101
|
Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R. Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol 2009; 11:257-68. [PMID: 19198601 PMCID: PMC6089348 DOI: 10.1038/ncb1833] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 11/26/2008] [Indexed: 01/13/2023]
Abstract
Rho GTPases control cytoskeletal dynamics through cytoplasmic effectors, and regulate transcriptional activation by the Myocardin Related Transcription Factors (MRTFs), coactivators for Serum Response Factor (SRF). We used RNAi to investigate the contribution of the MRTF-SRF pathway to cytoskeletal dynamics in MDA-MB-231 breast carcinoma and B16F2 melanoma cells, where basal MRTF-SRF activity is Rho-dependent. Depletion of MRTFs or SRF reduces cell adhesion, spreading, invasion and motility in culture, without affecting proliferation or inducing apoptosis; MRTF-depleted tumor cell xenografts exhibit reduced cell motility but proliferate normally. MRTF- and SRF-depleted tumor cells fail to colonise the lung from the bloodstream, being unable to persist following their initial arrival at the lung. Only a few genes exhibit MRTF-dependent expression in both cell lines. Two of these, MYH9 (MLC2) and MYL9 (NMHCIIa), are also required for invasion and lung colonisation. Conversely, expression of an activated MRTF increases lung colonisation by poorly metastatic B16F0 cells. Actin-based cell behaviour and experimental metastasis thus requires Rho-dependent nuclear signalling through the MRTF-SRF network.
Collapse
Affiliation(s)
- Souhila Medjkane
- Transcription Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | |
Collapse
|
102
|
Abstract
Mechanical stresses are ever present in the cellular environment, whether through external forces that are applied to tissues or endogenous forces that are generated within the active cytoskeleton. Despite the wide array of studies demonstrating that such forces affect cellular signaling and function, it remains unclear whether mechanotransduction in different contexts shares common mechanisms. Here, I discuss possible mechanisms by which applied forces, cell-generated forces and changes in substrate mechanics could exert changes in cell function through common mechanotransduction machinery. I draw from examples that are primarily focused on the role of adhesions in transducing mechanical forces. Based on this discussion, emerging themes arise that connect these different areas of inquiry and suggest multiple avenues for future studies.
Collapse
Affiliation(s)
- Christopher S Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
103
|
Abstract
Mechanotransduction research has focused historically on how externally applied forces can affect cell signalling and function. A growing body of evidence suggests that contractile forces that are generated internally by the actomyosin cytoskeleton are also important in regulating cell behaviour, and suggest a broader role for mechanotransduction in biology. Although the molecular basis for these cellular forces in mechanotransduction is being pursued in cell culture, researchers are also beginning to appreciate their contribution to in vivo developmental processes. Here, we examine the role for mechanical forces and contractility in regulating cell and tissue structure and function during development.
Collapse
Affiliation(s)
- Michele A. Wozniak
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104
| |
Collapse
|
104
|
McDonald JA, Khodyakova A, Aranjuez G, Dudley C, Montell DJ. PAR-1 kinase regulates epithelial detachment and directional protrusion of migrating border cells. Curr Biol 2008; 18:1659-67. [PMID: 18976916 PMCID: PMC2593744 DOI: 10.1016/j.cub.2008.09.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 01/02/2023]
Abstract
BACKGROUND Many cells that migrate during normal embryonic development or in metastatic cancer first detach from an epithelium. However, this step is often difficult to observe directly in vivo, and the mechanisms controlling the ability of cells to leave the epithelium are poorly understood. In addition, once cells detach, they must assume a migratory phenotype, involving changes in cytoskeletal and signaling dynamics. Drosophila border cells provide a model system in which a combination of forward genetics and live-cell imaging can allow researchers to investigate the cellular and molecular mechanisms of epithelial cell detachment and migration in vivo. RESULTS We identified the Drosophila homolog of the serine/threonine kinase PAR-1 (MARK/Kin1) in a screen for mutations that disrupt border cell migration. Previous studies identified two proteins, Apontic and Notch, that indirectly affect border cell detachment by regulating transcription of downstream targets. In contrast, PAR-1 directly modulates apical-basal polarity between border cells and epithelial cells to promote detachment. Furthermore, PAR-1, but not the apical polarity complex protein PAR-3, promotes the directionality of transient cell protrusions, which border cells require for sensing the chemoattractant gradient. CONCLUSIONS We conclude that PAR-1-dependent apical-basal polarity is required for proper detachment of migratory border cells from neighboring epithelial cells. Moreover, polarity controlled by PAR-1 influences the ability of migratory cells to sense direction, a critical feature of migration. Thus, this work reveals new insights into two distinct, but essential, steps of epithelial cell migration.
Collapse
Affiliation(s)
- Jocelyn A. McDonald
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Anna Khodyakova
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - George Aranjuez
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Colleen Dudley
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Denise J. Montell
- Department of Biological Chemistry, Center for Cell Dynamics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
105
|
Breaching the basement membrane: who, when and how? Trends Cell Biol 2008; 18:560-74. [DOI: 10.1016/j.tcb.2008.08.007] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/20/2008] [Accepted: 08/22/2008] [Indexed: 12/16/2022]
|
106
|
Pawson C, Eaton BA, Davis GW. Formin-dependent synaptic growth: evidence that Dlar signals via Diaphanous to modulate synaptic actin and dynamic pioneer microtubules. J Neurosci 2008; 28:11111-23. [PMID: 18971454 PMCID: PMC2654187 DOI: 10.1523/jneurosci.0833-08.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 09/06/2008] [Indexed: 11/21/2022] Open
Abstract
The diaphanous gene is the founding member of a family of Diaphanous-related formin proteins (DRFs). We identified diaphanous in a screen for genes that are necessary for the normal growth and stabilization of the Drosophila neuromuscular junction (NMJ). Here, we demonstrate that diaphanous mutations perturb synaptic growth at the NMJ. Diaphanous protein is present both presynaptically and postsynaptically. However, genetic rescue experiments in combination with additional genetic interaction experiments support the conclusion that dia is necessary presynaptically for normal NMJ growth. We then document defects in both the actin and microtubule cytoskeletons in dia mutant nerve terminals. In so doing, we define and characterize a population of dynamic pioneer microtubules within the NMJ that are distinct from the bundled core of microtubules identified by the MAP1b-like protein Futsch. Defects in both synaptic actin and dynamic pioneer microtubules are correlated with impaired synaptic growth in dia mutants. Finally, we present genetic evidence that Dia functions downstream of the presynaptic receptor tyrosine phosphatase Dlar and the Rho-type GEF (guanine nucleotide exchange factor) trio to control NMJ growth. Based on the established function of DRFs as Rho-GTPase-dependent regulators of the cell cytoskeleton, we propose a model in which Diaphanous links receptor tyrosine phosphatase signaling at the plasma membrane to growth-dependent modulation of the synaptic actin and microtubule cytoskeletons.
