of the original variant during the first morbidity peak. The dominance of the Alpha variant over the original variant correlated with the second morbidity peak. These variants decreased concurrently with an increase in vaccinations (Feb-March 2021) and the observed decrease in morbidity. The appearance and subsequent rise of the Delta variant became evident and corresponded to the third morbidity peak (June-August 2021). These results suggest a high vaccine neutralization efficiency towards the Alpha variant compared to its neutralization efficiency towards the Delta variant. Moreover, the third vaccination dose (booster) seems to regain neutralization efficiency towards the Delta variant. The developed assays and wastewater-based epidemiology are important tools aiding in morbidity surveillance and disclosing vaccination efforts and immunity dynamics in the community.
Collapse
Affiliation(s)
- Karin Yaniv
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Eden Ozer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben- Gurion University of the Negev, Beer-Sheva 84105, Israel; The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
132
|
Aggarwal A, Naskar S, Maroli N, Gorai B, Dixit NM, Maiti PK. Mechanistic insights into the effects of key mutations on SARS-CoV-2 RBD-ACE2 binding. Phys Chem Chem Phys 2021; 23:26451-26458. [PMID: 34806722 DOI: 10.1039/d1cp04005g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Some recent SARS-CoV-2 variants appear to have increased transmissibility compared to the original strain. An underlying mechanism could be the improved ability of the variants to bind receptors on the target cells and infect them. In this study, we provide atomic-level insights into the binding of the receptor binding domain (RBD) of the wild-type SARS-CoV-2 spike protein and its single (N501Y), double (E484Q, L452R) and triple (N501Y, E484Q, L452R) mutated variants to the human ACE2 receptor. Using extensive all-atom molecular dynamics simulations and advanced free energy calculations, we estimate the associated binding affinities and binding hotspots. We observe significant secondary structural changes in the RBD of the mutants, which lead to different binding affinities. We find higher binding affinities for the double (E484Q, L452R) and triple (N501Y, E484Q, L452R) mutated variants than for the wild type and the N501Y variant, which could contribute to the higher transmissibility of recent variants containing these mutations.
Collapse
Affiliation(s)
- Abhishek Aggarwal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Supriyo Naskar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Nikhil Maroli
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Biswajit Gorai
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Narendra M Dixit
- Department of Chemical Engineering and Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
133
|
Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity? THE LANCET. RESPIRATORY MEDICINE 2021; 9:1450-1466. [PMID: 34688434 PMCID: PMC8530467 DOI: 10.1016/s2213-2600(21)00407-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022]
Abstract
Many nations are pursuing the rollout of SARS-CoV-2 vaccines as an exit strategy from unprecedented COVID-19-related restrictions. However, the success of this strategy relies critically on the duration of protective immunity resulting from both natural infection and vaccination. SARS-CoV-2 infection elicits an adaptive immune response against a large breadth of viral epitopes, although the duration of the response varies with age and disease severity. Current evidence from case studies and large observational studies suggests that, consistent with research on other common respiratory viruses, a protective immunological response lasts for approximately 5-12 months from primary infection, with reinfection being more likely given an insufficiently robust primary humoral response. Markers of humoral and cell-mediated immune memory can persist over many months, and might help to mitigate against severe disease upon reinfection. Emerging data, including evidence of breakthrough infections, suggest that vaccine effectiveness might be reduced significantly against emerging variants of concern, and hence secondary vaccines will need to be developed to maintain population-level protective immunity. Nonetheless, other interventions will also be required, with further outbreaks likely to occur due to antigenic drift, selective pressures for novel variants, and global population mobility.
Collapse
|
134
|
Mornese Pinna S, Lupia T, Scabini S, Vita D, De Benedetto I, Gaviraghi A, Colasanto I, Varese A, Cattel F, De Rosa FG, Corcione S. Monoclonal antibodies for the treatment of COVID-19 patients: An umbrella to overcome the storm? Int Immunopharmacol 2021; 101:108200. [PMID: 34607231 PMCID: PMC8479899 DOI: 10.1016/j.intimp.2021.108200] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The world is facing up the most considerable vaccination effort in history to end the Coronavirus disease 2019 (COVID-19) pandemic. Several monoclonal antibodies (mAbs) direct against the Receptor binding domain of the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) received an Emergency Use Authorization for outpatient management of mild to moderate manifestation from COVID-19. MAbs could prevent the transmission SARS-CoV-2 infection and protect individuals from progression to severe disease. Under the pressure of different treatment strategies, SARS-CoV-2 has been demonstrated to select for different sets of mutations named "variants" that could impair the effectiveness of mAbs by modifying target epitopes. We provide an overview of both completed and unpublished, or ongoing clinical trials of mAbs used and review state of art in order to describe clinical options, possible indications, and the place in therapy for these agents in the treatment of COVID-19 with a particular focus on anti-spike agents. Then, we reassume the current evidence on mutations of the SARS-CoV-2 that might confer resistance to neutralization by multiple mAbs.
