101
|
Huang CX, Lao XM, Wang XY, Ren YZ, Lu YT, Shi W, Wang YZ, Wu CY, Xu L, Chen MS, Gao Q, Liu L, Wei Y, Kuang DM. Pericancerous cross-presentation to cytotoxic T lymphocytes impairs immunotherapeutic efficacy in hepatocellular carcinoma. Cancer Cell 2024; 42:2082-2097.e10. [PMID: 39547231 DOI: 10.1016/j.ccell.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Hyperprogressive disease can occur in cancer patients receiving immune checkpoint blockade (ICB) therapy, but whether and how reactive cytotoxic T lymphocytes (CTLs) exert protumorigenic effects in this context remain elusive. Herein, our study reveals that pericancerous macrophages cross-present antigens to CD103+ CTLs in hepatocellular carcinoma (HCC) via the endoplasmic reticulum (ER)-associated degradation machinery-mediated cytosolic pathway. This process leads to the retention of CD103+ CTLs in the pericancerous area, whereby they activate NLRP3 inflammasome in macrophages, promoting hepatoma progression and resistance to immunotherapy. Our single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics analysis of HCC patients shows that despite their tissue-resident effector phenotype, the aggregation of CD103+ CTLs predicts unfavorable clinical outcomes for HCC patients receiving multiple types of treatment. Correspondingly, therapeutic strategies that redistribute CD103+ CTLs can disrupt this pathogenic interplay with macrophages, enhancing the efficacy of ICB treatment against HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/immunology
- Liver Neoplasms/therapy
- Liver Neoplasms/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Humans
- Immunotherapy/methods
- Macrophages/immunology
- Mice
- Animals
- Integrin alpha Chains/metabolism
- Integrin alpha Chains/immunology
- Cross-Priming/immunology
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Tumor Microenvironment/immunology
- Cell Line, Tumor
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Chun-Xiang Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiang-Ming Lao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xu-Yan Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Zheng Ren
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi-Tong Lu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wei Shi
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ying-Zhe Wang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Cai-Yuan Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Min-Shan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yuan Wei
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Innovation Center of the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China.
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Innovation Center of the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
102
|
Li S, Luo J, Liu J, He D. Pan-cancer single cell and spatial transcriptomics analysis deciphers the molecular landscapes of senescence related cancer-associated fibroblasts and reveals its predictive value in neuroblastoma via integrated multi-omics analysis and machine learning. Front Immunol 2024; 15:1506256. [PMID: 39703515 PMCID: PMC11655476 DOI: 10.3389/fimmu.2024.1506256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Cancer-associated fibroblasts (CAFs) are a diverse group of cells that significantly contribute to reshaping the tumor microenvironment (TME), and no research has systematically explored the molecular landscapes of senescence related CAFs (senes CAF) in NB. Methods We utilized pan-cancer single cell and spatial transcriptomics analysis to identify the subpopulation of senes CAFs via senescence related genes, exploring its spatial distribution characteristics. Harnessing the maker genes with prognostic significance, we delineated the molecular landscapes of senes CAFs in bulk-seq data. We established the senes CAFs related signature (SCRS) by amalgamating 12 and 10 distinct machine learning (ML) algorithms to precisely diagnose stage 4 NB and to predict prognosis in NB. Based on risk scores calculated by prognostic SCRS, patients were categorized into high and low risk groups according to median risk score. We conducted comprehensive analysis between two risk groups, in terms of clinical applications, immune microenvironment, somatic mutations, immunotherapy, chemotherapy and single cell level. Ultimately, we explore the biological function of the hub gene JAK1 in pan-cancer multi-omics landscape. Results Through integrated analysis of pan-cancer spatial and single-cell transcriptomics data, we identified distinct functional subgroups of CAFs and characterized their spatial distribution patterns. With marker genes of senes CAF and leave-one-out cross-validation, we selected RF algorithm to establish diagnostic SCRS, and SuperPC algorithm to develop prognostic SCRS. SCRS demonstrated a stable predictive capability, outperforming the previously published NB signatures and clinic variables. We stratified NB patients into high and low risk group, which showed the low-risk group with a superior survival outcome, an abundant immune infiltration, a different mutation landscape, and an enhanced sensitivity to immunotherapy. Single cell analysis reveals biologically cellular variations underlying model genes of SCRS. Spatial transcriptomics delineated the molecular variant expressions of hub gene JAK1 in malignant cells across cancers, while immunohistochemistry validated the differential protein levels of JAK1 in NB. Conclusion Based on multi-omics analysis and ML algorithms, we successfully developed the SCRS to enable accurate diagnosis and prognostic stratification in NB, which shed light on molecular landscapes of senes CAF and clinical utilization of SCRS.
Collapse
Affiliation(s)
- Shan Li
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Junyi Luo
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Junhong Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Department of Day Surgery, National Clinical Research Center for Child Health and Disorders, Ministry of Education, Key Laboratory of Child Development and Disorder, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei He
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
103
|
Dong L, Qiu X, Li Z, Ge W, Tang X, Zhou R, Chen W, Xu X, Wang K. Potential crosstalk between Naïve CD4 + T cells and SPP1 + Macrophages is associated with clinical outcome and therapeutic response in hepatocellular carcinoma. Int Immunopharmacol 2024; 142:113231. [PMID: 39332093 DOI: 10.1016/j.intimp.2024.113231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The highly heterogeneity of the tumor microenvironment (TME) in hepatocellular carcinoma (HCC) results in diverse clinical outcomes and therapeutic responses. This study aimed to investigate potential intercellular crosstalk and its impact on clinical outcomes and therapeutic responses. METHODS Single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST) and bulk RNA sequencing (RNA-seq) datasets were integrated to comprehensively analyze the intercellular interactions within the TME. Multiplex immunohistochemistry was conducted to validate the intercellular interactions. A machine learning-based integrative procedure was used in bulk RNA-seq datasets to generate a risk model to predict prognosis and therapeutic responses. RESULTS Survival analyses based on the bulk RNA-seq datasets revealed the negative impact of the naïve Cluster of Differentiation 4+ (CD4) T cells and Secreted Phosphoprotein 1+ (SPP1) macrophages on prognosis. Furthermore, their intricate intercellular crosstalk and spatial colocalization were also observed by scRNA-seq and ST analyses. Based on this crosstalk, a machine learning model, termed the naïve CD4+ T cell and SPP1+ macrophage prognostic score (TMPS), was established in the bulk-RNA seq datasets for prognostic prediction. The TMPS achieved C-index values of 0.785, 0.715, 0.692 and 0.857, respectively, across 4 independent cohorts. A low TMPS was associated with a significantly increased survival rates, improved response to immunotherapy and reduced infiltration of immunosuppressive cells, such as. regulatory T cells. Finally, 8 potential sensitive drugs and 6 potential targets were predicted for patients based on their TMPS. CONCLUSION The crosstalk between naïve CD4+ T cells and SPP1+ macrophages play a crucial role in the TME. TMPS can reflect this crosstalk and serve as a valuable tool for prognostic stratification and guiding clinical decision-making.
Collapse
Affiliation(s)
- Libin Dong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xun Qiu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zekuan Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Wenwen Ge
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiao Tang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Wei Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiao Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, Zhejiang, China.
| | - Kai Wang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, Zhejiang, China.
| |
Collapse
|
104
|
Zhou S, Lin N, Yu L, Su X, Liu Z, Yu X, Gao H, Lin S, Zeng Y. Single-cell multi-omics in the study of digestive system cancers. Comput Struct Biotechnol J 2024; 23:431-445. [PMID: 38223343 PMCID: PMC10787224 DOI: 10.1016/j.csbj.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024] Open
Abstract
Digestive system cancers are prevalent diseases with a high mortality rate, posing a significant threat to public health and economic burden. The diagnosis and treatment of digestive system cancer confront conventional cancer problems, such as tumor heterogeneity and drug resistance. Single-cell sequencing (SCS) emerged at times required and has developed from single-cell RNA-seq (scRNA-seq) to the single-cell multi-omics era represented by single-cell spatial transcriptomics (ST). This article comprehensively reviews the advances of single-cell omics technology in the study of digestive system tumors. While analyzing and summarizing the research cases, vital details on the sequencing platform, sample information, sampling method, and key findings are provided. Meanwhile, we summarize the commonly used SCS platforms and their features, as well as the advantages of multi-omics technologies in combination. Finally, the development trends and prospects of the application of single-cell multi-omics technology in digestive system cancer research are prospected.
Collapse
Affiliation(s)
- Shuang Zhou
- The Second Clinical Medical School of Fujian Medical University, Quanzhou, Fujian Province, China
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Nanfei Lin
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhenlong Liu
- Lady Davis Institute for Medical Research, Jewish General Hospital, & Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xiaowan Yu
- Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hongzhi Gao
- The Clinical Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
- Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| |
Collapse
|
105
|
Vitale E, Rizzo A, Brunetti O, Brandi G. Exploring immunological perturbations between hepatocellular carcinoma risk, inflammation and obesity. Expert Rev Gastroenterol Hepatol 2024; 18:757-759. [PMID: 39699115 DOI: 10.1080/17474124.2024.2444557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Affiliation(s)
- Elsa Vitale
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II" Bari, Bari, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II, Bari, Italy"
| | - Oronzo Brunetti
- S.S.D. C.O.r.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II, Bari, Italy"
| | - Giovanni Brandi
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
106
|
Kang Q, Yin X, Wu Z, Zheng A, Feng L, Ma X, Li L. Integrated Single-Cell and Spatial Transcriptome Reveal Metabolic Gene SLC16A3 as a Key Regulator of Immune Suppression in Hepatocellular Carcinoma. J Cell Mol Med 2024; 28:e70272. [PMID: 39656344 PMCID: PMC11629820 DOI: 10.1111/jcmm.70272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/21/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers, usually diagnosed at an advanced stage. Metabolic reprogramming plays a significant role in HCC progression, probably related to immune evasion, yet the key gene is unclear. In this study, six metabolism-related genes with prognostic implications were screened. Correlation analysis between the key genes and immune cell subtypes was conducted, and a prominent gene strongly associated with immunosuppression, SLC16A3, was identified. Overexpression of SLC16A3 is associated with the loss of T-cell function and might lead to the upregulation of several immunosuppressive proteins. Gene function enrichment analysis showed genes correlated with SLC16A3 primarily involved in cell adhesion. Single-cell analysis showed that the SLC16A3 gene was mainly expressed in macrophages, especially some tumour-promoting macrophages. Further analysis of spatial transcriptome data indicated that SLC16A3 was enriched at the tumour invasion front. The mIHC revealed that patients with high SLC16A3 expression exhibited significantly reduced infiltration of GZMB+ cells. And SLC16A3 inhibitors significantly suppressed the proliferation of HCC, while simultaneously enhancing T-cell cytotoxicity and reducing exhaustion. These results reveal the phenomenon of immune escape mediated by metabolic reprogramming and suggest that SLC16A3 may serve as a novel target for intervention.