Collapse
Affiliation(s)
- Catherine Pawson
- Department of Biochemistry and Biophysics, Programs in Neuroscience and Cell Biology, University of California, San Francisco, San Francisco, California 94158-2822
| | - Benjamin A. Eaton
- Department of Biochemistry and Biophysics, Programs in Neuroscience and Cell Biology, University of California, San Francisco, San Francisco, California 94158-2822
| | - Graeme W. Davis
- Department of Biochemistry and Biophysics, Programs in Neuroscience and Cell Biology, University of California, San Francisco, San Francisco, California 94158-2822
| |
Collapse
|
107
|
Desprat N, Supatto W, Pouille PA, Beaurepaire E, Farge E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell 2008; 15:470-477. [PMID: 18804441 DOI: 10.1016/j.devcel.2008.07.009] [Citation(s) in RCA: 246] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 05/16/2008] [Accepted: 07/23/2008] [Indexed: 01/16/2023]
Abstract
Mechanical deformations associated with embryonic morphogenetic movements have been suggested to actively participate in the signaling cascades regulating developmental gene expression. Here we develop an appropriate experimental approach to ascertain the existence and the physiological relevance of this phenomenon. By combining the use of magnetic tweezers with in vivo laser ablation, we locally control physiologically relevant deformations in wild-type Drosophila embryonic tissues. We demonstrate that the deformations caused by germ band extension upregulate Twist expression in the stomodeal primordium. We find that stomodeal compression triggers Src42A-dependent nuclear translocation of Armadillo/beta-catenin, which is required for Twist mechanical induction in the stomodeum. Finally, stomodeal-specific RNAi-mediated silencing of Twist during compression impairs the differentiation of midgut cells, resulting in larval lethality. These experiments show that mechanically induced Twist upregulation in stomodeal cells is necessary for subsequent midgut differentiation.
Collapse
Affiliation(s)
- Nicolas Desprat
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Willy Supatto
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France; Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS and INSERM U 696, 91128 Palaiseau, France
| | - Philippe-Alexandre Pouille
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS and INSERM U 696, 91128 Palaiseau, France
| | - Emmanuel Farge
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168 CNRS, Institut Curie, 11 rue Pierre et Marie Curie, F-75005, Paris, France.
| |
Collapse
|
108
|
Serum Response Factor Is Required for Sprouting Angiogenesis and Vascular Integrity. Dev Cell 2008; 15:448-461. [DOI: 10.1016/j.devcel.2008.07.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/25/2008] [Accepted: 07/31/2008] [Indexed: 01/04/2023]
|
109
|
Serum-induced phosphorylation of the serum response factor coactivator MKL1 by the extracellular signal-regulated kinase 1/2 pathway inhibits its nuclear localization. Mol Cell Biol 2008; 28:6302-13. [PMID: 18694962 DOI: 10.1128/mcb.00427-08] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Megakaryoblastic leukemia 1 (MKL1) is a myocardin-related coactivator of the serum response factor (SRF) transcription factor, which has an integral role in differentiation, migration, and proliferation. Serum induces RhoA-dependent translocation of MKL1 from the cytoplasm to the nucleus and also causes a rapid increase in MKL1 phosphorylation. We have mapped a serum-inducible phosphorylation site and found, surprisingly, that its mutation causes constitutive localization to the nucleus, suggesting that phosphorylation of MKL1 inhibits its serum-induced nuclear localization. The key site, serine 454, resembles a mitogen-activated protein kinase phosphorylation site, and its modification was blocked by the MEK1 inhibitor U0126, implying that extracellular signal-regulated kinase 1/2 (ERK1/2) is the serum-inducible kinase that phosphorylates MKL1. Previous results indicated that G-actin binding to MKL1 promotes its nuclear export, and we found that MKL1 phosphorylation is required for its binding to actin, explaining its effect on localization. We propose a model in which serum induction initially stimulates MKL1 nuclear localization due to a decrease in G-actin levels, but MKL1 is then downregulated by nuclear export due to ERK1/2 phosphorylation.
Collapse
|
110
|
JNK signaling controls border cell cluster integrity and collective cell migration. Curr Biol 2008; 18:538-44. [PMID: 18394890 DOI: 10.1016/j.cub.2008.03.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 12/16/2022]
Abstract
Collective cell movement is a mechanism for invasion identified in many developmental events. Examples include the movement of lateral-line neurons in Zebrafish, cells in the inner blastocyst, and metastasis of epithelial tumors [1]. One key model to study collective migration is the movement of border cell clusters in Drosophila. Drosophila egg chambers contain 15 nurse cells and a single oocyte surrounded by somatic follicle cells. At their anterior end, polar cells recruit several neighboring follicle cells to form the border cell cluster [2]. By stage 9, and over 6 hr, border cells migrate as a cohort between nurse cells toward the oocyte. The specification and directionality of border cell movement are regulated by hormonal and signaling mechanisms [3]. However, how border cells are held together while they migrate is not known. Here, we show that a negative-feedback loop controlling JNK activity regulates border cell cluster integrity. JNK signaling modulates contacts between border cells and between border cells and substratum to sustain collective migration by regulating several effectors including the polarity factor Bazooka and the cytoskeletal adaptor D-Paxillin. We anticipate a role for the JNK pathway in controlling collective cell movements in other morphogenetic and clinical models.
Collapse
|
111
|
A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 2008; 453:751-6. [PMID: 18480755 DOI: 10.1038/nature06953] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 03/31/2008] [Indexed: 12/17/2022]
Abstract
Epithelial tissues maintain a robust architecture which is important for their barrier function, but they are also remodelled through the reorganization of cell-cell contacts. Tissue stability requires intercellular adhesion mediated by E-cadherin, in particular its trans-association in homophilic complexes supported by actin filaments through beta- and alpha-catenin. How alpha-catenin dynamic interactions between E-cadherin/beta-catenin and cortical actin control both stability and remodelling of adhesion is unclear. Here we focus on Drosophila homophilic E-cadherin complexes rather than total E-cadherin, including diffusing 'free' E-cadherin, because these complexes are a better proxy for adhesion. We find that E-cadherin complexes partition in very stable microdomains (that is, bona fide adhesive foci which are more stable than remodelling contacts). Furthermore, we find that stability and mobility of these microdomains depend on two actin populations: small, stable actin patches concentrate at homophilic E-cadherin clusters, whereas a rapidly turning over, contractile network constrains their lateral movement by a tethering mechanism. alpha-Catenin controls epithelial architecture mainly through regulation of the mobility of homophilic clusters and it is largely dispensable for their stability. Uncoupling stability and mobility of E-cadherin complexes suggests that stable epithelia may remodel through the regulated mobility of very stable adhesive foci.
Collapse
|
112
|
Abstract
The mechanical aspects of embryonic morphogenesis have been widely analysed by numerical simulations of invagination in sea urchins and Drosophila gastrulation. Finite element models, which describe the tissue as a continuous medium, lead to the global invagination morphogenesis observed in vivo. Here we develop a simulation of multicellular embryo invagination that allows access to both cellular and multicellular mechanical behaviours of the embryo. In this model, the tissue is composed of adhesive individual cells, in which shape change dynamics is governed by internal acto-myosin forces and the hydrodynamic flow associated with membrane movements. We investigated the minimal structural and force elements sufficient to phenocopy mesoderm invagination. The minimal structures are cell membranes characterized by an acto-myosin cortical tension and connected by apical and basal junctions and an acto-myosin contractile ring connected to the apical junctions. An increase in the apical-cortical surface tension is the only control parameter change required to phenocopy most known multicellular and cellular shape changes of Drosophila gastrulation. Specifically, behaviours observed in vivo, including apical junction movements at the onset of gastrulation, cell elongation and subsequent shortening during invagination, and the development of a dorso-ventral gradient of thickness of the embryo, are predicted by this model as passive mechanical consequences of the genetically controlled increase in the apical surface tension in invaginating mesoderm cells, thus demonstrating the accurate description of structures at both global and single cell scales.
Collapse
|
113
|
Lecuit T. "Developmental mechanics": cellular patterns controlled by adhesion, cortical tension and cell division. HFSP JOURNAL 2008; 2:72-8. [PMID: 19404474 PMCID: PMC2645572 DOI: 10.2976/1.2896332] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Indexed: 11/19/2022]
Abstract
How embryos are shaped during development has inspired the work of many, embryologists, geneticists, but also mathematicians such as Turing, and physicists. Despite the inherent complexity of the problems it tackles, developmental biology has produced one of the most spectacular conceptual achievements, demonstrating that embryos are built with conserved molecules that orchestrate pattern and morphogenesis. As the logic of development now emerges, new challenges arise, such as how tissue mechanics is controlled. Quantitative approaches and computational models are essential to predict tissue organization and cell shapes. I review briefly how physical concepts have fueled this research in the past decades.