Collapse
Affiliation(s)
- Simone Mornese Pinna
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Tommaso Lupia
- Unit of Infectious Diseases, Cardinal Massaia Hospital, Asti, Italy.
| | - Silvia Scabini
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Davide Vita
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Ilaria De Benedetto
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Alberto Gaviraghi
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Irene Colasanto
- S.C. Farmacia Ospedaliera -A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Alessandra Varese
- S.C. Farmacia Ospedaliera -A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Francesco Cattel
- S.C. Farmacia Ospedaliera -A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | | | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy; Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
135
|
Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Kosakovsky Pond SL, Fera D, Shafer RW. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet 2021; 22:757-773. [PMID: 34535792 PMCID: PMC8447121 DOI: 10.1038/s41576-021-00408-x] [Citation(s) in RCA: 696] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The past several months have witnessed the emergence of SARS-CoV-2 variants with novel spike protein mutations that are influencing the epidemiological and clinical aspects of the COVID-19 pandemic. These variants can increase rates of virus transmission and/or increase the risk of reinfection and reduce the protection afforded by neutralizing monoclonal antibodies and vaccination. These variants can therefore enable SARS-CoV-2 to continue its spread in the face of rising population immunity while maintaining or increasing its replication fitness. The identification of four rapidly expanding virus lineages since December 2020, designated variants of concern, has ushered in a new stage of the pandemic. The four variants of concern, the Alpha variant (originally identified in the UK), the Beta variant (originally identified in South Africa), the Gamma variant (originally identified in Brazil) and the Delta variant (originally identified in India), share several mutations with one another as well as with an increasing number of other recently identified SARS-CoV-2 variants. Collectively, these SARS-CoV-2 variants complicate the COVID-19 research agenda and necessitate additional avenues of laboratory, epidemiological and clinical research.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Philip L Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ravindra K Gupta
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban, South Africa
| | | | - Daniela Fera
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
136
|
Coronavirus Diseases (COVID-19): Features, Epidemiology, Mutational variations and Treatments Across India. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses are a group of enveloped viruses with a longer, undivided single-stranded RNA genome, which cause diseases in a variety of animals and humans. In addition to infecting other economically important animals (such as pigs or chickens), six coronaviruses are known to infect human hosts, causing respiratory illness. Severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are highly pathogenic animal coronaviruses that have produced local, regional, and worldwide outbreaks. It is suspected that the current pandemic, caused by a similar coronavirus (SARS-CoVID-19). A new variant of B.1.617 lineage that causes worry about many countries has been identified first in the UK but it makes the worst scenario in India. This includes mutants with immune prolapse E484K and N501Y mutations. Some new variants recently discovered in India like double & triple mutation due to some specific climatic and environmental conditions. Because it creates a viral exodermis and contacts human cells due to mutations in peplomer proteins. The other type of protein is spike protein, are required to bind to receptors in human cells mutations. It can improve the affinity for human receptors and increase the virus, they can cause immune prolapse and reinfection. Moreover, these viruses are capable of adapting and mutating to the new environment. Our immune system is unable to distinguish them from previous infections due to changes in the structure of proteins. The rapid transmission of the COVID-19 around the world causing a severe mortality rate depends on mutation on their spike protein.
Collapse
|
137
|
Baj A, Novazzi F, Drago Ferrante F, Genoni A, Tettamanzi E, Catanoso G, Dalla Gasperina D, Dentali F, Focosi D, Maggi F. Spike protein evolution in the SARS-CoV-2 Delta variant of concern: a case series from Northern Lombardy. Emerg Microbes Infect 2021; 10:2010-2015. [PMID: 34651569 PMCID: PMC8567936 DOI: 10.1080/22221751.2021.1994356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023]
Abstract
The SARS-CoV-2 variant of concern (VOC) "Delta" is currently defined by PANGOLIN as a cluster of 33 different AY sublineages. Delta (in particular B.1.617.2) is largely and rapidly replacing the Alpha VOC as the dominant clade in most countries. To date, variations in the Spike protein of the Delta VOC have largely been limited. We report here the results of a genomic surveillance programme from Northern Italy. We identified several Delta sublineages harbouring mutations previously reported in GISAID at extremely low frequencies and in different combinations. Two patients (one of them vaccinated) tested positive for a Delta sublineage harbouring S71F, T250I, T572I and K854N. More patients tested positive for G769 V plus C1248F, A352S, and R158G and C1248F, respectively. Genomic surveillance of Delta variants should be encouraged to anticipate immune escape and deploy countermeasures.