Collapse
Affiliation(s)
- Qianlong Kang
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
- Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Xiaomeng Yin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Zhenru Wu
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
| | - Aiping Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Lusi Feng
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Li Li
- Department of Pathology and Institute of Clinical Pathology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
107
|
Li X, Li R, Miao X, Zhou X, Wu B, Cao J, Wang C, Li S, Cai J. Integrated Single Cell Analysis Reveals An Atlas of Tumor Associated Macrophages in Hepatocellular Carcinoma. Inflammation 2024; 47:2077-2093. [PMID: 38668836 DOI: 10.1007/s10753-024-02026-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 11/30/2024]
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent cancers globally, is closely associated with tumor-associated macrophages (TAMs), including monocyte-derived macrophages and liver-resident Kupffer cells. Understanding TAM heterogeneity at the cellular level is crucial for developing effective HCC prevention and treatment strategies. In this study, we conducted an integrated single-cell analysis of four cohorts (GSE140228, GSE125449, GSE149614 and GSE156625) to elucidate the TAM landscape in HCC. We identified 284 gene markers, termed Panmyeloid markers, that characterize myeloid cells within this context. Our analysis distinguished six clusters of monocyte-derived macrophages (Macro1-Macro6) and four clusters of Kupffer cells (Kupffer1-Kupffer4). Notably, CXCL10 + macrophages and MT1G + Kupffer cells, predominantly located within tumor tissues, exhibited distinct functional characteristics relevant to HCC. We also explored cellular communication between TAMs and T cells, uncovering potential signaling pathways such as the CXCL10/CXCL11-CXCR3 and CXCL12-CXCR4 networks. These findings enhance our understanding of TAMs in HCC and open new avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Xinqiang Li
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Ruixia Li
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaolong Miao
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Xin Zhou
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Bin Wu
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Junning Cao
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Chengyu Wang
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Shipeng Li
- Department of Hepatopancreaticobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China.
| | - Jinzhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China.
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China.
| |
Collapse
|
108
|
Du Y, Wu S, Xi S, Xu W, Sun L, Yan J, Gao H, Wang Y, Zheng J, Wang F, Yang H, Xie D, Chen X, Ou X, Guan X, Li Y. ASH1L in Hepatoma Cells and Hepatic Stellate Cells Promotes Fibrosis-Associated Hepatocellular Carcinoma by Modulating Tumor-Associated Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404756. [PMID: 39377228 PMCID: PMC11615825 DOI: 10.1002/advs.202404756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Indexed: 10/09/2024]
Abstract
Hepatocellular carcinoma (HCC) often occurs in the context of fibrosis or cirrhosis. Methylation of histone is an important epigenetic mechanism, but it is unclear whether histone methyltransferases are potent targets for fibrosis-associated HCC therapy. ASH1L, an H3K4 methyltransferase, is found at higher levels in activated hepatic stellate cells (HSCs) and hepatoma cells. To determine the role of ASH1L in vivo, transgenic mice with conditional Ash1l depletion in the hepatocyte cell lineage (Ash1lflox/floxAlbcre) or HSCs (Ash1lflox/floxGFAPcreERT2) are generated, and these mice are challenged in a diethylnitrosamine (DEN)/carbon tetrachloride (CCl4)-induced model of liver fibrosis and HCC. Depleting Ash1l in both hepatocytes and HSCs mitigates hepatic fibrosis and HCC development. Multicolor flow cytometry, bulk, and single-cell transcriptomic sequencing reveal that ASH1L creates an immunosuppressive microenvironment. Mechanically, ASH1L-mediated H3K4me3 modification increases the expression of CCL2 and CSF1, which recruites and polarizes M2-like pro-tumorigenic macrophages. The M2-like macrophages further enhance tumor cell proliferation and suppress CD8+ T cell activation. AS-99, a small molecule inhibitor of ASH1L, demonstrates similar anti-fibrosis and tumor-suppressive effects. Of pathophysiological significance, the increased expression levels of mesenchymal ASH1L and M2 marker CD68 are associated with poor prognosis of HCC. The findings reveal ASH1L as a potential small-molecule therapeutic target against fibrosis-related HCC.
Collapse
Affiliation(s)
- Yuyang Du
- Department of Systems Biology, School of Life Sciences, Southern University of Science and TechnologyShenzhen518055China
| | - Shasha Wu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and TechnologyShenzhen518055China
| | - Shaoyan Xi
- Department of PathologySun Yat‐Sen University Cancer CenterGuangzhou510275China
| | - Wei Xu
- GMU‐GIBH Joint School of Life Sciences, The Guangdong‐Hong Kong‐Macau Joint Laboratory for Cell Fate Regulation and DiseasesGuangzhou Medical UniversityGuangzhou511436China
| | - Liangzhan Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and TechnologyShenzhen518055China
- Department of Clinical OncologyThe University of Hong KongHong Kong999077China
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhen518067China
| | - Jingsong Yan
- Department of Systems Biology, School of Life Sciences, Southern University of Science and TechnologyShenzhen518055China
| | - Han Gao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and TechnologyShenzhen518055China
| | - Yanchen Wang
- Shenzhen HospitalSouthern Medical UniversityShenzhen518000China
| | - Jingyi Zheng
- Shenzhen HospitalSouthern Medical UniversityShenzhen518000China
| | - Fenfen Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and TechnologyShenzhen518055China
| | - Hui Yang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and TechnologyShenzhen518055China
| | - Dan Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
| | - Xi Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and TechnologyShenzhen518055China
| | - Xijun Ou
- School of Life SciencesSouthern University of Science and TechnologyShenzhen518055China
| | - Xin‐Yuan Guan
- Department of Clinical OncologyThe University of Hong KongHong Kong999077China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhou510080China
- The University of Hong Kong‐Shenzhen HospitalShenzhen518053China
| | - Yan Li
- Shenzhen HospitalSouthern Medical UniversityShenzhen518000China
| |
Collapse
|
109
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 PMCID: PMC11607358 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
110
|
Hu L, Wang X, Song Z, Chen F, Wu B. Leveraging CAR macrophages targeting c-Met for precision immunotherapy in pancreatic cancer: insights from single-cell multi-omics. Mol Med 2024; 30:231. [PMID: 39592929 PMCID: PMC11590533 DOI: 10.1186/s10020-024-00996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Pancreatic cancer is known for its poor prognosis and resistance to conventional therapies, largely due to the presence of cancer stem cells (CSCs) and aggressive angiogenesis. Effectively targeting these CSCs and associated angiogenic pathways is crucial for effective treatment. This study leverages single-cell multi-omics to explore a novel therapeutic approach involving Chimeric Antigen Receptor (CAR) macrophages engineered to target the c-Met protein on pancreatic CSCs. METHODS We employed single-cell RNA sequencing to analyze pancreatic cancer tissue, identifying c-Met as a key marker of CSCs. CAR macrophages were engineered using a lentiviral system to express a c-Met-specific receptor. The phagocytic efficiency of these CAR macrophages against pancreatic CSCs was assessed in vitro, along with their ability to inhibit angiogenesis. The in vivo efficacy of CAR macrophages was evaluated in a mouse model of pancreatic cancer. RESULTS CAR macrophages demonstrated high specificity for c-Met + CSCs, significantly enhancing phagocytosis and reducing the secretion of angiogenic factors such as VEGFA, FGF2, and ANGPT. In vivo, these macrophages significantly suppressed tumor growth and angiogenesis, prolonging survival in pancreatic cancer-bearing mice. CONCLUSION CAR macrophages targeting c-Met represent a promising therapeutic strategy for pancreatic cancer, offering targeted elimination of CSCs and disruption of tumor angiogenesis. This study highlights the potential of single-cell multi-omics in guiding the development of precision immunotherapies.
Collapse
Affiliation(s)
- Lingyu Hu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Xiaoguang Wang
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Zhengwei Song
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Fei Chen
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Bin Wu
- Department of Surgery, The Second Affiliated Hospital of Jiaxing University, No. 1518 North Huancheng Road, Jiaxing, Zhejiang, 314000, People's Republic of China.
| |
Collapse
|
111
|
Feng Y, Ma W, Zang Y, Guo Y, Li Y, Zhang Y, Dong X, Liu Y, Zhan X, Pan Z, Luo M, Wu M, Chen A, Kang D, Chen G, Liu L, Zhou J, Zhang R. Spatially organized tumor-stroma boundary determines the efficacy of immunotherapy in colorectal cancer patients. Nat Commun 2024; 15:10259. [PMID: 39592630 PMCID: PMC11599708 DOI: 10.1038/s41467-024-54710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Colorectal cancer (CRC) patients with mismatch repair (MMR)-deficient (dMMR) but not MMR-proficient (pMMR) tend to benefit from immune checkpoint blockade (ICB) therapy. To profile the tumor microenvironments (TME) underlying these varied therapeutic responses, we integrate spatial enhanced resolution omics-sequencing (Stereo-seq), single-cell RNA sequencing, and multiplexed imaging analysis to create high-definition spatial maps of tumors from treatment-naïve and ICB-treated CRC patients. Our results identify the spatial organization and immune status of the tumor-stroma boundary as a distinctive feature of dMMR and pMMR CRCs, which associates with ICB response. The physical interactions and abundance of LAMP3+DCs and CXCL13+T cells may shape the ICB-responsive tumor-stroma boundary, whereas CXCL14+cancer-associated fibroblasts tend to remodel extracellular matrix to form a structural barrier in non-responders. Our work therefore points out the importance of the molecular and cellular spatial structures of tumors in ICB response, raising the possibility of reprogramming tumor-stroma boundary for sensitizing immunotherapies in the majority of CRCs.
Collapse
Affiliation(s)
- Yu Feng
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China
- BGI Research, Shenzhen, 519083, China
- BGI Research, Hangzhou, 310030, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 519083, China
| | - Wenjuan Ma
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, Guangdong, People's Republic of China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Centre, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yupeng Zang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | | | - Young Li
- BGI Research, Shenzhen, 519083, China
- BGI Research, Hangzhou, 310030, China
| | - Yixuan Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xuan Dong
- BGI Research, Hangzhou, 310030, China
| | - Yi Liu
- BGI Research, Hangzhou, 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaojuan Zhan
- BGI Research, Shenzhen, 519083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhizhong Pan
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, Guangdong, People's Republic of China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Mei Luo
- BGI Research, Hangzhou, 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Miaoqing Wu
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, Guangdong, People's Republic of China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Ao Chen
- BGI Research, Shenzhen, 519083, China
- BGI Research, Hangzhou, 310030, China
| | - Da Kang
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, Guangdong, People's Republic of China
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Gong Chen
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, Guangdong, People's Republic of China.
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Longqi Liu
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
- BGI Research, Shenzhen, 519083, China.
- BGI Research, Hangzhou, 310030, China.
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Rongxin Zhang
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, Guangdong, People's Republic of China.
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
112
|
Zhang J, Liu S, Wu M, Shi W, Cai Y. Clinical significance and expression of SLC35F6 in bladder urothelial carcinoma. Diagn Pathol 2024; 19:150. [PMID: 39578844 PMCID: PMC11583552 DOI: 10.1186/s13000-024-01582-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND SLC35F6 negatively regulates outer mitochondrial membrane permeability and positively regulates apoptotic signaling pathways and cell population proliferation. The biological function of SLC35F6 in bladder cancer (BC) remains inadequately established. This study evaluates the expression and clinical significance of SLC35F6 in BC, assesses its prognostic value and explores its relationship with key immune-related molecules in the tumor microenvironment. METHODS Combining bioinformatics tools and immunohistochemistry (IHC) analysis, the expression of SLC35F6 was analyzed through IHC in the tissues of 145 BC patients treated at the Affiliated Hospital of Nantong University from 2004 to 2009. The relationship between SLC35F6 expression levels and significant clinicopathological factors was examined using the chi-square test. Prognostic values were analyzed using the COX regression model and the Kaplan-Meier survival curve. Analysis of the receiver operating characteristic curve was conducted to assess the predictive performance of SLC35F6 in BC patients. RESULTS The expression levels of both SLC35F6 mRNA and protein were elevated in BC tissue relative to benign tissue. Kaplan-Meier analysis indicated that patients exhibiting elevated SLC35F6 protein expression had a worse prognosis. Multivariate Cox regression analysis confirmed that SLC35F6, TNM stage and grade are independent risk factors for bladder cancer. SLC35F6, when analyzed alongside clinical pathological factors, enhances the accuracy of survival predictions for Bladder Urothelial Carcinoma (BLCA) patients. CONCLUSION SLC35F6 is upregulated in BC patients compared to normal individuals and is linked to a worse prognosis. SLC35F6 analyzed alongside clinical pathological factors can enhance the accuracy of survival predictions for BLCA patients, suggesting its potential value as a prognostic and predictive biomarker.