Collapse
Affiliation(s)
- Thomas Lecuit
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy case 907, 13288 Marseille Cedex 09, France
| |
Collapse
|
114
|
Mulinari S, Barmchi MP, Häcker U. DRhoGEF2 and diaphanous regulate contractile force during segmental groove morphogenesis in the Drosophila embryo. Mol Biol Cell 2008; 19:1883-92. [PMID: 18287521 DOI: 10.1091/mbc.e07-12-1230] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Morphogenesis of the Drosophila embryo is associated with dynamic rearrangement of the actin cytoskeleton mediated by small GTPases of the Rho family. These GTPases act as molecular switches that are activated by guanine nucleotide exchange factors. One of these factors, DRhoGEF2, plays an important role in the constriction of actin filaments during pole cell formation, blastoderm cellularization, and invagination of the germ layers. Here, we show that DRhoGEF2 is equally important during morphogenesis of segmental grooves, which become apparent as tissue infoldings during mid-embryogenesis. Examination of DRhoGEF2-mutant embryos indicates a role for DRhoGEF2 in the control of cell shape changes during segmental groove morphogenesis. Overexpression of DRhoGEF2 in the ectoderm recruits myosin II to the cell cortex and induces cell contraction. At groove regression, DRhoGEF2 is enriched in cells posterior to the groove that undergo apical constriction, indicating that groove regression is an active process. We further show that the Formin Diaphanous is required for groove formation and strengthens cell junctions in the epidermis. Morphological analysis suggests that Dia regulates cell shape in a way distinct from DRhoGEF2. We propose that DRhoGEF2 acts through Rho1 to regulate acto-myosin constriction but not Diaphanous-mediated F-actin nucleation during segmental groove morphogenesis.
Collapse
Affiliation(s)
- Shai Mulinari
- Department of Experimental Medical Science, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, 22184 Lund, Sweden
| | | | | |
Collapse
|
115
|
Homem CCF, Peifer M. Diaphanous regulates myosin and adherens junctions to control cell contractility and protrusive behavior during morphogenesis. Development 2008; 135:1005-18. [PMID: 18256194 DOI: 10.1242/dev.016337] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Formins are key regulators of actin nucleation and elongation. Diaphanous-related formins, the best-known subclass, are activated by Rho and play essential roles in cytokinesis. In cultured cells, Diaphanous-related formins also regulate cell adhesion, polarity and microtubules, suggesting that they may be key regulators of cell shape change and migration during development. However, their essential roles in cytokinesis hamper our ability to test this hypothesis. We used loss- and gain-of-function approaches to examine the role of Diaphanous in Drosophila morphogenesis. We found that Diaphanous has a dynamic expression pattern consistent with a role in regulating cell shape change. We used constitutively active Diaphanous to examine its roles in morphogenesis and its mechanisms of action. This revealed an unexpected role in regulating myosin levels and activity at adherens junctions during cell shape change, suggesting that Diaphanous helps coordinate adhesion and contractility of the underlying actomyosin ring. We tested this hypothesis by reducing Diaphanous function, revealing striking roles in stabilizing adherens junctions and inhibiting cell protrusiveness. These effects also are mediated through coordinated effects on myosin activity and adhesion, suggesting a common mechanism for Diaphanous action during morphogenesis.
Collapse
Affiliation(s)
- Catarina C F Homem
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
116
|
Morita T, Mayanagi T, Sobue K. Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. ACTA ACUST UNITED AC 2007; 179:1027-42. [PMID: 18056415 PMCID: PMC2099179 DOI: 10.1083/jcb.200708174] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelial–mesenchymal transition (EMT) is a critical process occurring during embryonic development and in fibrosis and tumor progression. Dissociation of cell–cell contacts and remodeling of the actin cytoskeleton are major events of the EMT. Here, we show that myocardin-related transcription factors (MRTFs; also known as MAL and MKL) are critical mediators of transforming growth factor β (TGF-β) 1–induced EMT. In all epithelial cell lines examined here, TGF-β1 triggers the nuclear translocation of MRTFs. Ectopic expression of constitutive-active MRTF-A induces EMT, whereas dominant-negative MRTF-A or knockdown of MRTF-A and -B prevents the TGF-β1–induced EMT. MRTFs form complexes with Smad3. Via Smad3, the MRTF–Smad3 complexes bind to a newly identified cis-element GCCG-like motif in the promoter region of Canis familiaris and the human slug gene, which activates slug transcription and thereby dissociation of cell–cell contacts. MRTFs also increase the expression levels of actin cytoskeletal proteins via serum response factor, thereby triggering reorganization of the actin cytoskeleton. Thus, MRTFs are important mediators of TGF-β1–induced EMT.
Collapse
Affiliation(s)
- Tsuyoshi Morita
- Department of Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
117
|
Corrigall D, Walther RF, Rodriguez L, Fichelson P, Pichaud F. Hedgehog signaling is a principal inducer of Myosin-II-driven cell ingression in Drosophila epithelia. Dev Cell 2007; 13:730-742. [PMID: 17981140 DOI: 10.1016/j.devcel.2007.09.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 07/17/2007] [Accepted: 09/25/2007] [Indexed: 11/29/2022]
Abstract
Cell constriction promotes epithelial sheet invagination during embryogenesis across phyla. However, how this cell response is linked to global patterning information during organogenesis remains unclear. To address this issue, we have used the Drosophila eye and studied the formation of the morphogenetic furrow (MF), which is characterized by cells undergoing a synchronous apical constriction and apicobasal contraction. We show that this cell response relies on microtubules and F-actin enrichment within the apical domain of the constricting cell as well as on the activation of nonmuscle myosin. In the MF, Hedgehog (Hh) signaling is required to promote cell constriction downstream of cubitus interruptus (ci), and, in this context, Ci155 functions redundantly with mad, the main effector of dpp/BMP signaling. Furthermore, ectopically activating Hh signaling in fly epithelia reveals a direct relationship between the duration of exposure to this signaling pathway, the accumulation of activated Myosin II, and the degree of tissue invagination.
Collapse
Affiliation(s)
- Douglas Corrigall
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, Department of Anatomy and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Rhian F Walther
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, Department of Anatomy and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Lilia Rodriguez
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, Department of Anatomy and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Pierre Fichelson
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, Department of Anatomy and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | - Franck Pichaud
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, Department of Anatomy and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, United Kingdom.
| |
Collapse
|
118
|
Modulation of SRF-dependent gene expression by association of SPT16 with MKL1. Exp Cell Res 2007; 314:629-37. [PMID: 18036521 DOI: 10.1016/j.yexcr.2007.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 01/13/2023]
Abstract
MKL1 (MRTF-A/MAL) is a member of the myocardin-related transcription factor family that plays a key role in the development and differentiation of smooth muscle cells (SMCs) via activation of serum response factor (SRF)-dependent SMC gene expression. MKL1 associates with SRF and stimulates its transcriptional activity. Here, by performing matrix-assisted laser desorption/ionization-time of flight mass spectrometric analysis combined with in vitro glutathione S-transferase pull-down assay, we identified 4 candidate proteins that associate with MKL1 through the N-terminus region of MKL1. SPT16, ATP citrate lyase, nucleolin and radixin were identified, and the physical and functional interactions between MKL1 and SPT16 were examined. SPT16 is a component of the FACT (facilitating chromatin transcription) complex that allows RNA polymerase II to traverse the nucleosomes. SPT16 associates with MKL1 in vitro and in vivo; moreover, SSRP1, another component of the FACT complex, associates with the N-terminus region of MKL1 in vitro. SPT16 synergistically activates the transcriptional activity of MKL1. These results show that the expression of nucleosomal SRF-dependent genes, including the SMC gene, is activated by MKL1 via activation of SRF and recruitment of the FACT complex.