Collapse
Affiliation(s)
- Andreina Baj
- Laboratory of Microbiology, ASST Sette Laghi, Varese, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | - Angelo Genoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | | | | | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Fabrizio Maggi
- Laboratory of Microbiology, ASST Sette Laghi, Varese, Italy
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
138
|
Lapuente D, Fuchs J, Willar J, Vieira Antão A, Eberlein V, Uhlig N, Issmail L, Schmidt A, Oltmanns F, Peter AS, Mueller-Schmucker S, Irrgang P, Fraedrich K, Cara A, Hoffmann M, Pöhlmann S, Ensser A, Pertl C, Willert T, Thirion C, Grunwald T, Überla K, Tenbusch M. Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization. Nat Commun 2021; 12:6871. [PMID: 34836955 PMCID: PMC8626513 DOI: 10.1038/s41467-021-27063-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Several effective SARS-CoV-2 vaccines are currently in use, but effective boosters are needed to maintain or increase immunity due to waning responses and the emergence of novel variants. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice. In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (TRM); mucosal neutralization of virus variants of concern is also enhanced. The mRNA prime provokes a comprehensive T cell response consisting of circulating and lung TRM after the boost, while the plasmid DNA prime induces mostly mucosal T cells. Concomitantly, the intranasal boost strategies lead to complete protection against a SARS-CoV-2 infection in mice. Our data thus suggest that mucosal booster immunizations after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Jana Fuchs
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Willar
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Vieira Antão
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Valentina Eberlein
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Nadja Uhlig
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Leila Issmail
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Anna Schmidt
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Oltmanns
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Antonia Sophia Peter
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Mueller-Schmucker
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Kirsten Fraedrich
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | - Thomas Grunwald
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, IZI, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
139
|
Ward T, Glaser A, Johnsen A, Xu F, Hall I, Pellis L. Growth, reproduction numbers and factors affecting the spread of SARS-CoV-2 novel variants of concern in the UK from October 2020 to July 2021: a modelling analysis. BMJ Open 2021; 11:e056636. [PMID: 34819293 PMCID: PMC8613669 DOI: 10.1136/bmjopen-2021-056636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Importations of novel variants of concern (VOC), particularly B.1.617.2, have become the impetus behind recent outbreaks of SARS-CoV-2. Concerns around the impact on vaccine effectiveness, transmissibility and severity are now driving the public health response to these variants. This paper analyses the patterns of growth in hospitalisations and confirmed cases for novel VOCs by age groups, geography and ethnicity in the context of changing behaviour, non-pharmaceutical interventions (NPIs) and the UK vaccination programme. We seek to highlight where strategies have been effective and periods that have facilitated the establishment of new variants. DESIGN We have algorithmically linked the most complete testing and hospitalisation data in England to create a data set of confirmed infections and hospitalisations by SARS-CoV-2 genomic variant. We have used these linked data sets to analyse temporal, geographic and demographic distinctions. SETTING AND PARTICIPANTS The setting is England from October 2020 to July 2021. Participants included all COVID-19 tests that included RT-PCR CT gene target data or underwent sequencing and hospitalisations that could be linked to these tests. METHODS To calculate the instantaneous growth rate for VOCs we have developed a generalised additive model fit to multiple splines and varying day of the week effects. We have further modelled the instantaneous reproduction number Rt for the B.1.1.7 and B.1.617.2 variants and included a doubly interval censored model to temporally adjust the confirmed variant cases. RESULTS We observed a clear replacement of the predominant B.1.1.7 by the B.1.617.2 variant without observing sustained exponential growth in other novel variants. Modelled exponential growth of RT PCR gene target triple-positive cases was initially detected in the youngest age groups, although we now observe across all ages a very small doubling time of 10.7 (95% CI 9.1 to 13.2) days and 8 (95% CI 6.9 to 9.1) days for cases and hospitalisations, respectively. We observe that growth in RT PCR gene target triple-positive cases was first detected in the Indian ethnicity group in late February, with a peak of 0.06 (95% CI 0.07 to 0.05) in the instantaneous growth rate, but is now maintained by the white ethnicity groups, observing a doubling time of 6.8 (95% CI 4.9 to 11) days. Rt analysis indicates a reproduction number advantage of 0.45 for B.1.617.2 relative to B.1.1.7, with the Rt value peaking at 1.85 for B.1.617.2. CONCLUSIONS Our results illustrate a clear transmission advantage for the B.1.617.2 variant and the growth in hospitalisations illustrates that this variant is able to maintain exponential growth within age groups that are largely doubly vaccinated. There are concerning signs of intermittent growth in the B.1.351 variant, reaching a 28-day doubling time peak in March 2021, although this variant is presently not showing any evidence of a transmission advantage over B.1.617.2. Step 1b of the UK national lockdown easing was sufficient to precipitate exponential growth in B.1.617.2 cases for most regions and younger adult age groups. The final stages of NPI easing appeared to have a negligible impact on the growth of B.1.617.2 with every region experiencing sustained exponential growth from step 2. Nonetheless, early targeted local NPIs appeared to markedly reduced growth of B.1.617.2. Later localised interventions, at a time of higher prevalence and greater geographic dispersion of this variant, appeared to have a negligible impact on growth.