Collapse
Affiliation(s)
- Jinling Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China
- Clinical and Translational Research Center, Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Siqi Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Meng Wu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Wenyu Shi
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Yihong Cai
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
113
|
Chen P, Yang C, Ren K, Xu M, Pan C, Ye X, Li L. Modulation of gut microbiota by probiotics to improve the efficacy of immunotherapy in hepatocellular carcinoma. Front Immunol 2024; 15:1504948. [PMID: 39650662 PMCID: PMC11621041 DOI: 10.3389/fimmu.2024.1504948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Hepatocellular carcinoma, a common malignancy of the digestive system, typically progresses through a sequence of hepatitis, liver fibrosis, cirrhosis and ultimately, tumor. The interaction between gut microbiota, the portal venous system and the biliary tract, referred to as the gut-liver axis, is crucial in understanding the mechanisms that contribute to the progression of hepatocellular carcinoma. Mechanisms implicated include gut dysbiosis, alterations in microbial metabolites and increased intestinal barrier permeability. Imbalances in gut microbiota, or dysbiosis, contributes to hepatocellular carcinoma by producing carcinogenic substances, disrupting the balance of the immune system, altering metabolic processes, and increasing intestinal barrier permeability. Concurrently, accumulating evidence suggests that gut microbiota has the ability to modulate antitumor immune responses and affect the efficacy of cancer immunotherapies. As a new and effective strategy, immunotherapy offers significant potential for managing advanced stages of hepatocellular carcinoma, with immune checkpoint inhibitors achieving significant advancements in improving patients' survival. Probiotics play a vital role in promoting health and preventing diseases by modulating metabolic processes, inflammation and immune responses. Research indicates that they are instrumental in boosting antitumor immune responses through the modulation of gut microbiota. This review is to explore the relationship between gut microbiota and the emergence of hepatocellular carcinoma, assess the contributions of probiotics to immunotherapy and outline the latest research findings, providing a safer and more cost-effective potential strategy for the prevention and management of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Chengchen Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Ren
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Mingzhi Xu
- Department of General Medicine, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Chenwei Pan
- Department of Infectious Diseases, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuewei Ye
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
114
|
Ercan C, Renne SL, Di Tommaso L, Ng CKY, Piscuoglio S, Terracciano LM. Hepatocellular Carcinoma Immune Microenvironment Analysis: A Comprehensive Assessment with Computational and Classical Pathology. Clin Cancer Res 2024; 30:5105-5115. [PMID: 39264292 DOI: 10.1158/1078-0432.ccr-24-0960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE The spatial variability and clinical relevance of the tumor immune microenvironment (TIME) are still poorly understood for hepatocellular carcinoma (HCC). In this study, we aim to develop a deep learning (DL)-based image analysis model for the spatial analysis of immune cell biomarkers and microscopically evaluate the distribution of immune infiltration. EXPERIMENTAL DESIGN Ninety-two HCC surgical liver resections and 51 matched needle biopsies were histologically classified according to their immunophenotypes: inflamed, immune-excluded, and immune-desert. To characterize the TIME on immunohistochemistry (IHC)-stained slides, we designed a multistage DL algorithm, IHC-TIME, to automatically detect immune cells and their localization in the TIME in tumor-stroma and center-border segments. RESULTS Two models were trained to detect and localize the immune cells on IHC-stained slides. The framework models (i.e., immune cell detection models and tumor-stroma segmentation) reached 98% and 91% accuracy, respectively. Patients with inflamed tumors showed better recurrence-free survival than those with immune-excluded or immune-desert tumors. Needle biopsies were found to be 75% accurate in representing the immunophenotypes of the main tumor. Finally, we developed an algorithm that defines immunophenotypes automatically based on the IHC-TIME analysis, achieving an accuracy of 80%. CONCLUSIONS Our DL-based tool can accurately analyze and quantify immune cells on IHC-stained slides of HCC. Microscopic classification of the TIME can stratify HCC according to the patient prognosis. Needle biopsies can provide valuable insights for TIME-related prognostic prediction, albeit with specific constraints. The computational pathology tool provides a new way to study the HCC TIME.
Collapse
Affiliation(s)
- Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Salvatore Lorenzo Renne
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Di Tommaso
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Charlotte K Y Ng
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luigi M Terracciano
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
115
|
Yin Z, Song Y, Wang L. Single-cell RNA sequencing reveals the landscape of the cellular ecosystem of primary hepatocellular carcinoma. Cancer Cell Int 2024; 24:379. [PMID: 39543644 PMCID: PMC11566594 DOI: 10.1186/s12935-024-03574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) cells, along with multiple nonmalignant stromal cells, such as fibroblasts, endothelial cells and immune cells, comprise an intricate cellular ecosystem, undergo dynamic phenotypic changes and present complicated cellular interactions, thus synergistically facilitating HCC initiation and progression and leading to treatment resistance. Clarifying the heterogeneity, cell plasticity and complexity of the cellular ecosystem of HCC will be highly beneficial for understanding HCC development and identifying novel therapeutic targets. Single-cell RNA sequencing (scRNA-seq) refers to profiling the transcriptome at single-cell resolution, and the development of scRNA-seq technology and analysis algorithms has greatly promoted the analysis of cell composition, cell subpopulation heterogeneity, development trajectory and cell-to-cell interactions in cell populations. In this review, we systematically summarized and discussed scRNA-seq in treatment-naive primary HCC and revealed the global cell composition of HCC; the widespread molecular heterogeneity of HCC cells; the molecular subtypes of fibroblasts; the cell composition, functional states and development trajectory of immune cells; and the frequent interactions between different cell types to systematically draw the landscape of the cellular ecosystem of primary HCC.
Collapse
Affiliation(s)
- Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, China.
| | - Yilin Song
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, China.
| |
Collapse
|
116
|
Fan G, Gao R, Xie T, Li L, Tang L, Han X, Shi Y. DKK1+ tumor cells inhibited the infiltration of CCL19+ fibroblasts and plasma cells contributing to worse immunotherapy response in hepatocellular carcinoma. Cell Death Dis 2024; 15:797. [PMID: 39505867 PMCID: PMC11541906 DOI: 10.1038/s41419-024-07195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Intra-tumor immune infiltration plays a pivotal role in the interaction with tumor cells in hepatocellular carcinoma (HCC). However, its phenotype and related spatial structure remained elusive. To address these limitations, we conducted a comprehensive study combining spatial data (38,191 spots from eight samples) and single-cell data (56,022 cells from 20 samples). Our analysis revealed two distinct infiltration patterns: immune exclusion and immune activation. Plasma cells emerged as the primary cell type within intra-tumor immune clusters. Notably, we observed the co-location of CCL19+ fibroblasts with plasma cells, which secrete chemokines and promote T-cell activation and leukocyte migration. Conversely, in immune-exclusion samples, this co-location was primarily observed in the adjacent normal area. This co-localization correlated with T cell infiltration and the formation of tertiary lymphoid structures, validated by multiplex immunofluorescence conducted on twenty HCC samples. Both CCL19+ fibroblasts and plasma cells were associated with favorable survival outcomes. In an immunotherapy cohort, HCC patients who responded favorably exhibited higher infiltration of CCL19+ fibroblasts and plasma cells. Additionally, we observed the accumulation of DKK1+ tumor cells within the tumor area in immune-exclusion samples, particularly at the tumor boundary, which inhibited the infiltration of CCL19+ fibroblasts and plasma cells into the tumor area. Furthermore, in immune-exclusion samples, the SPP1 signaling pathway demonstrated the highest activity in communication between tumor and immune clusters, and CCL19-CCR7 played a pivotal role in the self-communication of immune clusters. This study elucidates immune exclusion and immune activation patterns in HCC and identifies relevant factors contributing to immune resistance.
Collapse
Affiliation(s)
- Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Ruyun Gao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China.
| |
Collapse
|
117
|
Chen J, Wu Z, Zhang Z, Chen Y, Yin M, Ehman RL, Yuan Y, Song B. Apparent diffusion coefficient and tissue stiffness are associated with different tumor microenvironment features of hepatocellular carcinoma. Eur Radiol 2024; 34:6980-6991. [PMID: 38767658 PMCID: PMC11519246 DOI: 10.1007/s00330-024-10743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES To investigate associations between tissue diffusion, stiffness, and different tumor microenvironment features in resected hepatocellular carcinoma (HCC). METHODS Seventy-two patients were prospectively included for preoperative magnetic resonance (MR) diffusion-weighted imaging and MR elastography examination. The mean apparent diffusion coefficient (ADC) and stiffness value were measured on the central three slices of the tumor and peri-tumor area. Cell density, tumor-stroma ratio (TSR), lymphocyte-rich HCC (LR-HCC), and CD8 + T cell infiltration were estimated in resected tumors. The interobserver agreement of MRI measurements and subjective pathological evaluation was assessed. Variables influencing ADC and stiffness were screened with univariate analyses, and then identified with multivariable linear regression. The potential relationship between explored imaging biomarkers and histopathological features was assessed with linear regression after adjustment for other influencing factors. RESULTS Seventy-two patients (male/female: 59/13, mean age: 56 ± 10.2 years) were included for analysis. Inter-reader agreement was good or excellent regarding MRI measurements and histopathological evaluation. No correlation between tumor ADC and tumor stiffness was found. Multivariable linear regression confirmed that cell density was the only factor associated with tumor ADC (Estimate = -0.03, p = 0.006), and tumor-stroma ratio was the only factor associated with tumor stiffness (Estimate = -0.18, p = 0.03). After adjustment for fibrosis stage (Estimate = 0.43, p < 0.001) and age (Estimate = 0.04, p < 0.001) in the multivariate linear regression, intra-tumoral CD8 + T cell infiltration remained a significant factor associated with peri-tumor stiffness (Estimate = 0.63, p = 0.02). CONCLUSIONS Tumor ADC surpasses tumor stiffness as a biomarker of cellularity. Tumor stiffness is associated with tumor-stroma ratio and peri-tumor stiffness might be an imaging biomarker of intra-tumoral immune microenvironment. CLINICAL RELEVANCE STATEMENT Tissue stiffness could potentially serve as an imaging biomarker of the intra-tumoral immune microenvironment of hepatocellular carcinoma and aid in patient selection for immunotherapy. KEY POINTS Apparent diffusion coefficient reflects cellularity of hepatocellular carcinoma. Tumor stiffness reflects tumor-stroma ratio of hepatocellular carcinoma and is associated with tumor-infiltrating lymphocytes. Tumor and peri-tumor stiffness might serve as imaging biomarkers of intra-tumoral immune microenvironment.