Collapse
|
119
|
Morita T, Mayanagi T, Sobue K. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs). Exp Cell Res 2007; 313:3432-45. [PMID: 17714703 DOI: 10.1016/j.yexcr.2007.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 07/07/2007] [Accepted: 07/10/2007] [Indexed: 01/27/2023]
Abstract
RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes.
Collapse
Affiliation(s)
- Tsuyoshi Morita
- Depertment of Neuroscience (D13), Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita, Osaka, Japan
| | | | | |
Collapse
|
120
|
Abstract
Smooth muscle cells (SMCs) possess remarkable phenotypic plasticity that allows rapid adaptation to fluctuating environmental cues. For example, vascular SMCs undergo profound changes in their phenotype during neointimal formation in response to vessel injury or within atherosclerotic plaques. Recent studies have shown that interaction of serum response factor (SRF) and its numerous accessory cofactors with CArG box DNA sequences within promoter chromatin of SMC genes is a nexus for integrating signals that influence SMC differentiation in development and disease. During development, SMC-restricted sets of posttranslational histone modifications are acquired within the CArG box chromatin of SMC genes. These modifications in turn control the chromatin-binding properties of SRF. The histone modifications appear to encode a SMC-specific epigenetic program that is used by extracellular cues to influence SMC differentiation, by regulating binding of SRF and its partners to the chromatin template. Thus, SMC differentiation is dynamically regulated by the interplay between SRF accessory cofactors, the SRF-CArG interaction, and the underlying histone modification program. As such, the inherent plasticity of the SMC lineage offers unique glimpses into how cellular differentiation is dynamically controlled at the level of chromatin within the context of changing microenvironments. Further elucidation of how chromatin regulates SMC differentiation will undoubtedly yield valuable insights into both normal developmental processes and the pathogenesis of several vascular diseases that display detrimental SMC phenotypic behavior.
Collapse
Affiliation(s)
- Oliver G McDonald
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA 22903, USA
| | | |
Collapse
|
121
|
Zhao XH, Laschinger C, Arora P, Szászi K, Kapus A, McCulloch CA. Force activates smooth muscle α-actin promoter activity through the Rho signaling pathway. J Cell Sci 2007; 120:1801-9. [PMID: 17456553 DOI: 10.1242/jcs.001586] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In pressure or volume overload, hypertrophic growth of the myocardium is associated with myofibroblast differentiation, a process in which cardiac fibroblasts express smooth muscle α-actin (SMA). The signaling mechanisms that mediate force-induced myofibroblast differentiation and SMA expression are not defined. We examined the role of the Rho–Rho-kinase pathway in force-induced SMA expression in fibroblasts using an in vitro model system that applies static tensile forces (0.65 pN/μm2) to integrins via collagen-coated magnetite beads. Force maximally induced RhoA activation at 10 minutes that was localized to force application sites and required intact actin filaments. Force application induced phosphorylation of LIM kinase (5-10 minutes) and an early dephosphorylation of cofilin (5 minutes) that was followed by prolonged cofilin phosphorylation. These responses were blocked by Y27632, an inhibitor of Rho kinase. Force promoted actin filament assembly at force application sites (10-20 minutes), a process that required Rho kinase and cofilin. Force application induced nuclear translocation of the transcriptional co-activator MRTF-A but not MRTF-B. Nuclear translocation of MRTF-A required Rho kinase and intact actin filaments. Force caused 3.5-fold increases of SMA promoter activity that were completely blocked by transfection of cells with dominant-negative MRTF-A or by inhibition of Rho kinase or by actin filament disassembly. These data indicate that mechanical forces mediate actin assembly through the Rho–Rho-kinase–LIMK cofilin pathway. Force-mediated actin filament assembly promotes nuclear translocation of MRTF and subsequent activation of the SMA promoter to enhance SMA expression.
Collapse
Affiliation(s)
- Xiao-Han Zhao
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
122
|
Abstract
The association of transcriptional coactivators with DNA-binding proteins provides an efficient mechanism to expand and modulate genetic information encoded within the genome. Myocardin-related transcription factors (MRTFs), including myocardin, MRTF-A/MKL1/MAL, and MRTF-B/MKL2, comprise a family of related transcriptional coactivators that physically associate with the MADS box transcription factor, serum response factor, and synergistically activate transcription. MRTFs transduce cytoskeletal signals to the nucleus, activating a subset of serum response factor-dependent genes promoting myogenic differentiation and cytoskeletal organization. MRTFs are multifunctional proteins that share evolutionarily conserved domains required for actin-binding, homo- and heterodimerization, high-order chromatin organization, and transcriptional activation. Mice harboring loss-of-function mutations in myocardin, MRTF-A, and MRTF-B, respectively, display distinct phenotypes, including cell autonomous defects in vascular smooth muscle cell and myoepithelial cell differentiation and function. This article reviews the molecular basis of MRTF function with particular focus on the role MRTFs play in regulating cardiovascular patterning, vascular smooth muscle cell and cardiomyocyte differentiation and in the pathogenesis of congenital heart disease and vascular proliferative syndromes.
Collapse
Affiliation(s)
- Michael S Parmacek
- University of Pennsylvania Cardiovascular Institute and Department of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
123
|
Nöllmann M, Stone MD, Bryant Z, Gore J, Crisona NJ, Hong SC, Mitelheiser S, Maxwell A, Bustamante C, Cozzarelli NR. Multiple modes of Escherichia coli DNA gyrase activity revealed by force and torque. Nat Struct Mol Biol 2007; 14:264-71. [PMID: 17334374 DOI: 10.1038/nsmb1213] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 02/01/2007] [Indexed: 11/08/2022]
Abstract
E. coli DNA gyrase uses the energy of ATP hydrolysis to introduce essential negative supercoils into the genome, thereby working against the mechanical stresses that accumulate in supercoiled DNA. Using a magnetic-tweezers assay, we demonstrate that small changes in force and torque can switch gyrase among three distinct modes of activity. Under low mechanical stress, gyrase introduces negative supercoils by a mechanism that depends on DNA wrapping. Elevated tension or positive torque suppresses DNA wrapping, revealing a second mode of activity that resembles the activity of topoisomerase IV. This 'distal T-segment capture' mode results in active relaxation of left-handed braids and positive supercoils. A third mode is responsible for the ATP-independent relaxation of negative supercoils. We present a branched kinetic model that quantitatively accounts for all of our single-molecule results and agrees with existing biochemical data.
Collapse
Affiliation(s)
- Marcelo Nöllmann
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Williams MJ, Habayeb MS, Hultmark D. Reciprocal regulation of Rac1 and Rho1 inDrosophilacirculating immune surveillance cells. J Cell Sci 2007; 120:502-11. [PMID: 17227793 DOI: 10.1242/jcs.03341] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many cell types it is evident that the small GTPases Rac and Rho regulate each other's activities. What is unclear is exactly how this regulation occurs. To further elucidate this interaction we examined the activities of Rac1 and Rho1 in Drosophila cellular immune surveillance cells. In larvae the cellular immune response involves circulating cells (hemocytes) that can be recruited from a hematopoietic organ located behind the brain, as well as a sessile population found just underneath the larval cuticle. We demonstrate for the first time that Rho-kinase activation requires both Rho1 and the Drosophila c-Jun N-terminal kinase (Basket). We also show that Rac1, via Basket, regulates Rho1 activity, possibly by inhibiting RhoGAPp190. In the reciprocal pathway, co-expression of dominant negative Rho-kinase and constitutive active Rho1 induces a Rac1-like phenotype. This induction requires the formin Diaphanous. Co-expression of dominant negative Rho-kinase and constitutive active Rho1 also induces filopodia formation, with Diaphanous enriched at the tips. The Rac1-like phenotypes, and filopodia formation, could be blocked by co-expression of dominant negative Rac1. Finally, though dominant negative Rac1 is able to block filopodia formation in the overexpression experiments, only Rac2 is necessary for filopodia formed by hemocytes after parasitization.