Collapse
Affiliation(s)
| | - Alex Glaser
- Department of Health and Social Care, London, UK
| | | | - Feng Xu
- The University of Manchester, Manchester, UK
| | - Ian Hall
- Department of Mathematics, University of Manchester, Manchester, UK
| | | |
Collapse
|
140
|
Liang KH, Chiang PY, Ko SH, Chou YC, Lu RM, Lin HT, Chen WY, Lin YL, Tao MH, Jan JT, Wu HC. Antibody cocktail effective against variants of SARS-CoV-2. J Biomed Sci 2021; 28:80. [PMID: 34814920 PMCID: PMC8609252 DOI: 10.1186/s12929-021-00777-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/12/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an RNA virus with a high mutation rate. Importantly, several currently circulating SARS-CoV-2 variants are associated with loss of efficacy for both vaccines and neutralizing antibodies. METHODS We analyzed the binding activity of six highly potent antibodies to the spike proteins of SARS-CoV-2 variants, assessed their neutralizing abilities with pseudovirus and authentic SARS-CoV-2 variants and evaluate efficacy of antibody cocktail in Delta SARS-CoV-2-infected hamster models as prophylactic and post-infection treatments. RESULTS The tested RBD-chAbs, except RBD-chAb-25, maintained binding ability to spike proteins from SARS-CoV-2 variants. However, only RBD-chAb-45 and -51 retained neutralizing activities; RBD-chAb-1, -15, -25 and -28 exhibited diminished neutralization for all SARS-CoV-2 variants. Notably, several cocktails of our antibodies showed low IC50 values (3.35-27.06 ng/ml) against the SARS-CoV-2 variant pseudoviruses including United Kingdom variant B.1.1.7 (Alpha), South Africa variant B.1.351 (Beta), Brazil variant P1 (Gamma), California variant B.1.429 (Epsilon), New York variant B.1.526 (Iota), and India variants, B.1.617.1 (Kappa) and B.1.617.2 (Delta). RBD-chAb-45, and -51 showed PRNT50 values 4.93-37.54 ng/ml when used as single treatments or in combination with RBD-chAb-15 or -28, according to plaque assays with authentic Alpha, Gamma and Delta SARS-CoV-2 variants. Furthermore, the antibody cocktail of RBD-chAb-15 and -45 exhibited potent prophylactic and therapeutic effects in Delta SARS-CoV-2 variant-infected hamsters. CONCLUSIONS The cocktail of RBD-chAbs exhibited potent neutralizing activities against SARS-CoV-2 variants. These antibody cocktails are highly promising candidate tools for controlling new SARS-CoV-2 variants, including Delta.
Collapse
Affiliation(s)
- Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Pao-Yin Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Hsiu-Ting Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Wan-Yu Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Yi-Ling Lin
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Mi-Hua Tao
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
141
|
Khan MI, Baig MH, Mondal T, Alorabi M, Sharma T, Dong JJ, Cho JY. Impact of the Double Mutants on Spike Protein of SARS-CoV-2 B.1.617 Lineage on the Human ACE2 Receptor Binding: A Structural Insight. Viruses 2021; 13:2295. [PMID: 34835101 PMCID: PMC8625741 DOI: 10.3390/v13112295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023] Open
Abstract
The recent emergence of novel SARS-CoV-2 variants has threatened the efforts to contain the COVID-19 pandemic. The emergence of these "variants of concern" has increased immune escape and has supplanted the ancestral strains. The novel variants harbored by the B.1.617 lineage (kappa and delta) carry mutations within the receptor-binding domain of spike (S) protein (L452R + E484Q and L452R + T478K), the region binding to the host receptor. The double mutations carried by these novel variants are primarily responsible for an upsurge number of COVID-19 cases in India. In this study, we thoroughly investigated the impact of these double mutations on the binding capability to the human host receptor. We performed several structural analyses and found that the studied double mutations increase the binding affinity of the spike protein to the human host receptor (ACE2). Furthermore, our study showed that these double mutants might be a dominant contributor enhancing the receptor-binding affinity of SARS-CoV-2 and consequently making it more stable. We also investigated the impact of these mutations on the binding affinity of two monoclonal antibodies (Abs) (2-15 and LY-CoV555) and found that the presence of the double mutations also hinders its binding with the studied Abs. The principal component analysis, free energy landscape, intermolecular interaction, and other investigations provided a deeper structural insight to better understand the molecular mechanism responsible for increased viral transmissibility of these variants.
Collapse
Affiliation(s)
- Mohd Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Korea;
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| | - Tanmoy Mondal
- Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, 41345 Gothenburg, Sweden;
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Tanuj Sharma
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Korea; (M.H.B.); (T.S.)
| | - Jae Yong Cho
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul 120-752, Korea;
| |
Collapse
|
142
|
Key points of technical review for the registration of SARS-CoV-2 nucleic acid tests in China. Bioanalysis 2021; 13:1731-1741. [PMID: 34779648 PMCID: PMC8597659 DOI: 10.4155/bio-2021-0166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In response to the outbreak of COVID-19, in accordance with the principles of ‘unified command, early involvement, prompt review and scientific approval’ as well as the requirements of ensuring product safety, effectiveness and controllable quality, the Center for Medical Device Evaluation (CMDE) has issued Key Points of Technical Review for the Registration of SARS-CoV-2 Nucleic Acid Tests (Key Points) to provide the requirements of tests. Because of the sustainability of the pandemic, more efforts and attempts are needed for SARS-CoV-2 detection and control. This article interprets the Key Points issued by the CMDE and provides certain refinements to wider audiences.