Collapse
Affiliation(s)
- Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, No. 88 South Keyuan Road, Chengdu, 610041, China
| | - Zhen Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yidi Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yuan Yuan
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
118
|
Lubuela G, Beaufrère A, Albuquerque M, Pignollet C, Nicolle R, Lesurtel M, Bouattour M, Cros J, Paradis V. Prognostic impact of the tumour microenvironment in intrahepatic cholangiocarcinoma: identification of a peritumoural fibro-immune interface. Virchows Arch 2024; 485:901-911. [PMID: 39242455 DOI: 10.1007/s00428-024-03922-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The tumour microenvironment (TME) of intrahepatic cholangiocarcinoma (iCCA) is complex and plays a role in prognosis and resistance to treatments. We aimed to decipher the iCCA TME phenotype using multiplex sequential immunohistochemistry (MS-IHC) to investigate which cell types and their spatial location may affect its prognosis. This was a retrospective study of 109 iCCA resected samples. For all cases, we used an open-source software to analyse a panel of markers (αSMA, FAP, CD8, CD163) by MS-IHC for characterize the different TME cells and their location. RNA sequencing was performed to determine the main iCCA transcriptomic classes. The association of the TME composition with overall survival (OS) was assessed by univariate and multivariate analyses. A high proportion of activated fibroblasts (FAP +) was significantly associated with poor OS (HR = 2.33, 95%CI = 1.43-3.81, p = 0.001). CD8 T lymphocytes excluded from the epithelial compartment were significantly associated with worse OS (HR = 1.86, 95% CI = 1.07-3.22, p = 0.014). The combination of a high proportion of FAP + fibroblasts and CD8 T lymphocytes excluded from the epithelial compartment, observed in 21 cases (19%), was significantly associated with poor OS on univariate (HR = 2.49, 95% CI = 1.44-4.28, p = 0.001) and multivariate analyses (HR = 2.77, 95% CI = 1.56-4.92, p < 0.001). In these cases, CD8 T lymphocytes were predominantly located at the tumour/non-tumour interface (19/21, 90%), and an association with the transcriptomic inflammatory stroma class was observed (10/21, 48%). Our results confirm the TME prognostic role in iCCA, highlighting the impact in the process of spatial heterogeneity, especially cell colocalization of immune and fibroblastic cells creating a peritumoural fibro-immune interface.
Collapse
Affiliation(s)
- Gwladys Lubuela
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Aurélie Beaufrère
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France.
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France.
| | - Miguel Albuquerque
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Camille Pignollet
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Rémy Nicolle
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
| | - Mickael Lesurtel
- AP-HP.Nord, Department of HPB Surgery & Liver Transplantation, Beaujon Hospital, Université Paris Cité, Clichy, France
| | - Mohamed Bouattour
- AP-HP.Nord, Liver Cancer Unit, DMU DIGEST, Beaujon Hospital, Clichy, France
| | - Jérôme Cros
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| | - Valérie Paradis
- Université Paris Cité, Centre de Recherche Sur L'Inflammation (CRI), INSERM, U1149, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Beaujon Hospital, 100 Boulevard du Général Leclerc, 92110, Clichy, France
| |
Collapse
|
119
|
Fu Y, Guo X, Sun L, Cui T, Wang J, Liu Y, Liu L. Exploring the Interplay of Diet, Obesity, Immune Function, and Cancer. Cancer Discov 2024; 14:2047-2050. [PMID: 39485246 DOI: 10.1158/2159-8290.cd-24-0834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 11/03/2024]
Abstract
This commentary provides an in-depth exploration of the intricate relationships among diet, obesity, immune function, and cancer, highlighting the potential role of dietary interventions as complementary therapies in cancer treatment. Multiple analyses underscore the importance of personalized dietary strategies in cancer management and identify opportunities for further research in this evolving field.
Collapse
Affiliation(s)
- Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Xinyu Guo
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, China
| |
Collapse
|
120
|
Marsh-Wakefield F, Santhakumar C, Ferguson AL, Ashhurst TM, Shin JS, Guan FH, Shields NJ, Platt BJ, Putri GH, Gupta R, Crawford M, Pulitano C, Sandroussi C, Laurence JM, Liu K, McCaughan GW, Palendira U. Spatial mapping of the HCC landscape identifies unique intratumoral perivascular-immune neighborhoods. Hepatol Commun 2024; 8:e0540. [PMID: 39761010 PMCID: PMC11495755 DOI: 10.1097/hc9.0000000000000540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND HCC develops in the context of chronic inflammation; however, the opposing roles the immune system plays in both the development and control of tumors are not fully understood. Mapping immune cell interactions across the distinct tissue regions could provide greater insight into the role individual immune populations have within tumors. METHODS A 39-parameter imaging mass cytometry panel was optimized with markers targeting immune cells, stromal cells, endothelial cells, hepatocytes, and tumor cells. We mapped the immune landscape of tumor, invasive margin, and adjacent nontumor regions across 16 resected tumors comprising 144 regions of interest. X-shift clustering and manual gating were used to characterize cell subsets, and Spectre quantified the spatial environment to identify cellular neighborhoods. Ligand-receptor communication was quantified on 2 single-cell RNA-sequencing data sets and 1 spatial transcriptomic data set. RESULTS We show immune cell densities remain largely consistent across these 3 regions, except for subsets of monocyte-derived macrophages, which are enriched within the tumors. Mapping cellular interactions across these regions in an unbiased manner identifies immune neighborhoods comprised of tissue-resident T cells, dendritic cells, and various macrophage populations around perivascular spaces. Importantly, we identify multiple immune cells within these neighborhoods interacting with VEGFA+ perivascular macrophages. VEGFA was further identified as a ligand for communication between perivascular macrophages and CD34+ endothelial cells. CONCLUSIONS Immune cell neighborhood interactions, but not cell densities, differ between intratumoral and adjacent nontumor regions in HCC. Unique intratumoral immune neighborhoods around the perivascular space point to an altered landscape within tumors. Enrichment of VEGFA+ perivascular macrophages within these tumors could play a key role in angiogenesis and vascular permeability.
Collapse
Affiliation(s)
- Felix Marsh-Wakefield
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cositha Santhakumar
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Angela L. Ferguson
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Thomas M. Ashhurst
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Cytometry Core Research Facility, The University of Sydney, Camperdown, New South Wales, Australia
| | - Joo-Shik Shin
- Central Clinical School, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW Health Pathology, Camperdown, New South Wales, Australia
| | - Fiona H.X. Guan
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Nicholas J. Shields
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barry J. Platt
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Givanna H. Putri
- The Walter and Eliza Hall Institute of Medical Research and The Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ruta Gupta
- Central Clinical School, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW Health Pathology, Camperdown, New South Wales, Australia
| | - Michael Crawford
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Carlo Pulitano
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Charbel Sandroussi
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Jerome M. Laurence
- Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Royal Prince Alfred Institute of Academic Surgery, University of Sydney, Camperdown, New South Wales, Australia
| | - Ken Liu
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Geoffrey W. McCaughan
- Liver Injury & Cancer Program, Centenary Institute, Camperdown, New South Wales, Australia
- A.W. Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Umaimainthan Palendira
- Human Immunology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
121
|
Su Z, He Y, You L, Chen J, Zhang G, Liu Z. SPP1+ macrophages and FAP+ fibroblasts promote the progression of pMMR gastric cancer. Sci Rep 2024; 14:26221. [PMID: 39482333 PMCID: PMC11528032 DOI: 10.1038/s41598-024-76298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024] Open
Abstract
Immunotherapy has become a primary and secondary treatment for gastric cancer (GC) patients with mismatch repair deficiency (dMMR), and is used in both perioperative and advanced stages. The tumor immune microenvironment (TiME) is crucial for immunotherapy efficacy, yet the impact of MMR status on TiME remains understudied. We employed single-cell RNA sequencing (scRNA-seq) to analyze 33 fresh tissue samples from 25 patients, which included 10 normal tissues, 6 dMMR tumor tissues, and 17 pMMR tumor tissues, aiming to characterize the cellular and molecular components of the TiME. The proficient mismatch repair (pMMR) group displayed a significantly higher prevalence of a specific GC cell type, termed GC2, characterized by increased hypoxia, epithelial-mesenchymal transition (EMT), and angiogenic activities compared to the dMMR group. GC2 cells overexpressed BEX3 and GPC3, and they significantly correlated with poorer survival. The pMMR group also showed increased infiltration of SPP1 + macrophages and FAP + fibroblasts, exhibiting strong hypoxic and pro-angiogenic features. Furthermore, a higher proportion of E2 endothelial cells, involved in extracellular matrix (ECM) remodeling and showing heightened VEGF pathway, HIF pathway, and angiogenesis activity, were identified in pMMR patients. Intercellular communication analyses revealed that GC2 cells, SPP1 + macrophages, FAP + fibroblasts, and E2 endothelial cells interact through VEGF, SPP1, and MIF signals, forming a TiME characterized by hypoxia, pro-angiogenesis, and ECM remodeling. This study uncovered TiME heterogeneity among GC patients with different MMR states, highlighting that the pMMR TiME is distinguished by hypoxia, pro-angiogenesis, and ECM remodeling, driven by the presence of GC2 cells, SPP1 + macrophages, FAP + fibroblasts, and E2 endothelial cells. These findings are pivotal for developing targeted immunotherapies for GC patients with pMMR.
Collapse
Affiliation(s)
- Zhixiong Su
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Yufang He
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Lijie You
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Jingbo Chen
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Guifeng Zhang
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Zhenhua Liu
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
122
|
Zhang C, Wu Q, Yang H, Zhang H, Liu C, Yang B, Hu Q. Ferroptosis-related gene signature for predicting prognosis and identifying potential therapeutic drug in EGFR wild-type lung adenocarcinoma. Commun Biol 2024; 7:1416. [PMID: 39478024 PMCID: PMC11525656 DOI: 10.1038/s42003-024-07117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Epidermal growth factor receptor wild type lung adenocarcinoma (EGFRWT LUAD) still has limited treatment options and unsatisfactory clinical outcomes. Ferroptosis, as a form of cell death, has been reported to play a dual role in regulating tumor cell survival. In this study, we constructed a 3-ferroptosis-gene signature, FeSig, and verified its accuracy and efficacy in predicting EGFRWT LUAD prognosis at both the RNA and protein levels. Patients with higher FeSig scores were found to have worse clinical outcomes. Additionally, we explored the relationship between FeSig and tumor microenvironment, revealing that enhanced interactions between fibroblasts and tumor cells in FeSighigh patients causing tumor resistance to ferroptosis. To address this challenge, we screened potential drugs from NCI-60 (The US National Cancer Institute 60 human tumour cell line anticancer drug screen) and Connectivity map database, ultimately identifying 6-mercatopurine (6-MP) as a promising candidate. Both in vitro and in vivo experiments demonstrated its efficacy in treating FeSighigh EGFRWT LUAD tumor models. In summary, we develop a novel FeSig for predicting prognosis and guiding drug application.
Collapse
Affiliation(s)
- Chuankai Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Qi Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Hongwei Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Hui Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China
| | - Changqing Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bo Yang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Qingsong Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001, Hefei, China.
| |
Collapse
|
123
|
Yang Z, Tian H, Chen X, Li B, Bai G, Cai Q, Xu J, Guo W, Wang S, Peng Y, Liang Q, Xue L, Gao S. Single-cell sequencing reveals immune features of treatment response to neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma. Nat Commun 2024; 15:9097. [PMID: 39438438 PMCID: PMC11496748 DOI: 10.1038/s41467-024-52977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Neoadjuvant immunochemotherapy (nICT) has dramatically changed the treatment landscape of operable esophageal squamous cell carcinoma (ESCC), but factors influencing tumor response to nICT are not well understood. Here, using single-cell RNA sequencing paired with T cell receptor sequencing, we profile tissues from ESCC patients accepting nICT treatment and characterize the tumor microenvironment context. CXCL13+CD8+ Tex cells, a subset of exhausted CD8+ T cells, are revealed to highly infiltrate in pre-treatment tumors and show prominent progenitor exhaustion phenotype in post-treatment samples from responders. We validate CXCL13+CD8+ Tex cells as a predictor of improved response to nICT and reveal CXCL13 to potentiate anti-PD-1 efficacy in vivo. Post-treatment tumors from non-responders are enriched for CXCL13+CD8+ Tex cells with notably remarkable exhaustion phenotype and TNFRSF4+CD4+ Tregs with activated immunosuppressive function and a significant clone expansion. Several critical markers for therapeutic resistance are also identified, including LRRC15+ fibroblasts and SPP1+ macrophages, which may recruit Tregs to form an immunosuppressive landscape. Overall, our findings unravel immune features of distinct therapeutic response to nICT treatment, providing a rationale for optimizing individualized neoadjuvant strategy in ESCC.