Collapse
Affiliation(s)
- Michael J Williams
- Umeå Centre for Molecular Pathogenesis (UCMP), Umeå University, S-901 87, Umeå, Sweden.
| | | | | |
Collapse
|
125
|
Hinson JS, Medlin MD, Lockman K, Taylor JM, Mack CP. Smooth muscle cell-specific transcription is regulated by nuclear localization of the myocardin-related transcription factors. Am J Physiol Heart Circ Physiol 2007; 292:H1170-80. [PMID: 16997888 DOI: 10.1152/ajpheart.00864.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
On the basis of our previous studies on RhoA signaling in smooth muscle cells (SMC), we hypothesized that RhoA-mediated nuclear translocalization of the myocardin-related transcription factors (MRTFs) was important for regulating SMC phenotype. MRTF-A protein and MRTF-B message were detected in aortic SMC and in many adult mouse organs that contain a large SMC component. Both MRTFs upregulated SMC-specific promoter activity as well as endogenous SM22α expression in multipotential 10T1/2 cells, although to a lesser extent than myocardin. We used enhanced green fluorescent protein (EGFP) fusion proteins to demonstrate that the myocardin factors have dramatically different localization patterns and that the stimulation of SMC-specific transcription by certain RhoA-dependent agonists was likely mediated by increased nuclear translocation of the MRTFs. Importantly, a dominant-negative form of MRTF-A (ΔB1/B2) that traps endogenous MRTFs in the cytoplasm inhibited the SM α-actin, SM22α, and SM myosin heavy chain promoters in SMC and attenuated the effects of sphingosine 1-phosphate and transforming growth factor (TGF)-β on SMC-specific transcription. Our data confirmed the importance of the NH2-terminal RPEL domains for regulating MRTF localization, but our analysis of MRTF-A/myocardin chimeras and myocardin RPEL2 mutations indicated that the myocardin B1/B2 region can override this signal. Gel shift assays demonstrated that myocardin factor activity correlated well with ternary complex formation at the SM α-actin CArGs and that MRTF-serum response factor interactions were partially dependent on CArG sequence. Taken together, our results indicate that the MRTFs regulate SMC-specific gene expression in at least some SMC subtypes and that regulation of MRTF nuclear localization may be important for the effects of selected agonists on SMC phenotype.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Aorta, Thoracic/metabolism
- Cell Differentiation
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Lysophospholipids/pharmacology
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Platelet-Derived Growth Factor/pharmacology
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/metabolism
- Rats
- Serum Response Factor/metabolism
- Sphingosine/analogs & derivatives
- Sphingosine/pharmacology
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic/drug effects
- Transfection
- Transforming Growth Factor beta/pharmacology
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Jeremiah S Hinson
- Department of Pathology and Laboratory Medicine and the Carolina Cardiovascular Biology Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
126
|
Fan L, Sebe A, Péterfi Z, Masszi A, Thirone AC, Rotstein OD, Nakano H, McCulloch CA, Szászi K, Mucsi I, Kapus A. Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway. Mol Biol Cell 2007; 18:1083-97. [PMID: 17215519 PMCID: PMC1805104 DOI: 10.1091/mbc.e06-07-0602] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal-myofibroblast transition (EMT), a key feature in organ fibrosis, is regulated by the state of intercellular contacts. Our recent studies have shown that an initial injury of cell-cell junctions is a prerequisite for transforming growth factor-beta1 (TGF-beta1)-induced transdifferentiation of kidney tubular cells into alpha-smooth muscle actin (SMA)-expressing myofibroblasts. Here we analyzed the underlying contact-dependent mechanisms. Ca(2+) removal-induced disruption of intercellular junctions provoked Rho/Rho kinase (ROK)-mediated myosin light chain (MLC) phosphorylation and Rho/ROK-dependent SMA promoter activation. Importantly, myosin-based contractility itself played a causal role, because the myosin ATPase inhibitor blebbistatin or a nonphosphorylatable, dominant negative MLC (DN-MLC) abolished the contact disruption-triggered SMA promoter activation, eliminated the synergy between contact injury and TGF-beta1, and suppressed SMA expression. To explore the responsible mechanisms, we investigated the localization of the main SMA-inducing transcription factors, serum response factor (SRF), and its coactivator myocardin-related transcription factor (MRTF). Contact injury enhanced nuclear accumulation of SRF and MRTF. These processes were inhibited by DN-Rho or DN-MLC. TGF-beta1 strongly facilitated nuclear accumulation of MRTF in cells with reduced contacts but not in intact epithelia. DN-myocardin abrogated the Ca(2+)-removal- +/- TGF-beta1-induced promoter activation. These studies define a new mechanism whereby cell contacts regulate epithelial-myofibroblast transition via Rho-ROK-phospho-MLC-dependent nuclear accumulation of MRTF.
Collapse
Affiliation(s)
- Lingzhi Fan
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Attila Sebe
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
- Nephrology Research Center, Semmelweis University, Budapest, Hungary H-1089
| | - Zalán Péterfi
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - András Masszi
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Ana C.P. Thirone
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Ori D. Rotstein
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Hiroyasu Nakano
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan 113-8421
| | | | - Katalin Szászi
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - István Mucsi
- First Department of Internal Medicine, Semmelweis University, Budapest, Hungary H-1083
| | - András Kapus
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| |
Collapse
|
127
|
Sengupta A, McCulloch CA. Functional Interactions of the Extracellular Matrix with Mechanosensitive Channels. CURRENT TOPICS IN MEMBRANES 2007. [DOI: 10.1016/s1063-5823(06)58007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
128
|
Posern G, Treisman R. Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 2006; 16:588-96. [DOI: 10.1016/j.tcb.2006.09.008] [Citation(s) in RCA: 429] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/29/2006] [Accepted: 09/25/2006] [Indexed: 11/30/2022]
|
129
|
Liu N, Olson EN. Coactivator control of cardiovascular growth and remodeling. Curr Opin Cell Biol 2006; 18:715-22. [PMID: 17046230 DOI: 10.1016/j.ceb.2006.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/02/2006] [Indexed: 12/29/2022]
Abstract
Transcriptional coactivators enhance gene expression by associating with sequence-specific transcription factors and serve as the primary targets of developmental and physiological signals in diverse biological processes. Recent studies have revealed key roles for transcriptional coactivators in the control of gene expression during development, growth and remodeling of the cardiovascular system. Based on the importance of the cardiovascular coactivators identified to date, coactivator control is emerging as a central regulatory mechanism in development and homeostasis of the cardiovascular system and other tissues.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | | |
Collapse
|
130
|
Sun Y, Boyd K, Xu W, Ma J, Jackson CW, Fu A, Shillingford JM, Robinson GW, Hennighausen L, Hitzler JK, Ma Z, Morris SW. Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Mol Cell Biol 2006; 26:5809-26. [PMID: 16847333 PMCID: PMC1592762 DOI: 10.1128/mcb.00024-06] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcription of immediate-early genes--as well as multiple genes affecting muscle function, cytoskeletal integrity, apoptosis control, and wound healing/angiogenesis--is regulated by serum response factor (Srf). Extracellular signals regulate Srf in part via a pathway involving megakaryoblastic leukemia 1 (Mkl1, also known as myocardin-related transcription factor A [Mrtf-a]), which coactivates Srf-responsive genes downstream of Rho GTPases. Here we investigate Mkl1 function using gene targeting and show the protein to be essential for the physiologic preparation of the mammary gland during pregnancy and the maintenance of lactation. Lack of Mkl1 causes premature involution and impairs expression of Srf-dependent genes in the mammary myoepithelial cells, which control milk ejection following oxytocin-induced contraction. Despite the importance of Srf in multiple transcriptional pathways and widespread Mkl1 expression, the spectrum of abnormalities associated with Mkl1 absence appears surprisingly restricted.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis
- Child
- Failure to Thrive
- Female
- Gene Expression Profiling
- Gene Expression Regulation
- Gene Targeting
- Heart/anatomy & histology
- Heart/embryology
- Humans
- Infant
- Lactation/physiology
- Leukemia, Megakaryoblastic, Acute
- Male
- Mammary Glands, Animal/abnormalities
- Mammary Glands, Animal/anatomy & histology
- Mammary Glands, Animal/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Milk
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/ultrastructure
- Oligonucleotide Array Sequence Analysis
- Oxytocin/metabolism
- Pregnancy
- Prolactin/metabolism
- STAT3 Transcription Factor
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Yi Sun
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Hervy M, Hoffman L, Beckerle MC. From the membrane to the nucleus and back again: bifunctional focal adhesion proteins. Curr Opin Cell Biol 2006; 18:524-32. [PMID: 16908128 DOI: 10.1016/j.ceb.2006.08.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 08/02/2006] [Indexed: 01/21/2023]
Abstract
Cell substratum adhesion influences a variety of processes including motility, proliferation and survival. In recent years, it has become clear that there are proteins that are capable of shuttling between cell adhesion zones and the nucleus, providing a mechanism for transcellular coordination and communication. Recent findings have given insight into the physiological signals that trigger trafficking of focal adhesion constituents to the nucleus, where they make diverse contributions to the control of gene expression.