Collapse
|
143
|
Arora P, Kempf A, Nehlmeier I, Graichen L, Sidarovich A, Winkler MS, Schulz S, Jäck HM, Stankov MV, Behrens GMN, Pöhlmann S, Hoffmann M. Delta variant (B.1.617.2) sublineages do not show increased neutralization resistance. Cell Mol Immunol 2021; 18:2557-2559. [PMID: 34635807 PMCID: PMC8503871 DOI: 10.1038/s41423-021-00772-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Affiliation(s)
- Prerna Arora
- grid.418215.b0000 0000 8502 7018Infection Biology Unit, German Primate Center, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Amy Kempf
- grid.418215.b0000 0000 8502 7018Infection Biology Unit, German Primate Center, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Inga Nehlmeier
- grid.418215.b0000 0000 8502 7018Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Luise Graichen
- grid.418215.b0000 0000 8502 7018Infection Biology Unit, German Primate Center, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Anzhalika Sidarovich
- grid.418215.b0000 0000 8502 7018Infection Biology Unit, German Primate Center, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Martin S. Winkler
- grid.7450.60000 0001 2364 4210Department of Anesthesiology, University of Göttingen Medical Center, Georg-August University Göttingen, Göttingen, Germany
| | - Sebastian Schulz
- grid.5330.50000 0001 2107 3311Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- grid.5330.50000 0001 2107 3311Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Metodi V. Stankov
- grid.10423.340000 0000 9529 9877Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Georg M. N. Behrens
- grid.10423.340000 0000 9529 9877Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Stefan Pöhlmann
- grid.418215.b0000 0000 8502 7018Infection Biology Unit, German Primate Center, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- grid.418215.b0000 0000 8502 7018Infection Biology Unit, German Primate Center, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
144
|
Pan T, Hu Z, Hu F, Zhang Y, Liu B, Ke C, She Q, He X, Tang X, Zhang H. Significantly reduced abilities to cross-neutralize SARS-CoV-2 variants by sera from convalescent COVID-19 patients infected by Delta or early strains. Cell Mol Immunol 2021; 18:2560-2562. [PMID: 34635805 PMCID: PMC8503867 DOI: 10.1038/s41423-021-00776-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Affiliation(s)
- Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Center for Infection and Immunity Study, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhongwei Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fengyu Hu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bingfeng Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qiumin She
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
- National Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China.
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- National Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong, China.
| |
Collapse
|
145
|
McBryde ES, Meehan MT, Caldwell JM, Adekunle AI, Ogunlade ST, Kuddus MA, Ragonnet R, Jayasundara P, Trauer JM, Cope RC. Modelling direct and herd protection effects of vaccination against the SARS-CoV-2 Delta variant in Australia. Med J Aust 2021; 215:427-432. [PMID: 34477236 PMCID: PMC8662033 DOI: 10.5694/mja2.51263] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To analyse the outcomes of COVID-19 vaccination by vaccine type, age group eligibility, vaccination strategy, and population coverage. DESIGN Epidemiologic modelling to assess the final size of a COVID-19 epidemic in Australia, with vaccination program (Pfizer, AstraZeneca, mixed), vaccination strategy (vulnerable first, transmitters first, untargeted), age group eligibility threshold (5 or 15 years), population coverage, and pre-vaccination effective reproduction number ( R eff v ¯ ) for the SARS-CoV-2 Delta variant as factors. MAIN OUTCOME MEASURES Numbers of SARS-CoV-2 infections; cumulative hospitalisations, deaths, and years of life lost. RESULTS Assuming R eff v ¯ = 5, the current mixed vaccination program (vaccinating people aged 60 or more with the AstraZeneca vaccine and people under 60 with the Pfizer vaccine) will not achieve herd protection unless population vaccination coverage reaches 85% by lowering the vaccination eligibility age to 5 years. At R eff v ¯ = 3, the mixed program could achieve herd protection at 60-70% population coverage and without vaccinating 5-15-year-old children. At R eff v ¯ = 7, herd protection is unlikely to be achieved with currently available vaccines, but they would still reduce the number of COVID-19-related deaths by 85%. CONCLUSION Vaccinating vulnerable people first is the optimal policy when population vaccination coverage is low, but vaccinating more socially active people becomes more important as the R eff v ¯ declines and vaccination coverage increases. Assuming the most plausible R eff v ¯ of 5, vaccinating more than 85% of the population, including children, would be needed to achieve herd protection. Even without herd protection, vaccines are highly effective in reducing the number of deaths.