Collapse
Affiliation(s)
- Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Respiratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingyuan Cai
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Guangdong Provincial People's Hospital/Guangdong Provincial Academy of Medical Sciences, Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangdong, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaibo Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qing Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
124
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
125
|
Wang Y, Song W, Feng C, Wu S, Qin Z, Liu T, Ye Y, Huang R, Xie Y, Tang Z, Wang Q, Li T. Multi-omics analysis unveils the predictive value of IGF2BP3/SPHK1 signaling in cancer stem cells for prognosis and immunotherapeutic response in muscle-invasive bladder cancer. J Transl Med 2024; 22:900. [PMID: 39367493 PMCID: PMC11452965 DOI: 10.1186/s12967-024-05685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Muscle invasive bladder cancer (MIBC) is a life-threatening malignant tumor characterized by high metastasis rates, poor prognosis, and limited treatment options. Immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1 represent an emerging treatment for MIBC immunotherapy. However, the characteristics of patients likely to benefit from immunotherapy remain unclear. METHODS We performed single-cell mass cytometry (CyTOF) analysis of 179,483 single cells to characterize potential immunotherapy-related cancer stem cells (CSCs)-like populations in the tumor microenvironment of 38 MIBC tissues. The upregulated expression of IGF2BP3 in CD274 + ALDH + CSC-like cells, which was associated with poor clinical prognosis, was analyzed by bulk RNA-sequencing data from an in-house cohort. The functional role of IGF2BP3 was determined through cell proliferation, colony formation, cell apoptosis and sphere formation assays. The regulation of SPHK1 expression by IGF2BP3 was investigated using methylated RNA immunoprecipitation sequencing (MeRIP-seq) and bulk RNA-sequencing (bulk RNA-seq). We further utilized single-nucleus RNA sequencing (snRNA-seq) data from 67,988 cells of 25 MIBC tissues and single-cell RNA sequencing (scRNA-seq) data from MIBC patient-derived organoids to characterize the molecular features of bladder cancer cells co-expressing IGF2BP3 and SPHK1. Spatial transcriptomics (ST) and co-detection by indexing (CODEX) analysis were used to describe the spatial distribution and interactions of IGF2BP3 + SPHK1 + bladder cancer cells and immune cells. RESULTS A subset of CD274 + ALDH + CSC-like cells was identified, associating with immunosuppression and low survival rates in MIBC patients. IGF2BP3, an m6A reader gene, was found to be upregulated in the CD274 + ALDH + CSC-like cell population and linked to poor clinical prognosis in MIBC. Knockout of IGF2BP3 dramatically promoted cell apoptosis and reduced cell proliferation in T24 cells. By integrating MeRIP-seq and bulk RNA-seq analyses, we identified SPHK1 served as a substrate for IGF2BP3 in an m6A-dependent manner. Further snRNA-seq, scRNA-seq, ST, and CODEX analysis revealed a closer topographical distance between IGF2BP3 + SPHK1 + bladder cancer cells and exhausted CD8 + T cells, providing one explanation for the superior response to immunotherapy in IGF2BP3 + SPHK1 + bladder cancer cells-enriched patients. Finally, an ICI-associated signature was developed based on the enriched genes of IGF2BP3 + SPHK1 + bladder cancer cells, and its potential ability to predict the response to immunotherapy was validated in two independent immunotherapy cohort. CONCLUSIONS Our study highlighted the critical involvement of the IGF2BP3/SPHK1 signaling in maintaining the stemness of CSCs and promoting MIBC progression. Additionally, these findings suggested that the IGF2BP3/SPHK1 signaling might serve as a biomarker for prognosis and immunotherapy response in MIBC.
Collapse
Affiliation(s)
- Yaobang Wang
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Wuyue Song
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chao Feng
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shulin Wu
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Zezu Qin
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Liu
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Ye
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Rong Huang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanliang Xie
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhong Tang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- School of Information and Management, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiuyan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| | - Tianyu Li
- Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
126
|
Zhang F, Jiang Q, Cai J, Meng F, Tang W, Liu Z, Lin X, Liu W, Zhou Y, Shen X, Xue R, Dong L, Zhang S. Activation of NOD1 on tumor-associated macrophages augments CD8 + T cell-mediated antitumor immunity in hepatocellular carcinoma. SCIENCE ADVANCES 2024; 10:eadp8266. [PMID: 39356756 PMCID: PMC11446285 DOI: 10.1126/sciadv.adp8266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
The efficacy of immunotherapy targeting the PD-1/PD-L1 pathway in hepatocellular carcinoma (HCC) is limited. NOD-like receptors (NLRs) comprise a highly evolutionarily conserved family of cytosolic bacterial sensors, yet their impact on antitumor immunity against HCC remains unclear. In this study, we uncovered that NOD1, a well-studied member of NLR family, exhibits predominant expression in tumor-associated macrophages (TAMs) and correlates positively with improved prognosis and responses to anti-PD-1 treatments in patients with HCC. Activation of NOD1 in vivo augments antitumor immunity and enhances the effectiveness of anti-PD-1 therapy. Mechanistically, NOD1 activation resulted in diminished expression of perilipin 5, thereby hindering fatty acid oxidation and inducing free fatty acid accumulation in TAMs. This metabolic alteration promoted membrane localization of the costimulatory molecule OX40L in a lipid modification-dependent manner, thereby activating CD8+ T cells. These findings unveil a previously unrecognized role for NOD1 in fortifying antitumor T cell immunity in HCC, potentially advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Qiuyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Jialiang Cai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Fansheng Meng
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Zhiyong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Xiahui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Wenfeng Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Yi Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Liver Disease, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dongan Road, Shanghai, 200030, P.R. China
| |
Collapse
|
127
|
Lan J, Zeng R, Li Z, Yang X, Liu L, Chen L, Sun L, Shen Y, Zhang T, Ding Y. Biomimetic Nanomodulators With Synergism of Photothermal Therapy and Vessel Normalization for Boosting Potent Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408511. [PMID: 39180264 DOI: 10.1002/adma.202408511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Combination therapy using photothermal therapy (PTT) and immunotherapy is one of the most promising approaches for eliciting host immune responses to ablate tumors. However, its therapeutic efficacy is limited due to inefficient immune cell infiltration and cellular immune responses. In this study, a biomimetic immunostimulatory nanomodulator, Tm@PDA-GA (4T1 membrane@polydopamine-gambogic acid), with homologous targeting is developed. The 4T1 membrane (Tm) coating reduced immunogenicity and facilitated uptake of Tm@PDA-GA by tumor cells. Polydopamine (PDA) as a drug carrier can induce PTT under near-infrared ray (NIR) irradiation and immunogenic cell death (ICD) to activate dendritic cells (DCs). Moreover, Tm@PDA-GA on-demand released gambogic acid (GA) in an acidic tumor microenvironment, inhibiting the expression of heat shock proteins (HSPs) for synergetic chemo-photothermal anti-tumor activity and increasing the ICD of 4T1 cells. More importantly, GA can normalize the vessels via HIF-1α and VEGF inhibition to enhance immune infiltration and alleviate hypoxia stress. Thus, Tm@PDA-GA induced ICD, activated DCs, stimulated cytotoxic T cells, and suppressed Tregs. Moreover, Tm@PDA-GA is combined with anti-PD-L1 to further augment the tumor immune response and effectively suppress tumor growth and lung metastasis. In conclusion, biomaterial-mediated PTT combined with vessel normalization is a promising strategy for effective immunotherapy of triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuguang Yang
- Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liyan Sun
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- National Innovation Platform for Medical Industry-Education Integration, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
128
|
Liu Y, Liang J, Zhang Y, Guo Q. Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). Int J Oncol 2024; 65:96. [PMID: 39219258 PMCID: PMC11387120 DOI: 10.3892/ijo.2024.5684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The use of antitumor drugs represents a reliable strategy for cancer therapy. Unfortunately, drug resistance has become increasingly common and contributes to tumor metastasis and local recurrence. The tumor immune microenvironment (TME) consists of immune cells, cytokines and immunomodulators, and collectively they influence the response to treatment. Epigenetic changes including DNA methylation and histone modification, as well as increased drug exportation have been reported to contribute to the development of drug resistance in cancers. In the past few years, the majority of studies on tumors have only focused on the development and progression of a tumor from a mechanistic standpoint; few studies have examined whether the changes in the TME can also affect tumor growth and drug resistance. Recently, emerging evidence have raised more concerns regarding the role of TME in the development of drug resistance. In the present review, it was discussed how the suppressive TME adapts to drug resistance characterized by the cooperation of immune cells, cytokines, immunomodulators, stromal cells and extracellular matrix. Furthermore, it was reviewed how these immunological or metabolic changes alter immuno‑surveillance and thus facilitate tumor drug resistance. In addition, potential targets present in the TME for developing novel therapeutic strategies to improve individualized therapy for cancer treatment were revealed.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jun Liang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Yanping Zhang
- Department of Radiology, Qingdao Haici Hospital, Qingdao, Shandong 266000, P.R. China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
129
|
Childs A, Aidoo-Micah G, Maini MK, Meyer T. Immunotherapy for hepatocellular carcinoma. JHEP Rep 2024; 6:101130. [PMID: 39308986 PMCID: PMC11414669 DOI: 10.1016/j.jhepr.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global healthcare challenge, with >1 million patients predicted to be affected annually by 2025. In contrast to other cancers, both incidence and mortality rates continue to rise, and HCC is now the third leading cause of cancer-related death worldwide. Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for advanced HCC, with trials demonstrating a superior overall survival benefit compared to sorafenib in the first-line setting. Combination therapy with either atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF) or durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA-4) is now recognised as standard of care for advanced HCC. More recently, two phase III studies of ICI-based combination therapy in the early and intermediate disease settings have successfully met their primary end points of improved recurrence- and progression-free survival, respectively. Despite these advances, and in contrast to other tumour types, there remain no validated predictive biomarkers of response to ICIs in HCC. Ongoing research efforts are focused on further characterising the tumour microenvironment in order to select patients most likely to benefit from ICI and identify novel therapeutic targets. Herein, we review the current understanding of the immune landscape in which HCC develops and the evidence for ICI-based therapeutic strategies in HCC. Additionally, we describe the state of biomarker development and novel immunotherapy approaches in HCC which have progressed beyond the pre-clinical stage and into early-phase trials.
Collapse
Affiliation(s)
- Alexa Childs
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Gloryanne Aidoo-Micah
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Tim Meyer
- Department of Medical Oncology, Royal Free Hospital, London, UK
- UCL Cancer Institute, University College London, UK
| |
Collapse
|
130
|
Zhang Z, Chen X, Li Y, Zhang F, Quan Z, Wang Z, Yang Y, Si W, Xiong Y, Ju J, Bian Y, Sun S. The resistance to anoikis, mediated by Spp1, and the evasion of immune surveillance facilitate the invasion and metastasis of hepatocellular carcinoma. Apoptosis 2024; 29:1564-1583. [PMID: 39066845 PMCID: PMC11416391 DOI: 10.1007/s10495-024-01994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Anoikis-Related Genes (ARGs) lead to the organism manifesting resistance to anoikis and are associated with unfavorable prognostic outcomes across various malignancies.Therefore, it is crucial to identify the pivotal target genes related to anoikis in HCC .We found that ARGs were significantly correlated with prognosis and immune responses in HCC. The core gene, SPP1, notably promoted anoikis resistance and metastasis in HCC through both in vivo and in vitro studies. The PI3K-Akt-mTOR pathway played a critical role in anoikis suppression within HCC contexts. Our research unveiled SPP1's role in enhancing PKCα phosphorylation, which in turn activated the PI3K-Akt-mTOR cascade. Additionally, SPP1 was identified as a key regulator of MDSCs and Tregs migration, directly affecting their immunosuppressive capabilities.These findings indicate that in HCC, SPP1 promoted anoikis resistance and facilitated immune evasion by modulating MDSCs and Tregs.