Collapse
Affiliation(s)
- Martial Hervy
- Huntsman Cancer Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
132
|
Miano JM, Long X, Fujiwara K. Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 2006; 292:C70-81. [PMID: 16928770 DOI: 10.1152/ajpcell.00386.2006] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serum response factor (SRF) is a highly conserved and widely expressed, single copy transcription factor that theoretically binds up to 1,216 permutations of a 10-base pair cis element known as the CArG box. SRF-binding sites were defined initially in growth-related genes. Gene inactivation or knockdown studies in species ranging from unicellular eukaryotes to mice have consistently shown loss of SRF to be incompatible with life. However, rather than being critical for proliferation and growth, these genetic studies point to a crucial role for SRF in cellular migration and normal actin cytoskeleton and contractile biology. In fact, recent genomic studies reveal nearly half of the >200 SRF target genes encoding proteins with functions related to actin dynamics, lamellipodial/filopodial formation, integrin-cytoskeletal coupling, myofibrillogenesis, and muscle contraction. SRF has therefore emerged as a dispensable transcription factor for cellular growth but an absolutely essential orchestrator of actin cytoskeleton and contractile homeostasis. This review summarizes the recent genomic and genetic analyses of CArG-SRF that support its role as an ancient, master regulator of the actin cytoskeleton and contractile machinery.
Collapse
Affiliation(s)
- Joseph M Miano
- Cardiovascular Research Institute, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
133
|
Janody F, Treisman JE. Actin capping protein alpha maintains vestigial-expressing cells within the Drosophila wing disc epithelium. Development 2006; 133:3349-57. [PMID: 16887822 PMCID: PMC1544359 DOI: 10.1242/dev.02511] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue patterning must be translated into morphogenesis through cell shape changes mediated by remodeling of the actin cytoskeleton. We have found that Capping protein alpha (Cpa) and Capping protein beta (Cpb), which prevent extension of the barbed ends of actin filaments, are specifically required in the wing blade primordium of the Drosophila wing disc. cpa or cpb mutant cells in this region, but not in the remainder of the wing disc, are extruded from the epithelium and undergo apoptosis. Excessive actin filament polymerization is not sufficient to explain this phenotype, as loss of Cofilin or Cyclase-associated protein does not cause cell extrusion or death. Misexpression of Vestigial, the transcription factor that specifies the wing blade, both increases cpa transcription and makes cells dependent on cpa for their maintenance in the epithelium. Our results suggest that Vestigial specifies the cytoskeletal changes that lead to morphogenesis of the adult wing.
Collapse
Affiliation(s)
- Florence Janody
- Developmental Biology Institute of Marseille Luminy, UMR6216 - Case 907, Parc Scientific de Luminy, 13288 Marseille Cedex 09, France.
| | | |
Collapse
|
134
|
Chaqour B, Yang R, Sha Q. Mechanical stretch modulates the promoter activity of the profibrotic factor CCN2 through increased actin polymerization and NF-kappaB activation. J Biol Chem 2006; 281:20608-22. [PMID: 16707502 DOI: 10.1074/jbc.m600214200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The connective tissue growth factor known as CCN2 is an inducible, profibrotic molecule that becomes aberrantly expressed in mechanical overload-bearing tissues. In this study, we found that CCN2 gene expression is rapidly induced in cyclically stretched bladder smooth muscle cells (SMCs) in vitro and in the detrusor muscle of a mechanically overloaded bladder in a rat model of experimental urethral obstruction. The activity of CCN2 promoter constructs, transiently transfected into cultured SMCs, was increased (up to 6-fold) by continuous cyclic stretching. Molecular analyses of the CCN2 promoter by serial construct deletions, cis-element mutagenesis, and electrophoretic mobility shift assays revealed that a highly conserved NF-kappaB binding site located within the CCN2 proximal promoter region is responsible for the activation of the promoter by stretch. Chromatin immunoprecipitation assays showed that NF-kappaB binds to the endogenous CCN2 promoter in both stretched cells and mechanically overloaded bladder tissues. Furthermore, stretch-dependent CCN2 promoter activity was significantly reduced upon inhibition of either phosphatidylinositol 3-kinase, p38 stress-activated kinase, or RhoA GTPase and was completely abolished upon inhibition of actin polymerization. Concordantly, actin polymerization was increased in either mechanically stretched cells or overloaded bladder tissues. Incubation of cultured SMCs with a cell-penetrating peptide containing the N-terminal sequence, Ac-EEED, of smooth muscle alpha-actin, altered both actin cytoskeleton organization and stretch-mediated nuclear relocation of NF-kappaB, and subsequently, it reduced CCN2 promoter activity. Thus, mechanical stretch-induced changes in actin dynamics mediate NF-kappaB activation and induce CCN2 gene expression, which probably initiates the fibrotic reactions observed in mechanical overload-associated pathologies.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | | | |
Collapse
|
135
|
Pipes GCT, Creemers EE, Olson EN. The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev 2006; 20:1545-56. [PMID: 16778073 DOI: 10.1101/gad.1428006] [Citation(s) in RCA: 386] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The association of transcriptional coactivators with sequence-specific DNA-binding proteins provides versatility and specificity to gene regulation and expands the regulatory potential of individual cis-regulatory DNA sequences. Members of the myocardin family of coactivators activate genes involved in cell proliferation, migration, and myogenesis by associating with serum response factor (SRF). The partnership of myocardin family members and SRF also controls genes encoding components of the actin cytoskeleton and confers responsiveness to extracellular growth signals and intracellular changes in the cytoskeleton, thereby creating a transcriptional-cytoskeletal regulatory circuit. These functions are reflected in defects in smooth muscle differentiation and function in mice with mutations in myocardin family members. This article reviews the functions and mechanisms of action of the myocardin family of coactivators and the physiological significance of transcriptional coactivation in the context of signal-dependent and cell-type-specific gene regulation.