Collapse
Affiliation(s)
- Emma S McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD
| | - Michael T Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD
| | - Jamie M Caldwell
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD.,University of Hawai'i at Mānoa, Honolulu, HI, United States of America
| | - Adeshina I Adekunle
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD.,Australian Department of Defence, Melbourne, VIC
| | - Samson T Ogunlade
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD
| | - Md Abdul Kuddus
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD.,University of Rajshahi, Rajshahi, Bangladesh
| | | | | | | | - Robert C Cope
- Biological Data Sciences Institute, Australian National University, Canberra, ACT
| |
Collapse
|
146
|
Li Z, Wu J, Zhou J, Yuan B, Chen J, Wu W, Mo L, Qu Z, Zhou F, Dong Y, Huang K, Liu Z, Wang T, Symmes D, Gu J, Sho E, Zhang J, Chen R, Xu Y. A Vimentin-Targeting Oral Compound with Host-Directed Antiviral and Anti-Inflammatory Actions Addresses Multiple Features of COVID-19 and Related Diseases. mBio 2021; 12:e0254221. [PMID: 34634931 PMCID: PMC8510534 DOI: 10.1128/mbio.02542-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022] Open
Abstract
Damage in COVID-19 results from both the SARS-CoV-2 virus and its triggered overactive host immune responses. Therapeutic agents that focus solely on reducing viral load or hyperinflammation fail to provide satisfying outcomes in all cases. Although viral and cellular factors have been extensively profiled to identify potential anti-COVID-19 targets, new drugs with significant efficacy remain to be developed. Here, we report the potent preclinical efficacy of ALD-R491, a vimentin-targeting small molecule compound, in treating COVID-19 through its host-directed antiviral and anti-inflammatory actions. We found that by altering the physical properties of vimentin filaments, ALD-491 affected general cellular processes as well as specific cellular functions relevant to SARS-CoV-2 infection. Specifically, ALD-R491 reduced endocytosis, endosomal trafficking, and exosomal release, thus impeding the entry and egress of the virus; increased the microcidal capacity of macrophages, thus facilitating the pathogen clearance; and enhanced the activity of regulatory T cells, therefore suppressing the overactive immune responses. In cultured cells, ALD-R491 potently inhibited the SARS-CoV-2 spike protein and human ACE2-mediated pseudoviral infection. In aged mice with ongoing, productive SARS-CoV-2 infection, ALD-R491 reduced disease symptoms as well as lung damage. In rats, ALD-R491 also reduced bleomycin-induced lung injury and fibrosis. Our results indicate a unique mechanism and significant therapeutic potential for ALD-R491 against COVID-19. We anticipate that ALD-R491, an oral, fast-acting, and non-cytotoxic agent targeting the cellular protein with multipart actions, will be convenient, safe, and broadly effective, regardless of viral mutations, for patients with early- or late-stage disease, post-COVID-19 complications, and other related diseases. IMPORTANCE With the Delta variant currently fueling a resurgence of new infections in the fully vaccinated population, developing an effective therapeutic drug is especially critical and urgent in fighting COVID-19. In contrast to the many efforts to repurpose existing drugs or address only one aspect of COVID-19, we are developing a novel agent with first-in-class mechanisms of action that address both the viral infection and the overactive immune system in the pathogenesis of the disease. Unlike virus-directed therapeutics that may lose efficacy due to viral mutations, and immunosuppressants that require ideal timing to be effective, this agent, with its unique host-directed antiviral and anti-inflammatory actions, can work against all variants of the virus, be effective during all stages of the disease, and even resolve post-disease damage and complications. Further development of the compound will provide an important tool in the fight against COVID-19 and its complications, as well as future outbreaks of new viruses.