Collapse
Affiliation(s)
- Zhengwei Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaoning Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yapeng Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Feng Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Zhen Quan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Zhuo Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Yang Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Wei Si
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Yuting Xiong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China
| | - Jiaming Ju
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China.
| | - Yu Bian
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, 150081, China.
| | - Shibo Sun
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
131
|
Wang L, Cao J, Liu Z, Wu S, Liu Y, Liang R, Zhu R, Wang W, Li J, Sun Y. Enhanced interactions within microenvironment accelerates dismal prognosis in HBV-related HCC after TACE. Hepatol Commun 2024; 8:e0548. [PMID: 39365124 PMCID: PMC11458170 DOI: 10.1097/hc9.0000000000000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Transarterial chemoembolization (TACE) is the first-line treatment for patients with advanced HCC, but there are limited studies on the microenvironment alterations caused by TACE. METHODS Six fresh HBV-related HCC specimens with or without TACE intervention were used to perform single-cell RNA sequencing. The 757 bulk samples from 3 large-scale multicenter cohorts were applied for comprehensive analysis. The biological functions of the biomarkers were further validated by phenotypic experiments. RESULTS Using single-cell RNA sequencing analysis, we delineated the global cell atlas of post-TACE and demonstrated elevated tumor heterogeneity and an enhanced proinflammatory microenvironment induced by TACE. Cell-cell communication analysis revealed that markedly elevated interactions between NABP1+ malignant hepatocytes, neutrophils, and CD8+ T cells after TACE might accelerate the shift from CD8+ effector memory T cells to CD8+ effector T cells. This result was substantiated by the developmental trajectory between the 2 and dramatically decreased resident scores along the pseudotemporal trajectory. Integrating bulk data, we further found that the increased estimated proportion of NABP1+ malignant hepatocytes was related to poor TACE response and dismal prognosis, and its biomarker role could be replaced by NABP1. In vitro, multiple biological experiments consistently verified that NABP1 knockdown significantly inhibited the proliferation and migration of HCC cells. CONCLUSIONS Based on our depicted global map of post-TACE, we confirmed that the enhanced interactions within the microenvironment after TACE may be the culprits for postoperative progression. NABP1 may become an attractive tool for the early identification of patients sensitive to first-line TACE in clinical practice.
Collapse
Affiliation(s)
- Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jiahui Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yin Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
132
|
Cheng X, Cao Y, Liu X, Li Y, Li Q, Gao D, Yu Q. Single-cell and spatial omics unravel the spatiotemporal biology of tumour border invasion and haematogenous metastasis. Clin Transl Med 2024; 14:e70036. [PMID: 39350478 PMCID: PMC11442492 DOI: 10.1002/ctm2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Solid tumours exhibit a well-defined architecture, comprising a differentiated core and a dynamic border that interfaces with the surrounding tissue. This border, characterised by distinct cellular morphology and molecular composition, serves as a critical determinant of the tumour's invasive behaviour. Notably, the invasive border of the primary tumour represents the principal site for intravasation of metastatic cells. These cells, known as circulating tumour cells (CTCs), function as 'seeds' for distant dissemination and display remarkable heterogeneity. Advancements in spatial sequencing technology are progressively unveiling the spatial biological features of tumours. However, systematic investigations specifically targeting the characteristics of the tumour border remain scarce. In this comprehensive review, we illuminate key biological insights along the tumour body-border-haematogenous metastasis axis over the past five years. We delineate the distinctive landscape of tumour invasion boundaries and delve into the intricate heterogeneity and phenotype of CTCs, which orchestrate haematogenous metastasis. These insights have the potential to explain the basis of tumour invasion and distant metastasis, offering new perspectives for the development of more complex and precise clinical interventions and treatments.
Collapse
Affiliation(s)
- Xifu Cheng
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuke Cao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xiangyi Liu
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuanheng Li
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qing Li
- Department of Oncologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Dian Gao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
133
|
Wang N, Hong W, Wu Y, Chen Z, Bai M, Wang W, Zhu J. Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology. MedComm (Beijing) 2024; 5:e765. [PMID: 39376738 PMCID: PMC11456678 DOI: 10.1002/mco2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The growing advances in spatial transcriptomics (ST) stand as the new frontier bringing unprecedented influences in the realm of translational oncology. This has triggered systemic experimental design, analytical scope, and depth alongside with thorough bioinformatics approaches being constantly developed in the last few years. However, harnessing the power of spatial biology and streamlining an array of ST tools to achieve designated research goals are fundamental and require real-world experiences. We present a systemic review by updating the technical scope of ST across different principal basis in a timeline manner hinting on the generally adopted ST techniques used within the community. We also review the current progress of bioinformatic tools and propose in a pipelined workflow with a toolbox available for ST data exploration. With particular interests in tumor microenvironment where ST is being broadly utilized, we summarize the up-to-date progress made via ST-based technologies by narrating studies categorized into either mechanistic elucidation or biomarker profiling (translational oncology) across multiple cancer types and their ways of deploying the research through ST. This updated review offers as a guidance with forward-looking viewpoints endorsed by many high-resolution ST tools being utilized to disentangle biological questions that may lead to clinical significance in the future.
Collapse
Affiliation(s)
- Nan Wang
- Cosmos Wisdom Biotech Co. LtdHangzhouChina
| | - Weifeng Hong
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | - Yixing Wu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesInstitute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Minghua Bai
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | | | - Ji Zhu
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| |
Collapse
|
134
|
Liu YJ, Ye QW, Li JP, Bai L, Zhang W, Wang SS, Zou X. Integrated analysis to identify biological features and molecular markers of poorly cohesive gastric carcinoma (PCC). Sci Rep 2024; 14:22596. [PMID: 39349535 PMCID: PMC11442943 DOI: 10.1038/s41598-024-73062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
As one of the two main histologic subtypes of gastric cancer (GC), diffuse-type gastric cancer (DGC) containing poorly cohesive gastric carcinoma (PCC) components has a worse prognosis and does not respond well to typical therapies. Despite the large number of studies revealing the complex pathogenic network of DGC, the molecular heterogeneity of DGC is still not fully understood. We obtained single-cell RNA-seq data and bulk data from the tumor immune single cell hub, the public gene expression omnibus, and the cancer genome atlas databases. A series of bioinformatics analyses were performed using R software. Immunofluorescence staining, hematoxylin and eosin staining, western blot, and functional experiments were used for experimental validation. Caudin-3, -4 and -7 were lowly expressed in DGC and their expression levels were further reduced in PCC. The PCC components were mainly located in the deeper layers of the DGC and had a high level of hypoxic Wnt/β-catenin signaling and stemness. We further identified Insulin Like Growth Factor Binding Protein 7 (IGFBP7) as a marker for PCC components in the deep layer. IGFBP7 is stimulated by hypoxia and promotes cancer cell invasiveness and reduced claudin expression. In addition, programmed death-1 ligand (PD-L1) was specifically expressed in the deep layer, reflecting deep layer-specific immunosuppression. The PCC components are predominantly situated in the deeper layers of DGC. Initial molecular characterization of these PCC components revealed distinct features, including low expression of claudin-3, -4, and -7, high expression of IGFBP7, and the presence of PD-L1. These molecular traits may partially account for the pronounced tumor heterogeneity observed in GC.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Qian-Wen Ye
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jie-Pin Li
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Le Bai
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Department of Respiratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Wei Zhang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Shuang-Shuang Wang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
135
|
Baj J, Kołodziej M, Kobak J, Januszewski J, Syty K, Portincasa P, Forma A. Significance of Immune and Non-Immune Cell Stroma as a Microenvironment of Hepatocellular Carcinoma-From Inflammation to Hepatocellular Carcinoma Progression. Int J Mol Sci 2024; 25:10233. [PMID: 39408564 PMCID: PMC11475949 DOI: 10.3390/ijms251910233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer as well as the most prevalent cause of death in the adult patient population with cirrhosis. The occurrence of HCC is primarily caused by chronic liver inflammation that might occur because of a viral infection, non-alcoholic fatty liver disease (NAFLD), or various lifestyle-associated factors. The objective of this review was to summarize the current knowledge regarding the microenvironment of HCC, indicating how immune- and non-immune-cell stroma might affect the onset and progression of HCC. Therefore, in the following narrative review, we described the role of tumor-infiltrating neutrophils, bone-marrow-derived cells, tumor-associated mast cells, cancer-associated fibroblasts, tumor-associated macrophages, liver-sinusoidal endothelial cells, lymphocytes, and certain cytokines in liver inflammation and the further progression to HCC. A better understanding of the HCC microenvironment might be crucial to introducing novel treatment strategies or combined therapies that could lead to more effective clinical outcomes.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Magdalena Kołodziej
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Joanna Kobak
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (J.B.); (J.J.)
| | - Kinga Syty
- Institute of Health Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1G, 20-708 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.K.); (J.K.)
| |
Collapse
|
136
|
Du Y, Ding X, Ye Y. The spatial multi-omics revolution in cancer therapy: Precision redefined. Cell Rep Med 2024; 5:101740. [PMID: 39293393 PMCID: PMC11525011 DOI: 10.1016/j.xcrm.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Spatially resolved multi-omics revolutionizes cancer therapy by decoding the cellular and molecular heterogeneity of the tumor microenvironment through spatial coordinates. This commentary discusses the roles of spatial multi-omics in identifying precise therapeutic targets and predicting treatment responses while also highlighting the challenges that impede its integration into precision medicine.
Collapse
Affiliation(s)
- Yanhua Du
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Ding
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youqiong Ye
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
137
|
Tong W, Wang T, Bai Y, Yang X, Han P, Zhu L, Zhang Y, Shen Z. Spatial transcriptomics reveals tumor-derived SPP1 induces fibroblast chemotaxis and activation in the hepatocellular carcinoma microenvironment. J Transl Med 2024; 22:840. [PMID: 39267037 PMCID: PMC11391636 DOI: 10.1186/s12967-024-05613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The tumor microenvironment (TME) exerts profound effects on tumor progression and therapeutic efficacy. In hepatocellular carcinoma (HCC), the TME is enriched with cancer-associated fibroblasts (CAFs), which secrete a plethora of cytokines, chemokines, and growth factors that facilitate tumor cell proliferation and invasion. However, the intricate architecture of the TME in HCC, as well as the mechanisms driving interactions between tumor cells and CAFs, remains largely enigmatic. METHODS We analyzed 10 spatial transcriptomics and 12 single-cell transcriptomics samples sourced from public databases, complemented by 20 tumor tissue samples from liver cancer patients obtained in a clinical setting. RESULTS Our findings reveal that tumor cells exhibiting high levels of SPP1 are preferentially localized adjacent to hepatic stellate cells (HSCs). The SPP1 secreted by these tumor cells interacts with the CD44 receptor on HSCs, thereby activating the PI3K/AKT signaling pathway, which promotes the differentiation of HSCs into CAFs. Notably, blockade of the CD44 receptor effectively abrogates this interaction. Furthermore, in vivo studies demonstrate that silencing SPP1 expression in tumor cells significantly impairs HSC differentiation into CAFs, leading to a reduction in tumor volume and collagen deposition within the tumor stroma. CONCLUSIONS This study delineates the SPP1-CD44 signaling axis as a pivotal mechanism underpinning the interaction between tumor cells and CAFs. Targeting this pathway holds potential to mitigate liver fibrosis and offers novel therapeutic perspectives for liver cancer management.