Collapse
Affiliation(s)
- G C Teg Pipes
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
136
|
Abstract
Formins constitute a diverse protein family present in all eukaryotes examined. They are defined by the presence of a formin homology 2 (FH2) domain, which possesses intrinsic and conserved functions regulating cytoskeletal dynamics. Over the past few years, formins have become recognized as potent nucleators of linear actin filaments that control a large variety of cellular and morphogenetic functions. Here, we review the molecular principles of formin-induced cytoskeletal rearrangements and their consequences for a growing number of biological processes.
Collapse
Affiliation(s)
- Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30623 Hannover, Germany.
| | | |
Collapse
|
137
|
Théry M, Pépin A, Dressaire E, Chen Y, Bornens M. Cell distribution of stress fibres in response to the geometry of the adhesive environment. ACTA ACUST UNITED AC 2006; 63:341-55. [PMID: 16550544 DOI: 10.1002/cm.20126] [Citation(s) in RCA: 311] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cells display a large variety of shapes when plated in classical culture conditions despite their belonging to a common cell type. These shapes are transitory, since cells permanently disassemble and reassemble their cytoskeleton while moving. Adhesive micropatterns are commonly used to confine cell shape within a given geometry. In addition the micropattern can be designed so as to impose cells to spread upon adhesive and nonadhesive areas. Modulation of the pattern geometry allows the analysis of the mechanisms governing the determination of cell shape in response to external adhesive conditions. In this study, we show that the acquisition of cell shape follows two stages where initially the cell forms contact with the micropattern. Here, the most distal contacts made by the cell with the micropattern define the apices of the cell shape. Then secondly, the cell borders that link two apices move so as to minimise the distance between the two apices. In these cell borders, the absence of an underlying adhesive substrate is overcome by stress fibres forming between the apices, which in turn are marked by an accumulation of focal adhesions. By inhibiting myosin function, cell borders on nonadhesive zones become more concave, suggesting that the stress fibres work against the membrane tension in the cell border. Moreover, this suggested that traction forces are unevenly distributed in stationary, nonmigrating, cells. By comparing the stress fibres in cells with one, two, or three nonadherent cell borders it was reasoned that stress fibre strength is inversely proportional to number. We conclude that cells of a given area can generate the same total sum of tractional forces but that these tractional forces are differently spaced depending on the spatial distribution of its adherence contacts.
Collapse
Affiliation(s)
- Manuel Théry
- Biologie du Cycle Cellulaire et de la Motilité, UMR144, CNRS, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
138
|
Abstract
Airways are embedded in the mechanically dynamic environment of the lung. In utero, this mechanical environment is defined largely by fluid secretion into the developing airway lumen. Clinical, whole lung, and cellular studies demonstrate pivotal roles for mechanical distention in airway morphogenesis and cellular behavior during lung development. In the adult lung, the mechanical environment is defined by a dynamic balance of surface, tissue, and muscle forces. Diseases of the airways modulate both the mechanical stresses to which the airways are exposed as well as the structure and mechanical behavior of the airways. For instance, in asthma, activation of airway smooth muscle abruptly changes the airway size and stress state within the airway wall; asthma also results in profound remodeling of the airway wall. Data now demonstrate that airway epithelial cells, smooth muscle cells, and fibroblasts respond to their mechanical environment. A prominent role has been identified for the epithelium in transducing mechanical stresses, and in both the fetal and mature airways, epithelial cells interact with mesenchymal cells to coordinate remodeling of tissue architecture in response to the mechanical environment.
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
139
|
Conway G. STAT3-dependent pathfinding and control of axonal branching and target selection. Dev Biol 2006; 296:119-36. [PMID: 16729994 DOI: 10.1016/j.ydbio.2006.04.444] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 04/13/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
Signal transducers and transcription factors are used in common for developmental cell migration, vasculogenesis, branching morphogenesis, as well as neuronal pathfinding. STAT3, a transcription factor, has been shown to function in all of these processes except neuronal pathfinding. Here, it is shown that STAT3 also facilitates this process. Elimination of STAT3 signaling results in half of zebrafish CaP motoneurons stalling along their ventral pathfinding trajectory. Conversely, constitutive activation leads to precocious branching and redefines CaP axons as a responding population to dorsal guidance cues, resulting in bifurcated axons innervating normal ventral targets as well as additional dorsal muscle groups. These results are consistent with and highlight a fundamental role for STAT3 as a factor promoting cellular responses to guidance cues, not only in nonneural cells but also in pathfinding neurons.
Collapse
Affiliation(s)
- Greg Conway
- Life Sciences Division, MS239-11, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
140
|
Wang X, Bo J, Bridges T, Dugan KD, Pan TC, Chodosh LA, Montell DJ. Analysis of Cell Migration Using Whole-Genome Expression Profiling of Migratory Cells in the Drosophila Ovary. Dev Cell 2006; 10:483-95. [PMID: 16580993 DOI: 10.1016/j.devcel.2006.02.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 12/11/2005] [Accepted: 02/07/2006] [Indexed: 01/14/2023]
Abstract
Cell migration contributes to normal development and homeostasis as well as to pathological processes such as inflammation and tumor metastasis. Previous genetic screens have revealed signaling pathways that govern follicle cell migrations in the Drosophila ovary, but few downstream targets of the critical transcriptional regulators have been identified. To characterize the gene expression profile of two migratory cell populations and identify Slbo targets, we purified border cells and centripetal cells expressing the mouse CD8 antigen and carried out whole-genome microarray analysis. Genes predicted to control actin dynamics and the endocytic and secretory pathways were overrepresented in the migratory cell transcriptome. Mutations in five genes, including ttk, failed to complement previously isolated mutations that cause cell migration defects in mosaic clones. Functional analysis revealed a role for the Notch-activating protease Kuzbanian in border cell migration and identified Tie as a guidance receptor for the border cells.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Borghese L, Fletcher G, Mathieu J, Atzberger A, Eades WC, Cagan RL, Rørth P. Systematic analysis of the transcriptional switch inducing migration of border cells. Dev Cell 2006; 10:497-508. [PMID: 16580994 PMCID: PMC2955450 DOI: 10.1016/j.devcel.2006.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 12/02/2005] [Accepted: 02/07/2006] [Indexed: 02/06/2023]
Abstract
Cell migration within a natural context is tightly controlled, often by specific transcription factors. However, the switch from stationary to migratory behavior is poorly understood. Border cells perform a spatially and temporally controlled invasive migration during Drosophila oogenesis. Slbo, a C/EBP family transcriptional activator, is required for them to become migratory. We purified wild-type and slbo mutant border cells as well as nonmigratory follicle cells and performed comparative whole-genome expression profiling, followed by functional tests of the contributions of identified targets to migration. About 300 genes were significantly upregulated in border cells, many dependent on Slbo. Among these, the microtubule regulator Stathmin was strongly upregulated and was required for normal migration. Actin cytoskeleton regulators were also induced, including, surprisingly, a large cluster of "muscle-specific" genes. We conclude that Slbo induces multiple cytoskeletal effectors, and that each contributes to the behavioral changes in border cells.