Collapse
Affiliation(s)
- Zhizhen Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Jianping Wu
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Luoda Biosciences, Inc., Chuzhou, Anhui, China
| | - Ji Zhou
- Institute of Biology and Medical Sciences, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Baoshi Yuan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Jiqiao Chen
- KCI Biotech (Suzhou) Inc., Suzhou, Jiangsu, China
| | - Wanchen Wu
- Joinn Laboratories (Suzhou), Co., Ltd., Suzhou, Jiangsu, China
| | - Lian Mo
- Aluda Pharmaceuticals, Inc., Menlo Park, California, USA
| | - Zhipeng Qu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Fei Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Yingying Dong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Kai Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Zhiwei Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Tao Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Deebie Symmes
- Aluda Pharmaceuticals, Inc., Menlo Park, California, USA
| | - Jingliang Gu
- Joinn Laboratories (Suzhou), Co., Ltd., Suzhou, Jiangsu, China
| | - Eiketsu Sho
- KCI Biotech (Suzhou) Inc., Suzhou, Jiangsu, China
| | - Jingping Zhang
- Institute of Biology and Medical Sciences, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Ruihuan Chen
- Luoda Biosciences, Inc., Chuzhou, Anhui, China
- Aluda Pharmaceuticals, Inc., Menlo Park, California, USA
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
147
|
Mariotti S, Capocefalo A, Chiantore MV, Iacobino A, Teloni R, De Angelis ML, Gallinaro A, Pirillo MF, Borghi M, Canitano A, Michelini Z, Baggieri M, Marchi A, Bucci P, McKay PF, Acchioni C, Sandini S, Sgarbanti M, Tosini F, Di Virgilio A, Venturi G, Marino F, Esposito V, Di Bonito P, Magurano F, Cara A, Negri D, Nisini R. Isolation and Characterization of Mouse Monoclonal Antibodies That Neutralize SARS-CoV-2 and Its Variants of Concern Alpha, Beta, Gamma and Delta by Binding Conformational Epitopes of Glycosylated RBD With High Potency. Front Immunol 2021; 12:750386. [PMID: 34764961 PMCID: PMC8576447 DOI: 10.3389/fimmu.2021.750386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Antibodies targeting Receptor Binding Domain (RBD) of SARS-CoV-2 have been suggested to account for the majority of neutralizing activity in COVID-19 convalescent sera and several neutralizing antibodies (nAbs) have been isolated, characterized and proposed as emergency therapeutics in the form of monoclonal antibodies (mAbs). However, SARS-CoV-2 variants are rapidly spreading worldwide from the sites of initial identification. The variants of concern (VOC) B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.167.2 (Delta) showed mutations in the SARS-CoV-2 spike protein potentially able to cause escape from nAb responses with a consequent reduction of efficacy of vaccines and mAbs-based therapy. We produced the recombinant RBD (rRBD) of SARS-CoV-2 spike glycoprotein from the Wuhan-Hu 1 reference sequence in a mammalian system, for mice immunization to isolate new mAbs with neutralizing activity. Here we describe four mAbs that were able to bind the rRBD in Enzyme-Linked Immunosorbent Assay and the transmembrane full-length spike protein expressed in HEK293T cells by flow cytometry assay. Moreover, the mAbs recognized the RBD in supernatants of SARS-CoV-2 infected VERO E6 cells by Western Blot under non-reducing condition or in supernatants of cells infected with lentivirus pseudotyped for spike protein, by immunoprecipitation assay. Three out of four mAbs lost their binding efficiency to completely N-deglycosylated rRBD and none was able to bind the same recombinant protein expressed in Escherichia coli, suggesting that the epitopes recognized by three mAbs are generated by the conformational structure of the glycosylated native protein. Of particular relevance, three mAbs were able to inhibit Wuhan SARS-CoV-2 infection of VERO E6 cells in a plaque-reduction neutralization test and the Wuhan SARS-CoV-2 as well as the Alpha, Beta, Gamma and Delta VOC in a pseudoviruses-based neutralization test. These mAbs represent important additional tools for diagnosis and therapy of COVID-19 and may contribute to the understanding of the functional structure of SARS-CoV-2 RBD.
Collapse
Affiliation(s)
- Sabrina Mariotti
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Antonio Capocefalo
- Dipartimento Sicurezza alimentare, nutrizione e sanità pubblica veterinaria, Istituto Superiore di Sanità, Roma, Italy
| | | | - Angelo Iacobino
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Raffaela Teloni
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Maria Laura De Angelis
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Roma, Italy
| | - Alessandra Gallinaro
- Centro nazionale per la salute globale, Istituto Superiore di Sanità, Roma, Italy
| | - Maria Franca Pirillo
- Centro nazionale per la salute globale, Istituto Superiore di Sanità, Roma, Italy
| | - Martina Borghi
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Andrea Canitano
- Centro nazionale per la salute globale, Istituto Superiore di Sanità, Roma, Italy
| | - Zuleika Michelini
- Centro nazionale per la salute globale, Istituto Superiore di Sanità, Roma, Italy
| | - Melissa Baggieri
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Antonella Marchi
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Paola Bucci
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Paul F. McKay
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Chiara Acchioni
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Silvia Sandini
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Marco Sgarbanti
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Fabio Tosini
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Antonio Di Virgilio
- Centro per la sperimentazione ed il benessere animale, Istituto Superiore di Sanità, Roma, Italy
| | - Giulietta Venturi
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Francesco Marino
- Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Roma, Italy
| | - Valeria Esposito
- Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Roma, Italy
| | - Paola Di Bonito
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Fabio Magurano
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Andrea Cara
- Centro nazionale per la salute globale, Istituto Superiore di Sanità, Roma, Italy
| | - Donatella Negri
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
148
|
Ramesh S, Govindarajulu M, Parise RS, Neel L, Shankar T, Patel S, Lowery P, Smith F, Dhanasekaran M, Moore T. Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines (Basel) 2021; 9:1195. [PMID: 34696303 PMCID: PMC8537675 DOI: 10.3390/vaccines9101195] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The widespread increase in multiple severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants is causing a significant health concern in the United States and worldwide. These variants exhibit increased transmissibility, cause more severe disease, exhibit evasive immune properties, impair neutralization by antibodies from vaccinated individuals or convalescence sera, and reinfection. The Centers for Disease Control and Prevention (CDC) has classified SARS-CoV-2 variants into variants of interest, variants of concern, and variants of high consequence. Currently, four variants of concern (B.1.1.7, B.1.351, P.1, and B.1.617.2) and several variants of interests (B.1.526, B.1.525, and P.2) are characterized and are essential for close monitoring. In this review, we discuss the different SARS-CoV-2 variants, emphasizing variants of concern circulating the world and highlight the various mutations and how these mutations affect the characteristics of the virus. In addition, we discuss the most common vaccines and the various studies concerning the efficacy of these vaccines against different variants of concern.