Collapse
Affiliation(s)
- Wen Tong
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Tianze Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xingpeng Yang
- Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, 100853, China
| | - Pinsheng Han
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liuyang Zhu
- The First Central Clinical School, Tianjin Medical University, Tianjin, 300070, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Zhongyang Shen
- Organ Transplantation Centre, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
138
|
Lin Y, Chen J, Xin S, Lin Y, Chen Y, Zhou X, Chen H, Li X. CYP24A1 affected macrophage polarization through degradation of vitamin D as a candidate biomarker for ovarian cancer prognosis. Int Immunopharmacol 2024; 138:112575. [PMID: 38963981 DOI: 10.1016/j.intimp.2024.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological malignancy with a poor prognosis in which mitochondria-related genes are involved deeply. In this study, we aim to screen mitochondria-related genes that play a role in OC prognosis and investigate its effects. Through single-cell sequencing technology and bioinformatics analysis, including TCGA ovarian cancer data analysis, gene expression signature analysis (GES), immune infiltration analysis, Gene Ontology (GO) enrichment analysis, Gene Set Enrichment Analysis (GSEA), and Principal Component Analysis (PCA), our findings revealed that CYP24A1 regulated macrophage polarization through vitamin D (VD) degradation and served as a target gene for the second malignant subtype of OC through bioinformatics analyses. For further validation, the expression and function of CYP24A1 in OC cells was investigated. And the expression of CYP24A1 was much higher in carcinoma than in paracancerous tissue, whereas the VD content decreased in the OC cell lines with CYP24A1 overexpression. Moreover, macrophages were polarized towards M1 after the intervention of VD-treated OC cell lines and inhibited the malignant phenotypes of OC. However, the effect could be reversed by overexpressing CYP24A1, resulting in the polarization of M2 macrophages, thereby promoting tumor progression, as verified by constructing xenograft models in vitro. In conclusion, our findings suggested that CYP24A1 induced M2 macrophage polarization through interaction with VD, thus promoting the malignant progression of OC.
Collapse
Affiliation(s)
- YaoXiang Lin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - JiongFei Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - SiJia Xin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Ya Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - YongChao Chen
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xiaojing Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Hao Chen
- Department of Pathology, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| | - XiangJuan Li
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| |
Collapse
|
139
|
Maciejewski K, Czerwinska P. Scoping Review: Methods and Applications of Spatial Transcriptomics in Tumor Research. Cancers (Basel) 2024; 16:3100. [PMID: 39272958 PMCID: PMC11394603 DOI: 10.3390/cancers16173100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Spatial transcriptomics (ST) examines gene expression within its spatial context on tissue, linking morphology and function. Advances in ST resolution and throughput have led to an increase in scientific interest, notably in cancer research. This scoping study reviews the challenges and practical applications of ST, summarizing current methods, trends, and data analysis techniques for ST in neoplasm research. We analyzed 41 articles published by the end of 2023 alongside public data repositories. The findings indicate cancer biology is an important focus of ST research, with a rising number of studies each year. Visium (10x Genomics, Pleasanton, CA, USA) is the leading ST platform, and SCTransform from Seurat R library is the preferred method for data normalization and integration. Many studies incorporate additional data types like single-cell sequencing and immunohistochemistry. Common ST applications include discovering the composition and function of tumor tissues in the context of their heterogeneity, characterizing the tumor microenvironment, or identifying interactions between cells, including spatial patterns of expression and co-occurrence. However, nearly half of the studies lacked comprehensive data processing protocols, hindering their reproducibility. By recommending greater transparency in sharing analysis methods and adapting single-cell analysis techniques with caution, this review aims to improve the reproducibility and reliability of future studies in cancer research.
Collapse
Affiliation(s)
- Kacper Maciejewski
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Patrycja Czerwinska
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
140
|
Liu YG, Jiang ST, Zhang JW, Zheng H, Zhang L, Zhao HT, Sang XT, Xu YY, Lu X. Role of extracellular vesicle-associated proteins in the progression, diagnosis, and treatment of hepatocellular carcinoma. Cell Biosci 2024; 14:113. [PMID: 39227992 PMCID: PMC11373138 DOI: 10.1186/s13578-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, characterized by difficulties in early diagnosis, prone to distant metastasis, and high recurrence rates following surgery. Extracellular vesicles (EVs) are a class of cell-derived particles, including exosomes, characterized by a phospholipid bilayer. They serve as effective carriers for intercellular communication cargo, including proteins and nucleic acids, and are widely involved in tumor progression. They are being explored as potential tumor biomarkers and novel therapeutic avenues. We provide a brief overview of the biogenesis and characteristics of EVs to better understand their classification standards. The focus of this review is on the research progress of EV-associated proteins in the field of HCC. EV-associated proteins are involved in tumor growth and regulation in HCC, participate in intercellular communication within the tumor microenvironment (TME), and are implicated in events including angiogenesis and epithelial-mesenchymal transition (EMT) during tumor metastasis. In addition, EV-associated proteins show promising diagnostic efficacy for HCC. For the treatment of HCC, they also demonstrate significant potential including enhancing the efficacy of tumor vaccines, and as targeting cargo anchors. Facing current challenges, we propose the future directions of research in this field. Above all, research on EV-associated proteins offers the potential to enhance our comprehension of HCC and offer novel insights for developing new treatment strategies.
Collapse
Affiliation(s)
- Yao-Ge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Shi-Tao Jiang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jun-Wei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Han Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hai-Tao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yi-Yao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China.
| |
Collapse
|
141
|
Roozitalab G, Abedi B, Imani S, Farghadani R, Jabbarzadeh Kaboli P. Comprehensive assessment of TECENTRIQ® and OPDIVO®: analyzing immunotherapy indications withdrawn in triple-negative breast cancer and hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:889-918. [PMID: 38409546 DOI: 10.1007/s10555-024-10174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Atezolizumab (TECENTRIQ®) and nivolumab (OPDIVO®) are both immunotherapeutic indications targeting programmed cell death 1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1), respectively. These inhibitors hold promise as therapies for triple-negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) and have demonstrated encouraging results in reducing the progression and spread of tumors. However, due to their adverse effects and low response rates, the US Food and Drug Administration (FDA) has withdrawn the approval of atezolizumab in TNBC and nivolumab in HCC treatment. The withdrawals of atezolizumab and nivolumab have raised concerns regarding their effectiveness and the ability to predict treatment responses. Therefore, the current study aims to investigate the immunotherapy withdrawal of PD-1/PD-L1 inhibitors, specifically atezolizumab for TNBC and nivolumab for HCC. This study will examine both the structural and clinical aspects. This review provides detailed insights into the structure of the PD-1 receptor and its ligands, the interactions between PD-1 and PD-L1, and their interactions with the withdrawn antibodies (atezolizumab and nivolumab) as well as PD-1 and PD-L1 modifications. In addition, this review further assesses these antibodies in the context of TNBC and HCC. It seeks to elucidate the factors that contribute to diverse responses to PD-1/PD-L1 therapy in different types of cancer and propose approaches for predicting responses, mitigating the potential risks linked to therapy withdrawals, and optimizing patient outcomes. By better understanding the mechanisms underlying responses to PD-1/PD-L1 therapy and developing strategies to predict these responses, it is possible to create more efficient treatments for TNBC and HCC.
Collapse
Affiliation(s)
- Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan.
| |
Collapse
|
142
|
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, Wang L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm Sin B 2024; 14:3834-3854. [PMID: 39309502 PMCID: PMC11413684 DOI: 10.1016/j.apsb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.
Collapse
Affiliation(s)
- Yunna Chen
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Zhou
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Zongfang Jia
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Nuo Cheng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Sheng Zhang
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Lei Wang
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
143
|
Xun Z, Zhou H, Shen M, Liu Y, Sun C, Du Y, Jiang Z, Yang L, Zhang Q, Lin C, Hu Q, Ye Y, Han L. Identification of Hypoxia-ALCAM high Macrophage- Exhausted T Cell Axis in Tumor Microenvironment Remodeling for Immunotherapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309885. [PMID: 38956900 PMCID: PMC11434037 DOI: 10.1002/advs.202309885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Indexed: 07/04/2024]
Abstract
Although hypoxia is known to be associated with immune resistance, the adaptability to hypoxia by different cell populations in the tumor microenvironment and the underlying mechanisms remain elusive. This knowledge gap has hindered the development of therapeutic strategies to overcome tumor immune resistance induced by hypoxia. Here, bulk, single-cell, and spatial transcriptomics are integrated to characterize hypoxia associated with immune escape during carcinogenesis and reveal a hypoxia-based intercellular communication hub consisting of malignant cells, ALCAMhigh macrophages, and exhausted CD8+ T cells around the tumor boundary. A hypoxic microenvironment promotes binding of HIF-1α complex is demonstrated to the ALCAM promoter therefore increasing its expression in macrophages, and the ALCAMhigh macrophages co-localize with exhausted CD8+ T cells in the tumor spatial microenvironment and promote T cell exhaustion. Preclinically, HIF-1ɑ inhibition reduces ALCAM expression in macrophages and exhausted CD8+ T cells and potentiates T cell antitumor function to enhance immunotherapy efficacy. This study reveals the systematic landscape of hypoxia at single-cell resolution and spatial architecture and highlights the effect of hypoxia on immunotherapy resistance through the ALCAMhigh macrophage-exhausted T cell axis, providing a novel immunotherapeutic strategy to overcome hypoxia-induced resistance in cancers.
Collapse
Affiliation(s)
- Zhenzhen Xun
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Huanran Zhou
- Department of EndocrinologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Mingyi Shen
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yao Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Chengcao Sun
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Yanhua Du
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhou Jiang
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Liuqing Yang
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Qing Zhang
- Simmons Comprehensive Cancer CenterDepartment of PathologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Chunru Lin
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Qingsong Hu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Youqiong Ye
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Leng Han
- Brown Center for ImmunotherapySchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biostatistics and Health Data ScienceSchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biochemistry and Molecular BiologyMcGovern Medical School at The University of Texas Health Science Center at HoustonHoustonTX77030USA
| |
Collapse
|
144
|
Zhang X, Zhong Y, Yang Q. FOXM1 Upregulates O-GlcNAcylation Level Via The Hexosamine Biosynthesis Pathway to Promote Angiogenesis in Hepatocellular Carcinoma. Cell Biochem Biophys 2024; 82:2767-2785. [PMID: 39031247 DOI: 10.1007/s12013-024-01393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Hepatocellular carcinoma (HCC) presents significant challenges in treatment and prognosis because of its aggressive nature and high metastatic potential. This study aims to investigate the role of the hexosamine biosynthesis pathway (HBP) and its association with HCC progression and prognosis. We identified SPP1 and FOXM1 as hub genes within the HBP pathway, showing their correlation with poor prognosis and late-stage progression. In addition, the analysis uncovered the complex participation of the HBP pathway in nutrients and oxygen reactions, PI3K-AKT signaling, AMPK activation, and angiogenesis regulation. The disruption of these pathways is pivotal in influencing the growth and progression of HCC. Targeting the HBP presents a promising therapeutic approach to modulate the tumor microenvironment, thereby enhancing the efficacy of immunotherapy. In addition, FOXM1 was identified as the HBP pathway regulator, influencing cellular O-GlcNAcylation level and VEGF secretion, thereby promoting angiogenesis in HCC. Inhibition of O-GlcNAcylation significantly hindered angiogenesis, which is suggested as a potential avenue for therapeutic intervention. Our research demonstrates the practicality of using the HBP-related gene as a prognostic marker in liver cancer patients and suggests targeting FOXM1 as a novel avenue for personalized therapy.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Yifan Zhong
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
145
|
Chu X, Li X, Zhang Y, Dang G, Miao Y, Xu W, Wang J, Zhang Z, Cheng S. Integrative single-cell analysis of human colorectal cancer reveals patient stratification with distinct immune evasion mechanisms. NATURE CANCER 2024; 5:1409-1426. [PMID: 39147986 DOI: 10.1038/s43018-024-00807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
The tumor microenvironment (TME) considerably influences colorectal cancer (CRC) progression, therapeutic response and clinical outcome, but studies of interindividual heterogeneities of the TME in CRC are lacking. Here, by integrating human colorectal single-cell transcriptomic data from approximately 200 donors, we comprehensively characterized transcriptional remodeling in the TME compared to noncancer tissues and identified a rare tumor-specific subset of endothelial cells with T cell recruitment potential. The large sample size enabled us to stratify patients based on their TME heterogeneity, revealing divergent TME subtypes in which cancer cells exploit different immune evasion mechanisms. Additionally, by associating single-cell transcriptional profiling with risk genes identified by genome-wide association studies, we determined that stromal cells are major effector cell types in CRC genetic susceptibility. In summary, our results provide valuable insights into CRC pathogenesis and might help with the development of personalized immune therapies.