Collapse
Affiliation(s)
- Lodovica Borghese
- European Molecular Biology Laboratory Meyerhofstrasse 1 69117 Heidelberg Germany
| | - Georgina Fletcher
- European Molecular Biology Laboratory Meyerhofstrasse 1 69117 Heidelberg Germany
| | - Juliette Mathieu
- European Molecular Biology Laboratory Meyerhofstrasse 1 69117 Heidelberg Germany
| | - Ann Atzberger
- European Molecular Biology Laboratory Meyerhofstrasse 1 69117 Heidelberg Germany
| | - William C. Eades
- Washington University School of Medicine 660 South Euclid Avenue St. Louis, Missouri 63110
| | - Ross L. Cagan
- Washington University School of Medicine 660 South Euclid Avenue St. Louis, Missouri 63110
| | - Pernille Rørth
- European Molecular Biology Laboratory Meyerhofstrasse 1 69117 Heidelberg Germany
| |
Collapse
|
142
|
Knöll B, Kretz O, Fiedler C, Alberti S, Schütz G, Frotscher M, Nordheim A. Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 2006; 9:195-204. [PMID: 16415869 DOI: 10.1038/nn1627] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 12/08/2005] [Indexed: 11/09/2022]
Abstract
Higher organisms rely on multiple modes of memory storage using the hippocampal network, which is built by precisely orchestrated mechanisms of axonal outgrowth, guidance and synaptic targeting. We demonstrate essential roles of the transcription factor serum response factor (SRF), a sensor of cytoskeletal actin dynamics, in all these processes. Conditional deletion of the mouse Srf gene reduced neurite outgrowth and abolished mossy fiber segregation, resulting in ectopic fiber growth inside the pyramidal layer. SRF-deficient mossy fibers aberrantly targeted CA3 somata for synapse formation. Axon guidance assays showed that SRF was a key mediator of ephrin-A and semaphorin guidance cues; in SRF-deficient neurons, these resulted in the formation of F-actin-microtubule rings rather than complete growth cone collapse. Dominant-negative variants of the SRF cofactor megakaryocytic acute leukemia (MAL) severely impeded neurite outgrowth and guidance. These data highlight essential links between SRF-mediated transcription and axon guidance and circuit formation in the hippocampus.
Collapse
Affiliation(s)
- Bernd Knöll
- Interfakultäres Institut für Zellbiologie, Abt. Molekularbiologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
143
|
Abstract
Essentially all organisms from bacteria to humans are mechanosensitive. Physical forces regulate a large array of physiological processes, and dysregulation of mechanical responses contributes to major human diseases. A survey of both specialized and widely expressed mechanosensitive systems suggests that physical forces provide a general means of altering protein conformation to generate signals. Specialized systems differ mainly in having acquired efficient mechanisms for transferring forces to the mechanotransducers.
Collapse
Affiliation(s)
- A Wayne Orr
- Cardiovascular Research Center, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
144
|
Lecaudey V, Gilmour D. Organizing moving groups during morphogenesis. Curr Opin Cell Biol 2005; 18:102-7. [PMID: 16352429 DOI: 10.1016/j.ceb.2005.12.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
The directed migration of cells drives the formation of many complex organ systems. Although in this morphogenetic context cells display a strong preference for migrating in organized, cohesive groups, little is known about the mechanisms that coordinate their movements. Recent studies on several model systems have begun to dissect the organization of these migrating tissues in vivo and have shown that cell guidance is mediated by a combination of chemical and mechanical cues.
Collapse
Affiliation(s)
- Virginie Lecaudey
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
145
|
Cabernard C, Affolter M. Distinct Roles for Two Receptor Tyrosine Kinases in Epithelial Branching Morphogenesis in Drosophila. Dev Cell 2005; 9:831-42. [PMID: 16326394 DOI: 10.1016/j.devcel.2005.10.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 09/30/2005] [Accepted: 10/17/2005] [Indexed: 10/25/2022]
Abstract
Branching morphogenesis is a widespread mechanism used to increase the surface area of epithelial organs. Many signaling systems steer development of branched organs, but it is still unclear which cellular processes are regulated by the different pathways. We have used the development of the air sacs of the dorsal thorax of Drosophila to study cellular events and their regulation via cell-cell signaling. We find that two receptor tyrosine kinases play important but distinct roles in air sac outgrowth. Fgf signaling directs cell migration at the tip of the structure, while Egf signaling is instrumental for cell division and cell survival in the growing epithelial structure. Interestingly, we find that Fgf signaling requires Ras, the Mapk pathway, and Pointed to direct migration, suggesting that both cytoskeletal and nuclear events are downstream of receptor activation. Ras and the Mapk pathway are also needed for Egf-regulated cell division/survival, but Pointed is dispensable.
Collapse
Affiliation(s)
- Clemens Cabernard
- Department of Biology, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
146
|
Pacquelet A, Rørth P. Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. ACTA ACUST UNITED AC 2005; 170:803-12. [PMID: 16129787 PMCID: PMC2171345 DOI: 10.1083/jcb.200506131] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cadherin-mediated adhesion can be regulated at many levels, as demonstrated by detailed analysis in cell lines. We have investigated the requirements for Drosophila melanogaster epithelial (DE) cadherin regulation in vivo. Investigating D. melanogaster oogenesis as a model system allowed the dissection of DE-cadherin function in several types of adhesion: cell sorting, cell positioning, epithelial integrity, and the cadherin-dependent process of border cell migration. We generated multiple fusions between DE-cadherin and α-catenin as well as point-mutated β-catenin and analyzed their ability to support these types of adhesion. We found that (1) although linking DE-cadherin to α-catenin is essential, regulation of the link is not required in any of these types of adhesion; (2) β-catenin is required only to link DE-cadherin to α-catenin; and (3) the cytoplasmic domain of DE-cadherin has an additional specific function for the invasive migration of border cells, which is conserved to other cadherins. The nature of this additional function is discussed.
Collapse
Affiliation(s)
- Anne Pacquelet
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | | |
Collapse
|
147
|
|
148
|
Abstract
We review insights in signaling pathways controlling cell polarization and cytoskeletal organization during chemotactic movement in Dictyostelium amoebae and neutrophils. We compare and contrast these insights with our current understanding of pathways controlling chemotactic movements in more-complex multicellular developmental contexts.
Collapse
Affiliation(s)
- Markus Affolter
- Department of Cell Biology, Biozentrum University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
149
|
Mack CP, Hinson JS. Regulation of smooth muscle differentiation by the myocardin family of serum response factor co-factors. J Thromb Haemost 2005; 3:1976-84. [PMID: 15892867 DOI: 10.1111/j.1538-7836.2005.01316.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- C P Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
150
|
Tabuchi A, Estevez M, Henderson JA, Marx R, Shiota J, Nakano H, Baraban JM. Nuclear translocation of the SRF co-activator MAL in cortical neurons: role of RhoA signalling. J Neurochem 2005; 94:169-80. [PMID: 15953360 DOI: 10.1111/j.1471-4159.2005.03179.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although it is well established that RhoA signaling pathways play key roles in regulating neuronal morphology, their involvement in other aspects of neuronal function has received little attention. Recent studies have elucidated a novel intracellular signaling pathway used by RhoA to elicit activation of serum response factor (SRF)-mediated transcription. In this pathway, activation of RhoA triggers nuclear translocation of the SRF co-activator, megakaryocytic acute leukemia (MAL). In assessing whether RhoA regulates transcription in neurons via this pathway, we have found that a constitutively active form of Tech (transcript-enriched in cortex and hippocampus), a RhoA guanine nucleotide exchange factor (GEF) that is expressed in forebrain neurons, stimulates SRF reporter activity in extracts of primary cortical cultures and induces nuclear translocation of MAL in cortical neurons. Both of these responses appear to be mediated by Tech's activation of RhoA as they are not mimicked by a mutant Tech construct lacking RhoA GEF activity and are blocked by C3 transferase, a selective inhibitor of RhoA. Furthermore, Tech-induced increases in SRF activity are suppressed by a dominant negative MAL construct. These findings demonstrate that RhoA signaling pathways are able to regulate transcription in neurons by triggering translocation of the SRF co-activator MAL.
Collapse
Affiliation(s)
- Akiko Tabuchi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|