Collapse
Affiliation(s)
- Sindhu Ramesh
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Rachel S. Parise
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Logan Neel
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Tharanath Shankar
- Department of Internal Medicine, Ramaiah Medical College and Hospital, Bengaluru 560054, Karnataka, India;
| | - Shriya Patel
- Department of Neuroscience, Middlebury College, Middlebury, VT 05753, USA;
| | - Payton Lowery
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Forrest Smith
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University Harrison School of Pharmacy, Auburn, AL 36849, USA; (S.R.); (M.G.); (R.S.P.); (L.N.); (P.L.); (F.S.); (M.D.)
| |
Collapse
|
149
|
Laurini E, Marson D, Aulic S, Fermeglia A, Pricl S. Molecular rationale for SARS-CoV-2 spike circulating mutations able to escape bamlanivimab and etesevimab monoclonal antibodies. Sci Rep 2021; 11:20274. [PMID: 34642465 PMCID: PMC8511038 DOI: 10.1038/s41598-021-99827-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
The purpose of this work is to provide an in silico molecular rationale of the role eventually played by currently circulating mutations in the receptor binding domain of the SARS-CoV-2 spike protein (S-RBDCoV‑2) in evading the immune surveillance effects elicited by the two Eli Lilly LY-CoV555/bamlanivimab and LY-CoV016/etesevimab monoclonal antibodies. The main findings from this study show that, compared to the wild-type SARS-CoV-2 spike protein, mutations E484A/G/K/Q/R/V, Q493K/L/R, S494A/P/R, L452R and F490S are predicted to be markedly resistant to neutralization by LY-CoV555, while mutations K417E/N/T, D420A/G/N, N460I/K/S/T, T415P, and Y489C/S are predicted to confer LY-CoV016 escaping advantage to the viral protein. A challenge of our global in silico results against relevant experimental data resulted in an overall 90% agreement. Thus, the results presented provide a molecular-based rationale for all relative experimental findings, constitute a fast and reliable tool for identifying and prioritizing all present and newly reported circulating spike SARS-CoV-2 variants with respect to antibody neutralization, and yield substantial structural information for the development of next-generation vaccines and monoclonal antibodies more resilient to viral evolution.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, 34127, Trieste, Italy.
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136, Lodz, Poland.
| |
Collapse
|
150
|
Arora P, Sidarovich A, Krüger N, Kempf A, Nehlmeier I, Graichen L, Moldenhauer AS, Winkler MS, Schulz S, Jäck HM, Stankov MV, Behrens GMN, Pöhlmann S, Hoffmann M. B.1.617.2 enters and fuses lung cells with increased efficiency and evades antibodies induced by infection and vaccination. Cell Rep 2021; 37:109825. [PMID: 34614392 PMCID: PMC8487035 DOI: 10.1016/j.celrep.2021.109825] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), B.1.617.2, emerged in India and has spread to over 80 countries. B.1.617.2 replaced B.1.1.7 as the dominant virus in the United Kingdom, resulting in a steep increase in new infections, and a similar development is expected for other countries. Effective countermeasures require information on susceptibility of B.1.617.2 to control by antibodies elicited by vaccines and used for coronavirus disease 2019 (COVID-19) therapy. We show, using pseudotyping, that B.1.617.2 evades control by antibodies induced upon infection and BNT162b2 vaccination, although to a lesser extent as compared to B.1.351. We find that B.1.617.2 is resistant against bamlanivimab, a monoclonal antibody with emergency use authorization for COVID-19 therapy. Finally, we show increased Calu-3 lung cell entry and enhanced cell-to-cell fusion of B.1.617.2, which may contribute to augmented transmissibility and pathogenicity of this variant. These results identify B.1.617.2 as an immune evasion variant with increased capacity to enter and fuse lung cells.
Collapse
Affiliation(s)
- Prerna Arora
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Anzhalika Sidarovich
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Nadine Krüger
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | | | - Martin S Winkler
- Department of Anesthesiology, University of Göttingen Medical Center, Göttingen, Georg-August University of Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Glückstraße 6, 91054 Erlangen, Germany
| | - Metodi V Stankov
- Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Georg M N Behrens
- Department for Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany.
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany.
| |
Collapse
|