Collapse
Affiliation(s)
| | | | - Yu Zhang
- Changping Laboratory, Beijing, China
| | - Guohui Dang
- Changping Laboratory, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | | | - Wenbin Xu
- Changping Laboratory, Beijing, China
| | | | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | | |
Collapse
|
146
|
Feng H, Liu J, Jia H, Bu X, Yang W, Su P. Cancer-associated fibroblasts-derived exosomal ZNF250 promotes the proliferation, migration, invasion, and immune escape of hepatocellular carcinoma cells by transcriptionally activating PD-L1. J Biochem Mol Toxicol 2024; 38:e23778. [PMID: 39252517 DOI: 10.1002/jbt.23778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 09/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is a lethal form of liver cancer, and the tumor microenvironment, particularly cancer-associated fibroblasts (CAFs), plays a critical role in its progression. This study aimed to elucidate the mechanism by which CAF-derived exosomes regulate the development of HCC. The study employed quantitative real-time polymerase chain reaction for mRNA expression analysis and western blot analysis for protein expression detection. Chromatin immunoprecipitation assay and dual-luciferase reporter assay were performed to investigate the relationship between zinc finger protein 250 (ZNF250) and programmed cell death 1 ligand 1 (PD-L1). Transmission electron microscopy and western blot analysis were used to characterize the isolated exosomes. The transferability of CAF-derived exosomes and normal fibroblasts (NFs)-derived exosomes into HCC cells was analyzed using a green fluorescent labeling dye PKH67. Cell proliferation was assessed via a 5-Ethynyl-2'-deoxyuridine assay, while Transwell assays were conducted to evaluate cell migration and invasion. Flow cytometry was performed to measure cell apoptosis, while enzyme-linked immunosorbent assays were used to assess the levels of tumor necrosis factor-α and perforin. Finally, a xenograft mouse model was constructed to examine the effects of exosomes derived from ZNF250-deficient CAFs on the tumor properties of HCC cells. The study revealed increased expression of ZNF250 in HCC tissues and cells, with ZNF250 transcriptionally activating PD-L1 in HCC cells. ZNF250 expression was associated with HbsAg, clinical stage and tumor size of HCC patients. CAF-derived exosomal ZNF250 can regulate PD-L1 expression in HCC cells. Furthermore, exosomes derived from ZNF250-deficient CAFs inhibited the proliferation, migration, invasion, and immune escape of HCC cells by downregulating PD-L1 expression. Moreover, CAF-derived exosomal ZNF250 promoted tumor formation in vivo. These findings provide insights into the role of CAF-derived exosomes in the suppression of HCC development, highlighting the significance of ZNF250 and PD-L1 regulation in tumor progression.
Collapse
Affiliation(s)
- Huizhi Feng
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jingmei Liu
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Haixia Jia
- Department of Scientific Research, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoqian Bu
- Department of Digestive System Cancer Center, Shanxi Bethune Hospital, Taiyuan, China
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Peng Su
- Department of Medical Service, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
147
|
Xu C, Su R, Lu Z, Song Y, Zhang X, Shu W, Yang Z, Zhuang R, Xu X, Wei X. Heterogeneity of hepatocellular carcinoma that responds differently to combination therapy with TACE and Sorafenib as determined by digital spatial gene expression profiling. Genes Genomics 2024; 46:1045-1058. [PMID: 39078588 DOI: 10.1007/s13258-024-01548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The combination of Sorafenib and transcatheter arterial chemoembolization (TACE) exhibits limited efficacy in the treatment of certain advanced hepatocellular carcinomas (HCC), and the molecular mechanisms underlying resistance to this combination remain unclear. OBJECTIVE This study aims to underscore the distinctive contribution of GeoMx DSP technology in elucidating the molecular intricacies of HCC resistance to the Sorafenib and TACE combination. METHODS Patients with advanced HCC during the waiting period before liver transplantation were classified into sensitive and resistant groups based on their response to Sorafenib and TACE combination therapy. Employing GeoMx DSP technology for comprehensive gene expression profiling, we identified pivotal molecular targets linked to resistance against combination therapy. RESULTS The investigation scrutinized intra-tumoral and inter-individual variances, unveiling a spectrum of crucial molecular targets, such as PLG, PLVAP, immunoglobulin genes, ORM1, and NR4A1, among others. Additionally, we explored signaling pathways associated with treatment responsiveness, including the PPAR signaling pathway. Notably, we emphasized the significance of the immune microenvironment characterized by heightened SPP1 expression in HCC resistance to combination therapy. In the resistant group, SPP1+ tumor-associated macrophage (TAM) infiltration was notably pronounced (p = 0.037), while T-cell depletion showed a mitigated presence (p = 0.013). CONCLUSION The study reveals intra- and inter-individual heterogeneity in HCC that is differentially responsive to the combination of Sorafenib and TACE, highlighting multiple key molecular targets associated with treatment resistance. The immune microenvironment is important, and in particular, SPP1+ TAM infiltration may play a key role. Meanwhile, the introduction of immunotherapy in patients resistant to combination therapy may lead to positive results.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhengyang Lu
- Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Yisu Song
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiaobing Zhang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Wenzhi Shu
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Zhe Yang
- Shulan (Hangzhou) Hospital, Hangzhou, 310000, China
| | - Runzhou Zhuang
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Xuyong Wei
- Zhejiang University School of Medicine, Hangzhou First People's Hospital, Hangzhou, 310006, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
148
|
Sun Q, Gao R, Lin Y, Zhou X, Wang T, He J. Leveraging single-cell RNA-seq for uncovering naïve B cells associated with better prognosis of hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e563. [PMID: 39252823 PMCID: PMC11381656 DOI: 10.1002/mco2.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 09/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical highly heterogeneous solid tumor with high morbidity and mortality worldwide, especially in China; however, the immune microenvironment of HCC has not been clarified so far. Here, we employed single-cell RNA sequencing (scRNA-seq) on diethylnitrosamine (DEN)-induced mouse HCC model to dissect the immune cell dynamics during tumorigenesis. Our findings reveal distinct immune profiles in both precancerous and cancerous lesions, indicating early tumor-associated immunological alterations. Notably, specific T and B cell subpopulations are preferentially enriched in the HCC tumor microenvironment (TME). Furthermore, we identified a subpopulation of naïve B cells with high CD83 expression, correlating with improved prognosis in human HCC. These signature genes were validated in The Cancer Genome Atlas HCC RNA-seq dataset. Moreover, cell interaction analysis revealed that subpopulations of B cells in both mouse and human samples are activated and may potentially contribute to oncogenic processes. In summary, our study provides insights into the dynamic immune microenvironment and cellular networks in HCC pathogenesis, with a specific emphasis on naïve B cells. These findings emphasize the significance of targeting TME in HCC patients to prevent HCC pathological progression, which may give a new perspective on the therapeutics for HCC.
Collapse
Affiliation(s)
- Qingjia Sun
- Department of Otorhinolaryngology Head and Neck Surgery The China-Japan Union Hospital of Jilin University Changchun China
| | - Rui Gao
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yingxin Lin
- School of Mathematics and Statistics The University of Sydney Sydney Australia
| | - Xianchao Zhou
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Tao Wang
- Univ Lyon, Univ Jean Monnet Saint-Etienne, INSA Lyon, Univ Lyon 2 Université Claude Roanne France
| | - Jian He
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
- Key Laboratory of Systems Biomedicine Ministry of Education and Collaborative Innovation Center of Systems Biomedicine Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
149
|
Shi J, Zhang Y, Xu L, Wang F. Single-cell transcriptomics reveals tumor microenvironment remodeling in hepatocellular carcinoma with varying tumor subclonal complexity. Front Genet 2024; 15:1467682. [PMID: 39268081 PMCID: PMC11390501 DOI: 10.3389/fgene.2024.1467682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction The complexity of tumor cell subclonal structure has been extensively investigated in hepatocellular carcinoma. However, the role of subclonal complexity in reshaping the tumor microenvironment (TME) remains poorly understood. Methods We integrated single-cell transcriptome sequencing data from four independent HCC cohorts, involving 30 samples, to decode the associations between tumor subclonal complexity and the TME. We proposed a robust metric to accurately quantify the degree of subclonal complexity for each sample based on discrete copy number variations (CNVs) profiles. Results We found that tumor cells in the high-complexity group originated from the cell lineage with FGB overexpression and exhibited high levels of transcription factors associated with poor survival. In contrast, tumor cells in low-complexity patients showed activation of more hallmark signaling pathways, more active cell-cell communications within the TME and a higher immune activation status. Additionally, cytokines signaling activity analysis suggested a link between HMGB1 expressed by a specific endothelial subtype and T cell proliferation. Discussion Our study sheds light on the intricate relationship between the complexity of subclonal structure and the TME, offering novel insights into potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jian Shi
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanru Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fang Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
150
|
Chen YZ, Meng ZS, Xiang ZL. HMGB2 drives tumor progression and shapes the immunosuppressive microenvironment in hepatocellular carcinoma: insights from multi-omics analysis. Front Immunol 2024; 15:1415435. [PMID: 39247201 PMCID: PMC11380137 DOI: 10.3389/fimmu.2024.1415435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) poses a significant health burden globally, with high mortality rates despite various treatment options. Immunotherapy, particularly immune-checkpoint inhibitors (ICIs), has shown promise, but resistance and metastasis remain major challenges. Understanding the intricacies of the tumor microenvironment (TME) is imperative for optimizing HCC management strategies and enhancing patient prognosis. Methods This study employed a comprehensive approach integrating multi-omics approaches, including single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing (Bulk RNA-seq), and validation in clinical samples using spatial transcriptomics (ST) and multiplex immunohistochemistry (mIHC). The analysis aimed to identify key factors influencing the immunosuppressive microenvironment associated with HCC metastasis and immunotherapy resistance. Results HMGB2 is significantly upregulated in HCCTrans, a transitional subgroup associated with aggressive metastasis. Furthermore, HMGB2 expression positively correlates with an immunosuppressive microenvironment, particularly evident in exhausted T cells. Notably, HMGB2 expression correlated positively with immunosuppressive markers and poor prognosis in HCC patients across multiple cohorts. ST combined with mIHC validated the spatial expression patterns of HMGB2 within the TME, providing additional evidence of its role in HCC progression and immune evasion. Conclusion HMGB2 emerges as a critical player of HCC progression, metastasis, and immunosuppression. Its elevated expression correlates with aggressive tumor behavior and poor patient outcomes, suggesting its potential as both a therapeutic target and a prognostic indicator in HCC management.
Collapse
Affiliation(s)
- Yan-Zhu Chen
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi-Shang Meng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zuo-Lin Xiang
- Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Radiation Oncology, Shanghai East Hospital Ji'an hospital, Ji'an, China
| |
Collapse
|